nodi fi ed: 2002- 07- 16

revi sion: 2001-11-12

587

NOT COLLAPSING CARDINALS <« IN (< kx)-SUPPORT
ITERATIONS

SAHARON SHELAH

ABSTRACT. We deal with the problem of preserving various versions of com-
pleteness in (< k)-support iterations of forcing notions, generalizing the case
“S—complete proper is preserved by CS iterations for a stationary co-stationary
S C w1”. We give applications to Uniformization and the Whitehead prob-
lem. In particular, for a strongly inaccessible cardinal k and a stationary set
S C k with fat complement we can have uniformization for (As : § € S'),
As C 6 =sup Ag, cf(d) = otp(As) and a stationary non-reflecting set S’ C S.

ANNOTATED CONTENT

Section 0: Introduction We put this work in a context and state our aim.
—0.1 Background: Abelian groups

—0.2 Background: forcing [We define (< k)-support iteration.

—0.3 Notation

CASE A
Here we deal with Case A, say k = AT, cf(\) = A\, A = A<,

Section A.1: Complete forcing notions We define various variants of
completeness and related games; the most important are the strong S—completeness
and real (So, 31, D)—-completeness. We prove that the strong S—completeness is pre-
served in (< k)—support iterations (A.1.13)

Section A.2: Examples We look at guessing clubs C = (C5 : § € S). If
[@ € nacc(Cs) = cf(a) < A] we give a forcing notion (in our context) which
adds a club C of x such that C N nacc(Cs) is bounded in § for all § € S. (Later,
using a preservation theorem, we will get the consistency of “no such C' guesses
clubs”.) Then we deal with uniformization (i.e., Prg) and the (closely related)
being Whithead.

Section A.3: The iteration theorem We deal extensively with (standard)
trees of conditions, their projections and inverse limits. The aim is to build a
(P, N)—generic condition forcing G, N N, and the trees of conditions are approx-
imations to it. The main result in the preservation theorem for our case (A.3.7).

Section A.4: The Axiom We formulate a Forcing Axiom relevant for our
case and we state its consistency.
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CASE B

Here we deal with k strongly inaccessible, S C k usually a stationary “thin” set
of singular cardinals. There is no point to ask even for N;—completeness , so the
completeness demands are only on sequences of models.

Section B.5: More on complete forcing notions We define completeness
of forcing notions with respect to a suitable family & of increasing sequences N of
models, say, such that (J N; Nk ¢ S for limit § < £g(N). S is the non-reflecting
<8

stationary set where “sjomething is done”. The suitable preservation theorem for
(< k)—support iterations is proved in B.5.6. So this é plays a role of Sy of Case
A, and the presrvation will play the role of preservation of strong Sp—completeness.
We end defining the version of completeness (which later we prove is preserved; it
is parallel to (So, S, D)—completeness of Case A).

Section B.6: Examples for an inaccessible cardinal « We present a
forcing notion taking care of Prg, at least for cases which are locally OK, say,
S C k is stationary non-reflecting. We show that it satisfies the right properties
(for iterating) for the naturally defined £, ;. Then we turn to the related problem
of Whitehead group.

Section B.7: The iteration theorem for inaccessible & We show that
completeness for (€9, & )is preserved in (< k)-support iterations (this covers the
uniformization). Then we prove the k*—cc for the simplest cases.

Section B.8: The Axiom and its applications We phrase the axiom and
prove its consistency. The main case is for a stationary set S C x whose complement
is fat, but checking that forcing notions fit is clear for forcing notion related to non-
reflecting subsets S’ C S, So S can have stationary intersection with S% for any
regular o < k. The instance of S Ninaccessible is not in our mind, but it is easier —
similar to the successor case. Next we show the consistency of “GCH + there are
almost free Abelian groups in x, and all of them are Whitehead”. We start with
an enough indestructible weakly compact cardinal and a stationary non-reflecting
set S C k, for simplicity S C Sgo, and then we force the axiom. Enough weak
compactness remains, so that we have: every stationary set S’ C k \ S reflects
in inaccessibles, hence “G almost free in k” implies T'(G) € S mod D,”, but the
axiom makes all of them Whitehead.
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0. INTRODUCTION

In the present paper we deal with the following question from the Theory of
Forcing:

Problem we address 0.1. Iterate with (< k)-support forcing notions not col-
lapsing cardinals < k preserving this property, generalizing “S—complete proper is
preserved by CS iterations for a stationary co-stationary S C w;”.

We concentrate on the ZFC case (i.e., we prefer to avoid the use of large cardinals,
or deal with cardinals which may exists in L) and we demand that no bounded
subsets of k are added.

We use as our test problems instances of uniformization (see 0.2 below) and
Whitehead groups (see 0.3 below), but the need for 0.1 comes from various questions
of Set Theory. The case of CS iteration and £ = N; has gotten special attention
(so we generalize no new real case by S—completeness, see [16, Ch V]) and is a very
well understood case, but still with consequences in CS iterations of S—complete
forcing notions. This will be our starting point.

One of the questions which caused us to look again in this direction was:

is it consistent with ZFC + GCH that for some regular x there

is an almost free Abelian group of cardinality x, but every such

Abelian group is a Whitehead one?
By Gobel and Shelah [3], we have strong counterexamples for k = R,,: an almost
free Abelian group G on k with HOM(G,Z) = {0}. Here, the idea is that we have
an axiom for G with I'(G) C S (to ensure being Whitehead) and some reflection
principle gives

I'(G)\ S is stationary = G is not almost free in &,

(see B.8). This stream of investigations has a long history already, one of the
starting points was [14] (see earlier references there too), and later Mekler and
Shelah [8], [7].

Definition 0.2. Let x > )\ be cardinals.

(1) We let S5 < {5 < 1 : cf(5) = cf(N)}.

(2) A (k,\)-ladder system is a sequence A = (A; : 6 € S) such that the set
dom(A) = S is a stationary subset of S§ and

(Vo € S)(As Cd =sup(As) & otp(As) = cf(N)).
When we say that A is a (x, \)-ladder system on S, then we mean that

dom(A) = S. B
(3) Let Abe a (k, A\)-ladder system. We say that A4 has the h* -Uniformization
Property (and then we may say that it has h*~UP) if h* : K — & and

for every sequence h = (hs : § € S), S = dom(A), such
that

(V5 € S)(h5 As — k & (VO& S Ag)(hg(oz) < h*(a)))
there is a function h : kK — k with
(V6 € S)(sup{a € As : hs(a) # h(a)} < 0}).

If h* is constantly p, then we may write u—UP; if p = A,
then we may omit it.
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(4) For a stationary set S C S, let Prg , be the following statement
Prg, = each (k, A)-ladder system A on S has the py—Uniformization Property.
We may replace p by h*; if 4 = A\ we may omit it.

There are several works on the UP, for example the author proved that it is
consistent with GCH that there is a (AT, A)-ladder system on S§‘+ with the Uni-
formization Property (see Steinhorn and King [18], for more general cases see [14]),
but necessarily not every such system has it (see [16, AP, §3]). In the present paper
we are interested in a stronger statement: we want to have the UP for all systems
on S (i.e., Prg).

We work mostly without large cardinals. First we concentrate on the case when
k = AT, X a regular cardinal, and then we deal with the related problem for
inaccessible k. The following five cases should be treated somewhat separately.

Case A: k=AMt A=)} 6C S%, and the set S§ \ S is stationary;

Case B:  « is (strongly) inaccessible (e.g. the first one), S is a “thin” set
of singulars;

Case C: )\ issingular, S C S CAfB\) is a non-reflecting stationary set;

Case D:  k is strongly inaccessible, the set

{§ < k:8§ €S and d is not strongly inaccessible }

is not stationary;
Case E:  S=8§ k=" A=

We may also consider

Case F: rk=r<" 0t <x=2°.
Case G: S=5{, k=X = A<* and we make 2* > k.

In the present paper we will deal with the first two (i.e., A and B) cases. The other
cases will be considered in subsequent papers, see [9], [17].

Note that g excludes the Uniformization Property for systems on S. Conse-
quently we have some immediate limitations and restrictions. Because of a theorem
of Jensen, in case B we have to consider S C k which is not too large (e.g. not
reflecting). In the context of case C, one should remember that by Gregory [4]
when ) is regular, and by [13] generally: if A<* = X or \ is strong limit singular,
22 = A* and S C {§ < AT : cf(0) # cf(A\)} is stationary, then g holds true.

By [14, §3], if A is a strong limit singular cardinal, 2* = A*, 0y and S C {0 <
AT 1 cf(8) = cf(\)} reflects on a stationary set then {>g holds; more results in this
direction can be found in Dzamonja and Shelah [1].

In the cases A, E, G we are assuming that A<* = X\. We will start with the first
(i.e., A) case which seems to be easier. The forcing notions which we will use will
be quite complete, mainly “outside” S (see A.1.1, A.1.7, A.1.16 below). Having this
amount of completeness we will be able to put weaker requirements on the forcing
notion for S.

Finally note that we cannot expect here a full parallel of properness for A = g,
as even for AT—cc the parallel of FS iteration preserves ccc fails.

We deal here with cases A and B, other will appear in Part II, [17], [9]. For
iterating (< A)—complete forcing notions possibly adding subsets to A, k = AT, see
[9]. In [17] we show a weaker xT—cc (parallel to pic, eec in [16, Ch VII, VIII])
suffices. We also show that for a strong limit singular A cardinal and a stationary
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set S C S?sz)’ Prg (the uniformization for S) fails, but it may hold for many
S-ladder systems (so we have consequences for the Whitehead groups).

This paper is based on my lectures in Madison, Wisconsin, in February and
March 1996, and was written up by Andrzej Rostanowski to whom I am greatly
indebted.

0.1. Background: Abelian groups. We try to be self-contained, but for further
references see Eklof and Mekler [2].

Definition 0.3. (1) An Abelian group G is a Whitehead group if for every

onto

homomorphism h : H — G from an Abelian group H onto G such that
Ker(h) = Z there is a lifting ¢g (i.e., a homomorphism ¢g : G — H such
that h o g = idg).

(2) Let h : H — G be as above, G; be a subgroup of G. A homomorphism
g: G1 — H is a lifting for Gy (and h) if ho gy =idg,.

(3) We say that an Abelian group G is a direct sum of its subgroups (G; : i € J)

(and then we write G = @ G;) if
icJ
(a) G = (U Gi)¢ (where for a set A C G, (A)g is the subgroup of G
icJ
generated by A; (A)g ={>_ apx¢: k <w, ay €7, x4 € A}), and
L<k

(b) G;N (U Gj)c = {0} for every i € J.
ij

Remark 0.4. Concerning the definition of a Whitehead group, note that if A :

onto

H = G is a homomorphism such Ker(h) = Z and H = Z & Hy, then h | H;
is a homomorphism from H; into G with kernel {0} (and so it is one-to-one, and
“onto”). Thus hlH; is an isomorphism and g def (hHp)~? is a required lifting.
Also conversely, if g : G — H is a homomorphism such that h o g = idg then
H =7 g[G].
The reader familiar with the Abelian group theory should notice that a group G
is Whitehead if and only if Ext(G,Z) = {0}.

Proposition 0.5. (1) Ifh: H M G isa homomorphism, G1®G2 C G and gy
is a lifting for Gy (for £ = 1,2), then there is a unique lifting g for G1 & Ga
(called (g1, g2) ) extending both g1 and g=; clearly g(x1+x2) = g1(x1)+g2(x2)
whenever x1 € Gy, x9 € Gs.
(2) Similarly for @ G;, g; a lifting for G;.
i€
(3) Ifh: H ™S G, Ker(h) 2 Z and Gy C G is isomorphic to Z, then there is
a lifting for Gy.

Definition 0.6. Let A be an uncountable cardinal, and let G be an Abelian group.
(a) G is free if and only if G = @ G; where each G; is isomorphic to Z.
ieJ
(b) G is A—free if its every subgroup of size < A is free.
(c) G is strongly A—free if for every G’ C G of size < A there is G such that
(o) G CG"CGand |G"] < A,
(8) G" is free,
(v) G/G" is Aree.
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(d) G is almost free in X if it is strongly A—free of cardinality A but it is not
free.

Remark 0.7. Note that the strongly in 0.6(d) does not have much influence. In
particular, for x inaccessible, “strongly k—free” is equivalent to “k—free”.

Proposition 0.8. Assume G/G" is A—free. Then for every K C G, |K| < X there
is a free Abelian group L C G such that K CG" @& L C G.

Definition 0.9. Assume that « is a regular cardinal. Suppose that G is an almost
free in x Abelian group (so by 0.6(d) it is of size ). Let G = (G; : i < k) be a
filtration of G, i.e., (G; : i < k) is an increasing continuous sequence of subgroups
of G, each of size less than x. We define

Y(G) = {i < k: G/G; is not k—free},

and we let I'[G] = v(G)/D, for any filtration G, where D, is the club filter on x
(see [2]).

Proposition 0.10. Suppose that G, k and (G; : i < K) are as above.
(1) G is free if and only if v(G) is not stationary.
(2) v[G] cannot reflect in inaccessibles.

The problem which was the raison d’etre of the paper is the following question
of Gobel.

Gobel’s question 0.11. Is it consistent with GCH that for some regular cardinal
K we have:

(a) every almost free in x Abelian group is Whitehead, and

(b) there are almost free in x Abelian groups ?

Remark 0.12. The point in 0.11(b) is that without it we have a too easy solution:
any weakly compact cardinal will do the job. This demand is supposed to be
a complement of Gobel Shelah [3] which proves that, say for K = W,,, there are
(under GCH) almost free in x groups H with HOM(H, Z) = {0}.

Now, our conclusion B.8.4 gives that

(a)’ every almost free in x Abelian group G with T'[G] C S/D,; is Whitehead,
(b)’ there are almost free in x Abelian groups H with I'[H] C S/D,,.

It can be argued that this answers the question if we understand it as whether
from an almost free in k Abelian group we can build a non—Whitehead one, so the
further restriction of the invariant to be C S does not influence the answer.

However we can do better, starting with a weakly compact cardinal x we can
manage that in addition to (a)’, (b)’ we have

(b)™ (i) every stationary subset of x \ S reflects in inaccessibles,
(i) for every almost free in k Abelian group H, I'[H] C S/D,.
(In fact, for an uncountable inaccessible x, (i) implies (ii)). So we get a consistency
proof for the original problem. This will be done here.

We may ask, can we do it for small cardinals? Successor of singular? Successor
of regular? For many cardinals simultaneously? We may get consistency and
ZFC+GCH information, but the consistency strength is never small. That is, we
need a regular cardinal x and a stationary set S C k such that we have enough
uniformization on S. Now, for a Whitehead group G: if G = (G; : i < k) is a
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filtration of G, S = v(G), \; = |Gi+1/G;| for i € S, for simplicity \; = A, then we
need a version of Prg  (see Definition 0.2(4)). We would like to have a suitable

reflection (see Magidor and Shelah [6]); for a stationary S’ C &\ S this will imply
0.

0.2. Background: forcing. Let us review some basic facts concerning iterated
forcing and establish our notation. First remember that in forcing considerations
we keep the convention that

a stronger condition (i.e., carrying more information) is the larger one.

For more background than presented here we refer the reader to either [16] or Jech
[5, Ch 4].

Definition 0.13. Let « be a cardinal number. We say that Qis a (< k)-support
iteration of length v (of forcing notions Q_) if Q = (Pa,@ﬂ ca <7y, f<7)and
for every a <y, B < y:
(a) P, is a forcing notion,
(b) Q 5 is a Pg—name for a forcing notion with the minimal element 0@5
[for simplicity we will assume that Q 5 is a partial order on an ordinal;
remember that each partial order is isomorphic to one of this form],

(c) acondition f in P, is a partial function such that dom(f) C «, ||dom(f)| <
k and

(V€ € dom(f))(f(§) is a Pe—name and  IFp, f(§) € @5)
[we will keep a convention that if f € Py, & € '\ dom(f) then f(§) = 0@£;

moreover we will assume that each f(€) is a canonical name for an ordinal,
e, f(&) = {{q,v) : i <i*} where {¢; : i <i*} C P¢ is amaximal antichain
of P¢ and for every i < i*: 7; is an ordinal and ¢; IFp, “f(§) = 7",

(d) the order of P, is given by

fr<e, fo ifand only if (V€ € a)(f21€ e, f1(€) <qg, f2(£))-

Note that the above definition is actually an inductive one (see below too).

Remark 0.14. The forcing notions which we will consider will satisfy no new se-
quences of ordinals of length < k are added, or maybe at least any new set of
ordinals of cardinality < k is included in an old one. Therefore there will be no
need to consider the revised support iterations.

Let us recall that:

Fact 0.15. Suppose Q = (Pa,@ﬂ o<y, B <) isa (< k)-support iteration,
B < a<~. Then

(a) p € P, implies plf € Pg,
(b> ]P)ﬁ CP,,
c) <p;=<p, [Ps,
d) if p € Po, pIB <p, q € Py then the conditions p,q are compatible in Py ; in
fact qUp[[B, «) is the least upper bound of p,q in P,
consequently
(e) Pg <P, (i.e., complete suborder).
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Fact 0.16. (1) IfQ = <Pa,@5 ca <y, B<7)is a (< k)-support iteration
of length -y, @v is a Py—name for a forcing notion (on an ordinal), then
there is a unique P11 such that (IPa,Qﬂ ca<y+4+1, f<y+1)isa
(< K)—support iteration.

(2) If {(y; : i < &) is a strictly increasing continuous sequence of ordinals with
limit s, § is a limit ordinal, and for each i < & the sequence (P, @ﬁ ta <
Yi» B < i) is a (< k)-support iteration, then there is a unique P, such
that (P, @ﬁ ca <5, B<s) is a (< K)-support iteration.

Because of Fact 0.16(2), we may write Q = (Po,Q,, : v < 7) when considering
iterations (with (< x)-support), as P, is determined by it (for v = 3+ 1 essentially
P, =Pg* @5) For 7/ < 7 and an iteration Q = (P, Q < ) we let

QY = (Pa,Q, s < 7).

Fact 0.17. For every function F (even a class) and an ordinal v there is a unique

(< k)—support iteration Q = (Po,Q_ :a <7'), v < such that Q= F(Qla) for

every a < ' and

either v =~ or TF(Q) is not of the right form.

For a forcing notion @Q, the completion of Q to a complete forcing will be denoted
by Q (see [16, Ch XIV]). Thus Q is a dense suborder of Q and in Q any increasing
sequence of conditions which has an upper bound has a least upper bound. In this
context note that we may define and prove by induction on «* the following fact.

Fact 0.18. Assume (P,,Q : o < a*) is a (< k)-support iteration. Let Py, Q_ be
such that for a < o*

(1) Po={f P, : (V& < a)(f(§) is a Pe—name for an element Of@g)},
(2) Q, is a Po—name for a dense suborder of Q' .

Then for each a < a*, Py is a dense suborder of P, and (Po,Q_:a < a*) isa
(< K)-support iteration.

We finish our overview of basic facts with the following observation, which will
be used several times later (perhaps even without explicit reference).

Fact 0.19. Let Q be a forcing notion which does not add new (<6)-sequences
of elements of A (i.e., IFg A<l = X\<N'V”). Suppose that N is an elementary
submodel of (H(x),€,<%) such that |[N|| =X, Qe N, and N<Y C N. Let G C Q
be a generic filter over V. Then

VIG] £ NG € NG,

Proof. Suppose that Z = (z; : i < i*) € N[G]<?, i* < §. By the definition of N[G],
for each i < ¢* there is a Q—name 7; € N such that x; = IZ-G- Look at the sequence
(1i : 1 < 1*) € V[G]. By the assumptions on Q we know that (7; : i < i*) € V
(remember i* < @, || N|| = \) and therefore, as each 7; is in N and N<¢ C N, we
have (r; : i < i*) € N. This implies that Z € N[G]. O

0.3. Notation. We will define several properties of forcing notions using the struc-
ture (H(x), €, <y) (where H(x) is the family of sets hereditarily of size less than x,
and <} is a fixed well ordering of H(x)). In all these definitions any “large enough”
regular cardinal x works.
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Definition 0.20. For most N < (H(x), €, <)) with PROPERTY we have. .. will
mean:

there is & € H(x) such that
ifze N < (H(x), € <) and N has the PROPERTY, then .. ..

Similarly, for most sequences N = (N; : i < a) of elementary submodels of (H(x), €
, <%) with PROPERTY we have. .. will mean:

there is x € H(x) such that B
if x € No, N = (N; :i < a), Ni < (H(x),€,<}) and N has the
PROPERTY, then . ...

In these situations we call the element z € H(x) a witness.

Notation 0.21. We will keep the following rules for our notation:

(1) a,B,7,6,&,¢(,4,7 ... will denote ordinals,

(2) K, A, p* ... will stand for cardinal numbers,

(3) a bar above a name indicates that the object is a sequence, usually X will
be (X; :i < £g(X)), where £g(X) denotes the length of X,

(4) a tilde indicates that we are dealing with a name for an object in a forcing
extension (like ),

(5) S, S, S’g, E, E;, Ef ... will be used to denote sets of ordinals,

6) S, S, Sf, &, &, Ez-j ... will stand for families of sets of ordinals of size < &,
and finally ‘

(7) S , S’i, Sf , E , F:'i, éf will stand for families of sequences of sets of ordinals of
size < K.

(8) The word group will mean here Abelian group. In groups we will use the
additive convention (so in particular O¢ will stand for the neutral element
of the group G). G, H, K, L will denote (always Abelian) groups.

Case: A

In this part of the paper we are dealing with the Case A (see the introduction),
so naturally we assume the following.

Our Assumptions 1. A, x, ™ are uncountable cardinal numbers such that
A A= A< AT =22 =k < p*.

We will keep these assumptions for some time (unless stated otherwise) and we may
forget to remind the reader of them.
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A.1. COMPLETE FORCING NOTIONS

In this section we introduce several notions of completeness of forcing notions
and prove basic results about them. We define when a forcing notion Q is: (6,.5)—
strategically complete, (< A)-strategically complete, strongly S—complete, (Sp, S1)—
complete basically (So, S;)-complete and really (Sy, S1, D)-complete. The notions
which we will use are strong Sy—completeness and real (80,5'1, D)—completeness,
however the other definitions seem to be interesting too. They are, in some sense,
successive approximations to real completeness (which is as weak as the iteration
theorem allows) and they might be of some interest in other contexts. But a reader
not interested in a general theory may concentrate on definitions A.1.1(3), A.1.5,
A.1.7(3) and A.1.16 only.

Definition A.1.1. Let Q be a forcing notion, and let # be an ordinal and S C 6.

(1) For a condition r € Q, let G%(Q,r) be the following game of two players,
COM (for complete) and INC (for incomplete):
the game lasts 8 moves and during a play the players con-
struct a sequence ((p;,q;) : i < 6) of conditions from Q in
such a way that (Vj <i < 0)(r <p; < ¢; <p;) and at the
stage 7 < 0 of the game:
if 1 € S, then COM chooses p; and INC chooses ¢;, and
if i ¢ S, then INC chooses p; and COM chooses g;.
The player COM wins if and only if for every i < 6 there are legal moves
for both players.
(2) We say that the forcing notion Q is (6, S)—strategically complete if the player
COM has a winning strategy in the game G%(Q, r) for each condition r € Q.
We say that Q is strategically (< 6)-complete if it is (6, 0)-strategically
complete.
(3) We say that the forcing notion Q is (< 6)—complete if every increasing
sequence (g; : i < 0) C Q of length § < # has an upper bound in Q.

Proposition A.1.2. Let Q be a forcing notion. Suppose that 0 is an ordinal and
SCa.
(1) If Q is (< 0)—complete, then it is (0, S)-strategically complete.
(2) If S’ C S and Q is (6, S")—strategically complete, then it is (6, S)—strategically
complete.
(3) If Q is (0, S)-strategically complete, then the forcing with Q does not add
new sequences of ordinals of length < 0.

Proof. 1) and 3) should be clear.

2) Note that if all members of S are limit ordinals, or at least « € S = a+1¢
S, then one may easily translate a winning strategy for COM in G%, (Q,r) to the
one in gg(@, r). In the general case, however, we have to be slightly more careful.
First note that we may assume that 6 is a limit ordinal (if € is not limit consider
the game g@*“(@,r)). Now, for a set S C 6 and a condition r € Q we define a
game *G%(Q,r):

the game lasts 6§ moves and during a play the players construct a

sequence (p; : i < 0) of conditions from Q such that r < p; < p;

for each i < j < 0 and
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if 1 € S, then p; is chosen by COM,
if i ¢ S, then p; is determined by INC.
The player COM wins if and only if there are legal moves for each
1< 0.
Note that clearly, if S C S C 6 and Player COM has a winning strategy in
*G%,(Q,7) then it has one in *G%(Q, ).
For aset S C 0 let St ={2a:a€ S}U{2a+1:a €0\ S} (Plainly St C0
as 0 is limit.)

Claim A.1.2.1. For each set S C 6 the games G&(Q,r) and *G% . (Q,r) are equiv-
alent fi.e., COM/INC has a winning strategy in G%(Q,r) if and only if it has one
in *ggL (Q,r)].

Proof of the claim. Look at the definitions of the games and the set S*. (|

Claim A.1.2.2. Suppose that Sy, S1 C 0 are such that for every mnon—successor
ordinal 6 < 0 we have
(a) 5650 = 5651)
(b) (3®n e w)(d+n €Sy, (F°new)(d+n¢ Sy, (3°n cw)(d+nebs),
and (3°n € w)(0 +n ¢ S1).
Then the games *ggo (Q,r) and *ggl (Q,r) are equivalent.

Proof of the claim. Should be clear once you realize that finitely many successive
moves by the same player may be interpreted as one move. ([

Now we may finish the proof of A.1.2(2). Let S’ C .S C 6 (and 6 be limit). Let

S* = {5 € St :§isnot asuccessor } U {d € (S')* : § is a successor }.

Note that (S”)t C S* and the sets S*, St satisfy the demands (a), (b) of A.1.2.2.
Consequently, by A.1.2.1 and A.1.2.2:

Player COM has a winning strategy in G%,(Q,r) =
Player COM has a winning strategy in *Q(OS,)L Q,r) =
Player COM has a winning strategy in *G%. (Q,r) =
Player COM has a winning strategy in *ggL Q,r) =
Player COM has a winning strategy in G%(Q,r).

O

Proposition A.1.3. Assume r is a reqular cardinal and 6 < k. Suppose that Q =
(Po,Q, : a <) is a (< k)-support iteration of (< 6)-complete ((0,S)-strategically
complete, strategically (< 0)-complete, respectively) forcing notions. Then P, is
(< @)—complete ((0,S)-strategically complete, strategically (< 0)—complete, respec-
tively).

Proof. Easy: remember that union of less than « sets of size less than  is of size
< Kk, and use A.1.2(3). O

Note that if we pass from a (< A)—complete forcing notion Q to its completion
Q we may loose (< A)—completeness. However, a large amount of the completeness
is preserved.

Proposition A.1.4. Suppose that Q is a dense suborder of Q'.
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(1) If Q is (< N)—complete (or just (< N)—strategically complete) then Q' is
(< \)—strategically complete.
(2) If Q' is (< X)-strategically complete then so is Q.
(3) Similarly, in (1),(2) for (A, S)—-complete.
Proof. 1) We describe a winning strategy for player COM in the game g@(@/, r)
(r € Q'), such that it tells player COM to choose elements of Q only. So

at stage ¢ < A of the play, COM chooses the <} -first condition

q; € Q stronger than p; € Q' chosen by INC right before.
This strategy is a winning one, as at a limit stage ¢ < A of the play, the sequence
(gj : j < i) has an upper bound in Q (remember Q is (< A)—complete).

2) Even easier. O

Definition A.1.5. (1) By D <y, <x(p*) we will denote the collection of all fami-
lies S C [1*]<" such that for every large enough regular cardinal y, for some
x € H(x) we have
ifz € N < (H(x), € <%), IN|| <k, N“* € N and NNk is an ordinal,
then NN u* € S (compare with A.1.7).
If A = N( then we may omit it.
(2) By D2, _,(1*) we will denote the collection of all sets S such that

Sc {ZL = {(a; : i < @) : the sequence @ is increasing continuous and
each a; is from [p*]<~}

and for every large enough regular cardinal x, for some z € H(x) we have:
if N =(N;:i< ) is an increasing continuous sequence
of models such that x € Ny and for each i < j < a:
Ny < Nj < (,H(X)’E’<;)’ <N£ RS ]> € Njt1, HNJH <K,
N;Nk €k and
7 is non-limit = Nj<)‘ C Ny,
then (N;Np* i< a)es.
(3) For a family © C P(X) (say X = |J X) let DT stand for the family of
Xe®
all § C X such that
(VC eD)(SNC #D).

[So ©7 is the collection of all D—positive subsets of X.]
(4) For S € (Dep, ()™ we define D2, _, (1*)[S] like D2, _,(1*) above,

except that its members S are subsets of

{(‘1 ={(a; : i < @) :a is increasing continuous and for each i < a,
a; € [p*]<* and if i is not limit then a; € S},

and, naturally, we consider only those sequences N = (N; : i < «) for which
i < is non-limit = N;Nup*eS.
As X is determined by « in our present case we may forget to mention it.

Remark A.1.6. (1) These are normal filters in a natural sense.
(2) Concerning ¢, _,(1*), we may not distinguish o, a1 which are similar
enough (e.g. see A.1.16 below).
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(3) Remember: our case is GCH, A = cf()\), x = AT and a = .
Definition A.1.7. Assume S C [u*]S*.

(1) Let x be a large enough regular cardinal. We say that an elementary
submodel N of (H(x), €, <}) is (A, S)-good if

[N|=X N<*CN, and Nnu*cS.

(2) We say that a forcing notion Q is strongly S—complete if for most (see 0.20)
(A, 8)-good elementary submodels N of (H(x), €, <} ) such that Q € N and
for each Q-generic over N increasing sequence p = (p; : i < A) C QNN
there is an upper bound of p in Q.

[Recall that a sequence p = (p; : i < Ay C QN N is Q-generic over N if for
every open dense subset Z of Q from N for some i < A, p; € Z.]

(3) Let N < (H(x), €, <}) be (A, S)-good. For a forcing notion Q, a set S C A
and a condition r € Q N N we define a game Gy s(Q,r) like the game
gg“((@,r) with an additional requirement that during a play all choices
below A have to be done from N, i.e. p;,q; € N NQ for all i < A.

If S = () then we may omit it.

(4) Let S : S — P(A\). We say that a forcing notion Q is (S, S)-complete if
for most (A, §)—good models N, for every condition » € N N Q the player
COM has a winning strategy in the game Gy g(nnu-)(Q, 7).

If S(a) = 0 for each a € S then we write S—complete. (In both cases
we may add “strategically”.) If S(a) = S for each a € S, then we write
(S, S)—complete.

Remark A.1.8. In the use of most in A.1.7 (and later) we do not mention explicitly
the witness « for it. And in fact, normally it is not necessary. If xi,x are large
enough, 2<Xt < x (so H(x1) € H(x)), S,Q,... € N, then there is a witness in
H(x1) and, without loss of generality, x1 € N and therefore there is such a witness
in N. Consequently we may forget it.

Remark A.1.9. (1) The most popular choice of p* is k; then S € (D < (p*))™
if and only if the set {§ < k: cf(d) = A & & € S} is stationary. So S “be-
comes” a stationary subset of k.
(2) Also here we have obvious monotonicities and implications.

Proposition A.1.10. Suppose that S € (D<p,<x(u*))T and a forcing notion Q
is S—complete. Then the forcing with Q adds no new A—sequences of ordinals (or,
equivalently, of elements of V) and IFg “S € (D <y <x(p*)) 7.

Proof. Standard; compare with the proof of A.1.13. O

Proposition A.1.11. (1) Let S C [p*]=*. If a forcing notion Q is strongly
S—complete and is (< \)—complete, then it is S—complete.
(2) If a forcing notion Q is strongly S—complete and is S—strategically complete,
then Q is (S, S)—complete.

Strong S—completeness is preserved if we pass to the completion of a forcing
notion.

Proposition A.1.12. Suppose that S C [p*]=* and Q is a dense suborder of Q'.
Then
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(1) Q' is strongly S—complete if and only if Q is strongly S—complete,
(2) similarly for (S, S)—completeness.

Proof. 1) Assume Q' is strongly S—complete and let ' € H(x) be a witness
for the “most” in the definition of this fact. Let z = (a/,Q’). Suppose that
N < (H(x),€,<3) is (A\,S)-good and Q,z € N. Then Q',2' € N too. Now
suppose that ¢ = (¢; : i < A\) C QN N is an increasing Q-generic sequence over
N. Since Q is dense in Q’, ¢ is Q'—generic over N and thus, as Q' is strongly
S—complete, it has an upper bound in Q' (and so in Q).

Now suppose Q is strongly S—complete with a witness « € H(x) and let 2’ =
(x,Q). Let N be (A\,S)-good and Q',2’ € N. So Q,z € N. Suppose that § = (g¢; :
i < A) C Q' NN is increasing and Q'—generic over N. For each ¢ < A choose a
condition p; € QN N and an ordinal ¢(i) < A such that

¢ <@ Pi <@’ dp(i)
(possible by the genericity of g; remember that g is increasing). Look at the sequence
i< & (% <)) <)

It is an increasing Q—generic sequence over N, so it has an upper bound in Q. But
this upper bound is good for g in Q' as well.

2) Left to the reader. O
Proposition A.1.13. Suppose that Q = (Po,Q,
iteration, S € V, § € (D, <r(p*))T.

(1) If for each o < ~

< ) is a (< K)-support

IFe, “Q, is strongly S—complete”,

then the forcing notion Py is strongly S—complete (and even each quotient
Pg/Pq is strongly S—complete for o < B <1).
(2) Similarly for (S, S)—completeness.

Proof. 1) The proof can be presented as an inductive one (on ), so then we
assume that each P, (a0 < 7) is strongly S—complete. However, the main use of the
inductive hypothesis will be that it helps to prove that no new sequences of length
A are added (hence A is not collapsed, so in VP (for a < 7) we may talk about
(A, 8)—good models without worrying about the meaning of the definition if A is
not a cardinal, and N[Gp,_] is (A, S)—good).

For each a < v and p € P, fix a Po—name [} for a function from A to V such
that

if p IFp,, “there is a new function from A to V”,
then plrp, fo ¢ V, and otherwise p IFp,, “f5 is constantly 0”.
Let

T, ={p €P,: either plrp_ “there is no new function from A to V”
orplkp, fg‘ ¢V}

Clearly Z,, is an open dense subset of P,. Let z, (for a < v) be a P,—name for a
witness to the assumption that IFp, “@a is strongly S—complete”. Let

z=((#a:a<7),(Q),(Za: ) @ <7 & p €Pa)).
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Suppose that N is (A, S)—good, P,z € N and p is a P,—generic sequence over N.
Note that Q € N. We define a condition r* € P,:
we let dom(r*) = N N~ and we inductively define r*(«) for o € dom(r*) by

if there is a P,—name 7 such that
r*lalkp, “7 € Q is an upper bound to (p;(a) : i < A)”,

then 7*(a) is the <}—first such a name;
if there is no 7 as above, then 7*(a) = 0g .

It should be clear that r* € P, (as || N|| = A < k). What we have to do is to show
that r* is an upper bound to p in IP,,. We do this by showing by induction on o <y
that

(®q) foreachi < A, pila <p, r*la.

For o = 0 there is nothing to do.

For « limit this is immediate by the induction hypothesis.

If « = f+1and 8 ¢ N then we use the induction hypothesis and the fact that for
each i < A\, dom(p;) CyN N (remember p; € P, NN, A C N and ||dom(p;)|| < A).

So we are left with the case o« = f+1, 8 € N. Suppose that Gg C Py is a generic
filter over V such that r*[3 € Gg (so necessarily p;[8 € G for each i < A). We will
break the rest of the proof into several claims. Each of them has a very standard
proof, but we will sketch the proofs for reader’s convenience. Remember that we
are in the case § € N, so in particular Pg,Pgy1,238,Z3 € N and (p;[8:1 < A) C N
is a Pg—generic sequence over N.

Claim A.1.13.1.
r*[BIFp, “there is no new function from X to V.

Proof of the claim. Since Zg € N is an open dense subset of Pg we know that
pilB € Ig for some i < A. If the condition p;[B forces that “there is no new
function from A to V7, then we are done (as r*[8 > p;[5). So suppose otherwise.
Then p;[3 IFp, “ fgim ¢ V7. But, as 8,p; € N, clearly 8,p;|8 € N and we have
fi s €N and therefore for each ¢ < A there is j < A such that the condition p;[3
decides the value of fg ' ﬁ(C ). Consequently the condition r* 3 decides all values of

fi 150 so T [B IFp, fﬁi 1 € V, a contradiction. O
Claim A.1.13.2. N[Gg]|N'V =N (so N|[Gg]Nnu*€S).

Proof of the claim. Suppose that 7 € N is a Pg—name for an element of V. As the
sequence (p;[B3 : ¢ < A) is Pg—generic over N, for some ¢ < A, the condition p; |/

decides the value of the name 7. Since p;[8 € N the result of the decision belongs
to N (remember the elementarity of N) and hence 7¢# € N. O

Claim A.1.13.3.

IN[Gslll = A, NIGs]** S N[Gs] and NI[Gg] < (H(x), € <}) VI,
Consequently, V[Gg] |= “the model N|[Gg] is (A, S)-good and ~acgﬁ € N[Gg]”.
Proof of the claim. Names for elements of N[G3] are from N, so clearly || N[Gg]|| =
A= ||N|. It follows from 0.19 and A.1.13.1 that N[Gg]<* C N[Gs]. To check that

N[Gpg] is an elementary submodel of (H(x), €, <}) (in V[Gp]) we use the genericity
of (p;1B : i < A} and the elementarity of N: each existential formula of the language
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of forcing (with parameters from N) is decided by some p;[3. If the decision is
positive, then there is in N a name for a witness for the formula. So we finish by
the Tarski—Vaught criterion. O

Claim A.1.13.4.

VI[Gs] = “pi(B)9% i < \) is an increasing @gﬁ —generic sequence over N[Gg]”.
Proof of the claim. By the induction hypothesis, the condition r* [ is stronger then
all p;[ 8. Hence (by Definition 0.13), as p is increasing, the sequence (p;(8)%# : i <
A) is increasing (in @gﬂ). Suppose now that I € N is a Pg—name for an open dense

subset of @B' Look at the set {p € Pgy1 : p[B IFp, p(B) € I}. It is an open dense
subset of Pg41 from N. But Pgy; < P, so for some ¢ < A\ we have

pilB1Fp, pi(B) € 1,
finishing the claim. O

By A.1.13.3, A.1.13.4 (remember we assume IFp, “@B
we conclude that, in V[Gg], the sequence (p;(8)%* i < \) C Qgﬂ has an upper

is strongly S—complete”)

bound (in (QGB). Now, as Gg was an arbitrary generic filter containing r*[8 we
conclude that there is a Pg—name 7 such that

r* 1B lkp, “T € @5 is an upper bound to (p;(8) : i < \)”.
Now look at the definition of r*(8).
2) Left to the reader. O

Definition A.1.14. Let (of course, k = AT, and) Sy € (D<p.<r ()" and S; €
(@de(u*)[so])# Suppose that Q is a forcing notion and x is a large enough
regular cardinal.
(1) We say that a sequence N = (N; : 7 < ) is (A, k, 81, Q) ~considerable if
N is an increasing continuous sequence of elementary sub-

models of (H(x), €, <}) such that AU {\, x,Q} C No, the
sequence (N; Np* 14 < A) is in S, and for each i < A
||N1|| <K and <N] 17 < Z> € NiJrl and
i is non-limit = (N;)<* C N,.

(2) For a (), k,S1,Q)—considerable sequence N = (N; : i < \) and a condition
r € NoNQ, let G (Q,r) be the following game of two players, COM and
INC:

the game lasts A moves and during a play the players con-
struct a sequence {((p;, @) : @ < A) such that each p; is a
condition from Q and §; = (g; ¢ : £ < \) is an increasing A—
sequence of conditions from Q (we may identify it with its
least upper bound in the completion Q) and at the stage
1 < A of the game:

the player COM chooses a condition p; € N_14,41NQ such
that

r < pi, (Vj < i)(V€ < N(gje < pi),
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and the player INC answers by choosing a <g-increasing
Q-generic over N_j4i+1 sequence §; = (gie : £ < A) C
N71+i+1 n @ such that

pi < qio, and G € N_14i40.

The player COM wins the play of G5 (Q,r) if the sequence (p; : i < A)

constructed by him during the play has an upper bound in Q.

We say that the forcing notion Q is basically (So, Sl)fcomplete if

(o) Qs (< A)—complete (see A.1.1(2)), and

(8) Q is strongly Sp—complete (see A.1.7(3)), and

() for most (X, k,S1,Q)considerable sequences N = (N; : i < \), for
every condition r € NyNQ, the player INC DOES NOT have a winning
strategy in the game G5 (Q, 7).

Remark A.1.15. (1) Why do we have “strongly Sp—complete” in A.1.14(3)(5)

(2)

and not “strategically Sp—complete”? To help proving the preservation
theorem.

Note that if a forcing notion Q is strongly Sp—complete and (< A)—complete,
and N is (), &, S’l, Q)—considerable (and Ny contains the witness for “most”
in the definition of “strongly Sp—complete”), then both players always have
legal moves in the game G5 (Q,r). Moreover, if Q is a dense suborder of
Q' and Q' € Ny and the player COM plays elements of Q only then both
players have legal moves in the game G5, (Q', 7).

[Why? Arriving at a stage ¢ of the game, the player COM has to choose a
condition p; € N_14,+1 N Q stronger than all ¢; ¢ (for j <4, £ < A). If i is
a limit ordinal, COM looks at the sequence (p; : j < i) constructed by him
so far. Since (N;11)<* C N;1; we have that (pj 1 j <1i) € Niy1 and, as Q
is (< A)—complete, this sequence has an upper bound in N;y; (remember
that N;;1 is an elementary submodel of (H(x), €, <})). This upper bound
is good for ¢;¢ (j < 4, £ < A) too. If i = iy + 1 then the player COM
looks at the sequence @;, € N_14,+2 only. It is Q-generic over N_14;,41,
Q is strongly Sp—complete and N_14;,+1 is (A, Sp)—good. Therefore, there
is an upper bound to §;,, and by elementarity there is one in N_j4; 2.
Now, the player INC may always use the fact that Q is (< A)—complete to
build above p; an increasing sequence q; € Q N N_14;4+1 which is generic
over N_i4iy1. Since N_14i41 € N_14,42, by elementarity there are such
sequences in N_q4;192.

Concerning the “moreover” part note that the only difference is when COM
is supposed to choose an upper bound to g;,. But then it proceeds like in
A.1.12 reducing the task to finding an upper bound to a sequence (generic
over N_j1;,41) of elements of Q.]

Unfortunately, the amount of completeness demanded in A.1.14 is too large to
capture the examples we have in mind (see the next section). Therefore we slightly
weaken the demand A.1.14(3)(y) (or rather we change the appropriate game a
little). In definition A.1.16 below we formulate the variant of completeness which
seems to be the right one for our case.
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Definition A.1.16. Let Sy € (Dp <r(p*))" and S € (D2, A(w")[So))*T. Let D

be a function such that dom(D) = 31 and for every a € &1
D(a) = D; is a filter on \.

Let Q be a forcing notion.
(1) We say that an increasing continuous sequence N = (N; :i < \) of elemen-
tary submodels of (H(x), €, <}) is (A, &, S1, D, Q)—suitable if:
AUA{N K, Q} € Ny, ||Ni|| < &, (Nj : j <) € Niy1 and there are a € &;
and X € D; such that for each i € X

(Nig1)* C Nip1 & N Nt = aiq

(compare with A.1.14(1)); we can add N; N p* = a; if D5 is normal.
A pair (@, X) witnessing the last demand on N will be called a suitable
base for N.

(2) For a (A, ﬁ,gl,D,Q)fsuitable sequence N = (N; : i < \), a suitable base
(@, X) for N and a condition 7 € Ny, let QJQ\?[’D’X7(,Z(Q,T) be the following
game of two players, COM and INC:

The game lasts A moves and during a play the players
construct a sequence ((pi, (;,qi) : ¢ < A) such that {; € X,
p; € Qand §; = (g;¢ : £ < A) C Q in the following manner.
At the stage i < A of the game:

player COM chooses (; € X above all (; chosen so far and
then it picks a condition p; € N¢,+1 NQ such that

r < pi, (V5 <i)(V€ < M(gje < pi),
after this player INC answers choosing a <g-increasing Q-
generic over N¢, 11 sequence §; = (gie : € < A) € N¢,+1NQ
such that
pi < qio, and @ € Ne 2.
The player COM wins the play of GY | (Q,r) if {¢; 1 i < A} € Dg and
the sequence (p; : i < A) constructed by him during the play has an upper
bound in Q. R
We sometimes, abusing our notation, let INC choose just the lub in Q
of (ji.
(3) We say that the forcing notion Q is really (Sp, S1, D)—complete if
(o) Qis (< A)—complete (see A.1.1(3)), and
(8) Q is strongly Sop—complete (see A.1.7(3)), and
(v) for most (A, x,S1, D, Q)-suitable sequences N = (N; :i < \), for every
suitable basis (@, X) for N and all conditions r € Ny N Q, the player

INC DOES NOT have a winning strategy in the game gg p.xal@7)

Remark A.1.17. If a forcing notion Q is strongly Sp—complete and (< A)—complete,
and N is (\, k,81, D, Q)-suitable (witnessed by (@, X)) then both players always
have legal moves in the game g£7D7X,a(Q, ). Moreover, if Q is dense in Q', Q' €
Ny and COM plays elements of Q only, then both players have legal moves in

gg,D,X,a(QI’ r)
[Why? Like in A.1.15.]
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Remark A.1.18. We may equivalently describe the game gj@ DX a(@, r) in the fol-

lowing manner. Let Q be the completion of Q.

The play lasts A moves during which the players construct a se-
quence (p;, g; : ¢ < A\) such that p; € N;x1N(QU{x}) (where x ¢ Q
is a fixed element of Ny), ¢; € N;12 N Q.

At the stage i < A of the game, COM chooses p; in such a way
that

pi#x = i€X & (Vj<i)g <qpi)

and INC answers choosing ¢; such that
if p; = =, then g; is the least upper bound of {(g; : j < 4) in Q,
if p; # %, then ¢; € Nijy2 N Q is the least upper bound of a
Q-—generic filter over N; 1 containing p;.

The player COM wins if {i < A : p; # x} € D3 and the sequence (p; : p; # *) has
an upper bound.

There is no real difference between A.1.16(2) and the description given above.
Here, instead of “jumping” player COM puts * (which has the meaning of I am
waiting) and it uses the existence of the least upper bounds to replace a generic
sequence by its least upper bound.

Proposition A.1.19. Suppose that Sy € (D<p <a(p*))t, S1 € (’DQ&Q\(M*)[SO])JF
and Dg is a filter on X\ for a € S1. Assume that Q is a dense suborder of Q', N is
(\, &, 81, D, Q)—suitable (witnessed by (a, X)), Q" € No. Then for each r € Q:

the player COM has a winning strategy in g?,D,X,(z(Q’r) (the

N
player INC does not have a winning strategy in g;?[ D Xa(Q’T)’
respectively) if and only if
it has a winning strategy in gjé p.xa @, 7) (the player INC does
not have a winning strateqy in gg pxa@,7), resp.).
Proof. Suppose that COM has a winning strategy in gg b x.a(@Q,7). We describe

V) . .
MD’X@(Q’,T) which tells him to play elements of

Q only. The strategy is very simple. At each stage ¢ < A, COM replaces the
sequence ¢; C Q' by a sequence i C Q which has the same upper bounds in Q
as ;, is increasing and generic over N¢,11. To do this he applies the procedure
from the proof of A.1.12 (in N¢, 42, of course). Then it may use his strategy from

a winning strategy for him in G

g% b xa(@ 7). The converse implication is easy too: if the winning strategy of
COM in gg DX a(@/’ ) tells him to play (;, p; then he puts (; and any element p}
of QN N¢,4+1 stronger than p;. Note that this might be interpreted as playing p;

followed by a sequence p}g;. O

Proposition A.1.20. Suppose Sy € (D <p.<x(*))T and S) € (gin,<>\(u*)[80])+
(and as usual in this section, k = AV). Let Dy be the club filter of A for each
a € §1. Then any really (Sp, S1, D)—complete forcing notion preserves stationarity

of Sp, 81 in the respective filters.
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A.2. EXAMPLES

Before we continue with the general theory let us present a simple example with
the properties we are investigating. It is related to guessing clubs; remember that
there are ZFC theorems saying that many times we can guess clubs (see [15, Ch.
I1I, sections 1,2], [10]).

Hypothesis A.2.1. Assume A<* = X and AT = k. Suppose that Sy = Sy C SY is

a stationary set such that S def S5\ Sy is stationary too (but the definitions below

are meaningful also when S = ). Let

S = {d = (a; : 1 < A\) : @ is increasing continuous and for each i < A,
a; € k and if 4 is not limit then a; € SO}.

[Check that Sy € (Dp,<a(k))T and S; € D2, _[So]]

Note that (provably in ZFC, see [15, Ch III, §2]) there is a sequence C' = (Cj :
d € S) satisfying for each § € S:

Csis aclub of § of order type A, and if & € nacc(Cs), then cf(a) = A

such that « ¢ id?(C), i.e., for every club E of x for stationary many § € S,
d = sup(F Nnacc(Cs)), even {a < ¢ : min(Cs \ (o + 1)) € E} is a stationary subset
of §. We can use this to show that some natural preservation of not adding bounded
subsets of k (or just not collapsing cardinals) necessarily fails, just considering the
forcing notion killing the property of such C. [Why? As in the result such C exists,
but by iterating we could have dealt with all possible C’s.] We will show that we
cannot demand

a € nacc(Cs) = cf(a) <A,

that is, in some forcing extension preserving GCH there is no such C. So, for C' as
earlier but with the above demand we want to add generically a club E of AT such
that

(V6 € S)(E Nnacc(Cs) is bounded in 6).

We will want our forcing to be quite complete. To get the consistency of no guessing
clubs we need to iterate, which is our main theme.
Definition A.2.2. Let C = (Cs : § € S) be a sequence such that for every § € S:

Cs is a club of § of order type A, and
if o € nacc(Cs), then cf(a) < A (or at least a ¢ Sp).

We define a forcing notion Qé to add a desired club E C \*:

a condition in Q} is a closed subset e of AT such that o def sup(e) < At and
(Vo € SN (ae + 1))(e Nnacc(Cs) is bounded in 6),

the order <q: of Qg is defined by

) SQ% e; if and only if e( is an initial segment of e;.

It should be clear that ((@é, <qy ) is a partial order. We claim that it is quite
complete.

Proposition A.2.3. (1) Qg is (< A)-complete.

(2) é is strongly So—complete.
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Proof. 1) Should be clear.

2) Suppose that N < (H(x),€,<}) is (X, So)-good (see A.1.7) and Q} € N.
Further suppose that &€ = (e; : i < A\) € Q5 N N is an increasing Qf-generic

sequence over N. Let e def U e; U{sup( U ei)}-

i< <A
Claim A.2.3.1. e € Q.

Proof of the claim. First note that as each e; is the an end extension of all e; for

j < i, the set e is closed. Clearly a % sup(e) < AT (as each a., is below A1). So
what we have to check is that

(V6 € SN (ae +1))(e Nnace(Cs) is bounded in d).

Suppose that § € SN (ae +1). If § < . then for some i < A we have § < a,, and

eNd = e; N6 and therefore e Nnacc(Cjs) is bounded in §. So a problem could occur

only if § = a, = sup a;, but we claim that it is impossible. Why? Let §* = NNAT,
i<\

s0 0* € Sy (as N is (A, Sp)—good) and therefore §* # § (as So NS = P). For each

B < 0* the set
def

Iy = {qgc Qg : g\ B # 0}
is open dense in QF (note that if ¢ € Q}, ¢\ 8 =0 then ¢ < qU{ay, S+1} € Q).
Clearly Zs € N. Consequently, by the genericity of €, e; € Zg for some ¢ < A and
thus a., > 8. Hence sup ae, > §*. On the other hand, as each e; is in N we have

i<
ae; < 0* (for each i < A) and hence 0* = sup a, = d, a contradiction. O
i<A
Claim A.2.3.2. For eachi < X, e; <e.
Proof of the claim. Should be clear. O
Now, by A.2.3.1+A.2.3.2, we are done. (I

Proposition A.2.4. For each a € 81, let Dy be the club filter of X (or any normal
filter on \). Then the forcing notion Qé—, is really (So, S1, D)—complete.

Proof. By A.2.3 we have to check demand A.1.16(37) only. So suppose that N =
(N; =i < A)is (A, n,Sl,D,Qé)fsuitable and (@, X) is a suitable basis for N (and
we may assume that X is a closed unbounded subset of ). Let r € Ny. We are
going to describe a winning strategy for player COM in the game g}?] DX a(@é, ).
There are two cases to consider here: NxNk € S and NyxNk ¢ S. 1 'fhé winning
strategy for COM in QE’D’Xﬁ(@é, r) is slightly more complicated in the first case,
so let us describe it only then. So we assume Ny Nk € S.

Arriving at the stage i < A of the game, COM chooses (; according to the
following rules:

if =0, then it takes (; = min X,

if i =49+ 1, then it takes

G=min{jeX:G,+1<j & (Ng, 41Nk N;NE)NCnyak # 0},

if ¢ is limit, then it lets ¢; = sup (j.
Note that as Cn,  is unbounded]i; NNk and X is a club of A, the above definition
is correct; i.e., the respective (; exists, belongs to X and is necessarily above all ¢;
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chosen so far. Next COM plays p; defined as follows. The first pg is just r. If i > 0
then COM takes the first ordinal ~; such that

sup(N¢,+1 N Cnyne) <% < Negr N K

and it puts
pi= U G UINY 1 N&}U {7

j<i j<i
E<A
Note that cf(N¢,41 N k) = A and Cn,nx has order type A, s0 Cnynw N Ne,41 N K
is bounded in N¢, 41 Nk and the v; above is well defined. Moreover, by arguments
similar to that of A.2.3, one easily checks that |J ¢;¢ € @é and then easily p; € @é

j<i
E<A
and it is <q, -stronger then all g; ¢ (for j < i, £ < A). Consequently, the procedure
described above produces a legal strategy for COM in gf@ D x a(@é, r). But why is

this a winning strategy for COM? Suppose that ((p;, (;, i) : ¢ < A) is the result of
a play in which COM follows our strategy. First note that the sequence (¢; : i < \)
is increasing continuous so it is a club of A and thus {(; : ¢ < A} € D;. Now, let
e= U pi U{Nx N~} We claim that e € Q. First note that it is a closed subset
i<A
of AT with supe f e = NxN k. So suppose now that 6 € SN (ae +1). If 6 < a,
then necessarily § < a,,, for some ¢ < A and therefore e N nacc(Cs) = p; Nnace(Cs)
is bounded in §. The only danger may come from § = Ny N k. Thus assume that

B € e and we ask where does 3 come from? If it is from poU |J ¢o,¢ then we cannot
E<A
say anything about it (this is the part of e that we do not control). But in all

other instances we may show that 5 ¢ nacc(Cn,ny). Why? If B € | gie \ pi for
E<A

some 0 < 7 < A, then by the choice of ; and p; and the demand that ¢; C N¢, 41
we have that § ¢ Cn,nk. Similarly if 8 = ;. So the only possibility left is that
B= Ny ¢;+1 Nk Ifiis not limit then cf(Nj ¢, 41 N k) = A so B ¢ nacc(Cn,nx)-

i<z i<i
If i is limit then, by the choice of the (;’s we have N ¢, 41 N+ € acc(Cn,nx) and
j<i
we are clearly done.

Note that if Nx Nk ¢ S then the winning strategy for COM is much simpler:
choose successive elements of X as the (;’s and play natural bounds to sequences
constructed so far. O

Remark A.2.5. (1) Note that one cannot prove that the forcing notion Qf is

basically (So, Sl)fcomplete. The place in which a try to repeat the proof
of A.2.4 fails is the limit case of N; N k. If we do not allow COM to make
“jumps” (the choices of ¢;) then it cannot overcome difficulties coming from
the case exemplified by

CN)\ﬁn = {Nw‘i Nk:1< )\}
(2) The instance S = S §+ is not covered here, but we will deal with it later.

The following forcing notion is used to get Prg (see 0.2).
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Definition A.2.6. Let C = (Cs: 6 € S) be with Cs5 a club of § of order type A
and let h = (hs : 6 € S) be a sequence such that hs : Cs — A for § € S. Further
let D = (Ds: 6 € S) be such that each D;s is a filter on Cs.
(1) We define a forcing notion QZ, ;:
a condition in QQC',E is a function f: oy —» A such that ay < AT and

(WVoeSn(ar+1)){B €Cs:hs(8) = f(B)} is a co-bounded subset of Cjs),
the order <g2 _ of QZ ; is the inclusion (extension).

(2) The forcing notion (@%2 is defined similarly, except that we demand that
a condition f satisfies

(V6 e Sn(ay+1))({B € Cs: hs(B) = f(B)} € Ds).

Proposition A.2.7. Let Da be the club filter of X for a € Si1. Then the forcing
notion Q% 5 is really (So, 81, D)—complete.

Proof. This is parallel to A.2.4. It should be clear that (@2@ 5 1s (< A)—complete.

The proof that it is strongly Sp—complete goes like that of A.2.3(2), so what we
need is the following claim.

Claim A.2.7.1. For each < AT the set
def
Is = {f € Q% : B € dom(f)}

is open dense in QQC, Iz

Proof of the claim. Let f € (@2@ ;- We have to show that for each ¢ < AT there is a
condition f’ € QQC, 7 such that f < f" and 0 < ay/. Assume that for some § < AT

there is no suitable f’ > f, and let 0 be the first such ordinal (necessarily ¢ is limit).
Choose an increasing continuous sequence (8¢ : ( < cf(d)) cofinal in ¢ and such
that By = ay and B¢ € § \ S for 0 < ¢ < cf(d). For each ¢ < cf(d) pick a condition
fe¢ > fsuch that ay = B¢ and let f* = fU U ferallBe, Besr). If 6 ¢ S then
¢<cf(B)
easily f* € Q% 5 is a condition stronger than f. Otherwise we take f': 4 — A
defined by
f/(f): hs(§) ifEEC(;\af,
f*(&) otherwise.
Plainly, /' € Q% ; and it is stronger than f. Thus in both cases we may construct

a condition f’ st}onger than f and such that 6 = o/, a contradiction. O

With A.2.7.1 in hands we may repeat the proof of A.2.3(2) with no substantial
changes.
The proof that QQC, ; is really (So, S1, D)—complete is similar to that of A.2.4. So

let N, (@, X) and r be as there and suppose that NyN« € S. The winning strategy

for COM tells it to choose & as in A.2.4 and play p; defined as follows. The first

po is r. If ¢ > 0 then COM lets p} = jL<Ji ¢j.¢ (which clearly is a condition in Q%‘,E)
£<A

and chooses p; € @2(3‘,}1 N N¢,+1 such that

p; < pis CN)\FTH N NCH-l C dom(pi) and
(VB € Cnynw N Negw1)(apr < B = pi(B) = hnynw(B))-
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Clearly this is a winning strategy for COM. O

Remark A.2.8. (1) In fact, the proof of A.2.7 shows that the forcing notion
(@2@,}—1 is basically (So, Sl)fcomplete. The same applies to A.2.10.

(2) In A.2.6, A.2.7 we may consider h such that for some h* : K — &, for each

0 € S we have
(Va € Cs)(hs(a) < h* (@),
which does not put forward any significant changes.

(3) Why do we need h* above at all? If we allow, e.g., hs to be constantly
d then clearly there is no function f with domain x and such that (V6 €
S)(6 > sup{a € Cs : f(a) # hs(a)}) (by Fodor lemma). We may still ask if
we could just demand hs : Cs — §7 Even this necessarily fails, as we may
let hs(a) = min(Cs \ (a+1)). Then, if f is as above, theset E = {0 <k : 46
is a limit ordinal and (Voo < 6)(f(a) < 8)} is a club of k. Hence for some
0 € S we have:

A < § =sup(ENS) =otp(ENSH)
and we get an easy contradiction.

Another example of forcing notions which we have in mind when developing the
general theory is related to the following problem. Let K be a A—free Abelian group
of cardinality k. We want to make it a Whitehead group.

Definition A.2.9. Suppose that

(a) K is a strongly k—free Abelian group of cardinality k, (K1, : & < k) is a
filtration of K; (i.e., it is an increasing continuous sequence of subgroups
of Kj such that Ky = |J Ki, and each K , is of size < k),

a<k
I'={a < k:K1/K;, is not Afree },

(b) K> is an Abelian group extending Z, h : K» M9 K is a homomorphism

with kernel Z.
We define a forcing notion Q. ,:
a condition in Q%@,h is a homomorphism g : K o — K> such that o € K\ T and
hog=1idg, a
the order < n of Q%, ;, is the inclusion (extension).

Proposition A.2.10. Let Dy be a club filter of X for a € 31. Assume K1, K1 o, K>
and T' are as in assumptions of A.2.9 and T' C S. Then the forcing notion Q%(g,h

is really (So, S1, D)—complete.
Proof. Similar to the proofs of A.2.4 and A.2.7. O

A.3. THE ITERATION THEOREM

In this section we will prove the preservation theorem needed for Case A. Let us
start with some explanations which (hopefully) will help the reader to understand
what and why we do to get our result.

We would like to prove that if Q = (P, Q, 1 i <) is a (< k)-support iteration

of suitably complete forcing notions, (So, S, D) are as in A.1.16, then:
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if N = (N; :i <)) is an increasing continuous sequence of
elementary submodels of (H(x), €, <), [Nil| = A\, A+1 C N,
(N;)<* C N; for non-limit 4, and for some @ € S; and X € D,

(VZ € X)(Nz n [L* = ay & NiJrl n [L* = ai+1)

and p € P, N Ny,
then there is a condition g € P, stronger than p and (Ny,P,)-
generic.

For each @l we may get respective ¢, but the problem is with the iteration. We can
start with increasing successively p to p; € Ny (i < A\) and we can keep meeting
dense sets due to (< A)—completeness. But the main question is: why is there a
limit? For each o € v N Ny we have to make sure that the sequence (p;(«) : i < A)
has an upper bound in Q_, but for this we need information which is a P,—name
which does not belong to Ny, e.g., if @i is Q%ﬁ we need to know Cnng hyn,.- But
for each i, the size of the information needed is < .

As the life in our context is harder than for proper forcing iterations, we have to
go back to pre—proper tools and methods and we will use trees of names (see [12]).
A tree of conditions is essentially a non-deterministic condition; in the limit we will
show that some choice of a branch through the tree does the job.

[Note that one of the difficulties one meets here is that we cannot diagonalize over
objects of type A X w when A > Rq.]

Definition A.3.1. (1) A tree (T, <) is normal if for each to,t, € T,
if{seT:s<ty} ={se€T:s<t} has no last element,
then tg = t1.

(2) For an ordinal v, Tr(vy) stands for the family of all triples
T=17,<"1k")
such that (77, <7) is a normal tree and rk” : T7 — v+ 1 is an increasing
function.
We will keep the convention that 77 = (T}, <j,rk,). Sometimes we
may write t € T instead t € T7 (or t € T).

The main case and examples we have in mind are triples (7', <,rk) such that
for some w C v (where 7 is the length of our iteration), T is a family of partial
functions such that:

(Vt € T')(dom(t) is an initial segment of w and (Vo € w)(tla € T));
the order is the inclusion and the function rk is given by
rk(t) = min{a € wU {7} : dom(t) = a Nw},
(see A.3.3). Here we can let Ny Ny = {ag : £ < A}. Defining p; we are thinking of
why (p;j(ce) : 7 < A) will have an upper bound. Now A x A has a diagonal.

Note: starting to take care of ae only after some time is a reasonable strategy,
so in stage i < A we care about {a¢ : £ < i} only.

But what does it mean to do it? We have to guess the relevant information
which is a P,,—name and is not present.

What do we do? We cover all possibilities. So the tree 7¢ will consist of objects
t which are guesses on what is (information for a. up to ¢** stage: ¢ < (). Of
course we should not inflate, e.g., (p¢ : t € Te) € Ny.
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It is very nice to have an open option so that in stage A we can choose the most
convenient branch. But we need to go into all dense sets and then we have to
pay an extra price for having an extra luggage. We need to put all the p;’s into a
dense set (which is trivial for a single condition). What will help us in this task is
the strong Sp—completeness. Without this big brother to pay our bills, our scheme
would have to fail: we do have some ZFC theorems which put restrictions on the
possible iteration theorems.

Definition A.3.2. Let Q = (P;,Q, i <) be a (< k)-support iteration.
(1) We define

FTr(Q) % (p=(p:teTT): T €Te(y), (vt €TT)(ps € Prqsy) and

(Vs,t € TT))(s <t = ps=pelrk(s))},

and

Flrygk (@) = {15

=N

(pe:t€TT): T €Tr(y), (VteTT)(p: € Pur)) and
(Vs,t € TT))(s <t = ps > pilrk(s))}.

We may write (p; : t € T). Abusing notation, we mean p € FTr,;(Q) (and

P € FTr(Q)) determines 7 and we call it 7P (or we may forget and write
dom (7))

Adding primes to FTr, FTr,, means that we allow p;(3) be (a Pg—name
for) an element of the completion @5 of @ﬁ' Then p; is an element of ]P’;k(t)

— the (< k)—support iteration of the completions @B (see 0.18).
(2) If T € Tr(y), p,q € FTr),,(Q), dom(p) = dom(g) = T7 then we let

Ds
p<q ifandonlyif (VteT)(p; < q).

(3) Let 71,72 € Tr(y). We say that a surjection f : T 2 T is a projection if
for each s,t € Ty
() s<a2t = f(s) <1 f(t), and
(B)  rka(t) < rki(f(t)).

(4) Let p°,p* € FTr ,(Q), dom(p’) = T (¢ < 2) and f : T} — Ty be a
projection. Then we will write p® <y p' whenever for all t € T}
(@) p?c(t) Ikq (t) <pr L, and

Py (1)

(B) ifi<rky(t), then
pililbe, Dy () #pi0) = (€ Q)W) <o 15 PIO))"

The projections play the key role in the iteration lemma. Therefore, to make
the presentation clearer we will restrict ourselves to the case we actually need.

You may think of v as the length of the iteration, and let {8¢ : & < A} list
NNy, w={f:{ < a}. We are trying to build a generic condition for (P, N') by
approximating it by a sequence of trees of conditions. In the present tree we are at
stage a. Now, for ¢t € T, (i) is a guess on the information needed to construct a
generic for (N[Gp,], Q.[Gp,]), more exactly the a—initial segment of it.

Definition A.3.3. Let v be an ordinal.
(1) Suppose that w C v and « is an ordinal. We say that 7 € Tr(y) is a
standard (w, o) —tree if
(@) (vt e TT)(K (t) € wU {}),
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(B) if t € TT, vk” (t) = &, then ¢ is a sequence (t; : i € wN¢), where each
t; is a sequence of length «,
() <7 is the extension (inclusion) relation.
[In (8) above we may demand that each ¢; is a function with domain [z, @),
i < «, but we can use a default value * below ¢, hence making such ¢; into
sequences of length a. Note that 77 determines 7 in this case; () is the
root of T']
(2) Suppose that wg C w1 C v, ap < a1 and T = (T, <,rk) is a standard
(w1, aq)7—tree. We define the projection prOJEZ;’gig( ) of T onto (wo, ap)
as (T, <*, k") such that:
T = {<tl [ag i1 € wg N I‘k(ﬁ)) it = <ti 1€ wr N I‘k(t)> S T},
<* is the extension relation,
rk* ({t; e : i € wo Nrk(t))) = min(w U {~} \ tk(¢)) for t € T
[Note that prOngl’Zlg(T) is a standard (wo, ap)?tree.]
(3) fwo Cwy Cv, a0 < a1, T1 = (T1,<1,rk1) is a standard (wq, ay)Y—tree
and To = (Tp, <o,1ko) = prOJ(wl 1) (7'1) then the mapping

(wo,0)
T > <tz 11 € wy ﬁrkl(t» — <tir040 11 € wy ﬁrkl(t)> IS
(wl,al))
(wo,a0) /"
[Note that pro(]Tl is a projection from 7; onto 7.
(4) We say that T = (T, : @ < a*) is a legal sequence of standard vy—trees if for
some W = (Wq : @ < &™) we have
(o) w is an increasing continuous sequence of subsets of v,
(8) for each o < a*, Ty is a standard (Wq, ) T—tree,
(v) fa< B <ar, thﬁn Ta = pI’OJ(wZ g))(TB)
(5) For a legal sequence T = (T4 : a < a*) of standard y—trees, o* a limit

is denoted by proj% (or proj

~ _
ordinal, we define the inverse limit lim(7") of 7 as a triple
(Tl;n(’f’), <1§n(?)’rk1§n(ﬁ)

such thgt

(a) Th(T) consists of all sequences ¢ such that

ef

(i) dom(t) is an initial segment of w e U wa (not necessarily

a<la*
proper),
(ii) if ¢ € dom(¢), then ¢; is a sequence of length a*,
(iii) for each a < a*, (t;[a : i € wo Ndom(t)) € Ty,

(b) <!m(T) is the extension relation,
(e) tk"™ M) (#) = min(w U {7} \ dom(t)) for t € THm(T).

[Note that it may happen that T%™(7) = {()}, however not if 7 is contin-
uous, see below.] B
(6) A legal sequence of standard y—trees T = (To : @ < a*) is continuous if

il
To =lUm(7s : B < a) for each limit o < a*.

Proposition A.3.4. Suppose that ag, a1, a2,y are ordinals such that apg < oy <
ag. Let way C Wy € wa, € . If T1 is a standard (wy,aq)Y—tree, then To =
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.(u}l,al)

PrOj (0 og) (T1) is @ standard (wo, ag)Y —tree. Assume that for £ <3, Ty are standard
(we, ag)Y —trees such that
To = projiu; o) (T) - and  Ti = proiG 1 (7o)
Then To = prOJEZizi;(E) and proj% :})roj% o proj%.
Moreover, if p* = (p} : t € T,) € FTY(Q) (for ¢ < 3) are such that p° Sproilt Pt
To

=1 =2 =0 =2
and p Sproj% p° then p Sproj% p-.

Proposition A.3.5. Let v, a* be ordinals, o* limit, and let T = (T : a < o) be
a continuous legal sequence of standard ~y—trees.

—
(1) The inverse limit im(T) is a standard ( |J wa, @)Y —tree and each Tg, is
ala*

-
a projection of im(T) onto (we, ) and the respective projections commute.
(Here, wy, C 7y is such that Ty is a standard (we, )Y —tree)
~ -
[So we do not cheat: Um(T) is really the inverse limit of T.]
(2) IF A=\, o < X and || To| < X for each a < o* then | THEm(T) || < A
B) Ifa* < X\, k =AT,Q = <]P’E,(~@g 1 € < ) is a (< K)—support iteration of
(< \)—complete forcing notions and p* = (p®* : t € To,) € FTY' (Q) (for each
a < a*) are such that |T,| < A for a < a* and

* =3 —ov
f<a<a® = P Sproj% P
* * ~ — -
then there is p* = (p& :t € lim(T)) € FIY'(Q) such that

(Va < a™)(p* <

=~
.1§n(7") p )
proj

Proof. 1) Should be clear: just read the definitions.

2) It follows from the following inequalities:

T < I ITall < A<= A

ala*

~ - *
3) For each ¢t € lim(7) we define a condition p; € P, as follows. Let t* =

projg—am(ﬁ (t) (for a < «*). We know that the sequence (pg. [rk“m(ﬂ(t) Pa <

a*) is increasing (remember pk(7) (t) < 1ka(tq) for each a < o*) and p§ is

supposed to be an upper bound to it (and p?* e o ). We define pta* quite
rkm(7) (¢)
straightforward. We let

dom(pf") = U{dom(pto‘a) N k(7 (t):a<a*}

and next we inductively define p” (i) for i € dom(p” ). Assume we have defined
pf‘* [4 such that

(Va < a”)(piali <p Py 1)
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Then (remembering our convention that if i ¢ dom(p) then p(i) = Og )

P& i -« the sequence (pf (i) : a < o*) C @i is §@fincreasing and

a<B<ar (@) #ps() = (BeeQ)pi() <g a<q Pjs(1)
and Q, is (< A)—complete and o < A 7.

Hence we find a P,-name p$ (i) (and we take the <} first such a name) such that
PR “p (i) € @ is the least upper bound of (pf (i) : @ < &™) in @i”.

Now one easily checks that pt epP . fh . Consequently the condition pto‘* is as
rk im (t)

required. But why does (p@ :t € hm(’T)) € FTY'(Q)? We still have to argue that
— ¥ - 1.“ 7
(Vs,t e lim(T))(s <t = p =p¢ k™ (s)).
—
For this note that if s < ¢ are in lim(7) and s,,t, are their projections to
T then s, <, to and pg = pg Irka(sa) and rklim(T)(s) < 1kq(8q). Thus
clearly dom(p2”) = dom(p$” ) N rkhm(ﬂ(s). Next, by induction on i € dom(pg ) N

k™M) (5) we show that p2 (i) = p$ (i). Assume we have proved that p$ i =
p?* [7 and look at the way we defined the respective values at . We looked there at
the sequences (pf (i) : o < o), (pg (i) : @ < a*) and we have chosen the <} —first
names for the least upper bounds to them. But i < rk,(s,) for all o < o*, so the
two sequences are equal and the choice was the same. O

Proposition A.3.6. Assume that Sy C [p*]=* and Q = (P, Q, : <) isa
(< K)-support iteration of (< X)—complete strongly So—complete forcing notions,
and zo (for a <) are Po,—names such that

e, “To witnesses the most in A.1.7(2) for Q_ .

Further suppose that
(@) N < (H(x),€,<3) is ()\ So)-good (see A.1.7), (zo : @ < 7),0,Q,... €N,
(B) 0 €wp C w1 € NN[Y|<A, ag < A is an ordinal, ay = ag + 1,
(v) To = (To, <o,rko) € N is a standard (wo, ag)Y—tree, || To|| < A,
(8) p=(ps:t€Ty) e FIY'(Q) NN,
() T = (T1, <1,rky) is such that
T1 consists of all sequences t = (t; : i € dom(t)) such that dom(t) is an
initial segment of wy, and
e cach t; is a sequence of length oy,
ot/ (tilag : ¢ € dom(t) Nwp) € Ty,
o if i € dom(t) \ wo, a < ag then t;(a) = *,
for some j(t) € dom(t) U {~},
ti(ap) is x for every i € dom(t) \ §(t), and for each i € dom(t) N j(t)
ti(ap) € N is a P;—name for an element of Qi,
o 1rk;(¢t) = min(w; U {7} \ Dom(t)) and <y is the extension relation.

g

Then

(a) T1 is a standard (wy, ap)Y—tree, | Th] = A,
(b) To is the projection of Ty onto (wp, ),
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(c) thereis §= (q; : t € T1) € FTY'(Q) such that

i) » Spro7t &

(i) ift € Th \{()} and (Vi € dom(t))(ti(cvo) # %), then the condition
gt € P;kl(t) s an upper bound in P;kl(t) of a Py, (¢)—generic sequence
over N, and for every 8 € dom(q) = N Nrky(t), ¢:(8) is (a name
for) the least upper bound in @B of the family of all r(B) for r from
the generic set (over N ) generated by g,

(iil) ifte Ty, t' = proj%(t) €Ty, i € dom(t) and t;(cg) # *, then

alilbe, “pr(i) <g ti(ao) = ti(ao) <g @(i)”,

=4 =

(iv) qy =pg and
ifteTi\{(} and j(t) <, then ¢ = Qericr) U pe [[4(t),rkq(t)), where
t = proj%(t) € Top.

Proof. Clauses (a) and (b) should be clear.

(¢) Let (t¢ : ¢ < A) list with A-repetitions all elements ¢ of 77 \ {()} such that
(Vi € dom(t))(ti(ao) # *). For v € wy U {7} let (Z¢ : ¢ < A) enumerate all open
dense subsets of P, from N. By induction on ¢ < A choose r¢ such that
e ¢ € Prkl(tg) NN,
o ift/ = pI‘OJR( ¢), then py rkq (¢¢) <P, T and for i € dom(t¢)
relilre, “pe(i) <q (t¢)i(ao) = (tc)i( 0) <g rc(i)”

o rc € T, for all € <,
o ift € Tl, f < C, t <1 tg, t <1 tc (e.g., t = tg = tC)’ then Te [rkl(t) <p
T¢ [rkl (f) .
Since we have assumed that all Q ’s are (names for) (< \)—complete forcing notions
there are no difficulties in carrying out the above construction. [First, working in
N, choose r{ € Py, (1) NIV satistying the second and the fourth demand. How?
Declare

rky (1)

dom(rf) = [wy U J{dom(re) : £ < ¢} Udom(p Prroi) 1)) N1k (£¢)

and by induction on i define 77 (i) using the (< A)—completeness of Q, and taking
care of the respective demands (similar to the choice of ¢ done in detall below).
Next use the (< A)-completeness (see A.1.3) to enter all ngl(tg) for £ < ¢. Note

that the sequence <ng1(t<) 1§ < () isin N, so we may choose the respective r¢ > ¢
in N.]

Now we may define ¢ = (g, : t € Ty) € FTY'(Q). If t € T} is such that j(t) <
rky (t) then ¢; is defined from g;;(;) and p by demand (c)(iv). So we have to define
gt for these t € Ty such that (Vz € dom(t))(t;(ao) # *) (and ¢t # () only. So let
t € Ty \ {()} be of this type. Let

dom(g:) U{dom(rg) C<A&t<itcnrki(t) CN

and by induction on ¢ € dom(q;) we define ¢ (i) (a P,—name for a member of @1)
So suppose that i € dom(g;) and we have defined ¢;[i € P} in such a way that

(*) (VC < /\)(t <1 tc = r¢ [Z SIP’; qt [z)
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Note that this demand implies that ¢;[¢ € P} is an upper bound of a generic
sequence in P; over N (remember the choice of the r¢’s, and that ¢ € N and there
are unboundedly many ¢ < X such that rk(t;) =, and all open dense subsets of
P; from N appear in the list (Z! : ¢ < A)) and therefore

gt 17 Ibp, “the model N[Gp/] is (A, So)-good”
(remember 0.19). Look at the sequence (r¢ () : ¢ < t¢ & i € dom(r¢) Nrky (¢)). By
the last two demands of the choice of the r:’s we have
qe 1t ke, “(re(d) ot <1 te & @ € dom(r¢) Nrky(t)) is an increasing
Q,~generic sequence over N[Gp,]”.
Consequently we may use the fact that Q, is (a name for) a strongly Sp—complete
forcing notion and z; € N, and we take g;(i) to be the <}-first name for the least

upper bound of this sequence in Q,. So we can prove by induction on rka(t) that
(*) holds.

This completes the definition of g. Checking that it is as required is straightfor-
ward. O

Theorem A.3.7; Assume XN = X\, k = AT = 2% < u*. Suppose that Sy €
Dk, r(@), S1 € (D2, x(1*)[So])T and D is a function such that dom(D) =
Sy and for every a € S

D(a) = Dz is a normal filter on .

Further suppose that Q = (P;, Q, i <) is a (< K)-support iteration such that for
each i <~y

e, “Q, is really (80,5'1, D)—-complete with witness x;
for the most in A.1.16(3)(~v)”.

(a) the forcing notion Py is (< A)—complete and strongly So—complete,

(b) if a sequence N = (N; : i < \) is (A, 5,81, D, ) —suitable (see A.1.16(1))
and p € P, N Ny, (z;:1<7), (S0, 81, D) € Ny,
then there is an (Nx,[Py)-generic condition ¢ € P, stronger than p,

(c) the forcing notion P., is really (So, 81, D)-complete.

Proof. (a) Tt is a consequence of A.1.3 and A.1.13.

(b) Plainly, we may assume v > A and Q € Ny. Let (X, a) be a suitable basis for
N, sodegl,XGDa and

(Vi € X)((Nig1)* € Nigr & Nigpr 0" = aig).

We may assume that all members of X are limit ordinals. Let wy = Ny N~ (so

[lwx]] = A). Choose an increasing continuous sequence (w, : a < A) such that
U wa = wy and for each oo < A
a<A

lwall <A, woe € NyN7vy, 0€w,, and if aislimit then w, = wai1

(so then (wg : B < a) € Not1).
Now, by induction on a < A we define a legal continuous sequence of standard
y—trees (T @ o < A) for (w, : @ < A) and a sequence (p* : o < A) such that
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PP = it eTs) e FIV(Q) and pP < .7 p* for each f < o < A and

~projza
7;;170‘ S NaJrl-
At stage o = 0 of the construction:
Ty consists of all sequences ¢t = (¢; : i € dom(t)) such that dom(¢) is an initial
segment of wy (not necessarily proper) and for each i € dom(t), ¢; is a sequence of
length 0 (i.e., (),
rko(t) = min(wg U {7} \ dom(t)) and <q is the extension relation;
for each t € Ty we let p? = prko(¢) and finally p° = (p? : t € Tp) € FTr'(Q).
[Note that To = (b, <o0,1ke) € Np is a standard (wy,0)7~tree, p° € FTr'(Q) N No.]
At stage o = g + 1 of the construction:
We have defined a standard (wq,, ag)"—tree To, € Nag4+1 and p* = (pi° : t €
Tew) € FTr'(Q) N Noy+1- Now we consider two cases.
If g € X (so Nyg+1 is (A, So)—good), then we apply the procedure of A.3.6 in-
side Nog+2 t0 Tag, ™0, (Wag+1,00 + 1) and Ny 41 (in place of 7o, p, (w1, 1)
and N there) and we get a standard (wa,+1,00 + 1)7—tree T, € Nagto and
prott = (protl it € Tooy1) € FTY(Q) N Ny, 1o satisfying the demands A.3.6(c)
and A.3.6(a)—(c).
If ap ¢ X, then we define 7,,+1 as above but we cannot put any new genericity

requirements on 501, so we just let p®° ! = p&° [rky, 41 (¢) where t' = proj;"0+1 (t).
@Q

[Note that in both cases Ta,+1 € Nag+2 is a standard (waq+1, a0 + 1)7-tree, pro-

jection of Tog+1 0nto (Wag, o) i Tag, P4 € FTY (Q) N Ny 42 and po < STt
proj

]5040+1.]

At limit stage o of the construction:

Al
We let 7, = lim((7s : B < @)) € Nqoy1 and we choose p* = (pf' : t € Ty) €
FTt'(Q) N Not1 applying A.3.5 in Nyy1.

[Note that the corresponding inductive assumptions hold true.]

After the construction is carried out we may let T = 11;1((7; ta < A)). Then
Ty is a standard (wx, A)"—tree, but no longer we have || T3] < A.

Now, by induction on « € wy U {7} we choose conditions g, and P,—names X,
Y. and t, such that

(a) IFp, “to € Th & tky(ta) = a”,
(b) ke, “tsg = talB” for B < a,

(C) o € ]P)ou dom(Qa) =w) Na,

(d) if B < « then g5 = ¢a I8,

(€) qu lFp, “p;mj%@a) la € Gp,” for each i < A,
()

for each 8 < «

o lFp,  “Xpg={i <A:(tp+1)s(i) # *} € Dy and the sequence
(i, (ta+1)p (), 07" (B)) s i<A&ie Xp)

proj ;) | (tst1)
Tig1 wh+1
is a result of a play of the game

v 7
Givilcrizn.p.ya Qe P o, (B
io

[where ig < A is the first such that 8 € w;,],
won by player COM”,
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(g) the condition g, forces (in P,) that
“the sequence (N;[Gp,] : i < ) is (A, K, 81, D, Qq)-suitable and Y, € Dy
is such that Y, C X and for every ¢ € Y, we have
(Nit1[Gp, )Y € Niga[Ge,] and  Ni[Ge NV = Nipy

and i € X¢ for all £ € aNw; (hence Ny[Gp, | NV = N,)”

CASE 1: a=0.

We do not have much choice here: we let go = 0, to = () € Ty and Yo = X. Note
that clauses (a)—(e) and (g) are trivially satisfied (for (g) remember that (a, X) is
a suitable basis for V) and clause (f) is not relevant.

CASE 2: a=p0+1.
Arriving at this stage we have defined ¢g,13,Y g and X¢ for £ < 3, and we want to
choose ggy1,¢5+1,Y p+1 and Xg.

Suppose that Gg C Pg is a generic filter over V such that ¢g € Gg. Then (by
clause (g) at stage ) we have

VI[Gg] = “the sequence (N;[Gg]: i < ) is (A, n,Sl,D,@gﬂ)fsuitable
and (@, Ygﬂ) is a suitable base for it
. G - Gay\»
and (Vi € Y;?)(VE€ € Bnw;)(i € X7)

Let i = min{j < A : 8 € w;}. We know that the player INC does not have any
winning strategy in the game

G° Q57 (° 3)%).

<Ni[Gg]:i§A>,D,¥§B\(io+1>,a(~f’ proj 2 (t3”)
Now, using the interpretation of the game presented in A.1.18, we describe a strat-
egy for player INC in this game.

The strategy is: during a play COM constructs a sequence § =
(s(i) : 1 < A) of elements of @gﬂ U {x}, those are his mowves; let

ri  projP (t5°) sl € T,
(more pedantically: Dom(r;) = w; N = Dom(proj;—;A @gﬂ)) U {p},
ri € Ty, proj 2 (tg”) € i, r:(B) = 51i),
and at the stage i < X of the game INC answers with (pi‘;ll (6))GB.
We have to argue that the strategy described above is a legal one, i.e., that it

always tells INC to play legal moves (assuming that COM plays according to the
rules of the game). For this we show by induction on ¢ < XA that really r; € T; and

. A G
that if s(i) # *, then (pif! (6))GB € Nit2[Gs] N Qﬂﬁ is the least upper bound of

it
a Qgﬁfgeneric filter over N;+1[Gg] (to which s(i) belongs) and if s(i) = *, then
(piill)cﬁ is the least upper bound of conditions played by INC so far.

First note that s(¢) = « for all ¢ < iy and therefore r;,+1 € T;,+1 (just look at the
successor stage of the construction of the 7,’s; remember that dom(jgg) = wxNP, so
adding *’s at level 3 is allowed by A.3.6(c)). Note that pio+l (3) = p™ 8)

Tig+1 T (,C8
PTOJTiO (lfg )

(remember A.3.6(c)(iv)).
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If i < X is a limit ordinal above iy, and we already know that r; € T} for each
«—
j <, then r; € 7; =lim((7; : j < i)) as clearly
. . . T
jo<ji<i = projz!(rj,) =rj,.
Note that, by the limit stage of the construction of the 7,’s and A.3.5(3) (actually
by the construction there), the condition pf. () is the least upper bound of <p{;j (B) :

el
j<i)yinQ ﬁﬂ.
Suppose now that we have r; € T}, ig < ¢ < X and the player COM plays s(z). If

s(4) = * then easily 7,41 € T;41 as adding stars at “top levels” does not make any
problems (compare the case of ig). Moreover, as there, we have then

i+1 ) v — i )
erl (6) pprojz:frl (ris1) (6) pm (ﬁ)

If s(2) # *, then s(i) € Niy1[Gg] N @gﬂ is a condition stronger than all conditions
played by INC so far, and thus it is stronger than pii (8). Moreover, in this case we
necessarily have ¢ € YGB , 80 1 is limit and therefore w; = w; 1. Hence (V€ € w;11N
B)(i € X?ﬂ) By clause (f) for gz we conclude that (V¢ € wi+1)((jgﬂ)5(i) £ x).
Therefore, if we look at the way 7;4+1 was constructed, we see that there is no
collision in adding s(#) at the top (i.e., it is allowed by A.3.6(g)). Thus r;+1 € Ti+1
, A G

and by A.3.6(c)(ii) we know that pi*! (8) € Nit2[Gs] N @ﬁﬂ is the least upper
bound of a @g"fgeneric sequence over N,11[Gg| to which s(i) belongs (the last is
due to A.3.6(c)(iii)).

Thus we have proved that the strategy presented above is a legal strategy for
INC. Tt cannot be the winning one, so there is a play § = (s(i) : i < \) (we
give the moves of COM only) in which COM wins. Let t, = jgﬂ 75; pedantically,

Dom(t,) = Dom(t$%) U B8, jGﬂ C ta, ta(B) = 5. We have actually proved that
B B

+—
ta € Th = Um((7; : i < A)). It should be clear that rky(t,) = o and jgﬂ = to|B.
Further let q,(8) € @gﬂ be any upper bound of § in @gﬂ (there is one as COM

wins) and Xg be the set {i < X : s(i) # x} € D3. Note that then ¢, () is stronger
than all p? (8) (as these are answers of the player INC; see above). Lastly,
pr

LT
0]7—? (ta)

if we let Y, = X then we have
4a(B) Il-Qcﬂ “the sequence (N; [Gﬂ][GQGﬂ] 4 < \) is suitable and (@, Yy)
Qs Ys
is a suitable base for it and (Vi € Y,,)(V€ € anw;)(i € X?ﬁ)”

(compare the arguments in the proof of A.1.13). This is everything we need: as G
was any generic filter containing ¢g we may take names t., X g, Yo for the objects
defined above and the name for g, (8) and conclude that gz ™gq(3) forces that they
are as required.

CASE 3: « is a limit ordinal.

Arriving at this stage we have defined ¢g,13,Y g and X for 8 € aNwy and we are
going to define g, t, and Y. The first two objects to be defined are determined
by clauses (a)—(d). The only possible problem that may appear here is that we
want ¢, to be (a name for) an element of T) and thus of V. But by A.3.7(a)
and A.1.10 + A.1.11 we know that the forcing with P, adds no new sequences
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of length < k of elements of V (remember x = AT). Therefore the sequence
(tg : B € wyNa) is a P,—name for a sequence from V and its limit ¢, is forced to
be in 7). Now we immediately get that q,, t, satisfy demands (a)—(f) (for (e) note
i

that dom(ppmj% @a)) C wy and

(X) for each 8 € aNwy and i < A we have dom(p® - ) Cwy and
proj 2 (ts)

i
Phroi 2 (e

Irki(proj 2 (ts)) = p' 7, and  tk;(proj 7 (ts)) > B,
) projz> (ts)

hence we may use the clause (e) from stages 8 < «). Finally we let

Yo def {i < X:iislimit and (V§ € w; Na)(i € X¢) and a € w; }.
We have to check that the demand (g) is satisfied. Suppose that G, C P, is a
generic filter over V containing g,. The sequence (X ?“ : € € wy Na) is a sequence
of length < « of elements of V, and the forcing with P, adds no new such sequences.
Consequently
(X§e:¢ewrna)eV.

Ifforj<Awelet Z; = ) X?“ we will have
fcw;iNa

(Z;:j<XN eV, and (Vj<A)(Z; € Dz)
(as the filter D; is A-complete) and therefore (by the normality of Dg)
YS D A Z; ={i< \:iis limit and (Vj < i)(i € Z;)} € Da.
J<A
Next note that (@, Y$*) is a suitable basis for the sequence (N;[G] : i < \). Why?
Suppose that i € Y$> and let t = projz—-j+1 (tG~). By the choice of the w;’s we know

that w;+1 = w; (remember i is limit). Since o € w; we have rk;1(¢) = o and since

ie N X?“ we have t¢ (i) # * for each £ € w;Na = wi1Na. So look now at the
Eew; N

way we defined p'*!: we were at the case when ! was given by A.3.6(c)(ii). In

particular, the condition pi“ eV N Nii2 generates a Py, ()—generic filter

rk;y1
over Njt1. We know already that ¢,,t, satisfy (e) (or use just (X)) and therefore

pitt € G,. This is enough to conclude that

Nis1[Gal < (H(X), €, <3),  (Nip1[Ga])* € Nigi[Gal,  Niga[Ga]l NV = Nig1,
(like in A.1.13) and therefore to finish the construction.

To finish the proof of this case of the theorem note that our demands on con-
ditions g, imply that each of them is (Ny,P,)—generic, so in particular ¢ is as
required.

(¢) The proof is similar to that of case (b) (and is not seriously used). O

Theorem A.3.8. Assume \<* = X\, k = AT = 2} < u*. Suppose that Sy €

(Dcr,an(w))™, S e (Qin,<k(ﬂ*)[80])+' Let Q = (P;,Q, i <) be a (< k)-
support iteration such that for each i <y

e, “Q, is basically (So,gl)fcomplete”.

Then the forcing notion P., is basically (So, S1)-complete.
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Proof. Similar to the proof of A.3.7 (but easier) and not used in our examples, so
we do not give details. O

A.4. THE AXiOM
Definition A.4.1. Suppose that )\A<A =\ k=Xt =2" < pu* and @ is a regular
cardinal. Let So € (D<p,<a(*))F, 81 € (D2, 1 (11)[So])™ and let D be a function
from &; such that each Dy is a normal filter on \. Let Axg(So, 31), the forcing axiom
for (So,S1) and 6, be the following sentence:

If Q is a really (So, S, D)—complete forcing notion of size < k and
(Z; : 1 <1i* < 0) is a sequence of dense subsets of Q,
then there exist a directed set H C QQ such that

(Vi <i*)(HNZ; #0).
Theorem A.4.2. Assume that A,k = p*,0 and (So,gl,D) are as i A.4.1 and
k<BO=ct@) <p=p"

(e-g.,
(®) So C S, 81 = SN Sy are stationary subsets of k, Sy = So, Sy = {a : a is an
increasing continuous sequence of ordinals, ag € Sp, a;+1 € So, ax € S1 }).
Then there is a forcing notion P of cardinality p such that
(o) P satisfies the kT —cc,
(B) Fe“Sp € Dapar(p)™ & &€ (D2, oA (") [So)t 7, and even more:
(B1) if S C 8y is such that Sf € (@2, 2 (1)[So]) .
then Irp 87 € (D2, 3 (1)[So])*,
(7) IFp AXS (5‘07 51)7
(0) if (®), then all stationary subsets of k are preserved.

Proof. Tt is parallel to B.8.2 which is later done elaborately. O

Case: B

While Case D (see the introduction; k inaccessible, S has stationary many in-
accessible members) may be treated similarly to Case A, we need to refine our
machinery to deal with Case B. Our prototype here is « is the first strongly in-
accessible cardinal, however the tools developed in this part will be applicable to
cases A, C, D too (and other strong inaccessibles in Case B, of course).

Our Assumptions 2. k is a strongly inaccessible cardinal and p* > & is a regular
cardinal.

These assumptions will be kept in the present part (unless otherwise stated) and
we may forget to remind the reader of them.
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There are two main difficulties which one meets when dealing with the present
case. First problem, a more general one, is that (< u)—completeness is not reason-
able even for g = N;. Why? As we would like to force the Uniformization Property
for (S5 : 6 € S), where S C {6 < K : cf(d) = Ny} is stationary not reflecting. The
second problem is related to closure properties of models we consider. In Case A,
when x = AT, the demand N<* C N was reasonable. If  is Mahlo, |[N| = NNk
is an inaccessible cardinal < r, then the demand N<¥"* C N is reasonable too.
However, if k is the first inaccessible this does not work. (Note that these models
are parallel of countable N < (H(x), €, <) of the case x = ®;.) To handle these
problems we will use exclusively sequences N = (N; : i < «) of models and all
action will take place at limit stages only. For example, we will have completeness
for N = (N; : i < w) by looking at N, BUT the equivalence class N/ ~ will be

important too, where for two sequences N, N’ of length w we write N ~ N’ if

(Vn € w)(Im € w)(N, CN;) and (Vn € w)(Tm € w)(N), C Ny,)

B.5. MORE ON COMPLETENESS OF FORCING NOTIONS

In this section we introduce more notions of completeness of forcing notions. In
some sense we will generalize and develop the notions introduced in section A.1.

Definition B.5.1. (1) Let N = (N; : i < a) be a sequence of models and
a = {a; : i < a) be a sequence of elements of [u*]<*. We say that N obeys
a with an error n € w if

(VZ < oz)(ai C N; N ,LL>k - aiJrn).

When we say N obeys @ we mean with some error n € w.
(2) By €., (p*) we will denote the collection of all sets £ such that

£ - {ZL = (ai 1 < a) : the sequence a is increasing continuous,
a<k and (Vi<a)(a; € [p]<" & a; Nk € K)},

and for every regular large enough cardinal x, for every z € H(x) and a

regular cardinal § <  there are N and @ such that

(a) N = (N; :i < 6) is an increasing continuous sequence of elementary
submodels of (H(x), €, <}) such that » € Ny and

(Vi< O)(N[(i+1)€ Nixy & [N < ®),
(b) a=(a;:i<0) €&,
(c) N obeys a.

(3) Ifa e &, N is an increasing continuous sequence of elementary submodels
of (H(x), €, <%) such that (Vi41 < £g(N))(N[(i4+1) € Nip1 & [|[Ni|| < k)
and N obeys a (with error n, respectively), then we say that (N,a) is an
& -complementary pair (an (5 n)—complementary pair, respectively).

(4) We say that a family £ € €_.(u*) is closed if for every sequence @ = (a; :
1<a)e £ and ordinals 38, such that 8+ v < a we have

(apri:i<~)eé
(or, in other words, & is closed under both initial and end segments).

Remark B.5.2. (1) Definition B.5.1 is from [14, §1].
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The exact value of the error n in B.5.1(2) is not important at all, we may
consider here several other variants as well.
Note that N;,||N;|| € Nit1. Sometimes we may add to B.5.1(1) a re-
quirement that 21Nl C a;., (saying then that N strongly obeys @). Note
that this naturally occurs for strongly inaccessible x, as we demand that
aceé = a; Nk € k. So then 2IVill ¢ Qjtn, DUt ajy, N K € K SO We
have 2/INill € Gitn-

In this situation, if x1 < x are large enough, x1 € Ny and for non-limit
i, N/ is the closure of N; N H(x1) under Skolem functions and sequences
of length < ||N;||, and for limit 4, N/ = N; N H(x1) then the sequence
(N} : i < a) will have closure properties and will obey @ (as N; € N;11,
H(x1) € Nitq imply N/ € N;11 and so N/ C Niip).
The presence of “regular § < £” in B.5.1(2) is not accidental; it will be of
special interest when « is a successor of a singular strong limit cardinal, as
then 6 = cf(0) < k = pt implies 6 < p.

Definition B.5.3. Let £ € € ,.(u*) and let Q be a forcing notion.

(1)

Let N = (N; : i < 6) be an increasing continuous sequence of elementary
submodels of (H(x), €, <}), Q € No and p = (p; : i < J) be an increasing
sequence of conditions from Q N N5, n € w. We say that p is (N,Q)"~
generic if for each i < §

pl(i+1) € Nip1 and piiy, € ﬂ{I € N, : T is an open dense subset of Q}.

(2)

(3)

When we say that p is (N, Q)*~generic we mean that it is (IV, Q)"~generic
for some n € w. We may say then that p is (N, Q)*-generic with an error
n.
We say that Q is complete for & if for large enough ¥, for some x € H(x)
the following condition is satisfied:
@5 i ) o
(a) (N,a) is an E-complementary pair (see B.5.1(3)),a € £, N =
<Ni 1 < (S), Q,x € Ny, and
(b) p is an increasing (N, Q)*-generic sequence,
then p has an upper bound in Q.
We say that a forcing notion Q is strongly complete for £ if it is complete
for £ and does not add sequences of ordinals of length < .

Remark B.5.4. (1) The z in definition B.5.3(2) is the way to say “for most”,

(2)

compare with 0.20.
In the present applications, we will have u* = k and a stationary set S C k
such that

50 def (_ . . .
E& = {a : @ an increasing sequence of ordinals from & \ S

of length < k with the last element from S }

will be in €. (u*). The forcing notions will be complete for f:'g, so the
iteration will add no new sequences of length < x (see B.5.6 below). On
S the behavior will be more interesting, as there we shall be doing the
uniformization. Thus the pair (f:'g, S) corresponds to the pair (So,S1) from
the previous part (on Case A).
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For example, if Cs5 C § = sup(Cy), otp(Cs) = cf(d), (Vo € S)(cf(d) < 6)
and hs : Cs — 2 then

Q={g: forsomea<k, g:a—2 and
(V6 € (a+ 1) N S)(Vy € Cs large enough)(g(7y) = hs(7)) }

is such a forcing (but we need that S is not reflecting or (C5 : § € S) is
somewhat free, so that for each o < k there are g € Q with dom(g) = «).

(3) If we want to have S reflecting on a stationary set though still “thin”, then
things are somewhat more complicated, but manageable, see later.

Proposition B.5.5. Suppose that Ec Coo(u*) is closed and Q is a forcing notion.
(1) Assume (a,N) is an (é‘,nl)jcomplementary pair, a € &, N = (N; 1 <9),
Qe Ny. If p C QN Ns is (N,Q)™ —generic (see B.5.3(1)) and q € Q is an

upper bound of p in Q, then

q kg “((Ni[Gg] : i < 68),a) is an (€,n1 + na + 1)—complementary pair”.
(2) If Q is strongly complete for &, then IFg = Cop(p®).

Proof. 1) Since p is (N, Q)"2—generic, for each i < § and every Q-name 7 € N;
for an element of V, the condition p;i,, decides the value of 7 and the decision
belongs to N;yn,+1 (remember p;ipn, € Nifn,+1). Now, by standard arguments
(like in the proofs of A.1.13.2 and A.1.13.3) we conclude that for each i < ¢

Pitnat1 kg “Ni[Gol NV C Nijp,11 and Ni[Ggl < (H(x), €, <3)VI¥?! and
(Nj[Gol: j <) € Nit1[Gol™

Since Ajtno+1 - Ni+n2+1 - Ajtno+1+n, (fOI‘ 1< 5) we get

q kg “((N;[Gg] - i < 6),a) is an (£,n1 + ny + 1)-complementary pair”.

2) Suppose that p kg z € H(x) and let § < k be a regular cardinal. Since
& € €. (1) we can find an (€, ny)-complementary pair (N, a) such that g(N) =
lg(@) = 0+ 1 and (p,z,Q,&) € Ny. Now, by induction on i < 6, we define an
(N, Q) -generic sequence p = (p; : i < 0):

pi € Nit+1 N Q is the <{-first element ¢ of Q such that

()i p<qand (Vj <i)(p; < q),

(i); g€ (N{Z € N; : Z C Q is open dense}.
To show that this definition is correct we have to prove that, for each i < 6, there
is a condition ¢ € Q satisfying (i);+(ii); and p[i € N;11. Note that once we know
this, we are sure that the <} -first condition with these properties is in N;y1 and
therefore p[(i + 1) € N;41 too.

There are no problems for ¢ = 0, so suppose that i = ip + 1 and we have already
defined plig € Niy+1, and p;, € Ni,+1, and hence p[(ig + 1) € Njyy1 < Nig+o.
The forcing notion Q does not add new sequences of ordinals of length < x and
[[Nip+1]] < k. Therefore we find a condition ¢ € Q stronger than p;, and such that
q decides all Q-names for ordinals from N;,11 (i.e., g € ({Z € N; : Z C Q is open
dense}).

Suppose now that we have arrived to a limit stage i and we have defined pli.
Since (N, : j < 4) € Nj31 we know that pli € N;41 (as all the parameters needed
for the definition of p[i are in N;y; and we have no freedom left). Note that
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al(i+1) € & (as & is closed), (a(i + 1), N|[(i + 1)) is an (£, n1)-complementary
pair and the sequence pli is (N [(i + 1),Q)'~generic. Since Q is strongly complete
for € we conclude that there is an upper bound to p[i in Q. Now it should be clear
that such an upper bound p; satisfies (i);+(ii); (remember that N is increasing
continuous).

Now look at the sequence p = (p; : i < 6). Immediately by its definition we see
that p is (N [(i + 1), Q) ~generic. Since Q is strongly complete for & we can find
an upper bound ¢ € Q of p. Now, by the first part of the proposition, we conclude
that

qlFg “((Ni[Ggl : i < §),a) is an (€,n1 4 2)-complementary pair”,
which finishes the proof. (]

Theorem B.5.6. Suppose that € € €. .(u*) is closed and (P;,Q, 1 i <) isa
(< K)-support iteration such that for each i <~

lFp, “the forcing notion Q, is strongly complete for E.
Then P., is strongly complete for E.
Proof. We prove the theorem by induction on ~.

CAseE 1: ~v=0.
There is nothing to do in this case.

CASE 2: v=p0+1.
By the induction hypothesis we know that P is strongly complete for & and there-
fore, by B.5.5, Ikp, £ € €. (1*).
Clearly the composition of two forcing notions not adding new sequences of length
< k of ordinals does not add such sequences. Thus what we have to prove is that
Pgy1=Pg+Q, is complete for & (ie., B.5.3(2)).

Let y € H(x) be the witness for “Ps is complete for £ and let z be a P
name for the witness for “Q 5 is complete for E”. We are going to show that the

composition Pg1 = Pg * Q, satisfies the condition (@)fy EPst) of B.5.3(2). So
= ,T,C,I0 341
suppose that

(a) (N,a) is an &-complementary pair (with an error, say, nq), y,gc,é,PBH €
No, Lg(N) = Lg(a) = 0 + 1, )
(b) p= (p; : 1 <) is an increasing (N, Pg41)"2—generic sequence.
It should be clear that the sequence (p;[3:i < ) is (N,Pg)"2—generic. Therefore,

as Pg is complete for £ and y € Ny, we can find a condition ¢* € Pg stronger than
all p;|8 (for i < §). By B.5.5(1) we know that

q" IFp, “({(Ni[Gp,] : i < 6),a) is an (€,n1 4 ng + 1)-complementary pair”.
Moreover
q" ke, “(ps(B): B<0) is an increasing ((N;[Gp,]: i <6), Qﬂ)”z—generic sequence”.

[Why? Like in A.1.13.4, if Z € N; is a Pg—name for an open dense subset of @5
then the set

{p € Psy1:pIB ke, p(B) €L} € N;
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is open dense in Pgi1; now use the choice of ¢*.] Consequently, we can find a
Pg—name 7 for an element of Q 5 such that

q" ke, “(Vi < 0)(pi(B) <g, 7)7-
Let ¢ = ¢* U{(B,1)}. Clearly ¢ € Pg4; is an upper bound of p.

CASE 3: -~y is a limit ordinal.
Let 25 (for 8 < ) be a Pg—name for the witness for IFp, “@ﬁ is complete for £”.

Let x = ((z5: 6 <), (P3, Qg : <))

Claim B.5.6.1. Suppose that (N, a) is an € -complementary pair, Lg(N) = lg(a) =
d+1, 6 is a limit ordinal and x € Ny. Further assume that p = (p; : i < 6) C P,
is an increasing sequence of conditions from P, such that

(a) (Vi <6)(pI(i+1) € Nit1), and

(b) for every B € yN Ns there are n < w and ig < § such that

(Vi € [i0,9))(pin|B € m{I € N, : T is an open dense subset of Pg}).

Then the sequence p has an upper bound in P..
[Note: we do not put any requirements on meeting dense subsets of P,/

Proof of the claim. We define a condition g € P,. First we declare that dom(q) =
Ns N~ and next we choose ¢(f) by induction on 8 € N5 N~ in such a way that
(Vi < 9)(pilB <es qlB). So suppose that we have defined ¢[3 € Pg, 8 € v N N;.
Let n € w and ip < & be given by the assumption (b) of the claim for 4+ 1. We
may additionally demand that 8 € N;,. (Note that n, i = min({i : ip <4, 5 €
N,;}) are good for 8 too, remember Pg < Pgiq.) Since & is closed we know that
(N [io, 8], @!lio, 8]) is an E-complementary pair and the sequence (p; |3 : ig < i < 8)

is (N[[io, 6], Pg)"—generic. Consequently, by B.5.5(1), we get
q1B Ikp, “(N[Gp,]Ilio, ], allio,d]) is an &-complementary pair”.
Moreover, like in the previous case, the condition ¢[S forces (in Pg) that
“(pi(B): 1o < i < b) is an increasing (N|[Gp,]!I[io, ], Qﬂ)”-generic sequence”.

Thus, as z3 € Ny, and Q 5 is a name for a forcing notion which is complete for &
with the witness g, we find a Pg—name ¢(8) such that

q1B e, “(Vi < 0)(pi(B) <q, 4(B))"-

Now we finish the proof of the claim noting that if 5 € v N Nj is limit and for each
a € N Ns, qla is an upper bound to (p;a : ¢ < §) then ¢[f is an upper bound of
(pilB i < d) (remember dom(p;) C Ns for each i < §). O

Claim B.5.6.2. Suppose that M < (H(x), €,<%}), [|[M|| <k, x € M and p € P,.
Then there is a condition q € Py stronger than p and such that

(VBe Mnvy)(qlB € ﬂ{I € M : T is an open dense subset of Pg}).

Proof of the claim. Let § = cf(otp(M N ~)) and let (y; : ¢ < #) be an increasing
continuous sequence such that y9 = 0, 79 = sup(M N+) and v; € M N+ (for non-
limit i < ). As€ € €.(u*), wefind N = (N; : i < 0) and a = (a; : i < 0) € € such
that (y; : i < 0),2,p € Ny and (N,a) is an E-complementary pair and M C No.
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The last demand may seem to be too strong, but we use the fact that & is closed
and

MeN' <N" < (H(x),e,<%) & sup(N'Nk) CN" = MCN.

(Alternatively, first we take an E-complementary pair (N*,a*) such that fg(N) =
lg(a) = ||[M||* +1and (y; : i < 6),z,p, M € N§. Next look at the model N1
— it contains all ordinals below [[M|[, M and |[M]|. Hence M € Nj; . Take
N = NI[IM]| + 1, | M| + 6] and @ = a* [ M] + 1, | M] + 6].)

Next, by induction on i < 6, we define a sequence (p; : i < 0) C P,

pi € P is the <} first element g of P, such that
()i plvi <e,, qlvi and (Vi <)(p; v <e,, q[7i),
(ii); ¢l €({Z € N, : T C P, is open dense},
(iil)s qllvi,) = pllvi7)-
We have to show that this definition is correct and for this we prove by induction
on i < 6 that there is a condition ¢ € P., satisfying (i),—(iii); and pli € N;41. By
the way p;’s are defined we will have that then pf(i + 1) € N;14 for i < 6.

If ¢ is not limit (and we have p; for j < ¢) then there is no problem in finding
the respective condition ¢ once one realizes that, by the inductive hypothesis of
the theorem, the forcing notion P, does not add new sequences of length < & of
ordinals and ||V;]| < k. So we just pick up a condition in P,, stronger than the
(respective restriction of the) previous condition (if there is any) and which decides
all names for ordinals from N;. This takes care of (i); and (ii);. Next we extend
our condition to a condition in P, as the requirement (iii); demands. Arriving to
a limit stage ¢ we use Claim B.5.6.1. So we have defined p[i and by the way it was
defined we know that p[i € N;11 (as all parameters are there). Since & is closed we
know that (N[(i +1),al(i + 1)) is an E-complementary pair. Now apply B.5.6.1
to i, Py,, pli, NJ(i + 1) and a[(i + 1) in place of , P, p, N, and a there. Note
that the assumptions are satisfied: for (b) use the fact that 4 is limit, so if 8 < ;
then for some j < ¢ we have 5 < «; and now this j works as iy there with n = 1.
Consequently the sequence p[i has an upper bound in P,,. Now, similarly as in the
non-limit case, we can find a condition ¢ € P, (stronger than this upper bound)
satisfying (1);—(iii);.

Now look at the condition pg € P,. If 3 € M N~ and i < 0 is such that
B < 7 then p;|vy; decides all P,—names from N; for ordinals. But M C Np,
pilvi <e, polvi and P < P,,. Hence pp[B € ({Z € M : T C Py is open dense}.
As py is stronger than p, this finishes the proof of the claim. [

Claim B.5.6.3. P, is complete for £,

Proof of the claim. We are going to show that P, satisfies the condition (®)fw é) of
B.5.3(2). So suppose that (N,a) is an &-complementary pair, N = (N; : i <9),
z,€ € Ny and p = (p; : i < §) is an increasing (N,P,)" —generic sequence. For
1< 9 let

z; def {qePy: (VBeN;nv)(qlB € ﬂ{I € N; : I C Pg is open dense in Pg})}.

Note that Claim B.5.6.2 says that each Z; is an open dense subset of P,. Clearly
Z; is in N;i1, as it is defined from ;. Hence, for each ¢ < 0, piyi4n, € Z;. Now
look at the assumptions of Claim B.5.6.1: both (a) and (b) there are satisfied (for
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the second note that if 8 € N5 N~ then we may take iy < 0 large enough so that
B € N,, and let n = n; +1). Thus we may conclude that p has an upper bound in
P,. O

Claim B.5.6.4. Forcing with P, does not add new sequences of length < k of
ordinals.

Proof of the claim. First note that for a forcing notion P, “not adding new se-
quences of length 6 of ordinals” is equivalent to “not adding new sequences of
length € of elements of V7. Next note that, for a forcing notion P, if 0 is the first
ordinal such that for some P-name 7 and a condition p € P we have

plkp “7:0 —V and 717¢V?,

then cf(f) = 0. [Why? Clearly such a 6 has to be limit; if cf(f) < 6 then take an
increasing cofinal in 0 sequence (¢; : i < cf(#)) and look at (7[¢; : 4 < cf(6)). Each
71¢; is forced to be in V, so the sequence of them is in V too — a contradiction.]
Consequently it is enough to prove that for every regular cardinal § < «, forcing with
[P, does not add new sequences of length 6 of elements of V. So suppose that, for
1 < 0, 7; is a P,—name for an element of V, and p € P,,. Take an éfcomplementary
pair (N,a) such that N = (N; : i < 6) and x,p,(1; : i < 0) € Ny (exists as
e C.(p*)). Now, by induction on i < 6, define a sequence (p; : 1 < ) C P,

pi € Py is the <} first element g of P, such that

(i)i p <p, q and (Vj <i)(p; <p, q),

(ii); if B € N;N~ then ¢[B € ({Z € N; : Z C Pg is open dense},

(iii); ¢ decides the value of 7; (when i < 0).
Checking that this definition is correct is straightforward (compare with the proof of
B.5.6.2). At successor stages i < 6 we use B.5.6.2 to show that there is a condition
¢ € P, satisfying (i);+(ii); and next we extend it to a condition ¢ deciding the
value of 7;. At limit stages i < 6 we know, by the definition of p[i, that for each
j <4, plj € Nj+1. Moreover, we may apply B.5.6.1 to N[(i + 1), al(i + 1) and pli
to conclude that p[i has an upper bound ¢’ € P.,. Now take ¢ > ¢’ which decides
the value of 7; (if i < 0) — it satisfies the demands (i);—(iii);.

Finally look at the condition pg € P.: it forces values to all 7; (for ¢ < ) and

so po IFp, (i : i < 0) € V, finishing the proof of the claim and thus that of the
theorem. 0

O

Definition B.5.7. (1) Let €Z,.(p*) be the family of all subsets of

{@=(a;:i<a): the sequence a is increasing continuous,
a<rk and (Vi <a)(a; € [ ]<" & a; Nk € K)}.

(2) Let M = (M; : i < a) be an increasing continuous sequence of elementary
submodels of (H(x), €, <}), &o0,&1 € €2, (u*). We say that M is ruled by
(&0, &) if

(a) M[(i+1) € Miy1, | Mi]| < & and 21M:ll 41 C M,y for all i < a,

(b) <Miﬂu* ZiSOz) E(cjl,

(c) for each i < o (and we allow ¢ = —1) there is an éofcomplementary
pair (N’,a@") such that
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() Lg(N?) = Lg(a®) = 6; + 1, cf(6;) > 2IM:ll and, for simplicity, d;
is additively indecomposable,
(ﬂ) Mr(l + 1) S Né, N§1 = Mi+1 and
() NI +1C N
The sequence (N? : i < a) given by the clause (c) above will be called an
éo —approzimation to M.

(3) ¢ (u*) is the family of all pairs (€, &) such that &, & € €, (u*), & is
closed and for every large enough regular cardinal y, for every z € H(x)
there is a sequence M ruled by (5’0, 4‘:'1) and such that z € My and every
end segment of M is ruled by (£,&;) (follows if & is closed under end
segments).

Remark B.5.8. (1) Condition B.5.7(2)(c) is the replacement for
[Nigi =X and  (Niy1)<* € Niga

in Case A. Here, there are no natural closed candidates for M;,1, as in
that case. So we use a relative candidate.

(2) In B.5.7(2)(c)(y) we may put stronger demands (if required in applications).
For example one may consider a demand that || NZ[|*" UMD 41 € N7,
for some function h* : K — K.

(3) Note that if (£,&)) € €*,.(u*) then necessarily & € €., (u*).

[Why? If 0 = cf(0) < K, x = (0,y) then lg(N*) > 6.]

(4) Note that in examples there is no need to assume that & is closed under
end segments as “complete for (é‘o, (‘:'1)” (see B.5.9) is preserved, as this just
restricts the choice of the “bad guy” INC of ig (and so p) to those in the
end segment.

Definition B.5.9. Let (£,&1) € €®,.(1*) and let Q be a forcing notion.

(1) For asequence M = (M; : i < &) ruled by (€, &) with an £-approximation
(N®:i < 4) and a condition r € Q we define a game gJTZ,(Ni:i<6> (Q,r) be-
tween two players COM and INC.
The play lasts 6 moves during which the players construct
a sequence (ig, p, (pi, @i : o — 1 < i < §)) such that ig < §
is non-limit, p € M;, N Q, p; € Mix1 NQ, G = (qic 1 € <
8;) C Q (where §; + 1 = £g(N?)).
The player INC first decides what is ig < 0 and then it
chooses a condition p € Q N M;, stronger than r. Next,
at the stage i € [ip — 1,0) of the game, COM chooses
pi € QN M;11 such that
p<gpi and (Vj <i)(Ve <§;)(qje <qpi),

and INC answers choosing an increasing sequence q; =
<qi,s e < 51> such that Di SQ qi,0 and q; is (NZ HOé, 51]; Q)**
generic for some o < 4.

The player COM wins if it has always legal moves and the sequence (p; :

i < §) has an upper bound.

(2) We say that the forcing notion Q is complete for (€, &) if
(a) Q is strongly complete for & and
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(b) for a large enough regular y, for some x € H(x), for every sequence
M ruled by (&, &) with an &-approximation (N : i < §) and such
that € My and for any condition r € Q N My, the player INC DOES
NOT have a winning strategy in the game gzt’[,(Ni:Ka) (Q,r).

Proposition B.5.10. Assume
() (o,é1) € 4, o
(b) Q is a forcing notion complete for (Ey,&1).
Then kg “ (€0, &1) € €*,(u*) 7.
Proof. Straightforward (and not used in this paper). O

B.6. EXAMPLES FOR AN INACCESSIBLE CARDINAL K

Let us look at a variant of the examples presented in section A.2 relevant for our
present case. (Remember B.5.8(4).)

Hypothesis B.6.1. Assume that r is a strongly inaccessible cardinal, S C « is a
stationary set and C' = (Cs : § € S) is such that for each § € S:

Cs is a club of ¢ such that otp(Cs) < §, moreover for simplicity
otp(Cs) < min(Cs), nacc(Cs) C k \ S and
if @ € nacc(Cjs), then cf (a) > 2m2x(@NC) and SN a is not station-
a'rY’
if « € acc(Cs5) NS, then Cp, = C5 N a.
[Note that if S does not reflect, then we can ask that the assumption of the second
demand never occurs, hence the second demand holds trivially].
Further we assume that C guesses clubs, i.e.,

if £ C k is a club,
then the set {§ € S : C5 C E'} is stationary.

Moreover we demand that for every club E C k, the set  \ S contains arbitrarily
long (but < k) increasing continuous sequences from FE.

Definition B.6.2. Let «, S, C be as in Hypothesis B.6.1 and let p* = x.
(1) Define

E5 = {a=(a;:i<7): aisan increasing continuous sequence
of ordinals from £\ S, v <&k}

5“15,6‘ = {ﬁ_’ : B is an end segment (not necessarily proper) of B6),
for some 0 € S and § is the increasing enumeration of 05}.

(2) Suppose that A = (A5 : 6 € S), h = (hs : 6 € S) and cf() = 0 < K are
such that for each § € S:

As C6, ||Asll <0, hs:As — 60, and sup(As) =4

(so cf(8) < 0; we may omit the last demand as only A]S’, for S’ = {§ € S:
d = sup As}, affects the forcing). We define a forcing notion @%%:

a condition in Q%% is a function g : 8 — 6 (for some § < k) such that
(VoeSN(B+1)({€ € As: hs(&) #g(&)} is bounded in 9),

the order <;s.o of (@%% is the inclusion (extension).
Ak ;
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(3) For A, h and 6 as above and a < x we let
7M€ {g € Q5 : o € dom(g)}.

Remark B.6.3. One of the difficulties in handling the forcing notion Q%% is that

the sets If’ﬁ’e do not have to be dense in Qz’%. Of course, if this happens then the
generic object is not what we expect it to be. However, if the set S is not reflecting
and 0 € S = SnNacc(Cs) =0, then each Z2M? is dense in (@%% and even weaker
conditions are enough for this. One of them is the following: 7
(%) (A5 : § € S) is k—free, i.e., for every a < & there is a function g such that
dom(g) = SNa and g(§) < § and the sets (A5 \ g(6) : § € SNa) are
pairwise disjoint.
We can of course weaken it further demanding that (As : § € SNa) has uniformiza-
tion. (So if we force inductively on all k’s this may be reasonable, or we may ask
uniformization just for our hs’s.)

Proposition B.6.4. (éos,ffc) e (u).

Proof. Immediately from its definition we get that 505 is closed. Suppose now that
X is a sufficiently large regular cardinal and x € H(x). First construct an increasing
continuous sequence W = (W; : j < k) of elementary submodels of (H(x), €, <})
such that x € Wy and for each j < &:

Wil <k, and W;nNk=|W;|, and W({+1) € W;;1.

j +
Note that then, for each j < &, we have 2IWill 1 C Wit1. Clearly the set
E={W,Nk:j< kislimit} is a club of x and so acc(E) is a club of x as well.
Thus, by our assumptions on C (see B.6.1), we find § € S such that Cs C acc(FE)
(then, of course, § € acc(E) too). Let M = (M; : i < otp(Cs)) be the increasing
enumeration of
{W:j<r&W;nkeCsU{d}}.

Fix i < otp(Cs). Let j° < j < k be such that W;; = M; and W; = M;,1, and let
a=M;11Nk=W;Nk. Then o € nacc(Cs) Nacc(E) and, by B.6.1, a ¢ S and
the set S does not reflect at . Consequently we find a club C? of « disjoint from
SNa. Let N' = (N!: e < §;) be the increasing enumeration of

{Wg :j/<§§j&WgﬁH€CiU{a}}.

(Note that the set above is non-empty as « € acc(F); passing to a cofinal subse-
quence we may demand that ¢; is additively indecomposable.) We claim that the
sequence M is ruled by (£3, f:'lsc) and (N’ : i < otp(Cjs)) is an £5-approximation
to M. For this we have to check the demands of B.5.7(2). By the choice of the W;’s
we have that the clause (a) there is satisfied. As (M; Nk : i < otp(Cs)) enumerates
CsU{d} we get the demand (b) there. For the clause (¢), fix i < otp(Cs) and look at
the way we defined N* = (N! : e < §;). For eache < §;, NNk € C'U{a} Ck\S.
Hence (N, (Ni Nk : e < §;)) is an £ —complementary pair. Moreover,

cf (3;) = cf(a) > 2max(anCs) — gM:inx — oMl

(by B.6.1) and ¢; is additively indecomposable. This verifies (c)(). The clauses
(c)(B) and (c)(7y) should be clear by the choice of the W;’s and that of N'. O
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Proposition B.6.5. Suppose that A, h, 0 are as in B.6.2(2) and for each a < K
the set TAM0 (see B.6.2(3)) is dense in Q%% (e.g., S does not reflect). Then the

forcing notion Q%% is complete for (é()s,éfé)

Proof. We break the proof to three steps checking the requirements of B.5.9(2).
Claim B.6.5.1. (@%% is complete for éos

Proof of the claim. Suppose that (N,a) is an f@gfcomplementary pair, N = (N; :

i<dand p=(p;:i<4) C (@%% is an increasing (N,Q‘Z’%)”fgeneric sequence.

Let p def U pi- Note that p is a function from dom(p) = |J dom(p;) to . Moreover,
i<é <8

as the sets Z:""% are dense in @%% (and Z2"% € N; if @ € N; N k), we have

N,Nk C dOHl(pH_n) C Nitn+1- Hence

dom(p) = UNiﬂRZNaﬂKGH.
<8
Note that NsNk ¢ S (by the definition of £). Suppose that a € SN (dom(p) +1),
5,0

so a € dom(p). Then for some i < J we have a € dom(p;) and, as p; € Q7;, the

set {£€ € Ay : ha(&) # p(&) = pi(€)} is bounded in «. This shows that p € Q%ﬁ}
and clearly it is an upper bound of p. [

Claim B.6.5.2. Forcing with Q%% does not add new sequences of length < k of
ordinals. 1

Proof of the claim. Suppose that { < x and 7 is a Q%%fname for a function from

¢ to ordinals, p € Q%’%. Take an increasing continuous sequence W = (W : j < k)

of elementary submodels of (#(x), €, <}) such that Q%%,p,l’ eWo, C+1C W,y
and for each j < K
Wl <&, and W;nk=|W;|, and WI(j+1) € Wji1.

Look at the club E = {W; Nk : j < k}. By the last assumption of B.6.1 we find
an increasing continuous sequence (j¢ : & < () such that {W;, Nk : &< ¢PNS =0.
Now we build inductively an increasing sequence (pe : £ < ¢) of conditions from
Q%% such that p <gs Po and for each £ < (:

; AR

(1) Y23 € ng+17

(2) pe forces a value to 7(£), and

(3) Wi, Nk C dom(pe).
There are no problems with carrying out the construction. At a non-limit stage &,

we may easily choose a condition pg¢ in Wj, , stronger than the condition chosen

. A,h,0
before (if any) and such that W;, N'x C dom(pe) (remember that IWJ‘s e € Wieis
is a dense subset of Qiﬂ%) and pe decides the value of 7(§). Arriving at a limit
stage £ < ¢ we take the union of conditions chosen so far and we note that it is a

condition in Q%% as

dom(U pi) = U dom(p;) = U Wi, Nk=W;, Nk ¢S

i<€ i<€ 1<§
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Now proceed as in the successor case. Finally look at the condition ps — it decides
the value of 7 (and is stronger than p). O

Claim B.6.5.3. Assume that M = (M; : i < &) is an increasing continuous
sequence of elementary submodels of (H(x),€,<}) ruled by (fqu,élsc) with an

EAOSfappro:L’imation (N : i < &) and such that S, éﬁq,éf’é,fl, 5,9,(@%% € M.

Let r € Q%% N My. Then the player COM has a winning strategy in the game
'S S0

gM,(Ni:K&)( A,E’T)'

Proof of the claim. First, we are going to describe a strategy for player COM in

the game QJTZ <Nm.<6>( ‘Z’%, r), and then we will show that it is a winning one.
Since (M; : 1 < §) € f:'lsc and for each a € S, otp(Cy) < ¢ (see B.6.1) we know

that 6 = otp(Cu;ne) < Ms Nk € S. Recall otp(Cs) < min(Cs). Let

ZE | J Ao <6 & M;nkeS).

Note that ||Z| < §-6 < || M,,]. By induction on i < 6% choose an increasing

continuous sequence (Z; : i < 67) of subsets of k such that Zy = Z and Z;;1 =

ZiUU{An i@ € S & a =sup(Z; Na)}. Clearly || Z;]] < -6 -||i] for each i < 6T

and if o = sup(a N Zy+) then A, C Zp+. So as || Al < 6 we have

a€eS&a=sup(Zy+ Na) = A, C Zy+.

Now, in his first move, player INC chooses non-limit i < § and p € @f{% N M;,
s
we have a condition p™ € (@%% stronger than p and such that MsNx € dom(p™). In

stronger than . We have assumed that each I?’E’e (for £ < k) is dense in Q

the next steps, the strategy for COM will have the property that for each ¢ > ip—1
it says COM to play a condition p; € Q‘Z’% such that
(El)z Z9+ n Mi—i—l g dom(pl) and Di [Z@Jr = p+ [(Z@Jr N Mi+1)-
So, first the player COM chooses a condition p;,—1 € M;, N Q%% stronger than p
and such that
Zg+ N Mio < dom(pio) and Dig T(Z0+ N Mio) = p+ T(Z0+ N Mio)'
Why is it possible? We know that
HZ9+ N Mlo” < s < Mynek< ||Mzo|| < Cf((siofl)
(where §;,—1 + 1 = £g(N*~1)) and therefore Zg+ N M;, C No~1 for some & < d;,.
Taking possibly larger e we may have dom(p) C Ni°~! too. Let p’ € N9 7' n Q‘Z’%
be such that p < p’ and N~ Nk C dom(p’). Let
Pio = P'[(dom(p') \ Zg+ Up™ [ Zg+ N N,
Note that p;, : dom(p;,) — 6 is a well defined function such that p;, € N;"_;ll
(for the last remember B.5.7(2)(c)(y): we are sure that Zy+ N NZo~! € N97" and
pT1(Zgr N No~1) € NI, as |[No—1|%" 41 C N97'). Finally, to check that
Pi, 18 a condition in Q%% suppose that v € SN (dom(p;,—1) +1). If A, C Zp+
then p;,[A, = pT[A, and the requirement of B.6.2(2) is satisfied. If A, is not
contained in Zy+ then necessarily Zy+ N~y is bounded in v and we use the fact that

Pio—11(Ay \ Zo+) = p'[(Ay\ Zy+), p' € @,Sa’.%'
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At a stage i € [ig, d) of the game the player COM applies a similar procedure, but

first it looks at the union pf = |J |J g¢j, of all conditions played by his opponent
j<ie<d;

so far. If ¢ is not limit then, diiectly Jfrom B.6.5.1, we know that p is a condition
in Q‘Z’% (stronger than r). But what if ¢ is limit? In this case the demands (&); for
j < i help. The only possible trouble could come from Aps,n., when M;Nk € S. But
then the set Zy+ contains Ang,n, and, by (B); for j < 4, pf[Am,ne = P [AM; k-
This implies that the set

{€ € Aninn = harine(§) # P (€}
is bounded in M; N x. Hence easily p; € @%%' Next, player COM extends the
condition p} to p; € Ni ;1 N @f{% (for some & < ;) such that the demand ([J); is
satisfied, applying a procedure similar to the one described for getting p;,.
Why is the strategy described above a winning strategy? Suppose that (p; :

ip — 1 < i < d) is a sequence constructed by COM during a play in which it uses

this strategy. As it is an increasing sequence of conditions and |J dom(p;) = MsNk,
i<d
the only thing we should check is that the set

{€ € Anyon : b (§) # (U p0)(©)}
<8
is bounded in Ms N k. But by the choice of Z C Zy+, and by keeping the demand
(B); (for i < &) we know that

{€ € Anynn : Pty (€) # (U p)(©)} CH{E € Antyn : harns(€) # PT (O,
<9
so the choice of p™ works.
This finishes the proof of the claim and that of the proposition. Il

O

Now, let us turn to the applications for Abelian groups (i.e., the forcing notions
needed for 0.11). We continue to use Hypothesis B.6.1.

Definition B.6.6. Assume that G is a strongly x—free Abelian group and h :

H2 Gisa homomorphism onto G with kernel K of cardinality < x. We define

a forcing notion Py, g ¢:
a condition in IPj, g ¢ is a function ¢ such that
(a) dom(q) is a subgroup of G of size < k,
(b) G/dom(q) is r—free,
(¢) q is a lifting for dom(q) and h: H — G
the order <p, , . of P, u ¢ is the inclusion (extension).

Hypothesis B.6.7. Let G = (G; : i < k) be a filtration of G, T'[G] C S (modulo

the club filter on k). So, ¥[G] C S and without loss of generality, v[G] is a set of
limit ordinals. Let h~1[G;] = H;.

Proposition B.6.8. For each o < K the set

e 2 {g€Pyme: (3i < k)(dom(q) = Gip1 & i > a}

is dense in P g .
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Proof. Let ¢ € Pp u,c and let ¢ < k be such that dom(q) C G; and i > a. Then
G/dom(q) is k—free and so G;41/dom(q) is free. Now consider the mapping x
x+dom(q) : Giy1 — Gip1/dom(q). So by 0.8 we get that Gi+1 = dom(q) + L for
some free L (L = G;41/dom(q)). Consequently, there is a lifting f of L and now
(f,q) extends g and it is in P}, y & O

Proposition B.6.9. The forcing notion Py, g g is strongly complete for éOS

Proof. The two parts, not adding bounded subsets of £ and completeness for 503 ,
are similar to those for uniformization, so we do just the second.

Assume now that x is a regular large enough cardinal, N; < (H(x), €, <%),
N = (N; :i<6), NI(i +1) € Niy1, N; Nk € & is limit, N obeys a € £ and
p = (pi 1 i <) is generic for N with error n, let 7; be such that dom(p;) = G, +1
if possible, zero otherwise (no big lost if we assume that always the first possibility
occurs). In particular, p; € N;y1 and as +; is computable from G, p; we know that
Yi € Nij1.

Let 8; = sup(IV;Nk) (so the sequence (B; : i < §) is increasing continuous). Note
that

Ditn € ﬂ{I € Niy1: I C P;z,H,G is open dense}
and N;, B; € N;11. Moreover, the set
T3, ={q € P}, y ¢ : dom(q) 2 G, and Dom(q) = v + 1 for some ordinal v}

is open dense in P%,H,G- SO Pitn € Ip,+1 € Nit1 and iy, > 5. Now, dom( | pi) =

i<d
Gy and U(vi+1) = U Bi = NsN k. Since Ns Nk ¢ S and S 2 T'[G] we
iZs i<§ i<§
conclude Ns Nk ¢ T'[G], and thus Gn;nk+1/GnN;snk is free. So we can complete to
a condition. O

Proposition B.6.10. The forcing notion Py, g ¢ is complete for (fjﬁq, éf)

Proof. Suppose that M = (M; : i < 8) is ruled by (£5,€F5). So M; Nk = a; and
Miyr = U N}and (N%b) is an £5-complementary pair, b € £ (also for
¢(<cf(aitt)
i=-—1).
We are dealing with the case § € My. Recall:

Claim B.6.10.1. There is Gi such that G; C Gf C Git1, |G| < ||Gil| +Ro and
Git1/GY is free. (Of course ifi ¢ S is non-limit then G /G, is free.)

Proof of the claim. Since G;y; is free we may fix a basis (z; . : € < g;41) of it.
Choose A; C e;41 such that | 4;|| < ||Gi|| and G; C ({z; : € € A;})¢ (and call the
last group G;). Then Gy41/Gy is freely generated by {z; + G : e € gip1 \ A}
The claim is proved. (I

Let H} = h~'[GY] and wlog (G}, G} i < k) € M.

Thus if ¢ < j then G;/G; is free. All action will be in G, /G,, for limit i < 4.
Necessarily a; is a singular cardinal of small cofinality (< § < ap). [Remember
a; = M; Nk and sup(M; N k) is a limit cardinal. Why? If not then there is a
cardinal A such that A < sup(M; N k) < AT, so there is v € M; N & such that
A < <sup(M; Nk) < AT. Hence At = ||v||T € M;, a contradiction.]
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We may have “a difficulty” in defining p|G, so we should “think” about it
earlier. This will mean defining p[Gq,,,, j < i. The player COM can give only
a condition in M;11, and we will arrange that our “prepayments” are of “size” a;
(so bounded in M;; and thus included in some N7, ¢ < cf(a;;1); they will even
belong to it).

Let r € P}, y o N My. [Remember: Gq,/dom(r) is free, so there is a lifting.] Let
INC choose non-limit ig < § and pj, € M;, N Pp, ¢ above p, and go = (Gig,c 1 C <
dio—1) generic for some end segment of N;,_1.

We choose by induction on i < § models B; < (H(x), €, <}) such that
G,M,<N1’L§(5>,<H1’L§(S>, e B,
the sequence (B; : i < ¢) is increasing (but not continuous),
||Bz|| =a;,a; +1C B; and <B] 17 < ’L> S Bi,

BiﬂMj € MjJrl if i < 7.

(But see for additional requirements later.)
The rest of the moves are indexed by i € [ip — 1,d) and in the i*® move COM
chooses p; € M; and INC plays ¢* = (qé : ¢ < ;) as in the definition of the game.
Now COM will choose on a side also f; € Py ¢ for i € [ip — 1,0) such that
additionally:

(*)1 fi € Pp m,¢ is a function with domain B; N G;‘a, increasing with i,
(x)2 a; C dom(f;),
(*)3 filair1 = fil(ai+1 N B;) belongs to Pp, m.¢ and is below p;.

Note that

(®) BjNM;;1NGY, is asubset of Giy,,, nx of cardinality || M;]| < cf(d;), hence
it belongs to Mj41.

For i =i — 1 let fi,—1 € Py, ¢ be above p and have domain B;,_1 N G, and let

as’
Pig—1 = fol(Big—1 N G;]t; N M;,). Clearly [Mz'o]QuMmilu C Mi,, and ||Bi,—1l| = a;
and p;,—1 is a function extending p, its domain belongs to M;, and it is a subgroup
of Gf.. Consequently, p;,—1 a lifting and is in M;,. By manipulating bases (or see
[11]) we have

e Dom(p) C Dom(f;) C G,
o Gf /Dom(f;) = G} /(GF N Bi,—1) is free as G, is free and G, € Bi,—1,
e Dom(f;)/Dom(p;) is free as it is equal to Gf. N By, —1/GF N Biy—1 N M)
and G N M;, € G} and they belong to By,_1, and G /(GF N M;,) is
free as M;, Nk ¢ S, so r—free.
For i = j+ 1 > ip we have f;, p; andq§:<q2:§<5j>. Let ¢, = U ¢c- So as
(<9
dom(qj) = aj+1 = a; ¢ S (by the choice of &), clearly q; € P, We have to find
pi € Py u,cNM, 41 above qg and f;[M;+1 (and then choose f;). Clearly the domains
of ¢}, fjIM;41 are pure subgroups, Dom(q}) = G N M; = Guns = G, and p;,
fjIM; agree on their intersection (which is B; N M,1). Hence there is a common
extension pj, a homomorphism from G, + (B; N M,41) to H, which clearly is a
lifting. Does pj € Py ,¢? For this it suffices to show that the group G /dom(p}) is
free. But G, /Gy is free, hence (Gf /Ga;.,) /BN (GY, /Ga;,y) is free (see [11]).
Therefore G, /(B;NG +Gy,,,) is free. Also (B;NG S +Ga,,,)/(BiNGa,,, +Ga,.,)
is free (see [11]). Together, G} /(B; N Ga,,, + Ga,,,) is free as required.
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We are left with the case of limit 4. Let ¢; = (J{qj : 70 —1 < j <i}. Then g; is a
lifting for Gy,. Now clearly f/ = J{f; : io — 1 < j < i} is a lifting for G} N J B,
Jj<i
= ||Ga; |l € U B,. Hence
j<i
Gt € U B; and therefore G, C dom(f{) and we can proceed to define p; as above.
j<i
Having finished the play, again (J{f; : io — 1 < j < §} € Py ¢ (as in the limit
case) is an upper bound as required. (I

K2

also Gt /dom(f]) is free (see [11]) and G, € By, [|G,

Remark B.6.11. In this section, we can replace & by any éf defined below (or any
subset which is rich enough):

X = {a={(a;:i<d): aisan increasing continuous sequence

of ordinals from x, a;+1 ¢ S, cf(a;+1) > a; and
SN aj+1 not stationary}.

B.7. THE ITERATION THEOREM FOR INACCESSIBLE K

In this section we prove the preservation theorem needed for our present case.
Like in Case A, we will use trees of conditions. So, our way to prove the iteration
theorem will be parallel to that of Case A.

Proposition B.7.1. Assume that £ € € .(u*) is closed and Q = (P, Q, ra<9)

is a (< K)-support iteration of forcing notions which are strongly complete for E.
Let T = (T, <,rk) be a standard (w, ap)” ~tree (see A.38.3), |T|| < r, w €, ag an
ordinal, and let p= (p; : t € T) € FTY'(Q). Suppose that I is an open dense subset
of P,. Then there is = (q: : t € T) € FIr'(Q) such that p < g and for each t € T
(1) ¢: € {qlrk(t) : g € I}, and
(2) for each a € dom(qt), either gi(a) = pi(a) or Fp, gi(a) € Q, (not just in
the completion @a)
Proof. Let (t; : ¢ < i(x)) be an enumeration of T such that
(V’L,j < Z(*))(tl < tj = 1 < _j)
We are proving the proposition by induction on i(x).
CasE 1: i(x) = 1.
In this case T' = {()} and we have to choose g only, but this is easy, as the set
{qItk(()) : ¢ € I} is open dense in Py((y).
CASE 2: i(x) =i+ 1> 1.
Let T* = {t; : i < ip} and let T* = T|T*. Then T* is a standard (w, ag)?—tree

to which we may apply the inductive hypothesis. Consequently we find (gf : t €
T*) € FTY'(Q) such that for each t € T*:

(1) pe < g¢i €{qlrk(t) : g €I}, and
(2) for each o € dom(g;), either g; () = pi(a) or IFp, gf (o) €Q, .
Let ¢° = U{q? : s < t;y} (note that s < t;, = s € T%; and also 57 < sz <
t;, implies ¢f, = g%, Irk’(s1), hence easily ¢° € Py, ). Clearly ¢° and p;, are
0
compatible (actually ¢ is stronger then the suitable restriction of ptio) and therefore
we may find a condition g, € Py, ) (note: no primes now) such that ¢, €
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{qIk(ti,) : ¢ € T} and g, stronger than both ¢° and p, . Next, for each t € T*
let
def * *
Gt = Gry ITk(t N Eig) U g 1rk(t N tig ), ) > g > pr.
One easily checks that § = {(g; : t € T) is as required.

CASE 3:  i(x) is a limit ordinal.
Let 6 = cf(i(*)) and let (i¢ : ¢ < 0) be an increasing continuous sequence, iy = 0,
ig = i(x). For a < =, let 2, be a P,—name for a witness that @a is (forced to be)
strongly complete for € and let z = (2o : o < ). Take an &-complementary pair
(N,a) of length # such that (ic : ¢ < 60),5,Q,&,2,T € Ny and |T|| € Ny (exists
as £ € €., (u*) is closed: first take a complementary pair of length ||T|* and then
restrict it to the interval [||T|| + 1, || T + 6]).
By induction on ¢ < # we define a sequence (¢ : ¢ < 6):
E = (¢ :t eT)is the < first sequence 7 = (r; : t € T) €
FTr'(Q) such that
(i)¢c for every t € T: py < ry and (V€ < Ot <) and if a €
dom(ry), pe(a) # re(a), then r¢(a) is a name for an element
of @  (not the completion),
()¢ if i¢c <@ < i(x) and sup{rk(t;) : j < ic & t; < t;} < a <
rk(t;), then 7, (o) = py, (@),
(iii)¢ if 7 < ic, then
Ty, € ﬂ {j €ENe:JC Prk(ti) is open dense}.

To show that this definition is correct we have to prove that arriving at a stage
¢ < 6 of the construction we may find 7 satisfying (i)c—(iii)c. Note that once we
know that we may define g¢ for ¢ < (, we are sure that (¢° : £ < () € Negq
(remember N[(¢ + 1) € N¢y1). Similarly, arriving at a limit stage ¢ < 6 we are
sure that (g% : € < () € Neya.
Stace (¢ =0.
Look at 7 = p: as ig = 0, the clause (iii)p is empty and (i)o, (ii)o are trivially
satisfied.
STAGE (=¢+1.
Let T* = {t; : i <'ic}, p* = <qf :t € T*). We may apply the inductive hypothesis
to T, p* and
7+ def ﬂ {j € N¢: J CP, is open dense}

(remember i¢ < i(*) and P~ does not add new < k—sequences of ordinals, see B.5.6,
so I* is open dense). Consequently we find 5 = (s; : t € T*) € FTY'(Q) such that
for each t € T*:

o ¢¢ <sye{qk(t): ¢ €I}, and

e for cach o € dom(s;), either ¢5(a) = si(a) or IFp, si(a) € Q..
For t € T\ T* let oy = sup{rk(t;) : i < i¢ & t; < t}. Note that, for ¢t € T'\ T,
U{st; 2@ <i¢ & t; <t} is a condition in P}, stronger than ¢t loy. So let

Tt :U{Sti i< &t < thU g o, ) ZU{Sti i <i¢ &t <tpUpillon, )

fort € T\T* and r; = s; for t € T*. It should be clear that 7 = (r; : t € T') €
FTr'(Q) satisfies the demands (i)¢—(iii)c.
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STAGE ( is a limit ordinal.

As we noted before, we know that (° : ¢ < &) € Neyq for each £ < . Hence, as
T C Ny (remember ||T'|] € Ny and T € Ny), we have (¢ : € < &) € Ne¢qq for each
t €T and £ < (. Fixi <i¢ and let £ < ¢ be such that i < ¢¢. Look at the sequence
(g5, : £ < e < (). By the choice of ¢° (see demands (i). and (iii).) we have that it
is an increasing (]\7 I, €)s Prk(ti))*fgeneric sequence (note no primes; if we are not
in Q_, then the value is fixed). By B.5.6 the forcing notion Pyy,) is complete for
& (and N¢ contains the witness), so (g;, : £ <& < () has an upper bound in Pyy,).
Moreover, for each a < 1k(t;), if ¢ € P, is an upper bound of (gf, [a : € < (), then

qIFp, “the sequence (g;, (@) : € < () has an upper bound in Q .

Now, for t € T we may let dom(r;) = |J dom(¢f) and define inductively r;(«) for
e<(
a € dom(ry) by
if (Ve < ()(¢ (o) = pe(@)), then r¢(a) = pt(a), and otherwise
r¢(a) is the <;‘(fﬁrst P,—name for an element of Qa such that

relalke, (Ve < (4 (@) <g_ri(a)).

It is a routine to check that ¥ = (r; : t € T) € FTY'(Q) and it satisfies (i)¢—(iii)c.
Thus our definition is correct and we may look at the sequence ¢’. Since Z € Ny

it should be clear that it is as required. This finishes the inductive proof of the

proposition. (I

Our next proposition corresponds to A.3.6. However, note that the meaning of
x’s is slightly different now. The difference comes from another type of the game
involved and it will be more clear in the proof of theorem B.7.3 below.

Proposition B.7.2. Assume that & € €. (u*) is closed and Q = (P, Q, a<y)
is a (< Kk)-support iteration and x = (Tq : @ < ) s such that

IFp, “Q,, is strongly complete for & with witness o

(for a < ). Further suppose that
(a) (N,a) is an E—complementary pair, N = (N; 1 <96), and x, £,Qe Ny,
(B) T =(T,<,rk) € Ny is a standard (w, ) —tree, w C v N Ny, ||w|| < cf(d),
ag 1s an ordinal, oy = ag+ 1, 0 € w,
(v) p={pi: t€T) € FTY'(Q) N Ny, w € Ny, (of course ap € Ny),
(8) |INg||Iw+ITIC Ny for each i < 4,
(e) fori <9, T; = (Ti, <i,rk;) is such that T; consists of all sequences t = (t :
¢ € dom(t)) such that dom(t) is an initial segment of w, and
e cach t¢ is a sequence of length aq,
o (tclag: ¢ edom(t)) €T,
o for each ¢ € dom(t), either tc(ap) = = or te(aw) € N; is a Pe—name
for an element of @C and
if te(a) # * for some a < ayp, then t¢(ap) # *,
rk;(t) = min(w U {~} \ dom(t)) and <; is the extension relation.
Then
(a) each T; is a standard (w, )Y ~tree, | T;|| < || T - || N[V, and if i < & then
T; € Niy1,
(b) T is the projection of each T; onto (w,ap),
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(c) thereis § = (q; : t € Ts) € FTY'(Q) such that

(i) if t € TTg \ {Q} then the condition q: € P}, is an upper bound

of an (Z\_f[[io,5],Prk5(t))*fgeneric sequence (where ig < & is such that
t €Ty, ), and for every B € dom(q:) = NsN1ks(t), q:(B) is a name for
the least upper bound in @,6 of an (N[G3]1[E, ), Qﬂ)* —generic sequence
(for some & < 4),
[Note that, by B.5.5, the first part of the demand on q; implies that if
io < € then ;|8 forces that (N[G3]1[€, 6, al[€, d]) is an S—complementary
pair.|

(iil) ifteTs, t' = projz—:s (t) €T, ¢ € dom(t) and tc(ap) # *, then

@ 1¢ ke, “prr(C) <q, te(an) = te(ao) <q, a(C)”,

(iv) a¢ = py-
Proof. Clauses (a) and (b) should be clear.

(c) One could try to use directly B.7.1 for (\{Z € Ns : Z C P, open dense}
and suitably “extend” p (see, e.g., the successor case below). However, this would
not guarantee the demand (ii). This clause is the reason for the assumption that
|w]| < cf(8). _
By induction on i < § we define a sequence (g* : i < 9):
g = (qi : t € T;) is the <}first sequence 7 = (ry : t € T;) €
FTr'(Q) such that

()i p<_ 7 7and (Vj <i)(Vt € T))(q] <pr_ 70),
pToj rk(t)

(ii); f t = (tc: ( € dom(t)) € T; and t' = projz——i(t) € T, then
o (Va € dom(ry))(pr(a) = r(a) or Irp, re(a) € Q ),
and
o i € ({Z € Ny : T C Py is open dense}, and
o for every ¢ € dom(t) such that t¢(ag) # *,

relClFe, “pr(Q) <g, tclao) = te(ao) <g ()7,

(iii)i 7“() :p<>.
We have to verify that this definition is correct, i.e., that for each i < § there is
an 7 satisfying (i);—(iil);. So suppose that we arrive to a non-limit stage i < § and
we have defined (¢’ : j < i). Note that necessarily (¢ : j < i) € N; (remember i
is non-limit). Let i = j + 1 and, if j = —1, let ¢; * = PprojTopy Tor t € To and let
T_1 = {()}. Fort € T; we define s; € Py, ;) as follows.

o Ift € T}, then s; = qg.

o Ift € T;\ T; and ¢* € w is the first such that ¢[(¢* + 1) ¢ T}, then we let
dom(s;) = dom(qfrg*) U dom(py ) U dom(t), where t' = proj;:i (t). Next we
define s¢(¢) by induction on ¢ € dom(s;):
if ¢ € dom(s;) NC*, then 54(C) = g0+ (0),
if ¢ € dom(t) \ ¢* and t¢(ap) # *, then s4(¢) is the <} -first Pc—name for
an element of Q ¢ such that

5¢[CIFp, “per(€) < 5¢(¢)  and  pp(Q) <te(a) = te(aon) < s5¢(C)"
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and otherwise it is py (€).

It should be clear that 5 = (s; : t € T;) € FTY'(Q). Now we apply B.7.1 to T}, 5
and
= ﬂ {I € N; :Z C Py open dense}

and we find 7 = (r, : t € T;) € FTr'(Q) such that 5 < 7 and for each t € T;
re € {qltk;(t): ¢ € ¥} and (Vaedom(r:))(si(a)=r¢(a) or IFp, rt(a)e@a).

One easily checks that this 7 satisfies demands (i);—(iii);.

Now suppose that we have successfully defined @ for j < 7, i < § limit ordinal.
Fixt € UTj, say t € T, jo < i. We know that Tj, C Nj 41 (remember the

Jj<i
assumption (4) and the assertion (a)) and that for each j < i, (¢° : € < j) € Njt1.
Consequently,
(Vj € [jo, 1)) ({g; : Jo < & <j) € Njq1).

By the demand (i) we have that (¢ : jo < & < i) is an (]\_f[[jo,i],IP’rij(t))*f
generic sequence. As Py, () is complete for £ (see B.5.6) and Ny contains all
witnesses we conclude that the sequence (¢f : jo < € < 4) has an upper bound in
P, (). Moreover, if o < rkj, (t), and g € P, is an upper bound of the sequence
(i ot jo < e < i), then

q ke, “(gi (@) : jo < e <) has an upper bound in Q_”

(see the proof of B.5.6). Now we let dom(s;) = (J{dom(¢}) : jo < e < i} and we
define inductively

st(@) is the <;‘(fﬁrst P,—name for an element of @a such that
stlalbp, (Ve € [jo,1))(¢; (@) <g_ st(a)).
This defines s = (s; : t € |J Tj). Clearly |J 7} is a standard (w, a1)”—tree and

7<i 7<i
5 € FTY'(Q). Now suppose that t € T; \ |J 7 and let ¢* be the first such that
J<i
ti¢* ¢ U T; (so necessarily dom(t) N¢* is cofinal in ¢* and cf (otp(dom(t) N ¢*)) =

7<i

cf(é)). Then U{stc : ¢ < (*} € Pe+. Now define
St = U{Stm : C < g*} Upt’ r[c*57)7

where t' = proj?(t). Note that § = (s; : t € T;) € FIY(Q) and if t € T;,
a € dom(s;), then either si(a) = py () or Ibp, si(a) € Q. Now we proceed like
in the successor case: we apply B.7.1 to 5, T; and

al— ﬂ {I € N; :Z C P, open dense},
and as a result we get 7 = (r; : t € T}) € FTr'(Q) such that for each ¢ € T;:

st <1y €{qIrk;(t) : ¢ € Z*} and
(Vo € dom(ry))(se(a) = 1e(a) or Irp, () €Q,).

Now one easily checks that 7 satisfies the requirements (i);—(iii);.

Thus our definition is the legal one and we have the sequence (g : i < §).
We define § = @° similarly to 5 from the limit stages i < &, but we replace “the
<} first upper bound in Q_ " by “the least upper bound in Qa”. So suppose
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t € T5. Since ||w|| < cf(d) we know that ¢ € Tj, for some jo < 6. We declare
dom(g:) = J{dom(g) : jo < e < §} and inductively define ¢ () for a € dom(gy):
qi(a) is the <}first P,-name such that

gilalFp,  “gi(a) is the least upper bound of the sequence
(gi(a) 1jo<e<d)inQ ",

Like in the limit case of the construction, the respective upper bounds exist, so
qd = {(q: : t € Ts) is well defined. Checking that it has the required properties is
straightforward. O

Theorem B.7.3. Suppose that (y,€1) € €®,.(u*) (so & € Cop(p*)) and Q =
(Po,Q, : v <) is a (< k)-support iteration such that for each o <k

IFp, “@a s complete for (50,4‘:'1)”.

Then
(a) IFp, (€0, 1) € QQH(MA*),Amoreover
(b) P, is complete for (Ey,&1).

Proof. We need only part (a) of the conclusion, so we concentrate on it. Let x be a
large enough regular cardinal, z be a name for an element of #(x) and p € P,,. Let

To be a Py—name for the witness that Q_ is (forced to be) complete for &0, &)),

and let & = (z, : @ < 7). Since (&,&1) € €2, (u*) we find M = (M; : i < ) which

is ruled by (&,&1) with an &-approximation (N? : —1 < 4 < §) and such that

p,Q,z,%,E,E € My (see B.5.7). Let N' = (N! : & < §;) and let @’ € & be such

that (N?,@) is an & -complementary pair. Let w; = {0} U |J (yN M;) (for i < ).
j<i

By the demands of B.5.7 we know that ||w;|| < cf(d;).
By induction on i < § we define standard (w;,)Y—trees T; € M; 11 and p' = (p} :
t € T;) € FTY'(Q) N M,y such that || T3] < || M; |1l < || M4, and if j < i < 6§
then 7; = projgzz’;ﬁ_ll)) (7:) and p’ gpmj;—; .
Case 1: ¢ =0.
Let T} consist of all sequences (t¢ : ¢ € dom(t)) such that dom(¢) is an initial
segment of wy and ¢t = () for ( € dom(t). Thus Tj is a standard (wp,0)"—tree,
T3]l = llwoll - For t € Ty let p;® = plrky(t). Clearly the sequence p*° = (p;¥ :
t € Ty) is in FTY'(Q) N Ny''. Apply B.7.2 to &,Q, N=', 75, wo and p*° (note
that ||[N71 vl < |\N;r11|||\NJII| for e < &p). As a result we get a (wg,1)"—tree
To (the one called Tg, there) and p° = (p? : t € Tp) € FT'(Q) N My (the one
called ¢ there) satisfying clauses B.7.2(¢g), B.7.2(c)(i)—(iv) and such that ||Tp| <
HN(;OlH”“J“” = || Mpl|l"oll = || My|| (remember cf(5p) > 2/Moll). So, in particular, if
t € Ty, ¢ € dom(t) then t¢(0) € My is either % or a P.—name for an element of @C'
Moreover, we additionally require that (7p,p°) is the <} first with all these
properties, so To, p° € M.
CASE 2: i=1ig+ 1.
We proceed similarly to the previous case. Suppose we have defined 7;, and p%
such that iy, p € My 41, [|Tioll < | Miy41]]- Let T;* be a standard (w;, ig)”—tree
such that
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T consists of all sequences (t¢ : ¢ € dom(¢)) such that dom(?) is
an initial segment of w; and

(te : ¢ € dom(t) Nwyy) € Ty and (V¢ € dom(t) \ wi, ) (Vi < i0)(tc(J) = *).
Thus T, = proj(u-, \(T;*) and T} < [Mil|. Let pj’ = pi? k] (t) for t € Ty,

0:%0)
t = projz—’? (t). Now apply B.7.2 to &, Q, N, T*, w; and p** (check that the
&)
assumptions are satisfied). So we get a standard (w;,i9+1)7—tree 7; and a sequence
p' satisfying B.7.2(¢), B.7.2(c)(i)(iv), and we take the <%-first pair (7;,p') with
||]\/Im|| = HMio‘i‘lH’

these properties. In particular we will have ||T;|| < || M;,]| - HN;0
and ﬁi, 7; S Mi—i—l-

CASE 3: i is a limit ordinal.

Suppose we have defined 7;, p’ for j < i and we know that ((7;,p7) : j < i) € M1

P
(this is the consequence of taking “the <}—first such that...”). Let T;* = lim ({7} :
j < i)). Now, for t € T} we would like to define p}’ as the limit of p’ . .

projr. (t)
However, our problem is that we do not know if the limit exists. Therefore we
restrict ourselves to these t for which the respective sequence has an upper bound.

To be more precise, for t € 7,* we apply the following procedure.
(®) Let 7 = proj%* (t) for j < i. Try to define inductively a condition p}® €
Pricx (1) such that dom(p;’) = U{dom(p{j)ﬁrkf(t) : j < i}. Suppose we have

successfully defined p;?|a, a € dom(p;?), in such a way that pj’la > pgj lov
for all 7 < i. We know that

piilalFp, “the sequence <p{j (@) 1 j <) is <4 ~increasing”.

~a

So now, if there is a Po—name 7 for an element of Q  such that
pi'alre, (Vi <i)@pl(@) <g 1),

then we p;‘(a) be the P,-name of the lub of (pzj () :j <i)in @a and we
continue. If there is no such 7 then we decide that t ¢ ’7? and we stop the
procedure.
Now, let 7;" consist of those ¢t € T} for which the above procedure resulted in a
successful definition of p;’ € Pyxr(¢)- It might be not clear at the moment if T;r
contains anything more than (), but we will see that this is the case. Note that

T < Il < TTITl < T a0 < 20 < g,
j<i j<i
Moreover, for & > 2 we have || Ni||lwl+IT7I1 < || Ni||INIF € Ni | and T;",p*" €
Miy1. Let T; = T, p* = p** (this time there is no need to take the <}-first pair
as the process leaves no freedom).

After the construction is carried out we continue in a similar manner as in A.3.7
(but note slightly different meaning of the *’s here).

P
So we let 75 = lim((7; : ¢ < 4)). It is a standard (ws, d)?—tree. By induction on
a € ws U {v} we choose g, € P/, and a P,—name %, such that
(a) IFp, “to € Ts & tks(ta) = o, and let 4§ = min{i < 0 : o € M;} < 4,
(b) Ikp, “tg = talB” for B < a,
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(c) dom(q,) = ws N a,
(d) if ﬁ < a then gz = ¢q |0,
(e) p proﬂé o is well defined and p roi 7 (1) [a < g for each i < 4,
(f) for each 8 < «
G Fp,  “(¥i < 6)((tp+1)p(i)) = * & i< ij) and the sequence
B o N B
<’o’ffpmh oy B (Usn)s @00 e () i << 8))

is a result of a play of the game QM[Gﬂ] (W (G o ri<d) (Qﬂ, 0@B>’

won by player COM”,

(g) the condition ¢, forces (in P,) that
“the sequence M [Gpa][[ia,d] is ruled by (€y,&1) and (NG, ] 1 ig <i <
d) is its Ey—approximation”.
(Remember: &, is closed under end segments.) This is done completely parallely

to the last part of the proof of A.3.7.
Finally look at the condition ¢, and the clause (g) above. O

Proposition B.7.4. Suppose that u* = k and £ e Cop(p*) is closed. Let Q =
(P, Q, a< ) be a (< k)-support iteration such that for each o < =y

Fp, “Q, is strongly complete for & and QI <w™
Then P, satisfies kT —cc (even more: it satisfies the k™ —Knaster condition).
Proof. For av < 7 choose P,—names 2, and h, such that

IFp, “Zo witnesses that Q  is complete for & and
he : Q — K is one—to—one”.

Since £ € €_.(u*), for each p € P, we find an &-complementary pair (N?, @) such
that N? = (N : i < w) and p,Q,&, (za : @ < ), (ha : @ <) € NJ. Next choose
an increasing sequence ¢¥ = (¢¥ : i < w) of conditions from P, such that for each
1 < w:

(@) p<qj, @°I(i+1)€ Ny,

(B) ¢ € N{Z € N, : T C P, open dense}.
[Why is this possible? Remember B.5.6 and particularly B.5.6.4.] So the condition
¢? is generic over N; in the weak sense of clause (), and therefore it decides the
values of h, (g} () for each j < i, o € dom(g}) (remember: if j < i then ¢} € N;
and thus dom(g}) C N;). Let €5"* < & be such that for each i > j (remember ¥ is
increasing)

g lalbp, ha(qf(a)) =ep”.

Suppose now that (p¢ : ¢ < k) C P,. For ¢ < x* let Ac = | dom(qu) (so
i<w

A¢c € [y]="). Applying the A-system lemma (remember « is strongly inaccessible)

we find X C kT, || X|| = kT such that {A¢ : ¢ € X} forms a A-system and for each

(,Ee X
o || Acll = [l 4¢l,
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o if o € Ar N A¢ then
min{i <w:a€ dom(qu)} =min{i<w:a€ dom(qfﬁ)},
and call it i,, and for each i < w
otp(an dom(qu)) = otp(an dom(qu)) and EfC’o‘ = Ef&’a

(the last for i > i,).

We are going to show that for each &,¢ € X the conditions p¢,p¢ are compatible.
To this end we define a common upper bound r of p¢, p¢. First we declare that

dom(r) = Ac U A¢
and then we inductively define r(a) for o € dom(r):
if & € A¢ then 7(¢) is a P,—name such that
rlalkp, “r(a) is the upper bound of (qu (@) 11 <w)
with the minimal value of hq (r(«))”
and otherwise (i.e. if & € A¢ \ A¢) it is a P,—name such that
rlalFp,  “r(a) is the upper bound of <qfg (o) 10 < w)
with the minimal value of A, (r(«))”.
By induction on « € dom(r) U {~y} we show that
qu la <p_ rla and qu [ <p_ rla  forall i <w.

Note that, by B.5.5, this implies that the respective upper bounds exist and thus
r(«) is well defined then. There is nothing to do at non-successor stages, so suppose
that we have arrived to a stage o = 3 + 1.

If B € A¢ then, by the definition of 7(3), we have

riB e, (Vi < w)(g (8) < r(B)).

Similarly if 5 € A¢\ A¢ and we consider ¢? ¢ (8). Trivially, no problems can happen if

B € Ac\ A¢ and we consider qu (B) orif g € A¢\ A¢ and we consider qfc (B8). So the
only case we may worry about is that § € Ac N A¢ and we want to show that r(5)

is (forced to be) stronger than all ¢” ‘ (8). But note: by the inductive hypothesis

we know that r[f3 is an upper bound to both (qﬁ75 [B:4 < w) and (qu 1B i < w)
and therefore

¢ ¢ ¢ ¢
riB ke, “ha(al (8) =l 7 & hald) (8) =ef 77,
whenever i,j < w are such that 8 € dom(qu), B e dom(qfc). But now, by the
choice of X we have:
p* p° PS8 _ 1°.8

g edom(ql) < pBedom(q ), and €] " =gl ",

Since hg is (forced to be) a one—to—one function, we conclude that
) ¢ €
riBlre, (Vi <w)(g (B) =a; (B)),

so taking care of the (’s side we took care of the {’s side as well. This finishes the
proof of the proposition. (I
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B.8. THE AXIOM AND ITS APPLICATIONS

Definition B.8.1. Suppose that (£y,&1) € €®,.(1*) and 0 is a regular cardinal.
Let Axp (o, 1), the forcing aziom for (£y,&1) and 0, be the following sentence:

If Q is a complete for (5’0, 4‘:'1) forcing notion of size < k and (Z; :

i < i* < 0) is a sequence of dense subsets of Q,

then there exists a directed set H C QQ such that

(Vi <i*)(HNZ; #0).
Theorem B.8.2. Assume that u* = r, (£9,&1) € €*,.(u*) and
k< O=cf(0) <pu=p"~.
Then there is a strongly complete for & forcing notion P of cardinality p such that
() P satisfies the k+—cc,
(B) IFe (0,&1) € €8, (1*) and even more:
(BY) if & C &0, &r C &1 are such that (E5,EF) € € (u*) then IFp (£0,EF) €

et (),
(7) IFp Axg (o, &1).

Proof. The forcing notion PP will be the limit of a (< x)-support iteration (Po,Q_ :
a < a*) (for some a* < ut) such that
(a) for each o < a*

IFp, “Q, is a partial order on x complete for &0,61).

By B.7.4 we will be sure that P = P, satisfies kT—cc. Applying B.7.3 we will
see that IFp_. (£0,&1) € €2, (1) (also Po- is complete for (£y,&)). The iteration
(P, @a : a < «*) will be built by a bookkeeping argument, but we do not determine
in advance its length a*.

Before we start the construction, note that if Q is a k™—cc forcing notion of size
< p then there are at most p Q—names for partial orders on k (up to isomorphism).
Why? Remember p” = p and each Q—name for a poset on k is described by a
k—sequence of maximal antichains of Q. By a similar argument we will know that
each P, has a dense subset of size < u (for a < a*). Consequently there are, up to
an isomorphism, at most p P,~—names for partial orders on x.

Let £ consist of all (< k)-support iterations Q = (Po,Q, : @ < ap) of length
< pt satisfying the demand (a) above (with ag in place of a*). Elements of & are
naturally ordered by

Q"< Q' ifandonlyif Q°=Q'1g(Q").
Note that every <g—increasing sequence of length < p* has the least upper bound
in (8], <g). By what we said before, we know that if (Po,Q_:a < ap) € &, then
P,, contains a dense subset of size < pu, satisfies kKT—cc and forces that (50,51) €
¢, (u*). Moreover,
(®a) if Q° = (P,Q" : a < ag) € R and Q is a P}, —name for a forcing notion on
K then - - -
(1) either there is no Q! = <]P’a,@(ll ca < ap) € 8 such that Q0 <z Q!
and
IFpy “Q is complete for (&o,&1)”
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(®2) or there is Q' = (P}, Q) : a < a1) € & such that Q° <g Q' and
”_[P(ln “there is a directed set H C Q which meets all

0
dense subsets of Q from VFao?,

[Why? Suppose that (1) fails and it is exemplified by Q'. Take Q' x Q]
Consequently, as £ is closed under increasing < u+—sequences, we have
(®%) for every Q € & there is Q° = (Pg,@g ta < ag) € R such that Q <z Q°

and for every Lim(Q)-name Q for a forcing notion on x one of the following
conditions occurs:

(®1) there is no Q! = (Pé,@i ta < ap) € & such that Q¥ <z Q! and
IFpy “Q is complete for (o,61)"

(69;r ) “_[p’g . “ there is a directed set H C @ which meets all dense subsets of
@ from VEm(@Q)
[Why? Remember that there is at most p Lim(Q)-names for partial orders on k.]

Using these remarks we may build our iteration in the following way. We choose
a <gz-increasing continuous sequence (Q¢ : ¢ < ) C & such that

(b) for every ¢ < 6%, Q-*! is given by (@) for Q.

Now it is a routine to check that P = PZ; is as required. g

In B.8.3 below remember about our main case: S* C k is stationary co-stationary
and & consists of all increasing continuous sequences a = (a; : i < a) such that
a; € K\ S* (for i < ). In this case the forcing notion R is the standard way to
make the set S* non-stationary (by adding a club of k; a condition gives an initial
segment of the club). Since forcing with R preserves stationarity of subsets of K\ S*,
the conclusion of B.8.3 below gives us

() in VEM@ every stationary set S C «\ S* reflects in some inaccessible.

Proposition B.8.3. Suppose that (£,&1) € €2, (u*) (so & € Copn(p®)), u* = K
(for simplicity) and Q = (Po,Q_ : a < ) is a (< k)-support iteration such that
for each a < K
IFp., “Q_, is complete for (0,&1) and QI <x.”
Further assume that:
(a) &o is reasonably closed: it is closed under subsequences and if G = (a; =i €
8) € & and bl = (b, : o < o) € & are such that by = a;, b, = a1 (for
i < &), then the concatenation of all b (for i < &) belongs to & [e.g., & is
derived from S C k like in B.6.2],
(b) R = (E’A‘Oa <]);
(c) in VR and even in
stationary subsets of Kk reflect in inaccessibles).

VR«Cobens o is g weakly compact cardinal (or just:

Then, in VE*R  k is weakly compact (or just: stationary subsets of k reflect in
inaccessibles).

Proof. First note that the forcing with R does not add new sequences of length < x
of ordinals. [Why? Suppose that z is an R—name for a function from 0 to V, 6 < &
is a regular cardinal and r € R. Take an &-complementary pair (N, @) such that
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N = (N; : i < 0) and r,z € Ny and the error is, say, n. Now build inductively an
increasing sequence (r; : i < ) C R such that for every i < 6:
e 7o =7, the condition 7;41 decides the value of z(7),
e if i =+ k+1, v is a non-successor, k < w then r; € N, (or42)(ns1) and
ifr; = <aé : € < @) then aéi = Ay (2k41) (n41)s
e if 4 < @ is limit then (r; : j < i) € N;y1 and r; is the least upper bound of
(rj:j<i)(sor; € Nir).
The construction is straightforward. If we have defined r; € N,y (2r42)(n+1), then
we first take the <} —first condition r} = (ag : £ < a*) stronger than r; and deciding
the value of 2(i) (so 77 € Nyy(2k+2)(n+1)). We know that

ape C Ayt (2k42) (n4 1)1 € Noyd (2642) (n41)+2n41-
Let riy1 = 17 7{ay42k+2)(n+1)+n)- Clearly rit1 € Ny i (2k44)(n+1)- By the choice of
“the <, —first” conditions we are sure that, arriving to a limit stage 7 < 0, we have
(rj:j <i) € Nit1. Now use the assumption (a) on & to argue that the sequence
(ri : i < 0) has a least upper bound 7y — clearly this condition decides the name z.]
Without loss of generality we may assume that, for each o <

IFp, “Qa is a partial order on k”.

For a forcing notion Q let Q stand for the completion of Q with respect to increasing
< k—sequences (i.e., it is like Q but we consider only increasing sequences of length
< k). Note that Q is dense in Q and if ||Q|| < &, then ||Q|| < & (x is strongly
inaccessible!). Now, let <]P”a,@’a : @ < ) be the iteration of the respective < k-
completions of the Q ’s. Thus each P, is a dense subset of P}, (see 0.18). We may
assume that each @a is a P,—name for a partial order on k + & (for a < 7). Now,
for a < 7, let

P/ ={peP,: thereis a sequence (p": 8€dom(p)) such that for some J<r,
each p’ = (p? : ¢ < &) is a d—sequence of ordinals < x and
p(B) is (the Pj—name of) the minimal (as an ordinal)
least upper bound of p” by g@a }

Claim B.8.3.1. For each oo <y, P! is a dense subset of ...

Proof of the claim. Let p € P/,. By B.5.6 we know that P, is strongly complete
for &. Let (N,a) be an £-complementary pair such that N = (N; : i < w) and
p,@,P’Q,é‘O ... € Ny. Take an increasing sequence (g; : i < w) C P, such that
¢; € Niq1 is generic over N; and such that p <p; qo. Now let ¢ € I/, be defined by
dom(q) = N, N« and:

qIBlFe, “q(B) is the minimal (as an ordinal) least upper bound in @ﬁ
of the sequence (g;(53) : i < w)”.

By B.5.6.3 (actually by its proof) we know that the above definition is correct. Now
it a routine to check that g € P is as required, finishing the proof of the claim. O

One could ask what is the point of introducing P//. The main difference between
P/, and P/ is that in the first, ¢(3) is a least upper bound of an increasing sequence
of conditions from Q_, but we know the name for the sequence only. In P we

have the representation of g(«) as the least upper bound of a sequence of ordinals
from V! This is of use if we look at the iteration in different universes. If we look
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at Q (defined as an iteration in V) in VR, then it does not have to be an iteration
anymore: let a < . Forcing with R may add new maximal antichains in P, thus
creating new names for elements of Q . However

Claim B.8.3.2. For eacha <, in VX, (P!, @B s <7, B <7)is a(< Kk)-support
iteration.

Proof of the claim. Easy induction on a. (I

Claim B.8.3.3. For each a < vy
IFp, g “@a is isomorphic to Cohen, ”.

Proof of the claim. Working in VP choose an increasing continuous sequence N =
(N; +i < k) of elementary submodels of (H(x), €, <}) such that Q, € Np and for
each i < k:

Ni(i+1) € Nip1, NinNker, and [N <r.

Now, passing to VFe*R e can find an increasing continuous sequence j = (Jc -
¢ < k) C K such that

(Ve < rw)((Nj. NK:(<e) € &).

[Why? Forcing with R adds an increasing continuous sequence 8 = (¢ : ¢ < k)
such that B[(¢ +1) € & for each ¢ < k. Now let j be the increasing enumeration
of {j <k:N;jNk=73& (3¢ < K)(j = Bu.c)}; remember that & is closed under
subsequences.|

Now, for p € @a let

jp)=sup{j<r: j=0orje {jc:(<k}and
pe(WZeN;:ZTCQ,_ isopen dense in VFall
and k(p) = min{j < x : p € N,;}. Now we finish notifying that
(1) if p = (pc : € < §) is increasing in Qa and such that (Ve < §)(k(ps) <
J(pet1)), then the sequence p has an apper bound in Qa;
(2) for every j < k the set {p € @a :j(p) > j} is open dense in @a.
This finishes the proof of the claim and the proposition. O

Alternatively, first prove that wlog v < T and then show that Pfy becomes
k—Cohen in VE, O

Conclusion B.8.4. Assume that
e Vo E k is weakly compact and GCH holds (for simplicity),
e V; is a generic extension of Vy making “k weakly compact” indestructible
by Cohen,, (any member of k—Cohen),
eV, = V]F“, where Ry adds a stationary non-reflecting subset S* of k by
initial segments.
Further, in Vs, let & = &[S*], & = &1[S*] be as in the main example for the
current case (see, e.g., B.6.2), both in V3. Suppose that Q is a (< x)-support
iteration of forcing notions on &, say of length v*, complete for (&y,&;1). Let V3 =
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V;im(Q) and let R be the forcing notion killing stationarity of S* in V3, but also

in Vy; see B.8.3. Then
VE = V?O*R = y{ohen E “k is weakly compact indestructible by Cohen”,

and in \{IQR, the forcing notion Lim(Q) is adding x—Cohen. Consequently in V& =
(VEHIm(@ 1im(Q) is adding Cohens and hence  is weakly compact in V.

Conclusion B.8.5. (1) Let V = L and let k be a weakly compact cardinal,

X" = x. Then for some forcing notion P we have, in VF:

(a) there are almost free Abelian groups in &,

(b) all almost free Abelian groups in k are Whitehead.

(2) If V = GCH then VF = GCH.
(3) We can add:

(¢) the forcing does not collapse any cardinals nor changes cofinalities, and
it makes 2% =y, x = ||P||,

(d) for some stationary subset S* of x which is non reflecting and has
stationary intersection with Sy for every regular theta < kappa we
have

e every stationary subset of k \ S* reflects in some inaccessible,
o letting &y, & be defined from S* as above, we have Axly (50, 51),
e if K < 0 = cf(f) < x then we can add Axf(&o,&)).

If k is k—Cohen indestructible weakly compact cardinal (or every stationary

set reflects) then we may add:

(e) the forcing adds no bounded subsets to k.

Proof. 1) Let Vo = V and let Vi, Vo, Ry be defined as in B.8.4, just Ry adds
a non-reflecting stationary subset of {6 < k : cf(d) = Ro}. Working in Vy define
Q= (P, Q, ra< a*), a* < xT be as in the proof of the consistency of Axg(go, 4‘:'1)
in B.8.2. The desired universe is V3 = Vg“*.

Clearly, as every step of the construction is a forcing extension, we have V3 = VF
for some forcing notion P. The forcing notion Ry € V; adds a non-reflecting
stationary subset S to x. As P,« preserves (£5,E5) € €®,.(u*) (by B.7.3) the set
S is stationary also in V3. Since (Vo € S)(cf(d) = Ng) we may use S to build an
almost free Abelian group in &, so clause (a) holds. Let us prove the demand (b).

Suppose that G is an almost free Abelian group in x with a filtration G = (G} :
i < k). Thus the set v(G) = {i < & : G/G; is not r—free } is stationary. Now we
consider two cases.

CASE 1: the set v(G) \ S is stationary.

By B.8.3 we know that after forcing with R (defined as there) the cardinal & is still
weakly compact (or just all its stationary subsets reflect in inaccessibles). But this
forcing preserves the stationarity of v(G) \ S (and generally any stationary subset
of k disjoint from S, as S does not reflect). Consequently, in V3, the set

I ={x": &'is strongly inaccessible and
(v(G)\ S) Nk is a stationary subset of &’

is stationary in . Hence for some x € IV we have (Vi < &')(]|G;|]| < &) and
therefore the filtration (G; : i < k') of G,;» shows that G, is not free, contradicting
“G is almost free in k7.
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CASE 2: the set 7(G) \ S is not stationary.

By renaming, wlog v(G) C S. We shall prove that G is Whitehead. So let H

onto

be an Abelian group extending Z and let h : H — G be a homomorphism such
that Ker(h) = Z. By B.6.10 the forcing notion P = P, g ¢ is well defined and
it is complete for (£5,£°) and has cardinality x (and for each a < & the set
Zo = {p € P: G, C p} is dense in P). Since V3 = Axj, there is a directed set
G C P such that G NZ, # 0 for each a < k. Thus f = J§ is a lifting as required
(and G is Whitehead).

2) TImplicit in the proof above. O
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