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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT

ITERATIONS

SAHARON SHELAH

Abstract. We deal with the problem of preserving various versions of com-
pleteness in (< κ)–support iterations of forcing notions, generalizing the case
“S–complete proper is preserved by CS iterations for a stationary co-stationary
S ⊆ ω1”. We give applications to Uniformization and the Whitehead prob-
lem. In particular, for a strongly inaccessible cardinal κ and a stationary set
S ⊆ κ with fat complement we can have uniformization for 〈Aδ : δ ∈ S′〉,
Aδ ⊆ δ = supAδ, cf(δ) = otp(Aδ) and a stationary non-reflecting set S′ ⊆ S.

Annotated Content

Section 0: Introduction We put this work in a context and state our aim.
–0.1 Background: Abelian groups
–0.2 Background: forcing [We define (< κ)–support iteration.]
–0.3 Notation

CASE A

Here we deal with Case A, say κ = λ+, cf(λ) = λ, λ = λ<λ.

Section A.1: Complete forcing notions We define various variants of
completeness and related games; the most important are the strong S–completeness
and real (S0, Ŝ1, D)–completeness. We prove that the strong S–completeness is pre-
served in (< κ)–support iterations (A.1.13)

Section A.2: Examples We look at guessing clubs C̄ = 〈Cδ : δ ∈ S〉. If
[α ∈ nacc(Cδ) ⇒ cf(α) < λ] we give a forcing notion (in our context) which
adds a club C of κ such that C ∩ nacc(Cδ) is bounded in δ for all δ ∈ S. (Later,
using a preservation theorem, we will get the consistency of “no such C̄ guesses
clubs”.) Then we deal with uniformization (i.e., PrS) and the (closely related)
being Whithead.

Section A.3: The iteration theorem We deal extensively with (standard)
trees of conditions, their projections and inverse limits. The aim is to build a
(Pγ , N)–generic condition forcing G

˜
γ ∩N , and the trees of conditions are approx-

imations to it. The main result in the preservation theorem for our case (A.3.7).

Section A.4: The Axiom We formulate a Forcing Axiom relevant for our
case and we state its consistency.
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2 SAHARON SHELAH

CASE B

Here we deal with κ strongly inaccessible, S ⊆ κ usually a stationary “thin” set
of singular cardinals. There is no point to ask even for ℵ1–completeness , so the
completeness demands are only on sequences of models.

Section B.5: More on complete forcing notions We define completeness

of forcing notions with respect to a suitable family Ê of increasing sequences N̄ of
models, say, such that

⋃

j<δ

Nj ∩ κ /∈ S for limit δ ≤ ℓg(N̄). S is the non-reflecting

stationary set where “something is done”. The suitable preservation theorem for
(< κ)–support iterations is proved in B.5.6. So this Ê plays a role of S0 of Case
A, and the presrvation will play the role of preservation of strong S0–completeness.
We end defining the version of completeness (which later we prove is preserved; it

is parallel to (S0, Ŝ1, D)–completeness of Case A).

Section B.6: Examples for an inaccessible cardinal κ We present a
forcing notion taking care of PrS , at least for cases which are locally OK, say,
S ⊆ κ is stationary non-reflecting. We show that it satisfies the right properties
(for iterating) for the naturally defined Ê0, Ê1. Then we turn to the related problem
of Whitehead group.

Section B.7: The iteration theorem for inaccessible κ We show that
completeness for (Ê0, Ê1)is preserved in (< κ)–support iterations (this covers the
uniformization). Then we prove the κ+–cc for the simplest cases.

Section B.8: The Axiom and its applications We phrase the axiom and
prove its consistency. The main case is for a stationary set S ⊆ κ whose complement
is fat, but checking that forcing notions fit is clear for forcing notion related to non-
reflecting subsets S′ ⊆ S, So S can have stationary intersection with Sκ

σ for any
regular σ < κ. The instance of S ∩ inaccessible is not in our mind, but it is easier –
similar to the successor case. Next we show the consistency of “GCH + there are
almost free Abelian groups in κ, and all of them are Whitehead”. We start with
an enough indestructible weakly compact cardinal and a stationary non-reflecting
set S ⊆ κ, for simplicity S ⊆ Sκ

ℵ0
, and then we force the axiom. Enough weak

compactness remains, so that we have: every stationary set S′ ⊆ κ \ S reflects
in inaccessibles, hence “G almost free in κ” implies Γ(G) ⊆ S mod Dλ”, but the
axiom makes all of them Whitehead.
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 3

0. Introduction

In the present paper we deal with the following question from the Theory of
Forcing:

Problem we address 0.1. Iterate with (< κ)–support forcing notions not col-
lapsing cardinals ≤ κ preserving this property, generalizing “S–complete proper is
preserved by CS iterations for a stationary co-stationary S ⊆ ω1”.
We concentrate on the ZFC case (i.e., we prefer to avoid the use of large cardinals,
or deal with cardinals which may exists in L) and we demand that no bounded
subsets of κ are added.

We use as our test problems instances of uniformization (see 0.2 below) and
Whitehead groups (see 0.3 below), but the need for 0.1 comes from various questions
of Set Theory. The case of CS iteration and κ = ℵ1 has gotten special attention
(so we generalize no new real case by S–completeness, see [16, Ch V]) and is a very
well understood case, but still with consequences in CS iterations of S–complete
forcing notions. This will be our starting point.

One of the questions which caused us to look again in this direction was:

is it consistent with ZFC + GCH that for some regular κ there
is an almost free Abelian group of cardinality κ, but every such
Abelian group is a Whitehead one?

By Göbel and Shelah [3], we have strong counterexamples for κ = ℵn: an almost
free Abelian group G on κ with HOM(G,Z) = {0}. Here, the idea is that we have
an axiom for G with Γ(G) ⊆ S (to ensure being Whitehead) and some reflection
principle gives

Γ(G) \ S is stationary ⇒ G is not almost free in κ,

(see B.8). This stream of investigations has a long history already, one of the
starting points was [14] (see earlier references there too), and later Mekler and
Shelah [8], [7].

Definition 0.2. Let κ ≥ λ be cardinals.

(1) We let Sκ
λ

def
= {δ < κ : cf(δ) = cf(λ)}.

(2) A (κ, λ)–ladder system is a sequence Ā = 〈Aδ : δ ∈ S〉 such that the set
dom(Ā) = S is a stationary subset of Sκ

λ and

(∀δ ∈ S)(Aδ ⊆ δ = sup(Aδ) & otp(Aδ) = cf(λ)).

When we say that Ā is a (κ, λ)–ladder system on S, then we mean that
dom(Ā) = S.

(3) Let Ā be a (κ, λ)–ladder system. We say that Ā has the h∗–Uniformization
Property (and then we may say that it has h∗–UP) if h∗ : κ −→ κ and

for every sequence h̄ = 〈hδ : δ ∈ S〉, S = dom(Ā), such
that

(∀δ ∈ S)(hδ : Aδ −→ κ & (∀α ∈ Aδ)(hδ(α) < h∗(α)))

there is a function h : κ −→ κ with

(∀δ ∈ S)(sup{α ∈ Aδ : hδ(α) 6= h(α)} < δ}).

If h∗ is constantly µ, then we may write µ–UP; if µ = λ,
then we may omit it.
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4 SAHARON SHELAH

(4) For a stationary set S ⊆ Sκ
λ , let PrS,µ be the following statement

PrS,µ ≡ each (κ, λ)–ladder system Ā on S has the µ–Uniformization Property.
We may replace µ by h∗; if µ = λ we may omit it.

There are several works on the UP, for example the author proved that it is

consistent with GCH that there is a (λ+, λ)–ladder system on Sλ+

λ with the Uni-
formization Property (see Steinhorn and King [18], for more general cases see [14]),
but necessarily not every such system has it (see [16, AP, §3]). In the present paper
we are interested in a stronger statement: we want to have the UP for all systems
on S (i.e., PrS).

We work mostly without large cardinals. First we concentrate on the case when
κ = λ+, λ a regular cardinal, and then we deal with the related problem for
inaccessible κ. The following five cases should be treated somewhat separately.

Case A: κ = λ+, λ = λ<λ, S ⊆ Sκ
λ , and the set Sκ

λ \ S is stationary;
Case B: κ is (strongly) inaccessible (e.g. the first one), S is a “thin” set

of singulars;

Case C: λ is singular, S ⊆ Sλ+

cf(λ) is a non–reflecting stationary set;

Case D: κ is strongly inaccessible, the set

{δ < κ : δ ∈ S and δ is not strongly inaccessible }

is not stationary;
Case E: S = Sκ

λ , κ = λ+, λ = λ<λ.

We may also consider

Case F: κ = κ<κ, θ+ < κ = 2θ.
Case G: S = Sκ

λ , κ = λ+, λ = λ<λ and we make 2λ > κ.

In the present paper we will deal with the first two (i.e., A and B) cases. The other
cases will be considered in subsequent papers, see [9], [17].

Note that ♦S excludes the Uniformization Property for systems on S. Conse-
quently we have some immediate limitations and restrictions. Because of a theorem
of Jensen, in case B we have to consider S ⊆ κ which is not too large (e.g. not
reflecting). In the context of case C, one should remember that by Gregory [4]
when λ is regular, and by [13] generally: if λ<λ = λ or λ is strong limit singular,
2λ = λ+ and S ⊆ {δ < λ+ : cf(δ) 6= cf(λ)} is stationary, then ♦S holds true.

By [14, §3], if λ is a strong limit singular cardinal, 2λ = λ+, �λ and S ⊆ {δ <
λ+ : cf(δ) = cf(λ)} reflects on a stationary set then ♦S holds; more results in this
direction can be found in Džamonja and Shelah [1].

In the cases A, E, G we are assuming that λ<λ = λ. We will start with the first
(i.e., A) case which seems to be easier. The forcing notions which we will use will
be quite complete, mainly “outside” S (see A.1.1, A.1.7, A.1.16 below). Having this
amount of completeness we will be able to put weaker requirements on the forcing
notion for S.

Finally note that we cannot expect here a full parallel of properness for λ = ℵ0,
as even for λ+–cc the parallel of FS iteration preserves ccc fails.

We deal here with cases A and B, other will appear in Part II, [17], [9]. For
iterating (< λ)–complete forcing notions possibly adding subsets to λ, κ = λ+, see
[9]. In [17] we show a weaker κ+–cc (parallel to pic, eec in [16, Ch VII, VIII])
suffices. We also show that for a strong limit singular λ cardinal and a stationary
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 5

set S ⊆ Sλ+

cf(λ), PrS (the uniformization for S) fails, but it may hold for many

S–ladder systems (so we have consequences for the Whitehead groups).
This paper is based on my lectures in Madison, Wisconsin, in February and

March 1996, and was written up by Andrzej Ros lanowski to whom I am greatly
indebted.

0.1. Background: Abelian groups. We try to be self-contained, but for further
references see Eklof and Mekler [2].

Definition 0.3. (1) An Abelian group G is a Whitehead group if for every

homomorphism h : H
onto
−→ G from an Abelian group H onto G such that

Ker(h) ∼= Z there is a lifting g (i.e., a homomorphism g : G −→ H such
that h ◦ g = idG).

(2) Let h : H −→ G be as above, G1 be a subgroup of G. A homomorphism
g : G1 −→ H is a lifting for G1 (and h) if h ◦ g1 = idG1 .

(3) We say that an Abelian group G is a direct sum of its subgroups 〈Gi : i ∈ J〉
(and then we write G =

⊕

i∈J
Gi) if

(a) G = 〈
⋃

i∈J

Gi〉G (where for a set A ⊆ G, 〈A〉G is the subgroup of G

generated by A; 〈A〉G = {
∑

ℓ<k

aℓxℓ : k < ω, aℓ ∈ Z, xℓ ∈ A}), and

(b) Gi ∩ 〈
⋃

i6=j

Gj〉G = {0G} for every i ∈ J .

Remark 0.4. Concerning the definition of a Whitehead group, note that if h :

H
onto
−→ G is a homomorphism such Ker(h) = Z and H = Z ⊕ H1, then h ↾ H1

is a homomorphism from H1 into G with kernel {0} (and so it is one-to-one, and

“onto”). Thus h↾H1 is an isomorphism and g
def
= (h↾H1)−1 is a required lifting.

Also conversely, if g : G −→ H is a homomorphism such that h ◦ g = idG then
H = Z⊕ g[G].

The reader familiar with the Abelian group theory should notice that a group G
is Whitehead if and only if Ext(G,Z) = {0}.

Proposition 0.5. (1) If h : H
onto
−→ G is a homomorphism, G1⊕G2 ⊆ G and gℓ

is a lifting for Gℓ (for ℓ = 1, 2), then there is a unique lifting g for G1⊕G2

(called 〈g1, g2〉) extending both g1 and g2; clearly g(x1+x2) = g1(x1)+g2(x2)
whenever x1 ∈ G1, x2 ∈ G2.

(2) Similarly for
⊕

i∈J
Gi, gi a lifting for Gi.

(3) If h : H
onto
−→ G, Ker(h) ∼= Z and G1 ⊆ G is isomorphic to Z, then there is

a lifting for G1.

Definition 0.6. Let λ be an uncountable cardinal, and let G be an Abelian group.

(a) G is free if and only if G =
⊕

i∈J
Gi where each Gi is isomorphic to Z.

(b) G is λ–free if its every subgroup of size < λ is free.
(c) G is strongly λ–free if for every G′ ⊆ G of size < λ there is G′′ such that

(α) G′ ⊆ G′′ ⊆ G and |G′′| < λ,
(β) G′′ is free,
(γ) G/G′′ is λ–free.
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6 SAHARON SHELAH

(d) G is almost free in λ if it is strongly λ–free of cardinality λ but it is not
free.

Remark 0.7. Note that the strongly in 0.6(d) does not have much influence. In
particular, for κ inaccessible, “strongly κ–free” is equivalent to “κ–free”.

Proposition 0.8. Assume G/G′′ is λ–free. Then for every K ⊆ G, |K| < λ there
is a free Abelian group L ⊆ G such that K ⊆ G′′ ⊕ L ⊆ G.

Definition 0.9. Assume that κ is a regular cardinal. Suppose that G is an almost
free in κ Abelian group (so by 0.6(d) it is of size κ). Let Ḡ = 〈Gi : i < κ〉 be a
filtration of G, i.e., 〈Gi : i < κ〉 is an increasing continuous sequence of subgroups
of G, each of size less than κ. We define

γ(Ḡ) = {i < κ : G/Gi is not κ–free},

and we let Γ[G] = γ(Ḡ)/Dκ for any filtration Ḡ, where Dκ is the club filter on κ
(see [2]).

Proposition 0.10. Suppose that G, κ and 〈Gi : i < κ〉 are as above.

(1) G is free if and only if γ(G) is not stationary.
(2) γ[G] cannot reflect in inaccessibles.

The problem which was the raison d’etre of the paper is the following question
of Göbel.

Göbel’s question 0.11. Is it consistent with GCH that for some regular cardinal
κ we have:

(a) every almost free in κ Abelian group is Whitehead, and
(b) there are almost free in κ Abelian groups ?

Remark 0.12. The point in 0.11(b) is that without it we have a too easy solution:
any weakly compact cardinal will do the job. This demand is supposed to be
a complement of Göbel Shelah [3] which proves that, say for κ = ℵn, there are
(under GCH) almost free in κ groups H with HOM(H,Z) = {0}.

Now, our conclusion B.8.4 gives that

(a)’ every almost free in κ Abelian group G with Γ[G] ⊆ S/Dκ is Whitehead,
(b)’ there are almost free in κ Abelian groups H with Γ[H ] ⊆ S/Dκ.

It can be argued that this answers the question if we understand it as whether
from an almost free in κ Abelian group we can build a non–Whitehead one, so the
further restriction of the invariant to be ⊆ S does not influence the answer.

However we can do better, starting with a weakly compact cardinal κ we can
manage that in addition to (a)’, (b)’ we have

(b)+ (i) every stationary subset of κ \ S reflects in inaccessibles,
(ii) for every almost free in κ Abelian group H , Γ[H ] ⊆ S/Dκ.

(In fact, for an uncountable inaccessible κ, (i) implies (ii)). So we get a consistency
proof for the original problem. This will be done here.

We may ask, can we do it for small cardinals? Successor of singular? Successor
of regular? For many cardinals simultaneously? We may get consistency and
ZFC+GCH information, but the consistency strength is never small. That is, we
need a regular cardinal κ and a stationary set S ⊆ κ such that we have enough
uniformization on S. Now, for a Whitehead group G: if Ḡ = 〈Gi : i < κ〉 is a
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 7

filtration of G, S = γ(Ḡ), λi = |Gi+1/Gi| for i ∈ S, for simplicity λi = λ, then we
need a version of PrS,λ (see Definition 0.2(4)). We would like to have a suitable
reflection (see Magidor and Shelah [6]); for a stationary S′ ⊆ κ \ S this will imply
0#.

0.2. Background: forcing. Let us review some basic facts concerning iterated
forcing and establish our notation. First remember that in forcing considerations
we keep the convention that

a stronger condition (i.e., carrying more information) is the larger one.

For more background than presented here we refer the reader to either [16] or Jech
[5, Ch 4].

Definition 0.13. Let κ be a cardinal number. We say that Q̄ is a (< κ)–support
iteration of length γ (of forcing notions Q

˜
α
) if Q̄ = 〈Pα,Q

˜
β

: α ≤ γ, β < γ〉 and

for every α ≤ γ, β < γ:

(a) Pα is a forcing notion,
(b) Q

˜
β

is a Pβ–name for a forcing notion with the minimal element 0Q
˜ β

[for simplicity we will assume that Q
˜

β
is a partial order on an ordinal;

remember that each partial order is isomorphic to one of this form],
(c) a condition f in Pα is a partial function such that dom(f) ⊆ α, ‖dom(f)‖ <

κ and

(∀ξ ∈ dom(f))(f(ξ) is a Pξ–name and 
Pξ
f(ξ) ∈ Q

˜
ξ
)

[we will keep a convention that if f ∈ Pα, ξ ∈ α \ dom(f) then f(ξ) = 0Q
˜ ξ

;

moreover we will assume that each f(ξ) is a canonical name for an ordinal,
i.e., f(ξ) = {〈qi, γi〉 : i < i∗} where {qi : i < i∗} ⊆ Pξ is a maximal antichain
of Pξ and for every i < i∗: γi is an ordinal and qi 
Pξ

“f(ξ) = γi”],
(d) the order of Pα is given by

f1 ≤Pα
f2 if and only if (∀ξ ∈ α)(f2↾ξ 
Pξ

f1(ξ) ≤Q
˜ ξ

f2(ξ)).

Note that the above definition is actually an inductive one (see below too).

Remark 0.14. The forcing notions which we will consider will satisfy no new se-
quences of ordinals of length < κ are added, or maybe at least any new set of
ordinals of cardinality < κ is included in an old one. Therefore there will be no
need to consider the revised support iterations.

Let us recall that:

Fact 0.15. Suppose Q̄ = 〈Pα,Q
˜

β
: α ≤ γ, β < γ〉 is a (< κ)–support iteration,

β < α ≤ γ. Then

(a) p ∈ Pα implies p↾β ∈ Pβ,
(b) Pβ ⊆ Pα,
(c) ≤Pβ

=≤Pα
↾Pβ,

(d) if p ∈ Pα, p↾β ≤Pβ
q ∈ Pβ then the conditions p, q are compatible in Pα; in

fact q ∪ p↾[β, α) is the least upper bound of p, q in Pα,
consequently

(e) Pβ <◦ Pα (i.e., complete suborder).
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8 SAHARON SHELAH

Fact 0.16. (1) If Q̄ = 〈Pα,Q
˜

β
: α ≤ γ, β < γ〉 is a (< κ)–support iteration

of length γ, Q
˜

γ
is a Pγ–name for a forcing notion (on an ordinal), then

there is a unique Pγ+1 such that 〈Pα,Q
˜

β
: α ≤ γ + 1, β < γ + 1〉 is a

(< κ)–support iteration.
(2) If 〈γi : i < δ〉 is a strictly increasing continuous sequence of ordinals with

limit γδ, δ is a limit ordinal, and for each i < δ the sequence 〈Pα,Q
˜

β
: α ≤

γi, β < γi〉 is a (< κ)–support iteration, then there is a unique Pγδ
such

that 〈Pα,Q
˜

β
: α ≤ γδ, β < γδ〉 is a (< κ)–support iteration.

Because of Fact 0.16(2), we may write Q̄ = 〈Pα,Q
˜

α
: α < γ〉 when considering

iterations (with (< κ)–support), as Pγ is determined by it (for γ = β+1 essentially
Pγ = Pβ ∗Q

˜
β
). For γ′ < γ and an iteration Q̄ = 〈Pα,Q

˜
α

: α < γ〉 we let

Q̄↾γ′ = 〈Pα,Q
˜

α
: α < γ′〉.

Fact 0.17. For every function F (even a class) and an ordinal γ there is a unique
(< κ)–support iteration Q̄ = 〈Pα,Q

˜
α

: α < γ′〉, γ′ ≤ γ such that Q
˜

α
= F(Q̄↾α) for

every α < γ′ and

either γ′ = γ or F(Q̄) is not of the right form.

For a forcing notion Q, the completion of Q to a complete forcing will be denoted

by Q̂ (see [16, Ch XIV]). Thus Q is a dense suborder of Q̂ and in Q̂ any increasing
sequence of conditions which has an upper bound has a least upper bound. In this
context note that we may define and prove by induction on α∗ the following fact.

Fact 0.18. Assume 〈P′α,Q
˜

′
α

: α < α∗〉 is a (< κ)–support iteration. Let Pα, Q
˜

α
be

such that for α < α∗

(1) Pα = {f ∈ P′α : (∀ξ < α)(f(ξ) is a Pξ–name for an element of Q
˜

ξ
)},

(2) Q
˜

α
is a Pα–name for a dense suborder of Q

˜

′
α
.

Then for each α ≤ α∗, Pα is a dense suborder of P′α and 〈Pα,Q
˜

α
: α < α∗〉 is a

(< κ)–support iteration.

We finish our overview of basic facts with the following observation, which will
be used several times later (perhaps even without explicit reference).

Fact 0.19. Let Q be a forcing notion which does not add new (<θ)–sequences
of elements of λ (i.e., 
Q“λ

<θ = λ<θ ∩ V”). Suppose that N is an elementary
submodel of (H(χ),∈, <∗χ) such that ‖N‖ = λ, Q ∈ N , and N<θ ⊆ N . Let G ⊆ Q

be a generic filter over V. Then

V[G] |= N [G]<θ ⊆ N [G].

Proof. Suppose that x̄ = 〈xi : i < i∗〉 ∈ N [G]<θ, i∗ < θ. By the definition of N [G],
for each i < i∗ there is a Q–name τ

˜
i ∈ N such that xi = τ

˜
G
i . Look at the sequence

〈τ
˜
i : i < i∗〉 ∈ V[G]. By the assumptions on Q we know that 〈τ

˜
i : i < i∗〉 ∈ V

(remember i∗ < θ, ‖N‖ = λ) and therefore, as each τ
˜
i is in N and N<θ ⊆ N , we

have 〈τ
˜
i : i < i∗〉 ∈ N . This implies that x̄ ∈ N [G]. �

0.3. Notation. We will define several properties of forcing notions using the struc-
ture (H(χ),∈, <∗χ) (where H(χ) is the family of sets hereditarily of size less than χ,
and <∗χ is a fixed well ordering of H(χ)). In all these definitions any “large enough”
regular cardinal χ works.
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 9

Definition 0.20. For most N ≺ (H(χ),∈, <∗χ) with PROPERTY we have. . . will
mean:

there is x ∈ H(χ) such that
if x ∈ N ≺ (H(χ),∈, <∗χ) and N has the PROPERTY, then . . ..

Similarly, for most sequences N̄ = 〈Ni : i < α〉 of elementary submodels of (H(χ),∈
, <∗χ) with PROPERTY we have. . . will mean:

there is x ∈ H(χ) such that
if x ∈ N0, N̄ = 〈Ni : i < α〉, Ni ≺ (H(χ),∈, <∗χ) and N̄ has the
PROPERTY, then . . ..

In these situations we call the element x ∈ H(χ) a witness.

Notation 0.21. We will keep the following rules for our notation:

(1) α, β, γ, δ, ξ, ζ, i, j . . . will denote ordinals,
(2) κ, λ, µ, µ∗ . . . will stand for cardinal numbers,
(3) a bar above a name indicates that the object is a sequence, usually X̄ will

be 〈Xi : i < ℓg(X̄)〉, where ℓg(X̄) denotes the length of X̄,
(4) a tilde indicates that we are dealing with a name for an object in a forcing

extension (like x
˜

),

(5) S, Si, S
j
i , E, Ei, E

j
i . . . will be used to denote sets of ordinals,

(6) S, Si, S
j
i , E , Ei, E

j
i . . . will stand for families of sets of ordinals of size < κ,

and finally
(7) Ŝ, Ŝi, Ŝ

j
i , Ê , Êi, Ê

j
i will stand for families of sequences of sets of ordinals of

size < κ.
(8) The word group will mean here Abelian group. In groups we will use the

additive convention (so in particular 0G will stand for the neutral element
of the group G). G,H,K,L will denote (always Abelian) groups.

Case: A

In this part of the paper we are dealing with the Case A (see the introduction),
so naturally we assume the following.

Our Assumptions 1. λ, κ, µ∗ are uncountable cardinal numbers such that

λ<λ = λ < λ+ = 2λ = κ ≤ µ∗.

We will keep these assumptions for some time (unless stated otherwise) and we may
forget to remind the reader of them.
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10 SAHARON SHELAH

A.1. Complete forcing notions

In this section we introduce several notions of completeness of forcing notions
and prove basic results about them. We define when a forcing notion Q is: (θ, S)–
strategically complete, (< λ)-strategically complete, strongly S–complete, (S0,S1)–

complete basically (S0, Ŝ1)–complete and really (S0, Ŝ1, D)–complete. The notions

which we will use are strong S0–completeness and real (S0, Ŝ1, D)–completeness,
however the other definitions seem to be interesting too. They are, in some sense,
successive approximations to real completeness (which is as weak as the iteration
theorem allows) and they might be of some interest in other contexts. But a reader
not interested in a general theory may concentrate on definitions A.1.1(3), A.1.5,
A.1.7(3) and A.1.16 only.

Definition A.1.1. Let Q be a forcing notion, and let θ be an ordinal and S ⊆ θ.

(1) For a condition r ∈ Q, let Gθ
S(Q, r) be the following game of two players,

COM (for complete) and INC (for incomplete):
the game lasts θ moves and during a play the players con-
struct a sequence 〈(pi, qi) : i < θ〉 of conditions from Q in
such a way that (∀j < i < θ)(r ≤ pj ≤ qj ≤ pi) and at the
stage i < θ of the game:
if i ∈ S, then COM chooses pi and INC chooses qi, and
if i /∈ S, then INC chooses pi and COM chooses qi.

The player COM wins if and only if for every i < θ there are legal moves
for both players.

(2) We say that the forcing notion Q is (θ, S)–strategically complete if the player
COM has a winning strategy in the game Gθ

S(Q, r) for each condition r ∈ Q.
We say that Q is strategically (< θ)–complete if it is (θ, ∅)–strategically
complete.

(3) We say that the forcing notion Q is (< θ)–complete if every increasing
sequence 〈qi : i < δ〉 ⊆ Q of length δ < θ has an upper bound in Q.

Proposition A.1.2. Let Q be a forcing notion. Suppose that θ is an ordinal and
S ⊆ θ.

(1) If Q is (< θ)–complete, then it is (θ, S)–strategically complete.
(2) If S′ ⊆ S and Q is (θ, S′)–strategically complete, then it is (θ, S)–strategically

complete.
(3) If Q is (θ, S)–strategically complete, then the forcing with Q does not add

new sequences of ordinals of length < θ.

Proof. 1) and 3) should be clear.

2) Note that if all members of S are limit ordinals, or at least α ∈ S ⇒ α+1 /∈
S, then one may easily translate a winning strategy for COM in Gθ

S′(Q, r) to the
one in Gθ

S(Q, r). In the general case, however, we have to be slightly more careful.
First note that we may assume that θ is a limit ordinal (if θ is not limit consider

the game Gθ+ω
S (Q, r)). Now, for a set S ⊆ θ and a condition r ∈ Q we define a

game ∗Gθ
S(Q, r):

the game lasts θ moves and during a play the players construct a
sequence 〈pi : i < θ〉 of conditions from Q such that r ≤ pi ≤ pj
for each i < j < θ and
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 11

if i ∈ S, then pi is chosen by COM,
if i /∈ S, then pi is determined by INC.

The player COM wins if and only if there are legal moves for each
i < θ.

Note that clearly, if S′ ⊆ S ⊆ θ and Player COM has a winning strategy in
∗Gθ

S′(Q, r) then it has one in ∗Gθ
S(Q, r).

For a set S ⊆ θ let S⊥ = {2α : α ∈ S} ∪ {2α + 1 : α ∈ θ \ S}. (Plainly S⊥ ⊆ θ
as θ is limit.)

Claim A.1.2.1. For each set S ⊆ θ the games Gθ
S(Q, r) and ∗Gθ

S⊥
(Q, r) are equiv-

alent [i.e., COM/INC has a winning strategy in Gθ
S(Q, r) if and only if it has one

in ∗Gθ
S⊥

(Q, r)].

Proof of the claim. Look at the definitions of the games and the set S⊥. �

Claim A.1.2.2. Suppose that S0, S1 ⊆ θ are such that for every non–successor
ordinal δ < θ we have

(a) δ ∈ S0 ≡ δ ∈ S1,
(b) (∃∞n ∈ ω)(δ + n ∈ S0), (∃∞n ∈ ω)(δ + n /∈ S0), (∃∞n ∈ ω)(δ + n ∈ S1),

and (∃∞n ∈ ω)(δ + n /∈ S1).

Then the games ∗Gθ
S0

(Q, r) and ∗Gθ
S1

(Q, r) are equivalent.

Proof of the claim. Should be clear once you realize that finitely many successive
moves by the same player may be interpreted as one move. �

Now we may finish the proof of A.1.2(2). Let S′ ⊆ S ⊆ θ (and θ be limit). Let

S∗ = {δ ∈ S⊥ : δ is not a successor } ∪ {δ ∈ (S′)⊥ : δ is a successor }.

Note that (S′)⊥ ⊆ S∗ and the sets S∗, S⊥ satisfy the demands (a), (b) of A.1.2.2.
Consequently, by A.1.2.1 and A.1.2.2:

Player COM has a winning strategy in Gθ
S′(Q, r) ⇒

Player COM has a winning strategy in ∗Gθ
(S′)⊥(Q, r) ⇒

Player COM has a winning strategy in ∗Gθ
S∗(Q, r) ⇒

Player COM has a winning strategy in ∗Gθ
S⊥

(Q, r) ⇒
Player COM has a winning strategy in Gθ

S(Q, r).

�

Proposition A.1.3. Assume κ is a regular cardinal and θ ≤ κ. Suppose that Q̄ =
〈Pα,Q

˜
α

: α < γ〉 is a (< κ)–support iteration of (< θ)–complete ((θ, S)–strategically

complete, strategically (< θ)–complete, respectively) forcing notions. Then Pγ is
(< θ)–complete ((θ, S)–strategically complete, strategically (< θ)–complete, respec-
tively).

Proof. Easy: remember that union of less than κ sets of size less than κ is of size
< κ, and use A.1.2(3). �

Note that if we pass from a (< λ)–complete forcing notion Q to its completion

Q̂ we may loose (< λ)–completeness. However, a large amount of the completeness
is preserved.

Proposition A.1.4. Suppose that Q is a dense suborder of Q′.
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12 SAHARON SHELAH

(1) If Q is (< λ)–complete (or just (< λ)–strategically complete) then Q′ is
(< λ)–strategically complete.

(2) If Q′ is (< λ)–strategically complete then so is Q.
(3) Similarly, in (1),(2) for (λ, S)–complete.

Proof. 1) We describe a winning strategy for player COM in the game Gλ
∅ (Q′, r)

(r ∈ Q′), such that it tells player COM to choose elements of Q only. So

at stage i < λ of the play, COM chooses the <∗χ–first condition
qi ∈ Q stronger than pi ∈ Q′ chosen by INC right before.

This strategy is a winning one, as at a limit stage i < λ of the play, the sequence
〈qj : j < i〉 has an upper bound in Q (remember Q is (< λ)–complete).

2) Even easier. �

Definition A.1.5. (1) By D<κ,<λ(µ∗) we will denote the collection of all fami-
lies S ⊆ [µ∗]<κ such that for every large enough regular cardinal χ, for some
x ∈ H(χ) we have

if x ∈ N ≺ (H(χ),∈, <∗χ), ‖N‖ < κ, N<λ ⊆ N and N∩κ is an ordinal,
then N ∩ µ∗ ∈ S (compare with A.1.7).

If λ = ℵ0 then we may omit it.
(2) By D

α
<κ,<λ(µ∗) we will denote the collection of all sets Ŝ such that

Ŝ ⊆
{

ā = 〈ai : i ≤ α〉 : the sequence ā is increasing continuous and
each ai is from [µ∗]<κ

}

and for every large enough regular cardinal χ, for some x ∈ H(χ) we have:
if N̄ = 〈Ni : i ≤ α〉 is an increasing continuous sequence
of models such that x ∈ N0 and for each i < j ≤ α:
Ni ≺ Nj ≺ (H(χ),∈, <∗χ), 〈Nξ : ξ ≤ j〉 ∈ Nj+1, ‖Nj‖ < κ,
Nj ∩ κ ∈ κ and

j is non-limit ⇒ Nj
<λ ⊆ Nj ,

then 〈Ni ∩ µ∗ : i ≤ α〉 ∈ Ŝ.
(3) For a family D ⊆ P(X ) (say X =

⋃

X∈D

X) let D
+ stand for the family of

all S ⊆ X such that

(∀C ∈ D)(S ∩ C 6= ∅).

[So D
+ is the collection of all D–positive subsets of X .]

(4) For S ∈ (D<κ,<λ(µ∗))+ we define D
α
<κ,<λ(µ∗)[S] like D

α
<κ,<λ(µ∗) above,

except that its members Ŝ are subsets of
{

ā = 〈ai : i ≤ α〉 : ā is increasing continuous and for each i ≤ α,
ai ∈ [µ∗]<κ and if i is not limit then ai ∈ S

}

,

and, naturally, we consider only those sequences N̄ = 〈Ni : i ≤ α〉 for which

i ≤ α is non-limit ⇒ Ni ∩ µ∗ ∈ S.

As λ is determined by κ in our present case we may forget to mention it.

Remark A.1.6. (1) These are normal filters in a natural sense.
(2) Concerning D

α
<κ,<λ(µ∗), we may not distinguish ā0, ā1 which are similar

enough (e.g. see A.1.16 below).
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 13

(3) Remember: our case is GCH, λ = cf(λ), κ = λ+ and α = λ.

Definition A.1.7. Assume S ⊆ [µ∗]≤λ.

(1) Let χ be a large enough regular cardinal. We say that an elementary
submodel N of (H(χ),∈, <∗χ) is (λ,S)–good if

‖N‖ = λ, N<λ ⊆ N, and N ∩ µ∗ ∈ S.

(2) We say that a forcing notion Q is strongly S–complete if for most (see 0.20)
(λ,S)–good elementary submodels N of (H(χ),∈, <∗χ) such that Q ∈ N and
for each Q–generic over N increasing sequence p̄ = 〈pi : i < λ〉 ⊆ Q ∩ N
there is an upper bound of p̄ in Q.
[Recall that a sequence p̄ = 〈pi : i < λ〉 ⊆ Q∩N is Q–generic over N if for
every open dense subset I of Q from N for some i < λ, pi ∈ I.]

(3) Let N ≺ (H(χ),∈, <∗χ) be (λ,S)–good. For a forcing notion Q, a set S ⊆ λ
and a condition r ∈ Q ∩ N we define a game GN,S(Q, r) like the game

Gλ+1
S (Q, r) with an additional requirement that during a play all choices

below λ have to be done from N , i.e. pi, qi ∈ N ∩Q for all i < λ.
If S = ∅ then we may omit it.

(4) Let S̄ : S −→ P(λ). We say that a forcing notion Q is (S, S̄)–complete if
for most (λ,S)–good models N , for every condition r ∈ N ∩ Q the player
COM has a winning strategy in the game GN,S̄(N∩µ∗)(Q, r).

If S̄(a) = ∅ for each a ∈ S then we write S–complete. (In both cases
we may add “strategically”.) If S̄(a) = S for each a ∈ S, then we write
(S, S)–complete.

Remark A.1.8. In the use of most in A.1.7 (and later) we do not mention explicitly
the witness x for it. And in fact, normally it is not necessary. If χ1, χ are large
enough, 2<χ1 < χ (so H(χ1) ∈ H(χ)), S,Q, . . . ∈ N , then there is a witness in
H(χ1) and, without loss of generality, χ1 ∈ N and therefore there is such a witness
in N . Consequently we may forget it.

Remark A.1.9. (1) The most popular choice of µ∗ is κ; then S ∈ (D<κ,<λ(µ∗))+

if and only if the set {δ < κ : cf(δ) = λ & δ ∈ S} is stationary. So S “be-
comes” a stationary subset of κ.

(2) Also here we have obvious monotonicities and implications.

Proposition A.1.10. Suppose that S ∈ (D<κ,<λ(µ∗))+ and a forcing notion Q

is S–complete. Then the forcing with Q adds no new λ–sequences of ordinals (or,
equivalently, of elements of V) and 
Q“S ∈ (D<κ,<λ(µ∗))+”.

Proof. Standard; compare with the proof of A.1.13. �

Proposition A.1.11. (1) Let S ⊆ [µ∗]≤λ. If a forcing notion Q is strongly
S–complete and is (< λ)–complete, then it is S–complete.

(2) If a forcing notion Q is strongly S–complete and is S–strategically complete,
then Q is (S, S)–complete.

Strong S–completeness is preserved if we pass to the completion of a forcing
notion.

Proposition A.1.12. Suppose that S ⊆ [µ∗]≤λ and Q is a dense suborder of Q′.
Then
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14 SAHARON SHELAH

(1) Q′ is strongly S–complete if and only if Q is strongly S–complete,
(2) similarly for (S, S̄)–completeness.

Proof. 1) Assume Q′ is strongly S–complete and let x′ ∈ H(χ) be a witness
for the “most” in the definition of this fact. Let x = 〈x′,Q′〉. Suppose that
N ≺ (H(χ),∈, <∗χ) is (λ,S)–good and Q, x ∈ N . Then Q′, x′ ∈ N too. Now
suppose that q̄ = 〈qi : i < λ〉 ⊆ Q ∩ N is an increasing Q–generic sequence over
N . Since Q is dense in Q′, q̄ is Q′–generic over N and thus, as Q′ is strongly
S–complete, it has an upper bound in Q′ (and so in Q).

Now suppose Q is strongly S–complete with a witness x ∈ H(χ) and let x′ =
〈x,Q〉. Let N be (λ,S)–good and Q′, x′ ∈ N . So Q, x ∈ N . Suppose that q̄ = 〈qi :
i < λ〉 ⊆ Q′ ∩ N is increasing and Q′–generic over N . For each i < λ choose a
condition pi ∈ Q ∩N and an ordinal ϕ(i) < λ such that

qi ≤Q′ pi ≤Q′ qϕ(i)

(possible by the genericity of q̄; remember that q̄ is increasing). Look at the sequence

〈pi : i < λ & (∀j < i)(ϕ(j) < i)〉.

It is an increasing Q–generic sequence over N , so it has an upper bound in Q. But
this upper bound is good for q̄ in Q′ as well.

2) Left to the reader. �

Proposition A.1.13. Suppose that Q̄ = 〈Pα,Q
˜

α
: α < γ〉 is a (< κ)–support

iteration, S ∈ V, S ∈ (D<κ,<λ(µ∗))+.

(1) If for each α < γ


Pα
“ Q

˜
α
is strongly S–complete”,

then the forcing notion Pγ is strongly S–complete (and even each quotient
Pβ/Pα is strongly S–complete for α ≤ β ≤ γ).

(2) Similarly for (S, S̄)–completeness.

Proof. 1) The proof can be presented as an inductive one (on γ), so then we
assume that each Pα (α < γ) is strongly S–complete. However, the main use of the
inductive hypothesis will be that it helps to prove that no new sequences of length
λ are added (hence λ is not collapsed, so in VPα (for α < γ) we may talk about
(λ,S)–good models without worrying about the meaning of the definition if λ is
not a cardinal, and N [GPα

] is (λ,S)–good).
For each α < γ and p ∈ Pα fix a Pα–name f

˜

α
p for a function from λ to V such

that

if p 
Pα
“there is a new function from λ to V”,

then p 
Pα
f
˜

α
p /∈ V, and otherwise p 
Pα

“f
˜

α
p is constantly 0”.

Let

Iα = {p ∈ Pα : either p 
Pα
“there is no new function from λ to V”

or p 
Pα
f
˜

α
p /∈ V }.

Clearly Iα is an open dense subset of Pα. Let x
˜
α (for α < γ) be a Pα–name for a

witness to the assumption that 
Pα
“Q

˜
α

is strongly S–complete”. Let

x = (〈x
˜
α : α < γ〉, 〈Q̄〉, 〈(Iα, f

˜

α
p ) : α < γ & p ∈ Pα〉).
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 15

Suppose that N is (λ,S)–good, Pγ , x ∈ N and p̄ is a Pγ–generic sequence over N .
Note that Q̄ ∈ N . We define a condition r∗ ∈ Pγ :
we let dom(r∗) = N ∩ γ and we inductively define r∗(α) for α ∈ dom(r∗) by

if there is a Pα–name τ
˜

such that

r∗↾α 
Pα
“τ
˜
∈ Q

˜
α

is an upper bound to 〈pi(α) : i < λ〉”,

then r∗(α) is the <∗χ–first such a name;
if there is no τ

˜
as above, then r∗(α) = 0Q

˜ α
.

It should be clear that r∗ ∈ Pγ (as ‖N‖ = λ < κ). What we have to do is to show
that r∗ is an upper bound to p̄ in Pγ . We do this by showing by induction on α ≤ γ
that

(⊗α) for each i < λ, pi↾α ≤Pα
r∗↾α.

For α = 0 there is nothing to do.
For α limit this is immediate by the induction hypothesis.
If α = β+1 and β /∈ N then we use the induction hypothesis and the fact that for

each i < λ, dom(pi) ⊆ γ ∩N (remember pi ∈ Pγ ∩N , λ ⊆ N and ‖dom(pi)‖ ≤ λ).
So we are left with the case α = β+1, β ∈ N . Suppose that Gβ ⊆ Pβ is a generic

filter over V such that r∗↾β ∈ Gβ (so necessarily pi↾β ∈ Gβ for each i < λ). We will
break the rest of the proof into several claims. Each of them has a very standard
proof, but we will sketch the proofs for reader’s convenience. Remember that we
are in the case β ∈ N , so in particular Pβ,Pβ+1, x

˜
β , Iβ ∈ N and 〈pi↾β : i < λ〉 ⊆ N

is a Pβ–generic sequence over N .

Claim A.1.13.1.

r∗↾β 
Pβ
“ there is no new function from λ to V ”.

Proof of the claim. Since Iβ ∈ N is an open dense subset of Pβ we know that
pi↾β ∈ Iβ for some i < λ. If the condition pi↾β forces that “there is no new
function from λ to V”, then we are done (as r∗↾β ≥ pi↾β). So suppose otherwise.

Then pi↾β 
Pβ
“ f

˜

β
pi↾β

/∈ V ”. But, as β, pi ∈ N , clearly β, pi↾β ∈ N and we have

f
˜

β
pi↾β

∈ N and therefore for each ζ < λ there is j < λ such that the condition pj↾β

decides the value of f
˜

β
pi↾β

(ζ). Consequently the condition r∗↾β decides all values of

f
˜

β
pi↾β

, so r∗↾β 
Pβ
f
˜

β
pi↾β

∈ V, a contradiction. �

Claim A.1.13.2. N [Gβ ] ∩V = N (so N [Gβ ] ∩ µ∗ ∈ S).

Proof of the claim. Suppose that τ
˜
∈ N is a Pβ–name for an element of V. As the

sequence 〈pi↾β : i < λ〉 is Pβ–generic over N , for some i < λ, the condition pi↾β
decides the value of the name τ

˜
. Since pi↾β ∈ N the result of the decision belongs

to N (remember the elementarity of N) and hence τ
˜
Gβ ∈ N . �

Claim A.1.13.3.

‖N [Gβ ]‖ = λ, N [Gβ ]<λ ⊆ N [Gβ ] and N [Gβ ] ≺ (H(χ),∈, <∗χ)V[Gβ ].

Consequently, V[Gβ ] |=“the model N [Gβ ] is (λ,S)–good and x
˜

Gβ

β ∈ N [Gβ ]”.

Proof of the claim. Names for elements of N [Gβ ] are from N , so clearly ‖N [Gβ]‖ =
λ = ‖N‖. It follows from 0.19 and A.1.13.1 that N [Gβ]<λ ⊆ N [Gβ ]. To check that
N [Gβ] is an elementary submodel of (H(χ),∈, <∗χ) (in V[Gβ ]) we use the genericity
of 〈pi↾β : i < λ〉 and the elementarity of N : each existential formula of the language
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16 SAHARON SHELAH

of forcing (with parameters from N) is decided by some pi↾β. If the decision is
positive, then there is in N a name for a witness for the formula. So we finish by
the Tarski–Vaught criterion. �

Claim A.1.13.4.

V[Gβ ] |= “〈pi(β)Gβ : i < λ〉 is an increasing Q
˜

Gβ

β
–generic sequence over N [Gβ ]”.

Proof of the claim. By the induction hypothesis, the condition r∗↾β is stronger then
all pi↾β. Hence (by Definition 0.13), as p̄ is increasing, the sequence 〈pi(β)Gβ : i <

λ〉 is increasing (in Q
˜

Gβ

β
). Suppose now that I

˜
∈ N is a Pβ–name for an open dense

subset of Q
˜

β
. Look at the set {p ∈ Pβ+1 : p↾β 
Pβ

p(β) ∈ I
˜
}. It is an open dense

subset of Pβ+1 from N . But Pβ+1 <◦ Pγ , so for some i < λ we have

pi↾β 
Pβ
pi(β) ∈ I

˜
,

finishing the claim. �

By A.1.13.3, A.1.13.4 (remember we assume 
Pβ
“Q

˜
β

is strongly S–complete”)

we conclude that, in V[Gβ ], the sequence 〈pi(β)Gβ : i < λ〉 ⊆ Q
˜

Gβ

β
has an upper

bound (in Q
˜

Gβ

β
). Now, as Gβ was an arbitrary generic filter containing r∗↾β we

conclude that there is a Pβ–name τ
˜

such that

r∗↾β 
Pβ
“τ
˜
∈ Q

˜
β

is an upper bound to 〈pi(β) : i < λ〉”.

Now look at the definition of r∗(β).

2) Left to the reader. �

Definition A.1.14. Let (of course, κ = λ+, and) S0 ∈ (D<κ,<λ(µ∗))+ and Ŝ1 ∈
(Dλ

<κ,<λ(µ∗)[S0])+. Suppose that Q is a forcing notion and χ is a large enough
regular cardinal.

(1) We say that a sequence N̄ = 〈Ni : i ≤ λ〉 is (λ, κ, Ŝ1,Q)–considerable if
N̄ is an increasing continuous sequence of elementary sub-
models of (H(χ),∈, <∗χ) such that λ ∪ {λ, κ,Q} ⊆ N0, the

sequence 〈Ni ∩ µ∗ : i ≤ λ〉 is in Ŝ1 and for each i < λ

‖Ni‖ < κ and 〈Nj : j ≤ i〉 ∈ Ni+1 and

i is non-limit ⇒ (Ni)
<λ ⊆ Ni.

(2) For a (λ, κ, Ŝ1,Q)–considerable sequence N̄ = 〈Ni : i ≤ λ〉 and a condition
r ∈ N0 ∩ Q, let G∗

N̄
(Q, r) be the following game of two players, COM and

INC:
the game lasts λ moves and during a play the players con-
struct a sequence 〈(pi, q̄i) : i < λ〉 such that each pi is a
condition from Q and q̄i = 〈qi,ξ : ξ < λ〉 is an increasing λ–
sequence of conditions from Q (we may identify it with its

least upper bound in the completion Q̂) and at the stage
i < λ of the game:
the player COM chooses a condition pi ∈ N−1+i+1∩Q such
that

r ≤ pi, (∀j < i)(∀ξ < λ)(qj,ξ ≤ pi),
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 17

and the player INC answers by choosing a ≤Q–increasing
Q–generic over N−1+i+1 sequence q̄i = 〈qi,ξ : ξ < λ〉 ⊆
N−1+i+1 ∩Q such that

pi ≤ qi,0, and q̄i ∈ N−1+i+2.

The player COM wins the play of G∗
N̄

(Q, r) if the sequence 〈pi : i < λ〉
constructed by him during the play has an upper bound in Q.

(3) We say that the forcing notion Q is basically (S0, Ŝ1)–complete if
(α) Q is (< λ)–complete (see A.1.1(2)), and
(β) Q is strongly S0–complete (see A.1.7(3)), and

(γ) for most (λ, κ, Ŝ1,Q)–considerable sequences N̄ = 〈Ni : i ≤ λ〉, for
every condition r ∈ N0∩Q, the player INC DOES NOT have a winning
strategy in the game G∗

N̄
(Q, r).

Remark A.1.15. (1) Why do we have “strongly S0–complete” in A.1.14(3)(β)
and not “strategically S0–complete”? To help proving the preservation
theorem.

(2) Note that if a forcing notion Q is strongly S0–complete and (< λ)–complete,

and N̄ is (λ, κ, Ŝ1,Q)–considerable (and N0 contains the witness for “most”
in the definition of “strongly S0–complete”), then both players always have
legal moves in the game G∗

N̄
(Q, r). Moreover, if Q is a dense suborder of

Q′ and Q′ ∈ N0 and the player COM plays elements of Q only then both
players have legal moves in the game G∗

N̄
(Q′, r).

[Why? Arriving at a stage i of the game, the player COM has to choose a
condition pi ∈ N−1+i+1 ∩ Q stronger than all qj,ξ (for j < i, ξ < λ). If i is
a limit ordinal, COM looks at the sequence 〈pj : j < i〉 constructed by him
so far. Since (Ni+1)<λ ⊆ Ni+1 we have that 〈pj : j < i〉 ∈ Ni+1 and, as Q

is (< λ)–complete, this sequence has an upper bound in Ni+1 (remember
that Ni+1 is an elementary submodel of (H(χ),∈, <∗χ)). This upper bound
is good for qj,ξ (j < i, ξ < λ) too. If i = i0 + 1 then the player COM
looks at the sequence q̄i0 ∈ N−1+i0+2 only. It is Q-generic over N−1+i0+1,
Q is strongly S0–complete and N−1+i0+1 is (λ,S0)–good. Therefore, there
is an upper bound to q̄i0 , and by elementarity there is one in N−1+i0+2.
Now, the player INC may always use the fact that Q is (< λ)–complete to
build above pi an increasing sequence q̄i ⊆ Q ∩ N−1+i+1 which is generic
over N−1+i+1. Since N−1+i+1 ∈ N−1+i+2, by elementarity there are such
sequences in N−1+i+2.
Concerning the “moreover” part note that the only difference is when COM
is supposed to choose an upper bound to q̄i0 . But then it proceeds like in
A.1.12 reducing the task to finding an upper bound to a sequence (generic
over N−1+i0+1) of elements of Q.]

Unfortunately, the amount of completeness demanded in A.1.14 is too large to
capture the examples we have in mind (see the next section). Therefore we slightly
weaken the demand A.1.14(3)(γ) (or rather we change the appropriate game a
little). In definition A.1.16 below we formulate the variant of completeness which
seems to be the right one for our case.
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18 SAHARON SHELAH

Definition A.1.16. Let S0 ∈ (D<κ,<λ(µ∗))+ and Ŝ1 ∈ (Dλ
<κ,<λ(µ∗)[S0])+. Let D

be a function such that dom(D) = Ŝ1 and for every ā ∈ Ŝ1

D(ā) = Dā is a filter on λ.

Let Q be a forcing notion.

(1) We say that an increasing continuous sequence N̄ = 〈Ni : i ≤ λ〉 of elemen-

tary submodels of (H(χ),∈, <∗χ) is (λ, κ, Ŝ1, D,Q)–suitable if:

λ ∪ {λ, κ,Q} ⊆ N0, ‖Ni‖ < κ, 〈Nj : j ≤ i〉 ∈ Ni+1 and there are ā ∈ Ŝ1

and X ∈ Dā such that for each i ∈ X

(Ni+1)<λ ⊆ Ni+1 & Ni+1 ∩ µ∗ = ai+1

(compare with A.1.14(1)); we can add Ni ∩ µ∗ = ai if Dā is normal.
A pair (ā, X) witnessing the last demand on N̄ will be called a suitable

base for N̄ .
(2) For a (λ, κ, Ŝ1, D,Q)–suitable sequence N̄ = 〈Ni : i ≤ λ〉, a suitable base

(ā, X) for N̄ and a condition r ∈ N0, let G♥
N̄,D,X,ā

(Q, r) be the following

game of two players, COM and INC:
The game lasts λ moves and during a play the players
construct a sequence 〈(pi, ζi, q̄i) : i < λ〉 such that ζi ∈ X ,
pi ∈ Q and q̄i = 〈qi,ξ : ξ < λ〉 ⊆ Q in the following manner.
At the stage i < λ of the game:
player COM chooses ζi ∈ X above all ζj chosen so far and
then it picks a condition pi ∈ Nζi+1 ∩Q such that

r ≤ pi, (∀j < i)(∀ξ < λ)(qj,ξ ≤ pi),

after this player INC answers choosing a ≤Q–increasing Q–
generic over Nζi+1 sequence q̄i = 〈qi,ξ : ξ < λ〉 ⊆ Nζi+1∩Q
such that

pi ≤ qi,0, and q̄i ∈ Nζi+2.

The player COM wins the play of G♥
N̄,D,X,ā

(Q, r) if {ζi : i < λ} ∈ Dā and

the sequence 〈pi : i < λ〉 constructed by him during the play has an upper
bound in Q.

We sometimes, abusing our notation, let INC choose just the lub in Q̂

of q̄i.
(3) We say that the forcing notion Q is really (S0, Ŝ1, D)–complete if

(α) Q is (< λ)–complete (see A.1.1(3)), and
(β) Q is strongly S0–complete (see A.1.7(3)), and

(γ) for most (λ, κ, Ŝ1, D,Q)–suitable sequences N̄ = 〈Ni : i ≤ λ〉, for every
suitable basis (ā, X) for N̄ and all conditions r ∈ N0 ∩ Q, the player

INC DOES NOT have a winning strategy in the game G♥
N̄,D,X,ā

(Q, r).

Remark A.1.17. If a forcing notion Q is strongly S0–complete and (< λ)–complete,

and N̄ is (λ, κ, Ŝ1, D,Q)–suitable (witnessed by (ā, X)) then both players always

have legal moves in the game G♥
N̄,D,X,ā

(Q, r). Moreover, if Q is dense in Q′, Q′ ∈

N0 and COM plays elements of Q only, then both players have legal moves in
G♥
N̄,D,X,ā

(Q′, r)

[Why? Like in A.1.15.]
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 19

Remark A.1.18. We may equivalently describe the game G♥
N̄,D,X,ā

(Q, r) in the fol-

lowing manner. Let Q̂ be the completion of Q.

The play lasts λ moves during which the players construct a se-
quence 〈pi, qi : i < λ〉 such that pi ∈ Ni+1∩(Q∪{∗}) (where ∗ /∈ Q

is a fixed element of N0), qi ∈ Ni+2 ∩ Q̂ .
At the stage i < λ of the game, COM chooses pi in such a way
that

pi 6= ∗ ⇒ i ∈ X & (∀j < i)(qj ≤Q̂
pi),

and INC answers choosing qi such that

if pi = ∗, then qi is the least upper bound of 〈qj : j < i〉 in Q̂,

if pi 6= ∗, then qi ∈ Ni+2 ∩ Q̂ is the least upper bound of a
Q–generic filter over Ni+1 containing pi.

The player COM wins if {i < λ : pi 6= ∗} ∈ Dā and the sequence 〈pi : pi 6= ∗〉 has
an upper bound.

There is no real difference between A.1.16(2) and the description given above.
Here, instead of “jumping” player COM puts ∗ (which has the meaning of I am
waiting) and it uses the existence of the least upper bounds to replace a generic
sequence by its least upper bound.

Proposition A.1.19. Suppose that S0 ∈ (D<κ,<λ(µ∗))+, Ŝ1 ∈ (Dλ
<κ,<λ(µ∗)[S0])+

and Dā is a filter on λ for ā ∈ Ŝ1. Assume that Q is a dense suborder of Q′, N̄ is

(λ, κ, Ŝ1, D,Q)–suitable (witnessed by (ā, X)), Q′ ∈ N0. Then for each r ∈ Q:

the player COM has a winning strategy in G♥
N̄,D,X,ā

(Q, r) (the

player INC does not have a winning strategy in G♥
N̄,D,X,ā

(Q, r),

respectively) if and only if

it has a winning strategy in G♥
N̄ ,D,X,ā

(Q′, r) (the player INC does

not have a winning strategy in G♥
N̄,D,X,ā

(Q′, r), resp.).

Proof. Suppose that COM has a winning strategy in G♥
N̄,D,X,ā

(Q, r). We describe

a winning strategy for him in G♥
N̄,D,X,ā

(Q′, r) which tells him to play elements of

Q only. The strategy is very simple. At each stage i < λ, COM replaces the
sequence q̄i ⊆ Q′ by a sequence q̄∗i ⊆ Q which has the same upper bounds in Q

as q̄i, is increasing and generic over Nζi+1. To do this he applies the procedure
from the proof of A.1.12 (in Nζi+2, of course). Then it may use his strategy from

G♥
N̄,D,X,ā

(Q, r). The converse implication is easy too: if the winning strategy of

COM in G♥
N̄,D,X,ā

(Q′, r) tells him to play ζi, pi then he puts ζi and any element p∗i
of Q ∩ Nζi+1 stronger than pi. Note that this might be interpreted as playing pi
followed by a sequence p∗i

⌢q̄i. �

Proposition A.1.20. Suppose S0 ∈ (D<κ,<λ(µ∗))+ and Ŝ1 ∈ (Dλ
<κ,<λ(µ∗)[S0])+

(and as usual in this section, κ = λ+). Let Dā be the club filter of λ for each

ā ∈ Ŝ1. Then any really (S0, Ŝ1, D)–complete forcing notion preserves stationarity

of S0, Ŝ1 in the respective filters.
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20 SAHARON SHELAH

A.2. Examples

Before we continue with the general theory let us present a simple example with
the properties we are investigating. It is related to guessing clubs; remember that
there are ZFC theorems saying that many times we can guess clubs (see [15, Ch.
III, sections 1,2], [10]).

Hypothesis A.2.1. Assume λ<λ = λ and λ+ = κ. Suppose that S0 = S0 ⊆ Sκ
λ is

a stationary set such that S
def
= Sκ

λ \ S0 is stationary too (but the definitions below
are meaningful also when S = ∅). Let

Ŝ1 =
{

ā = 〈ai : i ≤ λ〉 : ā is increasing continuous and for each i ≤ λ,
ai ∈ κ and if i is not limit then ai ∈ S0

}

.

[Check that S0 ∈ (D<κ,<λ(κ))+ and Ŝ1 ∈ D
λ
<κ,<λ[S0].]

Note that (provably in ZFC, see [15, Ch III, §2]) there is a sequence C̄ = 〈Cδ :
δ ∈ S〉 satisfying for each δ ∈ S:

Cδ is a club of δ of order type λ, and if α ∈ nacc(Cδ), then cf(α) = λ

such that κ /∈ idp(C̄), i.e., for every club E of κ for stationary many δ ∈ S,
δ = sup(E ∩ nacc(Cδ)), even {α < δ : min(Cδ \ (α+ 1)) ∈ E} is a stationary subset
of δ. We can use this to show that some natural preservation of not adding bounded
subsets of κ (or just not collapsing cardinals) necessarily fails, just considering the
forcing notion killing the property of such C̄. [Why? As in the result such C̄ exists,
but by iterating we could have dealt with all possible C̄’s.] We will show that we
cannot demand

α ∈ nacc(Cδ) ⇒ cf(α) < λ,

that is, in some forcing extension preserving GCH there is no such C̄. So, for C̄ as
earlier but with the above demand we want to add generically a club E of λ+ such
that

(∀δ ∈ S)(E ∩ nacc(Cδ) is bounded in δ).

We will want our forcing to be quite complete. To get the consistency of no guessing
clubs we need to iterate, which is our main theme.

Definition A.2.2. Let C̄ = 〈Cδ : δ ∈ S〉 be a sequence such that for every δ ∈ S:

Cδ is a club of δ of order type λ, and
if α ∈ nacc(Cδ), then cf(α) < λ (or at least α /∈ S0).

We define a forcing notion Q1
C̄

to add a desired club E ⊆ λ+:

a condition in Q1
C̄

is a closed subset e of λ+ such that αe
def
= sup(e) < λ+ and

(∀δ ∈ S ∩ (αe + 1))(e ∩ nacc(Cδ) is bounded in δ),

the order ≤Q1
C̄

of Q1
C̄

is defined by

e0 ≤Q1
C̄
e1 if and only if e0 is an initial segment of e1.

It should be clear that (Q1
C̄
,≤Q1

C̄
) is a partial order. We claim that it is quite

complete.

Proposition A.2.3. (1) Q1
C̄

is (< λ)–complete.

(2) Q1
C̄

is strongly S0–complete.
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NOT COLLAPSING CARDINALS ≤ κ IN (< κ)–SUPPORT ITERATIONS 21

Proof. 1) Should be clear.

2) Suppose that N ≺ (H(χ),∈, <∗χ) is (λ,S0)–good (see A.1.7) and Q1
C̄

∈ N .

Further suppose that ē = 〈ei : i < λ〉 ⊆ Q1
C̄
∩ N is an increasing Q1

C̄
–generic

sequence over N . Let e
def
=

⋃

i<λ

ei ∪ {sup(
⋃

i<λ

ei)}.

Claim A.2.3.1. e ∈ Q1
C̄
.

Proof of the claim. First note that as each ei is the an end extension of all ej for

j < i, the set e is closed. Clearly αe
def
= sup(e) < λ+ (as each αei is below λ+). So

what we have to check is that

(∀δ ∈ S ∩ (αe + 1))(e ∩ nacc(Cδ) is bounded in δ).

Suppose that δ ∈ S ∩ (αe + 1). If δ < αe then for some i < λ we have δ ≤ αei and
e∩ δ = ei ∩ δ and therefore e∩nacc(Cδ) is bounded in δ. So a problem could occur
only if δ = αe = sup

i<λ

αei , but we claim that it is impossible. Why? Let δ∗ = N∩λ+,

so δ∗ ∈ S0 (as N is (λ,S0)–good) and therefore δ∗ 6= δ (as S0 ∩ S = ∅). For each
β < δ∗ the set

Iβ
def
= {q ∈ Q1

C̄
: q \ β 6= ∅}

is open dense in Q1
C̄

(note that if q ∈ Q1
C̄

, q \ β = ∅ then q ≤ q ∪{αq, β + 1} ∈ Q1
C̄

).
Clearly Iβ ∈ N . Consequently, by the genericity of ē, ei ∈ Iβ for some i < λ and
thus αei > β. Hence sup

i<λ

αei ≥ δ∗. On the other hand, as each ei is in N we have

αei < δ∗ (for each i < λ) and hence δ∗ = sup
i<λ

αei = δ, a contradiction. �

Claim A.2.3.2. For each i < λ, ei ≤ e.

Proof of the claim. Should be clear. �

Now, by A.2.3.1+A.2.3.2, we are done. �

Proposition A.2.4. For each ā ∈ Ŝ1, let Dā be the club filter of λ (or any normal

filter on λ). Then the forcing notion Q1
C̄

is really (S0, Ŝ1, D)–complete.

Proof. By A.2.3 we have to check demand A.1.16(3γ) only. So suppose that N̄ =

〈Ni : i ≤ λ〉 is (λ, κ, Ŝ1, D,Q1
C̄

)–suitable and (ā, X) is a suitable basis for N̄ (and
we may assume that X is a closed unbounded subset of λ). Let r ∈ N0. We are

going to describe a winning strategy for player COM in the game G♥
N̄,D,X,ā

(Q1
C̄
, r).

There are two cases to consider here: Nλ ∩ κ ∈ S and Nλ ∩ κ /∈ S. The winning
strategy for COM in G♥

N̄,D,X,ā
(Q1

C̄
, r) is slightly more complicated in the first case,

so let us describe it only then. So we assume Nλ ∩ κ ∈ S.
Arriving at the stage i < λ of the game, COM chooses ζi according to the

following rules:
if i = 0, then it takes ζi = minX ,
if i = i0 + 1, then it takes

ζi = min
{

j ∈ X : ζi0 + 1 < j & (Nζi0+1 ∩ κ,Nj ∩ κ) ∩CNλ∩κ 6= ∅
}

,

if i is limit, then it lets ζi = sup
j<i

ζj .

Note that as CNλ∩κ is unbounded in Nλ∩κ and X is a club of λ, the above definition
is correct; i.e., the respective ζi exists, belongs to X and is necessarily above all ζj
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22 SAHARON SHELAH

chosen so far. Next COM plays pi defined as follows. The first p0 is just r. If i > 0
then COM takes the first ordinal γi such that

sup(Nζi+1 ∩ CNλ∩κ) < γi < Nζi+1 ∩ κ

and it puts

pi =
⋃

j<i
ξ<λ

qj,ξ ∪ {N ⋃

j<i

ζj+1 ∩ κ} ∪ {γi}.

Note that cf(Nζi+1 ∩ κ) = λ and CNλ∩κ has order type λ, so CNλ∩κ ∩ Nζi+1 ∩ κ
is bounded in Nζi+1 ∩ κ and the γi above is well defined. Moreover, by arguments
similar to that of A.2.3, one easily checks that

⋃

j<i
ξ<λ

qj,ξ ∈ Q1
C̄

and then easily pi ∈ Q1
C̄

and it is ≤Q1
C̄

–stronger then all qj,ξ (for j < i, ξ < λ). Consequently, the procedure

described above produces a legal strategy for COM in G♥
N̄,D,X,ā

(Q1
C̄
, r). But why is

this a winning strategy for COM? Suppose that 〈(pi, ζi, q̄i) : i < λ〉 is the result of
a play in which COM follows our strategy. First note that the sequence 〈ζi : i < λ〉
is increasing continuous so it is a club of λ and thus {ζi : i < λ} ∈ Dā. Now, let
e =

⋃

i<λ

pi ∪ {Nλ ∩ κ}. We claim that e ∈ Q1
C̄

. First note that it is a closed subset

of λ+ with sup e
def
= αe = Nλ ∩ κ. So suppose now that δ ∈ S ∩ (αe + 1). If δ < αe,

then necessarily δ < αpi
for some i < λ and therefore e∩ nacc(Cδ) = pi ∩ nacc(Cδ)

is bounded in δ. The only danger may come from δ = Nλ ∩ κ. Thus assume that
β ∈ e and we ask where does β come from? If it is from p0∪

⋃

ξ<λ

q0,ξ then we cannot

say anything about it (this is the part of e that we do not control). But in all
other instances we may show that β /∈ nacc(CNλ∩κ). Why? If β ∈

⋃

ξ<λ

qi,ξ \ pi for

some 0 < i < λ, then by the choice of γi and pi and the demand that q̄i ⊆ Nζi+1

we have that β /∈ CNλ∩κ. Similarly if β = γi. So the only possibility left is that
β = N ⋃

j<i

ζj+1 ∩ κ. If i is not limit then cf(N ⋃

j<i

ζj+1 ∩ κ) = λ so β /∈ nacc(CNγ∩κ).

If i is limit then, by the choice of the ζj ’s we have N ⋃

j<i

ζj+1 ∩ κ ∈ acc(CNγ∩κ) and

we are clearly done.

Note that if Nλ ∩ κ /∈ S then the winning strategy for COM is much simpler:
choose successive elements of X as the ζj ’s and play natural bounds to sequences
constructed so far. �

Remark A.2.5. (1) Note that one cannot prove that the forcing notion Q1
C̄

is

basically (S0, Ŝ1)–complete. The place in which a try to repeat the proof
of A.2.4 fails is the limit case of Ni ∩ κ. If we do not allow COM to make
“jumps” (the choices of ζi) then it cannot overcome difficulties coming from
the case exemplified by

CNλ∩κ = {Nω·i ∩ κ : i < λ}.

(2) The instance S = Sλ+

λ is not covered here, but we will deal with it later.

The following forcing notion is used to get PrS (see 0.2).
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Definition A.2.6. Let C̄ = 〈Cδ : δ ∈ S〉 be with Cδ a club of δ of order type λ
and let h̄ = 〈hδ : δ ∈ S〉 be a sequence such that hδ : Cδ −→ λ for δ ∈ S. Further
let D̄ = 〈Dδ : δ ∈ S〉 be such that each Dδ is a filter on Cδ.

(1) We define a forcing notion Q2
C̄,h̄

:

a condition in Q2
C̄,h̄

is a function f : αf −→ λ such that αf < λ+ and

(∀δ ∈ S ∩ (αf + 1))({β ∈ Cδ : hδ(β) = f(β)} is a co-bounded subset of Cδ),

the order ≤Q2
C̄,h̄

of Q2
C̄,h̄

is the inclusion (extension).

(2) The forcing notion Q
2,D̄

C̄,h̄
is defined similarly, except that we demand that

a condition f satisfies

(∀δ ∈ S ∩ (αf + 1))({β ∈ Cδ : hδ(β) = f(β)} ∈ Dδ).

Proposition A.2.7. Let Dā be the club filter of λ for ā ∈ Ŝ1. Then the forcing
notion Q2

C̄,h̄
is really (S0, Ŝ1, D)–complete.

Proof. This is parallel to A.2.4. It should be clear that Q2
C̄,h̄

is (< λ)–complete.

The proof that it is strongly S0–complete goes like that of A.2.3(2), so what we
need is the following claim.

Claim A.2.7.1. For each β < λ+ the set

Iβ
def
= {f ∈ Q2

C̄,h̄ : β ∈ dom(f)}

is open dense in Q2
C̄,h̄

.

Proof of the claim. Let f ∈ Q2
C̄,h̄

. We have to show that for each δ < λ+ there is a

condition f ′ ∈ Q2
C̄,h̄

such that f ≤ f ′ and δ ≤ αf ′ . Assume that for some δ < λ+

there is no suitable f ′ ≥ f , and let δ be the first such ordinal (necessarily δ is limit).
Choose an increasing continuous sequence 〈βζ : ζ < cf(δ)〉 cofinal in δ and such
that β0 = αf and βζ ∈ δ \ S for 0 < ζ < cf(δ). For each ζ < cf(δ) pick a condition
fζ ≥ f such that αfζ = βζ and let f∗ = f ∪

⋃

ζ<cf(β)

fζ+1↾[βζ , βζ+1). If δ /∈ S then

easily f∗ ∈ Q2
C̄,h̄

is a condition stronger than f . Otherwise we take f ′ : δ −→ λ

defined by

f ′(ξ) =

{

hδ(ξ) if ξ ∈ Cδ \ αf ,
f∗(ξ) otherwise.

Plainly, f ′ ∈ Q2
C̄,h̄

and it is stronger than f . Thus in both cases we may construct

a condition f ′ stronger than f and such that δ = αf ′ , a contradiction. �

With A.2.7.1 in hands we may repeat the proof of A.2.3(2) with no substantial
changes.

The proof that Q2
C̄,h̄

is really (S0, Ŝ1, D)–complete is similar to that of A.2.4. So

let N̄ , (ā, X) and r be as there and suppose that Nλ∩κ ∈ S. The winning strategy
for COM tells it to choose ξi as in A.2.4 and play pi defined as follows. The first
p0 is r. If i > 0 then COM lets p′i =

⋃

j<i
ξ<λ

qj,ξ (which clearly is a condition in Q2
C̄,h̄

)

and chooses pi ∈ Q2
C̄,h̄

∩Nζi+1 such that

p′i ≤ pi, CNλ∩κ ∩Nζi+1 ⊆ dom(pi) and
(∀β ∈ CNλ∩κ ∩Nζi+1)(αp′

i
< β ⇒ pi(β) = hNλ∩κ(β)).
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Clearly this is a winning strategy for COM. �

Remark A.2.8. (1) In fact, the proof of A.2.7 shows that the forcing notion

Q2
C̄,h̄

is basically (S0, Ŝ1)–complete. The same applies to A.2.10.

(2) In A.2.6, A.2.7 we may consider h̄ such that for some h∗ : κ −→ κ, for each
δ ∈ S we have

(∀α ∈ Cδ)(hδ(α) < h∗(α)),

which does not put forward any significant changes.
(3) Why do we need h∗ above at all? If we allow, e.g., hδ to be constantly

δ then clearly there is no function f with domain κ and such that (∀δ ∈
S)(δ > sup{α ∈ Cδ : f(α) 6= hδ(α)}) (by Fodor lemma). We may still ask if
we could just demand hδ : Cδ −→ δ? Even this necessarily fails, as we may
let hδ(α) = min(Cδ \ (α+1)). Then, if f is as above, the set E = {δ < κ : δ
is a limit ordinal and (∀α < δ)(f(α) < δ)} is a club of κ. Hence for some
δ ∈ S we have:

λ2 < δ = sup(E ∩ δ) = otp(E ∩ δ)

and we get an easy contradiction.

Another example of forcing notions which we have in mind when developing the
general theory is related to the following problem. Let K be a λ–free Abelian group
of cardinality κ. We want to make it a Whitehead group.

Definition A.2.9. Suppose that

(a) K1 is a strongly κ–free Abelian group of cardinality κ, 〈K1,α : α < κ〉 is a
filtration of K1 (i.e., it is an increasing continuous sequence of subgroups
of K1 such that K1 =

⋃

α<κ

K1,α and each K1,α is of size < κ),

Γ = {α < κ : K1/K1,α is not λ–free },

(b) K2 is an Abelian group extending Z, h : K2
onto
−→ K1 is a homomorphism

with kernel Z.

We define a forcing notion Q3
K2,h

:

a condition in Q3
K2,h

is a homomorphism g : K1,α −→ K2 such that α ∈ κ \Γ and
h ◦ g = idK1,α,
the order ≤Q3

K2,h
of Q3

K2,h
is the inclusion (extension).

Proposition A.2.10. Let Dā be a club filter of λ for ā ∈ Ŝ1. Assume K1,K1,α,K2

and Γ are as in assumptions of A.2.9 and Γ ⊆ S. Then the forcing notion Q3
K2,h

is really (S0, Ŝ1, D)–complete.

Proof. Similar to the proofs of A.2.4 and A.2.7. �

A.3. The iteration theorem

In this section we will prove the preservation theorem needed for Case A. Let us
start with some explanations which (hopefully) will help the reader to understand
what and why we do to get our result.

We would like to prove that if Q̄ = 〈Pi,Q
˜

i
: i < γ〉 is a (< κ)–support iteration

of suitably complete forcing notions, (S0, Ŝ1, D) are as in A.1.16, then:
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if N̄ = 〈Ni : i ≤ λ〉 is an increasing continuous sequence of
elementary submodels of (H(χ),∈, <∗χ), ‖Ni‖ = λ, λ + 1 ⊆ Ni,

(Ni)
<λ ⊆ Ni for non-limit i, and for some ā ∈ Ŝ1 and X ∈ Dā

(∀i ∈ X)(Ni ∩ µ∗ = ai & Ni+1 ∩ µ∗ = ai+1)

and p ∈ Pγ ∩N0,
then there is a condition q ∈ Pγ stronger than p and (Nλ,Pγ)–
generic.

For each Q
˜

i
we may get respective q, but the problem is with the iteration. We can

start with increasing successively p to pi ∈ Nλ (i < λ) and we can keep meeting
dense sets due to (< λ)–completeness. But the main question is: why is there a
limit? For each α ∈ γ ∩Nλ we have to make sure that the sequence 〈pi(α) : i < λ〉
has an upper bound in Q

˜
α

, but for this we need information which is a Pγ–name

which does not belong to Nλ, e.g., if Q
˜

i
is Q2

C̄
˜
,h̄
˜

we need to know C
˜

N∩κ,h
˜
N∩κ . But

for each i, the size of the information needed is < λ.
As the life in our context is harder than for proper forcing iterations, we have to

go back to pre–proper tools and methods and we will use trees of names (see [12]).
A tree of conditions is essentially a non-deterministic condition; in the limit we will
show that some choice of a branch through the tree does the job.
[Note that one of the difficulties one meets here is that we cannot diagonalize over
objects of type λ× ω when λ > ℵ0.]

Definition A.3.1. (1) A tree (T,<) is normal if for each t0, t1 ∈ T ,
if {s ∈ T : s < t0} = {s ∈ T : s < t1} has no last element,
then t0 = t1.

(2) For an ordinal γ, Tr(γ) stands for the family of all triples

T = (T T , <T , rkT )

such that (T T , <T ) is a normal tree and rkT : T T −→ γ+1 is an increasing
function.

We will keep the convention that T x
y = (T x

y , <
x
y , rk

x
y). Sometimes we

may write t ∈ T instead t ∈ T T (or t ∈ T ).

The main case and examples we have in mind are triples (T,<, rk) such that
for some w ⊆ γ (where γ is the length of our iteration), T is a family of partial
functions such that:

(∀t ∈ T )(dom(t) is an initial segment of w and (∀α ∈ w)(t↾α ∈ T ));

the order is the inclusion and the function rk is given by

rk(t) = min{α ∈ w ∪ {γ} : dom(t) = α ∩ w},

(see A.3.3). Here we can let Nλ ∩ γ = {αξ : ξ < λ}. Defining pi we are thinking of
why 〈pj(αξ) : j < λ〉 will have an upper bound. Now λ× λ has a diagonal.

Note: starting to take care of αξ only after some time is a reasonable strategy,
so in stage i < λ we care about {αξ : ξ < i} only.

But what does it mean to do it? We have to guess the relevant information
which is a Pαξ

–name and is not present.
What do we do? We cover all possibilities. So the tree Tζ will consist of objects

t which are guesses on what is 〈information for αε up to ζth stage: ε < ζ〉. Of

course we should not inflate, e.g., 〈pζt : t ∈ Tξ〉 ∈ Nλ.
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26 SAHARON SHELAH

It is very nice to have an open option so that in stage λ we can choose the most
convenient branch. But we need to go into all dense sets and then we have to
pay an extra price for having an extra luggage. We need to put all the pi’s into a
dense set (which is trivial for a single condition). What will help us in this task is
the strong S0–completeness. Without this big brother to pay our bills , our scheme
would have to fail: we do have some ZFC theorems which put restrictions on the
possible iteration theorems.

Definition A.3.2. Let Q̄ = 〈Pi,Q
˜

i
: i < γ〉 be a (< κ)–support iteration.

(1) We define

FTr(Q̄)
def
=

{

p̄ = 〈pt : t ∈ T T 〉 : T ∈ Tr(γ), (∀t ∈ T T )(pt ∈ Prk(t)) and
(∀s, t ∈ T T ))(s < t ⇒ ps = pt↾rk(s))

}

,

and

FTrwk(Q̄)
def
=

{

p̄ = 〈pt : t ∈ T T 〉 : T ∈ Tr(γ), (∀t ∈ T T )(pt ∈ Prk(t)) and
(∀s, t ∈ T T ))(s < t ⇒ ps ≥ pt↾rk(s))

}

.

We may write 〈pt : t ∈ T 〉. Abusing notation, we mean p̄ ∈ FTrwk(Q̄) (and
p̄ ∈ FTr(Q̄)) determines T and we call it T p̄ (or we may forget and write
dom(p̄)).

Adding primes to FTr, FTrwk means that we allow pt(β) be (a Pβ–name

for) an element of the completion Q̂
˜

β
of Q

˜
β
. Then pt is an element of P′rk(t)

— the (< κ)–support iteration of the completions Q̂
˜

β
(see 0.18).

(2) If T ∈ Tr(γ), p̄, q̄ ∈ FTr′wk(Q̄), dom(p̄) = dom(q̄) = T T then we let

p̄ ≤ q̄ if and only if (∀t ∈ T T )(pt ≤ qt).

(3) Let T1, T2 ∈ Tr(γ). We say that a surjection f : T2
onto
−→ T1 is a projection if

for each s, t ∈ T2

(α) s ≤2 t ⇒ f(s) ≤1 f(t), and
(β) rk2(t) ≤ rk1(f(t)).

(4) Let p̄0, p̄1 ∈ FTr′wk(Q̄), dom(p̄ℓ) = Tℓ (ℓ < 2) and f : T1 −→ T0 be a
projection. Then we will write p̄0 ≤f p̄1 whenever for all t ∈ T1

(α) p0f(t)↾rk1(t) ≤P′
rk1(t)

p1t , and

(β) if i < rk1(t), then

p1t ↾i 
Pi
“p0f(t)(i) 6= p1t (i) ⇒ (∃q ∈ Q

˜
i
)(p0f(t)(i) ≤Q̂

˜ i

q ≤
Q̂
˜ i

p1t (i))”.

The projections play the key role in the iteration lemma. Therefore, to make
the presentation clearer we will restrict ourselves to the case we actually need.

You may think of γ as the length of the iteration, and let {βξ : ξ < λ} list
N ∩ γ, w = {βξ : ξ < α}. We are trying to build a generic condition for (Pγ , N) by
approximating it by a sequence of trees of conditions. In the present tree we are at
stage α. Now, for t ∈ T , t(i) is a guess on the information needed to construct a
generic for (N [G

˜
Pi

],Q
˜

i
[G
˜

Pi
]), more exactly the α–initial segment of it.

Definition A.3.3. Let γ be an ordinal.

(1) Suppose that w ⊆ γ and α is an ordinal. We say that T ∈ Tr(γ) is a
standard (w,α)γ–tree if

(α) (∀t ∈ T T )(rkT (t) ∈ w ∪ {γ}),
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(β) if t ∈ T T , rkT (t) = ε, then t is a sequence 〈ti : i ∈ w ∩ ε〉, where each
ti is a sequence of length α,

(γ) <T is the extension (inclusion) relation.
[In (β) above we may demand that each ti is a function with domain [i, α),
i < α, but we can use a default value ∗ below i, hence making such ti into
sequences of length α. Note that T T determines T in this case; 〈〉 is the
root of T .]

(2) Suppose that w0 ⊆ w1 ⊆ γ, α0 ≤ α1 and T = (T,<, rk) is a standard

(w1, α1)γ–tree. We define the projection proj
(w1,α1)
(w0,α0)

(T ) of T onto (w0, α0)

as (T ∗, <∗, rk∗) such that:
T ∗ = {〈ti↾α0 : i ∈ w0 ∩ rk(t)〉 : t = 〈ti : i ∈ w1 ∩ rk(t)〉 ∈ T },
<∗ is the extension relation,
rk∗(〈ti↾α0 : i ∈ w0 ∩ rk(t)〉) = min(w0 ∪ {γ} \ rk(t)) for t ∈ T .

[Note that proj
(w1,α1)
(w0,α0)

(T ) is a standard (w0, α0)γ–tree.]

(3) If w0 ⊆ w1 ⊆ γ, α0 < α1, T1 = (T1, <1, rk1) is a standard (w1, α1)γ–tree

and T0 = (T0, <0, rk0) = proj
(w1,α1)
(w0,α0)

(T1), then the mapping

T1 ∋ 〈ti : i ∈ w1 ∩ rk1(t)〉 7−→ 〈ti↾α0 : i ∈ w0 ∩ rk1(t)〉 ∈ T0

is denoted by projT1T0 (or proj
(w1,α1)
(w0,α0)

).

[Note that projT1T0 is a projection from T1 onto T0.]

(4) We say that T̄ = 〈Tα : α < α∗〉 is a legal sequence of standard γ–trees if for
some w̄ = 〈wα : α < α∗〉 we have
(α) w̄ is an increasing continuous sequence of subsets of γ,
(β) for each α < α∗, Tα is a standard (wα, α)γ–tree,

(γ) if α < β < α∗, then Tα = proj
(wα,α)
(wβ ,β)

(Tβ).

(5) For a legal sequence T̄ = 〈Tα : α < α∗〉 of standard γ–trees, α∗ a limit

ordinal, we define the inverse limit
←

lim(T̄ ) of T̄ as a triple

(T
←

lim(T̄ ), <
←

lim(T̄ ), rk
←

lim(T̄ ))

such that

(a) T
←

lim(T̄ ) consists of all sequences t such that

(i) dom(t) is an initial segment of w
def
=

⋃

α<α∗
wα (not necessarily

proper),
(ii) if i ∈ dom(t), then ti is a sequence of length α∗,

(iii) for each α < α∗, 〈ti↾α : i ∈ wα ∩ dom(t)〉 ∈ Tα,

(b) <
←

lim(T̄ ) is the extension relation,

(c) rk
←

lim(T̄ )(t) = min(w ∪ {γ} \ dom(t)) for t ∈ T
←

lim(T̄ ).

[Note that it may happen that T
←

lim(T̄ ) = {〈〉}, however not if T̄ is contin-
uous, see below.]

(6) A legal sequence of standard γ–trees T̄ = 〈Tα : α < α∗〉 is continuous if

Tα =
←

lim(Tβ : β < α) for each limit α < α∗.

Proposition A.3.4. Suppose that α0, α1, α2, γ are ordinals such that α0 ≤ α1 ≤
α2. Let wα0 ⊆ wα1 ⊆ wα2 ⊆ γ. If T1 is a standard (w1, α1)γ–tree, then T0 =
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proj
(w1,α1)
(w0,α0)

(T1) is a standard (w0, α0)γ–tree. Assume that for ℓ < 3, Tℓ are standard

(wℓ, αℓ)
γ–trees such that

T0 = proj
(w1,α1)
(w0,α0)

(T1) and T1 = proj
(w2,α2)
(w1,α1)

(T2).

Then T0 = proj
(w2,α2)
(w0,α0)

(T2) and projT2T0 = projT1T0 ◦ projT2T1 .

Moreover, if p̄ℓ = 〈pℓt : t ∈ Tℓ〉 ∈ FTr′(Q̄) (for ℓ < 3) are such that p̄0 ≤
proj

T1
T0

p̄1

and p̄1 ≤
proj

T2
T1

p̄2 then p̄0 ≤
proj

T2
T0

p̄2.

Proposition A.3.5. Let γ, α∗ be ordinals, α∗ limit, and let T̄ = 〈Tα : α < α∗〉 be
a continuous legal sequence of standard γ–trees.

(1) The inverse limit
←

lim(T̄ ) is a standard (
⋃

α<α∗
wα, α

∗)γ–tree and each Tα is

a projection of
←

lim(T̄ ) onto (wα, α) and the respective projections commute.
(Here, wα ⊆ γ is such that Tα is a standard (wα, α)γ–tree)

[So we do not cheat:
←

lim(T̄ ) is really the inverse limit of T̄ .]

(2) If λ<λ = λ, α∗ < λ and ‖Tα‖ ≤ λ for each α < α∗ then ‖T
←

lim(T̄ )‖ ≤ λ.
(3) If α∗ < λ, κ = λ+, Q̄ = 〈Pξ,Q

˜
ξ

: ξ < γ〉 is a (< κ)–support iteration of

(< λ)–complete forcing notions and p̄α = 〈pαt : t ∈ Tα〉 ∈ FTr′(Q̄) (for each
α < α∗) are such that |Tα| ≤ λ for α < α∗ and

β < α < α∗ ⇒ p̄β ≤projTαTβ
p̄α

then there is p̄α
∗

= 〈pα
∗

t : t ∈
←

lim(T̄ )〉 ∈ FTr′(Q̄) such that

(∀α < α∗)(p̄α ≤
proj

←
lim(T̄ )
Tα

p̄α
∗

).

Proof. 1) Should be clear: just read the definitions.

2) It follows from the following inequalities:

‖T
←
lim(T̄ )‖ ≤

∏

α<α∗

‖Tα‖ ≤ λ<λ = λ.

3) For each t ∈
←

lim(T̄ ) we define a condition pα
∗

t ∈ P′γ as follows. Let tα =

proj
←

lim(T̄ )
Tα

(t) (for α < α∗). We know that the sequence 〈pαtα↾rk
←

lim(T̄ )(t) : α <

α∗〉 is increasing (remember rk
←

lim(T̄ )(t) ≤ rkα(tα) for each α < α∗) and pα
∗

t is
supposed to be an upper bound to it (and pα

∗

t ∈ P′

rk
←
lim(T̄ )(t)

). We define pα
∗

t quite

straightforward. We let

dom(pα
∗

t ) =
⋃

{dom(pαtα) ∩ rk
←

lim(T̄ )(t) : α < α∗}

and next we inductively define pα
∗

t (i) for i ∈ dom(pα
∗

t ). Assume we have defined

pα
∗

t ↾i such that

(∀α < α∗)(pαtα↾i ≤P′
i
pα
∗

t ↾i).
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Then (remembering our convention that if i /∈ dom(p) then p(i) = 0Q
˜ i

)

pα
∗

t ↾i 
 “ the sequence 〈pαtα(i) : α < α∗〉 ⊆ Q̂
˜

i
is ≤

Q̂
˜ i

–increasing and

α < β < α∗ & pαtα(i) 6= pβ
tβ

(i) ⇒ (∃q ∈ Q
˜

i
)(pαtα(i) ≤

Q̂
˜ i

q ≤
Q̂
˜ i

pβ
tβ

(i))

and Q
˜

i
is (< λ)–complete and α∗ < λ ”.

Hence we find a P′i–name pα
∗

t (i) (and we take the <∗χ–first such a name) such that

pα
∗

t ↾i 
 “pα
∗

t (i) ∈ Q̂
˜

i
is the least upper bound of 〈pαtα(i) : α < α∗〉 in Q̂

˜
i
”.

Now one easily checks that pα
∗

t ∈ P′

rk
←
lim(T̄ )(t)

. Consequently the condition pα
∗

t is as

required. But why does 〈pα
∗

t : t ∈
←

lim(T̄ )〉 ∈ FTr′(Q̄)? We still have to argue that

(∀s, t ∈
←

lim(T̄ ))(s < t ⇒ pα
∗

s = pα
∗

t ↾rk
←

lim(T̄ )(s)).

For this note that if s < t are in
←

lim(T̄ ) and sα, tα are their projections to

Tα then sα ≤α tα and pαsα = pαtα↾rkα(sα) and rk
←

lim(T̄ )(s) ≤ rkα(sα). Thus

clearly dom(pα
∗

s ) = dom(pα
∗

t ) ∩ rk
←

lim(T̄ )(s). Next, by induction on i ∈ dom(pα
∗

t ) ∩

rk
←

lim(T̄ )(s) we show that pα
∗

s (i) = pα
∗

t (i). Assume we have proved that pα
∗

t ↾i =
pα
∗

s ↾i and look at the way we defined the respective values at i. We looked there at
the sequences 〈pαtα(i) : α < α∗〉, 〈pαsα(i) : α < α∗〉 and we have chosen the <∗χ–first
names for the least upper bounds to them. But i < rkα(sα) for all α < α∗, so the
two sequences are equal and the choice was the same. �

Proposition A.3.6. Assume that S0 ⊆ [µ∗]≤λ and Q̄ = 〈Pα,Q
˜

α
: α < γ〉 is a

(< κ)–support iteration of (< λ)–complete strongly S0–complete forcing notions,
and x

˜
α (for α < γ) are Pα–names such that


Pα
“x
˜
α witnesses the most in A.1.7(2) for Q

˜
α
”.

Further suppose that

(α) N ≺ (H(χ),∈, <∗χ) is (λ,S0)–good (see A.1.7), 〈x
˜
α : α < γ〉, α0, Q̄, . . . ∈ N ,

(β) 0 ∈ w0 ⊆ w1 ∈ N ∩ [γ]<λ, α0 < λ is an ordinal, α1 = α0 + 1,
(γ) T0 = (T0, <0, rk0) ∈ N is a standard (w0, α0)γ–tree, ‖T0‖ ≤ λ,
(δ) p̄ = 〈pt : t ∈ T0〉 ∈ FTr′(Q̄) ∩N ,
(ε) T1 = (T1, <1, rk1) is such that

T1 consists of all sequences t = 〈ti : i ∈ dom(t)〉 such that dom(t) is an
initial segment of w1, and

• each ti is a sequence of length α1,

• t′
def
= 〈ti↾α0 : i ∈ dom(t) ∩ w0〉 ∈ T0,

• if i ∈ dom(t) \ w0, α < α0 then ti(α) = ∗,
• for some j(t) ∈ dom(t) ∪ {γ},
ti(α0) is ∗ for every i ∈ dom(t) \ j(t), and for each i ∈ dom(t) ∩ j(t)
ti(α0) ∈ N is a Pi–name for an element of Q

˜
i
,

• rk1(t) = min(w1 ∪ {γ} \ Dom(t)) and <1 is the extension relation.

Then

(a) T1 is a standard (w1, α1)γ–tree, ‖T1‖ = λ,
(b) T0 is the projection of T1 onto (w0, α0),
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30 SAHARON SHELAH

(c) there is q̄ = 〈qt : t ∈ T1〉 ∈ FTr′(Q̄) such that
(i) p̄ ≤

proj
T1
T0

q̄,

(ii) if t ∈ T1 \ {〈〉} and (∀i ∈ dom(t))(ti(α0) 6= ∗), then the condition
qt ∈ P′rk1(t)

is an upper bound in P′rk1(t)
of a Prk1(t)–generic sequence

over N , and for every β ∈ dom(qt) = N ∩ rk1(t), qt(β) is (a name

for) the least upper bound in Q̂
˜

β
of the family of all r(β) for r from

the generic set (over N) generated by qt,

(iii) if t ∈ T1, t
′ = projT1T0(t) ∈ T0, i ∈ dom(t) and ti(α0) 6= ∗, then

qt↾i 
Pi
“pt′(i) ≤Q̂

˜ i

ti(α0) ⇒ ti(α0) ≤
Q̂
˜ i

qt(i)”,

(iv) q〈〉 = p〈〉 and
if t ∈ T1 \ {〈〉} and j(t) < γ, then qt = qt↾j(t) ∪ pt′↾[j(t), rk1(t)), where

t′ = projT1T0(t) ∈ T0.

Proof. Clauses (a) and (b) should be clear.

(c) Let 〈tζ : ζ < λ〉 list with λ-repetitions all elements t of T1 \ {〈〉} such that
(∀i ∈ dom(t))(ti(α0) 6= ∗). For α ∈ w1 ∪ {γ} let 〈Iα

ζ : ζ < λ〉 enumerate all open
dense subsets of Pα from N . By induction on ζ < λ choose rζ such that

• rζ ∈ Prk1(tζ) ∩N ,

• if t′ = projT1T0(tζ), then pt′↾rk1(tζ) ≤P′
rk1(tζ )

rζ and for i ∈ dom(tζ)

rζ↾i 
Pi
“pt′(i) ≤Q̂

˜ i

(tζ)i(α0) ⇒ (tζ)i(α0) ≤
Q̂
˜ i

rζ(i)”,

• rζ ∈ I
rk1(tζ)
ξ for all ξ ≤ ζ,

• if t ∈ T1, ξ < ζ, t ≤1 tξ, t ≤1 tζ (e.g., t = tξ = tζ), then rξ↾rk1(t) ≤Prk1(t)

rζ↾rk1(t).

Since we have assumed that all Q
˜

α
’s are (names for) (< λ)–complete forcing notions

there are no difficulties in carrying out the above construction. [First, working in
N , choose r∗ζ ∈ Prk1(tζ) ∩ N satisfying the second and the fourth demand. How?
Declare

dom(r∗ζ ) = [w1 ∪
⋃

{dom(rξ) : ξ < ζ} ∪ dom(p
proj

T1
T0

(tζ)
)] ∩ rk1(tζ)

and by induction on i define r∗ζ (i) using the (< λ)–completeness of Q
˜

i
and taking

care of the respective demands (similar to the choice of qt done in detail below).

Next use the (< λ)–completeness (see A.1.3) to enter all I
rk1(tζ)
ξ for ξ ≤ ζ. Note

that the sequence 〈I
rk1(tζ)
ξ : ξ ≤ ζ〉 is in N , so we may choose the respective rζ ≥ r∗ζ

in N .]
Now we may define q̄ = 〈qt : t ∈ T1〉 ∈ FTr′(Q̄). If t ∈ T1 is such that j(t) <

rk1(t) then qt is defined from qt↾j(t) and p̄ by demand (c)(iv). So we have to define
qt for these t ∈ T1 such that (∀i ∈ dom(t))(ti(α0) 6= ∗) (and t 6= 〈〉) only. So let
t ∈ T1 \ {〈〉} be of this type. Let

dom(qt) =
⋃

{dom(rζ) : ζ < λ & t ≤1 tζ} ∩ rk1(t) ⊆ N

and by induction on i ∈ dom(qt) we define qt(i) (a Pi–name for a member of Q̂
˜

i
).

So suppose that i ∈ dom(qt) and we have defined qt↾i ∈ P′i in such a way that

(∗) (∀ζ < λ)(t ≤1 tζ ⇒ rζ↾i ≤P′
i
qt↾i).
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Note that this demand implies that qt↾i ∈ P′i is an upper bound of a generic
sequence in Pi over N (remember the choice of the rζ ’s, and that i ∈ N and there
are unboundedly many ζ < λ such that rk1(tζ) = γ, and all open dense subsets of
Pi from N appear in the list 〈Iγ

ζ : ζ < λ〉) and therefore

qt↾i 
P′
i

“the model N [G
˜

P′
i
] is (λ,S0)–good”

(remember 0.19). Look at the sequence 〈rζ(i) : t ≤1 tζ & i ∈ dom(rζ)∩ rk1(t)〉. By
the last two demands of the choice of the rζ ’s we have

qt↾i 
Pi
“〈rζ(i) : t ≤1 tζ & i ∈ dom(rζ) ∩ rk1(t)〉 is an increasing

Q
˜

i
–generic sequence over N [G

˜
Pi

]”.

Consequently we may use the fact that Q
˜

i
is (a name for) a strongly S0–complete

forcing notion and x
˜
i ∈ N , and we take qt(i) to be the <∗χ–first name for the least

upper bound of this sequence in Q̂
˜

i
. So we can prove by induction on rk2(t) that

(∗) holds.
This completes the definition of q̄. Checking that it is as required is straightfor-

ward. �

Theorem A.3.7. Assume λ<λ = λ, κ = λ+ = 2λ ≤ µ∗. Suppose that S0 ∈
(D<κ,<λ(µ∗))+, Ŝ1 ∈ (Dλ

<κ,<λ(µ∗)[S0])+ and D is a function such that dom(D) =

Ŝ1 and for every ā ∈ Ŝ1

D(ā) = Dā is a normal filter on λ.

Further suppose that Q̄ = 〈Pi,Q
˜

i
: i < γ〉 is a (< κ)–support iteration such that for

each i < γ


Pi
“ Q

˜
i
is really (S0, Ŝ1, D)–complete with witness x

˜
i

for the most in A.1.16(3)(γ)”.

Then:

(a) the forcing notion Pγ is (< λ)–complete and strongly S0–complete,

(b) if a sequence N̄ = 〈Ni : i ≤ λ〉 is (λ, κ, Ŝ1, D,Pγ)–suitable (see A.1.16(1))

and p ∈ Pγ ∩N0, 〈x
˜
i : i < γ〉, 〈S0, Ŝ1, D〉 ∈ N0,

then there is an (Nλ,Pγ)–generic condition q ∈ Pγ stronger than p,

(c) the forcing notion Pγ is really (S0, Ŝ1, D)–complete.

Proof. (a) It is a consequence of A.1.3 and A.1.13.

(b) Plainly, we may assume γ ≥ λ and Q ∈ N0. Let (X, ā) be a suitable basis for

N̄ , so ā ∈ Ŝ1, X ∈ Dā and

(∀i ∈ X)((Ni+1)<λ ⊆ Ni+1 & Ni+1 ∩ µ∗ = ai+1).

We may assume that all members of X are limit ordinals. Let wλ = Nλ ∩ γ (so
‖wλ‖ = λ). Choose an increasing continuous sequence 〈wα : α < λ〉 such that
⋃

α<λ

wα = wλ and for each α < λ

‖wα‖ < λ, wα ⊆ Nα ∩ γ, 0 ∈ wα, and if α is limit then wα = wα+1

(so then 〈wβ : β ≤ α〉 ∈ Nα+1).
Now, by induction on α ≤ λ we define a legal continuous sequence of standard

γ–trees 〈Tα : α ≤ λ〉 for 〈wα : α ≤ λ〉 and a sequence 〈p̄α : α < λ〉 such that
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32 SAHARON SHELAH

p̄β = 〈pβt : t ∈ Tβ〉 ∈ FTr′(Q̄) and p̄β ≤projTαTβ
p̄α for each β < α < λ and

Tα, p̄α ∈ Nα+1.
At stage α = 0 of the construction:

T0 consists of all sequences t = 〈ti : i ∈ dom(t)〉 such that dom(t) is an initial
segment of w0 (not necessarily proper) and for each i ∈ dom(t), ti is a sequence of
length 0 (i.e., 〈〉),
rk0(t) = min(w0 ∪ {γ} \ dom(t)) and <0 is the extension relation;
for each t ∈ T0 we let p0t = p↾rk0(t) and finally p̄0 = 〈p0t : t ∈ T0〉 ∈ FTr′(Q̄).
[Note that T0 = (T0, <0, rk0) ∈ N0 is a standard (w0, 0)γ–tree, p̄0 ∈ FTr′(Q̄) ∩N0.]

At stage α = α0 + 1 of the construction:
We have defined a standard (wα0 , α0)γ–tree Tα0 ∈ Nα0+1 and p̄α0 = 〈pα0

t : t ∈
Tα0〉 ∈ FTr′(Q̄) ∩Nα0+1. Now we consider two cases.
If α0 ∈ X (so Nα0+1 is (λ,S0)–good), then we apply the procedure of A.3.6 in-
side Nα0+2 to Tα0 , p̄α0 , (wα0+1, α0 + 1) and Nα0+1 (in place of T0, p̄, (w1, α1)
and N there) and we get a standard (wα0+1, α0 + 1)γ–tree Tα0 ∈ Nα0+2 and
p̄α0+1 = 〈pα0+1

t : t ∈ Tα0+1〉 ∈ FTr′(Q̄) ∩ Nα0+2 satisfying the demands A.3.6(ε)
and A.3.6(a)–(c).
If α0 /∈ X , then we define Tα0+1 as above but we cannot put any new genericity

requirements on p̄α0+1, so we just let pα0+1
t = pα0

t′ ↾rkα0+1(t) where t′ = proj
Tα0+1

Tα0
(t).

[Note that in both cases Tα0+1 ∈ Nα0+2 is a standard (wα0+1, α0 + 1)γ–tree, pro-
jection of Tα0+1 onto (wα0 , α0) is Tα0 , p̄α0+1 ∈ FTr′(Q̄)∩Nα0+2 and p̄α0 ≤

proj
Tα0+1

Tα0

p̄α0+1.]
At limit stage α of the construction:

We let Tα =
←

lim(〈Tβ : β < α〉) ∈ Nα+1 and we choose p̄α = 〈pαt : t ∈ Tα〉 ∈
FTr′(Q̄) ∩Nα+1 applying A.3.5 in Nα+1.
[Note that the corresponding inductive assumptions hold true.]

After the construction is carried out we may let Tλ =
←

lim(〈Tα : α < λ〉). Then
Tλ is a standard (wλ, λ)γ–tree, but no longer we have ‖Tλ‖ ≤ λ.

Now, by induction on α ∈ wλ ∪ {γ} we choose conditions qα and Pα–names X
˜

α,
Y
˜

α and t
˜
α such that

(a) 
Pα
“t
˜
α ∈ Tλ & rkλ(t

˜
α) = α”,

(b) 
Pα
“t
˜
β = t

˜
α↾β” for β < α,

(c) qα ∈ Pα, dom(qα) = wλ ∩ α,
(d) if β < α then qβ = qα↾β,
(e) qα 
Pα

“pi
proj

Tλ
Ti

(t
˜
α)
↾α ∈ G

˜
Pα

” for each i < λ,

(f) for each β < α

qα 
Pα
“X

˜
β = {i < λ : (t

˜
β+1)β(i) 6= ∗} ∈ Dā and the sequence

〈〈(i, (t
˜
β+1)β(i)), pi+1

proj
Tλ
Ti+1

(t
˜
β+1)

(β)〉 : i < λ & i ∈ X
˜

β〉

is a result of a play of the game

G♥〈Ni[G
˜

β ]:i≤λ〉,D,Y
˜

β ,ā
(Q
˜

β
, pi0

proj
Tλ
Ti0

(t
˜
β+1)

(β)),

[where i0 < λ is the first such that β ∈ wi0 ],
won by player COM”,
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(g) the condition qα forces (in Pα) that

“the sequence 〈Ni[G
˜

Pα
] : i ≤ λ〉 is (λ, κ, Ŝ1, D,Q

˜
α)–suitable and Y

˜
α ∈ Dā

is such that Y
˜

α ⊆ X and for every i ∈ Y
˜

α we have

(Ni+1[G
˜

Pα
])<λ ⊆ Ni+1[G

˜
Pα

] and Ni+1[G
˜

Pα
] ∩V = Ni+1

and i ∈ X
˜

ξ for all ξ ∈ α ∩ wi (hence Nλ[GPα
] ∩V = Nλ)”

Case 1: α = 0.
We do not have much choice here: we let q0 = ∅, t

˜
0 = 〈〉 ∈ Tλ and Y

˜
0 = X . Note

that clauses (a)–(e) and (g) are trivially satisfied (for (g) remember that (ā, X) is
a suitable basis for N̄) and clause (f) is not relevant.

Case 2: α = β + 1.
Arriving at this stage we have defined qβ, t

˜
β , Y

˜
β and X

˜
ξ for ξ < β, and we want to

choose qβ+1, t
˜
β+1, Y

˜
β+1 and X

˜
β .

Suppose that Gβ ⊆ Pβ is a generic filter over V such that qβ ∈ Gβ . Then (by
clause (g) at stage β) we have

V[Gβ ] |= “the sequence 〈Ni[Gβ ] : i ≤ λ〉 is (λ, κ, Ŝ1, D,Q
˜

Gβ

β
)–suitable

and (ā, Y
˜

Gβ

β ) is a suitable base for it

and (∀i ∈ Y
˜

Gβ

β )(∀ξ ∈ β ∩ wi)(i ∈ X
˜

Gβ

ξ )”

Let i0 = min{j < λ : β ∈ wj}. We know that the player INC does not have any
winning strategy in the game

G♥
〈Ni[Gβ]:i≤λ〉,D,Y

˜

Gβ
β
\(i0+1),ā

(

Q
˜

Gβ

β
,
(

pi0
proj

Tλ
Ti0

(t
˜

Gβ
β

)
(β)

)Gβ

)

.

Now, using the interpretation of the game presented in A.1.18, we describe a strat-
egy for player INC in this game.

The strategy is: during a play COM constructs a sequence s̄ =
〈s(i) : i < λ〉 of elements of Q

˜

Gβ

β
∪ {∗}, those are his moves; let

ri
def
= projTλTi (t

˜

Gβ

β )⌢s̄↾i ∈ Ti

(more pedantically: Dom(ri) = wi ∩ α = Dom(projTλTi (t
˜

Gβ

β )) ∪ {β},

ri ∈ Ti, projTλTi (t
˜

Gβ

β ) ⊆ ri, ri(β) = s̄↾i),

and at the stage i < λ of the game INC answers with
(

pi+1
ri+1

(β)
)Gβ .

We have to argue that the strategy described above is a legal one, i.e., that it
always tells INC to play legal moves (assuming that COM plays according to the
rules of the game). For this we show by induction on i < λ that really ri ∈ Ti and

that if s(i) 6= ∗, then
(

pi+1
ri+1

(β)
)Gβ ∈ Ni+2[Gβ ] ∩ Q̂

˜

Gβ

β
is the least upper bound of

a Q
˜

Gβ

β
–generic filter over Ni+1[Gβ ] (to which s(i) belongs) and if s(i) = ∗, then

(

pi+1
ri+1

)Gβ is the least upper bound of conditions played by INC so far.

First note that s(i) = ∗ for all i ≤ i0 and therefore ri0+1 ∈ Ti0+1 (just look at the

successor stage of the construction of the Tα’s; remember that dom(t
˜

Gβ

β ) = wλ∩β, so

adding ∗’s at level β is allowed by A.3.6(ε)). Note that pi0+1
ri0+1

(β) = pi0
proj

Tλ
Ti0

(t
˜

Gβ
β

)
(β)

(remember A.3.6(c)(iv)).
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If i < λ is a limit ordinal above i0, and we already know that rj ∈ Tj for each

j < i, then ri ∈ Ti =
←

lim(〈Tj : j < i〉) as clearly

j0 < j1 < i ⇒ proj
Tj1
Tj0

(rj1 ) = rj0 .

Note that, by the limit stage of the construction of the Tα’s and A.3.5(3) (actually
by the construction there), the condition piri(β) is the least upper bound of 〈pjrj (β) :

j < i〉 in Q̂
˜

Gβ

β
.

Suppose now that we have ri ∈ Ti, i0 < i < λ and the player COM plays s(i). If
s(i) = ∗ then easily ri+1 ∈ Ti+1 as adding stars at “top levels” does not make any
problems (compare the case of i0). Moreover, as there, we have then

pi+1
ri+1

(β) = pi
proj

Ti+1
Ti

(ri+1)
(β) = piri(β).

If s(i) 6= ∗, then s(i) ∈ Ni+1[Gβ ] ∩Q
˜

Gβ

β
is a condition stronger than all conditions

played by INC so far, and thus it is stronger than piri(β). Moreover, in this case we

necessarily have i ∈ Y
˜

Gβ

β , so i is limit and therefore wi = wi+1. Hence (∀ξ ∈ wi+1∩

β)(i ∈ X
˜

Gβ

ξ ). By clause (f) for qβ we conclude that (∀ξ ∈ wi+1)((t
˜

Gβ

β )ξ(i) 6= ∗).
Therefore, if we look at the way Ti+1 was constructed, we see that there is no
collision in adding s(i) at the top (i.e., it is allowed by A.3.6(ε)). Thus ri+1 ∈ Ti+1

and by A.3.6(c)(ii) we know that pi+1
ri+1

(β) ∈ Ni+2[Gβ ] ∩ Q̂
˜

Gβ

β
is the least upper

bound of a Q
˜

Gβ

β
–generic sequence over Ni+1[Gβ ] to which s(i) belongs (the last is

due to A.3.6(c)(iii)).
Thus we have proved that the strategy presented above is a legal strategy for

INC. It cannot be the winning one, so there is a play s̄ = 〈s(i) : i < λ〉 (we

give the moves of COM only) in which COM wins. Let tα = t
˜

Gβ

β
⌢s̄; pedantically,

Dom(tα) = Dom(t
˜

Gβ

β ) ∪ {β}, t
˜

Gβ

β ⊆ tα, tα(β) = s̄. We have actually proved that

tα ∈ Tλ =
←

lim(〈Ti : i < λ〉). It should be clear that rkλ(tα) = α and t
˜

Gβ

β = tα↾β.

Further let qα(β) ∈ Q
˜

Gβ

β
be any upper bound of s̄ in Q

˜

Gβ

β
(there is one as COM

wins) and Xβ be the set {i < λ : s(i) 6= ∗} ∈ Dā. Note that then qα(β) is stronger
than all pi

proj
Tλ
Ti

(tα)
(β) (as these are answers of the player INC; see above). Lastly,

if we let Yα = Xβ then we have

qα(β) 

Q
˜

Gβ
β

“the sequence 〈Ni[Gβ ][G
˜ Q

˜

Gβ
β

] : i ≤ λ〉 is suitable and (ā, Yα)

is a suitable base for it and (∀i ∈ Yα)(∀ξ ∈ α ∩ wi)(i ∈ X
˜

Gβ

ξ )”

(compare the arguments in the proof of A.1.13). This is everything we need: as Gβ

was any generic filter containing qβ we may take names t
˜
α, X

˜
β , Y

˜
α for the objects

defined above and the name for qα(β) and conclude that qβ
⌢qα(β) forces that they

are as required.

Case 3: α is a limit ordinal.
Arriving at this stage we have defined qβ , t

˜
β , Y

˜
β and X

˜
β for β ∈ α∩wλ and we are

going to define qα, t
˜
α and Y

˜
α. The first two objects to be defined are determined

by clauses (a)–(d). The only possible problem that may appear here is that we
want t

˜
α to be (a name for) an element of Tλ and thus of V. But by A.3.7(a)

and A.1.10 + A.1.11 we know that the forcing with Pα adds no new sequences
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of length < κ of elements of V (remember κ = λ+). Therefore the sequence
〈t
˜
β : β ∈ wλ ∩ α〉 is a Pα–name for a sequence from V and its limit t

˜
α is forced to

be in Tλ. Now we immediately get that qα, t
˜
α satisfy demands (a)–(f) (for (e) note

that dom(pi
proj

Tλ
Ti

(t
˜
α)

) ⊆ wλ and

(⊠) for each β ∈ α ∩ wλ and i < λ we have dom(pi
proj

Tλ
Ti

(t
˜
β)

) ⊆ wλ and

pi
proj

Tλ
Ti

(t
˜
α)
↾rki(projTλTi (t

˜
β)) = pi

proj
Tλ
Ti

(t
˜
β)

and rki(projTλTi (t
˜
β)) ≥ β,

hence we may use the clause (e) from stages β < α). Finally we let

Y
˜

α
def
= {i < λ : i is limit and (∀ξ ∈ wi ∩ α)(i ∈ X

˜
ξ) and α ∈ wi}.

We have to check that the demand (g) is satisfied. Suppose that Gα ⊆ Pα is a

generic filter over V containing qα. The sequence 〈X
˜

Gα

ξ : ξ ∈ wλ ∩α〉 is a sequence
of length < κ of elements of V, and the forcing with Pα adds no new such sequences.
Consequently

〈X
˜

Gα

ξ : ξ ∈ wλ ∩ α〉 ∈ V.

If for j < λ we let Zj =
⋂

ξ∈wj∩α

X
˜

Gα

ξ we will have

〈Zj : j < λ〉 ∈ V, and (∀j < λ)(Zj ∈ Dā)

(as the filter Dā is λ–complete) and therefore (by the normality of Dā)

Y
˜

Gα
α ⊇ △

j<λ

Zj = {i < λ : i is limit and (∀j < i)(i ∈ Zj)} ∈ Dā.

Next note that (ā, Y
˜

Gα
α ) is a suitable basis for the sequence 〈Ni[Gα] : i ≤ λ〉. Why?

Suppose that i ∈ Y
˜

Gα
α and let t = projTλTi+1

(t
˜
Gα
α ). By the choice of the wi’s we know

that wi+1 = wi (remember i is limit). Since α ∈ wi we have rki+1(t) = α and since

i ∈
⋂

ξ∈wi∩α

X
˜

Gα

ξ we have tξ(i) 6= ∗ for each ξ ∈ wi∩α = wi+1∩α. So look now at the

way we defined p̄i+1: we were at the case when p̄i+1
t was given by A.3.6(c)(ii). In

particular, the condition pi+1
t ∈ P′rki+1(t)

∩Ni+2 generates a Prki+1(t)–generic filter

over Ni+1. We know already that qα, t
˜
α satisfy (e) (or use just (⊠)) and therefore

pi+1
t ∈ Gα. This is enough to conclude that

Ni+1[Gα] ≺ (H(χ),∈, <∗χ), (Ni+1[Gα])<λ ⊆ Ni+1[Gα], Ni+1[Gα] ∩V = Ni+1,

(like in A.1.13) and therefore to finish the construction.

To finish the proof of this case of the theorem note that our demands on con-
ditions qα imply that each of them is (Nλ,Pα)–generic, so in particular qγ is as
required.

(c) The proof is similar to that of case (b) (and is not seriously used). �

Theorem A.3.8. Assume λ<λ = λ, κ = λ+ = 2λ ≤ µ∗. Suppose that S0 ∈
(D<κ,<λ(µ∗))+, Ŝ1 ∈ (Dλ

<κ,<λ(µ∗)[S0])+. Let Q̄ = 〈Pi,Q
˜

i
: i < γ〉 be a (< κ)–

support iteration such that for each i < γ


Pi
“ Q

˜
i
is basically (S0, Ŝ1)–complete”.

Then the forcing notion Pγ is basically (S0, Ŝ1)–complete.
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36 SAHARON SHELAH

Proof. Similar to the proof of A.3.7 (but easier) and not used in our examples, so
we do not give details. �

A.4. The Axiom

Definition A.4.1. Suppose that λ<λ = λ, κ = λ+ = 2λ ≤ µ∗ and θ is a regular
cardinal. Let S0 ∈ (D<κ,<λ(µ∗))+, Ŝ1 ∈ (Dλ

<κ,<λ(µ∗)[S0])+ and let D be a function

from Ŝ1 such that each Dā is a normal filter on λ. Let Axκ
θ (S0, Ŝ1), the forcing axiom

for (S0, Ŝ1) and θ, be the following sentence:

If Q is a really (S0, Ŝ1, D)–complete forcing notion of size ≤ κ and
〈Ii : i < i∗ < θ〉 is a sequence of dense subsets of Q,
then there exist a directed set H ⊆ Q such that

(∀i < i∗)(H ∩ Ii 6= ∅).

Theorem A.4.2. Assume that λ, κ = µ∗, θ and (S0, Ŝ1, D) are as in A.4.1 and

κ < θ = cf(θ) ≤ µ = µκ

(e.g.,

(⊛) S0 ⊆ Sλ
κ , S1 = Sλ

κ\S0 are stationary subsets of κ, S0 = S0, Ŝ1 = {ā : ā is an
increasing continuous sequence of ordinals, a0 ∈ S0, ai+1 ∈ S0, aλ ∈ S1 }).

Then there is a forcing notion P of cardinality µ such that

(α) P satisfies the κ+–cc,

(β) 
P“ S0 ∈ (D<κ,<λ(µ∗))+ & Ŝ1 ∈ (Dλ
<κ,<λ(µ∗)[S0])+ ”, and even more:

(β+) if Ŝ∗1 ⊆ Ŝ1 is such that Ŝ∗1 ∈ (Dλ
<κ,<λ(µ∗)[S0])+,

then 
P Ŝ∗1 ∈ (Dλ
<κ,<λ(µ∗)[S0])+,

(γ) 
P Axκ
θ (Ê0, Ê1),

(δ) if (⊛), then all stationary subsets of κ are preserved.

Proof. It is parallel to B.8.2 which is later done elaborately. �

Case: B

While Case D (see the introduction; κ inaccessible, S has stationary many in-
accessible members) may be treated similarly to Case A, we need to refine our
machinery to deal with Case B. Our prototype here is κ is the first strongly in-
accessible cardinal, however the tools developed in this part will be applicable to
cases A, C, D too (and other strong inaccessibles in Case B, of course).

Our Assumptions 2. κ is a strongly inaccessible cardinal and µ∗ ≥ κ is a regular
cardinal.
These assumptions will be kept in the present part (unless otherwise stated) and
we may forget to remind the reader of them.
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There are two main difficulties which one meets when dealing with the present
case. First problem, a more general one, is that (< µ)–completeness is not reason-
able even for µ = ℵ1. Why? As we would like to force the Uniformization Property
for 〈Sδ : δ ∈ S〉, where S ⊆ {δ < κ : cf(δ) = ℵ0} is stationary not reflecting. The
second problem is related to closure properties of models we consider. In Case A,
when κ = λ+, the demand N<λ ⊆ N was reasonable. If κ is Mahlo, ‖N‖ = N ∩ κ
is an inaccessible cardinal < κ, then the demand N<N∩κ ⊆ N is reasonable too.
However, if κ is the first inaccessible this does not work. (Note that these models
are parallel of countable N ≺ (H(χ),∈, <∗χ) of the case κ = ℵ1.) To handle these

problems we will use exclusively sequences N̄ = 〈Ni : i ≤ α〉 of models and all
action will take place at limit stages only. For example, we will have completeness
for N̄ = 〈Ni : i ≤ ω〉 by looking at Nω, BUT the equivalence class N̄/ ≈ will be
important too, where for two sequences N̄ , N̄ ′ of length ω we write N̄ ≈ N̄ ′ if

(∀n ∈ ω)(∃m ∈ ω)(Nn ⊆ N ′m) and (∀n ∈ ω)(∃m ∈ ω)(N ′n ⊆ Nm)

B.5. More on completeness of forcing notions

In this section we introduce more notions of completeness of forcing notions. In
some sense we will generalize and develop the notions introduced in section A.1.

Definition B.5.1. (1) Let N̄ = 〈Ni : i ≤ α〉 be a sequence of models and
ā = 〈ai : i ≤ α〉 be a sequence of elements of [µ∗]<κ. We say that N̄ obeys
ā with an error n ∈ ω if

(∀i < α)(ai ⊆ Ni ∩ µ∗ ⊆ ai+n).

When we say N̄ obeys ā we mean with some error n ∈ ω.

(2) By C<κ(µ∗) we will denote the collection of all sets Ê such that

Ê ⊆
{

ā = 〈ai : i ≤ α〉 : the sequence ā is increasing continuous,
α < κ and (∀i ≤ α)(ai ∈ [µ∗]<κ & ai ∩ κ ∈ κ)

}

,

and for every regular large enough cardinal χ, for every x ∈ H(χ) and a
regular cardinal θ < κ there are N̄ and ā such that
(a) N̄ = 〈Ni : i ≤ θ〉 is an increasing continuous sequence of elementary

submodels of (H(χ),∈, <∗χ) such that x ∈ N0 and

(∀i < θ)(N̄↾(i + 1) ∈ Ni+1 & ‖Ni‖ < κ),

(b) ā = 〈ai : i ≤ θ〉 ∈ Ê ,
(c) N̄ obeys ā.

(3) If ā ∈ Ê , N̄ is an increasing continuous sequence of elementary submodels
of (H(χ),∈, <∗χ) such that (∀i+ 1 < ℓg(N̄))(N̄↾(i+ 1) ∈ Ni+1 & ‖Ni‖ < κ)

and N̄ obeys ā (with error n, respectively), then we say that (N̄ , ā) is an

Ê–complementary pair (an (Ê , n)–complementary pair, respectively).

(4) We say that a family Ê ∈ C<κ(µ∗) is closed if for every sequence ā = 〈ai :

i ≤ α〉 ∈ Ê and ordinals β, γ such that β + γ ≤ α we have

〈aβ+i : i ≤ γ〉 ∈ Ê

(or, in other words, Ê is closed under both initial and end segments).

Remark B.5.2. (1) Definition B.5.1 is from [14, §1].
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38 SAHARON SHELAH

(2) The exact value of the error n in B.5.1(2) is not important at all, we may
consider here several other variants as well.

(3) Note that Ni, ‖Ni‖ ∈ Ni+1. Sometimes we may add to B.5.1(1) a re-
quirement that 2‖Ni‖ ⊆ ai+n (saying then that N̄ strongly obeys ā). Note
that this naturally occurs for strongly inaccessible κ, as we demand that
ā ∈ Ê ⇒ ai ∩ κ ∈ κ. So then 2‖Ni‖ ∈ ai+n, but ai+n ∩ κ ∈ κ so we
have 2‖Ni‖ ⊆ ai+n.

In this situation, if χ1 < χ are large enough, χ1 ∈ N0 and for non-limit
i, N ′i is the closure of Ni ∩ H(χ1) under Skolem functions and sequences
of length ≤ ‖Ni‖, and for limit i, N ′i = Ni ∩ H(χ1) then the sequence
〈N ′i : i ≤ α〉 will have closure properties and will obey ā (as Ni ∈ Ni+1,
H(χ1) ∈ Ni+1 imply N ′i ∈ Ni+1 and so N ′i ⊆ Ni+n).

(4) The presence of “regular θ < κ” in B.5.1(2) is not accidental; it will be of
special interest when κ is a successor of a singular strong limit cardinal, as
then θ = cf(θ) < κ = µ+ implies θ < µ.

Definition B.5.3. Let Ê ∈ C<κ(µ∗) and let Q be a forcing notion.

(1) Let N̄ = 〈Ni : i ≤ δ〉 be an increasing continuous sequence of elementary
submodels of (H(χ),∈, <∗χ), Q ∈ N0 and p̄ = 〈pi : i < δ〉 be an increasing

sequence of conditions from Q ∩ Nδ, n ∈ ω. We say that p̄ is (N̄ ,Q)n–
generic if for each i < δ

p̄↾(i + 1) ∈ Ni+1 and pi+n ∈
⋂

{I ∈ Ni : I is an open dense subset of Q}.

When we say that p̄ is (N̄ ,Q)∗–generic we mean that it is (N̄ ,Q)n–generic
for some n ∈ ω. We may say then that p̄ is (N̄ ,Q)∗–generic with an error
n.

(2) We say that Q is complete for Ê if for large enough χ, for some x ∈ H(χ)
the following condition is satisfied:

(⊛)Êx if

(a) (N̄ , ā) is an Ê–complementary pair (see B.5.1(3)), ā ∈ Ê , N̄ =
〈Ni : i ≤ δ〉, Q, x ∈ N0, and

(b) p̄ is an increasing (N̄ ,Q)∗–generic sequence,
then p̄ has an upper bound in Q.

(3) We say that a forcing notion Q is strongly complete for Ê if it is complete

for Ê and does not add sequences of ordinals of length < κ.

Remark B.5.4. (1) The x in definition B.5.3(2) is the way to say “for most”,
compare with 0.20.

(2) In the present applications, we will have µ∗ = κ and a stationary set S ⊆ κ
such that

Êc
S

def
=

{

ā : ā an increasing sequence of ordinals from κ \ S
of length < κ with the last element from S

}

will be in C<κ(µ∗). The forcing notions will be complete for Êc
S , so the

iteration will add no new sequences of length < κ (see B.5.6 below). On
S the behavior will be more interesting, as there we shall be doing the
uniformization. Thus the pair (Êc

S , S) corresponds to the pair (S0, Ŝ1) from
the previous part (on Case A).
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For example, if Cδ ⊆ δ = sup(Cδ), otp(Cδ) = cf(δ), (∀δ ∈ S)(cf(δ) < δ)
and hδ : Cδ −→ 2 then

Q = {g : for some α < κ, g : α −→ 2 and
(∀δ ∈ (α + 1) ∩ S)(∀γ ∈ Cδ large enough)(g(γ) = hδ(γ))

}

is such a forcing (but we need that S is not reflecting or 〈Cδ : δ ∈ S〉 is
somewhat free, so that for each α < κ there are g ∈ Q with dom(g) = α).

(3) If we want to have S reflecting on a stationary set though still “thin”, then
things are somewhat more complicated, but manageable, see later.

Proposition B.5.5. Suppose that Ê ∈ C<κ(µ∗) is closed and Q is a forcing notion.

(1) Assume (ā, N̄) is an (Ê , n1)–complementary pair, ā ∈ Ê , N̄ = 〈Ni : i ≤ δ〉,
Q ∈ N0. If p̄ ⊆ Q∩Nδ is (N̄ ,Q)n2–generic (see B.5.3(1)) and q ∈ Q is an
upper bound of p̄ in Q, then

q 
Q “(〈Ni[G
˜

Q] : i ≤ δ〉, ā) is an (Ê , n1 + n2 + 1)–complementary pair”.

(2) If Q is strongly complete for Ê, then 
Q Ê ∈ C<κ(µ∗).

Proof. 1) Since p̄ is (N̄ ,Q)n2–generic, for each i < δ and every Q–name τ
˜
∈ Ni

for an element of V, the condition pi+n2 decides the value of τ
˜

and the decision
belongs to Ni+n2+1 (remember pi+n2 ∈ Ni+n2+1). Now, by standard arguments
(like in the proofs of A.1.13.2 and A.1.13.3) we conclude that for each i < δ

pi+n2+1 
Q “Ni[G
˜

Q] ∩V ⊆ Ni+n2+1 and Ni[G
˜

Q] ≺ (H(χ),∈, <∗χ)V[G
˜

β ] and
〈Nj [G

˜
Q] : j ≤ i〉 ∈ Ni+1[G

˜
Q]”.

Since ai+n2+1 ⊆ Ni+n2+1 ⊆ ai+n2+1+n1 (for i < δ) we get

q 
Q “(〈Ni[G
˜

Q] : i ≤ δ〉, ā) is an (Ê , n1 + n2 + 1)–complementary pair”.

2) Suppose that p 
Q x
˜

∈ H(χ) and let θ < κ be a regular cardinal. Since

Ê ∈ C<κ(µ∗) we can find an (Ê , n1)–complementary pair (N̄ , ā) such that ℓg(N̄) =

ℓg(ā) = θ + 1 and (p, x
˜
,Q, Ê) ∈ N0. Now, by induction on i < θ, we define an

(N̄ ,Q)1–generic sequence p̄ = 〈pi : i < θ〉:

pi ∈ Ni+1 ∩Q is the <∗χ–first element q of Q such that

(i)i p ≤ q and (∀j < i)(pj ≤ q),
(ii)i q ∈

⋂

{I ∈ Ni : I ⊆ Q is open dense}.

To show that this definition is correct we have to prove that, for each i < θ, there
is a condition q ∈ Q satisfying (i)i+(ii)i and p̄↾i ∈ Ni+1. Note that once we know
this, we are sure that the <∗χ–first condition with these properties is in Ni+1 and
therefore p̄↾(i + 1) ∈ Ni+1 too.

There are no problems for i = 0, so suppose that i = i0 + 1 and we have already
defined p̄↾i0 ∈ Ni0+1, and pi0 ∈ Ni0+1, and hence p̄↾(i0 + 1) ∈ Ni0+1 ≺ Ni0+2.
The forcing notion Q does not add new sequences of ordinals of length < κ and
‖Ni0+1‖ < κ. Therefore we find a condition q ∈ Q stronger than pi0 and such that
q decides all Q–names for ordinals from Ni0+1 (i.e., q ∈

⋂

{I ∈ Ni : I ⊆ Q is open
dense}).

Suppose now that we have arrived to a limit stage i and we have defined p̄↾i.
Since 〈Nj : j ≤ i〉 ∈ Ni+1 we know that p̄↾i ∈ Ni+1 (as all the parameters needed
for the definition of p̄↾i are in Ni+1 and we have no freedom left). Note that
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40 SAHARON SHELAH

ā↾(i + 1) ∈ Ê (as Ê is closed), (ā↾(i + 1), N̄↾(i + 1)) is an (Ê , n1)–complementary
pair and the sequence p̄↾i is (N̄↾(i + 1),Q)1–generic. Since Q is strongly complete

for Ê we conclude that there is an upper bound to p̄↾i in Q. Now it should be clear
that such an upper bound pi satisfies (i)i+(ii)i (remember that N̄ is increasing
continuous).

Now look at the sequence p̄ = 〈pi : i < θ〉. Immediately by its definition we see

that p̄ is (N̄↾(i + 1),Q)1–generic. Since Q is strongly complete for Ê we can find
an upper bound q ∈ Q of p̄. Now, by the first part of the proposition, we conclude
that

q 
Q “(〈Ni[G
˜

Q] : i ≤ δ〉, ā) is an (Ê , n1 + 2)–complementary pair”,

which finishes the proof. �

Theorem B.5.6. Suppose that Ê ∈ C<κ(µ∗) is closed and 〈Pi,Q
˜

i
: i < γ〉 is a

(< κ)–support iteration such that for each i < γ


Pi
“the forcing notion Q

˜
i
is strongly complete for Ê”.

Then Pγ is strongly complete for Ê.

Proof. We prove the theorem by induction on γ.

Case 1: γ = 0.
There is nothing to do in this case.

Case 2: γ = β + 1.
By the induction hypothesis we know that Pβ is strongly complete for Ê and there-

fore, by B.5.5, 
Pβ
Ê ∈ C<κ(µ∗).

Clearly the composition of two forcing notions not adding new sequences of length
< κ of ordinals does not add such sequences. Thus what we have to prove is that
Pβ+1 = Pβ ∗Q

˜
β

is complete for Ê (i.e., B.5.3(2)).

Let y ∈ H(χ) be the witness for “Pβ is complete for Ê” and let x
˜

be a Pβ–

name for the witness for “Q
˜

β
is complete for Ê”. We are going to show that the

composition Pβ+1 = Pβ ∗ Q
˜

β
satisfies the condition (⊛)Ê

〈y,x
˜
,Ê,Pβ+1〉

of B.5.3(2). So

suppose that

(a) (N̄ , ā) is an Ê–complementary pair (with an error, say, n1), y, x
˜
, Ê ,Pβ+1 ∈

N0, ℓg(N̄) = ℓg(ā) = δ + 1,
(b) p̄ = 〈pi : i < δ〉 is an increasing (N̄ ,Pβ+1)

n2–generic sequence.

It should be clear that the sequence 〈pi↾β : i < δ〉 is (N̄ ,Pβ)n2–generic. Therefore,

as Pβ is complete for Ê and y ∈ N0, we can find a condition q∗ ∈ Pβ stronger than
all pi↾β (for i < δ). By B.5.5(1) we know that

q∗ 
Pβ
“(〈Ni[G

˜
Pβ

] : i ≤ δ〉, ā) is an (Ê , n1 + n2 + 1)–complementary pair”.

Moreover

q∗ 
Pβ
“〈pi(β) : β<δ〉 is an increasing (〈Ni[G

˜
Pβ

] : i≤δ〉,Q
˜

β
)n2 -generic sequence”.

[Why? Like in A.1.13.4, if I
˜

∈ Ni is a Pβ–name for an open dense subset of Q
˜

β

then the set

{p ∈ Pβ+1 : p↾β 
Pβ
p(β) ∈ I

˜
} ∈ Ni
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is open dense in Pβ+1; now use the choice of q∗.] Consequently, we can find a
Pβ–name τ

˜
for an element of Q

˜
β

such that

q∗ 
Pβ
“(∀i < δ)(pi(β) ≤Q

˜ β
τ
˜

)”.

Let q = q∗ ∪ {(β, τ
˜

)}. Clearly q ∈ Pβ+1 is an upper bound of p̄.

Case 3: γ is a limit ordinal.
Let x

˜
β (for β < γ) be a Pβ–name for the witness for 
Pβ

“Q
˜

β
is complete for Ê”.

Let x = 〈〈x
˜
β : β < γ〉, 〈Pβ,Q

˜
β

: β < γ〉〉.

Claim B.5.6.1. Suppose that (N̄ , ā) is an Ê–complementary pair, ℓg(N̄) = ℓg(ā) =
δ + 1, δ is a limit ordinal and x ∈ N0. Further assume that p̄ = 〈pi : i < δ〉 ⊆ Pγ

is an increasing sequence of conditions from Pγ such that

(a) (∀i < δ)(p̄↾(i + 1) ∈ Ni+1), and
(b) for every β ∈ γ ∩Nδ there are n < ω and i0 < δ such that

(∀i ∈ [i0, δ))(pi+n↾β ∈
⋂

{I ∈ Ni : I is an open dense subset of Pβ}).

Then the sequence p̄ has an upper bound in Pγ.
[Note: we do not put any requirements on meeting dense subsets of Pγ!]

Proof of the claim. We define a condition q ∈ Pγ . First we declare that dom(q) =
Nδ ∩ γ and next we choose q(β) by induction on β ∈ Nδ ∩ γ in such a way that
(∀i < δ)(pi↾β ≤Pβ

q↾β). So suppose that we have defined q↾β ∈ Pβ, β ∈ γ ∩ Nδ.
Let n ∈ ω and i0 < δ be given by the assumption (b) of the claim for β + 1. We
may additionally demand that β ∈ Ni0 . (Note that n, i′0 = min({i : i0 ≤ i, β ∈

Ni}) are good for β too, remember Pβ <◦ Pβ+1.) Since Ê is closed we know that

(N̄↾[i0, δ], ā↾[i0, δ]) is an Ê–complementary pair and the sequence 〈pi↾β : i0 ≤ i < δ〉
is (N̄↾[i0, δ],Pβ)n–generic. Consequently, by B.5.5(1), we get

q↾β 
Pβ
“(N̄ [G

˜
Pβ

]↾[i0, δ], ā↾[i0, δ]) is an Ê–complementary pair”.

Moreover, like in the previous case, the condition q↾β forces (in Pβ) that

“〈pi(β) : i0 ≤ i < δ〉 is an increasing (N̄ [G
˜

Pβ
]↾[i0, δ],Q

˜
β
)n-generic sequence”.

Thus, as x
˜
β ∈ Ni0 and Q

˜
β

is a name for a forcing notion which is complete for Ê

with the witness x
˜
β, we find a Pβ–name q(β) such that

q↾β 
Pβ
“(∀i < δ)(pi(β) ≤Q

˜ β
q(β))”.

Now we finish the proof of the claim noting that if β ∈ γ ∩Nδ is limit and for each
α ∈ β ∩Nδ, q↾α is an upper bound to 〈pi↾α : i < δ〉 then q↾β is an upper bound of
〈pi↾β : i < δ〉 (remember dom(pi) ⊆ Nδ for each i < δ). �

Claim B.5.6.2. Suppose that M ≺ (H(χ),∈, <∗χ), ‖M‖ < κ, x ∈ M and p ∈ Pγ.
Then there is a condition q ∈ Pγ stronger than p and such that

(∀β ∈ M ∩ γ)(q↾β ∈
⋂

{I ∈ M : I is an open dense subset of Pβ}).

Proof of the claim. Let θ = cf(otp(M ∩ γ)) and let 〈γi : i ≤ θ〉 be an increasing
continuous sequence such that γ0 = 0, γθ = sup(M ∩ γ) and γi ∈ M ∩ γ (for non-

limit i < θ). As Ê ∈ C<κ(µ∗), we find N̄ = 〈Ni : i ≤ θ〉 and ā = 〈ai : i ≤ θ〉 ∈ Ê such

that 〈γi : i ≤ θ〉, x, p ∈ N0 and (N̄ , ā) is an Ê–complementary pair and M ⊆ N0.
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The last demand may seem to be too strong, but we use the fact that Ê is closed
and

M ∈ N ′ ≺ N ′′ ≺ (H(χ),∈, <∗χ) & sup(N ′ ∩ κ) ⊆ N ′′ ⇒ M ⊆ N ′.

(Alternatively, first we take an Ê–complementary pair (N̄∗, ā∗) such that ℓg(N̄) =
ℓg(ā) = ‖M‖+ + 1 and 〈γi : i ≤ θ〉, x, p,M ∈ N∗0 . Next look at the model N∗‖M‖+1

– it contains all ordinals below ‖M‖, M and ‖M‖. Hence M ⊆ N∗‖M‖+1. Take

N̄ = N̄∗↾[‖M‖ + 1, ‖M‖ + θ] and ā = ā∗↾[‖M‖ + 1, ‖M‖ + θ].)
Next, by induction on i ≤ θ, we define a sequence 〈pi : i ≤ θ〉 ⊆ Pγ :

pi ∈ Pγ is the <∗χ–first element q of Pγ such that

(i)i p↾γi ≤Pγi
q↾γi and (∀j < i)(pj↾γi ≤Pγi

q↾γi),

(ii)i q↾γi ∈
⋂

{I ∈ Ni : I ⊆ Pγi
is open dense},

(iii)i q↾[γi, γ) = p↾[γi, γ).

We have to show that this definition is correct and for this we prove by induction
on i ≤ θ that there is a condition q ∈ Pγi

satisfying (i)i–(iii)i and p̄↾i ∈ Ni+1. By
the way pi’s are defined we will have that then p̄↾(i + 1) ∈ Ni+1 for i < θ.

If i is not limit (and we have pj for j < i) then there is no problem in finding
the respective condition q once one realizes that, by the inductive hypothesis of
the theorem, the forcing notion Pγi

does not add new sequences of length < κ of
ordinals and ‖Ni‖ < κ. So we just pick up a condition in Pγi

stronger than the
(respective restriction of the) previous condition (if there is any) and which decides
all names for ordinals from Ni. This takes care of (i)i and (ii)i. Next we extend
our condition to a condition in Pγ as the requirement (iii)i demands. Arriving to
a limit stage i we use Claim B.5.6.1. So we have defined p̄↾i and by the way it was
defined we know that p̄↾i ∈ Ni+1 (as all parameters are there). Since Ê is closed we

know that (N̄↾(i + 1), ā↾(i + 1)) is an Ê–complementary pair. Now apply B.5.6.1
to γi, Pγi

, p̄↾i, N̄↾(i + 1) and ā↾(i + 1) in place of γ, Pγ , p̄, N̄ , and ā there. Note
that the assumptions are satisfied: for (b) use the fact that i is limit, so if β < γi
then for some j < i we have β < γj and now this j works as i0 there with n = 1.
Consequently the sequence p̄↾i has an upper bound in Pγi

. Now, similarly as in the
non-limit case, we can find a condition q ∈ Pγ (stronger than this upper bound)
satisfying (i)i–(iii)i.

Now look at the condition pθ ∈ Pγ . If β ∈ M ∩ γ and i < θ is such that
β < γi then pi↾γi decides all Pγi

–names from Ni for ordinals. But M ⊆ N0,
pi↾γi ≤Pγi

pθ↾γi and Pβ <◦ Pγi
. Hence pθ↾β ∈

⋂

{I ∈ M : I ⊆ Pβ is open dense}.
As pθ is stronger than p, this finishes the proof of the claim. �

Claim B.5.6.3. Pγ is complete for Ê .

Proof of the claim. We are going to show that Pγ satisfies the condition (⊛)Ê
〈x,Ê〉

of

B.5.3(2). So suppose that (N̄ , ā) is an Ê–complementary pair, N̄ = 〈Ni : i ≤ δ〉,

x, Ê ∈ N0 and p̄ = 〈pi : i < δ〉 is an increasing (N̄ ,Pγ)n1–generic sequence. For
i < δ let

I∗i
def
=

{

q ∈ Pγ : (∀β ∈ Ni ∩ γ)(q↾β ∈
⋂

{I ∈ Ni : I ⊆ Pβ is open dense in Pβ})
}

.

Note that Claim B.5.6.2 says that each I∗i is an open dense subset of Pγ . Clearly
I∗i is in Ni+1, as it is defined from Ni. Hence, for each i < δ, pi+1+n1 ∈ I∗i . Now
look at the assumptions of Claim B.5.6.1: both (a) and (b) there are satisfied (for
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the second note that if β ∈ Nδ ∩ γ then we may take i0 < δ large enough so that
β ∈ Ni0 and let n = n1 + 1). Thus we may conclude that p̄ has an upper bound in
Pγ . �

Claim B.5.6.4. Forcing with Pγ does not add new sequences of length < κ of
ordinals.

Proof of the claim. First note that for a forcing notion P, “not adding new se-
quences of length θ of ordinals” is equivalent to “not adding new sequences of
length θ of elements of V”. Next note that, for a forcing notion P, if θ is the first
ordinal such that for some P–name τ

˜
and a condition p ∈ P we have

p 
P “τ
˜

: θ −→ V and τ
˜
/∈ V”,

then cf(θ) = θ. [Why? Clearly such a θ has to be limit; if cf(θ) < θ then take an
increasing cofinal in θ sequence 〈ζi : i < cf(θ)〉 and look at 〈τ

˜
↾ζi : i < cf(θ)〉. Each

τ
˜
↾ζi is forced to be in V, so the sequence of them is in V too – a contradiction.]

Consequently it is enough to prove that for every regular cardinal θ < κ, forcing with
Pγ does not add new sequences of length θ of elements of V. So suppose that, for

i < θ, τ
˜
i is a Pγ–name for an element of V, and p ∈ Pγ . Take an Ê–complementary

pair (N̄ , ā) such that N̄ = 〈Ni : i ≤ θ〉 and x, p, 〈τ
˜
i : i < θ〉 ∈ N0 (exists as

Ê ∈ C<κ(µ∗)). Now, by induction on i ≤ θ, define a sequence 〈pi : i ≤ θ〉 ⊆ Pγ :

pi ∈ Pγ is the <∗χ–first element q of Pγ such that

(i)i p ≤Pγ
q and (∀j < i)(pj ≤Pγ

q),
(ii)i if β ∈ Ni ∩ γ then q↾β ∈

⋂

{I ∈ Ni : I ⊆ Pβ is open dense},
(iii)i q decides the value of τ

˜
i (when i < θ).

Checking that this definition is correct is straightforward (compare with the proof of
B.5.6.2). At successor stages i < θ we use B.5.6.2 to show that there is a condition
q′ ∈ Pγ satisfying (i)i+(ii)i and next we extend it to a condition q deciding the
value of τ

˜
i. At limit stages i ≤ θ we know, by the definition of p̄↾i, that for each

j ≤ i, p̄↾j ∈ Nj+1. Moreover, we may apply B.5.6.1 to N̄↾(i + 1), ā↾(i + 1) and p̄↾i
to conclude that p̄↾i has an upper bound q′ ∈ Pγ . Now take q ≥ q′ which decides
the value of τ

˜
i (if i < θ) – it satisfies the demands (i)i–(iii)i.

Finally look at the condition pθ ∈ Pγ : it forces values to all τ
˜
i (for i < θ) and

so pθ 
Pγ
〈τ
˜
i : i < θ〉 ∈ V, finishing the proof of the claim and thus that of the

theorem. �

�

Definition B.5.7. (1) Let C
−
<κ(µ∗) be the family of all subsets of

{

ā = 〈ai : i ≤ α〉 : the sequence ā is increasing continuous,
α < κ and (∀i ≤ α)(ai ∈ [µ∗]<κ & ai ∩ κ ∈ κ)

}

.

(2) Let M̄ = 〈Mi : i ≤ α〉 be an increasing continuous sequence of elementary

submodels of (H(χ),∈, <∗χ), Ê0, Ê1 ∈ C
−
<κ(µ∗). We say that M̄ is ruled by

(Ê0, Ê1) if
(a) M̄↾(i + 1) ∈ Mi+1, ‖Mi‖ < κ and 2‖Mi‖ + 1 ⊆ Mi+1 for all i < α,

(b) 〈Mi ∩ µ∗ : i ≤ α〉 ∈ Ê1,

(c) for each i < α (and we allow i = −1) there is an Ê0–complementary
pair (N̄ i, āi) such that
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44 SAHARON SHELAH

(α) ℓg(N̄ i) = ℓg(āi) = δi + 1, cf(δi) > 2‖Mi‖ and, for simplicity, δi
is additively indecomposable,

(β) M̄↾(i + 1) ∈ N i
0, N

i
δi

= Mi+1 and

(γ) ‖N i
ε‖

2‖Mi‖

+ 1 ⊆ N i
ε+1.

The sequence 〈N̄ i : i < α〉 given by the clause (c) above will be called an

Ê0–approximation to M̄ .
(3) C

♠
<κ(µ∗) is the family of all pairs (Ê0, Ê1) such that Ê0, Ê1 ∈ C

−
<κ(µ∗), Ê0 is

closed and for every large enough regular cardinal χ, for every x ∈ H(χ)

there is a sequence M̄ ruled by (Ê0, Ê1) and such that x ∈ M0 and every

end segment of M̄ is ruled by (Ê0, Ê1) (follows if Ê1 is closed under end
segments).

Remark B.5.8. (1) Condition B.5.7(2)(c) is the replacement for

‖Ni+1‖ = λ and (Ni+1)<λ ⊆ Ni+1

in Case A. Here, there are no natural closed candidates for Mi+1, as in
that case. So we use a relative candidate.

(2) In B.5.7(2)(c)(γ) we may put stronger demands (if required in applications).

For example one may consider a demand that ‖N i
ε‖

h∗(‖Mi‖) + 1 ⊆ N i
ε+1,

for some function h∗ : κ −→ κ.
(3) Note that if (Ê0, Ê1) ∈ C

♠
<κ(µ∗) then necessarily Ê0 ∈ C<κ(µ∗).

[Why? If θ = cf(θ) < κ, x = 〈θ, y〉 then ℓg(N̄ i) > θ.]

(4) Note that in examples there is no need to assume that Ê1 is closed under

end segments as “complete for (Ê0, Ê1)” (see B.5.9) is preserved, as this just
restricts the choice of the “bad guy” INC of i0 (and so p) to those in the
end segment.

Definition B.5.9. Let (Ê0, Ê1) ∈ C
♠
<κ(µ∗) and let Q be a forcing notion.

(1) For a sequence M̄ = 〈Mi : i ≤ δ〉 ruled by (Ê0, Ê1) with an Ê0–approximation

〈N̄ i : i < δ〉 and a condition r ∈ Q we define a game G♠
M̄,〈N̄i:i<δ〉

(Q, r) be-

tween two players COM and INC.
The play lasts δ moves during which the players construct
a sequence 〈i0, p, 〈pi, q̄i : i0 − 1 ≤ i < δ〉〉 such that i0 < δ
is non-limit, p ∈ Mi0 ∩ Q, pi ∈ Mi+1 ∩ Q, q̄i = 〈qi,ε : ε <
δi〉 ⊆ Q (where δi + 1 = ℓg(N̄ i)).
The player INC first decides what is i0 < δ and then it
chooses a condition p ∈ Q ∩ Mi0 stronger than r. Next,
at the stage i ∈ [i0 − 1, δ) of the game, COM chooses
pi ∈ Q ∩Mi+1 such that

p ≤Q pi and (∀j < i)(∀ε < δj)(qj,ε ≤Q pi),

and INC answers choosing an increasing sequence q̄i =
〈qi,ε : ε < δi〉 such that pi ≤Q qi,0 and q̄i is (N̄ i↾[α, δi],Q)∗–
generic for some α < δ.

The player COM wins if it has always legal moves and the sequence 〈pi :
i < δ〉 has an upper bound.

(2) We say that the forcing notion Q is complete for (Ê0, Ê1) if

(a) Q is strongly complete for Ê0 and
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(b) for a large enough regular χ, for some x ∈ H(χ), for every sequence

M̄ ruled by (Ê0, Ê1) with an Ê0–approximation 〈N̄ i : i < δ〉 and such
that x ∈ M0 and for any condition r ∈ Q∩M0, the player INC DOES
NOT have a winning strategy in the game G♠

M̄,〈N̄i:i<δ〉
(Q, r).

Proposition B.5.10. Assume

(a) (Ê0, Ê1) ∈ C
♠
<κ(µ∗),

(b) Q is a forcing notion complete for (Ê0, Ê1).

Then 
Q“ (Ê0, Ê1) ∈ C
♠
<κ(µ∗) ”.

Proof. Straightforward (and not used in this paper). �

B.6. Examples for an inaccessible cardinal κ

Let us look at a variant of the examples presented in section A.2 relevant for our
present case. (Remember B.5.8(4).)

Hypothesis B.6.1. Assume that κ is a strongly inaccessible cardinal, S ⊆ κ is a
stationary set and C̄ = 〈Cδ : δ ∈ S〉 is such that for each δ ∈ S:

Cδ is a club of δ such that otp(Cδ) < δ, moreover for simplicity
otp(Cδ) < min(Cδ), nacc(Cδ) ⊆ κ \ S and
if α ∈ nacc(Cδ), then cf(α) > 2max(α∩Cδ) and S ∩ α is not station-
ary,
if α ∈ acc(Cδ) ∩ S, then Cα = Cδ ∩ α.

[Note that if S does not reflect, then we can ask that the assumption of the second
demand never occurs, hence the second demand holds trivially].
Further we assume that C̄ guesses clubs, i.e.,

if E ⊆ κ is a club,
then the set {δ ∈ S : Cδ ⊆ E} is stationary.

Moreover we demand that for every club E ⊆ κ, the set κ \ S contains arbitrarily
long (but < κ) increasing continuous sequences from E.

Definition B.6.2. Let κ, S, C̄ be as in Hypothesis B.6.1 and let µ∗ = κ.

(1) Define

ÊS
0 =

{

ᾱ = 〈αi : i ≤ γ〉 : ᾱ is an increasing continuous sequence
of ordinals from κ \ S, γ < κ

}

ÊS,C̄
1 =

{

β̄′ : β̄′ is an end segment (not necessarily proper) of β̄⌢〈δ〉,
for some δ ∈ S and β̄ is the increasing enumeration of Cδ

}

.

(2) Suppose that Ā = 〈Aδ : δ ∈ S〉, h̄ = 〈hδ : δ ∈ S〉 and cf(θ) = θ < κ are
such that for each δ ∈ S:

Aδ ⊆ δ, ‖Aδ‖ < θ, hδ : Aδ −→ θ, and sup(Aδ) = δ

(so cf(δ) < θ; we may omit the last demand as only Ā↾S′, for S′ = {δ ∈ S :

δ = supAδ}, affects the forcing). We define a forcing notion Q
S,θ

Ā,h̄
:

a condition in Q
S,θ

Ā,h̄
is a function g : β −→ θ (for some β < κ) such that

(∀δ ∈ S ∩ (β + 1))({ξ ∈ Aδ : hδ(ξ) 6= g(ξ)} is bounded in δ),

the order ≤
Q

S,θ

Ā,h̄

of QS,θ

Ā,h̄
is the inclusion (extension).
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(3) For Ā, h̄ and θ as above and α < κ we let

IĀ,h̄,θ
α

def
= {g ∈ Q

S,θ

Ā,h̄
: α ∈ dom(g)}.

Remark B.6.3. One of the difficulties in handling the forcing notion Q
S,θ

Ā,h̄
is that

the sets IĀ,h̄,θ
α do not have to be dense in Q

S,θ

Ā,h̄
. Of course, if this happens then the

generic object is not what we expect it to be. However, if the set S is not reflecting

and δ ∈ S ⇒ S ∩ acc(Cδ) = ∅, then each IĀ,h̄,θ
α is dense in Q

S,θ

Ā,h̄
and even weaker

conditions are enough for this. One of them is the following:

(∗) 〈Aδ : δ ∈ S〉 is κ–free, i.e., for every α < κ there is a function g such that
dom(g) = S ∩ α and g(δ) < δ and the sets 〈Aδ \ g(δ) : δ ∈ S ∩ α〉 are
pairwise disjoint.

We can of course weaken it further demanding that 〈Aδ : δ ∈ S∩α〉 has uniformiza-
tion. (So if we force inductively on all κ’s this may be reasonable, or we may ask
uniformization just for our hδ’s.)

Proposition B.6.4. (ÊS
0 , Ê

S,C̄
1 ) ∈ C

♠
<κ(µ∗).

Proof. Immediately from its definition we get that ÊS
0 is closed. Suppose now that

χ is a sufficiently large regular cardinal and x ∈ H(χ). First construct an increasing
continuous sequence W̄ = 〈Wj : j < κ〉 of elementary submodels of (H(χ),∈, <∗χ)
such that x ∈ W0 and for each j < κ:

‖Wj‖ < κ, and Wj ∩ κ = ‖Wj‖, and W̄ ↾(j + 1) ∈ Wj+1.

Note that then, for each j < κ, we have 2‖Wj‖ + 1 ⊆ Wj+1. Clearly the set
E = {Wj ∩ κ : j < κ is limit} is a club of κ and so acc(E) is a club of κ as well.
Thus, by our assumptions on C̄ (see B.6.1), we find δ ∈ S such that Cδ ⊆ acc(E)
(then, of course, δ ∈ acc(E) too). Let M̄ = 〈Mi : i ≤ otp(Cδ)〉 be the increasing
enumeration of

{

Wj : j < κ & Wj ∩ κ ∈ Cδ ∪ {δ}
}

.

Fix i < otp(Cδ). Let j′ < j < κ be such that Wj′ = Mi and Wj = Mi+1, and let
α = Mi+1 ∩ κ = Wj ∩ κ. Then α ∈ nacc(Cδ) ∩ acc(E) and, by B.6.1, α /∈ S and
the set S does not reflect at α. Consequently we find a club Ci of α disjoint from
S ∩ α. Let N̄ i = 〈N i

ε : ε ≤ δi〉 be the increasing enumeration of
{

Wξ : j′ < ξ ≤ j & Wξ ∩ κ ∈ Ci ∪ {α}
}

.

(Note that the set above is non-empty as α ∈ acc(E); passing to a cofinal subse-
quence we may demand that δi is additively indecomposable.) We claim that the

sequence M̄ is ruled by (ÊS
0 , Ê

S,C̄
1 ) and 〈N̄ i : i < otp(Cδ)〉 is an ÊS

0 –approximation
to M̄ . For this we have to check the demands of B.5.7(2). By the choice of the Wj ’s
we have that the clause (a) there is satisfied. As 〈Mi ∩κ : i ≤ otp(Cδ)〉 enumerates
Cδ∪{δ} we get the demand (b) there. For the clause (c), fix i < otp(Cδ) and look at
the way we defined N̄ i = 〈N i

ε : ε ≤ δi〉. For each ε ≤ δi, N
i
ε ∩ κ ∈ Ci ∪{α} ⊆ κ \S.

Hence (N̄ i, 〈N i
ε ∩ κ : ε ≤ δi〉) is an ÊS

0 –complementary pair. Moreover,

cf(δi) = cf(α) > 2max(α∩Cδ) = 2Mi∩κ = 2‖Mi‖

(by B.6.1) and δi is additively indecomposable. This verifies (c)(α). The clauses
(c)(β) and (c)(γ) should be clear by the choice of the Wj ’s and that of N̄ i. �
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Proposition B.6.5. Suppose that Ā, h̄, θ are as in B.6.2(2) and for each α < κ

the set IĀ,h̄,θ
α (see B.6.2(3)) is dense in Q

S,θ

Ā,h̄
(e.g., S does not reflect). Then the

forcing notion Q
S,θ

Ā,h̄
is complete for (ÊS

0 , Ê
S,C̄
1 ).

Proof. We break the proof to three steps checking the requirements of B.5.9(2).

Claim B.6.5.1. Q
S,θ

Ā,h̄
is complete for ÊS

0 .

Proof of the claim. Suppose that (N̄ , ā) is an ÊS
0 –complementary pair, N̄ = 〈Ni :

i ≤ δ〉 and p̄ = 〈pi : i ≤ δ〉 ⊆ Q
S,θ

Ā,h̄
is an increasing (N̄ ,QS,θ

Ā,h̄
)n–generic sequence.

Let p
def
=

⋃

i<δ

pi. Note that p is a function from dom(p) =
⋃

i<δ

dom(pi) to θ. Moreover,

as the sets IĀ,h̄,θ
α are dense in Q

S,θ

Ā,h̄
(and IĀ,h̄,θ

α ∈ Ni if α ∈ Ni ∩ κ), we have

Ni ∩ κ ⊆ dom(pi+n) ⊆ Ni+n+1. Hence

dom(p) =
⋃

i<δ

Ni ∩ κ = Nδ ∩ κ ∈ κ.

Note that Nδ ∩κ /∈ S (by the definition of ÊS
0 ). Suppose that α ∈ S ∩ (dom(p) + 1),

so α ∈ dom(p). Then for some i < δ we have α ∈ dom(pi) and, as pi ∈ Q
S,θ

Ā,h̄
, the

set {ξ ∈ Aα : hα(ξ) 6= p(ξ) = pi(ξ)} is bounded in α. This shows that p ∈ Q
S,θ

Ā,h̄

and clearly it is an upper bound of p̄. �

Claim B.6.5.2. Forcing with Q
S,θ

Ā,h̄
does not add new sequences of length < κ of

ordinals.

Proof of the claim. Suppose that ζ < κ and τ
˜

is a Q
S,θ

Ā,h̄
–name for a function from

ζ to ordinals, p ∈ Q
S,θ

Ā,h̄
. Take an increasing continuous sequence W̄ = 〈Wj : j < κ〉

of elementary submodels of (H(χ),∈, <∗χ) such that Q
S,θ

Ā,h̄
, p, τ

˜
∈ W0, ζ + 1 ⊆ W0

and for each j < κ

‖Wj‖ < κ, and Wj ∩ κ = ‖Wj‖, and W̄ ↾(j + 1) ∈ Wj+1.

Look at the club E = {Wj ∩ κ : j < κ}. By the last assumption of B.6.1 we find
an increasing continuous sequence 〈jξ : ξ ≤ ζ〉 such that {Wjξ ∩ κ : ξ ≤ ζ} ∩ S = ∅.
Now we build inductively an increasing sequence 〈pξ : ξ ≤ ζ〉 of conditions from

Q
S,θ

Ā,h̄
such that p ≤

Q
S,θ

Ā,h̄

p0 and for each ξ < ζ:

(1) pξ ∈ Wjξ+1
,

(2) pξ forces a value to τ
˜

(ξ), and
(3) Wjξ ∩ κ ⊆ dom(pξ).

There are no problems with carrying out the construction. At a non-limit stage ξ,
we may easily choose a condition pξ in Wjξ+1

stronger than the condition chosen

before (if any) and such that Wjξ ∩ κ ⊆ dom(pξ) (remember that IĀ,h̄,θ
Wjξ
∩κ ∈ Wjξ+1

is a dense subset of Q
S,θ

Ā,h̄
) and pξ decides the value of τ

˜
(ξ). Arriving at a limit

stage ξ ≤ ζ we take the union of conditions chosen so far and we note that it is a

condition in Q
S,θ

Ā,h̄
as

dom(
⋃

i<ξ

pi) =
⋃

i<ξ

dom(pi) =
⋃

i<ξ

Wji ∩ κ = Wjξ ∩ κ /∈ S.
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48 SAHARON SHELAH

Now proceed as in the successor case. Finally look at the condition pζ – it decides
the value of τ

˜
(and is stronger than p). �

Claim B.6.5.3. Assume that M̄ = 〈Mi : i ≤ δ〉 is an increasing continuous

sequence of elementary submodels of (H(χ),∈, <∗χ) ruled by (ÊS
0 , Ê

S,C̄
1 ) with an

ÊS
0 –approximation 〈N̄ i : i < δ〉 and such that S, ÊS

0 , Ê
S,C̄
1 , Ā, h̄, θ,QS,θ

Ā,h̄
∈ M0.

Let r ∈ Q
S,θ

Ā,h̄
∩ M0. Then the player COM has a winning strategy in the game

G♠
M̄,〈N̄i:i<δ〉

(QS,θ

Ā,h̄
, r).

Proof of the claim. First, we are going to describe a strategy for player COM in

the game G♠
M̄,〈N̄i:i<δ〉

(QS,θ

Ā,h̄
, r), and then we will show that it is a winning one.

Since 〈Mi : i ≤ δ〉 ∈ ÊS,C̄
1 and for each α ∈ S, otp(Cα) < α (see B.6.1) we know

that δ = otp(CMδ∩κ) < Mδ ∩ κ ∈ S. Recall otp(Cδ) < min(Cδ). Let

Z
def
=

⋃

{AMi∩κ : i ≤ δ & Mi ∩ κ ∈ S}.

Note that ‖Z‖ ≤ δ · θ < ‖Mi0‖. By induction on i ≤ θ+ choose an increasing
continuous sequence 〈Zi : i ≤ θ+〉 of subsets of κ such that Z0 = Z and Zi+1 =
Zi ∪

⋃

{Aα : α ∈ S & α = sup(Zi ∩ α)}. Clearly ‖Zi‖ ≤ δ · θ · ‖i‖ for each i ≤ θ+

and if α = sup(α ∩ Zθ+) then Aα ⊆ Zθ+ . So as ‖Aα‖ ≤ θ we have

α ∈ S & α = sup(Zθ+ ∩ α) ⇒ Aα ⊆ Zθ+ .

Now, in his first move, player INC chooses non-limit i0 < δ and p ∈ Q
S,θ

Ā,h̄
∩ Mi0

stronger than r. We have assumed that each IĀ,h̄,θ
ξ (for ξ < κ) is dense in Q

S,θ

Ā,h̄
, so

we have a condition p+ ∈ Q
S,θ

Ā,h̄
stronger than p and such that Mδ∩κ ∈ dom(p+). In

the next steps, the strategy for COM will have the property that for each i ≥ i0−1

it says COM to play a condition pi ∈ Q
S,θ

Ā,h̄
such that

(⊡)i Zθ+ ∩Mi+1 ⊆ dom(pi) and pi↾Zθ+ = p+↾(Zθ+ ∩Mi+1).

So, first the player COM chooses a condition pi0−1 ∈ Mi0 ∩ Q
S,θ

Ā,h̄
stronger than p

and such that

Zθ+ ∩Mi0 ⊆ dom(pi0) and pi0↾(Zθ+ ∩Mi0) = p+↾(Zθ+ ∩Mi0).

Why is it possible? We know that

‖Zθ+ ∩Mi0‖ ≤ θ+ < M0 ∩ κ ≤ ‖Mi0‖ < cf(δi0−1)

(where δi0−1 + 1 = ℓg(N̄ i0−1)) and therefore Zθ+ ∩Mi0 ⊆ N i0−1
ε for some ε < δi0 .

Taking possibly larger ε we may have dom(p) ⊆ N i0−1
ε too. Let p′ ∈ N i0−1

ε+1 ∩Q
S,θ

Ā,h̄

be such that p ≤ p′ and N i0−1
ε ∩ κ ⊆ dom(p′). Let

pi0 = p′↾(dom(p′) \ Zθ+ ∪ p+↾Zθ+ ∩N i0−1
ε .

Note that pi0 : dom(pi0) −→ θ is a well defined function such that pi0 ∈ N i0−1
ε+1

(for the last remember B.5.7(2)(c)(γ): we are sure that Zθ+ ∩N i0−1
ε ∈ N i0−1

ε+1 and

p+↾(Zθ+ ∩ N i0−1
ε ) ∈ N i0−1

ε+1 , as ‖N i0−1
ε ‖δ·θ

+

+ 1 ⊆ N i0−1
ε+1 ). Finally, to check that

pi0 is a condition in Q
S,θ

Ā,h̄
suppose that γ ∈ S ∩ (dom(pi0−1) + 1). If Aγ ⊆ Zθ+

then pi0↾Aγ = p+↾Aγ and the requirement of B.6.2(2) is satisfied. If Aγ is not
contained in Zθ+ then necessarily Zθ+ ∩ γ is bounded in γ and we use the fact that

pi0−1↾(Aγ \ Zθ+) = p′↾(Aγ \ Zθ+), p′ ∈ Q
S,θ

Ā,h̄
.
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At a stage i ∈ [i0, δ) of the game the player COM applies a similar procedure, but
first it looks at the union p∗i =

⋃

j<i

⋃

ε<δj

qj,ε of all conditions played by his opponent

so far. If i is not limit then, directly from B.6.5.1, we know that p∗i is a condition

in Q
S,θ

Ā,h̄
(stronger than r). But what if i is limit? In this case the demands (⊡)j for

j < i help. The only possible trouble could come from AMi∩κ when Mi∩κ ∈ S. But
then the set Zθ+ contains AMi∩κ and, by (⊡)j for j < i, p∗i ↾AMi∩κ = p+↾AMi∩κ.
This implies that the set

{ξ ∈ AMi∩κ : hMi∩κ(ξ) 6= p∗i (ξ)}

is bounded in Mi ∩ κ. Hence easily p∗i ∈ Q
S,θ

Ā,h̄
. Next, player COM extends the

condition p∗i to pi ∈ N i
ε+1 ∩ Q

S,θ

Ā,h̄
(for some ε < δi) such that the demand (⊡)i is

satisfied, applying a procedure similar to the one described for getting pi0 .
Why is the strategy described above a winning strategy? Suppose that 〈pi :

i0 − 1 ≤ i < δ〉 is a sequence constructed by COM during a play in which it uses
this strategy. As it is an increasing sequence of conditions and

⋃

i<δ

dom(pi) = Mδ∩κ,

the only thing we should check is that the set

{ξ ∈ AMδ∩κ : hMδ∩κ(ξ) 6= (
⋃

i<δ

pi)(ξ)}

is bounded in Mδ ∩ κ. But by the choice of Z ⊆ Zθ+ , and by keeping the demand
(⊡)i (for i < δ) we know that

{ξ ∈ AMδ∩κ : hMδ∩κ(ξ) 6= (
⋃

i<δ

pi)(ξ)} ⊆ {ξ ∈ AMδ∩κ : hMδ∩κ(ξ) 6= p+(ξ)},

so the choice of p+ works.
This finishes the proof of the claim and that of the proposition. �

�

Now, let us turn to the applications for Abelian groups (i.e., the forcing notions
needed for 0.11). We continue to use Hypothesis B.6.1.

Definition B.6.6. Assume that G is a strongly κ–free Abelian group and h :

H
onto
−→ G is a homomorphism onto G with kernel K of cardinality < κ. We define

a forcing notion Ph,H,G:
a condition in Ph,H,G is a function q such that

(a) dom(q) is a subgroup of G of size < κ,
(b) G/dom(q) is κ–free,
(c) q is a lifting for dom(q) and h : H −→ G;

the order ≤Ph,H,G
of Ph,H,G is the inclusion (extension).

Hypothesis B.6.7. Let Ḡ = 〈Gi : i < κ〉 be a filtration of G, Γ[G] ⊆ S (modulo
the club filter on κ). So, γ[Ḡ] ⊆ S and without loss of generality, γ[Ḡ] is a set of
limit ordinals. Let h−1[Gi] = Hi.

Proposition B.6.8. For each α < κ the set

P∗h,H,G
def
= {q ∈ Ph,H,G : (∃i < κ)(dom(q) = Gi+1 & i ≥ α}

is dense in Ph,H,G.
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50 SAHARON SHELAH

Proof. Let q ∈ Ph,H,G and let i < κ be such that dom(q) ⊆ Gi and i ≥ α. Then
G/dom(q) is κ–free and so Gi+1/dom(q) is free. Now consider the mapping x 7→
x+ dom(q) : Gi+1 −→ Gi+1/dom(q). So by 0.8 we get that Gi+1 = dom(q) +L for
some free L (L ∼= Gi+1/dom(q)). Consequently, there is a lifting f of L and now
〈f, q〉 extends q and it is in P′h,H,G. �

Proposition B.6.9. The forcing notion Ph,H,G is strongly complete for ÊS
0 .

Proof. The two parts, not adding bounded subsets of κ and completeness for ÊS
0 ,

are similar to those for uniformization, so we do just the second.
Assume now that χ is a regular large enough cardinal, Ni ≺ (H(χ),∈, <∗χ),

N̄ = 〈Ni : i ≤ δ〉, N̄↾(i + 1) ∈ Ni+1, Ni ∩ κ ∈ κ is limit, N̄ obeys ā ∈ ÊS
0 and

p̄ = 〈pi : i < δ〉 is generic for N̄ with error n, let γi be such that dom(pi) = Gγi+1

if possible, zero otherwise (no big lost if we assume that always the first possibility
occurs). In particular, pi ∈ Ni+1 and as γi is computable from Ḡ, pi we know that
γi ∈ Ni+1.

Let βi = sup(Ni∩κ) (so the sequence 〈βi : i ≤ δ〉 is increasing continuous). Note
that

pi+n ∈
⋂

{I ∈ Ni+1 : I ⊆ P′h,H,G is open dense}

and Ni, βi ∈ Ni+1. Moreover, the set

Iβi
= {q ∈ P′h,H,G : dom(q) ⊇ Gβi

and Dom(q) = γ + 1 for some ordinal γ}

is open dense in P′h,H,G. So pi+n ∈ Iβi+1 ∈ Ni+1 and γi+n > βi. Now, dom(
⋃

i<δ

pi) =

G ⋃

i<δ

(γi+1) and
⋃

i<δ

(γi + 1) =
⋃

i<δ

βi = Nδ ∩ κ. Since Nδ ∩ κ /∈ S and S ⊇ Γ[G] we

conclude Nδ ∩ κ /∈ Γ[G], and thus GNδ∩κ+1/GNδ∩κ is free. So we can complete to
a condition. �

Proposition B.6.10. The forcing notion Ph,H,G is complete for (ÊS
0 , Ê

S
1 ).

Proof. Suppose that M̄ = 〈Mi : i ≤ δ〉 is ruled by (ÊS
0 , Ê

S
1 ). So Mi ∩ κ = ai and

Mi+1 =
⋃

ζ<cf(ai+1)

N i
ζ and (N̄ i, b̄i) is an ÊS

0 –complementary pair, b̄i ∈ ÊS
0 (also for

i = −1).
We are dealing with the case δ ∈ M0. Recall:

Claim B.6.10.1. There is G+
i such that Gi ⊆ G+

i ⊆ Gi+1, ‖G
+
i ‖ ≤ ‖Gi‖+ℵ0 and

Gi+1/G
+
i is free. (Of course if i /∈ S is non-limit then G+

i /Gi is free.)

Proof of the claim. Since Gi+1 is free we may fix a basis 〈xi,ε : ε < εi+1〉 of it.
Choose Ai ⊆ εi+1 such that ‖Ai‖ ≤ ‖Gi‖ and Gi ⊆ 〈{xi,ε : ε ∈ Ai}〉G (and call the

last group G+
i ). Then Gi+1/G

+
i is freely generated by {xi,ε + G+

i : ε ∈ εi+1 \ Ai}.
The claim is proved. �

Let H+
α = h−1[G+

α ] and wlog 〈Gi, G
+
i : i < κ〉 ∈ M0.

Thus if i < j then Gj/G
+
i is free. All action will be in G+

ai
/Gai

for limit i ≤ δ.
Necessarily ai is a singular cardinal of small cofinality (≤ δ < a0). [Remember
ai = Mi ∩ κ and sup(Mi ∩ κ) is a limit cardinal. Why? If not then there is a
cardinal λ such that λ < sup(Mi ∩ κ) < λ+, so there is γ ∈ Mi ∩ κ such that
λ < γ < sup(Mi ∩ κ) < λ+. Hence λ+ = ‖γ‖+ ∈ Mi, a contradiction.]
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We may have “a difficulty” in defining p↾G+
ai

, so we should “think” about it
earlier. This will mean defining p↾Gaj+1 , j < i. The player COM can give only
a condition in Mj+1, and we will arrange that our “prepayments” are of “size” aj
(so bounded in Mj+1 and thus included in some N j

ζ , ζ < cf(aj+1); they will even

belong to it).
Let r ∈ P′h,H,G ∩M0. [Remember: Ga0/dom(r) is free, so there is a lifting.] Let

INC choose non-limit i0 < δ and p′0 ∈ Mi0 ∩ Ph,H,G above p, and q̄0 = 〈qi0,ζ : ζ <
δi0−1〉 generic for some end segment of N̄i0−1.

We choose by induction on i ≤ δ models Bi ≺ (H(χ),∈, <∗χ) such that

• Ḡ, M̄, 〈N̄ i : i ≤ δ〉, 〈Hi : i ≤ δ〉, . . . ∈ Bi,
• the sequence 〈Bi : i ≤ δ〉 is increasing (but not continuous),
• ‖Bi‖ = ai, ai + 1 ⊆ Bi and 〈Bj : j < i〉 ∈ Bi,
• Bi ∩Mj ∈ Mj+1 if i < j.

(But see for additional requirements later.)
The rest of the moves are indexed by i ∈ [i0 − 1, δ) and in the ith move COM

chooses pi ∈ Mi and INC plays q̄i = 〈qiζ : ζ < δi〉 as in the definition of the game.

Now COM will choose on a side also fi ∈ Ph,H,G for i ∈ [i0 − 1, δ) such that
additionally:

(∗)1 fi ∈ Ph,H,G is a function with domain Bi ∩G+
aδ

, increasing with i,
(∗)2 ai ⊆ dom(fi),
(∗)3 fi↾ai+1 = fi↾(ai+1 ∩ Bi) belongs to Ph,H,G and is below pi.

Note that

(⊕) Bj ∩Mj+1∩G+
aδ

is a subset of GMj+1∩κ of cardinality ‖Mj‖ < cf(δj), hence
it belongs to Mj+1.

For i = i0 − 1 let fi0−1 ∈ Ph,H,G be above p and have domain Bi0−1 ∩G+
aδ

, and let

pi0−1 = f0↾(Bi0−1 ∩ G+
aδ

∩ Mi0). Clearly [Mi0 ]2
‖Mi0−1‖

⊆ Mi0 , and ‖Bi0−1‖ = ai
and pi0−1 is a function extending p, its domain belongs to Mi0 and it is a subgroup
of G+

aδ
. Consequently, pi0−1 a lifting and is in Mi0 . By manipulating bases (or see

[11]) we have

• Dom(p) ⊆ Dom(fi) ⊆ G+
aδ

,

• G+
aδ
/Dom(fi) = G+

aδ
/(G+

aδ
∩ Bi0−1) is free as G+

aδ
is free and G+

aδ
∈ Bi0−1,

• Dom(fi)/Dom(pi) is free as it is equal to G+
aδ

∩ Bi0−1/G
+
aδ

∩ Bi0−1 ∩Mi0)

and G+
aδ

∩Mi0 ⊆ G+
aδ

and they belong to Bi0−1, and G+
aδ
/(G+

aδ
∩ Mi0) is

free as Mi0 ∩ κ /∈ S, so κ–free.

For i = j + 1 ≥ i0 we have fj , pj and q̄′j = 〈qjζ : ζ < δj〉. Let q′j =
⋃

ζ<δj

qζ . So as

dom(q′j) = aj+1 = ai /∈ S (by the choice of Ê1), clearly q′j ∈ Ph,H,G. We have to find
pi ∈ Ph,H,G∩Mi+1 above q′j and fj↾Mi+1 (and then choose fi). Clearly the domains

of q′j , fj↾Mi+1 are pure subgroups, Dom(q′j) = G ∩ Mi = GMi∩κ = Gai
and pi,

fj↾Mj agree on their intersection (which is Bj ∩Mj+1). Hence there is a common
extension p′i, a homomorphism from Gai

+ (Bj ∩ Mi+1) to H , which clearly is a
lifting. Does p′i ∈ Ph,H,G? For this it suffices to show that the group G+

aδ
/dom(p′i) is

free. But G+
aδ
/G+

aj+1
is free, hence (G+

aδ
/Gaj+1)/Bj ∩ (G+

aδ
/Gaj+1) is free (see [11]).

Therefore G+
aδ
/(Bj∩G+

aδ
+Gaj+1) is free. Also (Bj∩G+

aδ
+Gaj+1)/(Bj∩Gai+1+Gaj+1)

is free (see [11]). Together, G+
aδ
/(Bj ∩Gai+1 + Gaj+1) is free as required.
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52 SAHARON SHELAH

We are left with the case of limit i. Let q′i =
⋃

{q′j : i0 − 1 ≤ j < i}. Then q′i is a

lifting for Gai
. Now clearly f ′i =

⋃

{fj : i0 − 1 ≤ j < i} is a lifting for G+
aδ

∩
⋃

j<i

Bj,

also G+
aδ
/dom(f ′i) is free (see [11]) and G+

ai
∈ B0, ‖G+

ai
‖ = ‖Gai

‖ ⊆
⋃

j<i

Bj . Hence

G+
ai

⊆
⋃

j<i

Bj and therefore G+
ai

⊆ dom(f ′i) and we can proceed to define pi as above.

Having finished the play, again
⋃

{fj : i0 − 1 ≤ j < δ} ∈ Ph,H,G (as in the limit
case) is an upper bound as required. �

Remark B.6.11. In this section, we can replace Ê1 by any ÊS
1 defined below (or any

subset which is rich enough):

ÊS
1 =

{

ᾱ = 〈αi : i ≤ δ〉 : ᾱ is an increasing continuous sequence
of ordinals from κ, ai+1 /∈ S, cf(ai+1) > ai and
S ∩ ai+1 not stationary

}

.

B.7. The iteration theorem for inaccessible κ

In this section we prove the preservation theorem needed for our present case.
Like in Case A, we will use trees of conditions. So, our way to prove the iteration
theorem will be parallel to that of Case A.

Proposition B.7.1. Assume that Ê ∈ C<κ(µ∗) is closed and Q̄ = 〈Pα,Q
˜

α
: α < γ〉

is a (< κ)–support iteration of forcing notions which are strongly complete for Ê.
Let T = (T,<, rk) be a standard (w,α0)γ–tree (see A.3.3), ‖T ‖ < κ, w ⊆ γ, α0 an
ordinal, and let p̄ = 〈pt : t ∈ T 〉 ∈ FTr′(Q̄). Suppose that I is an open dense subset
of Pγ . Then there is q̄ = 〈qt : t ∈ T 〉 ∈ FTr′(Q̄) such that p̄ ≤ q̄ and for each t ∈ T

(1) qt ∈ {q↾rk(t) : q ∈ I}, and
(2) for each α ∈ dom(qt), either qt(α) = pt(α) or 
Pα

qt(α) ∈ Q
˜

α
(not just in

the completion Q̂
˜

α
).

Proof. Let 〈ti : i < i(∗)〉 be an enumeration of T such that

(∀i, j < i(∗))(ti < tj ⇒ i < j).

We are proving the proposition by induction on i(∗).

Case 1: i(∗) = 1.
In this case T = {〈〉} and we have to choose q〈〉 only, but this is easy, as the set
{q↾rk(〈〉) : q ∈ I} is open dense in Prk(〈〉).

Case 2: i(∗) = i0 + 1 > 1.
Let T ∗ = {ti : i < i0} and let T ∗ = T ↾T ∗. Then T ∗ is a standard (w,α0)γ–tree
to which we may apply the inductive hypothesis. Consequently we find 〈q∗t : t ∈
T ∗〉 ∈ FTr′(Q̄) such that for each t ∈ T ∗:

(1) pt ≤ q∗t ∈ {q↾rk(t) : q ∈ I}, and
(2) for each α ∈ dom(q∗t ), either q∗t (α) = pt(α) or 
Pα

q∗t (α) ∈ Q
˜

α
.

Let q0 =
⋃

{q∗s : s < ti0} (note that s < ti0 ⇒ s ∈ T ∗; and also s1 < s2 <
ti0 implies q∗s1 = q∗s2↾rk

′(s1), hence easily q0 ∈ P′rk(ti0 )
). Clearly q0 and pti0 are

compatible (actually q0 is stronger then the suitable restriction of pti0 ) and therefore

we may find a condition qti0 ∈ Prk(ti0)
(note: no primes now) such that qti0 ∈
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{q↾rk(ti0) : q ∈ I} and qti0 stronger than both q0 and pti0 . Next, for each t ∈ T ∗

let

qt
def
= qti0 ↾rk(t ∩ ti0) ∪ q∗t ↾[rk(t ∩ ti0), γ) ≥ q∗t ≥ pt.

One easily checks that q̄ = 〈qt : t ∈ T 〉 is as required.

Case 3: i(∗) is a limit ordinal.
Let θ = cf(i(∗)) and let 〈iζ : ζ ≤ θ〉 be an increasing continuous sequence, i0 = 0,
iθ = i(∗). For α < γ, let x

˜
α be a Pα–name for a witness that Q

˜
α

is (forced to be)

strongly complete for Ê and let x = 〈x
˜
α : α < γ〉. Take an Ê–complementary pair

(N̄ , ā) of length θ such that 〈iζ : ζ < θ〉, p̄, Q̄, Ê , x, T ∈ N0 and ‖T ‖ ⊆ N0 (exists

as Ê ∈ C<κ(µ∗) is closed: first take a complementary pair of length ‖T ‖+ and then
restrict it to the interval [‖T ‖ + 1, ‖T ‖ + θ]).

By induction on ζ ≤ θ we define a sequence 〈q̄ζ : ζ ≤ θ〉:

q̄ζ = 〈qζt : t ∈ T 〉 is the <∗χ–first sequence r̄ = 〈rt : t ∈ T 〉 ∈

FTr′(Q̄) such that

(i)ζ for every t ∈ T : pt ≤ rt and (∀ξ < ζ)(qξt ≤ rt) and if α ∈
dom(rt), pt(α) 6= rt(α), then rt(α) is a name for an element
of Q

˜
α

(not the completion),

(ii)ζ if iζ ≤ i < i(∗) and sup{rk(tj) : j < iζ & tj < ti} ≤ α <
rk(ti), then rti(α) = pti(α),

(iii)ζ if i < iζ , then

rti ∈
⋂

{

J ∈ Nζ : J ⊆ Prk(ti) is open dense
}

.

To show that this definition is correct we have to prove that arriving at a stage
ζ ≤ θ of the construction we may find r̄ satisfying (i)ζ–(iii)ζ . Note that once we
know that we may define q̄ξ for ξ ≤ ζ, we are sure that 〈q̄ξ : ξ ≤ ζ〉 ∈ Nζ+1

(remember N̄↾(ζ + 1) ∈ Nζ+1). Similarly, arriving at a limit stage ζ < θ we are
sure that 〈q̄ξ : ξ < ζ〉 ∈ Nζ+1.

Stage ζ = 0.
Look at r̄ = p̄: as i0 = 0, the clause (iii)0 is empty and (i)0, (ii)0 are trivially
satisfied.

Stage ζ = ξ + 1.

Let T ∗ = {ti : i < iζ}, p̄∗ = 〈qξt : t ∈ T ∗〉. We may apply the inductive hypothesis
to T ∗, p∗ and

I∗
def
=

⋂

{

J ∈ Nζ : J ⊆ Pγ is open dense
}

(remember iζ < i(∗) and Pγ does not add new < κ–sequences of ordinals, see B.5.6,
so I∗ is open dense). Consequently we find s̄ = 〈st : t ∈ T ∗〉 ∈ FTr′(Q̄) such that
for each t ∈ T ∗:

• qξt ≤ st ∈ {q↾rk(t) : q ∈ I∗}, and

• for each α ∈ dom(st), either qξt (α) = st(α) or 
Pα
st(α) ∈ Q

˜
α

.

For t ∈ T \ T ∗ let αt = sup{rk(ti) : i < iζ & ti < t}. Note that, for t ∈ T \ T ∗,
⋃

{sti : i < iζ & ti < t} is a condition in P′αt
stronger than qξt ↾αt. So let

rt =
⋃

{sti : i < iζ & ti < t} ∪ qξt ↾[αt, γ) =
⋃

{sti : i < iζ & ti < t} ∪ pt↾[αt, γ)

for t ∈ T \ T ∗ and rt = st for t ∈ T ∗. It should be clear that r̄ = 〈rt : t ∈ T 〉 ∈
FTr′(Q̄) satisfies the demands (i)ζ–(iii)ζ .
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54 SAHARON SHELAH

Stage ζ is a limit ordinal.
As we noted before, we know that 〈q̄ε : ε ≤ ξ〉 ∈ Nξ+1 for each ξ < ζ. Hence, as
T ⊆ N0 (remember ‖T ‖ ⊆ N0 and T ∈ N0), we have 〈qεt : ε ≤ ξ〉 ∈ Nξ+1 for each
t ∈ T and ξ < ζ. Fix i < iζ and let ξ < ζ be such that i < iξ. Look at the sequence
〈qεti : ξ ≤ ε < ζ〉. By the choice of q̄ε (see demands (i)ε and (iii)ε) we have that it

is an increasing (N̄↾[ξ, ζ),Prk(ti))
∗–generic sequence (note no primes; if we are not

in Q
˜

α
, then the value is fixed). By B.5.6 the forcing notion Prk(ti) is complete for

Ê (and Nξ contains the witness), so 〈qεti : ξ ≤ ε < ζ〉 has an upper bound in Prk(ti).
Moreover, for each α < rk(ti), if q ∈ Pα is an upper bound of 〈qεti↾α : ε < ζ〉, then

q 
Pα
“the sequence 〈qεti(α) : ε < ζ〉 has an upper bound in Q

˜
α

”.

Now, for t ∈ T we may let dom(rt) =
⋃

ε<ζ

dom(qεt ) and define inductively rt(α) for

α ∈ dom(rt) by

if (∀ε < ζ)(qεt (α) = pt(α)), then rt(α) = pt(α), and otherwise
rt(α) is the <∗χ–first Pα–name for an element of Q

˜
α

such that

rt↾α 
Pα
(∀ε < ζ)(qεt (α) ≤Q

˜ α
rt(α)).

It is a routine to check that r̄ = 〈rt : t ∈ T 〉 ∈ FTr′(Q̄) and it satisfies (i)ζ–(iii)ζ .
Thus our definition is correct and we may look at the sequence q̄θ. Since I ∈ N0

it should be clear that it is as required. This finishes the inductive proof of the
proposition. �

Our next proposition corresponds to A.3.6. However, note that the meaning of
∗’s is slightly different now. The difference comes from another type of the game
involved and it will be more clear in the proof of theorem B.7.3 below.

Proposition B.7.2. Assume that Ê ∈ C<κ(µ∗) is closed and Q̄ = 〈Pα,Q
˜

α
: α < γ〉

is a (< κ)–support iteration and x = 〈x
˜
α : α < γ〉 is such that


Pα
“ Q

˜
α
is strongly complete for Ê with witness x

˜
α”

(for α < γ). Further suppose that

(α) (N̄ , ā) is an Ê–complementary pair, N̄ = 〈Ni : i ≤ δ〉, and x, Ê , Q̄ ∈ N0,
(β) T = (T,<, rk) ∈ N0 is a standard (w,α0)γ–tree, w ⊆ γ ∩N0, ‖w‖ < cf(δ),

α0 is an ordinal, α1 = α0 + 1, 0 ∈ w,
(γ) p̄ = 〈pt : t ∈ T 〉 ∈ FTr′(Q̄) ∩N0, w ∈ N0, (of course α0 ∈ N0),
(δ) ‖Ni‖‖w‖+‖T‖ ⊆ Ni+1 for each i < δ,
(ε) for i ≤ δ, Ti = (Ti, <i, rki) is such that Ti consists of all sequences t = 〈tζ :

ζ ∈ dom(t)〉 such that dom(t) is an initial segment of w, and
• each tζ is a sequence of length α1,
• 〈tζ↾α0 : ζ ∈ dom(t)〉 ∈ T ,
• for each ζ ∈ dom(t), either tζ(α0) = ∗ or tζ(α0) ∈ Ni is a Pζ–name
for an element of Q

˜
ζ
and

if tζ(α) 6= ∗ for some α < α0, then tζ(α0) 6= ∗,
rki(t) = min(w ∪ {γ} \ dom(t)) and <i is the extension relation.

Then

(a) each Ti is a standard (w,α1)γ–tree, ‖Ti‖ ≤ ‖T ‖ ·‖Ni‖‖w‖, and if i < δ then
Ti ∈ Ni+1,

(b) T is the projection of each Ti onto (w,α0),
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(c) there is q̄ = 〈qt : t ∈ Tδ〉 ∈ FTr′(Q̄) such that
(i) p̄ ≤

proj
Tδ
T

q̄,

(ii) if t ∈ Tδ \ {〈〉} then the condition qt ∈ P′rkδ(t)
is an upper bound

of an (N̄↾[i0, δ],Prkδ(t))
∗–generic sequence (where i0 < δ is such that

t ∈ Ti0), and for every β ∈ dom(qt) = Nδ ∩ rkδ(t), qt(β) is a name for

the least upper bound in Q̂
˜

β
of an (N̄ [G

˜
β ]↾[ξ, δ),Q

˜
β
)∗–generic sequence

(for some ξ < δ),
[Note that, by B.5.5, the first part of the demand on qt implies that if

i0 ≤ ξ then qt↾β forces that (N̄ [G
˜

β]↾[ξ, δ], ā↾[ξ, δ]) is an Ŝ–complementary
pair.]

(iii) if t ∈ Tδ, t
′ = projTδT (t) ∈ T , ζ ∈ dom(t) and tζ(α0) 6= ∗, then

qt↾ζ 
Pζ
“pt′(ζ) ≤

Q̂
˜ ζ

tζ(α0) ⇒ tζ(α0) ≤
Q̂
˜ ζ

qt(ζ)”,

(iv) q〈〉 = p〈〉.

Proof. Clauses (a) and (b) should be clear.

(c) One could try to use directly B.7.1 for
⋂

{I ∈ Nδ : I ⊆ Pγ open dense}
and suitably “extend” p̄ (see, e.g., the successor case below). However, this would
not guarantee the demand (ii). This clause is the reason for the assumption that
‖w‖ < cf(δ).

By induction on i < δ we define a sequence 〈q̄i : i < δ〉:

q̄i = 〈qit : t ∈ Ti〉 is the <∗χ–first sequence r̄ = 〈rt : t ∈ Ti〉 ∈

FTr′(Q̄) such that

(i)i p̄ ≤
proj

Ti
T

r̄ and (∀j < i)(∀t ∈ Tj)(q
j
t ≤P′

rk(t)
rt),

(ii)i if t = 〈tζ : ζ ∈ dom(t)〉 ∈ Ti and t′ = projTiT (t) ∈ T , then
• (∀α ∈ dom(rt))(pt′(α) = rt(α) or 
Pα

rt(α) ∈ Q
˜

α
),

and
• rt ∈

⋂

{I ∈ Ni : I ⊆ Prki(t) is open dense}, and
• for every ζ ∈ dom(t) such that tζ(α0) 6= ∗,

rt↾ζ 
Pζ
“pt′(ζ) ≤Q

˜ ζ
tζ(α0) ⇒ tζ(α0) ≤Q

˜ ζ
rt(ζ)”,

(iii)i r〈〉 = p〈〉.

We have to verify that this definition is correct, i.e., that for each i < δ there is
an r̄ satisfying (i)i–(iii)i. So suppose that we arrive to a non-limit stage i < δ and
we have defined 〈q̄j : j < i〉. Note that necessarily 〈q̄j : j < i〉 ∈ Ni (remember i
is non-limit). Let i = j + 1 and, if j = −1, let q−1t = p

proj
T0
T (t)

for t ∈ T0 and let

T−1 = {〈〉}. For t ∈ Ti we define st ∈ Prki(t) as follows.

• If t ∈ Tj, then st = qjt .
• If t ∈ Ti \ Tj and ζ∗ ∈ w is the first such that t↾(ζ∗ + 1) /∈ Tj, then we let

dom(st) = dom(qjt↾ζ∗) ∪ dom(pt′) ∪ dom(t), where t′ = projTiT (t). Next we

define st(ζ) by induction on ζ ∈ dom(st):

if ζ ∈ dom(st) ∩ ζ∗, then st(ζ) = qjt↾ζ∗(ζ),

if ζ ∈ dom(t) \ ζ∗ and tζ(α0) 6= ∗, then st(ζ) is the <∗χ–first Pζ–name for
an element of Q

˜
ζ

such that

st↾ζ 
Pζ
“pt′(ζ) ≤ st(ζ) and pt′(ζ) ≤ tζ(α0) ⇒ tζ(α0) ≤ st(ζ)”
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56 SAHARON SHELAH

and otherwise it is pt′(ζ).

It should be clear that s̄ = 〈st : t ∈ Ti〉 ∈ FTr′(Q̄). Now we apply B.7.1 to Ti, s̄
and

I∗
def
=

⋂

{

I ∈ Ni : I ⊆ Pγ open dense
}

and we find r̄ = 〈rt : t ∈ Ti〉 ∈ FTr′(Q̄) such that s̄ ≤ r̄ and for each t ∈ Ti

rt ∈ {q↾rki(t) : q ∈ I∗} and (∀α∈dom(rt))(st(α)=rt(α) or 
Pα
rt(α)∈Q

˜
α

).

One easily checks that this r̄ satisfies demands (i)i–(iii)i.
Now suppose that we have successfully defined q̄j for j < i, i < δ limit ordinal.

Fix t ∈
⋃

j<i

Tj , say t ∈ Tj0 , j0 < i. We know that Tj0 ⊆ Nj0+1 (remember the

assumption (δ) and the assertion (a)) and that for each j < i, 〈q̄ε : ε ≤ j〉 ∈ Nj+1.
Consequently,

(∀j ∈ [j0, i))(〈q
ε
t : j0 ≤ ε ≤ j〉 ∈ Nj+1).

By the demand (ii)ε we have that 〈qεt : j0 ≤ ε < i〉 is an (N̄↾[j0, i],Prkj0 (t)
)∗–

generic sequence. As Prkj0 (t)
is complete for Ê (see B.5.6) and N0 contains all

witnesses we conclude that the sequence 〈qεt : j0 ≤ ε < i〉 has an upper bound in
Prkj0 (t)

. Moreover, if α < rkj0(t), and q ∈ Pα is an upper bound of the sequence

〈qεt ↾α : j0 ≤ ε < i〉, then

q 
Pα
“〈qεt (α) : j0 ≤ ε < i〉 has an upper bound in Q

˜
α

”

(see the proof of B.5.6). Now we let dom(st) =
⋃

{dom(qεt ) : j0 ≤ ε < i} and we
define inductively

st(α) is the <∗χ–first Pα–name for an element of Q
˜

α
such that

st↾α 
Pα
(∀ε ∈ [j0, i))(q

ε
t (α) ≤Q

˜ α
st(α)).

This defines s̄0 = 〈st : t ∈
⋃

j<i

Tj〉. Clearly
⋃

j<i

Tj is a standard (w,α1)γ–tree and

s̄ ∈ FTr′(Q̄). Now suppose that t ∈ Ti \
⋃

j<i

Tj and let ζ∗ be the first such that

t↾ζ∗ /∈
⋃

j<i

Tj (so necessarily dom(t)∩ ζ∗ is cofinal in ζ∗ and cf(otp(dom(t)∩ ζ∗)) =

cf(i)). Then
⋃

{st↾ζ : ζ < ζ∗} ∈ Pζ∗ . Now define

st =
⋃

{st↾ζ : ζ < ζ∗} ∪ pt′↾[ζ
∗, γ),

where t′ = projTiT (t). Note that s̄ = 〈st : t ∈ Ti〉 ∈ FTr′(Q̄) and if t ∈ Ti,
α ∈ dom(st), then either st(α) = pt′(α) or 
Pα

st(α) ∈ Q
˜

α
. Now we proceed like

in the successor case: we apply B.7.1 to s̄, Ti and

I∗
def
=

⋂

{

I ∈ Ni : I ⊆ Pγ open dense
}

,

and as a result we get r̄ = 〈rt : t ∈ Ti〉 ∈ FTr′(Q̄) such that for each t ∈ Ti:

st ≤ rt ∈ {q↾rki(t) : q ∈ I∗} and
(∀α ∈ dom(rt))(st(α) = rt(α) or 
Pα

rt(α)∈Q
˜

α
).

Now one easily checks that r̄ satisfies the requirements (i)i–(iii)i.
Thus our definition is the legal one and we have the sequence 〈q̄i : i < δ〉.

We define q̄ = q̄δ similarly to s̄ from the limit stages i < δ, but we replace “the

<∗χ–first upper bound in Q
˜

α
” by “the least upper bound in Q̂α”. So suppose
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t ∈ Tδ. Since ‖w‖ < cf(δ) we know that t ∈ Tj0 for some j0 < δ. We declare
dom(qt) =

⋃

{dom(qεt ) : j0 ≤ ε < δ} and inductively define qt(α) for α ∈ dom(qt):
qt(α) is the <∗χ–first Pα–name such that

qt↾α 
Pα
“qt(α) is the least upper bound of the sequence

〈qεt (α) : j0 ≤ ε < δ〉 in Q̂
˜

α
”.

Like in the limit case of the construction, the respective upper bounds exist, so
q̄ = 〈qt : t ∈ Tδ〉 is well defined. Checking that it has the required properties is
straightforward. �

Theorem B.7.3. Suppose that (Ê0, Ê1) ∈ C
♠
<κ(µ∗) (so Ê0 ∈ C<κ(µ∗)) and Q̄ =

〈Pα,Q
˜

α
: α < γ〉 is a (< κ)–support iteration such that for each α < κ


Pα
“Q

˜
α
is complete for (Ê0, Ê1)”.

Then

(a) 
Pγ
(Ê0, Ê1) ∈ C

♠
<κ(µ∗), moreover

(b) Pγ is complete for (Ê0, Ê1).

Proof. We need only part (a) of the conclusion, so we concentrate on it. Let χ be a
large enough regular cardinal, x

˜
be a name for an element of H(χ) and p ∈ Pγ . Let

x
˜
α be a Pα–name for the witness that Q

˜
α

is (forced to be) complete for (Ê0, Ê1),

and let x̄ = 〈x
˜
α : α < γ〉. Since (Ê0, Ê1) ∈ C

♠
<κ(µ∗) we find M̄ = 〈Mi : i ≤ δ〉 which

is ruled by (Ê0, Ê1) with an Ê0–approximation 〈N̄ i : −1 ≤ i < δ〉 and such that

p, Q̄, x
˜
, x̄, Ê0, Ê1 ∈ M0 (see B.5.7). Let N̄ i = 〈N i

ε : ε ≤ δi〉 and let āi ∈ Ê0 be such

that (N̄ i, āi) is an Ê0–complementary pair. Let wi = {0} ∪
⋃

j<i

(γ ∩Mj) (for i ≤ δ).

By the demands of B.5.7 we know that ‖wi‖ < cf(δi).
By induction on i ≤ δ we define standard (wi, i)

γ–trees Ti ∈ Mi+1 and p̄i = 〈pit :
t ∈ Ti〉 ∈ FTr′(Q̄) ∩Mi+1 such that ‖Ti‖ ≤ ‖Mi‖‖wi‖ ≤ ‖Mi+1‖, and if j < i ≤ δ

then Tj = proj
(wi,i+1)
(wj ,j+1)(Ti) and p̄j ≤

proj
Ti
Tj

p̄i.

Case 1: i = 0.
Let T ∗0 consist of all sequences 〈tζ : ζ ∈ dom(t)〉 such that dom(t) is an initial
segment of w0 and tζ = 〈〉 for ζ ∈ dom(t). Thus T ∗0 is a standard (w0, 0)γ–tree,
‖T ∗0 ‖ = ‖w0‖ . For t ∈ T ∗0 let p∗0t = p↾rk∗0(t). Clearly the sequence p̄∗0 = 〈p∗0t :

t ∈ T ∗0 〉 is in FTr′(Q̄) ∩ N−10 . Apply B.7.2 to Ê0, Q̄, N̄−1, T ∗0 , w0 and p̄∗0 (note

that ‖N−1ε ‖‖w0‖ ≤ ‖N−1ε+1‖
‖N−1

0 ‖ for ε < δ0). As a result we get a (w0, 1)γ–tree

T0 (the one called Tδ0 there) and p̄0 = 〈p0t : t ∈ T0〉 ∈ FTr′(Q̄) ∩ M1 (the one
called q̄ there) satisfying clauses B.7.2(ε), B.7.2(c)(i)–(iv) and such that ‖T0‖ ≤
‖N−1δ0

‖‖w0‖ = ‖M0‖‖w0‖ = ‖M0‖ (remember cf(δ0) > 2‖M0‖). So, in particular, if

t ∈ T0, ζ ∈ dom(t) then tζ(0) ∈ M1 is either ∗ or a Pζ–name for an element of Q
˜

ζ
.

Moreover, we additionally require that (T0, p̄0) is the <∗χ–first with all these

properties, so T0, p̄0 ∈ M1.

Case 2: i = i0 + 1.
We proceed similarly to the previous case. Suppose we have defined Ti0 and p̄i0

such that Ti0 , p̄
i0 ∈ Mi0+1, ‖Ti0‖ ≤ ‖Mi0+1‖. Let T ∗i be a standard (wi, i0)

γ–tree
such that
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T ∗i consists of all sequences 〈tζ : ζ ∈ dom(t)〉 such that dom(t) is
an initial segment of wi and

〈tζ : ζ ∈ dom(t) ∩ wi0〉 ∈ Ti0 and (∀ζ ∈ dom(t) \ wi0 )(∀j < i0)(tζ(j) = ∗).

Thus Ti0 = proj
(wi,i)
(wi0 ,i0)

(T ∗i ) and ‖T ∗i ‖ ≤ ‖Mi‖. Let p∗it = pi0t′ ↾rk
∗
i (t) for t ∈ T ∗i ,

t′ = projTiTi0
(t). Now apply B.7.2 to Ê0, Q̄, N̄ i0 , T ∗i , wi and p̄∗i (check that the

assumptions are satisfied). So we get a standard (wi, i0+1)γ–tree Ti and a sequence
p̄i satisfying B.7.2(ε), B.7.2(c)(i)–(iv), and we take the <∗χ–first pair (Ti, p̄i) with

these properties. In particular we will have ‖Ti‖ ≤ ‖Mi0‖ · ‖N
i0
δi
‖‖Mi0‖ = ‖Mi0+1‖,

and p̄i, Ti ∈ Mi+1.

Case 3: i is a limit ordinal.
Suppose we have defined Tj , p̄j for j < i and we know that 〈(Tj , p̄j) : j < i〉 ∈ Mi+1

(this is the consequence of taking “the <∗χ–first such that. . .”). Let T ∗i =
←

lim(〈Tj :

j < i〉). Now, for t ∈ T ∗i we would like to define p∗it as the limit of pj
proj

T ∗
i
Tj

(t)
.

However, our problem is that we do not know if the limit exists. Therefore we
restrict ourselves to these t for which the respective sequence has an upper bound.
To be more precise, for t ∈ T ∗i we apply the following procedure.

(⊗) Let tj = proj
T ∗i
Tj

(t) for j < i. Try to define inductively a condition p∗it ∈

Prk∗i (t)
such that dom(p∗it ) =

⋃

{dom(pj
tj

)∩rk∗i (t) : j < i}. Suppose we have

successfully defined p∗it ↾α, α ∈ dom(p∗it ), in such a way that p∗it ↾α ≥ pj
tj
↾α

for all j < i. We know that

p∗it ↾α 
Pα
“the sequence 〈pj

tj
(α) : j < i〉 is ≤

Q̂
˜α

–increasing”.

So now, if there is a Pα–name τ
˜

for an element of Q
˜

α
such that

p∗it ↾α 
Pα
(∀j < i)(pj

tj
(α) ≤

Q̂
˜α

τ
˜

),

then we p∗it (α) be the Pα-name of the lub of 〈pj
tj

(α) : j < i〉 in Q̂
˜

α and we

continue. If there is no such τ
˜

then we decide that t /∈ T +
i and we stop the

procedure.

Now, let T +
i consist of those t ∈ T ∗i for which the above procedure resulted in a

successful definition of p∗it ∈ Prk∗i (t)
. It might be not clear at the moment if T+

i

contains anything more than 〈〉, but we will see that this is the case. Note that

‖T+
i ‖ ≤ ‖T ∗i ‖ ≤

∏

j<i

‖Tj‖ ≤
∏

j<i

‖Mj‖ ≤ 2‖Mi‖ ≤ ‖N i
2‖.

Moreover, for ε > 2 we have ‖N i
ε‖
‖wi‖+‖T

+
i ‖ ≤ ‖N i

ε‖
‖Ni

2‖ ⊆ N i
ε+1 and T +

i , p̄∗i ∈
Mi+1. Let Ti = T ∗i , p̄i = p̄∗i (this time there is no need to take the <∗χ–first pair
as the process leaves no freedom).

After the construction is carried out we continue in a similar manner as in A.3.7
(but note slightly different meaning of the ∗’s here).

So we let Tδ =
←

lim(〈Ti : i < δ〉). It is a standard (wδ, δ)γ–tree. By induction on
α ∈ wδ ∪ {γ} we choose qα ∈ P′α and a Pα–name t

˜
α such that

(a) 
Pα
“t
˜
α ∈ Tδ & rkδ(t

˜
α) = α”, and let iα0 = min{i < δ : α ∈ Mi} < δ,

(b) 
Pα
“t
˜
β = t

˜
α↾β” for β < α,
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(c) dom(qα) = wδ ∩ α,
(d) if β < α then qβ = qα↾β,
(e) pi

proj
Tδ
Ti

(t
˜
α)

is well defined and pi
proj

Tδ
Ti

(t
˜
α)
↾α ≤ qα for each i < δ,

(f) for each β < α

qα 
Pα
“(∀i < δ)((t

˜
β+1)β(i) = ∗ ⇔ i < iβ0 ) and the sequence

〈iβ0 , p
i
˜

β
0

proj
Tδ
T
i
β
0

(t
˜
β+1)

(β), 〈(t
˜
β+1)β(i), pi

proj
Tδ
Ti

(t
˜
β+1)

(β) : iβ0 ≤ i < δ〉〉

is a result of a play of the game G♠
M̄ [G

˜
β ],〈N̄i[G

˜
β ]:i<δ〉

(Q
˜

β
,0Q

˜ β
),

won by player COM”,

(g) the condition qα forces (in Pα) that

“the sequence M̄ [G
˜

Pα]↾[iα, δ] is ruled by (Ê0, Ê1) and 〈N̄ i[G
˜

Pα
] : iα0 ≤ i <

δ〉 is its Ê0–approximation”.

(Remember: Ê1 is closed under end segments.) This is done completely parallely
to the last part of the proof of A.3.7.

Finally look at the condition qγ and the clause (g) above. �

Proposition B.7.4. Suppose that µ∗ = κ and Ê ∈ C<κ(µ∗) is closed. Let Q̄ =
〈Pα,Q

˜
α

: α < γ〉 be a (< κ)–support iteration such that for each α < γ


Pα
“Q

˜
α
is strongly complete for Ê and ‖Q

˜
α
‖ ≤ κ”.

Then Pγ satisfies κ+–cc (even more: it satisfies the κ+–Knaster condition).

Proof. For α < γ choose Pα–names x
˜
α and h

˜
α such that


Pα
“x
˜
α witnesses that Q

˜
α

is complete for Ê and

h
˜
α : Q

˜
α
−→ κ is one–to–one”.

Since Ê ∈ C<κ(µ∗), for each p ∈ Pγ we find an Ê–complementary pair (N̄p, āp) such

that N̄p = 〈Np
i : i ≤ ω〉 and p, Q̄, Ê , 〈x

˜
α : α < γ〉, 〈h

˜
α : α < γ〉 ∈ Np

0 . Next choose
an increasing sequence q̄p = 〈qpi : i < ω〉 of conditions from Pγ such that for each
i < ω:

(α) p ≤ qp0 , q̄p↾(i + 1) ∈ Np
i+1,

(β) qpi ∈
⋂

{I ∈ Ni : I ⊆ Pγ open dense}.

[Why is this possible? Remember B.5.6 and particularly B.5.6.4.] So the condition
qpi is generic over Ni in the weak sense of clause (β), and therefore it decides the
values of h

˜
α(qpj (α)) for each j < i, α ∈ dom(qpj ) (remember: if j < i then qpj ∈ Ni

and thus dom(qpj ) ⊆ Ni). Let εp,αj < κ be such that for each i > j (remember q̄p is

increasing)

qpi ↾α 
Pα
h
˜
α(qpj (α)) = εp,αj .

Suppose now that 〈pζ : ζ < κ+〉 ⊆ Pγ . For ζ < κ+ let Aζ =
⋃

i<ω

dom(qp
ζ

i ) (so

Aζ ∈ [γ]<κ). Applying the ∆–system lemma (remember κ is strongly inaccessible)
we find X ⊆ κ+, ‖X‖ = κ+ such that {Aζ : ζ ∈ X} forms a ∆–system and for each
ζ, ξ ∈ X :

• ‖Aζ‖ = ‖Aξ‖,
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60 SAHARON SHELAH

• if α ∈ Aζ ∩ Aξ then

min{i < ω : α ∈ dom(qp
ζ

i )} = min{i < ω : α ∈ dom(qp
ξ

i )},

and call it iα, and for each i < ω

otp(α ∩ dom(qp
ζ

i )) = otp(α ∩ dom(qp
ξ

i )) and εp
ζ ,α

i = εp
ξ,α

i

(the last for i ≥ iα).

We are going to show that for each ξ, ζ ∈ X the conditions pζ , pξ are compatible.
To this end we define a common upper bound r of pζ , pξ. First we declare that

dom(r) = Aζ ∪ Aξ

and then we inductively define r(α) for α ∈ dom(r):

if α ∈ Aζ then r(ζ) is a Pα–name such that

r↾α 
Pα
“r(α) is the upper bound of 〈qp

ζ

i (α) : i < ω〉
with the minimal value of h

˜
α(r(α))”

and otherwise (i.e. if α ∈ Aξ \Aζ) it is a Pα–name such that

r↾α 
Pα
“r(α) is the upper bound of 〈qp

ξ

i (α) : i < ω〉
with the minimal value of h

˜
α(r(α))”.

By induction on α ∈ dom(r) ∪ {γ} we show that

qp
ζ

i ↾α ≤Pα
r↾α and qp

ξ

i ↾α ≤Pα
r↾α for all i < ω.

Note that, by B.5.5, this implies that the respective upper bounds exist and thus
r(α) is well defined then. There is nothing to do at non-successor stages, so suppose
that we have arrived to a stage α = β + 1.

If β ∈ Aζ then, by the definition of r(β), we have

r↾β 
Pβ
(∀i < ω)(qp

ζ

i (β) ≤ r(β)).

Similarly if β ∈ Aξ\Aζ and we consider qp
ξ

i (β). Trivially, no problems can happen if

β ∈ Aζ \Aξ and we consider qp
ξ

i (β) or if β ∈ Aξ \Aζ and we consider qp
ζ

i (β). So the
only case we may worry about is that β ∈ Aζ ∩Aξ and we want to show that r(β)

is (forced to be) stronger than all qp
ξ

i (β). But note: by the inductive hypothesis

we know that r↾β is an upper bound to both 〈qp
ξ

i ↾β : i < ω〉 and 〈qp
ζ

i ↾β : i < ω〉
and therefore

r↾β 
Pβ
“ h

˜
β(qp

ξ

i (β)) = εp
ξ,β

i & h
˜
β(qp

ζ

j (β)) = εp
ζ ,β

j ”,

whenever i, j < ω are such that β ∈ dom(qp
ξ

i ), β ∈ dom(qp
ζ

j ). But now, by the
choice of X we have:

β ∈ dom(qp
ξ

i ) ⇔ β ∈ dom(qp
ζ

i ), and εp
ζ ,β

i = εp
ξ,β

i .

Since h
˜
β is (forced to be) a one–to–one function, we conclude that

r↾β 
Pβ
(∀i < ω)(qp

ζ

i (β) = qp
ξ

i (β)),

so taking care of the ζ’s side we took care of the ξ’s side as well. This finishes the
proof of the proposition. �
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B.8. The Axiom and its applications

Definition B.8.1. Suppose that (Ê0, Ê1) ∈ C
♠
<κ(µ∗) and θ is a regular cardinal.

Let Axκ
θ (Ê0, Ê1), the forcing axiom for (Ê0, Ê1) and θ, be the following sentence:

If Q is a complete for (Ê0, Ê1) forcing notion of size ≤ κ and 〈Ii :
i < i∗ < θ〉 is a sequence of dense subsets of Q,
then there exists a directed set H ⊆ Q such that

(∀i < i∗)(H ∩ Ii 6= ∅).

Theorem B.8.2. Assume that µ∗ = κ, (Ê0, Ê1) ∈ C
♠
<κ(µ∗) and

κ < θ = cf(θ) ≤ µ = µκ.

Then there is a strongly complete for Ê0 forcing notion P of cardinality µ such that

(α) P satisfies the κ+–cc,

(β) 
P (Ê0, Ê1) ∈ C
♠
<κ(µ∗) and even more:

(β+) if Ê∗0 ⊆ Ê0, Ê∗1 ⊆ Ê1 are such that (Ê∗0 , Ê
∗
1 ) ∈ C

♠
<κ(µ∗) then 
P (Ê0, Ê∗1 ) ∈

C
♠
<κ(µ∗),

(γ) 
P Axκ
θ (Ê0, Ê1).

Proof. The forcing notion P will be the limit of a (< κ)–support iteration 〈Pα,Q
˜

α
:

α < α∗〉 (for some α∗ < µ+) such that

(a) for each α < α∗


Pα
“Q

˜
α

is a partial order on κ complete for (Ê0, Ê1)”.

By B.7.4 we will be sure that P = Pα∗ satisfies κ+–cc. Applying B.7.3 we will
see that 
Pα∗

(Ê0, Ê1) ∈ C
♠
<κ(µ∗) (also Pα∗ is complete for (Ê0, Ê1)). The iteration

〈Pα,Q
˜

α
: α < α∗〉 will be built by a bookkeeping argument, but we do not determine

in advance its length α∗.
Before we start the construction, note that if Q is a κ+–cc forcing notion of size

≤ µ then there are at most µ Q–names for partial orders on κ (up to isomorphism).
Why? Remember µκ = µ and each Q–name for a poset on κ is described by a
κ–sequence of maximal antichains of Q. By a similar argument we will know that
each Pα has a dense subset of size ≤ µ (for α ≤ α∗). Consequently there are, up to
an isomorphism, at most µ Pα∗–names for partial orders on κ.

Let K consist of all (< κ)–support iterations Q̄ = 〈Pα,Q
˜

α
: α < α0〉 of length

< µ+ satisfying the demand (a) above (with α0 in place of α∗). Elements of K are
naturally ordered by

Q̄0 ≤K Q̄1 if and only if Q̄0 = Q̄1↾ℓg(Q̄0).

Note that every ≤K–increasing sequence of length < µ+ has the least upper bound
in (K,≤K). By what we said before, we know that if 〈Pα,Q

˜
α

: α < α0〉 ∈ K, then

Pα0 contains a dense subset of size ≤ µ, satisfies κ+–cc and forces that (Ê0, Ê1) ∈
C
♠
<κ(µ∗). Moreover,

(⊛K) if Q̄0 = 〈P0
α,Q

˜

0
α

: α < α0〉 ∈ K and Q
˜

is a P0
α0

–name for a forcing notion on
κ then

(⊕1) either there is no Q̄1 = 〈P1
α,Q

˜

1
α

: α < α1〉 ∈ K such that Q̄0 ≤K Q̄1

and

P1

α1
“Q

˜
is complete for (Ê0, Ê1)”



5
8
7
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
1
1
-
1
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
2
-
0
7
-
1
6
 
 

62 SAHARON SHELAH

(⊕2) or there is Q̄1 = 〈P1
α,Q

˜

1
α

: α < α1〉 ∈ K such that Q̄0 ≤K Q̄1 and


P1
α1

“there is a directed set H ⊆ Q
˜

which meets all

dense subsets of Q
˜

from VP0
α0 ”.

[Why? Suppose that (⊕1) fails and it is exemplified by Q̄1. Take Q̄1 ∗Q
˜

.]

Consequently, as K is closed under increasing < µ+–sequences, we have

(⊛+
K

) for every Q̄ ∈ K there is Q̄0 = 〈P0
α,Q

˜

0
α

: α < α0〉 ∈ K such that Q̄ ≺K Q̄0

and for every Lim(Q̄)–name Q
˜

for a forcing notion on κ one of the following
conditions occurs:

(⊕1) there is no Q̄1 = 〈P1
α,Q

˜

1
α

: α < α1〉 ∈ K such that Q̄0 ≺K Q̄1 and


P1
α1

“Q
˜

is complete for (Ê0, Ê1)”

(⊕+
2 ) 
P0

α0
“ there is a directed set H ⊆ Q

˜
which meets all dense subsets of

Q
˜

from VLim(Q̄) ”.

[Why? Remember that there is at most µ Lim(Q̄)–names for partial orders on κ.]
Using these remarks we may build our iteration in the following way. We choose

a ≤K–increasing continuous sequence 〈Q̄ζ : ζ ≤ θ+〉 ⊆ K such that

(b) for every ζ < θ+, Q̄ζ+1 is given by (⊛+
K

) for Q̄ζ .

Now it is a routine to check that P = Pθ+

α
θ+

is as required. �

In B.8.3 below remember about our main case: S∗ ⊆ κ is stationary co-stationary
and Ê0 consists of all increasing continuous sequences ā = 〈ai : i ≤ α〉 such that
ai ∈ κ \ S∗ (for i ≤ α). In this case the forcing notion R is the standard way to
make the set S∗ non-stationary (by adding a club of κ; a condition gives an initial
segment of the club). Since forcing with R preserves stationarity of subsets of κ\S∗,
the conclusion of B.8.3 below gives us

(∗) in VLimQ̄, every stationary set S ⊆ κ \ S∗ reflects in some inaccessible.

Proposition B.8.3. Suppose that (Ê0, Ê1) ∈ C
♠
<κ(µ∗) (so Ê0 ∈ C<κ(µ∗)), µ∗ = κ

(for simplicity) and Q̄ = 〈Pα,Q
˜

α
: α < γ〉 is a (< κ)–support iteration such that

for each α < κ


Pα
“Q

˜
α
is complete for (Ê0, Ê1) and ‖Q

˜
α
‖ ≤ κ.”

Further assume that:

(a) Ê0 is reasonably closed: it is closed under subsequences and if ā = 〈ai : i ∈

δ〉 ∈ Ê0 and b̄i = 〈biα : α ≤ αi〉 ∈ Ê0 are such that bi0 = ai, b
i
αi

= ai+1 (for

i < δ), then the concatenation of all b̄i (for i < δ) belongs to Ê0 [e.g., Ê0 is
derived from S ⊆ κ like in B.6.2],

(b) R = (Ê0,⊳),
(c) in VR and even in VR∗Cohenκ , κ is a weakly compact cardinal (or just:

stationary subsets of κ reflect in inaccessibles).

Then, in VPγ∗R, κ is weakly compact (or just: stationary subsets of κ reflect in
inaccessibles).

Proof. First note that the forcing with R does not add new sequences of length < κ
of ordinals. [Why? Suppose that x

˜
is an R–name for a function from θ to V, θ < κ

is a regular cardinal and r ∈ R. Take an Ê0–complementary pair (N̄ , ā) such that
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N̄ = 〈Ni : i ≤ θ〉 and r, x
˜
∈ N0 and the error is, say, n. Now build inductively an

increasing sequence 〈ri : i ≤ θ〉 ⊆ R such that for every i ≤ θ:

• r0 = r, the condition ri+1 decides the value of x
˜

(i),
• if i = γ + k + 1, γ is a non-successor, k < ω then ri ∈ Nγ+(2k+2)(n+1) and

if ri = 〈aiξ : ξ ≤ αi〉 then aiαi
= aγ+(2k+1)(n+1),

• if i < θ is limit then 〈rj : j < i〉 ∈ Ni+1 and ri is the least upper bound of
〈rj : j < i〉 (so ri ∈ Ni+1).

The construction is straightforward. If we have defined ri ∈ Nγ+(2k+2)(n+1), then
we first take the <∗χ–first condition r∗i = 〈a∗ξ : ξ ≤ α∗〉 stronger than ri and deciding

the value of x
˜

(i) (so r∗i ∈ Nγ+(2k+2)(n+1)). We know that

a∗α∗ ⊆ aγ+(2k+2)(n+1)+n ∈ Nγ+(2k+2)(n+1)+2n+1.

Let ri+1 = r∗i
⌢〈aγ+(2k+2)(n+1)+n〉. Clearly ri+1 ∈ Nγ+(2k+4)(n+1). By the choice of

“the <χ–first” conditions we are sure that, arriving to a limit stage i < θ, we have

〈rj : j < i〉 ∈ Ni+1. Now use the assumption (a) on Ê0 to argue that the sequence
〈ri : i < θ〉 has a least upper bound rθ – clearly this condition decides the name x

˜
.]

Without loss of generality we may assume that, for each α < γ


Pα
“Q

˜
α

is a partial order on κ”.

For a forcing notion Q let Q̌ stand for the completion of Q with respect to increasing

< κ–sequences (i.e., it is like Q̂ but we consider only increasing sequences of length
< κ). Note that Q is dense in Q̌ and if ‖Q‖ ≤ κ, then ‖Q̌‖ ≤ κ (κ is strongly
inaccessible!). Now, let 〈P′α,Q

˜

′
α

: α < γ〉 be the iteration of the respective < κ–

completions of the Q
˜

α
’s. Thus each Pα is a dense subset of P′α (see 0.18). We may

assume that each Q̌
˜

α
is a Pα–name for a partial order on κ + κ (for α < γ). Now,

for α ≤ γ, let

P′′α =
{

p ∈ P′α : there is a sequence 〈p̄β : β∈dom(p)〉 such that for some δ<κ,

each p̄β = 〈pβζ : ζ < δ〉 is a δ–sequence of ordinals < κ and

p(β) is (the P′β–name of) the minimal (as an ordinal)

least upper bound of p̄β by ≤Q
˜ α

}

.

Claim B.8.3.1. For each α ≤ γ, P′′α is a dense subset of P′α.

Proof of the claim. Let p ∈ P′α. By B.5.6 we know that Pα is strongly complete

for Ê0. Let (N̄ , ā) be an Ê0–complementary pair such that N̄ = 〈Ni : i < ω〉 and

p, Q̄,P′α, Ê0 . . . ∈ N0. Take an increasing sequence 〈qi : i < ω〉 ⊆ Pα such that
qi ∈ Ni+1 is generic over Ni and such that p ≤P′α

q0. Now let q ∈ P′α be defined by
dom(q) = Nω ∩ α and:

q↾β 
Pβ
“q(β) is the minimal (as an ordinal) least upper bound in Q̌

˜
β

of the sequence 〈qi(β) : i < ω〉”.

By B.5.6.3 (actually by its proof) we know that the above definition is correct. Now
it a routine to check that q ∈ P′′α is as required, finishing the proof of the claim. �

One could ask what is the point of introducing P′′α. The main difference between
P′α and P′′α is that in the first, q(β) is a least upper bound of an increasing sequence
of conditions from Q

˜
α

, but we know the name for the sequence only. In P′′α, we

have the representation of q(α) as the least upper bound of a sequence of ordinals
from V! This is of use if we look at the iteration in different universes. If we look
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at Q̄ (defined as an iteration in V) in VR, then it does not have to be an iteration
anymore: let α < γ. Forcing with R may add new maximal antichains in Pα thus
creating new names for elements of Q

˜
α

. However

Claim B.8.3.2. For each α ≤ γ, in VR, 〈P′′α,Q
˜

β
: α ≤ γ, β < γ〉 is a (< κ)–support

iteration.

Proof of the claim. Easy induction on α. �

Claim B.8.3.3. For each α < γ


Pα∗R “ Q̌
˜

α
is isomorphic to Cohenκ”.

Proof of the claim. Working in VPα choose an increasing continuous sequence N̄ =
〈Ni : i < κ〉 of elementary submodels of (H(χ),∈, <∗χ) such that Q

˜
α ∈ N0 and for

each i < κ:

N̄↾(i + 1) ∈ Ni+1, Ni ∩ κ ∈ κ, and ‖Ni‖ < κ.

Now, passing to VPα∗R, we can find an increasing continuous sequence j̄ = 〈jζ :
ζ < κ〉 ⊆ κ such that

(∀ε < κ)(〈Njζ ∩ κ : ζ ≤ ε〉 ∈ Ê0).

[Why? Forcing with R adds an increasing continuous sequence β̄ = 〈βζ : ζ < κ〉

such that β̄↾(ζ + 1) ∈ Ê0 for each ζ < κ. Now let j̄ be the increasing enumeration

of {j < κ : Nj ∩ κ = j & (∃ζ < κ)(j = βω·ζ)}; remember that Ê0 is closed under
subsequences.]

Now, for p ∈ Q̌
˜

α
let

j(p) = sup
{

j < κ : j = 0 or j ∈ {jζ : ζ < κ} and
p ∈

⋂

{I ∈ Nj : I ⊆ Q
˜

α
is open dense in V Pα}

}

and k(p) = min{j < κ : p ∈ Nj}. Now we finish notifying that

(1) if p̄ = 〈pε : ε < δ〉 is increasing in Q̌
˜

α
and such that (∀ε < δ)(k(pε) <

j(pε+1)), then the sequence p̄ has an upper bound in Q̌
˜

α
;

(2) for every j < κ the set {p ∈ Q̌
˜

α
: j(p) > j} is open dense in Q̌

˜
α

.

This finishes the proof of the claim and the proposition. �

Alternatively, first prove that wlog γ < κ+ and then show that P′γ becomes

κ–Cohen in VR. �

Conclusion B.8.4. Assume that

• V0 |= κ is weakly compact and GCH holds (for simplicity),
• V1 is a generic extension of V0 making “κ weakly compact” indestructible

by Cohenκ (any member of κ–Cohen),

• V2 = VR0
1 , where R0 adds a stationary non-reflecting subset S∗ of κ by

initial segments.

Further, in V2, let Ê0 = Ê0[S∗], Ê1 = Ê1[S∗] be as in the main example for the
current case (see, e.g., B.6.2), both in V2. Suppose that Q̄ is a (< κ)–support

iteration of forcing notions on κ, say of length γ∗, complete for (Ê0, Ê1). Let V3 =
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V
Lim(Q̄)
2 and let R be the forcing notion killing stationarity of S∗ in V3, but also

in V2; see B.8.3. Then

VR
2 = VR0∗R

1 = VCohen
1 |= “κ is weakly compact indestructible by Cohen”,

and in VR
2 , the forcing notion Lim(Q̄) is adding κ–Cohen. Consequently in VR

3 =

(VR
2 )lim(Q̄), lim(Q̄) is adding Cohens and hence κ is weakly compact in VR

3 .

Conclusion B.8.5. (1) Let V = L and let κ be a weakly compact cardinal,
χκ = χ. Then for some forcing notion P we have, in VP:
(a) there are almost free Abelian groups in κ,
(b) all almost free Abelian groups in κ are Whitehead.

(2) If V |= GCH then VP |= GCH.
(3) We can add:

(c) the forcing does not collapse any cardinals nor changes cofinalities, and
it makes 2κ = χ, χ = ‖P‖,

(d) for some stationary subset S∗ of κ which is non reflecting and has
stationary intersection with Sκ

θ for every regular theta < kappa we
have

• every stationary subset of κ \ S∗ reflects in some inaccessible,

• letting Ê0, Ê1 be defined from S∗ as above, we have Axκ
κ+(Ê0, Ê1),

• if κ < θ = cf(θ) ≤ χ then we can add Axκ
θ (Ê0, Ê1).

If κ is κ–Cohen indestructible weakly compact cardinal (or every stationary
set reflects) then we may add:
(e) the forcing adds no bounded subsets to κ.

Proof. 1) Let V0 = V and let V1,V2,R0 be defined as in B.8.4, just R0 adds
a non-reflecting stationary subset of {δ < κ : cf(δ) = ℵ0}. Working in V2 define

Q̄ = 〈Pα,Q
˜

α
: α < α∗〉, α∗ < χ+ be as in the proof of the consistency of Axκ

θ (Ê0, Ê1)

in B.8.2. The desired universe is V3 = VPα∗

2 .
Clearly, as every step of the construction is a forcing extension, we have V3 = VP

for some forcing notion P. The forcing notion R0 ∈ V1 adds a non-reflecting
stationary subset S to κ. As Pα∗ preserves (ÊS

0 , Ê
S
1 ) ∈ C

♠
<κ(µ∗) (by B.7.3) the set

S is stationary also in V3. Since (∀δ ∈ S)(cf(δ) = ℵ0) we may use S to build an
almost free Abelian group in κ, so clause (a) holds. Let us prove the demand (b).

Suppose that G is an almost free Abelian group in κ with a filtration Ḡ = 〈Gi :
i < κ〉. Thus the set γ(Ḡ) = {i < κ : G/Gi is not κ–free } is stationary. Now we
consider two cases.

Case 1: the set γ(Ḡ) \ S is stationary.
By B.8.3 we know that after forcing with R (defined as there) the cardinal κ is still
weakly compact (or just all its stationary subsets reflect in inaccessibles). But this
forcing preserves the stationarity of γ(Ḡ) \ S (and generally any stationary subset
of κ disjoint from S, as S does not reflect). Consequently, in V3, the set

Γ′ = {κ′ : κ′ is strongly inaccessible and
(γ(Ḡ) \ S) ∩ κ′ is a stationary subset of κ′

is stationary in κ. Hence for some κ′ ∈ Γ′ we have (∀i < κ′)(‖Gi‖ < κ′) and
therefore the filtration 〈Gi : i < κ′〉 of Gκ′ shows that Gκ′ is not free, contradicting
“G is almost free in κ”.
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Case 2: the set γ(Ḡ) \ S is not stationary.
By renaming, wlog γ(Ḡ) ⊆ S. We shall prove that G is Whitehead. So let H

be an Abelian group extending Z and let h : H
onto
−→ G be a homomorphism such

that Ker(h) = Z. By B.6.10 the forcing notion P = Ph,H,G is well defined and

it is complete for (ÊS
0 , Ê

S
1 ) and has cardinality κ (and for each α < κ the set

Iα = {p ∈ P : Gα ⊆ p} is dense in P). Since V3 |= Axκ
θ , there is a directed set

G ⊆ P such that G ∩ Iα 6= ∅ for each α < κ. Thus f =
⋃

G is a lifting as required
(and G is Whitehead).

2) Implicit in the proof above. �
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