More on cardinal invariants of Boolean algebras

Andrzej Rosłanowski
Institute of Mathematics
The Hebrew University
91 904 Jerusalem, Israel
and
Mathematical Institute
Wrocław University
50 384 Wrocław, Poland

Saharon Shelah*
Institute of Mathematics
The Hebrew University
91 904 Jerusalem, Israel
and
Department of Mathematics
Rutgers University
New Brunswick, NJ 08903, USA

August 17, 2011

Abstract

We address several questions of Donald Monk related to irredundance and spread of Boolean algebras, gaining both some ZFC knowledge and consistency results. We show in ZFC that \(\operatorname{irr}(\mathbb{B}_0 \times \mathbb{B}_1) = \max\{\operatorname{irr}(\mathbb{B}_0), \operatorname{irr}(\mathbb{B}_1)\} \). We prove consistency of the statement “there is a Boolean algebra \(\mathbb{B} \) such that \(\operatorname{irr}(\mathbb{B}) < s(\mathbb{B} \oplus \mathbb{B}) \)” and we force a superatomic Boolean algebra \(\mathbb{B}_+ \) such that \(s(\mathbb{B}_+) = \operatorname{inc}(\mathbb{B}_+) = \kappa, \operatorname{irr}(\mathbb{B}_+) = \operatorname{Id}(\mathbb{B}_+) = \kappa^+ \) and \(\operatorname{Sub}(\mathbb{B}_+) = 2^{\kappa^+} \). Next we force a superatomic algebra \(\mathbb{B}_0 \) such that \(\operatorname{irr}(\mathbb{B}_0) < \operatorname{inc}(\mathbb{B}_0) \) and a superatomic algebra \(\mathbb{B}_1 \) such that \(t(\mathbb{B}_1) > \operatorname{Aut}(\mathbb{B}_1) \). Finally we show that consistently there is a Boolean algebra \(\mathbb{B} \) of size \(\lambda \) such that there is no free sequence in \(\mathbb{B} \) of length \(\lambda \), there is an ultrafilter of tightness \(\lambda \) (so \(t(\mathbb{B}) = \lambda \) and \(\lambda \notin \text{Depth}_{\text{hs}}(\mathbb{B}) \)).

* Partially supported by “Basic Research Foundation” of the Israel Academy of Sciences and Humanities. Publication 599.
0 Introduction

In the present paper we answer (sometimes partially only) several questions of Donald Monk concerning cardinal invariants of Boolean algebras. Most of our results are consistency statements, but we get some ZFC knowledge too.

For a systematic study and presentation of current research on cardinal invariants of Boolean algebras (as well as for a long list of open problems) we refer the reader to Monk [M2]. Some of the relevant definitions are listed at the end of this section.

Content of the paper: In the first section we show that the difference between \(s_n(\mathcal{B}) \) and \(s_N(\mathcal{B}) \) (for \(n < N \)) can be reasonably large, with the only restriction coming from the inequality \(s_n(\mathcal{B}) \geq 2^{\omega}(\mathcal{B}) \) (a consistency result; for the definitions of the invariants see below). It is relevant for the description of the behaviour of spread in ultraproducts: we may conclude that it is consistent that \(s(\prod_{n \in \omega} \mathcal{B}_n/D) \) is much larger than \(\prod_{n \in \omega} s(\mathcal{B}_n)/D \). In the following section we answer [M2, Problem 24] showing that \(\text{irr}(\mathcal{B}_0 \times \mathcal{B}_1) = \max\{\text{irr}(\mathcal{B}_0), \text{irr}(\mathcal{B}_1)\} \) (a ZFC result). A partial answer to [M2, Problem 27] is given in the third section, where we show that, consistently, there is a Boolean algebra \(\mathcal{B} \) such that \(\text{irr}(\mathcal{B}) < s(\mathcal{B} \uplus \mathcal{B}) \). In particular, this shows that the parallel statement to the result of section 2 for free product may fail. Note that proving the result of section 3 in ZFC is a really difficult task, as so far we even do not know if (in ZFC) there are Boolean algebras \(\mathcal{B} \) satisfying \(\text{irr}(\mathcal{B}) < |\mathcal{B}| \). In section 4 we force a superatomic Boolean algebra \(\mathcal{B} \) such that \(s(\mathcal{B}) = \text{inc}(\mathcal{B}) = \kappa, \text{irr}(\mathcal{B}) = \text{Id}(\mathcal{B}) = \kappa^+ \) and \(\text{Sub}(\mathcal{B}) = 2^{\omega}(\mathcal{B}) \). This gives answers to [M2, Problems 73, 77, 78] as stated (though the problems in ZFC remain open). Next we present some modifications of this forcing notion and in the fifth section we answer [M2, Problems 79, 81] forcing superatomic Boolean algebras \(\mathcal{B}_0, \mathcal{B}_1 \) such that \(\text{irr}(\mathcal{B}_0) < \text{inc}(\mathcal{B}_0) \) and \(\text{Aut}(\mathcal{B}_1) < t(\mathcal{B}_1) \). Finally in the last section we show that (consistently) there is a Boolean algebra \(\mathcal{B} \) of size \(\lambda \) such that there is no free sequence in \(\mathcal{B} \) of length \(\lambda \), there is an ultrafilter in \(\text{Ult}(\mathcal{B}) \) of tightness \(\lambda \) (so \(t(\mathcal{B}) = \lambda \)) and \(\lambda \notin \text{Depth}_{H\mathcal{F}}(\mathcal{B}) \). This gives answers to [M2, Problems 13, 41]. Lastly we use one of the results of [Sh 233] to show that \(2^{\text{cf}(t(\mathcal{B}))} < t(\mathcal{B}) \) implies \(t(\mathcal{B}) \in \text{Depth}_{H\mathcal{F}}(\mathcal{B}) \).

Notation: Our notation is rather standard and compatible with that of classical textbooks on set theory (like Jech [J]) and Boolean algebras (like Monk [M1], [M2]). However in forcing considerations we keep the older tradition that

\[\text{the stronger condition is the greater one} \]
Let us list some of our notation and conventions.

Notation 0.1

1. A name for an object in a forcing extension is denoted with a dot above (like \dot{X}) with one exception: the canonical name for a generic filter in a forcing notion \mathbb{P} will be called $\Gamma_{\mathbb{P}}$.

2. $\alpha, \beta, \gamma, \delta, \ldots$ will denote ordinals and $\kappa, \mu, \lambda, \theta$ will stand for (always infinite) cardinals.

3. For a set X and a cardinal λ, $[X]^{< \lambda}$ stands for the family of all subsets of X of size less than λ. If X is a set of ordinals then its order type is denoted by $\text{otp}(X)$.

4. In Boolean algebras we use \lor (and \bigvee), \land (and \bigwedge) and $-$ for the Boolean operations. If B is a Boolean algebra, $x \in B$ then $x^0 = x$, $x^1 = -x$. The Stone space of the algebra B is called $\text{Ult}(B)$.

5. For a subset Y of an algebra B, the subalgebra of B generated by Y is denoted by $\langle Y \rangle_B$.

6. The sign \odot stands for the operation of the free product of Boolean algebras and the product is denoted by \times.

The invariants: Below we recall some definitions and formalism from [RoSh 534] (see [M2] too).

Definition 0.2 For a (not necessary first order) theory T in the language of Boolean algebras plus one distinguished unary predicate P_0 plus, possibly, some others P_1, P_2, \ldots we define cardinal invariants inv_{T}, inv_{T}^+ of Boolean algebras by (for a Boolean algebra B):

$$
\text{inv}_{T}(B) \overset{\text{def}}{=} \sup\{|P_0| : (B, P_n)_n \text{ is a model of } T\},
\text{inv}_{T}^{+}(B) \overset{\text{def}}{=} \sup\{|P_0|^+ : (B, P_n)_n \text{ is a model of } T\}.
$$

We think of the spread $s(B)$ of a Boolean algebra B as

$$
(\otimes s) \ s(B) = \sup\{|X| : X \subseteq B \text{ is ideal-independent}\}
$$

(it is one of the equivalent definitions, see [M2, Thm 13.1]). Thus we can write $s(B) = s_\omega(B)$, where

Definition 0.3

1. $\phi_n^* \overset{\text{def}}{=} \text{the formula saying that no member of } P_0 \text{ can be covered by union of } n+1 \text{ other elements of } P_0$.

2. For $0 < n \leq \omega$ let $T^+_n = \{ \phi^+_k : k < n \}$.

3. For a Boolean algebra \mathfrak{B} and $0 < n \leq \omega$:
 $s_n^{(+)}(\mathfrak{B}) = \text{inv}^{-1}_n(\mathfrak{B})$.

The hereditary density $\text{hd}(\mathfrak{B})$ and the hereditary Lindelöf degree $\text{hL}(\mathfrak{B})$ of a
Boolean algebra \mathfrak{B} are treated in a similar manner. We use [M2, Thm 16.1] and [M2, Thm 15.1] to define them as

$$(\otimes_{\text{hd}}) \text{hd}(\mathfrak{B}) = \sup\{ |\kappa| : \text{there is a strictly decreasing sequence of ideals (in} \mathfrak{B} \text{) of the length } \kappa \},$$

$$(\otimes_{\text{hL}}) \text{hL}(\mathfrak{B}) = \sup\{ |\kappa| : \text{there is a strictly increasing sequence of ideals (in} \mathfrak{B} \text{) of the length } \kappa \}. $$

This leads us directly to the following definition.

Definition 0.4 1. Let the formula ψ say that P_1 is a well ordering of P_0
(denoted by $<_1$).

2. For $n < \omega$ let ϕ^hd_n, ϕ^hL_n be the following formulas:

$$\phi^\text{hd}_n \equiv \psi \& (\forall x_0, \ldots, x_{n+1} \in P_0)(x_0 <_1 \ldots <_1 x_{n+1} \Rightarrow x_0 \not\leq x_1 \lor \ldots \lor x_{n+1})$$

$$\phi^\text{hL}_n \equiv \psi \& (\forall x_0, \ldots, x_{n+1} \in P_0)(x_{n+1} <_1 \ldots <_1 x_0 \Rightarrow x_0 \not\leq x_1 \lor \ldots \lor x_{n+1}).$$

3. For $0 < n \leq \omega$ we let $T^\text{hd}_n = \{ \phi^\text{hd}_k : k < n \}$, $T^\text{hL}_n = \{ \phi^\text{hL}_k : k < n \}$.

4. For a Boolean algebra \mathfrak{B} and $0 < n \leq \omega$:

$$\text{hd}_n^{(+)}(\mathfrak{B}) = \text{inv}^{-1}_n(\mathfrak{B}), \quad \text{hL}_n^{(+)}(\mathfrak{B}) = \text{inv}^{-1}_n(\mathfrak{B}).$$

We use the following characterization of tightness (see [M2, §12]):

$$t(\mathfrak{B}) = \sup\{ |\alpha| : \text{there exists a free sequence of the length } \alpha \in \mathfrak{B} \}.$$

Definition 0.5 1. Let ψ be the sentence saying that P_1 is a well ordering
of P_0 (we denote the respective order by $<_1$). For $k, l < \omega$ let ϕ^t_k,l be
the sentence asserting that

for each $x_0, \ldots, x_k, y_0, \ldots, y_l \in P_0$

if $x_0 <_1 \ldots <_1 x_k <_1 y_0 <_1 \ldots <_1 y_l$ then $\bigwedge_{i \leq k} x_i \not\leq \bigvee_{i \leq l} y_i,$

and let the sentence ϕ^ut_k,l say that

for each distinct $x_0, \ldots, x_k, y_0, \ldots, y_l \in P_0$ we have $\bigwedge_{i \leq k} x_i \not\leq \bigvee_{i \leq l} y_i.$
2. For $n, m \leq \omega$ let $T_{n,m}^n = \{ \phi_{k,l} : k < n, l < m \}$ and $T_{n,m}^m = \{ \psi_{k,l} : k < n, l < m \}$ and for a Boolean algebra \mathcal{B}:

$$t_{n,m}(\mathcal{B}) = \text{inv}_{T_{n,m}^n}(\mathcal{B}) \quad \& \quad ut_{n,m}(\mathcal{B}) = \text{inv}_{T_{n,m}^m}(\mathcal{B}).$$

The irredundance $\text{irr}(\mathcal{B})$ of a Boolean algebra \mathcal{B} is the supremum of cardinalities of sets $X \subseteq \mathcal{B}$ such that $(\forall x \in X)(x \notin \langle X \setminus \{x\}\rangle_\mathcal{B})$.

Definition 0.6 (compare [M2, p. 144]) Let $n \leq \omega$ and let $T_{n,n}^n$ be the theory of the language of Boolean algebras plus a predicate P_0, which says that for each $m < n$ and a Boolean term $\tau(y_0, \ldots, y_m)$ we have

$$(\forall x \in P_0)(\forall x_0, \ldots, x_m \in P_0 \setminus \{x\}) (x \neq \tau(x_0, \ldots, x_m)).$$

For Boolean algebra \mathcal{B} we define $\text{irr}^{(\ast)}(\mathcal{B}) = \text{inv}_{T_{n,n}^n}^{(\ast)}(\mathcal{B})$ (so $\text{irr}_\omega(\mathcal{B}) = \text{irr}(\mathcal{B})$).

The incomparability number $\text{inc}(\mathcal{B})$ is the supremum of cardinalities of sets of pairwise incomparable elements. The number of ideals in \mathcal{B} is denoted by $\text{Id}(\mathcal{B})$, $\text{Aut}(\mathcal{B})$ stands for the number of automorphisms of the algebra \mathcal{B}, and the number of subalgebras of \mathcal{B} is denoted by $\text{Sub}(\mathcal{B})$.

1 Forcing for spread

The aim of this section is to show that for N much larger than n, the inequalities $2^{s_n(N)} \geq s_n(\mathcal{B}) \geq s_N(\mathcal{B})$ (see [M2, Thm 13.6]) seem to be the only restriction on the jumps between s_N and s_n. The forcing notion defined in 1.1(2) below is a modification of the one from [Sh 479, §2] and a relative of the forcing notion from [Sh 620, §15].

Definition 1.1 1) For a set w and a family $F \subseteq 2^w$ we define $\text{cl}(F) = \{ g \in 2^w : (\forall u \in [w]^{<\omega}) (\exists f \in F)(f \upharpoonright u = g \upharpoonright u), \mathcal{B}_{(w,F)}$ is the Boolean algebra generated freely by $\{ x_\alpha : \alpha \in w \}$ except that if $u_0, u_1 \in [w]^{<\omega}$ and there is no $f \in F$ such that $f \upharpoonright u_0 \equiv 0, f \upharpoonright u_1 \equiv 1$ then $\bigwedge_{\alpha \in u_1} x_\alpha \wedge \bigwedge_{\alpha \in u_0} (\neg x_\alpha) = 0$.

2) Let $\mu \leq \lambda$ be cardinals, $0 < n < \omega$. We define forcing notion $\mathcal{Q}_{n,\lambda}^\mu$:

- **a condition** is a pair $p = (w^p, F^p)$ such that $w^p \in [\lambda]^{<\mu}$, $F^p \subseteq 2^{w^p}$, $|F^p| < \mu$ and for every $u \in [w^p]^{\leq n}$ there is $f^* : w^p \setminus u \longrightarrow 2$ such that if $h : u \longrightarrow 2$ then $f^* \cup h \in F^p$;

- **the order** is given by $p \leq q$ if and only if $w^p \subseteq w^q$ and

$$(\forall f \in F^p)(f \upharpoonright w^p \in \text{cl}(F^p)) \quad \text{and} \quad (\forall f \in F^p)(\exists g \in F^p)(f \subseteq g).$$
Proposition 1.2 (see [Sh 479, 2.6]) 1. If $p \in \mathbb{Q}_n^{\mu,\lambda}$, $f \in F^p$ then f
extends to a homomorphism from \mathbb{B}_p to $\{0,1\}$ (i.e. it preserves the
equalities from the definition of \mathbb{B}_p).

2. If $p \in \mathbb{Q}_n^{\mu,\lambda}$, $\tau(y_0,\ldots,y_k)$ is a Boolean term and $\alpha_0,\ldots,\alpha_k \in w^p$ are
distinct then

$\mathbb{B}_p \models \tau(x_{\alpha_0},\ldots,x_{\alpha_k}) \neq 0 \ if \ and \ only \ if$

$(\exists f \in F^p)(\{0,1\} \models \tau(f(\alpha_0),\ldots,f(\alpha_k)) = 1).$

3. If $p,q \in \mathbb{Q}_n^{\mu,\lambda}$, $p \leq q$ then \mathbb{B}_p is a subalgebra of \mathbb{B}_q. ■

Proposition 1.3 Assume $\mu^{<\mu} = \mu \leq \lambda$, $0 < n < \omega$. Then

1. $\mathbb{Q}_n^{\mu,\lambda}$ is a μ–complete forcing notion of size $\lambda^{<\mu}$,

2. $\mathbb{Q}_n^{\mu,\lambda}$ satisfies $\mu^+\text{-cc}$.

PROOF This is almost exactly like [Sh 479, 2.7]. For (1) no changes are
required; for (2) one has to check that the condition defined as there is
really in $\mathbb{Q}_n^{\mu,\lambda}$. So suppose that $\langle p_\alpha : \alpha < \mu^+ \rangle \subseteq \mathbb{Q}_n^{\mu,\lambda}$. Applying standard
“cleaning procedure” find $\alpha_0 < \alpha_1 < \mu^+$ such that

- $\text{otp}(w^{p_{\alpha_0}}) = \text{otp}(w^{p_{\alpha_1}}),$

- if $H : w^{p_{\alpha_0}} \longrightarrow w^{p_{\alpha_1}}$ is the order preserving mapping then $H \upharpoonright (w^{p_{\alpha_0}} \cap
w^{p_{\alpha_1}})$ is the identity on $w^{p_{\alpha_0}} \cap w^{p_{\alpha_1}}$ and $F^{p_{\alpha_0}} = \{f \circ H : f \in F^{p_{\alpha_1}}\}$

(remember $\mu^{<\mu} = \mu$; use Δ–lemma). Let $w^q = w^{p_{\alpha_0}} \cup w^{p_{\alpha_1}}$ and

$F^q = \{f \cup g : f \in F^{p_{\alpha_0}} \& g \in F^{p_{\alpha_1}} \& f \upharpoonright (w^{p_{\alpha_0}} \cap w^{p_{\alpha_1}}) = g \upharpoonright (w^{p_{\alpha_0}} \cap w^{p_{\alpha_1}})\}.$

To check that $q = (w^q, F^q)$ is in $\mathbb{Q}_n^{\mu,\lambda}$ suppose that $u \in [w^q]^{\leq n}$ and let

$u^* = H^{-1}[u \cap w^{p_{\alpha_1}}] \cup (u \cap w^{p_{\alpha_0}}) \subseteq [w^{p_{\alpha_0}}]^{\leq n}$. Let $f^*_0 : w^{p_{\alpha_0}} \setminus u^* \longrightarrow 2$ be
such that if $h : u \longrightarrow 2$ then $f^*_0 \cup h \in F^{p_{\alpha_0}}$. Next, let $f^*_1 : w^{p_{\alpha_0}} \setminus u \longrightarrow 2$ be
such that $f^*_1 \subseteq f^*$ and if $\alpha \in u^* \setminus u$ then $f^*(\alpha) = 0$, and let $g^* : w^{p_{\alpha_1}} \setminus u \longrightarrow 2$
be such that $f^*_0 \circ H^{-1} \subseteq g^*$ and if $\alpha \in H[u^*] \setminus u$ then $g^*(\alpha) = 0$. Now it
should be clear that

if $h : u \longrightarrow 2$ then $(f^* \cup g^*) \cup h \in F^q.$

Verifying that both $p_{\alpha_0} \leq q$ and $p_{\alpha_1} \leq q$ is even easier. ■
Let \(\hat{B} \) be the \(Q_{\alpha,\lambda} \)-name for \(\bigcup \{ B_p : p \in \Gamma_{Q_{\alpha,\lambda}} \} \). It follows from 1.2 that

\[
\models_{Q_{\alpha,\lambda}} \text{ "\(\hat{B} \) is a Boolean algebra generated by \(\{ x_\alpha : \alpha < \lambda \} \)" }
\]

and, for a condition \(p \in Q_{\alpha,\lambda} \),

\[
p \models_{Q_{\alpha,\lambda}} \langle x_\alpha : \alpha \in w^p \rangle_{\hat{B}} = B_p.
\]

Theorem 1.4 Assume \(\mu^+ \leq \lambda \) and \(0 < N, n < \omega \) are such that

\[
2^{n/2} + n \leq N.
\]

Then

\[
\models_{Q_{\alpha,\lambda}} \text{ "ind}_{n}^{+}(\hat{B}) = \lambda^+ \text{ and } t_{1,N}^{+}(\hat{B}) = t_{N,1}^{+}(\hat{B}) = \text{ind}_{n}^{+}(\hat{B}) = \mu^+ '".
\]

Proof It follows immediately from the definition of \(Q_{\alpha,\lambda} \) (by density arguments, remembering 1.2) that

\[
\models_{Q_{\alpha,\lambda}} \text{ "the sequence } \langle x_\alpha : \alpha < \lambda \rangle \text{ is } n\text{-independent "}.
\]

Suppose now that \(\langle \hat{a}_\beta : \beta < \mu^+ \rangle \) is a \(\mu^+ \)-sequence of elements of \(\hat{B} \), \(p \in Q_{\mu,\lambda} \). For each \(\beta < \mu^+ \) choose a condition \(p_\beta \geq p \), a Boolean term \(\tau_{\beta} \) and ordinals \(\bar{\alpha}(\beta,0) < \ldots < \bar{\alpha}(\beta,\ell_{\beta}) < \lambda \) such that

\[
p_{\beta} \models_{Q_{\mu,\lambda}} \hat{a}_\beta = \tau_{\beta}(x_{\bar{\alpha}(\beta,0)},\ldots,x_{\bar{\alpha}(\beta,\ell_{\beta})}).
\]

By \(\Delta \)-system arguments, passing to a subsequence and increasing \(p_{\beta} \)'s, we may assume that

(i) \(\tau_{\beta} = \tau, \ell_{\beta} = \ell \) and \(\bar{\alpha}(\beta,0),\ldots,\bar{\alpha}(\beta,\ell) \in w^p_{\beta} \),

(ii) \(\text{otp}(w^p_{\beta_0}) = \text{otp}(w^p_{\beta_1}) \) and \(\text{otp}(w^p_{\beta_0} \cap \bar{\alpha}(\beta_0,j)) = \text{otp}(w^p_{\beta_1} \cap \bar{\alpha}(\beta_0,j)) \) for \(j \leq \ell, \beta_0, \beta_1 < \mu^+ \),

(iii) \(\{ w^p_{\beta} : \beta < \mu^+ \} \) forms a \(\Delta \)-system of sets with heart \(w^* \),

(iv) if \(H_{\beta_0,\beta_1} : w^p_{\beta_0} \longrightarrow w^p_{\beta_1} \) is the order preserving mapping then \(H_{\beta_0,\beta_1} \upharpoonright w^* \) is the identity on \(w^* \) and \(F_{\beta_0} = \{ f \circ H_{\beta_0,\beta_1} : f \in F_{\beta_0} \} \).

After this “cleaning procedure” look at the conditions \(p_0,\ldots,p_N \). We want to show that they have a common upper bound \(q \in Q_{\mu,\lambda} \) such that \(q \models_{Q_{\mu,\lambda}} \text{ "} \hat{a}_0 \land \bigwedge_{j < N} (\neg \hat{a}_{1+j}) = 0 \text{ "} \). To this end define:

\[
w^q = w^p_0 \cup \ldots \cup w^p_N \text{ and }
\]
Let us check that and follows:

Choose \(h \) such that \(\forall i \in [1, N] \), \(f_i \) and the choice of \(\alpha \). This shows that \(\bigcup_{i \leq N} H_{i,0}[u \cap w^i] \in [w^\mu]^\leq n \). One of the sets \(u^i \), \(u^+ \setminus u^i \) has size at most \(n/2 \), and first we deal with the case \(|u^i| \leq n/2 \). Choose \(f^* : w^\mu \setminus u^i \rightarrow 2 \) such that \((\forall h : u^i \rightarrow 2)(f^* \cup h \in F^\mu) \). For each \(v \subseteq u^i \) choose \(h_v : u^+ \rightarrow 2 \) such that \(h_v \upharpoonright v \equiv 1 \), \(h_v \upharpoonright (u^+ \setminus v) \equiv 0 \) and if there is \(h : u^+ \rightarrow 2 \) satisfying the above demands and such that \(\{0,1\} \models \tau((f^* \cup h)(\alpha(0,0)), \ldots, (f^* \cup h)(\alpha(0,\ell))) = 1 \) then \(h_v \) has this property.

Since \(2|u^i| + n \leq N \) we may choose distinct \(i_v \in [1, N] \) for \(v \subseteq u^i \) such that \(w^\mu \cap u = u^i \). Now we define functions \(f^*_i : w^\mu \setminus u \rightarrow 2 \) (for \(i \leq N \)) as follows:

- if \(i = i_v \), \(v \subseteq u^i \) then \(f^*_i = (f^* \cup h_v) \circ H_{i,0} \).
- if \(i \not\in \{i_v : v \subseteq u^i \} \) then \(f^*_i \supseteq f^* \circ H_{i,0} \) is such that \(f^*_i(\alpha) = 0 \) for all \(\alpha \in H_{i,0}[u^i] \setminus u \).

Suppose that \(h : u^+ \rightarrow 2 \) and let \(f_i = f_i^* \cup (h \upharpoonright (u \cap w^i)) \). It should be clear that for each \(i \leq N \) we have \(f_i \in F^\mu \) and \(f_i \downharpoonright w^i = f_0 \downharpoonright w^i \) (remember the choice of \(f^* \)). Assume that \(\{0,1\} \models \tau(f_0(\alpha(0,0)), \ldots, f_0(\alpha(0,\ell))) = 1 \). Look at \(v = h^{-1}[\{1\}] \cap u^i \) and the corresponding \(i_v \). By the above assumption and the choice of \(h_v, f^*_i \) we have

\[
\{0,1\} \models \tau(f_{i_v}(\alpha(i_v,0)), \ldots, f_{i_v}(\alpha(i_v,\ell))) = 1.
\]

This shows that \(\bigcup_{i \leq N} f_i \in F^q \) and hence we conclude \(q \in Q^{\mu,\lambda}_\nu \). If \(|u^+ \setminus u^i| \leq n/2 \) then we proceed similarly: for \(v \subseteq u^+ \setminus u^i \) we choose distinct \(i_v \in [1, N] \) such that \(w^\mu \cap u = u^i \). We pick \(f^* \) as in the previous case and we define \(f^*_i : w^\mu \setminus u \rightarrow 2 \) (for \(i \leq N \)) as follows

- if \(i = i_v \), \(v \subseteq u^+ \setminus u^i \) then \(f^*_i = f^* \circ H_{i,0} \) and \((\forall \alpha \in u^+ \setminus u^i)(f^*_i(H_{i,0}(\alpha)) = 1 \iff \alpha \in v) \),
- if \(i \not\in \{i_v : v \subseteq u^+ \setminus u^i \} \) then \(f^*_i \supseteq f^* \circ H_{i,0} \) is such that \(f^*_i(\alpha) = 0 \) for all \(\alpha \in H_{i,0}[u^+ \setminus u] \).
Next we argue like before to show that $q \in Q_{\mu, \lambda}^\mu$.

Checking that q is a common upper bound of p_0, \ldots, p_N is straightforward. Finally, by the definition of F_q and by 1.2(2) we see that

$$q \Vdash Q_{\mu, \lambda}^\mu \left[\check{\alpha}_0 \land \bigwedge_{j=1}^{N} (\check{\alpha}_j) = 0 \right].$$

Thus we have proved that $q \Vdash Q_{\mu, \lambda}^\mu \left[\check{a}_0 \land \bigwedge_{j=1}^{N} (\check{a}_j) = 0 \right]$. The same arguments show that $q \Vdash Q_{\mu, \lambda}^\mu \left[\check{\alpha}_0 \land \bigwedge_{j=1}^{N} (\check{\alpha}_j) = 0 \right]$ (just considering $\check{-a}_0$ instead of \check{a}_0 and $\{0, \ldots, N-1\}, \{N\}$ as the two groups of indexes there).

To show that the equalities hold one can prove even more: in $V^{Q_{\mu, \lambda}^\mu}$, there is an independent subset of \check{B} of size μ. The construction of the set is easy once you note that if $p \in Q_{\mu, \lambda}^\mu$, $\alpha \in \lambda \setminus \omega$ and $\omega^p = \omega^p \cup \{\alpha\}$, $F_q = \{f \in 2^{\omega^p} : f \upharpoonright \omega^p \in F^p\}$ then $q = (\omega^p, F_q)$ is a condition in $Q_{\mu, \lambda}^\mu$ stronger than p.

Conclusion 1.5 Assume that $\mu < \mu = \mu < \lambda \leq \chi$. Then there is a forcing notion \mathbb{P} which does not change cardinalities and cofinalities and such that in $V^\mathbb{P}$: $2^\mu \geq \chi$ and there are Boolean algebras B_0, B_1, B_2, \ldots of size λ satisfying

$$\text{ind}_{n+1}^+(B_n) = \lambda^+ \quad \text{and} \quad \text{hd}^+(B_n) = hL^+(B_n) = \text{ind}^+(B_n) = \mu^+.$$

Consequently, in $V^\mathbb{P}$, for every non-principal ultrafilter D on ω we have

$$\text{inv}(\prod_{n<\omega} B_n/D) = \lambda^\omega \quad \text{and} \quad \prod_{n<\omega} \text{inv}(B_n)/D = \mu^\omega,$$

where $\text{inv} \in \{\text{ind}, \text{t}, \text{hd}, hL, s\}$.

Proof Let \mathbb{P}_0 be the forcing notion adding χ many Cohen subsets of μ (with conditions of size $< \mu$) and for $n > 0$ let \mathbb{P}_n be $Q_{\mu, \lambda}^\mu$. Let \mathbb{P} be the $<\mu$-support product of the \mathbb{P}_n’s (so if $\mu = \omega$ then \mathbb{P} is the finite support product of the \mathbb{P}_n’s and otherwise it is the full product).

Claim 1.5.1 \mathbb{P} is a μ–closed μ^+–cc forcing notion of size χ^μ.

Proof of the claim: Modify the proof of 1.3.

Let B_n be the \mathbb{P}_{n+1}–name (and so \mathbb{P}–name) for the Boolean algebra added by forcing with \mathbb{P}_n.

Claim 1.5.2 For $n \in \omega$, $\text{inv} \in \{\text{ind}, \text{t}, \text{hd}, hL, s\}$ we have

$$\mathbb{P} \Vdash \text{ind}^+_{n+1}(\check{B}_n) = \lambda^+ \quad \text{and} \quad \text{inv}^+(\check{B}_n) = \mu^+.$$
Proof of the claim: Repeat the proof of 1.4 with suitable changes to show that in \mathbb{V}^P, for each n, we have
\[\text{ind}_{n+1}^+ (\mathbb{B}_n) = \lambda^+ \quad \text{and} \quad t_{1,2n+n}^+ (\mathbb{B}_n) = t_{2^n+n,1}^+ (\mathbb{B}_n) = \text{ind}^+ (\mathbb{B}_n) = \mu^+. \]

Now note that for a Boolean algebra \mathbb{B}
\[t_{1,N}^{(+)} = \text{hd}_{N}^{(+)} (\mathbb{B}) \quad \text{and} \quad t_{N,1}^{(+)} (\mathbb{B}) = \text{hL}_{N}^{(+)} (\mathbb{B}) \]
(and remember that $\text{ind}^{(+)} (\mathbb{B}) \leq s^{(+)} (\mathbb{B}) \leq \text{hd}^{(+)} (\mathbb{B}), \text{hL}^{(+)} (\mathbb{B})$).

The “consequently” part of the conclusion should be clear (or see [RoSh 534, Section 1]).

Remark 1.6 Note that the examples when the spread of ultraproduct is larger than the ultraproduct of the spreads which were known before provided “a successor” difference only. Conclusion 1.5 shows that the jump can be larger, but we do not know if one can get it in ZFC (i.e. assuming suitable cardinal arithmetic only).

Problem 1.7 Can one improve 1.4 getting it for $N = n + 1$?

2 Irredundance of products

In theorem 2.1 below we answer [M2, Problem 24]. A parallel question for free products of Boolean algebras will be addressed in the next section. It should be noted here that the proof of the ZFC result was written as a result of an analysis why a forcing proof of consistency of an inequality (similar to the one from the next section) failed.

Theorem 2.1 For Boolean algebras $\mathbb{B}_0, \mathbb{B}_1$:
\[\text{irr} (\mathbb{B}_0 \times \mathbb{B}_1) = \max \{ \text{irr} (\mathbb{B}_0), \text{irr} (\mathbb{B}_1) \}. \]

Proof Clearly $\text{irr} (\mathbb{B}_0 \times \mathbb{B}_1) \geq \max \{ \text{irr} (\mathbb{B}_0), \text{irr} (\mathbb{B}_1) \}$, so we have to deal with the converse inequality only. Assume that a sequence $x = \{(x^0_\alpha, x^1_\alpha) : \alpha < \lambda \} \subseteq \mathbb{B}_0 \times \mathbb{B}_1$ is irredundant. Thus, for each $\alpha < \lambda$, we have homomorphisms $f^0_\alpha, f^1_\alpha : \mathbb{B}_0 \times \mathbb{B}_1 \rightarrow \{0, 1\}$ such that $f^0_\alpha (x^0_\alpha, x^1_\alpha) = 0, f^1_\alpha (x^0_\alpha, x^1_\alpha) = 1$ and
\[(\forall \beta \in \lambda \setminus \{ \alpha \})(f^0_\alpha (x^0_\beta, x^1_\beta) = f^1_\alpha (x^0_\beta, x^1_\beta)). \]

By shrinking the sequence x if necessary, we may assume that one of the following occurs:
(i) \((\forall \alpha < \lambda)(f_0^0(1,0) = f_1^1(1,0) = 0)\),
(ii) \((\forall \alpha < \lambda)(f_0^0(1,0) = f_1^1(1,0) = 1)\),
(iii) \((\forall \alpha < \lambda)(f_0^0(1,0) = 0 \& f_1^1(1,0) = 1)\),
(iv) \((\forall \alpha < \lambda)(f_0^0(1,0) = 1 \& f_1^1(1,0) = 0)\).

If the first clause occurs then we may define (for \(\alpha < \lambda\)) homomorphisms \(h_0^0, h_1^1 : B_1 \rightarrow \{0,1\}\) by \(h_0^0(x) = f_0^0(1,x)\) (remember that in this case we have \(f_0^0(0,1) = 1\)). Clearly these homomorphisms witness that the sequence \(\langle x_1^1 : \alpha < \lambda \rangle \subseteq B_1\) is irredundant (and thus \(\text{irr}^+(B_1) > \lambda\)). Similarly, if (ii) holds then the sequence \(\langle x_0^1 : \alpha < \lambda \rangle \subseteq B_0\) is irredundant and \(\text{irr}^+(B_0) > \lambda\).

Since \(f_0^0(1,0) = 0 \iff f_0^0(0,1) = 1\) and the algebras \(B_0, B_1\) are in symmetric positions, we may assume that clause (iv) holds, so \(f_0^0(0,1) = 0\) (for \(\ell < 2\), \(\alpha < \lambda\)).

For \(\alpha < \lambda\) and \(\ell < 2\) let \(g_0^\ell : \alpha \rightarrow 2\) be given by \(g_0^\ell(\beta) = f_0^\ell(x_0^0, x_1^1)\) for \(\beta < \lambda\). Note that \(\beta \neq \alpha\) implies \(g_0^\ell(\beta) = g_1^\ell(\beta)\) (remember the choice of the \(f_0^\ell, f_1^\ell\)'s). Next, for \(\ell < 2\) let \(F_\ell = \{g_0^\ell : \alpha < \lambda\}\) and let \(B_\ell^\beta\) be the algebra \(B_{(\lambda,F_\ell)}\) (see 1.1(1)).

Claim 2.1.1 Assume that \(A \subseteq \lambda\) and \(\ell < 2\) are such that
\[(\mathcal{S}_A^\ell) \text{ the mappings } \{x_\beta : \beta \in A\} \rightarrow \{0,1\} : x_\beta \mapsto g_\ell^k(\beta) \text{ (for } k = 0,1 \text{ and } \alpha \in A) \text{ extend to homomorphisms from } \langle x_\beta : \beta \in A \rangle_{B_\ell^\beta} \text{ onto } \{0,1\}.\]

Then the sequence \(\langle x_\alpha^\ell : \alpha \in A \rangle \subseteq B_\ell\) is irredundant.

Proof of the claim: First note that the assumption \((\mathcal{S}_A^\ell)\) implies that the sequence \(\langle x_\beta : \beta \in A \rangle \subseteq B_\ell^\beta\) is irredundant. Now, the mapping \(x_\beta^\ell \mapsto x_\beta\) extends to a homomorphism from the algebra \(\langle x_\beta^\ell : \beta < \lambda \rangle_{B_\ell^\beta}\) onto \(B_\ell^\beta\). [Why? Note that, since \(f_0^0(1,0) = 1 = f_1^1(0,1)\), the mappings \(x_\beta^\ell \mapsto f_0^\ell(x_\beta^0, x_\beta^1) = g_0^\ell(\beta)\) extend to homomorphisms from \(B_\ell\) onto \(\{0,1\}\). Now look at the definition of the algebra \(B_\ell^\beta\); remember 1.2(2).] Consequently we get that the sequence \(\langle x_\beta^\ell : \beta \in A \rangle \subseteq B_\ell\) is irredundant.

It follows from claim 2.1.1 that if there are \(A \in [\lambda]^\lambda\) and \(\ell < 2\) such that \((\mathcal{S}_A^\ell)\) holds true then the algebra \(B_\ell\) has an irredundant sequence of length \(\lambda\) (i.e. \(\text{irr}^+(B_\ell) > \lambda\)). So the proof of the theorem will be concluded when we show the following claim.

Claim 2.1.2 Let \(\ell < 2\). Assume that there is no \(A \in [\lambda]^\lambda\) such that \((\mathcal{S}_A^\ell)\) holds. Then \(\text{s}^+(B_{1-\ell}) > \lambda\) (so \(\text{irr}^+(B_{1-\ell}) > \lambda\) too).
Proof of the claim: By induction on $\xi < \lambda$ we build a sequence $\langle (u_\xi, v_\xi) : \xi < \lambda \rangle$ such that for each $\xi < \lambda$:

(a) $u_\xi, v_\xi \in [\lambda]^\omega$ are disjoint,

(b) $(u_\xi \cup v_\xi) \cap \bigcup_{\xi < \xi} (u_\xi \cup v_\xi) = \emptyset$,

(c) $B^*_ \models \bigwedge_{\gamma \in u_\xi} x_\gamma \land \bigwedge_{\gamma \in v_\xi} (-x_\gamma) = 0$,

(d) $B^*_{1-\ell} \models \bigwedge_{\gamma \in u_\xi} x_\gamma \land \bigwedge_{\gamma \in v_\xi} (-x_\gamma) \neq 0$.

Suppose we have defined u_ξ, v_ξ for $\xi < \xi$. The set $A = \lambda \setminus \bigcup_{\xi < \xi} (u_\xi \cup v_\xi)$ is of size λ, so (by our assumptions) (\mathbb{W}_α^A) fails. This means that one of the mappings

$$\{x_\beta : \beta \in A\} \longrightarrow \{0, 1\} : x_\beta \mapsto g_\alpha^k(\beta), \quad (k = 0, 1, \alpha \in A)$$

does not extend to a homomorphism from $\langle x_\beta : \beta \in A \rangle_{B^*_\beta}$. But, by the definition of B^*_α, the mappings $x_\beta \mapsto g_\alpha^k(\beta)$ do extend (see 1.2(1)). We find finite disjoint sets $u_\xi, v_\xi \subseteq A$ such that $B^*_\xi \models \bigwedge_{\gamma \in u_\xi} x_\gamma \land \bigwedge_{\gamma \in v_\xi} (-x_\gamma) = 0$, but for some $\alpha < \lambda$, $g_\alpha^{1-\ell} \upharpoonright u_\xi \equiv 1$ and $g_\alpha^{1-\ell} \upharpoonright v_\xi \equiv 0$. The latter implies that $B^*_{1-\ell} \models \bigwedge_{\gamma \in u_\xi} x_\gamma \land \bigwedge_{\gamma \in v_\xi} (-x_\gamma) \neq 0$. This finishes the construction.

The demand (d) means that (by 1.2) for each $\xi < \lambda$ we find $\alpha_\xi < \lambda$ such that $g_\alpha^{1-\ell} \upharpoonright u_\xi \equiv 1$ and $g_\alpha^{1-\ell} \upharpoonright v_\xi \equiv 0$. On the other hand, by (c), there is no $\alpha < \lambda$ such that $g_\alpha^0 \upharpoonright u_\xi \equiv 1$ and $g_\alpha^0 \upharpoonright v_\xi \equiv 0$. But now, if $\alpha \notin u_\xi \cup v_\xi$ then $g_\alpha^{1-\ell} \upharpoonright (u_\xi \cup v_\xi) = g_\alpha^0 \upharpoonright (u_\xi \cup v_\xi)$, so necessarily $\alpha_\xi \in u_\xi \cup v_\xi$. Let

$$y_\xi = \bigwedge_{\gamma \in u_\xi} x_\gamma^{1-\ell} \land \bigwedge_{\gamma \in v_\xi} (-x_\gamma^{1-\ell}) \in B^{1-\ell}_{1-\xi}$$

be a homomorphism defined by $h_\xi(x_\beta^{1-\ell}) = f_{\alpha_\xi \xi}^{1-\ell}(x_\beta^0, x_\beta^1) = g_{\alpha_\xi}^{1-\ell}(\beta)$. It follows from the above discussion that $(h_\xi$ is well defined and)

$$h_\xi(y_\xi) = 1 \text{ if and only if } \xi = \xi,$$

showing that the sequence $\langle y_\xi : \xi < \lambda \rangle$ is ideal independent (and irredundant). This finishes the proof of the claim and that of the theorem. \[\blacksquare\]

3 Forcing for spread and irredundance

In this section we show that, consistently, there is a Boolean algebra B such that $\text{irr}(B) < s(B \oplus B)$. This gives a partial answer to [M2, Problem 27].
Moreover, it shows that a statement parallel to 2.1 for the free product (instead of product) is not provable in ZFC. Note that before trying to answer [M2, Problem 27] in ZFC one should first construct a ZFC example of a Boolean algebra B such that $\text{irr}(B) < |B|$ — so far no such example is known.

Definition 3.1

1. **We define a forcing notion** Q^* **by:**

 a **condition** is a tuple $p = \langle w^\beta, (f^p_{0,\alpha}, f^p_{1,\alpha}, f^p_{2,\alpha} : \alpha \in w^\beta) \rangle$ such that

 (a) $w^\beta \subseteq \omega_1$ is finite,

 (b) $f^p_{0,\alpha} : w^\beta \times 2 \to \{0, 1\}$ for $\ell < 3, \alpha \in w^\beta$,

 (c) $f^0_{0,\alpha} \upharpoonright (w^\beta \land \alpha) \times 2 = f^0_{1,\alpha} \upharpoonright (w^\beta \land \alpha) \times 2 = f^0_{2,\alpha} \upharpoonright (w^\beta \land \alpha) \times 2$ for $\alpha \in w^\beta$,

 (d) $f^0_{0,\alpha}(\alpha, 0) = 1, f^0_{0,\alpha}(\alpha, 1) = 0$ (for $\alpha \in w^\beta$),

 (e) $f^0_{1,\alpha}(\alpha, 0) = 0, f^0_{1,\alpha}(\alpha, 1) = 1$ (for $\alpha \in w^\beta$),

 (f) $f^0_{0,\alpha}(\beta, 0) = 0 \ or \ f^0_{1,\alpha}(\beta, 1) = 0$ (for distinct $\alpha, \beta \in w^\beta$),

 (g) $f^0_{0,\alpha}(\beta, 0) = 0 \ or \ f^0_{2,\alpha}(\beta, 1) = 0$ (for $\alpha, \beta \in w^\beta$),

 (h) $f^0_{1,\alpha}(\beta, 1) = 0 \ or \ f^0_{2,\alpha}(\beta, 0) = 0$ (for $\alpha, \beta \in w^\beta$),

 (i) $f^0_{2,\alpha}(\beta, 0) = 0 \ or \ f^0_{2,\alpha}(\beta, 1) = 0$ (for $\alpha, \beta \in w^\beta$);

 the **order** is defined by: $p \leq q$ if and only if $w^\beta \subseteq w^\beta$, and $f^p_{\ell,\alpha} = f^q_{\ell,\alpha}$ for each $\alpha \in w^\beta, \ell < 3$ and for each $\alpha \in w^\beta, \ell < 3$:

 $f^p_{\ell,\alpha} \upharpoonright (w^\beta \land \alpha) \times 2 \in \{f^q_{k,\beta} : \beta \in w^\beta, k < 3\}$.

2. For a condition $p \in Q^*$ let B^*_p be the algebra $B_{(w,F)}$, where $w = w^\beta \times 2$ and $F = \{f^p_{\ell,\alpha} : \alpha \in w^\beta, \ell < 3\}$ (see 1.1(1)).

3. Let $\hat{B}^*, \hat{f}_{\ell,\alpha}$ (for $\ell < 3, \alpha < \omega_1$) be Q^*-names such that

 $\models_{Q^*} \langle \hat{B}^* = \bigcup\{B^*_p : p \in \Gamma_{Q^*}\} \rangle$ and $\hat{f}_{\ell,\alpha} = \bigcup\{f^p_{\ell,\alpha} : p \in \Gamma_{Q^*}, \alpha \in w^\beta\}$. "

Proposition 3.2

1. **Q^* is a ccc forcing notion.**

2. If $p, q \in Q^*$, $p \leq q$ then B_p is a subalgebra of B_q.

3. In V^{Q^*}, $\hat{f}_{\ell,\alpha} : \omega_1 \times 2 \to \{0, 1\}$ for $\alpha < \omega_1$ and $\ell < 3$ and \hat{B}^* is the Boolean algebra $B_{(w,F)}$, where $w = \omega_1 \times 2$ and $F = \{\hat{f}_{\ell,\alpha} : \alpha < \omega_1, \ell < 3\}$.

Proof

1) Suppose that $A \subseteq Q^*$ is uncountable. Applying Δ-system arguments find $p, q \in A$ such that letting $u^* = u^p \cap u^q$ we have:
Hence we conclude that (for $\beta < \omega$)

\begin{quote}
Proof \hfill \Box
\end{quote}

Note that, by 3.1(d,e), for each $\ell < 3$ then $f^q_{\ell,\alpha} = f^q_{\ell,H(\alpha)} \circ (H \times \text{id})$.

Now let $u^r = u^p \cup u^q$ and for $\ell < 3$ and $\alpha \in u^r$ let:

\[
f^r_{\ell,\alpha} = \begin{cases}
 f^p_{\ell,\alpha} \cup f^q_{\ell,\alpha} & \text{if } \alpha \in u^p \cap u^q, \\
 f^p_{\ell,\alpha} \cup f^q_{\ell,H(\alpha)} \upharpoonright (u^q \setminus u^p) & \text{if } \alpha \in u^p \setminus u^q, \\
 f^q_{\ell,\alpha} \cup f^q_{\ell,H^i(\alpha)} \upharpoonright (u^p \setminus u^q) & \text{if } \alpha \in u^q \setminus u^p.
\end{cases}
\]

It is a routine to check that this defines a condition in Q^* stronger than both p and q.

2) Should be clear.

3) Note that if $p \in Q^*$, $\alpha_0 \in u^p$ and $\beta \in \omega_1 \setminus u^p$ then letting $u^q = u^p \cup \{\beta\}$ and

\[
f^q_{\ell,\alpha} = \begin{cases}
 f^p_{\ell,\alpha} \cup \{(\beta,0,0),((\beta,1),0)\} & \text{if } \alpha \in u^p, \ell < 3, \\
 f^p_{\ell,\alpha} \cup \{(\beta,0,1-\ell),((\beta,1),\ell)\} & \text{if } \alpha = \beta, \ell < 2, \\
 f^q_{\ell,\alpha} \cup \{(\beta,0,0),((\beta,1),0)\} & \text{if } \alpha = \beta, \ell = 2,
\end{cases}
\]

we get a condition $q \in Q^*$ stronger than p and such that $\beta \in u^q$. Now, the rest should be clear. \hfill \Box

Proposition 3.3 $\forall Q^* \ " s(\hat{B}^* \oplus \hat{B}^*) = \omega_1 \ "$.

Proof To avoid confusion between the two copies of \hat{B}^* in $\hat{B}^* \oplus \hat{B}^*$, let us denote an element $a \wedge b \in \hat{B}^* \oplus \hat{B}^*$ such that a is from the first copy of \hat{B}^* and b is from the second one, by (a,b). With this convention, for each $\alpha < \omega_1$ let $\hat{y}_\alpha = \langle x_{\alpha,0}, x_{\alpha,1} \rangle$ and let $\hat{f}_\alpha : \hat{B}^* \oplus \hat{B}^* \to \{0,1\}$ be a homomorphism such that (for $\beta < \omega_1$, $i < 2$)

\[
\hat{f}_\alpha(\langle x_{\beta,i}, 1 \rangle) = \hat{f}_{0,\alpha}(\beta, i) \quad \text{and} \quad \hat{f}_\alpha(\langle 1, x_{\beta,i} \rangle) = \hat{f}_{1,\alpha}(\beta, i).
\]

Note that, by 3.1(d,e), for each $\alpha < \omega_1$

\[
\hat{f}_\alpha(\hat{y}_\alpha) = \hat{f}_{0,\alpha}(\alpha, 0) \wedge \hat{f}_{1,\alpha}(\alpha, 1) = 1,
\]

and if $\beta \in \omega_1 \setminus \{\alpha\}$ then (by 3.1(f))

\[
\hat{f}_\alpha(\hat{y}_\beta) = \hat{f}_{0,\alpha}(\beta, 0) \wedge \hat{f}_{1,\alpha}(\beta, 1) = 0.
\]

Hence we conclude that

\[
\forall Q^* \ " \langle \hat{y}_\alpha : \alpha < \omega_1 \rangle \text{ is ideal–independent } \",\]

finishing the proof. \hfill \Box
Theorem 3.4 \(\vdash \omega^* \) “irr\(^\|_0 (\B^*) = \omega_0 \) ”.

Proof Let \(\langle \dot{a}_\beta : \beta < \omega_1 \rangle \) be a \(Q^* \)-name for an \(\omega_1 \)-sequence of elements of \(\dot{\B}^* \), \(p \in Q^* \). For \(\beta < \omega_1 \) choose a condition \(p_\beta \geq p \), a Boolean term \(\tau_\beta \), ordinals \(\dot{\alpha}(\beta,0) \leq \ldots \leq \dot{\alpha}(\beta, \ell_\beta) < \omega_1 \) and \(\dot{\iota}(\beta,0), \ldots, \dot{\iota}(\beta, \ell_\beta) \in \{0,1\} \) such that

\[p_\beta \vdash \dot{a}_\beta = \tau_\beta(x_{\dot{\alpha}(\beta,0)} \dot{\iota}(\beta,0), \ldots, x_{\dot{\alpha}(\beta, \ell_\beta)} \dot{\iota}(\beta, \ell_\beta)). \]

Applying standard “cleaning procedure” we may assume that for \(\omega \)

(i) \(\tau_\beta = \tau, \ell_\beta = \ell, \)

(ii) \(\{ \langle \dot{\alpha}(\beta, j), \dot{\iota}(\beta, j) \rangle : j \leq \ell \} = u^{p_\beta} \times 2 \) is an enumeration which does not depend on \(\beta \) if we treat it modulo otp (so \(2 \cdot |u^{p_\beta}| = \ell + 1 \) and we may write \(\tau(x_{\gamma,i} : \gamma \in u^{p_\beta}, i < 2) \)),

(iii) \(\{ u^{p_\beta} : \beta < \omega_1 \} \) forms a \(\Delta \)-system of sets with the heart \(u^* \), and if \(\beta_0 < \beta_1 < \omega_1 \) then

\[\max(u^*) < \min(u^{p_{\beta_0}} \setminus u^*) \leq \max(u^{p_{\beta_0}} \setminus u^*) < \min(u^{p_{\beta_1}} \setminus u^*), \]

(iv) \(|u^{p_{\beta_0}}| = |u^{p_{\beta_1}}| \) and if \(H_{\beta_0, \beta_1} : u^{p_{\beta_0}} \rightarrow u^{p_{\beta_1}} \) is the order preserving mapping then \(f^{p_{\beta_0}}_{k,\alpha} = f^{p_{\beta_1}}_{k,H(\alpha)} \circ (H_{\beta_0, \beta_1} \times \text{id}) \) (for \(\alpha \in u^{p_{\beta_0}}, k < 3 \)).

Now we are going to define a condition \(q \) stronger than \(p_0, \ldots, p_5 \). We put \(u^q = \bigcup_{i=6} u^p \) and we define functions \(f^{p_i}_{\ell,\alpha} : u^q \times 2 \rightarrow 2 \) (for \(\alpha \in u^q \) and \(\ell < 3 \)) as follows.

(\(\bigcirc \)) If \(\alpha \in u^*, \ell < 3 \) then \(f^{p_i}_{\ell,\alpha} = \bigcup_{i < 6} f^{p_i}_{\ell,\alpha} \).

(\(\text{Claim 3.4.1} \)) The tuple \(q = \langle u^q, (f^{p_i}_{\ell,\alpha} : \ell < 3, \alpha \in u^q) \rangle \) is a condition in \(Q^* \) stronger than \(p_0, \ldots, p_5 \).
Proof of the claim: To show that \(q \in \mathbb{Q}^+ \) one has to check the demands (a)–(i) of 3.1. The only possible problems could be caused by clauses (f)–(i). If functions \(f^\alpha_\ell \) were defined in clauses (\(\exists \)), (\(\exists_i \)) then easily these demands are met. To deal with instances of (\(\exists_i \)) of 3.1. The only possible problems could be caused by clauses (f)–(i). Consequently \(q \models \exists_i \alpha_0 \in \{ \alpha_j : 0 < j < 6 \}_q^\neg \).

Proof of the claim: Suppose that

\[\tau(x_{\gamma,i} : \gamma \in u^p, i < 2) \notin \{ \tau(x_{\gamma,i} : \gamma \in u^p, i < 2) : 0 < j < 6 \}_\gamma. \]

Then we find two homomorphisms \(h_0, h_1 : \mathbb{B}_q^+ \rightarrow \{0, 1\} \) such that

\[
\begin{align*}
&h_0(\tau(x_{\gamma,i} : \gamma \in u^p, i < 2)) \neq h_1(\tau(x_{\gamma,i} : \gamma \in u^p, i < 2)) \quad \text{but} \\
&h_0(\tau(x_{\gamma,i} : \gamma \in u^p, i < 2)) = h_1(\tau(x_{\gamma,i} : \gamma \in u^p, i < 2)) \quad \text{for } 0 < j < 6.
\end{align*}
\]

By the definition of the algebra \(\mathbb{B}_q^+ \) each its homomorphism into \(\{0, 1\} \) is generated by one of the functions \(f^\alpha_\ell \) (for \(\ell < 3, \alpha \in u^q \)). So we find \(\ell_0, \ell_1 < 3 \) and \(\alpha_0, \alpha_1 \in u^q \) such that \(h_k \supseteq f^\alpha_\ell \alpha_k \). Now we have to consider several cases corresponding to the way the \(f^\alpha_\ell \alpha_k \) were defined.

Case A: \(\alpha_k \in u^*, \alpha_{1-k} \in u^p, i < 6 \)

Then look at the definition (\(\exists_5 \)) of \(f^\alpha_\ell \alpha_k \) it copies \(f^\alpha_\ell \alpha_k \) everywhere (remember (iv)). On the other hand, whatever clause was used to define \(f^\alpha_\ell \alpha_k \), there is \(j \in (0, 6) \) such that \(f^\alpha_\ell \alpha_k \ | (u^p \times 2) \) is a copy of \(f^\alpha_\ell \alpha_k \ | (u^p \times 2) \). Hence we may conclude that (for this \(j \))

\[
\begin{align*}
h_{1-k}(\tau(x_{\gamma,i} : \gamma \in u^p, i < 2)) &\neq h_k(\tau(x_{\gamma,i} : \gamma \in u^p, i < 2)),
\end{align*}
\]

a contradiction.

Case B: \(\alpha_k \in u^p \setminus u^*, \alpha_{1-k} \in u^p \setminus u^*, 0 < i < 6 \)

Then we repeat the argument of the previous Case, choosing \(j \) in such a way that \(j \neq i \) and: if \(\ell_k = 0 \) then \(j \in \{1, 2\} \), if \(\ell_k = 1 \) then \(j \in \{3, 4\} \).

Case C: \(\alpha_k \in u^{p''} \setminus u^*, \alpha_{1-k} \in u^{p''} \setminus u^*, 0 < i', i'' < 6 \)

Like above, but now take \(j \in \{1, \ldots, 5\} \setminus \{i', i''\} \).
Case D: \(\alpha_0, \alpha_1 \in u^{p_0} \setminus u^* \).

This is the most complicated case. We may repeat the previous argument in some cases letting:

\[
j = \begin{cases}
1 & \text{if } (\ell_0, \ell_1) \in \{(0, 0), (0, 2), (2, 0), (2, 2)\} \\
3 & \text{if } (\ell_0, \ell_1) \in \{(1, 1), (1, 2), (2, 1)\}
\end{cases}
\]

This leaves us with two symmetrical cases: \((\ell_0, \ell_1) = (0, 1)\) or \((\ell_0, \ell_1) = (1, 0)\). So suppose that \(\ell_0 = 0, \ell_1 = 1\) and let

\[
x \overset{\text{def}}{=} h_0(\tau(x_{\gamma, i} : \gamma \in u^{p_0}, i < 2)) = h_1(\tau(x_{\gamma, i} : \gamma \in u^{p_0}, i < 2)).
\]

Since \(f_{0, \alpha_0}^q \upharpoonright (u^{p_4} \times 2)\) is a copy of \(f_{0, \alpha_0}^q \upharpoonright (u^{p_5} \times 2)\) we conclude that

\[
x = h_0(\tau(x_{\gamma, i} : \gamma \in u^{p_4}, i < 2)) = h_1(\tau(x_{\gamma, i} : \gamma \in u^{p_4}, i < 2)),
\]

and, since \(f_{1, \alpha_1}^q \upharpoonright (u^{p_4} \times 2)\) is a copy of \(f_{1, \alpha_1}^q \upharpoonright (u^{p_5} \times 2)\) we get

\[(\Box) \quad x = h_1(\tau(x_{\gamma, i} : \gamma \in u^{p_0}, i < 2)).\]

Next, \(f_{1, \alpha_1}^q \upharpoonright (u^{p_2} \times 2)\) is a copy of \(f_{1, \alpha_1}^q \upharpoonright (u^{p_5} \times 2)\) and therefore

\[
x = h_1(\tau(x_{\gamma, i} : \gamma \in u^{p_2}, i < 2)) = h_0(\tau(x_{\gamma, i} : \gamma \in u^{p_2}, i < 2)).
\]

But \(f_{0, \alpha_0}^q \upharpoonright (u^{p_2} \times 2)\) is a copy of \(f_{0, \alpha_0}^q \upharpoonright (u^{p_0} \times 2)\), so we conclude that

\[(\odot) \quad x = h_0(\tau(x_{\gamma, i} : \gamma \in u^{p_0}, i < 2)).\]

But now \((\Box) + (\odot)\) contradict the choice of \(h_0, h_1\). The other case is similar.

This finishes the proof of the claim and of the theorem.

\[
\square
\]

Conclusion 3.5 It is consistent that there exists a Boolean algebra \(\mathbb{B} \) such that

\[
\omega_0 = \text{irr}(\mathbb{B}) \quad \text{and} \quad s(\mathbb{B} \oplus \mathbb{B}) = \text{irr}(\mathbb{B} \oplus \mathbb{B}) = \omega_1.
\]

Remark 3.6 We may use any cardinal \(\mu = \mu^< \mu \) instead of \(\omega \) and \(\mu^+ \) instead of \(\omega_1 \) in 3.1 and then 3.2, 3.3. But we do not know if the difference between the respective cardinal invariants can be larger.

Problem 3.7 Is it consistent that there is a Boolean algebra \(\mathbb{B} \) such that

\[
(\text{irr}(\mathbb{B}))^+ < |\mathbb{B}| \quad ? \quad (\text{irr}(\mathbb{B}))^+ < s(\mathbb{B} \oplus \mathbb{B}) \quad ?
\]
4 Forcing a superatomic Boolean algebra

In this section we give partial answers to [M2, Problems 73, 77, 78] showing that, consistently, there is a superatomic Boolean algebra \mathbb{B} such that $s(\mathbb{B}) = \text{inc}(\mathbb{B}) < \text{irr}(\mathbb{B}) = \text{Id}(\mathbb{B}) < \text{Sub}(\mathbb{B})$. The forcing notion we use is a variant of the one of Martinez [Ma92], which in turn was a modification of the forcing notion used in Baumgartner Shelah [BaSh 254]. For more information on superatomic Boolean algebras we refer the reader to Koppelberg [Ko89], Roitman [Rt89] and Monk [M2].

Definition 4.1 Let κ be a cardinal. For a pair $s = (\alpha, \xi) \in \kappa^+ \times \kappa$ we will write $\alpha(s) = \alpha$ and $\xi(s) = \xi$. We define a forcing notion P_κ as follows:

a **condition** is a tuple

$$p = \langle w^p, u^p, a^p, \langle f^p_x : s \in u^p \rangle, \langle y^p_{s_0, s_1} : s_0, s_1 \in u^p, \; s_0 \neq s_1, \; \alpha(s_0) \leq \alpha(s_1) \rangle \rangle$$

such that

(a) $a^p \subseteq w^p \in [\kappa]^<\kappa$, $u^p \in [w^p \times \kappa]^<\kappa$, and $\alpha \in u^p \Rightarrow (\alpha, 0), (\alpha, 1) \in u^p$,

(b) for $s \in u^p$, $f^p_x : u^p \rightarrow \{0, 1\}$ is such that $f^p_x(s) = 1$ and

$$\forall t \in u^p)(\alpha(t) \leq \alpha(s) & t \neq s \Rightarrow f^p_x(t) = 0),$$

(c) if $\alpha < \beta$, $\alpha, \beta \in a^p$ then $f^p_x_{\alpha, 0}(\beta, 0) = f^p_x_{\alpha, 1}(\beta, 0)$,

(d) if $s_0, s_1 \in u^p$ are distinct, $\alpha(s_0) \leq \alpha(s_1)$ then

$$y^p_{s_0, s_1} \in [u^p \cap (\alpha(s_0) \times \kappa)]^<\omega \; \text{and for every } t \in u^p

f^p_x(s_0) = 1 \& f^p_x(s_1) \neq f^p_x(s_1) \Rightarrow (\exists s \in y^p_{s_0, s_1})(f^p_x(s) = 1);$$

the **order** is given by $p \leq q$ if and only if $w^p \subseteq w^q, u^p \subseteq u^q, a^p = a^q \cap w^p,$

$y^p_{s_0, s_1} = y^q_{s_0, s_1}$ (for distinct $s_0, s_1 \in u^p$ such that $\alpha(s_0) \leq \alpha(s_1)$), $f^p_x \subseteq f^q_x$ (for $s \in u^p$) and

$$\forall s \in u^q)(\exists t \in u^p)(f^q_x \upharpoonright u^p = f^p_x \; \text{or} \; f^q_x \upharpoonright u^p = 0_w).$$

Definition 4.2 We say that conditions $p, q \in P_\kappa$ are isomorphic if there is a bijection $H : u^p \rightarrow u^q$ (called the isomorphism from p to q) such that

$$\forall s \in u^p)(\text{otp}(\alpha(s) \cap u^p) = \text{otp}(\alpha(H(s)) \cap u^q) \; \& \; \xi(s) = \xi(H(s))),$$

$$\forall \beta \in u^p)(\alpha(H(\beta, 0)) \in a^q \iff \beta \in a^p).$$
\((\forall s \in u^p)(f^q_s = f^q_{H(s)} \circ H), \)

\((\forall s_0, s_1 \in u^p)(\alpha(s_0) \leq \alpha(s_1) \Rightarrow y_{s_0,s_1} = \{ s \in u^p : H(s) \in y^q_{H(s_0),H(s_1)} \}). \)

Proposition 4.3 Assume \(\kappa^{< \kappa} = \kappa \). Then \(\mathbb{P}_\kappa \) is a \(\kappa \)-complete \(\kappa^+ \)-cc forcing notion of size \(\kappa^+ \).

Proof It should be clear that \(\mathbb{P}_\kappa \) is \(\kappa \)-complete and \(|\mathbb{P}_\kappa| = \kappa^+ \). Moreover, there is \(\kappa \) many isomorphism types of conditions in \(\mathbb{P}_\kappa \) (and a condition in \(\mathbb{P}_\kappa \) is determined by its isomorphism type and the set \(u^p \)). Now, to show the chain condition assume that \(A \subseteq \mathbb{P}_\kappa \) is of size \(\kappa^+ \). Applying \(\Delta \)-lemma choose pairwise isomorphic conditions \(p_0, p_1, p_2 \in A \) such that \(\{ u^{p_0}, u^{p_1}, u^{p_2} \} \) forms a \(\Delta \)-system with heart \(w^* \) and such that for \(i < j < 3 \)

\[\sup(w^*) < \min(w^{p_i} \setminus w^*) \leq \sup(w^{p_j}) < \min(w^{p_i} \setminus w^*) \]

(remember \(\kappa^{< \kappa} = \kappa \)). For \(i, j < 3 \) let \(H_{i,j} : u^{p_i} \rightarrow u^{p_j} \) be the isomorphism from \(p_i \) to \(p_j \). We are going to define a condition \(q \in \mathbb{P}_\kappa \) which will be an upper bound to \(p_1, p_2 \) (note: not \(p_0 \)). To this end we first let

\[w^q = u^{p_0} \cup u^{p_1} \cup u^{p_2}, \quad u^q = u^{p_0} \cup u^{p_1} \cup u^{p_2}, \quad \alpha^q = \alpha^{p_1} \cup \alpha^{p_2}. \]

To define functions \(f^q_s \) we use the approach which can be described as “put zero whenever possible”. Thus we let:

- if \(s \in u^{p_1} \setminus u^{p_0} \) then \(f^q_s = 0_{u^{p_0}} \cup f^{p_1}_s \cup 0_{u^{p_2}}, \)
- if \(s \in u^{p_2} \setminus u^{p_0} \) then \(f^q_s = 0_{u^{p_0}} \cup 0_{u^{p_1}} \cup f^{p_2}_s, \)
- if \(s \in u^{p_0} \) then \(f^q_s = f^{p_0}_s \cup f^{p_1}_{H_{0,1}(s)} \cup f^{p_2}_{H_{0,2}(s)}. \)

It should be clear that the functions \(f^q_s \) are well defined. Now we are going to define the sets \(y^q_{s_0,s_1} \) for distinct \(s_0, s_1 \in u^q \) such that \(\alpha(s_0) \leq \alpha(s_1) \). It is done by cases considering all possible configurations. Thus we put:

- if \(s_0, s_1 \in u^{p_i}, i < 3 \) then \(y^q_{s_0,s_1} = y^{p_i}_{s_0,s_1}, \)
- if \(s_0 \in u^{p_1} \setminus u^{p_0}, s_1 \in u^{p_2} \setminus u^{p_0} \) then \(y^q_{s_0,s_1} = \{ H_{2,0}(s_1) \}, \)
- if \(s_0 \in u^{p_0}, s_1 \in u^{p_i}, i \in \{1,2\} \) then

\[y^q_{s_0,s_1} = \begin{cases}
\emptyset & \text{if } H_{i,0}(s_1) = s_0, \\
\{ H_{i,0}(s_1) \} & \text{if } \alpha(H_{i,0}(s_1)) < \alpha(s_0), \\
y^{p_0}_{s_0,H_{i,0}(s_1)} & \text{if } \alpha(s_0) \leq \alpha(H_{i,0}(s_1)), s_0 \neq H_{i,0}(s_1).
\end{cases} \]
We claim that
\[q = \langle w^q, a^q, (f_s^q : s \in u^q), (y_{s_0,s_1}^q : s_0, s_1 \in u^q, s_0 \neq s_1, \text{ } \alpha(s_0) \leq \alpha(s_1)) \rangle \]
is a condition in \(\mathbb{P}_\kappa \) and for this we have to check the demands of 4.1. Clauses (a) and (b) should be obvious. To check 4.1(c) note that \(a^q \cap u^{p_0} = a^q \cap w^s \) and therefore there are no problems when \(\alpha \in a^q \cap u^{p_0} \). If \(\alpha \in a^q \cap (w^{p_1} \setminus w^{p_0}) \) and \(\alpha < \beta \in a^q \cap (w^{p_2} \setminus w^{p_0}) \) then \(f^q_{\alpha,0}(\beta,0) = f^q_{\alpha,1}(\beta,0) = 0 \). In all other instances we use the clause (c) of 4.1 for \(p_1, p_2 \).

Now we have to verify the demand 4.1(d). Suppose that \(s_0, s_1 \) are distinct members of \(u^q \) and \(\alpha(s_0) \leq \alpha(s_1) \). If \(s_0, s_1 \in u^{p_0} \) for some \(i < 3 \) then easily the set \(y_{s_0,s_1}^q \) has the required property. So suppose now that \(s_0 \in u^{p_1} \setminus u^{p_0}, s_1 \in u^{p_2} \setminus u^{p_0} \) (so then \(f^q_{s_0}(s_1) = 0 \)) and let \(t \in u^q \) be such that \(f^q_t(s_1) = 1 = f^q_t(s_0) \). Then necessarily \(t \in u^{p_0} \) and \(f^q_t(H_{2,0}(s_1)) = f^q_t(s_1) = 1 \), so we are done in this case. Finally, let us assume that \(s_0 \in u^{p_0} \) and \(s_1 \in u^{p_1} \), \(0 < i < 3 \). Note that if \(f^q_t(s_0) = 1 \) then \(t \in u^{p_0} \). Now, if \(H_{1,0}(s_1) = s_0 \) then \(f^q_t(s_0) = f^q_t(s_1) \) for every \(t \in u^{p_0} \) and there are no problems (i.e. no \(f^q_t \) has to be taken care of). If \(\alpha(H_{1,0}(s_1)) < \alpha(s_0) \) then the set \(y_{s_0,s_1}^q = \{ H_{1,0}(s_1) \} \) will work as for every \(t \in u^{p_0} \) we have \(f^q_t(H_{1,0}(s_1)) = f^q_t(s_1) \) (and \(f^q_t(s_1) = 0 \)). For the same reason the set \(y_{s_0,s_1}^q \) has the required property in the remaining case too.

Checking that the condition \(q \) is stronger than both \(p_1 \) and \(p_2 \) is straightforward (note: we do not claim that \(q \) is stronger than \(p_0 \)).

Lemma 4.4 If \(p \in \mathbb{P}_\kappa, t \in \kappa^+ \times \kappa \) then there is \(q \in \mathbb{P}_\kappa \) such that \(p \leq q \) and \(t \in u^q \).

Proof Suppose \(t = (\alpha, \xi) \in (\kappa^+ \times \kappa) \setminus u^q \). Put \(w^q = w^p \cup \{ \alpha \}, a^q = a^p \) and \(u^q = u^p \cup \{ (\alpha,0), (\alpha,1), (\alpha, \xi) \} \). For \(s \in u^p \) let \(f^q_s = f^p_s \cup 0_{w^q \setminus u^p} \) and for \(s \in u^q \setminus u^p \) let \(f^q_s \) be such that \(f^q_s(s) = 1 \) and \(f^q_s \upharpoonright u^q \setminus \{ s \} \equiv 0 \). Finally, for distinct \(s_0, s_1 \in u^q \) such that \(\alpha(s_0) \leq \alpha(s_1) \) let
\[
y^q_{s_0,s_1} = \begin{cases} y^p_{s_0,s_1} & \text{if } s_0, s_1 \in u^p, \\ \emptyset & \text{otherwise.} \end{cases}
\]
Check that \(q = \langle w^q, a^q, (f^q_s : s \in u^q), (y^q_{s_0,s_1} : s_0, s_1 \in u^q) \rangle \in \mathbb{P}_\kappa \) is as required.

For \(p \in \mathbb{P}_\kappa \) let \(\mathbb{B}_p \) be the algebra \(\mathbb{B}_{(u^p,F_p)} \) (see 1.1(1)), where \(F_p = \{ f^p_s : s \in u^p \} \cup \{ 0_{u^p} \} \), and let \(\dot{\mathbb{B}}_s \) be a \(\mathbb{P}_\kappa \)-name such that
\[
\| \dot{\mathbb{B}}_s \|_{\mathbb{P}_\kappa} = \bigcup \{ \mathbb{B}_p : p \in \Gamma_{\mathbb{P}_\kappa} \}.
\]
Furthermore, for $s \in \kappa^+ \times \kappa$ let \dot{f}_s be a \mathbb{P}_κ-name such that
\[\Vdash_{\mathbb{P}_\kappa} \text{“} \dot{f}_s = \bigcup \{ f^p_s : p \in \Gamma_{\mathbb{P}_\kappa} \land s \in u^p \} \text{”}. \]

Proposition 4.5 Assume $\kappa^{<\kappa} = \kappa$. Then in \mathbb{V}^{P_κ}:

1. $\dot{B}_* \text{ is the algebra } \mathbb{B}_{(W,F)}$, where $W = \kappa^+ \times \kappa$ and $\dot{F} = \{ \dot{f}_s : s \in \kappa^+ \times \kappa \} \cup \{ 0_{\kappa^+ \times \kappa} \}$.
2. The algebra \dot{B}_* is superatomic,
3. if $s \in \kappa^+ \times \kappa$ and $b \in \dot{B}_*$ then there are finite $v_0 \subseteq v_1 \subseteq \alpha(s) \times \kappa$ such that either $x_s \wedge b$ or $x_s \wedge (-b)$ equals to
\[\bigvee \{ x_t \wedge \bigwedge_{t' \in v_1} (-x_{t'}) : t \in v_0 \}, \]
4. the height of \dot{B}_* is κ^+ and $\{ x_{\alpha,\xi} : \xi \in \kappa \}$ are representatives of atoms of rank $\alpha + 1$,
5. $\text{irr}(\dot{B}_*) = \kappa^+$.

Proof

1) First note that if $p \leq q$ then \mathbb{B}_p is a subalgebra of \mathbb{B}_q. Next, remembering 4.4, conclude that
\[\Vdash_{P_\kappa} \text{“} \dot{B}_* \text{ is a Boolean algebra generated by } \langle x_s : s \in \kappa^+ \times \kappa \rangle \text{”}. \]

Clearly, by 4.4, $\Vdash \text{“} \dot{f}_s : \kappa^+ \times \kappa \rightarrow \{ 0,1 \} \text{” and } p \Vdash \text{“} \dot{f}_s \upharpoonright u^p = f^p_s \text{”}$ (for $s \in u^p$, $p \in \mathbb{P}_\kappa$). So it should be clear that $\Vdash_{\mathbb{P}_\kappa} \dot{B}_* = \mathbb{B}_{(W,F)}$, where $W = \kappa^+ \times \kappa$ and $\dot{F} = \{ \dot{f}_s : s \in \kappa^+ \times \kappa \} \cup \{ 0_{\kappa^+ \times \kappa} \}$.

2) It follows from 4.1(b) that for each $s \in \kappa^+ \times \kappa$
\[\Vdash_{\mathbb{P}_\kappa} \text{“} \dot{f}_s(s) = 1 \text{ and } (\forall t \in \kappa^+ \times \kappa)(\alpha(t) \leq \alpha(s) \land t \neq s \Rightarrow \dot{f}_s(t) = 0) \text{”}. \]

Now work in \mathbb{V}^{P_κ}. Let J_α be the ideal in \dot{B}_* generated by $\{ x_{\beta,\xi} : \beta < \alpha, \xi \in \kappa \}$ (for $\alpha \leq \kappa^+$; if $\alpha = 0$ then $J_0 = \{ 0 \}$). It follows from the previous remark that $x_{\alpha,\xi} \notin J_\alpha$ (for all $\xi \in \kappa$; remember 1.2).

Suppose that s_0, s_1 are distinct, $\alpha(s_0) = \alpha(s_1) = \alpha < \kappa^+$ and suppose that $t \in \kappa^+ \times \kappa$ is such that $\dot{f}_t(s_0) = \dot{f}_t(s_1) = 1$. Let $p \in \Gamma_{P_\kappa}$ be such that $t, s_0, s_1 \in u^p$. It follows from 4.1(d) that there is $s \in y^p_{s_0,s_1}$ such that $f^p_t(s) = 1$. Hence (applying 1.2) we may conclude that
\[\dot{B}_* \models x_{s_0} \wedge x_{s_1} \leq \bigvee \{ x_s : s \in y^p_{s_0,s_1} \}, \]
and therefore \(x_{s_0} \land x_{s_1} \in J_\alpha \).

Now suppose that \(s_0, s_1 \in \kappa^+ \times \kappa \) are such that \(\alpha(s_0) < \alpha(s_1) \) and let \(p \in \Gamma_{\kappa^+} \) be such that \(s_0, s_1 \in u^p \). If \(f^p_{s_0}(s_1) = 0 \) then, by similar considerations as above, we have \(x_{s_0} \land x_{s_1} \in J_\alpha \). Similarly, if \(f^p_{s_0}(s_1) = 1 \) then \(x_{s_0} \land (\neg x_{s_1}) \in J_\alpha \). Hence we conclude that \(x_{s_0} / \hat{J}_\alpha \) is an atom in \(\hat{B}_s / J_\alpha \).

Finally, note that the ideal \(J_{\kappa^+} \) is maximal (as \(\{ x_s : s \in \kappa^+ \times \kappa \} \) are generators of the algebra \(\hat{B}_s \)) and hence the algebra \(\hat{B}_s \) is superatomic.

3) For \(\alpha \leq \kappa^+ \), let \(\hat{J}_\alpha \) be the ideal of \(\hat{B}_s \) defined as above. Note that if \(a \in \hat{J}_\alpha \setminus \{0\} \) then there is a finite set \(v \subseteq \alpha \times \kappa \) such that

\[
a \leq \bigvee_{t \in v} x_t \quad \text{and} \quad (\forall t \in v)(x_t \land a \notin \hat{J}_{\alpha(t)}).
\]

A set \(v \) with these properties will be called a \textit{good \(\alpha \)-cover} for \(a \).

We know already that \(x_s / \hat{J}_{\alpha(s)} \) is an atom in \(\hat{B}_s / J_{\alpha(s)} \) and therefore either \(x_s \land b \in \hat{J}_{\alpha(s)} \) or \(x_s \land (\neg b) \in \hat{J}_{\alpha(s)} \). We may assume that the first takes place. Applying repeatedly the previous remark find a finite set \(v_1 \subseteq \alpha(s) \times \kappa \) such that for every \(t \in v_1 \cup \{s\} \):

- If \(x_t \land (x_s \land b) \in \hat{J}_{\alpha(t)} \setminus \{0\} \) then there is a good \(\alpha(t) \)-cover \(v \subseteq v_1 \) for
 - \(x_t \land (x_s \land b) \),

- If \(x_t \land (\neg x_s \lor \neg b) \in \hat{J}_{\alpha(t)} \setminus \{0\} \) then there is a good \(\alpha(t) \)-cover \(v \subseteq v_1 \) for
 - \(x_t \land (\neg x_s \lor \neg b) \).

Now let \(v_0 = \{t \in v_1 : x_t \land (x_s \land b) \notin \hat{J}_{\alpha(t)}\} \) and check that

\[
x_s \land b = \bigvee\{x_t \land \bigwedge_{t' \in v_1}(\neg x_{t'}) : t \in v_0\},
\]

as required.

4) Almost everything what we need for this conclusion was done in clause 2) above except that we have to check that, for each \(\alpha < \kappa^+ \), \(\{ x_{\alpha, \xi} / J_\alpha : \xi < \kappa \} \) lists all atoms of the algebra \(\hat{B}_s / J_\alpha \). So suppose that \(b / J_\alpha \) is an atom in \(\hat{B}_s / J_\alpha \). We may assume that \(b = \bigwedge_{t \in w} x_t \land \bigwedge_{t \in u}(\neg x_t) \) and that \(\alpha(t) > \alpha \) for \(t \in w \) (otherwise either \(b \in \hat{J}_\alpha \) or \(b/J_\alpha = x_s / J_\alpha \) for some \(s \) with \(\alpha(s) = \alpha \)).

Suppose that \(w = \emptyset \). Let \(p \in \Gamma_\kappa \). We may find a condition \(q \geq p \) such that \(u \subseteq u^q \) and then take \(t \in (\{\alpha\} \times \kappa) \setminus u^q \). Exactly as in the proof of 4.4 we define a condition \(r \in \Gamma_\kappa \) stronger than \(q \) and such that \(t \in u^r \). Note that for this condition we have \(r \vdash x_t \geq b \) and we easily finish.
Let $s \in w$ (so $\alpha(s) > \alpha$) and $b^* = \bigwedge_{t \in u} x_t \land \bigwedge_{t \in u} (\neg x_t)$ (so $b = b^* \land x_s$). It follows from the third clause that we find finite sets $v_0 \subseteq v_1 \subseteq \alpha(s) \times \kappa$ such that

$$c \overset{\text{def}}{=} \bigvee \left\{ x_t \land \bigwedge_{t' \in v_1} (-x_{t'}) : t \in v_0 \right\} \in \{x_s \land b^*, x_s \land (\neg b^*)\}.$$

If $c = x_s \land (\neg b^*)$ then we repeat arguments similar to those from the previous paragraph but with a modified version of 4.4: defining the condition r with the property that $t \in u'$, we use the function $f^{\kappa_0}_t \cup \{(t, 1)\}$ as $f^*_{t'}$ (check that no changes are needed in the definition of $y^{\kappa_0, s_1}_{t'}$). Then easily $r \models x_t \leq x_s \land (\neg c)$. Finally, if $c = x_s \land b^*$ then we take $s' \in v_0$ such that $\alpha(s')$ is maximal possible. If $\alpha(s') > \alpha$ then similarly as in the previous case we find a condition r which forces that $x_t \leq x_s \land b^* = b$, if $\alpha(s') \leq \alpha$ it is even easier. In all cases we easily finish finding an element $x_{\alpha, \zeta}$ which is J_{α}–smaller than b.

5) Look at the demand 4.1(c): it means that if $\alpha, \beta \in \dot{a} \overset{\text{def}}{=} \bigcup\{a^p : p \in \Gamma_{\bar{F}_s}\}$ are distinct then $\dot{f}_{\alpha, 0}(\beta, 0) = \dot{f}_{\alpha, 1}(\beta, 0)$. As $\dot{f}_{\alpha, 0}(\alpha, 0) = 1$, $\dot{f}_{\alpha, 1}(\alpha, 0) = 0$ we conclude that $\dot{f}_{\alpha, 0}, \dot{f}_{\alpha, 1}$ determine homomorphisms from \dot{B}_s to $\{0, 1\}$ witnessing $x_{\alpha, 0} \notin \langle x_{\beta, 0} : \beta \in \dot{a} \setminus \{\alpha\} \rangle_{\dot{B}_s}$. Since clearly $\models |\dot{a}| = \kappa^+$ the proof is finished.

Proposition 4.6 Assume $\kappa^+ \kappa = \kappa$. Then

$$\models_{P_{\kappa}} \text{inc}(\dot{B}_s) = s(\dot{B}_s) = \kappa.$$

Proof Suppose that $\langle \dot{b}_{\alpha} : \alpha < \kappa^+ \rangle$ is a P_{κ}–name for a κ^+–sequence of elements of \dot{B}_s and

$$p \models_{P_{\kappa}} ^{\text{inc}} \langle \dot{b}_{\alpha} : \alpha < \kappa^+ \rangle \text{ are pairwise incomparable }.$$

Applying Δ–lemma and “standard cleaning” choose pairwise isomorphic conditions p_0, p_1, p_2 stronger than p, sets v_1, v_2, a Boolean term τ and $\alpha_1 < \alpha_2 < \kappa^+$ such that

- $\{w^{p_0}, w^{p_1}, w^{p_2}\}$ forms a Δ–system with heart w^*,
- $\sup(w^*) < \min(w^{p_i} \setminus w^*) \leq \sup(w^{p_j}) < \min(w^{p_j} \setminus w^*)$ for $i < j < 3$,
- $v_i \in [w^{p_i}]^\kappa_\omega$ for $i = 1, 2$,
- if $H_{i,j}$ is the isomorphism from p_i to p_j then $v_2 = H_{2,1}[v_1]$.
Considering two cases, we are going to define a condition \(r \) stronger than \(p_1, p_2 \). The condition \(r \) will be defined in a similar manner as the condition \(q \) in the proof of 4.3.

Case A: \(\{0, 1\} \models \tau(0 : t \in v_1) = 0. \)

First choose \(s^* \in u^{p_2} \setminus u^{p_0} \) such that

if there is \(s \in u^{p_2} \setminus u^{p_0} \) with the property that

\[
\{0, 1\} \models \tau(f'_{s^2}(t) : t \in v_2) = 1
\]

then \(s^* \) is like that.

Now we proceed as in 4.3 using \(f'_{s^2} \) instead of \(0_{w_2^s} \). So we let

\[
w^r = u^{p_0} \cup u^{p_1} \cup u^{p_2}, \quad u^r = u^{p_0} \cup u^{p_1} \cup u^{p_2}, \quad a^r = a^{p_1} \cup a^{p_2},
\]

and we define functions \(f'_{s^2} \) as follows:

- if \(s \in u^{p_0} \) then \(f'_{s} = f_{s}^{p_0} \cup f_{s}^{p_1} \cup f_{s}^{p_2} \),
- if \(s \in u^{p_1} \setminus u^{p_0} \) then \(f'_{s} = 0_{u^p_0} \cup f_{s}^{p_1} \cup f'_{s^2} \),
- if \(s \in u^{p_2} \setminus u^{p_0} \) then \(f'_{s} = 0_{u^{p_0}} \cup 0_{u^{p_1}} \cup f^{p_2} \)

(check that the functions \(f'_{s^2} \) are well defined). Next, for distinct \(s_0, s_1 \in u^r \) such that \(\alpha(s_0) \leq \alpha(s_1) \), we define the sets \(y^r_{s_0, s_1} \):

- if \(s_0, s_1 \in u^{p_i}, i < 3 \) then \(y^r_{s_0, s_1} = y^{p_i}_{s_0, s_1} \),
- if \(s_0 \in u^{p_1} \setminus u^{p_0}, s_1 \in u^{p_2} \setminus u^{p_0} \) then \(y^r_{s_0, s_1} = \{H_i, 0(s_0)\} \),
- if \(s_0 \in u^{p_0}, s_1 \in u^{p_i}, i \in \{1, 2\} \) then

\[
y^r_{s_0, s_1} = \begin{cases}
\emptyset & \text{if } H_i, 0(s_1) = s_0, \\
\{H_i, 0(s_1)\} & \text{if } \alpha(H_i, 0(s_1)) < \alpha(s_0), \\
y^{p_0}_{s_0, H_i, 0(s_1)} & \text{if } \alpha(s_0) \leq \alpha(H_i, 0(s_1)), \ s_0 \neq H_i, 0(s_1).
\end{cases}
\]

Exactly as in 4.3 one checks that

\[
r = \left\langle w^r, u^r, a^r, (f'_{s} : s \in u^r), (y^r_{s_0, s_1} : s_0, s_1 \in u^r, s_0 \neq s_1, \alpha(s_0) \leq \alpha(s_1)) \right\rangle
\]

is a condition in \(\mathbb{P}_\kappa \) stronger than both \(p_1 \) and \(p_2 \). Moreover, it follows from the definition of \(f'_{s^2} \)'s that

\[
\mathbb{B}_r \models \tau(x_t : t \in v_1) \leq \tau(x_t : t \in v_2)
\]
(see 1.2). Consequently $r \vdash \hat{b}_{\alpha_1} \leq \hat{b}_{\alpha_2}$, a contradiction.

Case B: $\{0, 1\} \models \tau(0 : t \in v_1) = 1$.

Define r almost exactly like in Case A, except that when choosing $s^* \in u^{p_2} \setminus u^{p_0}$ ask if there is $s \in u^{p_2} \setminus u^{p_0}$ such that

$$\{0, 1\} \models \tau(f^p_k(t) : t \in v_2) = 0$$

(and if so then s^* has this property). Continue like before getting a condition r stronger than p_1, p_2 and such that

$$\mathcal{B}_r \models \tau(x_t : t \in v_1) \geq \tau(x_t : t \in v_2)$$

and therefore $r \vdash \hat{b}_{\alpha_1} \geq \hat{b}_{\alpha_2}$, a contradiction finishing the proof.

Theorem 4.7 Assume $\kappa^{<\kappa} = \kappa$. Then

$$\models \mathcal{P}_\kappa \text{ Id}(\hat{b}) = 2^\kappa = (2^\kappa)^V.$$

Proof Let \mathcal{K} be the a family of all pairs (p, τ) such that $p \in \mathcal{P}_\kappa$ and $\tau = \tau(x_s : s \in v)$ is a Boolean term, $v \subseteq u^p$. For each ordinal $\alpha < \kappa^+$ we define a relation E^-_α on \mathcal{K} as follows:

$$(p_0, \tau_0) E^-_\alpha (p_1, \tau_1) \iff (i) \quad \text{the conditions } p_0, p_1 \text{ are isomorphic,}$$

$$(ii) \quad u^{p_0} \cap \alpha = u^{p_1} \cap \alpha,$$

$$(iii) \quad \text{if } H : u^{p_0} \longrightarrow u^{p_1} \text{ is the isomorphism from } p_0 \text{ to } p_1 \text{ then } \tau_1 = H(\tau_0) \quad \text{(i.e. } \tau_0 = \tau(x_s : s \in v), \tau_1 = \tau(x_{H(s)} : s \in v)).$$

A relation E_α on \mathcal{K} is defined by

$$(p_0, \tau_0) E_\alpha (p_1, \tau_1) \iff (i) \quad (p_0, \tau_0) E^-_\alpha (p_1, \tau_1) \quad \text{and}$$

$$(iv) \quad \text{if } \beta \in u^{p_0} \text{ then}$$

$$\beta - \sup(u^{p_0} \cap \beta) = H(\beta) - \sup(u^{p_1} \cap H(\beta)) \mod \kappa \quad \text{and}$$

$$\beta \geq \sup(u^{p_0} \cap \beta) + \kappa \iff (i) \quad \beta \sup(u^{p_1} \cap H(\beta)) + \kappa.$$

Claim 4.7.1 For each $\alpha < \kappa^+$, E_α, E^-_α are equivalence relations on \mathcal{K} with κ many equivalence classes.

Claim 4.7.2 Suppose that $\alpha < \kappa^+$, $(p_0, \tau_0) E_\alpha (p_1, \tau_1)$ and $p_0 \leq q_0$. Then there is $q_1 \in \mathcal{P}_\kappa$ such that $p_1 \leq q_1$ and $(q_0, \tau_0) E^-_\alpha (q_1, \tau_1)$.

Claim 4.7.3 Suppose that \hat{I} is a \mathbb{P}_κ–name for an ideal in the algebra \mathbb{B}_s and let $\mathcal{K}(\hat{I}) = \{(p, \tau) \in \mathcal{K} : p \Vdash \tau \in \hat{I}\}$. Then there is $\alpha = \alpha(\hat{I}) < \kappa^+$ such that

$$\mathcal{K}(\hat{I}) = \bigcup\{(p, \tau)/E_\alpha : (p, \tau) \in \mathcal{K}(\hat{I})\}.$$

Proof of the claim: Assume not. Then for each $\alpha < \kappa^+$ we find $(p_0^\alpha, \tau_0^\alpha) \in \mathcal{K}(\hat{I})$ and $(p_1^\alpha, \tau_1^\alpha) \notin \mathcal{K}(\hat{I})$ such that $(p_0^\alpha, \tau_0^\alpha) \mathcal{E}_\alpha (p_1^\alpha, \tau_1^\alpha)$. Take $q_0^\alpha \geq p_1^\alpha$ such that $q_0^\alpha \Vdash \tau_1^\alpha \notin \hat{I}$ and use 4.7.2 to find $q_0^\alpha \geq p_0^\alpha$ such that $(q_0^\alpha, \tau_0^\alpha) \mathcal{E}_\alpha (q_0^\alpha, \tau_0^\alpha)$. Now use Δ–lemma and clause (i) of the definition of E_α to find $\alpha_0 < \alpha_1 < \alpha_2 < \alpha_3 < \kappa^+$ such that letting $q_2 = q_1^{\alpha_2}, \tau_2 = \tau_1^{\alpha_2}$ and $q_i = q_0^{\alpha_i}, \tau_i = \tau_0^{\alpha_i}$ for $i \neq 2$ we have

- the conditions q_0, \ldots, q_3 are pairwise isomorphic (and for $i, j < 4$ let $H_{i,j} : u^{q_i} \to u^{q_j}$ be the isomorphism from q_i to q_j),
- $\{w^{q_0}, w^{q_1}, w^{q_2}, w^{q_3}\}$ forms a Δ–system with heart w^*,
- $\sup(w^*) < \min(w^{q_i} \setminus w^*) = \min(w^{q_j} \setminus w^*)$ when $i < j < 4$,
- $\tau_i = H_{i,j}(\tau_j)$ (i.e. we have the same term).

Now we define a condition $q \in \mathbb{P}_\kappa$ in a similar manner as in 4.3, 4.6. First we fix $s^* \in u^{q_3} \setminus u^{q_0}$ such that

- if there is $s \in u^{q_3} \setminus u^{q_0}$ with the property that $f_s^{q_3}(\tau_3) = 1$ then s^* is like that.

We put

$$u^q = u^{q_0} \cup \ldots \cup u^{q_3}, \quad u^q = u^{q_0} \cup \ldots \cup u^{q_3}, \quad a^q = a^{q_1} \cup a^{q_2} \cup a^{q_3},$$

and we define f_s^q as follows:

$$f_s^q = \begin{cases} \bigcup_{i<j<4} f_{H_{0,1}^q(s)}^q & \text{if } s \in u^{q_0}, \\ 0_{u^{q_0}} \cup f_s^{q_1} \cup f_{H_{1,2}^q(s^*)}^q \cup f_s^{q_3} & \text{if } s \in u^{q_1} \setminus u^{q_0}, \\ 0_{u^{q_0}} \cup 0_{u^{q_1}} \cup f_{s^{q_2}} \cup f_s^{q_3} & \text{if } s \in u^{q_2} \setminus u^{q_0}, \\ 0_{u^{q_0}} \cup 0_{u^{q_1}} \cup 0_{u^{q_2}} \cup f_s^{q_3} & \text{if } s \in u^{q_3} \setminus u^{q_0}. \end{cases}$$

Finally, for distinct $s_0, s_1 \in u^q$ such that $\alpha(s_0) \leq \alpha(s_1)$, we define

$$y_{s_0, s_1}^{q_0} = \begin{cases} y_{s_0, s_1}^{q_0} & \text{if } s_0, s_1 \in u^{q_0}, i < 4, \\ \{H_{i,0}(s_0)\} & \text{if } s_0 \in u^{q_0} \setminus u^{q_0}, s_1 \in u^{q_0} \setminus u^{q_0}, 0 < i < j < 4, \\ \emptyset & \text{if } s_0 \in u^{q_0}, s_1 \in u^{q_0}, 0 < i < 4, H_{i,0}(s_1) = s_0, \\ \{H_{i,0}(s_1)\} & \text{if } s_0 \in u^{q_0}, s_1 \in u^{q_0}, 0 < i < 4, \alpha(H_{i,0}(s_1)) < \alpha(s_0), \\ y_{s_0, H_{i,0}(s_1)}^{q_0} & \text{otherwise.} \end{cases}$$
It should be a routine to check that this defines a condition \(q \in \mathbb{P}_\kappa \) stronger than \(q_1, q_2, q_3 \) and that (by 1.2) \(B_q \models \tau_2 \leq \tau_1 \lor \tau_3 \) (remember that the terms are isomorphic). But this means that

\[
q \models \alpha^2 \leq \alpha^1 \lor \alpha^3 \quad \text{and} \quad \tau_1 \not\in \hat{I} \quad \text{and} \quad \tau_0^1, \tau_0^3 \in \hat{I},
\]

a contradiction finishing the proof of the claim.

Now, using 4.7.3, we may easily finish: if \(\dot{\mathcal{I}}_0, \dot{\mathcal{I}}_1 \) are \(\mathbb{P}_\kappa \)-names for ideals in \(\hat{\mathcal{B}} \) such that \(K(\dot{\mathcal{I}}_0) = K(\dot{\mathcal{I}}_1) \) then \(\models \dot{\mathcal{I}}_0 = \dot{\mathcal{I}}_1 \). But 4.7.3 says that \(K(\hat{I}) \) is determined by \(\alpha(\hat{I}) \) and a family of equivalence classes of \(E_{\alpha(I)} \). So we have at most \(\kappa^+ \cdot 2^\kappa = 2^\kappa \) possibilities for \(K(\hat{I}) \). Finally note that \(|\mathbb{P}_\kappa| = \kappa^+ \) and \(\mathbb{P}_\kappa \) satisfies the \(\kappa^+-\text{cc} \), so \(\models \mathbb{P}_\kappa 2^\kappa = (2^\kappa)^V \).

Conclusion 4.8 It is consistent that there is a superatomic Boolean algebra \(\mathcal{B} \) such that

\[
s(\mathcal{B}) = \text{inc}(\mathcal{B}) = \kappa, \quad \text{irr}(\mathcal{B}) = \text{Id}(\mathcal{B}) = \kappa^+ \quad \text{and} \quad \text{Sub}(\mathcal{B}) = 2^{\kappa^+}. \]

5 Modifications of \(\mathbb{P}_\kappa \)

In this section we modify the forcing notion \(\mathbb{P}_\kappa \) of 4.1 and we get two new models. The first model shows the consistency of “there is a superatomic Boolean algebra \(\mathcal{B} \) such that \(\text{irr}(\mathcal{B}) < \text{inc}(\mathcal{B}) \)” answering [M2, Problem 79]. Next we solve [M2, Problem 81] showing that possibly there is a superatomic Boolean algebra \(\mathcal{B} \) with \(\text{Aut}(\mathcal{B}) < t(\mathcal{B}) \).

Definition 5.1 Let \(\kappa \) be a cardinal. A forcing notion \(\mathbb{P}_\kappa^0 \) is defined like \(\mathbb{P}_\kappa \) of 4.1 but the demand 4.1(c) is replaced by:

(c\(^0\)) \quad if \(\alpha < \beta, \alpha, \beta \in a^\kappa \), then \(\exists s \in \omega^\kappa \) such that \(f^\alpha_s(\alpha, 0) = 1 \) and \(f^\beta_s(\beta, 0) = 0 \).

Naturally we have a variant of definition 4.2 of isomorphic conditions for the forcing notion \(\mathbb{P}_\kappa^0 \) (with no changes) and similarly as for the case of \(\mathbb{P}_\kappa \) we define algebras \(\mathcal{B}_p \) (for \(p \in \mathbb{P}_\kappa^0 \)) and \(\mathbb{P}_\kappa^0 \)-names \(\dot{\mathcal{B}}_s, \dot{f}_s^0 \) (for \(s \in \kappa^+ \times \kappa \)).

Proposition 5.2 Assume \(\kappa^+ = \kappa \). Then \(\mathbb{P}_\kappa \) is a \(\kappa \)-complete \(\kappa^+-\text{cc} \) forcing notion of size \(\kappa^+ \).

Proof Repeat the proof of 4.3 (with no changes).
Proposition 5.3 Assume $\kappa^\kappa = \kappa$. Then in V^κ:

1. $\hat{\mathbb{B}}^0_\kappa$ is the algebra $\mathbb{B}((W,F))$, where $W = \kappa^+ \times \kappa$ and $\hat{\mathbb{F}} = \{ \hat{f}^0_s : s \in \kappa^+ \times \kappa \} \cup \{ 0_{\kappa^+ \times \kappa} \}$.
2. the algebra $\hat{\mathbb{B}}^0_\kappa$ is superatomic (of height κ^+) and $\{ x_{\alpha,\xi} : \xi \in \kappa \}$ are representatives of atoms of rank $\alpha + 1$,
3. $\text{inc}(\hat{\mathbb{B}}^0_\kappa) = \kappa^+$.

Proof The proofs of the first two clauses are repetitions of that of 4.5(1–4) (so we have the respective version of 4.5(3) too).

To show the third clause let $\hat{a} \overset{\text{def}}{=} \bigcup \{ a^p : p \in \Gamma_{\mathbb{P}^0} \}$. It should be clear that $\models |\hat{a}| = \kappa^+$. Note that if $\alpha, \beta \in a^p$, $\alpha < \beta$ then, by 5.1(c^0), $B_p \models x_{\alpha,0} \not\in x_{\beta,0}$ and by the respective variant of 4.1(b) we have $B_p \models x_{\beta,0} \not\in x_{\alpha,0}$. Consequently the sequence $\langle x_{\alpha,0} : \alpha \in \hat{a} \rangle$ witnesses $\text{inc}(\hat{\mathbb{B}}^0_\kappa) = \kappa^+$.

Proposition 5.4 Assume $\kappa < \kappa = \kappa$. Then $\models_{\mathbb{P}^0} \text{irr}^+ (\hat{B}^0_\kappa) = \kappa^+$.

Proof Let $\langle \hat{b}_\alpha : \alpha < \kappa^+ \rangle$ be a \mathbb{P}^0_κ-name for a κ^+-sequence of elements of \hat{B}^0_κ and let $p \in \mathbb{P}^0_\kappa$. Find pairwise isomorphic conditions p_i, sets v_i, ordinals α_i (for $i < 7$) and a Boolean term τ such that

- $p \leq p_0, \ldots, p_7$, $\alpha_0 < \alpha_1 < \ldots < \alpha_6 < \kappa^+$, $v_i \in [u^{p_i}]^\omega$ for $i < 7$,
- $\{ u^{p_0}, \ldots, u^{p_6} \}$ forms a Δ-system with heart w^*,
- $\sup(w^*) < \min(w^{p_0} \setminus w^*) \leq \sup(w^{p_1} \setminus w^*) \leq \sup(w^{p_2} \setminus w^*)$ for $i < j < 7$,
- if $H_{i,j}$ is the isomorphism from p_i to p_j then $v_j = H_{i,j}[v_i]$ (for $i, j < 7$),
- $p_i \models \langle \hat{b}_{\alpha_i} = \tau(x_s : s \in v_i) \rangle$ for $i < 7$.

Now we are going to define an upper bound q to the conditions p_3, \ldots, p_6.

For this we let

$$w^q = \bigcup_{i < 7} u^{p_i}, \quad u^q = \bigcup_{i < 7} u^{p_i}, \quad a^q = \bigcup_{2 < i < 7} a^{p_i}$$

and for $s \in w^q$ we define

$$f^q_s = \begin{cases} \bigcup_{j < 7} f^p_{H_{i,j}(s)} & \text{if } s \in u^{p_0}, \\ 0_{u^{p_0} \cup u^{p_2} \cup u^{p_4}} \cup f^{p_1} \cup f^{p_3} \cup f^{p_5} \cup f^{p_6} \cup f_{H_{1,5}(s)} \cup f_{H_{1,6}(s)} & \text{if } s \in u^{p_1} \setminus u^{p_0}, \\ 0_{u^{p_0} \cup u^{p_1} \cup u^{p_5}} \cup f^{p_2} \cup f^{p_4} \cup f_{H_{2,3}(s)} \cup f_{H_{2,4}(s)} \cup f_{H_{2,6}(s)} & \text{if } s \in u^{p_2} \setminus u^{p_0}, \\ 0_{u^{p_0} \cup u^{p_1} \cup u^{p_2} \cup u^{p_6}} \cup f^{p_3} \cup f^{p_4} \cup f_{H_{3,4}(s)} \cup f_{H_{3,5}(s)} & \text{if } s \in u^{p_3} \setminus u^{p_0}, \\ 0_{u^{p_3} \setminus u^{p_4}} \cup f^{p_1} & \text{if } s \in u^{p_4} \setminus u^{p_0}, \quad 3 < i. \end{cases}$$
Next, for distinct $s_0, s_1 \in u^q$ such that $\alpha(s_0) \leq \alpha(s_1)$, we define $y^q_{s_0, s_1}$ considering all possible configurations separately. Thus we put:

- if $s_0, s_1 \in u^{p_i}, i < 7$ then $y^q_{s_0, s_1} = y_{s_0, s_1}^{p_i}$,

- if $s_0 \in u^{p_0} \setminus u^{p_i}, s_1 \in u^{p_i} \setminus u^{p_0}, 0 < i < 7$ then

$$y^q_{s_0, s_1} = \begin{cases} \emptyset & \text{if } H_{i,0}(s_1) = s_0, \\ \{H_{i,0}(s_1)\} & \text{if } \alpha(H_{i,0}(s_1)) < \alpha(s_0), \\ y_{s_0, H_{i,0}(s_1)}^{p_0} & \text{otherwise}, \end{cases}$$

- if $s_0 \in u^{p_i} \setminus u^{p_0}, s_1 \in u^{p_j} \setminus u^{p_0}, 0 < i < j < 7$ then

$$y^q_{s_0, s_1} = \begin{cases} \{H_{i,k}(s_0) : k < i\} & \text{if } H_{j,i}(s_1) = s_0, \\ \{H_{i,k}(s_0) : k < i\} \cup \{H_{j,i}(s_1)\} & \text{if } \alpha(H_{j,i}(s_1)) < \alpha(s_0), \\ \{H_{i,k}(s_0) : k < i\} \cup y_{s_0, H_{j,i}(s_1)}^{p_i} & \text{otherwise}. \end{cases}$$

It is not difficult to check that the above formulas define a condition $q \in \mathbb{P}^0_\kappa$ stronger than p_3, p_4, p_5, p_6 (just check all possible cases). Moreover, applying 1.2, one sees that

$$B_q \models \tau(x_s : s \in v_3) = \left(\tau(x_s : s \in v_4) \land \tau(x_s : s \in v_5) \right) \lor \left(\tau(x_s : s \in v_4) \land \tau(x_s : s \in v_6) \right) \lor \left(\tau(x_s : s \in v_5) \land \tau(x_s : s \in v_6) \right).$$

Hence

$q \models \exists \hat{b}_{\alpha_3} \in \langle \hat{b}_{\alpha_4}, \hat{b}_{\alpha_5}, \hat{b}_{\alpha_6} \rangle^{\mathbb{P}^0_\kappa}$,

finishing the proof.

Conclusion 5.5 It is consistent that there is a superatomic Boolean algebra B such that $\text{inc}(B) = \kappa^+$ and $\text{irr}(B) = \kappa$.

For the next model we need a more serious modification of \mathbb{P}_κ involving a change in the definition of the order.

Definition 5.6 For an uncountable cardinal κ we define a forcing notion \mathbb{P}^1_κ like \mathbb{P}_κ of 4.1 except that the clause 4.1(c) is replaced by

$$(c^1) \text{ if } \alpha < \beta, \alpha, \beta \in a^p \text{ then } f^p_{\alpha,0}(\beta, 0) = 1$$

and we add the following requirement.
(e) if \((1, \xi) \in u^p\) then the set \(\{\zeta < \kappa : f_{0, \zeta}^p(1, \xi) = 1\}\) is infinite.

Moreover, we change the definition of the order demanding additionally that, if \(p \leq q\),

(\(\alpha\)) if \((1, \xi) \in u^p\), \((0, \zeta) \in u^q \setminus u^p\) then \(f_{0, \zeta}^p(1, \xi) = 0\), and

(\(\beta\)) if \((1, \xi) \in u^q \setminus u^p\) then the set \(\{(0, \zeta) \in u^p : f_{0, \zeta}^p(1, \xi) = 1\}\) is finite.

Like before we have the respective variants of 4.3–4.5 for \(\mathbb{P}_1^\kappa\) which we formulate below. The \(\mathbb{P}_1^\kappa\)-names \(\dot{B}_1^*\) and \(\dot{f}_1^s\) are defined like \(\dot{B}_*\) and \(\dot{f}_s\).

Proposition 5.7 Assume \(\omega_0 < \kappa = \kappa^{<\kappa}\). Then \(\mathbb{P}_1^\kappa\) is a \(\kappa\)-complete \(\kappa^+\)-cc forcing notion.

Proof Repeat the arguments of 4.3 with the following small adjustments. First note that we may assume \(|w^*| > 2\). Next, if \(a^{p_2} \setminus w^* \neq \emptyset\) then we let \(\alpha = \min(a^{p_2} \setminus w^*)\) and defining \(f_0^q\) for \(s \in u^{p_1} \setminus u^{p_0}\) we put \(f_0^q = 0_{w_0} \cup f_{p_1} \cup f_{p_2}^{\alpha}\). (No other changes needed.)

Proposition 5.8 Assume \(\omega_0 < \kappa = \kappa^{<\kappa}\). Then in \(V^{\mathbb{P}_1^\kappa}\):

1. \(\dot{B}_1^*\) is the algebra \(\mathbb{B}(W, F)\), where \(W = \kappa^+ \times \kappa\) and \(F = \{f_1^s : s \in \kappa^+ \times \kappa\} \cup \{0_{\kappa^+ \times \kappa}\}\),

2. the algebra \(\dot{B}_1^*\) is superatomic,

3. if \(s \in \kappa^+ \times \kappa\) and \(b \in \dot{B}_1^*\) then there are finite \(v_0 \subseteq v_1 \subseteq \alpha(s) \times \kappa\) such that either \(x_s \setminus b\) or \(x_s \setminus (-b)\) equals to

\[
\bigvee \{x_t \land \bigwedge_{t' \in v_1} (-x_{t'} : t' \in v_0)\},
\]

4. the height of \(\dot{B}_1^*\) is \(\kappa^+\) and \(\{x_{\alpha, \zeta} : \zeta \in \kappa\}\) are representatives of atoms of rank \(\alpha + 1\),

5. \(t(\dot{B}_1^*) = \kappa^+\).

Proof (1)–(3) Repeat the arguments of 4.5(1–3) with no changes.

(4) Like 4.5(4), but the cases \(\alpha = 0\) and \(\alpha = 1\) are considered separately (for \(\alpha > 1\) no changes are required).

(5) Let \(\dot{a} = \bigcup\{a^p : p \in \Gamma_\leq_1\}\) and look at the sequence \(\langle -x_{\alpha,0} : \alpha \in \dot{a}\rangle\). It easily follows from 5.6(c1) that it is a free sequence (so it witnesses \(t(\dot{B}_1^*) = \kappa^+\)).
Theorem 5.9 Assume $\omega_0 < \kappa = \kappa^\kappa$. Then $\forces_{\mathcal{P}_\kappa^1} \text{" } \text{Aut}(\mathbb{B}_\kappa^1) = \kappa \text{" }$.

Proof It follows from 5.7 that, in $V_{\mathcal{P}_\kappa^1}$, $\kappa = \kappa^\kappa$. By 5.8(2,4) we have that each automorphism of \mathbb{B}_κ^1 is determined by its values on atoms of \mathbb{B}_κ^1 and $\{x_0, \xi : \xi < \kappa\}$ is the list of the atoms of \mathbb{B}_κ^1. Therefore it is enough to show that in $V_{\mathcal{P}_\kappa^1}$:

if $h : \mathbb{B}_\kappa^1 \to \mathbb{B}_\kappa^1$ is an automorphism then $|\{\xi < \kappa : h(x_0, \xi) \neq x_0, \xi\}| < \kappa$.

So assume that h is a \mathcal{P}_κ^1-name for an automorphism of the algebra \mathbb{B}_κ^1 and $p \in \mathcal{P}_\kappa^1$ is such that $0, 1 \in u^p$. Now we consider three cases.

Case A: for each $q \geq p$ there are $r \in \mathcal{P}_\kappa^1$ and distinct $\xi, \zeta < \kappa$ such that $q \subseteq r$, $(0, \xi), (0, \zeta) \in u^r \setminus u^q$, $f_{0, \xi}^q \upharpoonright u^q = 0$ and $r \forces_{\mathcal{P}_\kappa^1} \text{" } h(x_0, \xi) = x_0, \xi \text{" }$.

Construct inductively a sequence $(q_n, \xi_n, \zeta_n : n < \omega)$ such that

- $q_n \in \mathcal{P}_\kappa^1$, $\xi_n, \zeta_n < \kappa$, $p = q_0 \leq q_1 \leq q_2 \leq \ldots$,
- $(0, \xi_n), (0, \zeta_n) \in u^{q_n+1} \setminus u^q$ and $f_{0, \xi_n}^{q_n+1} \upharpoonright u^q = 0$,
- $q_{n+1} \forces_{\mathcal{P}_\kappa^1} \text{" } h(x_0, \xi) = x_0, \xi \text{" }$.

Choose $\xi < \kappa$ such that $(1, \xi) \notin \bigcup_{n<\omega} u^{q_n}$. Now we are defining a condition $r \in \mathcal{P}_\kappa^1$. First we put

$$w^r = \bigcup_{n<\omega} u^{q_n}, \quad u^r = \{(1, \xi)\} \cup \bigcup_{n<\omega} u^{q_n} \quad \text{and} \quad a^r = \bigcup_{n<\omega} a^{q_n}.$$

Next for $s \in u^q$ we put

$$f_s^r = \begin{cases}
\{\langle (1, \xi), 1 \rangle\} \cup \bigcup_{m > n} f_{s}^{q_m} & \text{if } s = (0, \xi_n), \ n \in \omega, \\
\{\langle (1, \xi), 0 \rangle\} \cup \bigcup_{m > n} f_{s}^{q_m} & \text{if } s \in u^{q_n} \setminus \{(0, \xi) : \ell \leq n\}, \ n \in \omega, \\
0_{u^r \setminus \{s\}} \cup \{\langle s, 1 \rangle\} & \text{if } s = (1, \xi).
\end{cases}$$

Furthermore, if $s_0, s_1 \in u^r$ are distinct and such that $\alpha(s_0) \leq \alpha(s_1)$ then we define y_{s_0, s_1} as follows:

- if $(1, \xi) \notin \{s_0, s_1\}$ then $y_{s_0, s_1}^r = y_{s_0, s_1}^{q_n}$, where $n < \omega$ is such that $s_0, s_1 \in u^{q_n}$,
- if $s_0 = (1, \xi), s_1 \in u^{q_n}$, $n < \omega$ then $y_{s_0, s_1}^{q_n} = \{(0, \xi_m) : m \leq n\}$,
- if $s_1 = (1, \xi), s_0 \in u^{q_n}, \alpha(s_0) = 1, n < \omega$ then $y_{s_0, s_1}^{q_n} = \{(0, \xi_m) : m \leq n\}$.

It is not difficult to check that the above formulas define a condition $r \in \mathcal{P}_\kappa^1$ stronger than all q_n (verifying 4.1(d) remember that $f_{0, \xi_n}^{q_n+1} \upharpoonright u^q \equiv 0$). Note
that $r \models (\forall n < \omega)(x_{0,n} < x_{1,\xi})$ and hence $r \models (\forall n < \omega)(x_{0,n} < \hat{h}(x_{1,\xi}))$.

Take a condition r^* stronger than r and such that for some $\zeta < \kappa$ we have $(1, \zeta) \in u^r$ and $r^* \models \hat{h}(x_{1,\xi})/\hat{J}_1 = x_{1,\zeta}/\hat{J}_1$, where \hat{J}_1 is the ideal of \mathbb{B}^1_κ generated by atoms (remember 5.8(4)). Then for some N we have $r^* \models (\forall n \geq N)(x_{0,n} < x_{1,\zeta})$. Now look at the definition of the order in \mathbb{P}_κ: by 5.6(β) we have $(1, \zeta) \in u^r$. If $(1, \zeta) \in u^{q_n}$ for some $n < \omega$ then we get immediate contradiction with 5.6(α), so the only possibility is that $\xi = \zeta$. But then look at the definition of the functions f^r_{0,ξ_m} — they all take value 0 at $(1, \xi)$ so $r \models x_{0,\xi_m} \not\leq x_{1,\xi}$, a contradiction. Thus necessarily Case A does not hold.

CASE B: there are $p^* \geq p$ and $t \in u^{p^*}$ such that

- for each $q \geq p^*$ there are $r \in \mathbb{P}_\kappa$ and distinct $\xi, \zeta < \kappa$ with:
 - $q \leq r$, $(0, \xi), (0, \zeta) \in u^r \setminus u^{q_n}$, $r \models p^* \models " \hat{h}(x_{0,\xi}) = x_{0,\xi} ^1", f^r_{0,\xi}(t) = 1$ and
 - $(\forall s \in u^r)(\alpha(s) < \alpha(t) \Rightarrow f^r_{0,\xi}(s) = 0)$.

First note that (by 5.6(α)) necessarily $\alpha(t) > 1$. Now apply the procedure of Case A with the following modifications. Choosing q_n, ξ_n, ζ_n we demand that $q_0 = p^*$, $f^r_{0,\xi_n}(t) = 1$ and $(\forall s \in u^{p^*})(\alpha(s) < \alpha(t) \Rightarrow f^r_{0,\xi_n}(s) = 1)$. Next, defining the condition r we declare that $f^r_{\xi,\zeta} = \bigcup_{n<\omega} f^{q_n}_{t,\zeta} \cup \{((1, \xi), 1)\}$ and in the definition of $y^r_{s_0, s_1}$ we let

- if $s_0 = (1, \xi)$ and either $s_1 = t$ or $\alpha(s_1) < \alpha(t)$ then $y^r_{s_0, s_1} = \emptyset$,
- if $s_0 = (1, \xi)$ and $\alpha(s_1) \geq \alpha(t)$, $s_1 \neq t$ then $y^r_{s_0, s_1} = y^{q_n}_{t, s_1}$, where $n < \omega$ is such that $s_1 \in u^{q_n}$.

Continuing as in the Case A we get a contradiction.

CASE C: neither Case A nor Case B hold.

Let $q_0 \geq p$ witness that Case A fails. So for each $r \geq q_0$ and distinct $\xi, \zeta < \kappa$ such that $(0, \xi), (0, \zeta) \in u^r \setminus u^{q_0}$

- if $r \models \hat{h}(x_{0,\xi}) = x_{0,\zeta}$ then $\exists t \in u^{q_0}(f^r_{t,\xi}(t) = 1)$.

Now, since Case B fails and \mathbb{P}_κ is κ-complete (and $\kappa > \omega$) we may build a condition $q_1 \geq q_0$ such that

- if $t \in u^{q_1}$, $r \geq q_1$, $(0, \xi), (0, \zeta) \in u^r \setminus u^{q_1}$, $r \models \hat{h}(x_{0,\xi}) = x_{0,\zeta}$,
 - $f^r_{0,\xi}(t) = 1$ and $(\forall s \in u^{q_1})(\alpha(s) < \alpha(t) \Rightarrow f^r_{0,\xi}(s) = 0)$
 - then $\xi = \zeta$.

But then clearly

$$q_1 \models p^* \models " (\forall \xi < \kappa)((\hat{h}(x_{0,\xi}) \neq x_{0,\xi} \Rightarrow (0, \xi) \in u^{q_1}) " ,$$

finishing the proof.
Conclusion 5.10 It is consistent that there is a superatomic Boolean algebra B such that $t(B) = \kappa^+$ and $\text{Aut}(B) = \kappa$.

6 When tightness is singular

In this section we will show that, consistently, there is a Boolean algebra with tightness λ and such that there is an ultrafilter with this tightness but there is no free sequence of length λ and no homomorphic image of the algebra has depth λ. This gives partial answers to [M2, Problems 13, 41]. Next we show some bounds on possible consistency results here showing that sometimes we may find quotients with depth equal to the tightness of the original algebra.

Let us recall that a sequence $\langle b_\alpha : \alpha < \xi \rangle$ of elements of a Boolean algebra B is (algebraically) free if for each finite sets $F,G \subseteq \xi$ such that $\max(F) < \min(G)$ we have

$$B \models \bigwedge_{\alpha \in F} b_\alpha \wedge \bigwedge_{\alpha \in G} (-b_\alpha) \neq 0.$$

Existence of algebraically free sequences of length α is equivalent to the existence of free sequences of length α in the space ultrafilters $\text{Ult}(B)$.

Definition 6.1 1) A good parameter is a tuple $S = (\mu, \lambda, \bar{\chi})$ such that μ, λ are cardinals satisfying

$$\mu < \mu^\mu < \text{cf}(\lambda) < \lambda \quad \text{and} \quad (\forall \alpha < \text{cf}(\lambda))(\forall \xi < \mu)(\alpha^\xi < \text{cf}(\lambda))$$

and $\bar{\chi} = \langle \chi_i : i < \text{cf}(\lambda) \rangle$ is a strictly increasing sequence of regular cardinals such that $\text{cf}(\lambda) < \chi_0$, $\langle \chi_i^< \mu : i < \text{cf}(\lambda) \rangle = \chi_i$ and $\lambda = \sup_{i < \text{cf}(\lambda)} \chi_i$.

2) Let $S = (\mu, \lambda, \bar{\chi})$ be a good parameter. Put $\mathcal{X}_S = \{(i, \xi) : i < \text{cf}(\lambda) \land 0 \leq \xi < \chi_0\}$ and define a forcing notion Q_S as follows.

A condition is a tuple $p = \langle \gamma^p, w^p, u^p, (f^p_{i,\xi,\alpha} : (i, \xi) \in u^p, \alpha < \gamma^p) \rangle$ such that

(a) $\gamma^p < \mu$, $w^p \in [\text{cf}(\lambda)]^{< \mu}$, $u^p \in [\mathcal{X}_S]^{< \mu}$,

(b) $\left(\forall i \in w^p \right)((i, 0), (i, \chi_i^0) \in u^p)$ and if $(i, \xi) \in u^p$ then $i \in w^p$,

(c) for $(i, \xi) \in u^p$ and $\alpha < \gamma^p$, $f^p_{i,\xi,\alpha} : u^p \rightarrow 2$ is a function such that

if $\zeta < \xi$ then $f^p_{i,\xi,\alpha}(i, \zeta) = 0$, if $\xi \leq \zeta \leq \chi_i^+$ then $f^p_{i,\xi,\alpha}(i, \zeta) = 1$, and

$$f^p_{i,\xi,\alpha} \upharpoonright (u^p \setminus \{i\} \times \chi_i^+) = f^p_{i,\alpha,\alpha} \upharpoonright (u^p \setminus \{i\} \times \chi_i^+);$$
the order is given by \(p \leq q \) if and only if \(\gamma^p \leq \gamma^q \), \(w^p \subseteq w^q \), \(w^p \subseteq w^q \),

\(f^p_{i,\xi,\alpha} \subseteq f^q_{i,\xi,\alpha} \) (for \((i,\xi)\in u^p\), \(\alpha < \gamma^p \)) and

\[
(\forall (i,\xi,\alpha) \in u^q \times \gamma^q)(f^q_{i,\xi,\alpha} \upharpoonright u^p \in \{f^p_{j,\xi,\beta} : (j,\xi,\beta) \in u^p \times \gamma^p\} \cup \{0_{wp}\}).
\]

3) We say that conditions \(p,q \in \mathbb{Q}_S \) are isomorphic if \(\gamma^p = \gamma^q \), \(\text{otp}(w^p) = \text{otp}(w^q) \) and there is a bijection \(H : w^p \rightarrow w^q \) (called the isomorphism from \(p \) to \(q \)) such that if \(H_0 : w^p \rightarrow w^q \) is the order preserving mapping then:

\((\alpha) \) \(H(i,\xi) = (H_0(i),\zeta) \) for some \(\zeta \),

\((\beta) \) for each \(i \in w^p \), the mapping

\[
H^i : \{\xi \leq \chi^+_i : (i,\xi) \in u^p\} \rightarrow \{\zeta \leq \chi^+_H_0(i) : (H_0(i),\zeta) \in u^q\}
\]

given by \(H(i,\xi) = (H_0(i),H^i(\xi)) \) is the order preserving isomorphism,

\((\gamma) \) \((\forall \alpha < \gamma^p)(\forall (i,\xi) \in u^p)(f^p_{i,\xi,\alpha} = f^q_{H(i,\xi),\alpha} \circ H) \).

Remark: Variants of the forcing notion \(\mathbb{Q}_S \) are used in [RoSh 651] to deal with attainment problems for equivalent definitions of hd, hL.

Proposition 6.2 Let \(S = (\mu,\lambda,\check{\lambda}) \) be a good parameter. Then \(\mathbb{Q}_S \) is a \(\mu \)-complete \(\mu^+ \)-cc forcing notion.

Proof Easily \(\mathbb{Q}_S \) is \(\mu \)-closed. To show the chain condition suppose that \(\mathcal{A} \subseteq \mathbb{Q}_S \) is of size \(\mu^+ \). Since \(\mu^\mathcal{A} = \mu \) we may apply standard cleaning procedure and find isomorphic conditions \(p,q \in \mathcal{A} \) such that if \(H : w^p \rightarrow w^q \) is the isomorphism from \(p \) to \(q \) and \(H_0 : w^p \rightarrow w^q \) is the order preserving mapping then

- \(H_0 \upharpoonright w^p \cap w^q \) is the identity on \(w^p \cap w^q \), and
- \(H \upharpoonright w^p \cap w^q \) is the identity on \(w^p \cap w^q \).

Next put \(\gamma^r = \gamma^p = \gamma^q \), \(w^r = w^p \cup w^q \), \(w^r = w^p \cup w^q \). For \((i,\xi) \in u^r \) and \(\alpha < \gamma^r \) we define \(f^r_{i,\xi,\alpha} \) as follows:

if \((i,\xi) \in u^p \), \(i \in w^p \setminus w^q \) then

\[
f^r_{i,\xi,\alpha} = f^p_{i,\xi,\alpha} \cup f^q_{H_0(i),0,\alpha},
\]

if \((i,\xi) \in u^q \), \(i \in w^q \setminus w^p \) then

\[
f^r_{i,\xi,\alpha} = f^p_{H_0^{-1}(i),0,\alpha} \cup f^q_{i,\xi,\alpha},
\]

if \(i \in w^p \cap w^q \) then

\[
f^r_{i,\xi,\alpha} = (f^p_{i,0,\alpha} \cup f^q_{i,0,\alpha}) \upharpoonright (w^r \setminus \{i\} \times \chi^+_i) \cup 0_{\{\{i\} \times [0,\xi] \cap w^r \cup 1_{\{\{i\} \times \chi^+_i \cap w^r \}}.
\]
Checking that $r \overset{\text{def}}{=} \langle \gamma^*, u^*, w^*, \langle f_{i,\xi}^* : (i, \xi) \in u^* \rangle \rangle \in Q_S$ is a condition stronger than both p and q is straightforward.

For a condition $p \in Q_S$ let B_p be the Boolean algebra $B_{(w^p,F^p)}$ for $F^p = \{ f_{i,\xi,\alpha}^p : (i, \xi) \in u^p, \alpha < \gamma^p \} \cup \{ 0_{w^p} \}$ (see 1.1). Naturally we define Q_S–names \hat{B}_S^* and $\hat{f}_{i,\xi,\alpha}$ (for $i < \text{cf}(\lambda)$, $\xi < \chi_i^+$, $\alpha < \mu$) by:

\[\models_{Q_S} \left(B_S^* = \bigcup \{ B_p : p \in \Gamma_S \} \right), \quad \hat{f}_{i,\xi,\alpha} = \bigcup \{ f_{i,\xi,\alpha}^p : (i, \xi, \alpha) \in u^p \times \gamma^p, p \in \Gamma_{Q_S} \} \right) \].

Further, let \hat{B}_S be the Q_S–name for the subalgebra $\langle x_{i,\xi} : i < \text{cf}(\lambda), \xi < \chi_i^+ \rangle_{B_S^*}$ of \hat{B}_S^*.

Proposition 6.3 Assume $S = (\mu, \lambda, \check{\lambda})$ is a good parameter. Then in V^{Q_S}:

1. $\hat{f}_{i,\xi,\alpha} : X_S \to 2$ (for $\alpha < \mu$, $i < \text{cf}(\lambda)$ and $\xi \leq \chi_i^+$),

2. B_S^* is the Boolean algebra $B_{(X_S,\hat{F})}$, where $\hat{F} = \{ \hat{f}_{i,\xi,\alpha} : (i, \xi) \in X_S, \alpha < \mu \}$,

3. for each $i < \text{cf}(\lambda)$, the sequence $\langle -x_{i,\xi} : \xi < \chi_i^+ \rangle$ is (algebraically) free in the algebra \hat{B}_S,

4. $0_{X_S} \in \text{cl}({\hat{F}})$, so it determines a homomorphism from \hat{B}_S^* to 2 (so ultrafilter). Its restriction $0_{X_S} \upharpoonright \hat{B}_S$ has tightness λ.

Proof 1)–3) Should be clear.

4) First note that if $p \in Q_S$ and $i < \text{cf}(\lambda)$ then there is a condition $q \in Q_S$ stronger than p and such that

\[(\exists \alpha < \gamma^p) (f_{i,0,\alpha}^q \upharpoonright (w^p \setminus \{ i \} \times (\chi_i^+ + 1)) \equiv 0). \]

Hence we immediately conclude that $0_{X_S} \in \text{cl}(\hat{F})$. Now we look at the restriction $0_{X_S} \upharpoonright \hat{B}_S$. First fix $i < \text{cf}(\lambda)$ and let $Y_i = \{ \hat{f}_{i,\xi,\alpha} \upharpoonright \hat{B}_S : \xi < \chi_i^+, \alpha < \mu \}$ (so Y_i is a family of homomorphisms from \hat{B}_S to 2 and it can be viewed as a family of ultrafilters on \hat{B}_S). It follows from the previous remark (and 6.1(2c)) that $0_{X_S} \upharpoonright \hat{B}_S \in \text{cl}(Y_i)$. We claim that $0_{X_S} \upharpoonright \hat{B}_S$ is not in the closure of any subset of Y_i of size less than χ_i^+. So assume that X is a Q_S–name for a subset of Y_i such that $\models |X| \leq \chi_i$ (and we will think that $\models X \subseteq \chi_i^+ \times \mu$). Since Q_S satisfies the $\mu^+\text–cc$ we find $\xi < \chi_i^+$ such that $\models X \subseteq \xi \times \mu$. Now note that 6.1(2c) implies that $\models (\forall (\zeta, \alpha) \in X)(\hat{f}_{i,\xi,\alpha}(i, \xi) = 1)$, so $\models 0_{X_S} \upharpoonright \hat{B}_S \notin \text{cl}(X)$. Hence the tightness of the ultrafilter $0_{X_S} \upharpoonright \hat{B}_S$ is λ.

\[\blacksquare \]
Theorem 6.4 Assume that $S = (\mu, \lambda, \bar{\chi})$ is a good parameter. Then in \mathcal{V}_{Q^S}:

1. there is no algebraically free sequence of length λ in $\hat{\mathcal{B}}_S$,
2. if \hat{I} is an ideal in $\hat{\mathcal{B}}_S$ then $\text{Depth}(\hat{\mathcal{B}}_S/\hat{I}) < \lambda$.

Proof

1) Assume that $(\hat{b}_\alpha : \alpha < \lambda)$ is a Q_S–name for a λ–sequence of elements of $\hat{\mathcal{B}}_S$ and $p \in Q_S$. For each $i < \text{cf}(\lambda)$ and $\xi < \chi_i^+$ choose a condition $p_i,\xi \in Q_S$ stronger than p, a finite set $v_i,\xi \subseteq u_{p_i,\xi}$ and a Boolean term $\tau_{i,\xi}$ such that

$$p_i,\xi \models_{Q_S} \hat{b}_{\chi_i + \xi} = \tau_{i,\xi}(x_{j,\zeta} : (j, \zeta) \in v_i,\xi).$$

Let us fix $i < \text{cf}(\lambda)$ for a moment. Applying Δ–lemma arguments and standard cleaning (and using the assumption that $\chi_i^+ = \chi_i = \text{cf}(\chi_i)$) we may find a set $Z_i \in [\chi_i^+]^{\chi_i^+}$ such that

$(\alpha)_i$: all conditions p_i,ξ for $\xi \in Z_i$ are isomorphic,

$(\beta)_i$: $\{u^{p_i,\xi} : \xi \in Z_i\}$ forms a Δ–system with heart u_i,

$(\gamma)_i$: if $\xi_0, \xi \in Z_i$ and $H : u^{p_i,\xi_0} \to u^{p_i,\xi_1}$ is the isomorphism from p_i,ξ_0 to p_i,ξ_1 then $H[u_{i,\xi_0}] = u_{i,\xi_1}$ and $H \upharpoonright u_i$ is the identity on u_i,

$(\delta)_i$: $\tau_{i,\xi} = \tau_i$ (for each $\xi \in Z_i$),

$(\varepsilon)_i$: $u^{p_i,\xi_0} \cap \{(j, \zeta) : j < i \& \zeta < \chi_j^+\} = u^{p_i,\xi_1} \cap \{(j, \zeta) : j < i \& \zeta < \chi_j^+\}$ whenever $\xi_0, \xi_1 \in Z_i$.

Apply the cleaning procedure and Δ–lemma again to get a set $J \in [\text{cf}(\lambda)]^{\text{cf}(\lambda)}$ such that

$(\alpha)^*_i$ if $i_0, i_1 \in J$, $\xi_0 \in Z_{i_0}$, $\xi_1 \in Z_{i_1}$ then the conditions $p_{i_0,\xi_0}, p_{i_1,\xi_1}$ are isomorphic,

$(\beta)^*_i$: $\{u_i : i \in J\}$ forms a Δ–system with heart u^*,

$(\gamma)^*_i$ if $i_0, i_1 \in J$, $\xi_0 \in Z_{i_0}$, $\xi_1 \in Z_{i_1}$ and $H : u^{p_{i_0,\xi_0}} \to u^{p_{i_1,\xi_1}}$ is the isomorphism from p_{i_0,ξ_0} to p_{i_1,ξ_1} then $H[u_{i_0,\xi_0}] = u_{i_1,\xi_1}$, $H[u_{i_0}] = u_{i_1}$ and $H \upharpoonright u^*$ is the identity on u^*,

$(\delta)^*_i$: $\tau_i = \tau$ (for $i \in J$)
(remember the assumptions on \(\text{cf}(\lambda) \) in 6.1(1)). Now choose \(i_0 \in J \) such that \(\sup\{i < \text{cf}(\lambda) : (i, 0) \in u^*\} < i_0 \) and pick \(\xi_0^0, \xi_1^0 \in Z_{i_0} \), \(\xi_0^1 < \xi_1^1 \). Next take \(i_1 \in J \) such that

\[
i_1 > i_0 + \sup\{i < \text{cf}(\lambda) : (i, 0) \in u^{P_{i_0}^0 \cup u^{P_{i_0}^1}}\}
\]

and \(u_{i_1} \cap (u^{P_{i_0}^0 \cup u^{P_{i_0}^1}}) = u^* \). Finally pick \(\xi_0^1, \xi_1^1 \in Z_{i_1} \) such that \(\xi_0^1 < \xi_1^1 \) and, for \(\ell < 2 \),

\[
u_{i_1} \cap (u^{P_{i_1}^0 \cup u^{P_{i_1}^1}}) = u^*.
\]

To make our notation somewhat simpler let \(p_k^\ell = p_{i_k, \xi_k^\ell} \), \(\tau_k^\ell = \tau(x_j, \zeta : (j, \zeta) \in \nu_{i_k, \xi_k^\ell}) \) (for \(k, \ell < 2 \)) and let \(H_{k_1, \ell_1}^{k_0, \ell_0} : u^{p_{k_0}^0} \to u^{p_{k_1}^\ell} \) be the isomorphism from \(p_{k_0}^{k_0} \) to \(p_{k_1}^{k_1} \) (for \(k_0, k_1, \ell_0, \ell_1 < 2 \)).

It follows from the choice of \(i_k, \xi_k^\ell \) that:

(i) \(\text{if } (i, 0) \in u^*, k < 2, \xi < \chi_i^+ \text{ then } (i, \xi) \in u^{p_{k}^0} \iff (i, \xi) \in u^\ell \),

(ii) \(\text{if } i \in (u^{p_{k}^0} \cup u^{p_{k}^1}) \cap (u^{p_{k}^0} \cup u^{p_{k}^1}) \text{ then } (i, 0) \in u^* \).

Now we are defining a condition \(q \) stronger than all \(p_k^\ell \). So we put \(\gamma^q = \gamma^p_0, w^q = w^{p_0} \cup w^{p_1} \cup w^{p_0} \cup w^{p_1}, u^q = u^{p_0} \cup u^{p_1} \cup u^{p_0} \cup u^{p_1} \), and, for \((j, \zeta) \in u^q \) and \(\alpha < \gamma^q \) we define \(f_{j, \zeta, \alpha}^q : u^q \to 2 \) in the following manner.

We declare that

\[
f_{j, \zeta, \alpha}^q \mid (\{j\} \times [0, \chi_j^+]) \cap u^q \equiv 0 \quad \text{and} \quad f_{j, \zeta, \alpha}^q \mid (\{j\} \times [\zeta, \chi_j^+]) \cap u^q \equiv 1,
\]

and now we define \(f_{j, \zeta, \alpha}^q \) on \(u^q \setminus (\{j\} \times [0, \chi_j^+]) \) letting:

- if \((j, 0) \in u^* \) then

\[
f_{j, \zeta, \alpha}^q \supseteq \bigcup_{\ell, k < 2} f_{j, 0, \alpha}^p \mid (u^{p_{k}^\ell} \setminus \{j\} \times \chi_j^+),
\]

[note that in this case we have: \(f_{j, \zeta, \alpha}^p(\tau_0^k) = f_{j, \zeta, \alpha}^q(\tau_1^k) \) for \(k = 0, 1 \)]

- if \((j, 0) \in u_0 \setminus u^* \) then

\[
f_{j, \zeta, \alpha}^q \supseteq \bigcup_{\ell < 2} f_{j, 0, \alpha}^p \mid (u^{p_0} \setminus \{j\} \times \chi_j^+) \cup \bigcup_{\ell < 2} f_{j, 0, \alpha}^q \mid H_{1, 0, \ell}^{H_{0, 0, \ell}((j, 0), \alpha)},
\]

[note that then \(f_{j, \zeta, \alpha}^q(\tau_1^0) = f_{j, \zeta, \alpha}^p(\tau_0^1) \)]

- if \((j, 0) \in u^{p_{k}^\ell} \setminus \bigcup\{u^{p_{k'}^{\ell'}} : (k', \ell') \neq (k, \ell), \ k', \ell' < 2 \} \) then

\[
f_{j, \zeta, \alpha}^q = \bigcup_{k', \ell' < 2} f_{k', \ell', \alpha}^{p_{k'}^{\ell'}} H_{k', \ell', \alpha}(j, \zeta).
\]
[RoSh 599]

– if \((j,0) \in u^*\) and, say, \((j,\zeta) \in w^0\) then let \(j^* \in w^0|j\) be the isomorphic image of \(j\) (in the isomorphism from \(p^0\) to \(p^0_0\)). Choose \(\zeta^* < \chi^+_j\), such that, if possible then, \(f^0_{j^*,\zeta^*,\alpha}(\tau^0_0) = 0\) (if there is no such \(\zeta^*\) take \(\zeta^* = 0\)). Let
\[
\zeta' = \min\{\xi : (j^*,\xi) \in w^0_1 \text{ and } \xi \geq \zeta^*\}
\]
and
\[
f^0_{j^*,\zeta',\alpha} \supseteq f^0_{j^*,\zeta^*,\alpha} \cup \bigcup_{\ell < 2} f^0_{j^*,0,\alpha} \upharpoonright (w^1_\ell|j) \times \chi^+_j
\]

[Note that \(f^0_{j^*,\zeta,\alpha}(\tau^0_0) \leq f^0_{j^*,\zeta',\alpha}(\tau^1_1)\)].

It is a routine to check that \(q = \langle \gamma^q, w^q, \langle f^q_{j^*,\zeta,\alpha} : (j,\zeta) \in w^q, \alpha < \gamma^q \rangle \rangle \in \mathcal{Q}_S\) is a condition stronger than all \(p^q_i\). It follows from the remarks on \(f^q_{j^*,\zeta,\alpha}(\tau^1_1)\) we made when we defined \(f^q_{j^*,\zeta,\alpha}\) that, by 1.2, \(\mathcal{B}_q \models \tau^0_0(\tau^1_1)\) \(\Rightarrow \tau^0_0(\tau^1_1) \leq \tau^1_1\).

Hence we conclude that \(q\) forces that the sequence \(\langle b_{i,\xi} : \xi < \lambda\rangle\) is not free as witnessed by \(\{\chi_{i_0} + \xi_0^0, \chi_{i_0} + \xi_1^0, \chi_{i_1} + \xi_0^1\} \text{ and } \{\chi_{i_1} + \xi_1^1\}\).

2) Suppose that \(\dot{I}\) is a \(\mathcal{Q}_S\)–name for an ideal in \(\dot{\mathbb{B}}_S\) and \(p \in \mathcal{Q}_S\) is such that \(p \forces_{\mathcal{Q}_S} \text{ "Depth}(\dot{\mathbb{B}}_S/\dot{I}) = \lambda\) " . Then for each \(i < cf(\lambda)\) we find a \(\mathcal{Q}_S\)–name \(\langle b_{i,\xi} : \xi < \chi^+_i\rangle\) for a sequence of elements of \(\dot{\mathbb{B}}_S\) such that
\[
q \forces_{\mathcal{Q}_S} (\forall \xi < \zeta < \chi^+_i)(0/\dot{I} < b_{i,\xi}/\dot{I} < b_{i,\zeta}/\dot{I}).
\]

Repeat the procedure applied in the previous clause, now with \(b_{i,\xi}\) instead of \(b_{\chi_{i+1},\xi}\) there, and get \(i_0, i_1, \xi_0^0, \xi_0^1, \xi_1^0, \xi_1^1\) as there (and we use the same notation \(p^k_{j^*,\zeta^*,\alpha}\) as before). Now we define a condition \(q\) stronger than all the \(p^q_i\). Naturally we let \(\gamma^q = \gamma^p_0, w^q = w^p_0 \cup w^p_1 \cup w^p_0 \cup w^p_1\), \(u^q = w^p_0 \cup w^p_1 \cup w^p_0 \cup w^p_1\). Suppose \((j,\zeta) \in u^q\) and \(\alpha < \gamma^q\). We define \(f^q_{j,\zeta,\alpha} : u^q \rightarrow 2\) declaring that
\[
f^q_{j,\zeta,\alpha} \upharpoonright (\{j\} \times [0,\zeta)) \cap u^q = 1 \quad \text{and} \quad f^q_{j,\zeta,\alpha} \upharpoonright (\{j\} \times [\zeta, \chi^+_j)) \cap u^q = 1,
\]
and:

- if \((j,0) \in u^*\) then \(f^q_{j,\zeta,\alpha} \supseteq \bigcup_{\ell,k < 2} f^p_{j,k,0,\alpha} \upharpoonright (w^p_k \backslash \{j\} \times \chi^+_j)\),
- if \((j,0) \in u^p_k\) but \((j,0) \notin u^p_k\) for \((k',\ell') \neq (k,\ell)\) then
\[
f^q_{j,\zeta,\alpha} = \bigcup_{k',\ell' < 2} f^p_{H^q_{k',\ell'}(j,\zeta),0,\alpha},
\]
- if \((j,0) \in u_{i_1} \backslash u^*\) then
\[
f^q_{j,\zeta,\alpha} \supseteq \bigcup_{\ell < 2} f^p_{j,0,\alpha} \upharpoonright (u^p_\ell \backslash \{j\} \times \chi^+_j) \cup \bigcup_{\ell < 2} f^p_{H^q_{0,0}(j,0),0,\alpha},
\]
if \((j,0) \in u_i \setminus u^*\) then first take \(\xi^j = \min \{\xi \leq \chi^j_1 : (j,\xi) \in u^\rho \& \xi \leq \xi\} \) for \(\ell < 2\) and next put
\[
f_j^q = f_j^{q_0} \cup f_j^{q_0} \cap f_j^{q_1} \cup f_j^{q_1} \cap f_j^{q_2} \cup f_j^{q_2} \cup f_j^{q_3} \cup f_j^{q_3}
\]
Remember that \(H_{1,1}^{0,1}[u_i] = H_{1,1}^{0,0}[u_i] = u_i \) and both isomorphisms are the identity on \(u^*\).

It should be a routine to verify that \(q = \langle \gamma^q, u^q, \langle f_j^q \rangle, \langle j, \xi, \alpha \rangle \rangle \in \mathbb{Q}^S\) is a condition stronger than all \(p^k_\lambda\). Note that the only case when \(f_j^q \cap f_j^{q_0} = \langle f_j^q, f_j^{q_0} \rangle \) is \((j,0) \in u_i \setminus u^*\). But then \(f_j^q \cap f_j^{q_1} = f_j^q \cap f_j^{q_2}\) and \(f_j^q \cap f_j^{q_3}\). Hence (by 1.2) \(\mathbb{B}_q \models \tau^q_0 \land \tau^q_1 \land \tau^q_2 \land \tau^q_3\) and therefore \(q \models \hat{b}_i \land \hat{b}_i \land \hat{b}_i \land \hat{b}_i \). Now, \(q \models \hat{b}_i \land \hat{b}_i \land \hat{b}_i \land \hat{b}_i \land \hat{b}_i \). But the last statement contradicts \(q \models \hat{b}_i \land \hat{b}_i \land \hat{b}_i \land \hat{b}_i \land \hat{b}_i \), finishing the proof.

Conclusion 6.5 It is consistent that there is a Boolean algebra \(\mathbb{B}\) of size \(\lambda\) such that there is an ultrafilter \(x \in Ult(\mathbb{B})\) of tightness \(\lambda\), there is no free \(\lambda\)-sequence in \(\mathbb{B}\) and \(t(\mathbb{B}) = \lambda \notin \text{Depth}_{\text{He}(\mathbb{B})}\) (i.e. no homomorphic image of \(\mathbb{B}\) has depth \(\lambda\)).

Let us note that in the universe \(V^Q\) we have \(2^{\text{cf}(\lambda)} \geq \lambda\). This is a real limitation – we can prove that \(2^{\text{cf}(\lambda)}\) cannot be small in this context. In the proof we will use the following theorem cited here from [Sh 233].

Theorem 6.6 (see [Sh 233, Lemma 5.1(3)]) Assume that \(\lambda = \sup_{i < \text{cf}(\lambda)} \chi_i\), \(\text{cf}(\lambda) < \chi_1 \land \chi_1 < \mu\), \(\mu = (2^{\text{cf}(\lambda)})^+\). Let \(X\) be a \(T^{3,2}_{\lambda+1}\) topological space with a basis \(\mathcal{B}\). Suppose that \(\varphi\) is a function assigning cardinal numbers to subsets of \(X\) such that:

(i) \(\varphi(A) \leq \varphi(A \cup B) \leq \varphi(A) + \varphi(B) + \omega_0\) for \(A, B \subseteq X\),

(ii) for each \(i < \text{cf}(\lambda)\) there is a sequence \(\langle u_\alpha : \alpha < \mu \rangle \subseteq \mathcal{B}\) such that

\[
(\forall g : \mu \rightarrow 2^{\text{cf}(\lambda)})(\exists \alpha \neq \beta)(g(\alpha) = g(\beta) \& \varphi(u_\alpha \setminus \text{cl}(X(u_\beta))) \geq \chi_i),
\]

(iii) for sufficiently large \(\chi < \lambda\), if \(\langle A_\alpha : \alpha < \mu \rangle\) is a sequence of subsets of \(X\) such that \(\varphi(A_\alpha) \leq \chi\) then \(\varphi(\bigcup_{\alpha < \mu} A_\alpha) \leq \chi\).
Then there is a sequence \(\langle u_i : i < \text{cf}(\lambda) \rangle \subseteq \mathcal{B} \) such that
\[
(\forall i < \text{cf}(\lambda))(\varphi(u_i \setminus \bigcup_{j \neq i} u_j) \geq \chi_i).
\]

Theorem 6.7 Suppose that \(\mathcal{B} \) is a Boolean algebra satisfying \(2^{\text{cf}(\mathcal{B})} < t(\mathcal{B}) \). Then for some ideal \(I \) on \(\mathcal{B} \) we have \(\text{Depth}(\mathcal{B}/I) = t(\mathcal{B}) \).

Proof Let \(\lambda = t(\mathcal{B}) \) and let \(\langle \chi_i : i < \text{cf}(\lambda) \rangle \) be an increasing cofinal in \(\lambda \) sequence of successor cardinals, \(\chi_0 > \text{cf}(\lambda) \) and let \(\mu = (2^{\text{cf}(\lambda)})^+ \). Further, let \(X \) be the Stone space \(\text{Ult}(\mathcal{B}) \) and thus we may think that \(\mathcal{B} = \mathcal{B} \) is a basis of the topology of \(X \). Now define a function \(\varphi \) on subsets of \(X \) by
\[
\varphi(Y) = \sup \{ \kappa : \text{there are sequences } \langle y_\zeta : \zeta < \kappa \rangle \subseteq Y \text{ and } \langle u_\zeta : \zeta < \kappa \rangle \subseteq \mathcal{B} \text{ such that } (\forall \zeta, \xi < \kappa)(y_\zeta \in u_\xi \Leftrightarrow \xi < \zeta) \}.
\]

We are going to apply 6.6 to these objects and for this we should check the assumptions there. The only not immediate demands might be (ii) and (iii). So suppose \(i < \text{cf}(\lambda) \). Since \(\chi_i < \lambda = t(\mathcal{B}) \) we can find a free sequence \(\langle u_\xi^* : \xi < \chi_i^+ \rangle \subseteq \mathcal{B} \). Next, for each \(\xi < \chi_i^+ \) we may choose an ultrafilter \(y_\xi \in \mathcal{X} \) such that \((\forall \zeta < \chi_i^+)(y_\xi \in u_\zeta^* \Leftrightarrow \zeta < \xi) \). Now, for \(\alpha < \mu \), let \(u_\alpha = u_{\chi_i, \alpha}^* \). Suppose \(g : \mu \rightarrow 2^{\text{cf}(\lambda)} \) and take any \(\alpha < \beta < \mu \) such that \(g(\alpha) = g(\beta) \). Note that
\[
u_\alpha \setminus \text{cl}_X(u_\beta) = u_{\chi_i, \alpha}^* \setminus u_{\chi_i, \beta}^* \supseteq \{ y_\xi : \chi_i \cdot \alpha < \xi < \chi_i \cdot (\alpha + 1) \}
\]
and easily \(\varphi(\{ y_\xi : \chi_i \cdot \alpha < \xi < \chi_i \cdot (\alpha + 1) \}) = \chi_i \). Thus \(\varphi(u_\alpha \setminus \text{cl}_X(u_\beta)) \geq \chi_i \) and the demand 6.6(ii) is verified. Assume now that \(\mu < \chi < \lambda \) and \(A_\alpha \subseteq X \) (for \(\alpha < \mu \)) are such that \(\varphi(\bigcup_{\alpha < \mu} A_\alpha) > \chi \). Let sequences \(\langle y_\xi : \xi < \chi_i^+ \rangle \subseteq \bigcup_{\alpha < \mu} A_\alpha \) and \(\langle u_\xi : \xi < \chi_i^+ \rangle \subseteq \mathcal{B} \) witness this. Then for some \(C \in [\chi_i]^+ \chi_i^+ \) and \(\alpha < \mu \) we have \(\langle y_\xi : \xi \in C \rangle \subseteq A_\alpha \) and therefore \(\langle y_\xi, u_\xi : \xi \in C \rangle \) witness \(\varphi(A_\alpha) \geq \chi_i^+ \). This finishes checking the demand 6.6(iii).

So we may use 6.6 and we get a sequence \(\langle u_i : i < \text{cf}(\lambda) \rangle \subseteq \mathcal{B} \) such that
\[
(\forall i < \text{cf}(\lambda))(\varphi(u_i \setminus \bigcup_{j \neq i} u_j) \geq \chi_i).
\]
Then for each \(i < \text{cf}(\lambda) \) we may choose sequences \(\langle y_\xi^i : \xi < \chi_i \rangle \subseteq u_i \setminus \bigcup_{j \neq i} u_j \) and \(\langle w_\xi^i : \xi < \chi_i \rangle \subseteq \mathcal{B} \) such that
\[
y_\xi^i \in w_\xi^i \Leftrightarrow \zeta < \xi,
\]
and we may additionally demand that $w^i_\xi \subseteq u_i$ (for each $\xi < \chi_i$). Now let

$$I \overset{\text{def}}{=} \{ b \in B : (\forall i < \text{cf}(\lambda))(\forall \xi < \chi_i)(y^i_\xi \notin b) \}.$$

It should be clear that I is an ideal in the Boolean algebra B (identified with the algebra of clopen subsets of X). Fix $i < \text{cf}(\lambda)$ and suppose that $\zeta < \xi < \chi_i$. By the choices of the w^i_ξ’s we have $y^i_\xi \in w^i_\xi \setminus w^i_\zeta$ and no y^i_ρ belongs to $w^i_\zeta \setminus w^i_\xi$. As $w^i_\xi \subseteq u_i$ we conclude $B/I \models w^i_\xi/I < w^i_\zeta/I$. Thus the sequence $\langle w^i_\xi/I : \xi < \chi_i \rangle$ (for $i < \text{cf}(\lambda)$) is strictly decreasing in B/I and consequently $\text{Depth}(B/I) \geq \lambda$. Since there is λ many y^i_ξ’s only, we may easily check that there are no increasing λ^+-sequences in B/I (remember the definition of I), finishing the proof.

References

[RoSh 599] August 17, 2011

