CATEGORICITY IN ABSTRACT ELEMENTARY
CLASSES: GOING UP INDUCTIVE STEP

SH600 - PART 1 AND 2

SAHARON SHELAH

The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel

Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road Piscataway, NJ 08854-8019 USA

Abstract. We deal with beginning stability theory for “reasonable” non-elementary classes without any remnants of compactness like dealing with models above Hanf number or by the class being definable by $L_{\omega_1, \omega}$. We introduce and investigate good λ-frame, show that they can be found under reasonable assumptions and prove we can advance from λ to λ^+ when non-structure fail. That is, assume $2^{\lambda+n} < 2^{\lambda^++1}$ for $n < \omega$. So if an a.e.c. is categorical in λ, λ^+ and has intermediate number of models in λ^{++} and $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$, $\text{LS}(\mathcal{K}) \leq \lambda$. Then there is a good λ-frame s and if s fails non-structure in λ^{++} then s has a successor s^+, a good λ^+-frame hence $K_{\lambda+3}^2 \neq \emptyset$, and we can continue.

2000 Mathematics Subject Classification. 03C45, 03C75, 03C95, 03C50.

Key words and phrases. model theory, abstract elementary classes, classification theory, categoricity, non-structure theory.

I thank Alice Leonhardt for the beautiful typing
This research was supported by the United States-Israel Binational Science Foundation and in its final stages also by the Israel Science Foundation (Grant no. 242/03).
Hopefully, final work 8/99
First version - Spring ’95
Latest Revision - 08/Apr/2

Typeset by A4M\TeX
The paper’s main explicit result is proving Theorem 0.1 below. It is done axiomatically, in a “superstable” abstract framework with the set of “axioms” of the frame, verified by applying earlier works, so it suggests this frame as the, or at least a major, non-elementary parallel of superstable.

A major case to which this is applied, is the one from [Sh 576] represented in [Sh:E46]; we continue this work in several ways but the use of [Sh 576] is only in verifying the basic framework; we refer the reader to the book’s introduction or [Sh 576, §0] for background and some further claims but all the definitions and basic properties appear here. Otherwise, the heavy use of earlier works is in proving that our abstract framework applies in those contexts. If \(\lambda = \aleph_0 \) is O.K. for you, you may use Chapter I or [Sh 48] instead of [Sh 576] as a starting point.

Naturally, our deeper aim is to develop stability theory (actually a parallel of the theory of superstable elementary classes) for non-elementary classes. We use the number of non-isomorphic models as test problem. Our main conclusion is 0.1 below. As a concession to supposedly general opinion, we restrict ourselves here to the \(\lambda \)-good framework and delay dealing with weak relatives (see [Sh 838], Jarden-Shelah [JrSh 875], hopefully [Sh:F888]. Also, we assume that the (normal) weak-diamond ideal on the \(\lambda^+ \) is not saturated (for \(\ell = 1, \ldots, n - 1 \)). We had intended to rely on [Sh 576, §3], but actually in the end we prefer to rely on the lean version of [Sh 838], see “reading plan A” in [Sh 838, §0]. Relying on the full version of [Sh 838], we can eliminate this extra assumption “not \(\lambda^{+\ell+1}\)-saturated\(^1\) (ideal).” On \(\mu_{\text{unif}}(\lambda^{+\ell+1}, 2^{\lambda^+}) \), see, e.g. I.?3).

0.1 Theorem. Assume \(2^\lambda < 2^{\lambda^+} < \cdots < 2^{\lambda^{+n+1}} \) and the (so called weak diamond) normal\(^1\) ideal WDmId(\(\lambda^+ \)) is not \(\lambda^{+\ell+1}\)-saturated\(^2\) for \(\ell = 1, \ldots, n \).
1) Let \(\mathfrak{R} \) be an abstract elementary class (see §1 below) categorical in \(\lambda \) and \(\lambda^+ \) with \(\text{LS}(\mathfrak{R}) \leq \lambda \) (e.g. the class of models of \(\psi \in \mathcal{L}_{\lambda^+, \omega} \) with \(\leq_{\mathfrak{R}} \) defined naturally). If \(1 \leq \hat{I}(\lambda^{+2}, \mathfrak{R}) \) and \(2 \leq \ell \leq n \Rightarrow \hat{I}(\lambda^{+\ell}, \mathfrak{R}) < \mu_{\text{unif}}(\lambda^{+\ell}, 2^{\lambda^{+\ell-1}}) \), then \(\mathfrak{R} \) has a model of cardinality \(\lambda^{+n+1} \).
2) Assume \(\lambda = \aleph_0, \) and \(\psi \in \mathcal{L}_{\omega_1, \omega}(\mathbb{Q}) \). If \(1 \leq \hat{I}(\lambda^{+\ell}, \psi) < \mu_{\text{unif}}(\lambda^{+\ell}, 2^{\lambda^{+\ell-1}}) \) for \(\ell = 1, \ldots, n - 1 \) then \(\psi \) has a model in \(\lambda^+ \) (see [Sh 48]).

Note that if \(n = 3 \), then 0.1(1) is already proved in [Sh 576] \(\approx \) [Sh:E46]. If \(\mathfrak{R} \) is the class of models of some \(\psi \in \mathcal{L}_{\omega_1, \omega} \) this is proved in [Sh 87a], [Sh 87b], but

\(^1\)recall that as \(2^{\lambda^{+1}} < 2^{\lambda^+} \) this ideal is not trivial, i.e., \(\lambda^{+\ell} \) is not in the ideal

\(^2\)actually the statement “some normal ideal on \(\mu^+ \) is \(\mu^{+\ell}\)-saturated” is “expensive”, i.e., of large consistency strength, etc., so it is “hard” for this assumption to fail
the proof here does not generalize the proofs there. It is a different one (of course, they are related). There, for proving the theorem for \(n \), we have to consider a few statements on \((K_m, \mathcal{P}^{-(n-m)}) \)-systems for all \(m \leq n \), (going up and down). A major point (there) is that for \(n = 0 \), as \(\lambda = \aleph_0 \) we have the omitting type theorem and the types are “classical”, that is, are sets of formulas. This helps in proving strong dichotomies; so the analysis of what occurs in \(\lambda^{+n} = \aleph_n \) is helped by those dichotomies. Whereas here we deal with \(\lambda, \lambda^+, \lambda^{+2}, \lambda^{+3} \) and then “forget” \(\lambda \) and deal with \(\lambda^+, \lambda^{+2}, \lambda^{+3}, \lambda^{+4} \), etc. So having started with poor assumptions there is less reason to go back from \(\lambda^{+n} \) to \(\lambda \). However, there are some further theorems proved in [Sh 87a], [Sh 87b], whose parallels are not proved here, mainly that if for every \(n \), in \(\lambda^{+n} \) we get the “structure” side, then the class has models in every \(\mu \geq \lambda \), and theorems about categoricity. We shall deal with them in subsequent works, mainly Chapter III. Also in [Sh 48], [Sh 88] = Chapter I we started to deal with \(\psi \in \mathcal{L}_{\omega_1, \omega}(Q) \) dealing with \(\aleph_1, \aleph_2 \). Of course, we integrate them too into our present context. In the axiomatic framework (introduced in §2) we are able to present a lemma, speaking only on 4 cardinals, and which implies the theorem 0.1.

A major theme here (and even more so in Chapter III) is:

0.2 Thesis: It is worthwhile to develop model theory (and superstability in particular) in the context of \(\mathfrak{R}_\lambda \) or \(K^{+\ell}_{\lambda+x}, \ell \in \{0, \ldots, n\} \), i.e., restrict ourselves to one, few, or an interval of cardinals. We may have good understanding of the class in this context, while in general cardinals we are lost.

As in [Sh:c] for first order classes

0.3 Thesis: It is reasonable first to develop the theory for the class of (quite) saturated enough models as it is smoother and even if you prefer to investigate the non-restricted case, the saturated case will clarify it and you will be able to rely on it.

In our case this will mean investigating \(s^{+n} \) for each \(n \) and then \(\cap \{ s^{+n} : n < \omega \} \).

0.4 The Better to be poor Thesis: Better to know what is essential. e.g., you may have better closure properties (here a major point of poverty is having no formulas, this is even more noticeable in Chapter III).

I thank John Baldwin, Alex Usvyatsov, Andres Villaveces and Adi Yarden for many complaints and corrections.

§1 gives a self-contained introduction to a.e.c. (abstract elementary classes), including definitions of types, \(M_2 \) is \((\lambda, \kappa)\)-brimmed over \(M_1 \) and saturativity =
universality + model homogeneity. An interesting point is observing that any λ-a.e.c. \mathfrak{R}_λ can be lifted to $\mathfrak{R}_{\geq \lambda}$, uniquely; so it does not matter if we deal with \mathfrak{R}_λ or $\mathfrak{R}_{\geq \lambda}$ (unlike the situation for good λ-frames, which if we lift, we in general, lose some essential properties).

The good λ-frames introduced in §2 are a very central notion here. It concentrates on one cardinal λ, in \mathfrak{R}_λ we have amalgamation and more, hence types, in the orbital sense, not in the classical sense of set of formulas, for models of cardinality λ can be reasonably defined and “behave” reasonably (we concentrate on so-called basic types) and we axiomatically have a non-forking relation for them.

In §3 we show that starting with classes belonging to reasonably large families, from assumptions on categoricity (or few models), good λ-frames arise. In §4 we deduce some things on good λ-frames; mainly: stability in λ, existence and (full) uniqueness of $(\lambda, *)$-brimmed extensions of $M \in K_\lambda$.

Concerning §5 we know that if $M \in K_\lambda$ and $p \in \mathscr{S}^{bs}(M)$ then there is $(M, N, a) \in K^{3, bs}_\lambda$ such that $tp(a, M, N) = p$. But can we find a special (“minimal” or “prime”) triple in some sense? Note that if $(M_1, N_1, a) \leq_{bs} (M_2, N_2, a)$ then N_2 is an amalgamation of N_1, M_2 over M_1 (restricting ourselves to the case “$tp(a, M_2, N_2)$ does not fork over M_1”) and we may wonder is this amalgamation unique (i.e., allowing to increase or decrease N_2). If this holds for any such (M_2, N_2, a) we say (M_1, N_1, a) has uniqueness (= belongs to $K^{3, uq}_\lambda = K^{3, uq}_\sigma$). Specifically we ask: is $K^{3, uq}_\lambda$ dense in $(K^{3, bs}_\lambda, \leq_{bs})$? If no, we get a non-structure result; if yes, we shall (assuming categoricity) deduce the “existence for $K^{3, uq}_\lambda$” and this is used later as a building block for non-forking amalgamation of models.

So our next aim is to find “non-forking” amalgamation of models (in §6). We first note that there is at most one such notion which fulfills our expectations (and “respect” σ). Now if $\bigcup(M_0, M_1, a, M_3), M_0 \leq_{\mathfrak{R}} M_2 \leq_{\mathfrak{R}} M_3$ equivalently

(\text{M}_0, M_2, a) \leq_{bs} (M_1, M_3, a) \quad \text{and} \quad (M_0, M_2, a) \in K^{3, uq}_\lambda \quad \text{by our demands we have to say that M}_1, M_2 \text{ are in non-forking amalgamation over } M_0 \text{ inside } M_3.

Closing this family under the closure demands we expect to arrive to a notion $\text{NF}_\lambda = \text{NF}_\sigma$ which should be the right one (if a solution exists at all). But then we have to work on proving that it has all the properties it hopefully has.

A major aim in advancing to λ^+ is having a superlimit model in \mathfrak{R}_{λ^+}. So in §7 we find out who it should be: the saturated model of \mathfrak{R}_{λ^+}, but is it superlimit? We use our NF_λ to define a “nice” order $\leq_{\mathfrak{R}}^*$ on \mathfrak{R}_{λ^+}, investigate it and prove the existence of a superlimit model under this partial order. To advance the move to λ^+ we would like to have that the class of λ^+-saturated model with the partial order $\leq_{\mathfrak{R}}^*$ is a λ^+-a.e.c. Well, we do not prove it but rather use it as a dividing line: if it fails we eventually get many models in $\mathfrak{R}_{\lambda^{++}}$ (coding a stationary subset of λ^{++} (really any $S \subseteq \{\delta < \lambda^{++} : \text{cf}(\delta) = \lambda^+\}$)), see §8.

Lastly, we pay our debts: prove the theorems which were the motivation of this
work, in §9.

∗ ∗ ∗

Reading Plans:

As usual these are instructions on what you can avoid reading.

Note that §3 contains the examples, i.e., it shows how “good \(\lambda \)-frame”, our main object of study here, arise in previous works. This, on the one hand, may help the reader to understand what is a good frame and, on the other hand, helps us in the end to draw conclusions continuing those works. However, it is not necessary here otherwise, so you may ignore it.

Note that we treat the subject axiomatically, in a general enough way to treat the cases which exist without trying too much to eliminate axioms as long as the cases are covered (and probably most potential readers will feel they are more than general enough).

We shall assume

\[
(\ast)_0 \quad 2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{+2}} < \ldots < 2^{\lambda^{+n}} \quad \text{and} \quad n \geq 2.
\]

In the beginning of §1 there are some basic definitions.

Reading Plan 0: We accept the good frames as interesting per se so ignore §3 (which gives “examples”) and: §1 tells you all you need to know on abstract elementary classes; §2 presents frames, etc.

Reading Plan 1: The reader decides to understand why we reprove the main theorem of [Sh 87a], [Sh 87b] so

\[
(\ast)_1 \quad K \text{ is the class of models of some } \psi \in L_{\lambda^+\omega} \text{ (with a natural notion of elementary embedding } <_{\mathcal{L}} \text{ for } \mathcal{L} \text{ a fragment of } L_{\lambda^+\omega} \text{ of cardinality } \leq \lambda \text{ to which } \psi \text{ belongs}).
\]

So in fact (as we can replace, for this result, \(K \) by any class with fewer models still satisfying the assumptions) without loss of generality

\[
(\ast)_1' \quad \text{if } \lambda = \aleph_0 \text{ then } K \text{ is the class of atomic models of some complete first order theory, } \leq_R \text{ is being elementary submodel.}
\]

The theorems we are seeking are of the form

\[
(\ast)_2 \quad \text{if } K \text{ has few models in } \lambda + \aleph_1, \lambda^+, \ldots, \lambda^{+n} \text{ then it has a model in } \lambda^{+n+1}.
\]

[Why “} \lambda + \aleph_1”? If \(\lambda > \aleph_0 \) this means \(\lambda \) whereas if \(\lambda = \aleph_0 \) this means
that we do not require “few model in \(\lambda = \aleph_0 \)”. The reason is that for the class or models of \(\psi \in L_{\omega_1, \omega} \) (or \(\in L_{\omega_1, \omega}(Q) \) or an a.e.c. which is PC\(\aleph_0 \), see Definition 3.3) we have considerable knowledge of general methods of building models of cardinality \(\aleph_1 \), for general \(\lambda \) we are very poor in such knowledge (probably as there is much less).

But, of course, what we would really like to have are rudiments of stability theory (non-forking amalgamation, superlimit models, etc.). Now reading plan 1 is to follow reading plan 2 below but replacing the use of Claim 3.7 and [Sh 576] by the use of a simplified version of 3.4 and [Sh 87a].

Reading Plan 2: The reader would like to understand the proof of \((\ast)_2\) for arbitrary \(R \) and \(\lambda \). The reader

(a) knows at least the main definitions and results of [Sh 576] \(\approx \) [Sh:E46], or just

(b) reads the main definitions of §1 here (in 1.1 - 1.7) and is willing to believe some quotations of results of [Sh 576] \(\approx \) [Sh:E46].

We start assuming \(R \) is an abstract elementary class, \(\text{LS}(R) \leq \lambda \) (or read §1 here until 1.16) and \(R \) is categorical in \(\lambda, \lambda^+ \) and \(1 \leq I(\lambda^{++}, K) < \mu_{\text{unif}}(\lambda^{++}, 2^{\lambda^+}) \) and moreover, \(1 \leq I(\lambda^{++}, K) < \mu_{\text{unif}}(\lambda^{++}, 2^{\lambda^+}) \). As an appetizer and to understand types and the definition of types and saturated (in the present context) and brimmed, read from §1 until 1.17.

He should read in §2 Definition 2.1 of \(\lambda \)-good frame, an axiomatic framework and then read the following two Definitions 2.4, 2.5 and Claim 2.6. In §3, 3.7 show how by [Sh 576] \(\approx \) [Sh:E46] the context there gives a \(\lambda^+ \)-good frame; of course the reader may just believe instead of reading proofs, and he may remember that our basic types are minimal in this case.

In §4 he should read some consequences of the axioms. Then in §5 we show some amount of unique amalgamation. Then §6, §7, §8 do a parallel to [Sh 576, §8, §9, §10] in our context; still there are differences, in particular our context is not necessarily uni-dimensional which complicates matters. But if we restrict ourselves to continuing [Sh 576] \(\approx \) [Sh:E46], our frame is “uni-dimensional”, we could have simplified the proofs by using \(\mathcal{F}^{bs}(M) \) as the set of minimal types.

Reading Plan 3: \(\psi \in L_{\omega_1, \omega}(Q) \) so \(\lambda = \aleph_0, 1 \leq I(\aleph_1, \psi) < 2^{\aleph_1} \) recalling \(Q \) denote the quantifier “there are uncountably many”.

For this, [Sh 576] \(\approx \) [Sh:E46] is irrelevant (except if we quote the “black box” use of the combinatorial section §3 of [Sh 576] when using the weak diamond to get many non-isomorphic models in §5, but we prefer to use [Sh 838]).
Now reading plan 3 is to follow reading plan 2 but 3.7 is replaced by 3.5 which relies on [Sh 48], i.e., it proves that we get an \aleph_1-good frame investigating $\psi \in \mathcal{L}_{\omega_1, \omega}(Q)$.

Note that our class may well be such that \mathcal{K} is the parallel of “superstable non-multidimension complete first order theory”; e.g., $\psi_1 = (Qx)(P(x)) \land (Qx)(\neg P(x)), \tau_\psi = \{ P \}, P$ a unary predicate; this is categorical in \aleph_1 and has no model in \aleph_0 and ψ_1 has 3 models in \aleph_2. But if we use $\psi_0 = (\forall x)(P(x) \equiv P(x))$ we have $I(\aleph_1, \psi_0) = \aleph_0$; however, even starting with ψ_1, the derived a.e.c. \mathcal{K} has exactly three non-isomorphic models in \aleph_1. In general we derived an a.e.c. \mathcal{K} from ψ such that: \mathcal{K} is an a.e.c. with LS number \aleph_0, categorical in \aleph_0, and the number of somewhat “saturated” models of \mathcal{K} in λ is $\leq I(\lambda, \psi)$ for $\lambda \geq \aleph_1$. The relationship of ψ and \mathcal{K} is not comfortable; as it means that, for general results to be applied, they have to be somewhat stronger, e.g. “\mathcal{K} has 2^{λ^+} non-isomorphic λ^+-saturated models of cardinality λ^{++}.” The reason is that LS(\mathcal{K}) = $\lambda = \aleph_0$; we have to find many somewhat λ^+-saturated models as we have first in a sense eliminate the quantifier $Q = \exists \geq \aleph_1$, (i.e., the choice of the class of models and of the order guaranteed that what has to be countable is countable, and λ^+-saturation guarantees that what should be uncountable is uncountable). This is the role of $K^{F}_{\aleph_1}$ in $I\S3$.

Reading Plan 4: \mathcal{K} an abstract elementary class which is PC$_\omega$ ($= \aleph_0$-presentable, see Definition 3.3); see Chapter I or [Mw85a] which includes a friendly presentation of [Sh 88, §1-§3] so of $I\S1$-$I\S3$.

Like plan 3 but we have to use 3.4 instead of 3.5 and fortunately the reader is encouraged to read $I\S4, \S5$ to understand why we get a λ-good quadruple.
§1 Abstract elementary classes

First we present the basic material on a.e.c. \(\mathfrak{K} \), that is types, saturativity and \((\lambda, \kappa)\)-brimness (so most is repeating some things from \(\S 1 \) and from Chapter V.B). Second we show that the situation in \(\lambda = \text{LS}(\mathfrak{K}) \) determine the situation above \(\lambda \), moreover such lifting always exists; so a \(\lambda \)-a.e.c. can be lifted to a \((\geq \lambda)\)-a.e.c. in one and only one way.

1.1 Conventions. Here \(\mathfrak{K} = (K, \leq K) \), where \(K \) is a class of \(\tau \)-models for a fixed vocabulary \(\tau = \tau_K = \tau_{\mathfrak{K}}\) and \(\leq K \) is a two-place relation on the models in \(K \). We do not always strictly distinguish between \(K, \leq K \) and \((K, \leq K)\). We shall assume that \(K, \leq K \) are fixed, and \(M \leq_K N \Rightarrow M, N \in K \); and we assume that it is an abstract elementary class, see Definition 1.4 below. When we use \(\leq K \) in the \(\prec \) sense (elementary submodel for first order logic), we write \(\triangleleft_L \) as \(L \) is first order logic.

1.2 Definition. For a class of \(\tau_K \)-models we let \(\hat{I}(\lambda, K) = |\{M/ \cong: M \in K, \|M\| = \lambda\}| \).

1.3 Definition. 1) We say \(\bar{M} = \langle M_i : i < \mu \rangle \) is a representation or filtration of a model \(M \) of cardinality \(\mu \) if \(\tau_{M_i} = \tau_M \), \(M_i \) is \(\subseteq \)-increasing continuous, \(\|M_i\| < \|M\| \) and \(M = \bigcup\{M_i : i < \mu\} \) and \(\mu = \chi^+ \Rightarrow \|M_i\| = \chi \).

2) We say \(\bar{M} \) is a \(\leq K \)-representation or \(\leq K \)-filtration of \(M \) if in addition \(M_i \leq_K M \) for \(i < \|M\| \) (hence \(M_i, M \in K \) and \(\langle M_i : i < \mu \rangle \) is \(\leq_K \)-increasing continuous, by Av V from Definition 1.4).

1.4 Definition. We say \(\mathfrak{K} = (K, \leq_K) \) is an abstract elementary class, a.e.c. in short, if \(\tau \) is as in 1.1, \(\text{Ax} 0 \) holds and \(\text{AxI-VI} \) hold, where:

\(\text{Ax} 0 \): The holding of \(M \in K, N \leq_K M \) depends on \(N, M \) only up to isomorphism, i.e., \([M \in K, M \cong N \Rightarrow N \in K] \), and \([\text{if } N \leq_K M \text{ and } f \text{ is an isomorphism from } M \text{ onto the } \tau\text{-model } M' \text{ mapping } N \text{ onto } N' \text{ then } N' \leq_K M'] \), and of course 1.1.

\(\text{AxI} \): If \(M \leq_K N \) then \(M \subseteq N \) (i.e. \(M \) is a submodel of \(N \)).

\(\text{AxII} \): \(M_0 \leq_K M_1 \leq_K M_2 \) implies \(M_0 \leq_K M_2 \) and \(M \leq_K M \) for \(M \in K \).

\(\text{AxIII} \): If \(\lambda \) is a regular cardinal, \(M_i \) (for \(i < \lambda \)) is \(\leq_K \)-increasing (i.e. \(i < j < \lambda \) implies \(M_i \leq_K M_j \)) and continuous (i.e. for limit ordinal \(\delta < \lambda \) we have \(M_\delta = \bigcup\{M_i : i < \delta\} \) then \(M_0 \leq_K \bigcup_{i < \lambda} M_i \).
AxIV: If \(\lambda \) is a regular cardinal, \(M_i \) (for \(i < \lambda \)) is \(\leq_\mathcal{R} \)-increasing continuous and \(M_i \leq \mathcal{R} N \) for \(i < \lambda \) then \(\bigcup_{i<\lambda} M_i \leq \mathcal{R} N \).

AxV: If \(M_0 \subseteq M_1 \) and \(M_\ell \leq \mathcal{R} N \) for \(\ell = 0, 1 \), then \(M_0 \leq \mathcal{R} M_1 \).

AxVI: \(\text{LS}(\mathcal{R}) \) exists\(^3\), where \(\text{LS}(\mathcal{R}) \) is the minimal cardinal \(\lambda \) such that: if \(A \subseteq N \) and \(|A| \leq \lambda \) then for some \(M \leq \mathcal{R} N \) we have \(A \subseteq |M| \) and \(\|M\| \leq \lambda \).

1.5 Notation: 1) \(K_\lambda = \{ M \in \mathcal{K} : \|M\| = \lambda \} \) and \(K_{<\lambda} = \bigcup_{\mu<\lambda} K_\mu \), etc.

1.6 Definition. 1) The function \(f : N \to M \) is \(\leq_\mathcal{R} \)-embedding when \(f \) is an isomorphism from \(N \) onto \(N' \) where \(N' \leq_\mathcal{R} M \), (so \(f : N \to N' \) is an isomorphism onto).

2) We say \(f \) is a \(\leq_\mathcal{R} \)-embedding of \(M_1 \) into \(M_2 \) over \(M_0 \) when for some \(M' \) we have: \(M_0 \leq \mathcal{R} M_1, M_0 \leq \mathcal{R} M'_1 \leq \mathcal{R} M_2 \) and \(f \) is an isomorphism from \(M_1 \) onto \(M'_1 \) extending the mapping \(\text{id}_{M_0} \).

Recall

1.7 Observation. Let \(I \) be a directed set (i.e., \(I \) is partially ordered by \(\leq = \leq^{\ell} \), such that any two elements have a common upper bound).

1) If \(M_t \) is defined for \(t \in I \), and \(t \leq s \in I \) implies \(M_t \leq_\mathcal{R} M_s \) then for every \(t \in I \) we have \(M_t \leq_\mathcal{R} \bigcup_{s \in I} M_s \).

2) If in addition \(t \in I \) implies \(M_t \leq \mathcal{R} N \) then \(\bigcup_{s \in I} M_s \leq \mathcal{R} N \).

Proof. Easy or see I.? which does not rely on anything else. \(\Box_{1.7} \)

1.8 Claim. 1) For every \(N \in \mathcal{K} \) there is a directed partial order \(I \) of cardinality \(\leq \|N\| \) and sequence \(M = \langle M_t : t \in I \rangle \) such that \(t \in I \Rightarrow M_t \leq_\mathcal{R} N, \|M_t\| \leq \text{LS}(\mathcal{R}), I \models s < t \Rightarrow M_s \leq_\mathcal{R} M_t \) and \(N = \bigcup_{t \in I} M_t \). If \(\|N\| \geq \text{LS}(\mathcal{R}) \) we can add \(\|M_t\| = \text{LS}(\mathcal{R}) \) for \(t \in I \).

2) For every \(N_1 \leq_\mathcal{R} N_2 \) we can find \(\langle M^\ell_t : t \in I_\ell \rangle \) as in part (1) for \(\ell = 1, 2 \) such

\(^3\)We normally assume \(M \in \mathcal{R} \Rightarrow \|M\| \geq \text{LS}(\mathcal{R}) \) so may forget to write \(\|M\| \text{“} + \text{LS}(\mathcal{R}) \text{“} \) instead \(\|M\| \), here there is no loss in it. It is also natural to assume \(|\tau(\mathcal{R})| \leq \text{LS}(\mathcal{R}) \) which means just increasing \(\text{LS}(\mathcal{R}) \), but no real need here; dealing with Hanf numbers it is natural.
that $I_1 \subseteq I_2$ and $t \in I_1 \Rightarrow M_t^2 = M_t^1$.

3) Any $\lambda \geq \text{LS}(R)$ satisfies the requirement in the definition of $\text{LS}(R)$.

Proof. Easy or see I.? which does not require anything else. \hfill $\square_{1.8}$

We now (in 1.9) recall the (non-classical) definition of type (note that it is natural to look at types only over models which are amalgamation bases, see part (4) of 1.9 below and consider only extensions of the models of the same cardinality). Note that though the choice of the name indicates that they are supposed to behave like complete types over models as in classical model theory (on which we are not relying), this does not guarantee most of the basic properties. E.g., when $\text{cf}(\delta) = \aleph_0$, uniqueness of $p_\delta \in \mathcal{S}(M_\delta)$ such that $i < \delta \Rightarrow p_\delta \upharpoonright M_i = p_i$ is not guaranteed even if $p_i \in \mathcal{S}(M_i), M_i \leq_R \text{increasing continuous for } i \leq \delta \text{ and } i < j < \delta \Rightarrow p_i = p_j \upharpoonright M_i$. Still we have existence: if for $i < \delta, p_i \in \mathcal{S}(M_i)$ increasing with i, then there is $p_\delta \in \mathcal{S}(\cup\{M_i : i < \delta\})$ such that $i < \delta \Rightarrow p_i = p_\delta \upharpoonright M_i$. But when $\text{cf}(\delta) > \aleph_0$ even existence is not guaranteed.

1.9 Definition. 1) For $M \in K_\mu, M \leq_R N \in K_\mu$ and $a \in N$ let $\text{tp}(a, M, N) = \text{tp}_R(a, M, N) = (M, N, a) / {\mathcal{E}}_M$ where \mathcal{E}_M is the transitive closure of \mathcal{E}^a_M; and the two-place relation \mathcal{E}^a_M is defined by:

$$(M, N_1, a_1) \mathcal{E}^a_M (M, N_2, a_2) \text{ iff } M \leq_R N_\ell, a_\ell \in N_\ell, \|N_\ell\| = \mu = \|M\|$$

for $\ell = 1, 2$ and there is $N \in K_\mu$ and \leq_R -embeddings $f_\ell : N_\ell \rightarrow N$ for $\ell = 1, 2$ such that:

$f_1 \upharpoonright M = \text{id}_M = f_2 \upharpoonright M$ and $f_1(a_1) = f_2(a_2)$.

We may say $p = \text{tp}(a, M, N)$ is the type which a realizes over M in N. Of course, all those notions depend on \mathcal{R} so we may write $\text{tp}_R(a, M, N)$ and $\mathcal{E}_M[\mathcal{R}], \mathcal{E}_M^a[\mathcal{R}]$. (If in Definition 1.4 we do not require $M \in K \Rightarrow \|M\| \geq \text{LS}(\mathcal{R})$, here we should allow any N such that $\|M\| \leq \|N\| \leq M + \text{LS}(\mathcal{R})$.) The restriction to $N \in K_\mu$ is essential, and pedantically $(M, N, a)/\mathcal{E}_M$ should be replaced by $\{(M, N, a)/\mathcal{E}_M \cap \mathcal{H}(\chi(M, N, a)) \mid \chi(M, N, a) = \min\{\chi : ((M, N, a)/\mathcal{E}_M) \cap \mathcal{H}(\chi) \neq \emptyset\}\}$ so that the equivalence class is a set.

1A) For $M \in \mathcal{R}_\mu$ let$^4 \mathcal{S}_R(M) = \{\text{tp}(a, M, N) : M \leq_R N \text{ and } N \in K_\mu \text{ (or just } N \in K_{\leq(\mu+\text{LS}(\mathcal{R}))}) \text{ and } a \in N\}$ and $\mathcal{S}^\text{na}_R(M) = \{\text{tp}(a, M, N) : M \leq_R N \text{ and } N \in K_{\leq(\mu+\text{LS}(\mathcal{R}))} \text{ and } a \in N \setminus M\}$, na stands for non-algebraic. We may write

4if we omit $M \in K \Rightarrow \|M\| \geq \text{LS}(\mathcal{R})$ in 1.4, still we can insist that $N \in K_\mu$, the difference is not serious.
\(\mathcal{S}^{na}(M) \) omitting \(\mathfrak{R} \) when \(\mathfrak{R} \) is clear from the context; so omitting \(na \) means \(a \in N \) rather than \(a \in N \setminus M \).

2) Let \(M \in K_\mu \) and \(M \leq_k N \). We say “\(a \) realizes \(p \) in \(N \)” and “\(p = \text{tp}(a, M, N) \)” when: if \(a \in N, p \in \mathcal{S}(M) \) and \(N' \in K_{(\mu+\text{LS}(\mathfrak{R}))} \) satisfies \(M \leq_{\mathfrak{R}} N' \leq_{\mathfrak{R}} N \) and \(a \in N' \) then \(p = \text{tp}(a, M, N') \) and there is at least one such \(N' \); so \(M, N' \in K_\mu \) (or just \(M \leq \|N'\| \leq \mu + \text{LS}(\mathfrak{R}) \)) but possibly \(N \notin K_\mu \).

3) We say “\(a_2 \) strongly\(^5\) realizes \((M, N^1, a_1)/E_M^{a_1} \) in \(N' \)” when for some \(N^2 \) of cardinality \(\|M\| + \text{LS}(\mathfrak{R}) \) we have \(M \leq_{\mathfrak{R}} N^2 \leq_{\mathfrak{R}} N \) and \(a_2 \in N^2 \) and \((M, N^1, a_1) E_\mathfrak{R}^{a_1} (M, N^2, a_2) \) hence \(\mu = \|N^1\| \).

4) We say \(M_0 \in K_\lambda \) is an amalgamation base (in \(\mathfrak{R} \), but normally \(\mathfrak{R} \) is understood from the context) if for every \(M_1, M_2 \in K_\lambda \) and \(\leq_{\mathfrak{R}} \)-embeddings \(f_\ell : M_0 \to M_\ell \) (for \(\ell = 1, 2 \)) there is \(M_3 \in K_\lambda \) and \(\leq_{\mathfrak{R}} \)-embeddings \(g_\ell : M_\ell \to M_3 \) (for \(\ell = 1, 2 \)) such that \(g_1 \circ f_1 = g_2 \circ f_2 \). Similarly for \(\mathfrak{R}_{\leq \lambda} \).

4A) \(\mathfrak{R} \) has amalgamation in \(\lambda \) (or \(\lambda \)-amalgamation or \(\mathfrak{R}_\lambda \) has amalgamation) when every \(M \in K_\lambda \) is an amalgamation base.

4B) \(\mathfrak{R} \) has the \(\lambda \)-JEP or JEP\(\lambda \) (or \(\mathfrak{R}_\lambda \) has the JEP) when any \(M_1, M_2 \in K_\lambda \) can be \(\leq_{\mathfrak{R}} \)-embedded into some \(M \in K_\lambda \).

5) We say \(\mathfrak{R} \) is stable in \(\lambda \) if (LS(\(\mathfrak{R} \)) \(\leq \lambda \) and \(M \in K_\lambda \Rightarrow |\mathcal{S}(M)| \leq \lambda \) and moreover there are no \(\lambda^+ \) pairwise non-\(E_M^{a_1} \)-equivalent triples \((M, N, a), M \leq_{\mathfrak{R}} N \in K_\lambda, a \in N \).

6) We say \(p = q \mid M \) if \(p \in \mathcal{S}(M), q \in \mathcal{S}(N), M \leq_{\mathfrak{R}} N \) and for some \(N^+, N \leq_{\mathfrak{R}} N^+ \) and \(a \in N^+ \) we have \(p = \text{tp}(a, M, N^+) \) and \(q = \text{tp}(a, N, N^+) \); see 1.11(1),(2).

7) For finite \(m \), for \(M \leq_{\mathfrak{R}} N, a \in mN \) we can define \(\text{tp}(a, M, N) \) and \(\mathcal{S}^m_{\mathfrak{R}}(M) \) similarly and \(\mathcal{S}^{\leq \omega}_{\mathfrak{R}}(M) = \bigcup_{m<\omega} \mathcal{S}^m_{\mathfrak{R}}(M) \); similarly for \(\mathcal{S}^{\alpha}_{\mathfrak{R}}(M) \) (but we shall not use this in any essential way, so we agree \(\mathcal{S}(M) = \mathcal{S}^1_{\mathfrak{R}}(M) \).) Again we may omit \(\mathfrak{R} \) when clear from the context.

8) We say that \(p \in \mathcal{S}_{\mathfrak{R}}(M) \) is algebraic when some \(a \in M \) realizes it.

9) We say that \(p \in \mathcal{S}_{\mathfrak{R}}(M) \) is minimal when it is not algebraic and for every \(N \in K \) of cardinality \(\leq \|M\| + \text{LS}(\mathfrak{R}) \) which \(\leq_{\mathfrak{R}} \)-extend \(M \), the type \(p \) has at most one non-algebraic extension in \(\mathcal{S}_{\mathfrak{R}}(M) \).

1.10 Remark. 1) Note that here “amalgamation base” means only for extensions of the same cardinality!

2) The notion “minimal type” is important (for categoricity) but not used much in this chapter.

\(^5\)note that \(E_M^{a_1} \) is not necessarily an equivalence relation and hence in general is not \(E_M^a \)
1.11 Observation. 0) Assume $M \in K_\mu$ and $M \leq \mathfrak{R} N, a \in N$ then $tp(a, M, N)$ is well defined and is p if for some $M' \in K_\mu$ we have $M \cup \{a\} \subseteq M' \leq \mathfrak{R} N$ and $p = \langle tp(a, M, M') \rangle$.

1) If $M \leq \mathfrak{R} N_1 \leq \mathfrak{R} N_2, M \in K_\mu$ and $a \in N_1$ then $tp(a, M, N_1)$ is well defined and equal to $tp(a, M, N_2)$, (more transparent if \mathfrak{R} has the μ-amalgamation, which is the real case anyhow).

2) If $M \leq \mathfrak{R} N$ and $q \in \mathcal{S}(N)$ then for one and only one p we have $p = q \upharpoonright M$.

3) If $M_0 \leq \mathfrak{R} M_1 \leq \mathfrak{R} M_2$ and $p \in \mathcal{S}(M_2)$ then $p \upharpoonright M_0 = (p \upharpoonright M_1) \upharpoonright M_0$.

4) If $M \in \mathfrak{R}_\mu$ is an amalgamation base then δ^at_M is a transitive relation hence is equal to δ_M^1.

5) If $M \leq \mathfrak{R} N$ are from \mathfrak{R}_λ, M is an amalgamation base and $p \in \mathcal{S}(M)$ then there is $q \in \mathcal{S}(N)$ extending p, so the mapping $q \mapsto q \upharpoonright M$ is a function from $\mathcal{S}(N)$ onto $\mathcal{S}(M)$.

Proof. Easy. □

1.12 Definition. 1) We say N is λ-universal over M when $\lambda \geq \|N\|$ and for every $M', M \leq \mathfrak{R} M' \in K_\lambda$, there is a $\leq \mathfrak{R}$-embedding of M' into N over M. If we omit λ we mean $\|N\|$; clearly if N is universal over M and both are from K_λ then M is an amalgamation base.

2) $K_\lambda^{3,na} = \{(M, N, a) : M \leq \mathfrak{R} N, a \in N, M, N \in K_\lambda\}$, with the partial order \leq defined by $(M, N, a) \leq (M', N', a')$ iff $a = a', M \leq \mathfrak{R} M'$ and $N \leq \mathfrak{R} N'$.

3) We say $(M, N, a) \in K_\lambda^{3,na}$ is minimal when: if $(M, N, a) \leq (M', N', a) \in K_\lambda^{3,na}$ for $\ell = 1, 2$ implies $tp(a, M', N_1) = tp(a, M', N_2)$ moreover, $(M', N_1, a)\delta^at_\lambda(M', N_2, a)$ (this strengthening is not needed if every $M' \in K_\lambda$ is an amalgamation bases).

4) $N \in \mathfrak{R}$ is λ-universal if every $M \in \mathfrak{R}_\lambda$ can be $\leq \mathfrak{R}$-embedded into it.

5) We say $N \in \mathfrak{R}$ is universal for $K' \subseteq \mathfrak{R}$ when every $M \in K'$ can be $\leq \mathfrak{R}$-embedded into N.

Remark. Why do we use \leq on $K_\lambda^{3,na}$? Because those triples serve us as a representation of types for which direct limit exists.

1.13 Definition. 1) $M^* \in K_\lambda$ is superlimit if: clauses (a) + (b) + (c) below hold, and locally superlimit if clauses (a)$^+ + (b)^+ + (c)$ below hold and is pseudo superlimit if clauses (b) + (c) below hold, where:

(a) it is universal, (i.e. every $M \in K_\lambda$ can be $\leq \mathfrak{R}$-embedded into M^*),

(b) if $(M_i : i \leq \delta)$ is $\leq \mathfrak{R}$-increasing continuous, $\delta < \lambda^+$ and $i < \delta \Rightarrow M_i \cong M^*$

then $M_\delta \cong M^*$
(a) if $M^* \leq R M_1 \in K_\lambda$ then there is $M_2 \in K_2$ which \leq_R-extend M_1 and is isomorphic to M^*.

(c) there is M^{**} isomorphic to M^* such that $M^* \leq R M^{**}$.

2) M is λ-saturated above μ when $|M| \geq \lambda > \mu \geq \text{LS}(R)$ and: $N \leq_R M, \mu \leq |N| < \lambda, N \leq_R N_1, |N_1| \leq |N| + \text{LS}(R)$ and $a \in N_1$ then some $b \in M$ strongly realizes $(N, N_1, a) / \mathcal{E}_N^R$ in M, see Definition 1.9(3). Omitting “above μ” means “for some $\mu < \lambda$” hence “M is λ^+-saturated” mean that “M is λ^+-saturated above λ” and $K(\lambda^+\text{-saturated}) = \{ M \in K : M \text{ is } \lambda^+\text{-saturated} \}$ and “M is saturated” means “M is $|M|$-saturated”.

In the following lemma note that amalgamation in $R_{<\lambda}$ is not assumed it is even deduced. For variety we allow $K_{<\text{LS}(R)} \neq \emptyset$.

1.14 The Model-homogeneity = Saturativity Lemma. Let $\lambda > \mu + \text{LS}(R)$ and $M \in K$.

1) M is λ-saturated above μ iff M is $(D_{R_{>\mu}}, \lambda)$-homogeneous above μ, which means: for every $N_1 \leq_R N_2 \in K$ such that $\mu \leq |N_1| \leq |N_2| < \lambda$ and $N_1 \leq_R M$, there is a \leq_R-embedding f of N_2 into M over N_1.

2) If $M_1, M_2 \in K_\lambda$ are λ-saturated above $\mu < \lambda$ and for some $N_1, N_2 \leq_R M_1, N_2 \leq_R M_2$, both of cardinality $\in [\mu, \lambda)$, we have $N_1 \cong N_2$ then $M_1 \cong M_2$; in fact, any isomorphism f from N_1 onto N_2 can be extended to an isomorphism from M_1 onto M_2.

3) If in (2) we demand only “M_2 is λ-saturated” and $M_1 \in K_{\leq \lambda}$ then f can be extended to a \leq_R-embedding from M_1 into M_2.

4) In part (2) instead of $N_1 \cong N_2$ it suffices to assume that N_1 and N_2 can be \leq_R-embedded into some $N \in K$, which holds if R has the JEP or just θ-JEP for some $\theta < \lambda, \theta \geq \mu$. Similarly for part (3).

5) If N is λ-universal over $M \in K_\mu$ and R has μ-JEP then N is λ-universal (where $\lambda \geq \text{LS}(R)$ for simplicity).

6) Assume M is λ-saturated above μ. If $N \leq_R M$ and $\mu \leq |N| < \lambda$ then N is an amalgamation base (in $K_{\leq(|N| + \text{LS}(R))}$ and even in $R_{\leq \lambda}$) and $\mathcal{J}(N) \leq |M|$. So if every $N \in K_\mu$ can be \leq_R-embedded into M then R has μ-amalgamation.

Proof. 1) The “if” direction is easy as $\lambda > \mu + \text{LS}(R)$. Let us prove the other direction.

We prove this by induction on $|N_2|$. Now first consider the case $|N_2| > |N_1| + \text{LS}(R)$ then we can find a \leq_R-increasing continuous sequence $\{ N_{1, \varepsilon} : \varepsilon < |N_2| \}$ with union N_2 with $N_{1,0} = N_1$ and $|N_{1, \varepsilon}| \leq |N_1| + |\varepsilon|$. Now we choose f_ε, a \leq_R-embedding of $N_{1, \varepsilon}$ into M, increasing continuous with ε such that $f_0 = \text{id}_{N_1}$.
For $\epsilon = 0$ this is trivial for ϵ limit take unions and for ϵ successor use the induction hypothesis. So without loss of generality $\|N_2\| \leq \|N_1\| + \text{LS}(\mathcal{R})$.

Let $|N_2| = \{a_i : i < \kappa\}$, and we know $\mu \leq \kappa'' := \|N_1\| \leq \kappa := \|N_2\| \leq \kappa' := \|N_1\| + \text{LS}(\mathcal{R}) < \lambda$; so if, as usual, $\|N_1\| \geq \text{LS}(\mathcal{R})$ then $\kappa' = \kappa$. We define by induction on $i \leq \kappa, N_1^i, N_2^i, f_i$ such that:

(a) $N_1^i \leq_{\mathcal{R}} N_2^i$ and $\|N_1^i\| \leq \|N_2^i\| \leq \kappa'$
(b) N_1^i is $\leq_{\mathcal{R}}$-increasing continuous with i
(c) N_2^i is $\leq_{\mathcal{R}}$-increasing continuous with i
(d) f_i is a $\leq_{\mathcal{R}}$-embedding of N_1^i into M
(e) f_i is increasing continuous with i
(f) $a_i \in f_i(N_1^{i+1})$
(g) $N_1^0 = N_1, N_2^0 = N_2, f_0 = \text{id}_{N_1}$.

For $i = 0$, clause (g) gives the definition. For i limit let:

$N_1^i = \bigcup_{j<i} N_1^j$ and $N_2^i = \bigcup_{j<i} N_2^j$ and $f_i = \bigcup_{j<i} f_j$.

Now (a)-(f) continues to hold by continuity (and $\|N_2^i\| \leq \kappa'$ easily).

For i successor we use our assumption; more elaborately, let $M_1^{i-1} \leq_{\mathcal{R}} M$ be $f_{i-1}(N_1^{i-1})$ and let M_2^{i-1}, g_{i-1} be such that g_{i-1} is an isomorphism from N_2^{i-1} onto M_2^{i-1} extending f_{i-1}, so $M_1^{i-1} \leq_{\mathcal{R}} M_2^{i-1}$ (but without loss of generality $M_2^{i-1} \cap M = M_1^{i-1}$). Now apply the saturation assumption, see Definition 1.13(21) with $M, (M_1^{i-1}, M_2^{i-1}, g_{i-1}(a))$ here standing for $M, (N, N_1, a)$ there (note: $a_{i-1} \in N_2 = N_2^0 \subseteq N_2^{i-1}$ and $\lambda > \kappa' \geq \|N_2^{i-1}\| = \|M_2^{i-1}\| \geq \|M_1^{i-1}\| = \|N_1^{i-1}\| = \|N_1\| = \kappa'' \geq \mu$ so the requirements including the requirements on the cardinalities in Definition 1.13(2) holds). So there is $b \in M$ such that $\text{tp}(b, M_1^{i-1}, M_1^{i-1}(a_{i-1}))/\mathcal{E}^{\text{at}}_{M_1^{i-1}}$ in M. This means (see Definition 1.9(3)) that for some $M_1^{i,*}$ we have $b \in M_1^{i,*}$ and $M_1^{i-1} \leq_{\mathcal{R}} M_1^{i,*} \leq_{\mathcal{R}} M$ and $(M_1^{i-1}, M_2^{i-1}, g_{i-1}(a_{i-1}))/\mathcal{E}^{\text{at}}_{M_1^{i-1}}(M_1^{i-1}, M_1^{i,*}, b)$. This means (see Definition 1.9(1)) that $M_1^{i,*}$ too has cardinality $\leq \kappa'$ and there is
$M_{2i}^{i,*} \in K_{\leq \kappa'}$ such that $M_{1i}^{i-1} \leq \mathcal{R} M_{2i}^{i,*}$ and there are $\leq \mathcal{R}$-embeddings h_2^i, h_1^i of $M_{2i}^{i-1}, M_{1i}^{i,*}$ into $M_{2i}^{i,*}$ over M_{1i}^{i-1} respectively, such that $h_2^i(g_{i-1}(a_{i-1})) = h_1^i(b)$. Now changing names, without loss of generality h_1^i is the identity. Let N_2^i, h_i be such that $N_2^{i-1} \leq \mathcal{R} N_2^i$ and h_i an isomorphism from N_2^i onto $M_{2i}^{i,*}$ extending g_{i-1}. Let $N_2^i = h_i^{-1}(M_{1i}^{i,*})$ and $f_i = (h_i \upharpoonright N_i^i)$. We have carried the induction. Now f_κ is a $\leq \mathcal{R}$-embedding of N_1^κ into M over N_1, but $|N_2^i| = \{a_i : i < \kappa\} \subseteq N_1^\kappa$ hence by AxV of Definition 1.4, $N_2 \leq \mathcal{R} N_1^\kappa$, so $f_\kappa \upharpoonright N_2 : N_2 \to M$ is as required.

2), 3) By the hence and forth argument (or see I.,II. or see [Sh 300, II,§3] = V,B§3).

4),5),6) Easy, too. □

1.15 Definition. 1) For $\partial = \text{cf}(\partial) \leq \lambda^+$, we say N is (λ, ∂)-brimmed over M if $(M \leq \mathcal{R} N$ are in K_{λ} and) we can find a sequence $\langle M_i : i < \partial \rangle$ which is $\leq \mathcal{R}$-increasing, $M_i \in K_{\lambda}, M_0 = M, M_{i+1} \leq \mathcal{R}$-universal over M_i and $\bigcup_{i < \partial} M_i = N$. We say N is (λ, ∂)-brimmed over A if $A \subseteq N \in K_{\lambda}$ and we can find $\langle M_i : i < \partial \rangle$ as above such that $A \subseteq M_0$ but $M_0 \upharpoonright A \leq \mathcal{R} M_0 \Rightarrow M_0 = A$; if $A = \emptyset$ we may omit “over A”. We say continuously (λ, ∂)-brimmed (over M) when the sequence $\langle M_i : i < \partial \rangle$ is $\leq \mathcal{R}$-increasing continuous; if \mathcal{R}_λ has amalgamation, the two notions coincide.

2) We say N is $(\lambda, *)$-brimmed over M if for some $\partial \leq \lambda, N$ is (λ, ∂)-brimmed over M. We say N is $(\lambda, *)$-brimmed if for some M, N is $(\lambda, *)$-brimmed over M.

3) If $\alpha < \lambda^+$ let “N is (λ, α)-brimmed over M” mean $M \leq \mathcal{R} N$ are from K_{λ} and $\text{cf}(\alpha) \geq \kappa_0 \Rightarrow N$ is $(\lambda, \text{cf}(\alpha))$-brimmed over M.

On the meaning of (λ, ∂)-brimmed for elementary classes, see 3.1(2) below. Recall

1.16 Claim. Assume $\lambda \geq \text{LS}(\mathcal{R})$.

1) If \mathcal{R} has amalgamation in λ, is stable in λ and $\partial = \text{cf}(\partial) \leq \lambda$, then

(a) for every $M \in \mathcal{R}_\lambda$ there is $N, M \leq \mathcal{R} N \in K_{\lambda}$, universal over M

(b) for every $M \in \mathcal{R}_\lambda$ there is $N \in \mathcal{R}_\lambda$ which is (λ, ∂)-brimmed over M

(c) if N is (λ, ∂)-brimmed over M then N is universal over M.

\footnote{we have not asked continuity; because in the direction we are going, it makes no difference if we add “continuous”. Then we have in general fewer cases of existence, uniqueness (of being (λ, ∂)-brimmed over $M \in K_{\lambda}$) does not need extra assumptions and existence is harder

\footnote{hence M_i is an amalgamation base}
2) If N_ℓ is (λ,\mathcal{R}_0)-brimmed over M for $\ell = 1, 2$, then N_1, N_2 are isomorphic over M.

3) Assume $\partial = \text{cf}(\partial) \leq \lambda^+$, and for every $\lambda_0 \leq \theta = \text{cf}(\theta) < \partial$ any (λ, θ)-brimmed model is an amalgamation base (in \mathcal{R}). Then:

(a) if N_ℓ is (λ, ∂)-brimmed over M for $\ell = 1, 2$ then N_1, N_2 are isomorphic over M.

(b) if \mathcal{R} has λ-JEP (i.e., the joint embedding property in λ) and N_1, N_2 are (λ, ∂)-brimmed then N_1, N_2 are isomorphic.

3A) There is a (λ, ∂)-brimmed model N over $M \in K_\lambda$ when: M is an amalgamation base, and for every $\leq_{\mathcal{R}_\lambda}$-extension M_1 of M there is a $\leq_{\mathcal{R}_\lambda}$-extension M_2 of M_1 which is an amalgamation base and there is a λ-universal extension $M_3 \in K_\lambda$ of M_2.

4) Assume \mathcal{R} has λ-amalgamation and the λ-JEP and $\bar{M} = \langle M_i : i \leq \lambda \rangle$ is $\leq_{\mathcal{R}}$-increasing continuous and $M_i \in K_\lambda$ for $i \leq \lambda$.

(a) If λ is regular and for every $i < \lambda, p \in \mathcal{P}(M_i)$ for some $j \in (i, \lambda)$, some $a \in M_j$ realizes p, then M_λ is universal over M_0 and is (λ, λ)-brimmed over M_0.

(b) if for every $i < \lambda$ every $p \in \mathcal{P}(M_i)$ is realized in M_{i+1} then M_λ is $(\lambda, \text{cf}(\lambda))$-brimmed over M_0.

5) Assume $\partial = \text{cf}(\partial) \leq \lambda$ and $M \in \mathcal{R}$ is continuous (λ, ∂)-brimmed. Then M is a locally $(\lambda, \{\partial\})$-strongly limit model in \mathcal{R}_λ (see Definition I.?2(7), not used).

6) If N is (λ, ∂)-brimmed over M and $A \subseteq N, |A| < \partial$, e.g. $A = \{a\}$ then for some M' we have $M \cup A \subseteq M' <_{\mathcal{R}} M$ and M is (λ, ∂)-brimmed over M'.

Proof. 1) Clause (c) holds by Definition 1.15.

As for clause (a), for any given $M \in K_\lambda$, easily there is an $\leq_{\mathcal{R}}$-increasing continuous sequence $\langle M_i : i \leq \lambda \rangle$ of models from $K_\lambda, M_0 = M$ such that $p \in \mathcal{P}(M_i) \Rightarrow p$ is realized in M_{i+1}, this by stability + amalgamation. So $\langle M_i : i \leq \lambda \rangle$ is as in part (4) below hence by clause (b) of part (4) below, we get that M_δ is $\leq_{\mathcal{R}}$-universal over $M_0 = M$ so we are done. Clause (b) follows by (a).

2) By (3)(a) because the extra assumption in part (3) is empty when $\partial = \mathcal{R}_0$.

3) Clause (a) holds by the hence and forth argument, that is assume $\langle N_{\ell,i} : i < \partial \rangle$ is $\leq_{\mathcal{R}}$-increasing with union $N_{\ell,\partial}, N_{\ell,0} = M, N_{\ell,i+1}$ is universal over $N_{\ell,i}$ and $N_\ell = N_{\ell,0}$ so $N_{\ell,i} \in \mathcal{R}_\lambda$.

Now for each limit $\delta < \partial$ the model $N_{\ell,\delta} := \cup \{N_{\ell,i} : i < \delta\}$ is an amalgamation base (and is $\leq_{\mathcal{R}} N_{\ell,\delta+1}$) hence without loss of generality $\langle N_{\ell,i} : i \leq \partial \rangle$ is $\leq_{\mathcal{R}}$-increasing continuous. We now choose f_i by induction on $i \leq \partial$ such that:
Clause (i) if i is odd, f_i is a \leq_R-embedding of $N_{1,i}$ into $N_{2,i}$

(ii) if i is even, f_i^{-1} is a \leq_R-embedding of $N_{2,i}$ into $N_{1,i}$

(iii) if i is limit then f_i is an isomorphism from $N_{1,i}$ onto $N_{2,i}$

(iv) f_i is increasing continuous with i

(v) if $i = 0$ then $f_0 = \text{id}_M$.

For $i = 0$ let $f_0 = \text{id}_M$. If $i = 2j + 2$ use “$N_{1,i}$ is a universal extension of $N_{1,2j+1}$ (in \mathfrak{R}_λ) and f_{2j+1} is a \leq_R-embedding of $N_{1,2j+1}$ into $N_{2,2j+1}$ (by clause (i) applied to $2j+1$) and $N_{1,2j+1}$ is an amalgamation base”. That is, $N_{2,i}$ is a \leq_R-extension of $f_{2j+1}(N_{2j+1})$ which is an amalgamation base so f_{2j+1}^{-1} can be extended to a \leq_R-embedding of f_i^{-1} of $N_{2,i}$ into $N_{1,i}$. For $i = 2j + 1$ use “$N_{2,i}$ is a universal extension (in \mathfrak{R}_λ) of $N_{2,2j}$ and f_{2j}^{-1} is a \leq_R-embedding of $N_{2,2j}$ into $N_{1,2j}$ and $N_{2,2j}$ is an amalgamation base (in \mathfrak{R}_λ)”.

For i limited let $f_i = \cup\{f_j : j < i\}$. Clearly f_0 is an isomorphism from $N_i = N_{1,0}$ onto $N_{2,0} = N_2$ so we are done, i.e. clause (a) holds.

As for clause (b), for $\ell = 1, 2$ we can assume that $\langle N_{\ell,i} : i \leq \partial \rangle$ exemplifies “N_ℓ is (λ, ∂)-brimmed” so $N_\ell = N_{\ell,0}$ and without loss of generality as above $\langle N_{\ell,i} : i \leq \partial \rangle$ is $\leq_{\mathfrak{R}_\lambda}$-increasing continuous. By the λ-JEP there is a pair (g_1, N) such that $N_{1,0} \leq_{\mathfrak{R}} N \in K_\lambda$ and g_1 is a $\leq_{\mathfrak{R}}$-embedding of $N_{2,0}$ into N. As above there is a $\leq_{\mathfrak{R}}$-embedding g_2 of N into $N_{1,1}$ over $N_{1,0}$. Let $f_0 = (g_2 \circ g_1)^{-1}$ and continue as in the proof of clause (a).

3A) Easy, too.

4) We first proved weaker version of (a) and of (b) called $(a)^-, (b)^-$ respectively.
There is no problem to carry the definition (below, proving (a) we give more details) and necessarily \(f = \bigcup \{ f_i : i < \lambda \} \) is an isomorphism from \(M_\lambda \) onto \(N_\lambda := \bigcup \{ N_i : i < \lambda \} \), so \(f^{-1} \upharpoonright N \) is a \(\leq \aleph \)-embedding of \(N \) into \(M_\lambda \) over \(M_0 \) (as \(f^{-1} \upharpoonright N \supseteq \text{id}_{M_0} \)), so we are done.

Clause \((b)^-\): Like clause \((b)\) but we conclude only: \(M_\lambda \) is universal over \(M_0 \).

Similar to the proof of \((a)^-\) except that we demand \(j_i = i \).

Clause \((a)\): Let \(M_0 \leq \aleph N \in K_\lambda \) and we let \(\langle S_i : i < \lambda \rangle \) be a partition of \(\lambda \) to \(\lambda \) sets each with \(\lambda \) members, \(i \leq \text{Min}(S_i) \). Let \(M_{1,i} = M_i \) for \(i \leq \lambda \) and we choose \(\langle M_{2,i} : i \leq \delta \rangle \) which is \(\leq \aleph \)-increasing such that \(M_{2,i} \in \aleph, M_{2,0} = M_{1,0}, N \leq \aleph M_{2,1} \) and \(M_{2,i+1} \in K_\lambda \) is \(\leq \aleph \)-universal over \(M_{2,i} \), possible as we have already proved clause \((a)^-\) recalling \(\aleph \) has \(\lambda \)-amalgamation and the \(\lambda \)-JEP.

We shall prove that \(M_{1,\lambda}, M_{2,\lambda} \) are isomorphic over \(M_0 = M_{1,0} \), this clearly suffices. We choose a quintuple \(\langle j_i, M_{3,i}, f_{1,i}, f_{2,i}, \bar{a}_i \rangle \) by induction on \(i < \lambda \) such that

\begin{itemize}
 \item[(a)] \(j_i < \lambda \) is increasing continuous
 \item[(b)] \(M_{3,i} \in K_\lambda \) is \(\leq \aleph \)-increasing continuous
 \item[(c)] \(f_{\ell,i} \) is a \(\leq \aleph \)-embedding of \(M_{\ell,j_i} \) into \(M \) for \(\ell = 1, 2 \)
 \item[(d)] \(f_{\ell,i} \) is increasing continuous with \(i \) for \(\ell = 1, 2 \)
 \item[(e)] \(\bar{a}_i = \langle a_{\varepsilon}^i : \varepsilon \in S_i \rangle \) lists the members of \(M_{3,i} \)
 \item[(f)] if \(\varepsilon \in S_i \) then \(a_{\varepsilon}^i \in \text{Rang}(f_{1,2\varepsilon+1}) \) and \(a_{\varepsilon}^i \in \text{Rang}(f_{2,2\varepsilon+2}) \).
\end{itemize}

If we succeed then \(f_\varepsilon := \bigcup \{ f_{\ell,i} : i < \lambda \} \) is a \(\leq \aleph \)-embedding of \(M_{3,\lambda} := M_3 := \bigcup \{ M_{3,i} : i < \lambda \} \) and this embedding is onto because \(a \in M_3 \Rightarrow \) for some \(i < \lambda, a \in M_{3,i} \Rightarrow \) for some \(i < \lambda \) and \(\varepsilon \in S_i, a = a_{\varepsilon}^i \Rightarrow a = a_{\varepsilon}^i \in \text{Rang}(f_{1,\varepsilon+1}) \Rightarrow a \in \text{Rang}(f_{\varepsilon}) \). So \(f_{1}^{-1} \circ f_{2} \) is an isomorphism from \(M_{2,\lambda} \) onto \(M_{1,\lambda} = M_\lambda \) so as said above we are done.

Carrying the induction; for \(i = 0 \) use “\(\aleph \) has the \(\lambda \)-JEP” for \(M_{1,0}, M_{2,0} \).

For \(i \) limit take unions.

For \(i = 2\varepsilon + 1 \) let \(j_i = \min \{ j < \lambda : j > j_{2\varepsilon} \) and \((f_{2,\varepsilon})^{-1}(\text{tp}(a_{\varepsilon}^i, f_{2,\varepsilon}(M_{1,i}), M_{3,i})) \in \mathcal{S}_\aleph(M_{1,i}) \) is realized in \(M_j \) and continue as in the proof of 1.14(1), so can avoid using “\((f_{1})^{-2} \) of a type.”

For \(i = 2\varepsilon + 2 \), the proof is similar. So \(M_{2,\lambda} \) is \((\lambda, \text{cf}(\lambda))-\text{brimmed} \) over \(M_{2,0} = M_0 \) hence also \(M_\lambda \) being isomorphic to \(M_{2,\lambda} \) over \(M_0 \) is \((\lambda, \text{cf}(\lambda))-\text{brimmed} \) over \(M_0 \), as required.

Clause \((b)\): As in the proof of clause \((a)\) but now \(j_i = i \).

5) Easy and not used. (Let \(\langle M_i : i \leq \partial \rangle \) witness “\(M \) is \((\lambda, \partial))-\text{brimmed”}, so \(M \) can
be \leq_{R}-embedded into M_i, hence without loss of generality $M_0 \cong M_1$. Now use F such that $F(M')$ is a $\leq_{R_{\lambda}}$-extension of M' which is $\leq_{R_{\lambda}}$-universal over it and is an amalgamation base.)

6) Easy.

\[\square_{1.16} \]

1.17 Claim

1) Assume that R is an a.e.c., $LS(R) \leq \lambda$ and R has λ-amalgamation and is stable in λ and no $M \in K_{\lambda}$ is \leq_{R}-maximal. Then there is a saturated $N \in K_{\lambda^+}$. Also for every saturated $N \in K_{\lambda^+}$ (in R, above λ of course) we can find a \leq_{R}-representation $\bar{N} = \langle N_i : i < \lambda^+ \rangle$, with N_{i+1} being $(\lambda, \text{cf}(\lambda))$-brimmed over N_i and N_0 being (λ, λ)-brimmed.

2) If for $\ell = 1, 2$ we have $\bar{N}^\ell = \langle N_i^\ell : i < \lambda^+ \rangle$ as in part (1), then there is an isomorphism f from N^1 onto N^2 mapping N^1_i onto N^2_i for each $i < \lambda^+$. Moreover, for any $i < \lambda^+$ and isomorphism g from N^1_i onto N^2_i we can find an isomorphism f from N^1_i onto N^2_j extending g and mapping N^1_j onto N^2_j for each $j \in [i, \lambda^+)$.

3) If $N^0_0 \leq_{R} N^1_0$ are both saturated (above λ) and are in K_{λ^+} (hence $LS(R) \leq \lambda$), then we can find \leq_{R}-representation \bar{N} of N^ℓ as in (1) for $\ell = 1, 2$ with $N^0 = N^0 \cap N^1$, (so $N^0 \leq_{R} N^1$) for $i < \lambda^+$.

4) If $M \in K_{\lambda^+}$ and R has λ-amalgamation and is stable in λ (and $LS(R) \leq \lambda$), then for some $N \in K_{\lambda^+}$ saturated (above λ) we have $M \leq_{R} N$.

Proof. Easy (for (2),(3) using 1.14(6)), e.g.

4) There is a \leq_{R}-increasing continuous sequence $\langle M_i : i < \lambda^+ \rangle$ with union M such that $M_i \in K_{\lambda}$. Now we choose N_i by induction on $i < \lambda$

\[(*) \]

\[(a) \quad N_i \in K_{\lambda} \text{ is } \leq_{R} \text{-increasing continuous} \]

\[(b) \quad N_{i+1} \text{ is } (\lambda, \text{cf}(\lambda)) \text{-brimmed over } N_i \]

\[(c) \quad N_0 = M_0. \]

This is possible by 1.16(1). Then by induction on $i \leq \lambda^+$ we choose a \leq_{R}-embedding f_i of M_i into N_i, increasing continuous with i. For $i = 0$ let $f_i = \text{id}_{M_0}$. For i limit use union.

Lastly, for $i = j + 1$ use “R has λ-amalgamation” and “N_j is universal over N_{i}”. Now by renaming without loss of generality $f_{\lambda^+} = \text{id}_{N_{\lambda^+}}$ and we are done. (Of course, we have assumed less). \[\square_{1.17} \]

You may wonder why in this work we have not restricted ourselves R to “abstract elementary class in λ” say in §2 below (or in [Sh 576]); by the following facts (mainly 1.23) this is immaterial.
1.18 Definition. 1) We say that \mathfrak{K}_λ is a λ-abstract elementary class or λ-a.e.c. in short, when:

(a) $\mathfrak{K}_\lambda = (K_\lambda, \leq_{\mathfrak{K}_\lambda})$,
(b) K_λ is a class of τ-models of cardinality λ closed under isomorphism for some vocabulary $\tau = \tau_{\mathfrak{K}_\lambda}$,
(c) $\leq_{\mathfrak{K}_\lambda}$ a partial order of K_λ, closed under isomorphisms
(d) axioms (0 and) I,II,III,IV,V of abstract elementary classes (see 1.4) hold except that in AxIII we demand $\delta < \lambda^+$ (you can demand this also in AxIV).

2) For an abstract elementary class \mathfrak{K} let $\mathfrak{K}_{\geq \lambda} = (\mathfrak{K}_{\geq \lambda}, \leq_{\mathfrak{K}_{\geq \lambda}})$ and similarly $\mathfrak{K}_{\leq \lambda}, \mathfrak{K}_{[\lambda, \mu]}$ and define $(\leq \lambda)$-a.e.c. and $[\lambda, \mu]$-a.e.c., etc.

3) Definitions 1.9, 1.12, 1.13, 1.15 apply to λ-a.e.c. \mathfrak{K}_λ.

1.19 Observation. If \mathfrak{K}^1 is an a.e.c. with $K^1_\lambda \neq \emptyset$ then

(a) K^1_λ is a λ-a.e.c.
(b) if \mathfrak{K}^1_λ is a λ-a.e.c., and $K^1_\lambda = K^2_\lambda$ then Definitions 1.9, 1.12, 1.13, 1.15 when applied to \mathfrak{K}^1 but restricting ourselves to models of cardinality λ and when applied to \mathfrak{K}^2_λ are equivalent.

Proof. Just read the definitions. □_{1.19}

We may wonder

1.20 Problem: Suppose $\mathfrak{K}^1, \mathfrak{K}^2$ are a.e.c. such that for some $\lambda > \mu \geq \text{LS}(\mathfrak{K}^1)$, $\text{LS}(\mathfrak{K}^2)$ and $K^1_\lambda = K^2_\lambda$. Can we bound the first such λ above μ? (Well, better bound than the Lowenheim number of $\mathbb{L}_{\mu^+, \mu^+}$ (second order)).

1.21 Observation. 1) Let \mathfrak{K} be an a.e.c. with $\lambda = \text{LS}(\mathfrak{K})$ and $\mu \geq \lambda$ and we define $\mathfrak{K}_{\geq \mu}$ by: $M \in \mathfrak{K}_{\geq \mu}$ iff $M \in K$ & $\|M\| \geq \mu$ and $M \leq_{\mathfrak{K}_{\geq \mu}} N$ if $M \leq_{\mathfrak{K}} N$ and $\|M\|, \|N\| \geq \mu$. Then $\mathfrak{K}_{\geq \mu}$ is an a.e.c. with $\text{LS}(\mathfrak{K}_{\geq \mu}) = \mu$.
2) If \mathfrak{K}_λ is a λ-a.e.c. then observation 1.7 holds when $|I| \leq \lambda$.
3) Claims 1.11, 1.16 apply to λ-a.e.c.

Proof. Easy. □_{1.21}
1.22 Remark. Recall if \mathfrak{K} is an a.e.c. with Lowenheim-Skolem number λ, then every model of \mathfrak{K} can be written as a direct limit (by $\leq_{\mathfrak{K}}$) of members of \mathfrak{K}_λ (see 1.8(1)). Alternating we prove below that given a λ-abstract elementary class \mathfrak{K}_λ, the class of direct limits of members of \mathfrak{K}_λ is an a.e.c. \mathfrak{K}^{up}. We show below $(\mathfrak{K}_\lambda)^{up} = \mathfrak{K}$, hence \mathfrak{K}_λ determines $\mathfrak{K}_{\geq \lambda}$.

1.23 Lemma. Suppose \mathfrak{K}_λ is a λ-abstract elementary class.

1) The pair $(K', \leq_{K'})$ is an abstract elementary class with Lowenheim-Skolem number λ which we denote also by \mathfrak{K}^{up} where we define

(a) $K' = \left\{ M : M \text{ is a } \tau_{\mathfrak{K}_\lambda} \text{-model, and for some directed partial order } I \text{ and } \bar{M} = \langle M_s : s \in I \rangle \text{ we have} \right.$

$$I \text{ and } \bar{M} = \langle M_s : s \in I \rangle \text{ we have}$$

$$M = \bigcup_{s \in I} M_s \quad s \in I \implies M_s \in K_\lambda$$

$$I \models s < t \implies M_s \leq_{\mathfrak{K}} M_t \right\}.$$

We call such $\langle M_s : s \in I \rangle$ a witness for $M \in K'$, we call it reasonable if $|I| \leq \|M\|$

(b) $M \leq_{\mathfrak{K}} N$ iff for some directed partial order J, and

directed $I \subseteq J$ and $\langle M_s : s \in J \rangle$ we have

$$M = \bigcup_{s \in I} M_s, \quad N = \bigcup_{t \in J} M_t, \quad M_s \in K_\lambda \text{ and}$$

$$J \models s < t \implies M_s \leq_{\mathfrak{K}} M_t.$$

We call such $I, \langle M_s : s \in I \rangle$ witnesses for $M \leq_{\mathfrak{K}} N$ or say $(I, J, \langle M_s : s \in J \rangle)$ witness $M \leq_{\mathfrak{K}} N$.

2) Moreover, $K'_\lambda = K_\lambda$ and $\leq_{\mathfrak{K}_\lambda}$ (which means $\leq_{\mathfrak{K}} | K'_\lambda$) is equal to $\leq_{\mathfrak{K}}$ so $(\mathfrak{K}'_\lambda = \mathfrak{K}_\lambda$).

3) If \mathfrak{K}'' is an abstract elementary class satisfying (see 1.21) $K''_\lambda = K_\lambda, \leq_{\mathfrak{K}} | K''_\lambda = \leq_{\mathfrak{K}}$ and $LS(\mathfrak{K}''_\lambda) \leq \lambda$, then \mathfrak{K}''_λ = \mathfrak{K}'_λ.

4) If \mathfrak{K}'' is an a.e.c., $K_\lambda \subseteq K''_\lambda$ and $\leq_{\mathfrak{K}} = \leq_{\mathfrak{K}} | K''_\lambda$, then $K' \subseteq K''$ and $\leq_{\mathfrak{K}} | K' \subseteq K''$ and if $LS(\mathfrak{K}'') \leq \lambda$ then equality holds.

\[8\] if we assume in addition that $M \in \mathfrak{K}'' \Rightarrow \|M\| \geq \lambda$ then we can show that equality holds.
Proof. The proof of part (2) is straightforward (recalling 1.7) and part (3) follows from 1.8 and part (4) is also straightforward hence we concentrate on part (1). So let us check the axioms one by one.

Ax 0: K' is a class of τ-models, $\leq_{K'}$ a two-place relation on K', both closed under isomorphisms.

[Why? Trivially by their definitions.]

Ax I: If $M \leq_{K'} N$ then $M \subseteq N$.

[Why? trivial.]

Ax II: $M_0 \leq_{K'} M_1 \leq_{K'} M_2$ implies $M_0 \leq_{K'} M_2$ and $M \in K' \Rightarrow M \leq_{K'} M$.

[Why? The second phrase is trivial (as if $M = \langle M_t : t \in I \rangle$ witness $M \in K'$ then (I, I, M) witness $M \leq_{K'} M$ above). For the first phrase let for $\ell \in \{1, 2\}$ the directed partial orders $I_{\ell} \subseteq J_{\ell}$ and $M_{\ell} = \langle M^t_{\ell} : s \in J_{\ell} \rangle$ witness $M_{\ell-1} \leq_{K'} M_{\ell}$ and let $M^0 = \langle M^0_s : s \in I_0 \rangle$ witness $M_0 \in K'$. Now without loss of generality M^0 is reasonable, i.e. $|I_0| \leq \|M_0\|$, why? by

- \exists_1 every $M \in K'$ has a reasonable witness, in fact, if $M = \langle M_t : t \in I \rangle$ is a witness for M then for some $I' \subseteq I$ of cardinality $\leq \|M\|$ we have $M \upharpoonright I'$ is a reasonable witness for M.

 [Why? If $M = \langle M_t : t \in I \rangle$ is a witness, for each $a \in M$ choose $t_a \in I$ such that $a \in M_{t_a}$ and let $F : [I]^{\leq \aleph_0} \rightarrow I$ be such that $F(\{t_1, \ldots, t_n\})$ is an upper bound of $\{t_1, \ldots, t_n\}$ and let J be the closure of $\{t_a : a \in M\}$ under F; now $M \upharpoonright J$ is a reasonable witness of $M \in K'$.]

Similarly

- \exists_2 if $(I, J, \langle M_s : s \in J \rangle)$ witness $M \leq_{K'} N$ then for some directed $I' \subseteq I$, $|I'| \leq \|M\|$ we have $(I', J, \langle M_s : s \in J \rangle)$ witness $M \leq_{K'} N$

- \exists_3 if $M, \bar{M} = \langle M_t : t \in J \rangle$ witness $M \leq_{K'} N$ then for some directed $J' \subseteq J$ we have $\|J'\| \leq |I| + \|N\|$, $I \subseteq J'$ and $I, M \upharpoonright J'$ witness $M \leq_{K'} N$.

Clearly \exists_1 (and \exists_2, \exists_3) are cases of the LS-argument. We shall find a witness $(I, J, \langle M_s : s \in J \rangle)$ for $M_0 \leq_{K'} M_2$ such that $\langle M_s : s \in I \rangle = \langle M_0^s : s \in I_0 \rangle$ so $I = I_0$ and $|J| \leq \|M_2\|$. This is needed for the proof of Ax III below. Without loss of generality I_1, I_2 has cardinality $\leq \|M_0\|, \|M_1\|$ respectively, by \exists_2. Also without loss of generality $M^1, M^1 \upharpoonright I_1, M^2, M^2 \upharpoonright I_2$ are reasonable as by the same argument we can have $|J_1| \leq \|M_1\|, |J_2| \leq \|M_2\|$ by \exists_3.

As $(M^0_s : s \in I_0)$ is reasonable, there is a one-to-one function h from I_0 into M_2 (and even M_0); the function h will be used to get that J defined below is directed.
We choose by induction on $m < \omega$, for every $\bar{c} \in m(M_2)$, sets $I_{0,\bar{c}}, I_{1,\bar{c}}, I_{2,\bar{c}}, J_{1,\bar{c}}, J_{2,\bar{c}}$ such that:

- \(I_{\ell,\bar{c}} \) is a directed subset of I_{ℓ} of cardinality $\leq \lambda$ for $\ell \in \{0, 1, 2\}$
- \(J_{\ell,\bar{c}} \) is a directed subset of J_{ℓ} of cardinality $\leq \lambda$ for $\ell \in \{1, 2\}$
- \(\bigcup_{s \in I_{\ell+1,\bar{c}}} M_{s}^{\ell+1} = \bigcup_{s \in J_{\ell+1,\bar{c}}} M_{s}^{\ell+1} \cap M_{\ell} \) for $\ell = 0, 1$
- \(\bigcup_{s \in I_{0,\bar{c}}} M_{s}^{0} = \bigcup_{s \in I_{1,\bar{c}}} M_{s}^{1} \cap M_{0} \)
- \(\bigcup_{s \in J_{1,\bar{c}}} M_{s}^{1} = \bigcup_{s \in J_{2,\bar{c}}} M_{s}^{2} \)
- \(\bar{c} \subseteq \bigcup_{s \in J_{2,\bar{c}}} M_{s}^{2} \)
- If \bar{d} is a permutation of \bar{c} (i.e., letting $m = \ell g(\bar{c})$ for some one to one $g : \{0, \ldots, m - 1\} \to \{0, \ldots, m - 1\}$) we have $d_{\ell} = c_{g(\ell)}$ then $I_{\ell,\bar{c}} = (I_{\ell,\bar{c}}, J_{m,\bar{d}} = J_{m,\bar{d}} (\ell \in \{0, 1, 2\}, m \in \{1, 2\})$
- If \bar{d} is a subsequence of \bar{c} (equivalently: an initial segment of some permutation of \bar{c}) then $I_{\ell,\bar{d}} \subseteq I_{\ell,\bar{c}}, J_{m,\bar{d}} \subseteq J_{m,\bar{c}}$ for $\ell \in \{0, 1, 2\}, m \in \{1, 2\}$
- If $h(s) = c$ so $s \in I_{0,\bar{c}}$ then $s \in I_{0,\bar{c}}$.

There is no problem to carry the definition by LS-argument recalling clauses (a) + (b) and $\|M_{s}^{\ell}\| = \lambda$ when $\ell = 0 \land s \in I_{0}$ or $\ell = 1 \land s \in J_{1}$ or $\ell = 2 \land s \in J_{2}$. Without loss of generality $I_{\ell} \cap {\omega}(M_2) = 0$.

Now let J have as set of elements $I_{0} \cup \{\bar{c} : \bar{c} \text{ a finite sequence from } M_2\}$ ordered by: $J \models x \leq y$ iff $I_{0} \models x \leq y$ or $x \in I_{0}, y \in J \setminus I_{0}, \exists z \in I_{0} \models \exists z \models [x \leq_{I_{0}} y]$ or $x, y \in J \setminus I_{0}$ and x is an initial segment of a permutation of y (or you may identify \bar{c} with its set of permutations).

Let $I = I_{0}$.
Let M_{x} be M_{x}^{0} if $x \in I_{0}$ and $\bigcup_{s \in J_{2,x}} M_{s}^{2}$ if $x \in J \setminus I_{0}$.

Now

\[J \text{ is a partial order} \]

Clearly $x \leq_J y \leq_J x \Rightarrow x = y$, hence it is enough to prove transitivity. Assume $x \leq_J y \leq_J z$; if all three are in I_{0} use “I_{0} is a partial order”, if all three are not in $J \setminus I_{0}$, use the definition of the order. As $x' \leq_J y' \in I_{0} \Rightarrow x' \in I_{0}$ without loss of generality $x \in I_{0}, z \in J \setminus I_{0}$. If $y \in I_{0}$ then (as $y \leq_J z$) for some $y', y' \in I_{0}, y' \in I_{0} \land x \leq_{I_{0}} y$ (as $x, y \in I_{0}, x \leq_J y$) hence
x \leq_{I_0} y' \in I_{0,z}$ so $x \leq_J z$. If $y \notin I_0$ then $I_{0,y} \subseteq I_{0,z}$ (by clause (h)) so we can finish similarly. So we have covered all cases.]

$(\ast)_2$ If J is directed and $I \subseteq J$ is directed

[Let $x, y \in J$ and we shall find a common upper bound. If $x, y \notin I_0$ their concatenation $x'y$ can serve. If $x, y \in I_0$ use “I_0 is directed”. If $x \in I_0, y \in J \setminus I_0$ then $\langle h(x) \rangle \in J \setminus I_0$ and $z = y' \langle h(x) \rangle \in J \setminus I_0$ is $<_J$ above y (by the choice of \leq_J) and is $<_J$-above x as $x \in I_{0,h(x)} \subseteq I_{0,z}$ by clause (i) of \otimes_1 so we are done. If $x \in J \setminus I_0, y \in J_0$ the dual proof works. Lastly, $I \subseteq J$ as a partial order by the definition of $J, J,$ and I is directed as I_0 is and $I = I_0$.]

$(\ast)_3$ if $x \in J \setminus I_0$ then $M_x \cap M_\ell \leq_{\aleph_\lambda} M_x$ for $\ell = 0, 1, 2$

[Why? Clearly $M_x \cap M_0 = (\cup \{M^2_t : t \in J_{1,x}\}) \cap M_0 = ((\cup \{M^2_t \cap I_{2,x} : t \in J_{1,x}\}) \cap M_0 = \cup \{M^1_t : t \in I_{1,x}\}$ by the choice of M^2_x, as $M_0 \subseteq M_1$, by clause (e) for $\ell = 1$, by clause (e) and by clause (c) for $\ell = 0$, respectively. Similarly $M_x \cap M_1 = \cup \{M^1_t : t \in J_{1,x}\}$. Now the sets $I_{1,x} \subseteq J_{1,x} \subseteq J_0$ are directed by \leq_{J_0} so by the assumption on $\langle M^1_t : t \in J_0 \rangle$ and Lemma 1.7 we have $M_x \cap M_0 \leq_{\aleph_\lambda} M_x \cap M_1$. Using J_2 we can similarly prove $M_x \cap M_1 \leq_{\aleph_\lambda} M_x \cap M_2$ and trivially $M_x \cap M_2 = M_x$. As \leq_{\aleph_λ} is transitive we are done.]

$(\ast)_4$ if $x \leq_J y$ then $M_x \leq_{\aleph_\lambda} M_y$

[Why? If $x, y \in J \setminus I_0$ the proof is similar to that of $(\ast)_3$ using J_2. If $x \in I_0, y \in J \setminus I_0$ there is $s \in I_{0,y}$ such that $x \leq_{I_0} s$, hence $M_x = M^0_x \leq_{\aleph_\lambda} M^0_s$ and as $\langle M^0_t : t \in I_{0,y}\rangle$ is \leq_{\aleph_λ}-directed clearly $M^0_x \leq_{\aleph_\lambda} \cup \{M^0_t : t \in I_{0,y}\} = M_y \cap M_0$ and $M_y \cap M_0 \leq_{\aleph_\lambda} M_y$ by $(\ast)_3$. By the transitivity of \leq_{\aleph_λ} we are done.]

$(\ast)_5$ $\cup \{M_x : x \in I\} = \cup \{M^0_x : x \in I_0\} = M_0$

[Why? Trivially recalling $I_0 = I$ and $x \in I \Rightarrow M_x = M^0_x$]

$(\ast)_6$ $M_2 = \cup \{M_x : x \in J\}$

[Why? Trivially as $\bar{c} \subseteq M^2_\ell \subseteq M_2$ for $\bar{c} \in \omega^>(M_2)$ and $t \in I_0 \Rightarrow M^0_t \subseteq M_0 \subseteq M_1 \subseteq M_2$.]

By $(\ast)_1 + (\ast)_2 + (\ast)_4 + (\ast)_5 + (\ast)_6$ we have checked that $I, \langle M_x : x \in J\rangle$ witness $M_0 \leq_{\aleph'} M_2$. This completes the proof of Axi, but we also have proved

\otimes_2 if $\bar{M} = \langle M_t : t \in I\rangle$ is a reasonable witness to $M \in K'$ and $M \leq_{\aleph'} N \in K'$, then there is a witness $I', M' = \langle M'_t : t \in J'\rangle$ to $M \leq_{\aleph'} N$ such that $I' = I, \bar{M'} \upharpoonright I = \bar{M}$ and $\bar{M'}$ is reasonable and $x \leq_{J'} y \wedge y \in I' \Rightarrow x \in I'$; can add $M = N \Rightarrow I' = I$.]

Axi III: If θ is a regular cardinal, M_i (for $i < \theta$) is $\leq_{\aleph'}$-increasing and continuous, then $M_0 \leq_{\aleph'} \bigcup_{i < \theta} M_i$ (in particular $\bigcup_{i < \theta} M_i \in \aleph'$).
[Why? Let $M_\theta = \bigcup_{i<\theta} M_i$, without loss of generality $\langle M_i : i < \theta \rangle$ is not eventually constant and so without loss of generality $i < \theta \implies M_i \neq M_{i+1}$ hence $\|M_i\| \geq |i|$; (this helps below to get “reasonable”, i.e. $|I_i| = \|M_i\|$ for limit i). We choose by induction on $i \leq \theta$, a directed partial order I_i and M_s for $s \in I_i$ such that:

$\otimes_3(a)$ \quad $\langle M_s : s \in I_i \rangle$ witness $M_i \in K'$

(b) for $j < i, I_j \subseteq I_i$ and $\langle I_j, I_i, \langle M_s : s \in I_i \rangle \rangle$ witness $M_j \leq_{\mathcal{R}'} M_i$

(c) I_i is of cardinality $\leq \|M_i\|$

(d) if $I_i \models s \leq t$ and $j < i, t \in I_j$ then $s \in I_j$

For $i = 0$ use the definition of $M_0 \in K'$.

For i limit let $I_i := \bigcup_{j<i} I_j$ (and the already defined M_s's) are as required because

$M_i = \bigcup_{j<i} M_j$ and the induction hypothesis (and $|I_i| \leq \|M_i\|$ as we have assumed above that $j < i \implies M_j \neq M_{j+1}$).

For $i = j + 1$ use the proof of Ax.II above with $M_j, M_i, \langle M_s : s \in I_j \rangle$ here serving as $M_0, M_1, M_2, \langle M_0 : s \in I_0 \rangle$ there, that is, we use \otimes_2 from there. Now for $i = \theta, \langle M_s : s \in I_\theta \rangle$ witness $M_\theta \in K'$ and $\langle I_1, I_\theta, \langle M_s : s \in I_\theta \rangle \rangle$ witness $M_\theta \leq_{\mathcal{R}'} M_\theta$ for each $i < \theta$.]

Axiom IV: Assume θ is regular and $\langle M_i : i < \theta \rangle$ is $\leq_{\mathcal{R}'}$-increasingly continuous, $M \in K'$ and $i < \theta \implies M_i \leq_{\mathcal{R}'} M$ and $M_\theta = \bigcup_{i<\theta} M_i$ (so $M_\theta \subseteq M$). Then $M_\theta \leq_{\mathcal{R}'} M$.

[Why? By the proof of Ax.III there are $\langle M_s : s \in I_i \rangle$ for $i < \theta$ satisfying clauses (a),(b),(c) and (d) of \otimes_3 there and without loss of generality $I_i \cap \theta = \emptyset$. For each $i < \theta$ as $M_i \leq_{\mathcal{R}'} M$ there are J_i and M_s for $s \in J_i \setminus I_i$ such that $\langle I_i, J_i, \langle M_s : s \in J_i \rangle \rangle$ witnesses it; without loss of generality with $\langle \bigcup_{i \leq \theta} I_i \rangle \setminus \langle J_i \setminus I_i : i < \theta \rangle$ a sequence of pairwise disjoint sets; exist by \otimes_2 above. Let $I := \bigcup I_i$, let $i : I \rightarrow \theta$ be $i(s) = \text{Min} \{i : s \in I_i\}$ and recall $|I| \leq \|M_\theta\|$ hence by clause (d) of \otimes_3 we have $s \leq t \implies i(s) \leq i(t)$ and let h be a one-to-one function from I into M_θ. Without loss of generality the union below is disjoint and let

$J := I \cup \{(A, S) : A \text{ a finite subset of } M \text{ and } S \text{ a finite subset of } I \text{ with a maximal element} \}$

ordered by: $J \models x \leq y$ iff $x, y \in I, I \models x \leq y$ or $x \in I, y = (A, S) \in J \setminus I$ and $x \in S$ or $x = (A^1, S^1) \in J \setminus I, y = (A^2, S^2) \in J \setminus I, A^1 \subseteq A^2, S^1 \subseteq S^2$.

We choose N_y for $y \in J$ as follows:
If \(y \in I \) we let \(N_y = M_y \).

By induction on \(n < \omega \), if \(y = (A, S) \in J \setminus I \) saifies \(n = |A| + |S| \), we choose the objects \(N_y, I_{y,s}, J_{y,s} \) for \(s \in S \) such that:

\[\bigotimes_{\omega_4} (a) \] \(I_{y,s} \) is a directed subset of \(I_{i(s)} \) of cardinality \(\leq \lambda \) and \(s \in I_{y,s} \)

\[(b) \] \(J_{y,s} \) is a directed subset of \(J_{i(s)} \) of cardinality \(\leq \lambda \)

\[(c) \] \(s \in I_{i(s)} \) for \(s \in S \) (follows from the definition of \(i(s) \))

\[(d) \] \(I_{y,s} \subseteq J_{y,s} \) for \(s \in S \) and for \(s <_I t \) from \(S \) we have \(I_{y,s} \subseteq I_{y,t} \) \& \(J_{y,s} \subseteq J_{y,t} \)

\[(e) \] if \(y_1 = (A_1, S_1) \in J \setminus I \), \((A_1, S_1) <_J (A, S) \) and \(s \in S_1 \), then

\[I_{y_1,s} \subseteq I_{y,s}, J_{y_1,s} \subseteq J_{y,s} \]

\[(f) \] \(N_y = \bigcup_{t \in J_{y,s}} M_t \) for any \(s \in S \)

\[(g) \] \(A \subseteq M_t \) for some \(t \in J_{y,s} \) for any \(s \in S \), hence \(A \subseteq N_y \).

No problem to carry the induction and check that \((I, J, \langle N_y : y \in J \rangle) \) witness \(M_\theta \leq_{R'} M \).

Axiom V: Assume \(N_0 \leq_{R'} M \) and \(N_1 \leq_{R'} M \).

If \(N_0 \subseteq N_1 \), then \(N_0 \leq_{R'} N_1 \).

[Why? Let \((I_0, J_0, (M_0^s : s \in J_0)) \) witness \(N_0 \leq_{R'} M \) and without loss of generality \(|I_0| \leq \|N_0\| \) and \(h_0 : I_0 \to N_0 \) be one-to-one. Let \(M_1^s : s \in I_1 \) witness \(N_1 \in R' \) and without loss of generality \(I_1 \) is isomorphic to \(([N_1]^{<\aleph_0}, \subseteq) \) and let \(h_1 \) be an isomor-

phism from \(I_1 \) onto \(([N_1]^{<\aleph_0}, \subseteq) \). Now by induction on \(n \), for \(s \in I_1 \) satisfying \(n = \{|t : t <_{I_1} s\} \) we choose directed subsets \(F_0(s), F_1(s) \) of \(I_0, I_1 \) respectively, each of cardinality \(\leq \lambda \) such that:

\[(i) \] \(s \in I_1 \Rightarrow s \in F_1(s) \) and \(t <_{I_1} s \Rightarrow F_0(t) \subseteq F_0(s) \) \& \(F_1(t) \subseteq F_1(s) \)

\[(ii) \] if \(s \in I_1 \) then

\[(\alpha) \] \(\{M_0^t : t \in F_0(s)\} = \bigcup\{M_1^t : t \in F_1(s)\} \cap N_0 \)

\[(\beta) \] \(r \in I_0 \) \& \(t \in I_1 \) \& \(h_0(r) \in M_1^t \Rightarrow r \in F_0(s) \).

Now letting \(M_2^s = \bigcup\{M_1^t : t \in F_1(s)\} \) and letting \(F = F_0 \) we get:

\[(iii) \] \(t \in I_1 \wedge s \in F(t)(\subseteq I_0) \Rightarrow M_0^s \subseteq M_2^t \)

\[(iv) \] \(F \) is a function from \(I_1 \) to \([I_0]^{<\lambda} \)

\[(v) \] for \(s \in I_1, F(s) \) is a directed subset of \(I_0 \) of cardinality \(\leq \lambda \)

\[(vi) \] for \(s \in I_1, M_2^s \cap N_0 = \bigcup\{M_0^t : t \in F(s)\} \)

\[(vii) \] \(I_1 \models s \leq t \Rightarrow F(s) \subseteq F(t) \)

\[(viii) \] \(\langle M_2^s : s \in I_1 \rangle \) witness \(N_1 \in K' \).
As $N_1 \leq_{\mathcal{R}} M$ by the proof of Ax.II, i.e., by \otimes_2 above we can find J_1 extending I_1 and M_s^2 for $s \in J_1 \setminus I_1$ such that $(I_1, J_1, \langle M_s^2 : s \in J_1 \rangle)$ witnesses $N_1 \leq_{\mathcal{R}} M$. We now prove

$$\boxtimes_4 \text{ if } r \in I_1, s \in I_0 \text{ and } s \in F(r) \text{ then } M_s^0 \leq_{\mathcal{R}} M_r^2.$$

[Why? As $\langle M_t^0 : t \in J_0 \rangle, \langle M_t^2 : t \in J_1 \rangle$ are both witnesses for $M \in K'$, clearly for $r \in I_1(\subseteq J_1)$ we can find directed $J_0'(r) \subseteq J_0$ of cardinality $\leq \lambda$ and directed $J_1'(r) \subseteq J_1$ of cardinality $\leq \lambda$ such that $r \in J_1'(r), F(r) \subseteq J_0'(r)$ and $\bigcup_{t \in J_0'(r)} M_t^0 = \bigcup_{t \in J_1'(r)} M_t^2$, call it M_r^*.]

Now $M_r^* \in K'_\lambda = K_\lambda$ (by part (2) and 1.7) and $t \in J_1'(r) \Rightarrow M_t^2 \leq_{\mathcal{R}} M_r^*$ (as \mathcal{R}_λ is a λ-abstract elementary class applying the parallel to observation 1.7, i.e., 1.21(2)) and similarly $t \in J_0'(r) \Rightarrow M_t^0 \leq_{\mathcal{R}} M_r^*$. Now the s from \boxtimes_4 satisfied $s \in F(r) \subseteq J_0'(r)$ hence $M_s^0 \subseteq M_r^*$ (why? by clause (iii) above $s \in F(r)$ is as required in \boxtimes_4). But above we got $M_s^0 \leq_{\mathcal{R}} M_r^*, M_r^2 \leq_{\mathcal{R}} M_r^*$, so by AxV for \mathcal{R}_λ we have $M_s^0 \leq_{\mathcal{R}} M_r^1$ as required in \boxtimes_4.]

Without loss of generality $I_0 \cap I_1 = \emptyset$ and define the partial order J with set of elements $I_0 \cup I_1$ by $J \models x \leq y$ iff $x, y \in I_0, I_0 \models x \leq y$ or $x \in I_0, y \in I_1$ and $x \in F(y)$ or $x, y \in I_1, I_1 \models x \leq y$.

$$\boxtimes_5 \text{ J is a partial order and } x \leq_J y \text{ in } I_0 \Rightarrow x \in I_0 \text{ (hence } x \leq_J y \text{ & } x \in I_1 \Rightarrow y \in I_1)$$

[Why? The second phrase holds by the definition of \leq_J. For J being a partial order obviously $x \leq_J y \leq_J x \Rightarrow x = y$, so assume $x \leq_J y \leq_J z$ and we shall prove $x \leq_J z$. If $x \in I_1$ then $y, z \in I_1$ and we use “I_1 is a partial order", and if $z \in I_0$ then $x, y \in I_0$ and we can use “I_0 is a partial order". So assume $x \in I_0, z \in I_1$. If $y \in I_0$ use “$F(z) = F_1(z)$ satisfies clause (i) above. If $y \in I_1$, use clause (vii) above with (y, z) here standing for (s, t) there.]

$$\boxtimes_6 \text{ J is directed.}$$

[Why? Note that I_0, I_1 are directed, $x \leq_J y \in I_0 \Rightarrow x \in I_0$ and $(\forall x \in I_0)(\exists y \in I_1)[x \leq_J y]$ because given $r \in I_0, h_0(r) \in N_0$ hence $h_0(r)$ belongs to M_t^1 for some $t \in I_1$, and so by clause (i) we have $t \in F_1(t)$ hence by clause (ii)(β) above $r \in F_0(t)$. Together this is easy.]

Define M_s for $s \in J$ as M_s^0 if $s \in I_0$ and as M_s^2 if $s \in I_1$

$$\boxtimes_7 \text{ } M_s \in K_\lambda \text{ for } s \in J.$$

\[\mathfrak{G}_8 \text{ if } x \leq_J y \text{ then } M_x \leq M_y. \]

Why? If \(y \in I_0 \) (hence \(x \in I_0 \)) use \(\langle M^0 : t \in I_0 \rangle \) is a witness for \(N_0 \in K' \). If \(x \in I_1 \) (hence \(y \in I_1 \)) use clausura (viii) above, i.e. \(\langle M^2 : s \in I_1 \rangle \) is a witness for \(N_1 \in K' \).

\[\mathfrak{G}_9 \cup \{ M_x : x \in J \} = N_1. \]

Why? As \((∀x \in I_0)(∃y \in I_1)(x \leq_J y)\), see the proof of \(\mathfrak{G}_6 \) recalling \(\mathfrak{G} \) we have \(\cup \{ M_x : x \in J \} = \cup \{ M_x : x \in I_1 \} \) but the latter is \(\cup \{ M^2_x : x \in I_1 \} \) which is equal to \(N_2 \).

\[\mathfrak{G}_{10} I_0 \subseteq J \text{ is directed and } \cup \{ M_x : x \in J \} = N_1. \]

Together \((I_0, J, \langle M_s : s \in J \rangle) \) witnesses \(N_0 \leq_K N_1 \) are as required.

Axiom VI: \(\text{LS}(K') = \lambda \).

Why? Let \(M \in K', A \subseteq M, |A| + \lambda \leq \mu < \|M\| \) and let \(\langle M_s : s \in J \rangle \) witness \(M \in K' \). As \(\|M\| > \mu \) we can choose a directed \(I \subseteq J \) of cardinality \(\leq \mu \) such that \(A \subseteq M' := \bigcup_{s \in I} M_s \) and so \((I, J, \langle M_s : s \in J \rangle)\) witnesses \(M' \leq_K M \), so as \(A \subseteq M' \) and \(\|M'\| \leq |A| + \mu \); this is more than enough. \(\square_{1.23} \)

We may like to use \(\mathfrak{R}_{\leq \lambda} \) instead of \(\mathfrak{R}_{\lambda} \); no need as essentially \(\mathfrak{R} \) consists of two parts \(\mathfrak{R}_{\leq \lambda} \) and \(\mathfrak{R}_{\geq \lambda} \) which have just to agree in \(\lambda \). That is

1.24 Claim. Assume

(a) \(\mathfrak{R}^1 \) is an abstract elementary class with \(\lambda = \text{LS}(\mathfrak{R}^1), K^1 = K_{\geq \lambda}^1 \)

(b) \(\mathfrak{R}_{\leq \lambda}^2 \) is a \((\leq \lambda) \)-abstract elementary class (defined as in 1.18(1) with the obvious changes so \(M \in \mathfrak{R}_{\leq \lambda}^2 \Rightarrow \|M\| \leq \lambda \) and in Axiom III, \(\| \bigcup_i M_i \| \leq \lambda \) is required)

(c) \(K_{\lambda}^2 = K_{\lambda}^1 \) and \(\leq_{\mathfrak{R}^2} \upharpoonright K_{\lambda}^2 = \leq_{\mathfrak{R}^1} \upharpoonright K_{\lambda}^1 \)

(d) we define \(\mathfrak{R} \) as follows: \(K = K^1 \cup K^2, M \leq_{\mathfrak{R}} N \text{ iff } M \leq_{\mathfrak{R}^1} N \text{ or } M \leq_{\mathfrak{R}^2} N \) or for some \(M', M \leq_{\mathfrak{R}^2} M' \leq_{\mathfrak{R}^1} N \).

Then \(\mathfrak{R} \) is an abstract elementary class and \(\text{LS}(\mathfrak{R}) = \text{LS}(\mathfrak{R}^2) \) which trivially is \(\leq \lambda \).

Proof. Straight. E.g.

Axiom V: We shall use freely

(*) \(\mathfrak{R}_{\leq \lambda} = \mathfrak{R}^2 \) and \(\mathfrak{R}_{\geq \lambda} = \mathfrak{R}^1 \).
So assume \(N_0 \leq \mathcal{M}, N_1 \leq \mathcal{M}, N_0 \subseteq N_1 \).

Now if \(||N_0|| \geq \lambda \) use assumption (a), so we can assume \(||N_0|| < \lambda \). If \(||\mathcal{M}|| \leq \lambda \) we can use assumption (b) so we can assume \(||\mathcal{M}|| > \lambda \) and by the definition of \(\leq \mathcal{R} \) there is \(M_0' \in K_\lambda^1 = K_\lambda^2 \) such that \(N_0 \leq \mathcal{R}^1 M_0' \leq \mathcal{R}^1 M \). First assume \(||N_1|| \leq \lambda \), so we can find \(M_1' \in K_\lambda^1 \) such that \(N_1 \leq \mathcal{R}^1 M_1' \leq \mathcal{R}^1 M \) (why? if \(N_1 \in K_{< \lambda} \), by the definition of \(\leq \mathcal{R} \) and if \(N_1 \in K_{\lambda} \) just choose \(M_1' = N_1 \)). Now we can by assumption (a) find \(M'' \in K_\lambda^1 \) such that \(M_0' \cup M_1' \subseteq M'' \subseteq \mathcal{R}^1 M \), hence by assumption (a) (i.e. AxV for \(\mathcal{R}^1 \)) we have \(M_0' \leq \mathcal{R}^1 M'', M_1' \leq \mathcal{R}^1 M'' \), so by assumption (c) we have \(M_0' \leq \mathcal{R}^2 M'', M_1' \leq \mathcal{R}^2 M'' \). As \(N_0 \leq \mathcal{R}^2 M_0' \leq \mathcal{R}^2 M'' \subseteq K_{< \lambda} \), by assumption (b) we have \(N_0 \leq \mathcal{R}^2 M'' \), and similarly we have \(N_1 \leq \mathcal{R}^2 M'' \). So \(N_0 \subseteq N_1, N_0 \leq \mathcal{R}^2 M'', N_1 \leq \mathcal{R}^2 M' \) so by assumption (b) we have \(N_0 \leq \mathcal{R}^2 N_1 \) hence \(N_0 \leq \mathcal{R} N_1 \).

We are left with the case \(||N_1|| > \lambda \); by assumption (a) there is \(N_1' \subseteq K_{< \lambda} \) such that \(N_0 \subseteq N_1' \subseteq \mathcal{R}^1 N_1 \). By assumption (a) we have \(N_1' \leq \mathcal{R}^1 M \), so by the previous paragraph we get \(N_0 \leq \mathcal{R}^2 N_1' \), together with the previous sentence we have \(N_0 \leq \mathcal{R}^2 N_1' \leq \mathcal{R}^1 N_1 \) so by the definition of \(\leq \mathcal{R} \) we are done. \(\square_{1.24} \)

Recall

1.25 Definition. If \(M \in K_{\lambda} \) is locally superlimit or just pseudo superlimit let \(K_{\mathcal{M}} = K_{\lambda}^{[M]} = \{ N \in K_{\lambda} : N \cong M \}, \mathcal{R}_{\mathcal{M}} = \mathcal{R}_{\lambda}^{[M]} = (K_{\mathcal{M}}, \leq \mathcal{R}) K_{\lambda}^{[M]} \) and let \(\mathcal{R}^{[M]} \) be the \(\mathcal{R} \) we get in 1.23(1) for \(\mathcal{R} = \mathcal{R}_{\mathcal{M}} = \mathcal{R}_{\lambda}^{[M]} \). We may write \(\mathcal{R}_{\lambda}[M], \mathcal{R}[M] \).

Trivially but still important is showing that assuming categoricity in one \(\lambda \) is a not so strong assumption.

1.26 Claim. 1) If \(\mathcal{R} \) is an \(\lambda \)-a.e.c., \(M \in K_{\lambda} \) is locally superlimit or just pseudo superlimit then \(\mathcal{R}_{\mathcal{M}} \) is a \(\lambda \)-a.e.c. which is categorical (i.e. categorical in \(\lambda \)).

2) Assume \(\mathcal{R} \) is an a.e.c. and \(M \in \mathcal{R}_{\lambda} \) is not \(\leq \mathcal{R} \)-maximal. \(M \) is pseudo superlimit (in \(\mathcal{R} \), i.e., in \(\mathcal{R}_{\lambda} \)) iff \(\mathcal{R}_{\mathcal{M}} \) is a \(\lambda \)-a.e.c. which is categorical iff \(\mathcal{R}^{[M]} \) is an a.e.c., categorical in \(\lambda \) and \(\leq \mathcal{R}^{[M]} = \leq \mathcal{R} K^{[M]} \).

3) In (1) and (2), \(\text{LS}(\mathcal{R}^{[M]}) = \lambda = \text{Min}\{ ||N|| : N \in \mathcal{R}^{[M]} \} \).

Proof. Straightforward. \(\square_{1.26} \)

1.27 Exercise: Assume \(\mathcal{R} \) is a \(\lambda \)-a.e.c. with amalgamation and stability in \(\lambda \). Then for every \(M_1 \in K_{\lambda}, p_1 \in \mathcal{S}_{\mathcal{R}}(M_1) \) we can find \(M_2 \in K \) and minimal \(p_2 \in \mathcal{S}_{\mathcal{R}}(M_2) \) such that \(M_1 \leq \mathcal{R} M_2, p_1 = p_2 | M_1 \).

[Hint: See [Sh:46, 2b.4](2).]
1.28 Exercise: 1) Any \(\leq_{\mathcal{R}_\lambda} \)-embedding \(f_0 \) of \(M^1_0 \) into \(M^2_0 \) can be extended to an isomorphism \(f \) from \(M^1_\delta \) onto \(M^2_\delta \) such that \(f(M^1_{2\alpha}) \leq_{\mathcal{R}_\lambda} M^2_{2\alpha}, f^{-1}(M^2_{2\alpha+1}) \leq_{\mathcal{R}_\lambda} M^1_{2\alpha+1} \) for every \(\alpha < \delta \), provided that

\(\ast \) (a) \(\mathcal{R}_\lambda \) is a \(\lambda \)-a.e.c. with amalgamation and \(\delta \) is a limit ordinal \(\leq \lambda^+ \)

(b) \(\langle M^\ell_\alpha : \alpha \leq \delta \rangle \) is \(\leq_{\mathcal{R}_\lambda} \)-increasing continuous for \(\ell = 1, 2 \)

(c) \(M^\ell_\alpha \) is an amalgamation base in \(\mathcal{R}_\lambda \) (for \(\alpha < \delta \) and \(\ell = 1, 2 \))

(d) \(M^\ell_{\alpha+1} \) is \(\leq_{\mathcal{R}_\lambda} \)-universal extension of \(M^\ell_\alpha \) for \(\alpha < \delta, \ell = 1, 2 \).

2) Write the axioms of “a \(\lambda \)-a.e.c.” which are used.

3) For \(\mathcal{R}_\lambda, \delta \) as in (a) above, for any \(M \in \mathcal{K}_\lambda \) there is \(N \in \mathcal{K}_\lambda \) which is \((\lambda, \text{cf}(\delta)) \)-brimmed over it.

[Hint: Should be easy; is similar to 1.16 (or 1.17).]
§2 Good Frames

We first present our central definition: good λ-frame (in Definition 2.1). We are given the relation “$p \in S(N)$ does not fork over $M \leq K$ when p is basic” (by the basic relations and axioms) so it is natural to look at how well we can “lift” the definition of non-forking to models of cardinality λ and later to non-forking of models (and types over them) in cardinalities $> \lambda$. Unlike the lifting of λ-a.e.c. in Lemma 1.23, life is not so easy. We define in 2.4, 2.5, 2.7 and we prove basic properties in 2.6, 2.8, 2.10 and less obvious ones in 2.9, 2.11, 2.12. This should serve as a reasonable exercise in the meaning of good frames; however, the lifting, in general, does not give good μ-frames for $\mu > \lambda$. There may be no $M \in K_\mu$ at all and/or amalgamation may fail. Also the existence and uniqueness of non-forking types is problematic. We do not give up and will return to the lifting problem, under additional assumptions in III §12 and [Sh 842].

In 2.15 (recalling 1.26) we show that the case “\mathfrak{R} categorical in λ” is not so rare among good λ-frames; in fact if there is a superlimit model in λ weak we can restrict \mathfrak{R} to it. So in a sense superstability and categoricity are close, a point which does not appear in first order model theory, but if T is a complete first order superstable theory and $\lambda \geq 2^{|T|}$, then the class $\mathfrak{R} = \mathfrak{R}_{T, \lambda}$ of λ-saturated models of T is in general not an elementary class (though it is a PC_λ class) but is an a.e.c. categorical in λ though in general not in λ^+ and for some good λ-frame s, $K_s = \mathfrak{R}_{T, \lambda}$. How justified is our restriction here to something like “the λ-saturated model”? It is O.K. for our test problems but more so it is justified as our approach is to first analyze the quite saturated models.

Last but not least in 2.16 we show that one of the axioms from 2.1, i.e., (E)(i), follows from the rest in our present definition; additional implications are in Claims 2.17, 2.18. Later “Ax(X)(y)” will mean (X)(y) from Definition 2.1. Recall that good λ-frame is intended to be a parallel to (bare bones) superstable elementary class stable in λ; here we restrict ourselves to models of cardinality λ.

2.1 Definition. We say $s = (\mathfrak{R}, \bigcup_s S^{bs}_s) = (\mathfrak{R}^s, \bigcup_s S^{bs}_s)$ is a good frame in λ or a good λ-frame (λ may be omitted when its value is clear, note that $\lambda = \lambda_s = \lambda(s)$ is determined by s and we may write $S_s(M)$ instead of $S^{bs}_s(M)$ and $tp_s(a, M, N)$ instead of $tp_{\mathfrak{R}^s}(a, M, N)$ when $M \in K^\lambda_s, N \in K^s$; we may write $tp(a, M, N)$ for $tp_{\mathfrak{R}^s}(a, M, N)$ when the following conditions hold:

(A) $\mathfrak{R} = (K, \leq)$ is an abstract elementary class also denoted by $\mathfrak{R}[s]$, the L"owenheim Skolem number of \mathfrak{R}, being $\leq \lambda$ (see Definition 1.4); there is no harm in assuming $M \in K \Rightarrow \|M\| \geq \lambda$; let $\mathfrak{R}_s = \mathfrak{R}^s_s$ and $\leq_s = \leq_s| K^\lambda_s$, and let $\mathfrak{R}_s = (K^\lambda_s, \leq_s)$ and $\mathfrak{R}[s] = \mathfrak{R}^s$ so we may write $s = (\mathfrak{R}_s, \bigcup_s S^{bs}_s)$.
(B) R has a superlimit model in λ which is not $<_{R}$-maximal.

(C) R_{λ} has the amalgamation property, the JEP (joint embedding property), and has no \leq_{R}-maximal member.

(D)(a) $\mathcal{S}_{bs} = \mathcal{S}_{bs}^{\lambda}$ (the class of basic types for R_{λ}) is included in $\bigcup \{ \mathcal{S}(M) : M \in K_{\lambda} \}$ and is closed under isomorphisms including automorphisms; for $M \in K_{\lambda}$ let $\mathcal{S}_{bs}(M) = \mathcal{S}_{bs} \cap \mathcal{S}(M)$; no harm in allowing types of finite sequences, i.e., replacing $\mathcal{S}(M)$ by $\mathcal{S}^{<\omega}(M)$, $(\mathcal{S}^{\omega}(M))$ is different as being new (= non-algebraic) is not preserved under increasing unions).

(b) if $p \in \mathcal{S}_{bs}(M)$, then p is non-algebraic (i.e. not realized by any $a \in M$).

(c) (density)
if $M \leq_{R} N$ are from K_{λ} and $M \neq N$, then for some $a \in N \setminus M$ we have $tp(a, M, N) \in \mathcal{S}_{bs}$

[intention: examples are: minimal types in [Sh 576], i.e. [Sh:E46], regular types for superstable first order (= elementary) classes].

(d) bs-stability
$\mathcal{S}_{bs}(M)$ has cardinality $\leq \lambda$ for $M \in K_{\lambda}$.

(E)(a) \bigcup_{λ} denoted also by \bigcup_{λ} or just \bigcup, is a four place relation10 called non-forking with $\bigcup(M_{0}, M_{1}, a, M_{3})$ implying $M_{0} \leq_{R} M_{1} \leq_{R} M_{3}$ are from K_{λ}, $a \in M_{3} \setminus M_{1}$ and $tp(a, M_{0}, M_{3}) \in \mathcal{S}_{bs}(M_{0})$ and $tp(a, M_{1}, M_{3}) \in \mathcal{S}_{bs}(M_{1})$. Also \bigcup is preserved under isomorphisms and we demand: if $M_{0} = M_{1} \leq_{R} M_{3}$ both in K_{λ} and $a \in M_{3}$, then:

$\bigcup(M_{0}, M_{1}, a, M_{3})$ is equivalent to $tp(a, M_{0}, M_{3}) \in \mathcal{S}_{bs}(M_{0})$”. The assertion $\bigcup(M_{0}, M_{1}, a, M_{3})$ is also written as $M_{1} \bigcup a$ and also as “$tp(a, M_{1}, M_{3})$

M_{0}

does not fork over M_{0} (inside M_{3})” (this is justified by clause (b) below). So $tp(a, M_{1}, M_{3})$ forks over M_{0} (where $M_{0} \leq_{s} M_{1} \leq_{s} M_{3}, a \in M_{3}$) is just the negation

[Explanation: The intention is to axiomatize non-forking of types, but we already commit ourselves to dealing with basic types only.

9In fact, the “is not $<_{R}$-maximal” follows by (C)

10we tend to forget to write the λ, this is justified by 2.6(2), and see Definition 2.5
Note that in [Sh 576], i.e. [Sh:E46] we know something on minimal types but other types are something else.

(b) (monotonicity):
if $M_0 \leq \bar{\mathcal{R}} M'_0 \leq \bar{\mathcal{R}} M'_1 \leq \bar{\mathcal{R}} M_3 \leq \bar{\mathcal{R}} M_3'$ all of them in K_λ, then $\bigcup(M_0, M_1, a, M_3) \Rightarrow \bigcup(M'_0, M'_1, a, M'_3)$ and $\bigcup(M'_0, M'_1, a, M'_3) \Rightarrow \bigcup(M'_0, M'_1, a, M'_3')$, so it is legitimate to just say “$\text{tp}(a, M_1, M_3)$ does not fork over M_0”.

[Explanation: non-forking is preserved by decreasing the type, increasing the basis (= the set over which it does not fork) and increasing or decreasing the model inside which all this occurs, i.e. where the type is computed. The same holds for stable theories only here we restrict ourselves to “legitimate”, i.e., basic types. But note that here the “restriction of $\text{tp}(a, M_1, M_3)$ to M'_1 is basic” is a worthwhile information.]

(c) (local character):
if $\langle M_i : i \leq \delta + 1 \rangle$ is $\leq \bar{\mathcal{R}}$-increasing continuous in $\mathcal{R}_\lambda, a \in M_{\delta+1}$ and $\text{tp}(a, M_{\delta}, M_{\delta+1}) \in \mathcal{S}(M_{\delta})$ then for every $i < \delta$ large enough $\text{tp}(a, M_{\delta}, M_{\delta+1})$ does not fork over M_i.

[Explanation: This is a replacement for superstability which says that: if $p \in \mathcal{S}(A)$ then there is a finite $B \subseteq A$ such that p does not fork over B.]

(d) (transitivity):
if $M_0 \leq \mathcal{S} M'_0 \leq \mathcal{S} M'_1 \leq \mathcal{S} M_3$ are from K_λ and $a \in M_3$ and $\text{tp}(a, M'_0, M_3)$ does not fork over M'_0 and $\text{tp}(a, M'_0, M_3)$ does not fork over M'_0 (all models are in K_λ, of course, and necessarily the three relevant types are in $\mathcal{S}(M)$), then $\text{tp}(a, M'_0, M_3)$ does not fork over M_0.

(e) uniqueness:
if $p, q \in \mathcal{S}(M_1)$ do not fork over $M_0 \leq \mathcal{R} M_1$ (all in K_λ) and $p \upharpoonright M_0 = q \upharpoonright M_0$ then $p = q$.

(f) symmetry:
if $M_0 \leq \mathcal{R} M_3$ are in \mathcal{R}_λ and for $\ell = 1, 2$ we have $a_{\ell} \in M_3$ and $\text{tp}(a_{\ell}, M_0, M_3) \in \mathcal{S}(M_0)$, then the following are equivalent:

(α) there are M_1, M'_3 in K_λ such that $M_0 \leq \mathcal{R} M_1 \leq \mathcal{R} M'_3$, $a_1 \in M_1, M_3 \leq \mathcal{R} M'_3$ and $\text{tp}(a_2, M_1, M'_3)$ does not fork over M_0.
(β) there are M_2, M_3' in K_λ such that $M_0 \leq M_2 \leq M_3'$, $a_2 \in M_2, M_3 \leq M_3'$ and $tp(a_1, M_2, M_3')$ does not fork over M_0.

[Explanation: this is a replacement to “$tp(a_1, M_0 \cup \{a_2\}, M_3)$ forks over M_0 iff $tp(a_2, M_0 \cup \{a_1\}, M_3)$ forks over M_0” which is not well defined in our context.]

(g) extension existence:
if $M \leq N$ are from K_λ and $p \in S^{bs}(M)$ then some $q \in S^{bs}(N)$ does not fork over M and extends p

(h) continuity:
if $(M_i : i \leq \delta)$ is \leq-increasing continuous, all in K_λ (recall δ is always a limit ordinal), $p \in S(M_\delta)$ and $i < \delta \Rightarrow p \upharpoonright M_i \in S^{bs}(M_i)$ does not fork over M_0 then $p \in S^{bs}(M_\delta)$ and moreover p does not fork over M_0.

[Explanation: This is a replacement to: for an increasing sequence of types which do not fork over A, the union does not fork over A; equivalently if p forks over A then some finite subtype does.]

(i) non-forking amalgamation:
if for $\ell = 1, 2, M_0 \leq M_\ell$ are from K_λ, $a_\ell \in M_\ell \setminus M_0$, $tp(a_\ell, M_0, M_\ell) \in S^{bs}(M_0)$, then we can find f_1, f_2, M_3 satisfying $M_0 \leq M_3 \in K_\lambda$ such that for $\ell = 1, 2$ we have f_ℓ is a \leq-embedding of M_ℓ into M_3 over M_0 and $tp(f_\ell(a_\ell), f_{3-\ell}(M_{3-\ell}), M_3)$ does not fork over M_0 for $\ell = 1, 2$.

[Explanation: This strengthens clause (g), (existence) saying we can do it twice so close to (f), symmetry, but see 2.16.]

2.2 Discussion: 0) On connections between the axioms see 2.16, 2.17, 2.18.
1) What justifies the choice of the good λ-frame as a parallel to (bare bones) superstability? Mostly starting from assumptions on few models around λ in the a.e.c. \mathcal{R} and reasonable, “semi ZFC” set theoretic assumptions (e.g. involving categoricity and weak cases of G.C.H., see §3) we can prove that, essentially, for some \mathcal{U}, \mathcal{F} the demands in Definition 2.1 hold. So here we shall get (i.e., applying our general theorem to the case of 3.4) an alternative proof of the main theorem of [Sh 87a], [Sh 87b] in a local version, i.e., dealing with few cardinals rather than having to deal with all the cardinals $\lambda, \lambda^+, \lambda^{+2}, \ldots, \lambda^{+n}$ as in [Sh 87a], [Sh 87b] in an inductive
proof. That is, in [Sh 87b], we get dichotomies by the omitting type theorem for countable models (and theories). So problems on \(\aleph_n \) are “translated” down to \(\aleph_{n-1} \) (increasing the complexity) till we arrive to \(\aleph_0 \) and then “translated” back. Hence it is important there to deal with \(\aleph_0, \ldots, \aleph_n \) together. Here our \(\lambda \) may not have special helpful properties, so if we succeed to prove the relevant claims then they apply to \(\lambda^+ \), too. There are advantages to being poor.

2) Of course, we may just point out that the axioms seem reasonable and that eventually we can say much more.

3) We may consider weakening bs-stability (i.e., \(\text{Ax}(D)(d) \) in Definition 2.1) to \(M \in K_\lambda \Rightarrow |\mathcal{S}^{bs}(M)| \leq \lambda^+ \), we have not looked into it here; Jarden-Shelah [JrSh 875] will; actually Chapter I deals in a limited way with this in a considerably more restricted framework.

4) On stability in \(\lambda \) and existence of \((\lambda, \partial) \)-brimmed extensions see 4.2.

From the rest of this section we shall use mainly the definition of \(K^{3,bs}_\lambda \) in Definition 2.4(3), also 2.20 (restricting ourselves to a superlimit). We sometimes use implications among the axioms (in 2.16 - 2.18). The rest is, for now an exercise to familiarize the reader with \(\lambda \)-frames, in particular (2.3-2.15) to see what occurs to non-forking and basic types in cardinals > \(\lambda \). This is easy (but see below). For this we first present the basic definitions.

2.3 Convention. 1) We fix \(s \), a good \(\lambda \)-frame so \(K = K^s, \mathcal{S}^{bs} = \mathcal{S}^{bs}_s \).

2) By \(M \in K \) we mean \(M \in K_{\geq \lambda} \) if not said otherwise.

We lift the properties to \(\mathcal{K}_{\geq \lambda} \) by reflecting to the situation in \(K_\lambda \). But do not be too excited: the good properties do not lift automatically, we shall be working on that later (under additional assumptions). Of course, from the definition below later we shall use mainly \(K^{3,bs}_s^s = K^{3,bs}_\lambda^\lambda \).

2.4 Definition. 1)

\[
K^{3,bs} = K^{3,bs}_{\geq s} := \left\{(M, N, a) : M \leq_\mathcal{R} N, a \in N \setminus M \text{ and there is } M' \leq_\mathcal{R} M \right. \\
\left. \text{satisfying } M' \in K_\lambda, \text{ such that for every } M'' \in K_\lambda \text{ we have:} \\
[M' \leq_\mathcal{R} M'' \leq_\mathcal{R} M \Rightarrow \text{tp}(a, M'', N) \in \mathcal{S}^{bs}(M'')] \\
\text{does not fork over } M'] \right\}; \text{ equivalently } [M' \leq_\mathcal{R} M'' \leq_\mathcal{R} M \\
& \left. \& M'' \leq_\mathcal{R} N'' \leq_\mathcal{R} N \& a \in N'' \right. \\
\Rightarrow \left. \bigcup_{\lambda}(M', M'', a, N'') \right).
\]
2) \(K_{\geq \mu}^{3,bs} = K_{s,\mu}^{3,bs} := \{(M, N, a) \in K_{s,\mu}^{3,bs} : M, N \in \mathcal{R}_\mu^s\} \).

3) \(K_{\lambda}^{3,bs} := K_{=\lambda,\lambda}^{3,bs} \), and let \(K_{\mu}^{3,bs} = K_{=\mu}^{3,bs} \), used mainly for \(\mu = \lambda_\delta \) and \(K_{s,\geq \mu}^{3,bs} \) is defined naturally.

2.5 Definition.
We define \(\bigcup \lambda (M_0, M_1, a, M_3) \) (rather than \(\bigcup \lambda \)) as follows: it holds iff \(M_0 \leq \lambda M_1 \leq \lambda M_3 \) are from \(K \) (not necessarily \(K_\lambda \)), \(a \in M_3 \setminus M_1 \) and there is \(M'_0 \leq \lambda M_0 \) which belongs to \(K_\lambda \) satisfying: if \(M'_0 \leq \lambda M'_1 \leq \lambda M_1, M'_1 \in K_\lambda \), \(M'_1 \cup \{a\} \subseteq M'_3 \leq \lambda M_3 \) and \(M'_3 \in K_\lambda \) then \(\bigcup \lambda (M'_0, M'_1, a, M'_3) \).

We now check that \(\bigcup \lambda \) behaves correctly when restricted to \(K_\lambda \).

2.6 Claim.
1) Assume \(M \leq \lambda N \) are from \(K_\lambda \) and \(a \in N \). Then \((M, N, a) \in K_{s,\mu}^{3,bs} \) iff \(\tp(a, M, N) \in \mathcal{R}_s^{bs}(M) \).

2) Assume \(M_0, M_1, M_3 \in K_\lambda \) and \(a \in M_3 \). Then \(\bigcup \lambda (M_0, M_1, a, M_3) \) iff \(\bigcup \lambda (M_0, M_1, a, M_3) \).

3) Assume \(M \leq \lambda N_1 \leq \lambda N_2 \) and \(a \in N_1 \). Then \((M, N_1, a) \in K_{s,\mu}^{3,bs} \) iff \((M, N_2, a) \in K_{s,\mu}^{3,bs} \).

4) Assume \(M_0 \leq \lambda M_1 \leq \lambda M_3 \leq \lambda M'_3 \) and \(a \in M_3 \) then: \(\bigcup \lambda (M_0, M_1, a, M_3) \) iff \(\bigcup \lambda (M_0, M_1, a, M_3) \).

Proof.
1) First assume \(\tp(a, M, N) \in \mathcal{R}_s^{bs}(M) \) and check the definition of \((M, N, a) \in K_{s,\mu}^{3,bs} \). Clearly \(M \leq \lambda N, a \in N \) and \(a \in N \setminus M \); we have to find \(M' \) as required in Definition 2.4(1); we let \(M' = M \), so \(M' \leq \lambda M, M' \in K_\lambda \) and

\[
M' \leq \lambda M'' \leq \lambda M \text{ and } M'' \in K_\lambda \Rightarrow M'' = M
\]

\[
\Rightarrow \tp(a, M'', N) = \tp(a, M, N) \in \mathcal{R}_s^{bs}(M) = \mathcal{R}_s^{bs}(M'')
\]

so we are done.

Second assume \((M, N, a) \in K_{s,\mu}^{3,bs} \) so there is \(M' \leq \lambda M \) as asserted in the definition 2.4(1) of \(K_{s,\mu}^{3,bs} \) so \((\forall M'')(M' \leq \lambda M'' \leq \lambda M \text{ and } M'' \in K_\lambda \Rightarrow \tp(a, M'', N) \in \mathcal{R}_s^{bs}(M'')) \) in particular this holds for \(M'' = M \) and we get \(\tp(a, M, N) \in \mathcal{R}_s^{bs}(M) \) as required.
2) First assume \(\bigcup\ (M_0, M_1, a, M_3) \).
So there is \(M_0' \) as required in Definition 2.5; this means

\[
M_0' \in K_\lambda, M_0' \leq_{\bar{\mathfrak{R}}} M_0 \quad \text{and} \quad \lambda
\]

\[
(\forall M_1' \in K_\lambda)(\forall M_3' \in K_\lambda)[M_0' \leq_{\bar{\mathfrak{R}}} M_1' \leq M_1 & M_1' \cup \{a\} \subseteq M_3' \leq_{\bar{\mathfrak{R}}} M_3 \Rightarrow \bigcup_\lambda (M_0', M_1', a, M_3')].
\]

In particular, we can choose \(M_1' = M_1, M_3' = M_3 \) so the antecedent holds hence \(\bigcup_\lambda (M_0', M_1', a, M_3') \) which means \(\bigcup_\lambda (M_0', M_1, a, M_3) \) and by clause \((E)(b)\) of Definition 2.1, \(\bigcup_\lambda (M_0, M_1, a, M_3) \) holds, as required.

Second assume \(\bigcup_\lambda (M_0, M_1, a, M_3) \). So in Definition 2.5 the demands \(M_0 \leq_{\bar{\mathfrak{R}}} M_1 \leq_{\bar{\mathfrak{R}}} M_3 \), \(a \in M_3 \setminus M_1 \) hold by clause \((E)(a)\) of Definition 2.1; and we choose \(M_0' \) as \(M_0 \); clearly \(M_0' \in K_\lambda \) \& \(M_0' \leq_{\bar{\mathfrak{R}}} M_0 \). Now suppose \(M_0' \leq_{\bar{\mathfrak{R}}} M_1' \leq_{\bar{\mathfrak{R}}} M_1 \) \& \(M_1' \in K_\lambda, M_1' \cup \{a\} \leq_{\bar{\mathfrak{R}}} M_3' \leq M_3 \); by clause \((E)(b)\) of Definition 2.1 we have \(\bigcup_\lambda (M_0', M_1', a, M_3') \); so \(M_0' \) is as required so really \(\bigcup_\lambda (M_0, M_1, a, M_3) \).

3) We prove something stronger: for any \(M' \in \bar{\mathfrak{R}}_a \) which is \(\leq_{\bar{\mathfrak{R}}[s]} \) \(M, M' \) witnesses \((M, N_1, a) \in K^{3,bs} \) iff \(M' \) witnesses \((M, N_2, a) \in K^{3,bs} \) (of course, witness means: as required in Definition 2.4). So we have to check the statement there for every \(M'' \in K_\lambda \) such that \(M' \leq_{s} M'' \leq_{\bar{\mathfrak{R}}} M \). The equivalence holds because for every \(M'' \leq_{\bar{\mathfrak{R}}} M, M'' \in K_\lambda \) we have \(\text{tp}(a, M'', N_1) = \text{tp}(a, M'', N_2), \) by 1.11(2), more transparent as \(\mathfrak{R}_a \) has the amalgamation property (by clause \((C)\) of Definition 2.1) and so one is “basic” iff the other is by clause \((E)(b)\) of Definition 2.1.

4) The direction \(\Leftarrow \) is because if \(M_0' \) witness \(\bigcup_\lambda (M_0, M_1, a, M_3') \) (see Definition 2.5), then it witnesses \(\bigcup_\lambda (M_0, M_1, a, M_3) \) as there are just fewer pairs \((M_1', M_3') \) to consider. For the direction \(\Rightarrow \) the demands \(M_0 \leq_{\bar{\mathfrak{R}}} M_1 \leq_{\bar{\mathfrak{R}}} M_3, a \in M_3 \setminus M_1 \), of course, hold and let \(M_0' \) be as required in the definition of \(\bigcup_\lambda (M_0, M_1, a, M_3) \); let

\[
M_0' \leq_{\bar{\mathfrak{R}}} M_0', M_0' \leq_{\bar{\mathfrak{R}}} M_1, M_0' \cup \{a\} \subseteq M_3', M_1' \subseteq M_3', M_2' \subseteq M_3', M_3' \in K_\lambda.
\]

As \(\lambda \geq \text{LS}(\mathfrak{R}) \) we can find \(M_0'' \leq_{\bar{\mathfrak{R}}} M_3 \) such that \(M_1' \cup \{a\} \subseteq M_3'' \subseteq M_3' \subseteq M_3'' \subseteq M_3' \subseteq K_\lambda \). As the choice of \(M_0'' \) and \(M_3'' \) clearly \(\bigcup_\lambda (M_0'', M_1', a, M_3'') \) and by clause \((E)(b)\) of Definition 2.1 we have
\[
\bigcup_{\lambda}(M'_0, M'_1, a, M'_3) \iff \bigcup_{\lambda}(M'_0, M'_1, a, M''_3) \iff \bigcup_{\lambda}(M'_0, M'_1, a, M'_3)
\]

(note that we know the left statement and need the right statement) so \(M'_1\) is as required to complete the checking of \(\bigcup_{<\infty}(M_0, M_1, a, M'_3)\).

We extend the definition of \(\mathcal{S}_{bs}^\lambda(M)\) from \(M \in K_\lambda\) to arbitrary \(M \in K\).

2.7 Definition.

1) For \(M \in K\) we let

\[
\mathcal{S}_{bs}^\lambda(M) = \mathcal{S}_{bs}^\lambda(M) = \left\{ p \in \mathcal{S}(M) : \text{for some } N \text{ and } a, \right. \\
p = \text{tp}(a, M, N) \text{ and } (M, N, a) \in K_{3, bs}^\lambda
\]

(for \(M \in K_\lambda\) we get the old definition by 2.6(1); note that as we do not have amalgamation (in general) the meaning of types is more delicate. Not so in \(K_\lambda\) as in a good \(\lambda\)-frame we have amalgamation in \(K_\lambda\) but not necessarily in \(K_{3, bs}^\lambda\)).

2) We say that \(p \in \mathcal{S}_{bs}^\lambda(M_1)\) does not fork over \(M_0 \leq K M_1\) if for some \(M_3, a\) we have \(p = \text{tp}_{\mathcal{R}^\lambda}(a, M_1, M_3)\) and \(\bigcup_{<\infty}(M_0, M_1, a, M_3)\). (Again, for \(M \in K_\lambda\) this is equivalent to the old definition by 2.6).

3) For \(M \in K\) let \(E^\lambda_M\) be the following two-place relation on \(\mathcal{S}(M) : p_1 E^\lambda_M p_2 \text{ iff } p_1, p_2 \in \mathcal{S}_{bs}^\lambda(M)\) and if \(p_\ell = \text{tp}(a_\ell, M, M^\ast), N \leq K M, N \in K_\lambda\) then \(p_1 \upharpoonright N = p_2 \upharpoonright N\). Let \(E^\lambda_M = E^\lambda_M \upharpoonright \mathcal{S}_{bs}^\lambda(M)\).

4) \(K\) is \((\lambda, \mu)\)-local if every \(M \in K_\mu\) is \(\lambda\)-local which means that \(E^\lambda_M\) is equality; let \((s, \mu)\)-local means \((\lambda, s, \mu)\)-local.

Though we will prove below some nice things, having the extension property is more problematic. We may define “the extension” in a formal way, for \(M \in K_{>\lambda}\) but then it is not clear if it is realized in any \(\preceq_{\mathcal{R}}\)-extension of \(M\). Similarly for the uniqueness property. That is, assume \(M_0 \leq_{\mathcal{R}} M \preceq_{\mathcal{R}} N_{\ell} \) and \(a_\ell \in N_{\ell} \setminus M\), and \(M_0 \in F_\lambda S\) and \(\text{tp}(a_\ell, M, N_{\ell})\) does not fork over \(M_0\) for \(\ell = 1, 2\) and \(\text{tp}(a_1, M_0, N_1) = \text{tp}(a_2, M_0, N_1)\). Now does it follow that \(\text{tp}(a_1, M, N_1) = \text{tp}(a_2, M, N_2)\)? This requires the existence of some form of amalgamation in \(\mathcal{R}\), which we are not justified in assuming. So we may prefer to define \(\mathcal{S}_{bs}^\lambda(M_0)\) “formally”, the set of stationarization of \(p \in \mathcal{S}_{bs}^\lambda(M_0), M_0 \in F_\lambda S\), see [Sh 842]. We now note that in definition 2.7 “some” can be replaced by “every”.
2.8 Fact. 1) For $M \in K$

$$\mathcal{S}_{\geq s}^{{bs}}(M) = \left\{ p \in \mathcal{S}_{\mathbb{R}[s]}(M) : \text{for every } N, a \right\}$$

we have: if $M \leq \mathbb{R} N, a \in N \setminus M$ and

$$p = \text{tp}_{\mathbb{R}}(a, M, N)$$

then $(M, N, a) \in K_{\geq s}^3$.

2) The type $p \in \mathcal{S}_{\mathbb{R}[s]}(M_1)$ does not fork over $M_0 \leq \mathbb{R} M_1$ iff for every a, M_3 satisfying $M_1 \leq \mathbb{R} M_3 \in K, a \in M_3 \setminus M_1$ and $p = \text{tp}_{\mathbb{R}[s]}(a, M_1, M_3)$ we have

$$\bigcup_{\lambda} (M_0, a) \in K_{\geq s}^3.$$

3) $(M, N, a) \in K_{\geq s}^3$ is preserved by isomorphisms.

4) If $M \leq \mathbb{R} N, a \in N \setminus M$ for $\ell = 1, 2$ and $\text{tp}(a_1, M, N_1) \in S_{\geq s}^3$ then $(M, N_1, a_1) \in K_{\geq s}^3$.

5) $E_{\mathbb{R}}$ is an equivalence relation on $\mathcal{S}_{\mathbb{R}[s]}(M)$ and if $p, q \in \mathcal{S}_{\mathbb{R}[s]}(M)$ do not fork over $N \in K_{\lambda}$ so $N \leq \mathbb{R} M$ then $p E_{\mathbb{R}} q \iff (p \upharpoonright N = q \upharpoonright N)$.

Proof. 1) By 2.6(3) and the definition of type.

2) By 2.6(4) and the definition of type.

3) Easy.

4) Enough to deal with the case $(M, N_1, a) E_{\mathbb{R}} (M, N_2, a)$ or (by (3)) even $a_1 = a_2, N_1 \leq \mathbb{R} N_2$. This is easy.

5) Easy, too. $\square_{2.8}$

We can also get that there are enough basic types, as follows:

2.9 Claim. If $M \leq \mathbb{R} N$ and $M \neq N$, then for some $a \in N \setminus M$ we have $\text{tp}_{\mathbb{R}}(a, M, N) \in \mathcal{S}_{\mathbb{R}[s]}(M)$.

Proof. Suppose not, so as we are assuming $K = K_{\geq \lambda}$ by clause (D)(c) of Definition 2.1 necessarily $||N|| > \lambda$. If $||M|| = \lambda < ||N||$ choose N' satisfying $M \leq \mathbb{R} N' \leq \mathbb{R} N, N' \in K_{\lambda}$ and by clause (D)(c) of Definition 2.1 choose $a^* \in N' \setminus M$ such that $\text{tp}_{\mathbb{R}}(a^*, M, N') \in \mathcal{S}_{\mathbb{R}[s]}(M)$. So we can assume $||M|| > \lambda$; choose $a^* \in N \setminus M$. We choose by induction on $i < \omega, M_i, N_i, M_i, c$ (for $c \in N_i \setminus M_i$) such that:

(a) $M_i \leq \mathbb{R} M$ is $\leq \mathbb{R}$-increasing
(b) $M_i \in K_{\lambda}$
(c) \(N_i \leq^R N \) is \(\leq^R \)-increasing.

(d) \(N_i \in K_\lambda \)

(e) \(a^* \in N_0 \)

(f) \(M_i \leq^R N_i \)

(g) if \(c \in N_i \setminus M \), \(\text{tp}_s(c, M_i, N) \in \mathcal{S}^\text{bs}(M_i) \) and there is \(M' \in K_\lambda \) such that
\(M_i \leq^R M' \leq^R M \) and \(\text{tp}_s(c, M', N) \) forks over \(M_i \) then \(M_i, c \) satisfies this, otherwise \(M_i, c = M_i \)

(h) \(M_{i+1} \) includes the set \(\bigcup_{c \in N_i \setminus M} M_{i,c} \cup (N_i \cap M) \).

There is no problem to carry the definition; in stage \(i + 1 \) first choose \(M_i, c \) for
\(c \in N_i \setminus M \) then choose \(M_{i+1} \) and lastly choose \(N_{i+1} \). Let \(M^* = \bigcup_{i<\omega} M_i \) and
\(N^* = \bigcup_{i<\omega} N_i \). It is easy to check that:

(i) \(M_i \leq^R M^* \leq^R M \) for \(i < \omega \)
(by clause (a))

(ii) \(M^* \in K_\lambda \)
(by clause (i) we have \(M^* \in K \) and \(\|M^*\| = \lambda \) by the choice of \(M^* \) and
clause (b))

(iii) \(N_i \leq^R N^* \leq^R N \)
(by clause (c))

(iv) \(N^* \in K_\lambda \)
(by clause (iii) we have \(N^* \in K \) and \(\|N^*\| = \lambda \) by the choice of \(N^* \) and
clause (d))

(v) \(M_i \leq^R M^* \leq^R N^* \leq^R N \)
(by clauses (a) + (f) + (iii) we have \(M_i \leq^R N^* \) hence by clause (a) and the
choice of \(M^* \) we have \(M^* \leq^R N^* \), and \(N^* \leq^R N \) by clause (iii))

(vi) \(M^* = N^* \cap M \)
(by clauses (f) + (h) and the choices of \(M^*, N^* \))

(vii) \(M^* \neq N^* \)
(as \(a^* \in N \setminus M \) and \(a^* \in N_0 \leq^R N^* \leq^R N \) and \(M^* = N^* \cap M \);
they hold by the choice of \(a^* \), clause (e), clause (iii), clause (iii) and clause
(vi) respectively)

(viii) there is \(b^* \in N^* \setminus M^* \) such that \(\text{tp}(b^*, M^*, N^*) \in \mathcal{S}^\text{bs}(M^*) \)
[why? by clause (v) and (viii) recalling Definition 2.1 clause (D)(c) (density)]]
(ix) for some $i < \omega$ we have $\bigcup (M_i, M^*, b^*, N^*)$, so

$$tp(b^*, M^*, N^*) \in \mathcal{S}_s^{bs}(M^*) \text{ and } tp_s(b^*, M_j, N^*) \in \mathcal{S}_s^{bs}(M_j) \text{ for } j \in [i, \omega)$$

[why? by Definition 2.1 clause (E)(c) (local character) applied to the sequence $\langle M_n : n < \omega \rangle \cdot (M^*, N^*)$ and the element b^*, using of course (E)(a) of Definition 2.1 and clause (viii)]

(x) $\bigcup (M_i, M_i, b^*, N^*)$

[why? by clause (ix) and Definition 2.1(E)(b) (monotonicity) as $M_i \leq_R M_i, b^* \leq_R M_{i+1} \leq_R M^*$ by clause (g) in the construction]

(xi) if $M_i \leq_R M' \leq_R M$ and $M' \cup \{b^*\} \subseteq N' \leq_R N$ and $M' \in K_\lambda$, $N' \in K_\lambda$

then $\bigcup (M_i, M', b^*, N')$

[why? by clause (x) and clause (g) in the construction.]

So we are done. \(\square_{2.9}\)

2.10 Claim. If $M \leq_R N, a \in N \setminus M$, and $tp(a, M, N) \in \mathcal{S}^{bs}_{\geq s}(M)$ then for some $M_0 \leq_R M$ we have

(a) $M_0 \in K_\lambda$

(b) $tp(a, M_0, N) \in \mathcal{S}^{bs}(M_0)$

(c) if $M_0 \leq_R M'$, then $tp(a, M', N) \in \mathcal{S}^{bs}(M')$ does not fork over M_0.

Proof. Easy by now. \(\square_{2.10}\)

2.11 Claim. 1) Assume $M_1 \leq_R M_2$ and $p \in \mathcal{S}(M_2)$. Then $p \in \mathcal{S}^{bs}_{\geq s}(M_2)$ and p does not fork over M_1 iff for some $N_1 \leq_R M_1, N_1 \in K_\lambda$ and p does not fork over N_1 iff for some $N_1 \leq_R M_1, N_1 \in K_\lambda$ and we have $(\forall N)[N_1 \leq_R N \leq_R M_2 \& N \in K_\lambda \Rightarrow p \upharpoonright N \in \mathcal{S}^{bs}(N) \& (p \upharpoonright N \text{ does not fork over } N_1)]$; we call such N_1 a witness, so every $N_1 \in K_\lambda, N_1 \leq_R N_1' \leq M_1$ is a witness, too.

2) Assume $M^* \in K$ and $p \in \mathcal{S}(M^*)$.

Then: $p \in \mathcal{S}^{bs}_{\geq s}(M^*)$ iff for some $N^* \leq_R M^*$ we have $N^* \in K_\lambda, p \upharpoonright N^* \in \mathcal{S}^{bs}(N^*)$ and $(\forall N \in K_\lambda)(N^* \leq_R N \leq_R M^* \Rightarrow p \upharpoonright N \in \mathcal{S}^{bs}(N) \text{ and does not fork over } N^*)$ (we say such N^* is a witness, so any $N' \in K_\lambda, N^* \leq_R N' \leq_R M$ is a witness, too).

3) (Monotonicity)

If $M_1 \leq_R M'_1 \leq_R M_2$ and $p \in \mathcal{S}^{bs}_{\geq s}(M_2)$ does not fork over M_1, then $p \upharpoonright M'_1 \in \mathcal{S}^{bs}_{\geq s}(M'_2)$ and it does not fork over M'_1.

4) (Transitivity)

If $M_0 \leq_R M_1 \leq_R M_2$ and $p \in \mathcal{S}^{bs}_{\geq s}(M_2)$ does not fork over M_1 and $p \upharpoonright M_1$ does...
not fork over M_0, then p does not fork over M_0.
5) (Local character) If $\langle M_i : i \leq \delta + 1 \rangle$ is \leq_R-increasing continuous and $a \in M_{\delta+1}$ and $\tp_R(a, M_\delta, M_{\delta+1}) \in \mathcal{S}_{\geq \delta}^b(M_\delta)$ then for some $i < \delta$ we have $\tp_R(a, M_\delta, M_{\delta+1})$ does not fork over M_i.
6) Assume that $\langle M_i : i \leq \delta + 1 \rangle$ is \leq_R-increasing and $p \in \mathcal{S}(M_\delta)$ and for every $i < \delta$ we have $p \upharpoonright M_i \in \mathcal{S}_{\geq \delta}^b(M_i)$ does not fork over M_0. Then $p \in \mathcal{S}_{\geq \delta}^b(M_\delta)$ and p does not fork over M_0.

Proof. 1), 2) Check the definitions.
3) As $p \in \mathcal{S}_{\geq \delta}^b(M_2)$ does not fork over M_1, there is $N_1 \in K_\lambda$ which witnesses it.

This same N_1 witnesses that $p \upharpoonright M'_{\delta}$ does not fork over M'_1.
4) Let $N_0 \leq_R M_0$ witness that $p \upharpoonright M_1$ does not fork over M_0 (in particular $N_0 \in K_\lambda$); let $N_1 \leq_R M_1$ witness that p does not fork over M_1 (so in particular $N_1 \in K_\lambda$). Let us show that $N_0 \leq_R M_0$, p does not fork over M_0, so let $N \in K_\lambda$ be such that $N_0 \leq_R N \leq_R M_2$ and we should just prove that $p \upharpoonright N$ does not fork over N_0. We can find $N' \leq_R M_1, N' \in K_\lambda$ such that $N_0 \cup N_1 \subseteq N'$, we can also find $N'' \leq_R M_2$ satisfying $N'' \in K_\lambda$ such that $N' \cup N \subseteq N''$. As N_1 witnesses that p does not fork over M_1, clearly $p \upharpoonright N'' \in \mathcal{S}_{\geq \delta}^b(N'')$ does not fork over N_1, hence by monotonicity $p \upharpoonright N'$ does not fork over N'. As N_0 witnesses $p \upharpoonright M_1$ does not fork over M_0, clearly $p \upharpoonright N'$ belongs to $\mathcal{S}_{\geq \delta}^b(N'')$ and does not fork over N_0, so by transitivity (in \mathcal{S}_δ) we know that $p \upharpoonright N''$ does not fork over N_0; hence by monotonicity $p \upharpoonright N$ does not fork over N_0.
5) Let $p = \tp_R(a, M_\delta, M_{\delta+1})$ and let $N^* \leq_R M_\delta$ witness $p \in \mathcal{S}_{\geq \delta}^b(M_\delta)$. Assume toward contradiction that the conclusion fails. Without loss of generality $cf(\delta) = \delta$.

Case 0: $\|M_\delta\| \leq \lambda(= \lambda_\delta)$.

Trivial.

Case 1: $\delta < \lambda^+, \|M_\delta\| > \lambda$.

As $\|M_\delta\| > \lambda$, for some $i, \|M_i\| > \lambda$ so without loss of generality $i < \delta \Rightarrow \|M_i\| > \lambda$. We choose by induction on $i < \delta$, models N_i, N'_i such that:

(a) $N_i \subseteq K_\lambda$
(b) $N_i \leq_R M_i$ (hence $N_i \leq_R M_j$ for $j \in [i, \delta]$)
(c) N_i is \leq_R-increasing continuous
(d) $N'_i \subseteq K_\lambda, N^* \leq_R N'_0$
(e) $N_i \leq_R N'_i \leq_R M_\delta$
(f) N'_i is \leq_R-increasing continuous
(g) $p \upharpoonright N'_i$ forks over N_i when $i \neq 0$ for simplicity
(h) $N_i \cup \bigcap_{j \leq i} (N'_j \cap M_{i+1}) \subseteq N_{i+1}$.

No problem to carry the induction, but we give details.

First, if $i = 0$ trivial. Second let i be a limit ordinal.

Let $N_i = \cup \{ N_j : j < i \}$, now $N_i \leq_R M_i$ by clauses $(\beta) + (\gamma)$ and \mathfrak{A} being a.e.c. and $\| N_i \| = \lambda$ by clause (α), as $i \leq \delta < \lambda^+$; so clauses $(\alpha), (\beta), (\gamma)$ hold. Next, let

\[N'_i = \cup \{ N'_j : j < i \} \]

and similarly clauses $(\delta), (\varepsilon), (\zeta)$ hold. Lastly, we shall prove clause (η) and assume toward contradiction that it fails; so $p \downarrow N'_i$ does not fork over N_i in particular $p \downarrow N_i \in \mathcal{S}^{bs}(N_i)$ hence for some $j < i$ the type $p \downarrow N'_i$ does not fork over $N_j \leq_R N_i$, (by $(E)(c)$ of Definition 2.1) hence by transitivity (for \mathfrak{A}), $p \downarrow N'_j$ does not fork over N_j hence by monotonicity $p \downarrow N'_j$ does not fork over N_j (see $(E)(b)$ of Definition 2.1) contradicting the induction hypothesis.

Lastly, clause (θ) is vacuous.

Third assume $i = j + 1$, so first choose N_i satisfying claim (θ) (with j, i here standing for $i, i + 1$ there), and $(\alpha), (\beta), (\gamma)$; this is possible by the L.S. property. Now N_i cannot witness “p does not fork over M_i” hence for some $N'_i \in K_\lambda$ we have

\[N_i \leq_R N'_i \leq_R M_\delta \]

and $p \downarrow N'_i$ forks over N_i; again by L.S. choose $N'_i \in K_\lambda$ such that $N'_i \leq_R M_\delta$ and $N^* \cup N_j \cup N'_i \cup N''_i \subseteq N'_i$, easily (N_i, N'_i) are as required.

Let $N_\delta = \bigcup_{i < \delta} N_i$, so by clause $(\beta), (\gamma)$ we have $N_\delta \leq_R M_\delta$ and by clause (α), as $\delta < \lambda^+$ we have $N_\delta \in K_\lambda$ and by clauses $(\delta) + (\theta)$ in the construction we have

\[i < \delta \Rightarrow N'_i = \cup \{ N'_i \cap M_{j+1} : j \in [i, \delta) \} \subseteq N \]

so by clause $(\delta), N^* \leq_R N_\delta \leq_R N_\delta$. Hence by the choice of $N^*, p \downarrow N_\delta \in \mathcal{S}^{bs}(N_\delta)$ and it does not fork over N^*. Now as $p \downarrow N_\delta \in \mathcal{S}^{bs}(N_\delta)$ by local character, i.e., clause $(E)(c)$ of Definition 2.1, for some $i < \delta, p \downarrow N_\delta$ does not fork over N_i (so $p \downarrow N_i \in \mathcal{S}^{bs}(N_i)$). Now $N_i \leq_R N'_i \leq_R M_\delta$ and by clause (θ) of the construction $N'_i \subseteq N_\delta$ hence $N_i \leq_R N'_i \leq_R N_\delta$ hence by monotonicity of non-forking (i.e. clause $(E)(b)$ of Definition 2.1), $p \downarrow N'_i \in \mathcal{S}^{bs}(N_i)$ does not fork over N_i. But this contradicts the choice of N'_i (i.e., clause (η) of the construction).

Case 2: $\delta = \text{cf}(\delta) > \lambda$

Recall that $N^* \leq_R M_\delta, N^*$ is from K_λ and $N^* \leq_R N \leq_R M_\delta$ & $N \in K_\lambda \Rightarrow p \downarrow N \in \mathcal{S}^{bs}(N)$. Now as $\delta = \text{cf}(\delta) > \lambda \geq \| N^* \|$ clearly for some $i < \delta$ we have

\[N^* \subseteq M_i \]

hence $N^* \leq_R M_i$ (hence $i < j < \delta \Rightarrow p \downarrow M_j \in \mathcal{S}^{bs}(M_j)$), and N^* witnesses that $p \in \mathcal{S}^{bs}_{\geq \delta}(M_\delta)$ does not fork over M_i so we are clearly done.

6) Let $N_0 \in K_\lambda, N_0 \leq_R M_0$ witness $p \downarrow M_0 \in \mathcal{S}^{bs}_{\geq \delta}(M_0)$. By the proof of part (4) clearly $i < \delta$ & $N_0 \leq_R N \in K_\lambda \& N \leq_R M_i \Rightarrow p \downarrow N$ does not fork over N_0. If $\text{cf}(\delta) > \lambda$ we are done, so assume $\text{cf}(\delta) \leq \lambda$. Let $N_0 \leq_R N^* \in K_\lambda$ & $N^* \leq_R M_\delta$, and we shall prove that $p \downarrow N^*$ does not fork over N_0, this clearly suffices. As in Case 1 in the proof of part (5) we can find $N_i \leq_R M_i$ for $i \in (0, \delta)$ such that $\langle N_i : i \leq \delta \rangle$ is \leq_R-increasing with i, each N_i belongs to \mathfrak{A}_λ and $N^* \cap M_i \subseteq N_{i+1}$,
hence $N^* \subseteq N_\delta := \bigcup_i N_i$. Now $N_\delta \leq_\mathfrak{R} M_\delta$ and as said as $i < \delta \Rightarrow p \upharpoonright N_i \in \mathcal{S}_{\geq 2}^b(N_i)$ does not fork over N_0 hence $p \upharpoonright N_\delta$ does not fork over N_0 and by monotonicity $p \upharpoonright N^*$ does not fork over N_0, as required. □

2.12 Lemma. If $\mu = \text{cf}(\mu) > \lambda$ and $M \leq_\mathfrak{R} N$ are in K_μ, then we can find $\leq_\mathfrak{R}$-representations \tilde{M}, \tilde{N} of M, N respectively such that:

(i) $N_i \cap M = M_i$ for $i < \mu$

(ii) if $i < j < \mu$ & $a \in N_i$ then

(a) $\text{tp}(a, M_i, N) \in \mathcal{S}_{\geq 2}^b(M_i) \iff \text{tp}(a, M_j, N) \in \mathcal{S}_{\geq 2}^b(M_j)$

$\iff \text{tp}(a, M, N)$ does not fork over M_i

$\iff \text{tp}(a, M_i, N)$ is a non-forking extension of $\text{tp}(a, M_i, N)$

(b) $M_i \leq_\mathfrak{R} N_i \leq_\mathfrak{R} N_j$ and $M_i \leq_\mathfrak{R} M_j \leq_\mathfrak{R} N_j$

(and obviously $M_i \leq_\mathfrak{R} N_j$ and $M_i \leq_\mathfrak{R} M_i \leq_\mathfrak{R} N_i \leq_\mathfrak{R} N$).

2.13 Remark. In fact for any representations \tilde{M}, \tilde{N} of M, N respectively, for some club E of μ the sequences $M \upharpoonright E, \tilde{N} \upharpoonright E$ are as above.

Proof. Let \tilde{M} be a $\leq_\mathfrak{R}$-representation of M. For $a \in N$ we define $S_a = \{\alpha < \mu : \text{tp}(a, M_\alpha, N) \in \mathcal{S}_{\geq 2}^b(M_\alpha)\}$. Clearly if $\delta \in S_a$ is a limit ordinal then for some $i(a, \delta) < \delta$ we have $i(a, \delta) \leq i < \delta \Rightarrow i \in S_a$ & (tp(a, M_i, N) does not fork over $M_i(a, \delta)$) by 2.11(5). So if S_a is stationary, then for some $i(a) < \mu$ the set $S'_a = \{\delta \in S_a : i(a, \delta) = i(a)\}$ is a stationary subset of λ hence by monotonicity we have $i(a) \leq i < \mu \Rightarrow \text{tp}(a, M_i, N)$ does not fork over $M_i(a)$. Let E_a be a club of μ such that: if S_a is not stationary (subset of μ) then $E_a \cap S_a = \emptyset$ and if S_a is not stationary then $S_a \cap E_a = \emptyset$.

Let \tilde{N} be a representation of N, and let

$$E^* = \{\delta < \mu : \exists \delta \cap M = M_\delta \text{ and } M_\delta \leq_\mathfrak{R} M, N_\delta \leq_\mathfrak{R} N \text{ and for every } a \in N_\delta \text{ we have } \delta \in E_a\}.$$

Clearly it is a club of μ and $\tilde{M} \upharpoonright E^*, \tilde{N} \upharpoonright E^*$ are as required. □

* * *

We may treat the lifting of $K_\lambda^{3,bs}$ as a special case of the “lifting” of \mathfrak{R}_λ to $\mathfrak{R}_{\geq \lambda} = (\mathfrak{R}_\lambda)^{up}$ in Claim 1.23; this may be considered a good exercise.
2.14 Claim. 1) \((K^3_{\lambda,bs}, \leq_{bs})\) is a \(\lambda\)-a.e.c.
2) \((K^3_{\geq s,bs}, \leq_{bs})\) is \((K^3_{\lambda,bs}, \leq_{bs})\)upp.

Remark. What is the class in 2.14(1)? Formally let
\[
\tau^+ = \{R[\ell] : R \text{ a predicate of } \tau_K, \ell = 1, 2\} \cup \{F[\ell] : F \text{ a function symbol from } \tau_K \text{ and } \ell = 1, 2\} \cup \{c\}
\]
where \(R[\ell]\) is an \(n\)-place predicate when \(R \in \tau\) is an \(n\)-place predicate and similarly \(F[\ell]\) and \(c\) is an individual constant. A triple \((M, N, a)\) is identified with the following \(\tau^+\)-model \(N^+\) defined as follows:

(a) its universe is the universe of \(N\)
(b) \(c^{N^+} = a\)
(c) \(R_{[2]}^{N^+} = R^N\)
(d) \(F_{[2]}^{N^+} = F^N\)
(e) \(R_{[1]}^{N^+} = R^M\)
(f) \(F_{[1]}^{N^+} = F^M\)

(if you do not like partial functions, extend them to functions with full domain by \(F(a_0, \ldots) = a_0\) when not defined if \(F\) has arity > 0, if \(F\) has arity zero it is an individual constant, \(F^{N^+} = F^N\) so no problem).

Proof. Left to the reader (in particular this means that \(K^3_{\lambda,bs}\) is closed under \(\leq_{bs}\)-increasing chains of length < \(\lambda^+\)). \(\square_{2.14}\)

Continuing 1.23, 1.26 note that (and see more in 2.20):

2.15 Lemma. Assume

(a) \(\mathcal{R}\) is an abstract elementary class with \(\text{LS}(\mathcal{R}) \leq \mu\)
(b) \(K'_{\leq \mu}\) is a class of \(\tau_K\)-model, \(K'_{\leq \mu} \subseteq K_{\leq \mu}\) is non-empty and closed under \(\leq_{\mathcal{R}}\)-increasing unions of length < \(\mu^+\) and isomorphisms (e.g. the class of \(\mu\)-superlimit models of \(\mathcal{R}_\mu\), if there is one)
(c) define \(K' := \{M \in K : M \text{ is a } \leq_{\mathcal{R}}\text{-directed union of members of } K'_{\mu}\} \cup K'_{\leq \mu}\)
(d) let \(\mathcal{R}' = (K', \leq_{\mathcal{R}} | K')\) so \(\leq_{\mathcal{R}}\) is \(\leq_{\mathcal{R}}\) \(K'\), so \(\mathcal{R}_{\leq \mu}' := (K'_{\leq \mu}, \leq_{\mathcal{R}} | K'_{\leq \mu})\); or \(\leq_{\mathcal{R}}\) is as in 1.23(1), see 1.23(4).
Then

(A) \(R' \) is an abstract elementary class, \(\text{LS}(R) \leq \text{LS}(R') \leq \mu \)

(B) If \(\mu \leq \lambda \) and \((R, \bigcup, \mathcal{I}^{\text{bs}}) \) is a good \(\lambda \)-frame and \(R'_\lambda \) has amalgamation and JEP and \(M \in R'_\lambda, JEP \) and \(M \in R'_\lambda \), \(\mathcal{I}(M) = \mathcal{I}(M) \), then \((R', \bigcup, \mathcal{I}^{\text{bs}}) \) (with \(\bigcup, \mathcal{I}^{\text{bs}} \) restricted to \(R' \)) is a good \(\lambda \)-frame

(C) in clause (B), instead \(M \in R'_\lambda, \mathcal{I}(M) = \mathcal{I}(M) \), it suffices to require: if \(M \in R'_\lambda, M \leq \mathcal{I}(M) \), \(N \in R'_\lambda \), \(p \in \mathcal{I}^{\text{bs}}(N) \), \(p \) does not fork over \(M \) and \(p \upharpoonright M \) is realized in some \(M', M \leq \mathcal{I}(M) \) then \(p \) is realized in some \(N', N \leq \mathcal{I}(N) \).

Remark. If in 2.15, \(K'_\mu \) is not closed under \(\leq \mathcal{I} \)-increasing unions, we can close it but then the “so \(R'_\leq \mu \ = \ldots \)” in clause (d) may fail.

Proof. Clause (A): As in 1.23.

Clauses (B),(C): Check. \(\square \)

Next we deal with some implications between the axioms in 2.1.

2.16 Claim. 1) In Definition 2.1 clause (E)(i) is redundant, i.e., follows from the rest, recalling

(E)(i) non-forking amalgamation:
if for \(\ell = 1, 2 \), \(M_0 \leq \mathcal{I} M_\ell \in K_\lambda, a_\ell \in M_\ell \setminus M_0, \text{tp}(a_\ell, M_0, M_\ell) \in \mathcal{I}^{\text{bs}}(M_0) \), then we can find \(f_1, f_2, M_3 \) satisfying \(M_0 \leq \mathcal{I} M_3 \in K_\lambda \) such that for \(\ell = 1, 2 \) we have \(f_\ell \) is a \(\leq \mathcal{I} \)-embedding of \(M_\ell \) into \(M_3 \) over \(M_0 \) and \(\text{tp}(f_\ell(a_\ell), f_{3-\ell}(M_{3-\ell}), M_3) \) does not fork over \(M_0 \).

2) In fact, proving part (1) we use Axioms (A),(C),(E)(b),(d),(f),(g) only.
Proof. By Axiom (E)(g) (existence) applied with $\text{tp}(a_2, M_0, M_2), M_0, M_1$ here standing for p, M, N there; there is q_1 such that:

(a) $q_1 \in \mathcal{S}^{\text{bs}}(M_1)$

(b) q_1 does not fork over M_0

(c) $q_1 \upharpoonright M_0 = \text{tp}(a_2, M_0, M_2)$.

By the definition of types and as \mathcal{R}_λ has amalgamation (by Axiom (C)) there are N_1, f_1 such that

(d) $M_1 \leq_{\mathcal{R}} N_1 \in K_\lambda$

(e) f_1 is a $\leq_{\mathcal{R}}$-embedding of M_2 into N_1 over M_0

(f) $f_1(a_2)$ realizes q_1 inside N_1.
Now consider Axiom (E)(f) (symmetry) applied with $M_0, N_1, a_1, f_1(a_2)$ here standing for M_0, M_3, a_1, a_2 there; now as clause (α) of (E)(f) holds (use M_1, N_1 for M_1, M_3') we get that clause (β) of (E)(f) holds which means that there are N_2, N_2^* (standing for M_3', M_2 in clause (β) of (E)(f)) such that:

\[(g)\] $N_1 \leq_R N_2 \in K_\lambda$

\[(h)\] $M_0 \cup \{f_1(a_2)\} \subseteq N_2^* \leq_R N_2$

\[(i)\] $\text{tp}(a_1, N_2^*, N_2) \in \mathcal{S}^{bs}(N_2^*)$ does not fork over M_0.

As K_λ has amalgamation (see Axiom (C)) and the definition of type and as $\text{tp}(f_1(a_2), M_0, f_1(M_2)) = \text{tp}(f_1(a_2), M_0, N_2) = \text{tp}(f_1(a_2), M_0, N_2^*)$, we can find N_3^*, f_2 such that

\[(j)\] $N_2^* \leq_R N_3^* \in K_\lambda$

\[(k)\] f_2 is a \leq_R-embedding\(^{11}\) of $f_1(M_2)$ into N_3^* over $M_0 \cup \{f_1(a_2)\}$.

As by clause (i) above $\text{tp}(a_1, N_3^*, N_2) \in \mathcal{S}^{bs}(N_3^*)$, so by Axiom (E)(g) (extension existence) there are N_3, f_3 such that

\[(l)\] $N_2 \leq_R N_3 \in K_\lambda$

\[(m)\] f_3 is a \leq_R-embedding of N_3^* into N_3 over N_2^*

\[(n)\] $\text{tp}(a_1, f_3(N_3^*), N_3) \in \mathcal{S}^{bs}(N_3^*)$ does not fork over N_2^*.

By Axiom (E)(d) (transitivity) using clauses (i) + (n) above we have

\[(o)\] $\text{tp}(a_1, f_3(N_3^*), N_3) \in \mathcal{S}^{bs}(N_3^*)$ does not fork over M_0.

Letting $f = f_3 \circ f_2 \circ f_1$ as $f(M_2) \subseteq f_3(N_3^*)$ by clauses (e), (k), (m) we have

\[(p)\] f is a \leq_R-embedding of M_2 into N_3 over M_0.

By (E)(b) (monotonicity) and clause (o) and clause (p)

\[(q)\] $\text{tp}(a_1, f(M_2), N_3) \in \mathcal{S}^{bs}(f(M_2))$ does not fork over M_0.

As $\text{tp}(f_1(a_2), M_1, N_3) = \text{tp}(f_1(a_2), M_1, N_1) = q_1$ does not fork over M_0 by clauses (b) + (f), and $f_2(f_1(a_2)) = f_1(a_2)$ by clause (k) and $f_3(f_1(a_2)) = f_1(a_2)$ by clauses (m) + (h), we get

\[(r)\] $\text{tp}(f(a_2), M_1, N_3) \in \mathcal{S}^{bs}(M_1)$ does not fork over M_0.

So by clauses (o) and (r) we have id$_{M_1}, f, N_3$ are as required on f_1, f_2, M_3 in our desired conclusion. \[\square_{2.16}\]

\(^{11}\)we could have chosen $N_3^* = N_2, f_2 = \text{id}_{f_1(M_2)}$
2.17 Claim. 1) In the local character Axiom (E)(c) of Definition 2.1 if \(S_{\lambda}^{bs} = S_{\lambda}^{na} \) recalling \(S_{\lambda}^{bs}(M) = \{ tp(a, M, N) : M \leq_s N \text{ and } a \in N \setminus M \} \) then it suffices to restrict ourselves to the case that \(\delta \) has cofinality \(\aleph_0 \) (i.e., the general case follows from this special case and the other axioms).

2) In fact, in part (1) we need only Axioms (E)(b), (h) and you may say (A), (D)(a), (E)(a).

3) If \(S_{\lambda}^{bs} = S_{\lambda}^{na} \) then the continuity Axiom (E)(h) follows from the rest.

4) In (3) actually we need only Axioms (E)(c), (local character) (d), (transitivity) and you may say (A), (D)(a), (E)(a).

Proof. 1), 2) Let \(\langle M_i : i \leq \delta + 1 \rangle \) be \(\leq_{\aleph, \lambda} \)-increasing, \(a \in M_{\delta + 1} \setminus M_\delta \) and without loss of generality \(\aleph_0 < \delta = \text{cf}(\delta) \), so for every \(\alpha \in S := \{ \alpha < \delta : \text{cf}(\alpha) = \aleph_0 \} \), \(tp(a, M_\alpha, M_{\delta + 1}) \in S_{\lambda}^{bs}(M_\alpha) \) by the assumption \(S_{\lambda}^{bs} = S_{\lambda}^{na} \) hence there is \(\beta_\alpha < \alpha \) such that \(tp(a, M_\alpha, M_{\delta + 1}) \) does not fork over \(M_{\beta_\alpha} \), so for some \(\beta < \delta \) the set \(S_1 = \{ \alpha \in S : \beta_\alpha = \beta \} \) is a stationary subset of \(\delta \). By Axiom (E)(b) (monotonicity) it follows that for any \(\gamma_1, \gamma_2 \) from \([\beta, \delta) \) the type \(tp(a, M_{\gamma_1}, M_{\delta + 1}) \in S_{\lambda}^{bs}(M_{\gamma_2}) \) does not fork over \(M_{\gamma_1} \). Now for any \(\gamma \in [\beta, \delta) \) the type \(tp(a, M_\beta, M_{\delta + 1}) \) does not fork over \(M_\gamma \) by applying (E)(h) (continuity) to \(\langle M_\alpha : \alpha \in [\gamma, \delta + 1] \rangle \) so we have finished.

3), 4) So assume \(\langle M_i : i < \delta \rangle \) is \(\leq_{\aleph, \lambda} \)-increasing continuous, all in \(K_\lambda \) and \(\delta \) is a limit ordinal, \(p \in S(M_\delta) \) and \(p_i := p \upharpoonright M_i \in S_{\lambda}^{bs}(M_i) \) does not fork over \(M_\delta = M_\delta \) for each \(i < \delta \); we should prove that \(p \in S_{\lambda}^{bs}(M_\delta) \) and \(p \) does not fork over \(M_\delta \).

First, for each \(i < \delta, p_i \in S_{\lambda}^{bs}(M_i) \) hence \(p_i \) is not realized in \(M_i \). As \(M_\delta = \bigcup \{ M_i : i < \delta \} \) clearly \(p \) is not realized in \(M_\delta \) so \(p \in S_{\lambda}^{na}(M_\delta) = S_{\lambda}^{bs}(M_\delta) \).

Second, by Ax(E)(c) the type \(p \) does not fork over \(M_j \) for some \(j < \delta \). As \(p_j = p \upharpoonright M_j \) does not fork over \(M_\delta \) (by assumption) by the transitivity Axiom (E)(d), we get that \(p \) does not fork over \(M_\delta \), as required. \(\square_{2.17} \)

Remark. So in some sense by 2.17 we can omit in 2.1, the local character Axiom (E)(c) or the continuity Axiom (E)(h) but not both. In fact (under reasonable assumptions) they are equivalent.

2.18 Claim. In Definition 2.1, Clause (E)(d), i.e., transitivity of non-forking follows from (A), (C), (D)(a), (b), (E)(a), (b), (e), (g).

Proof. As \(K_\lambda \) is an \(\lambda \)-a.e.c. with amalgamation, types as well as restriction of types are not only well defined but are “reasonable”.

So assume \(M_0 \leq_s M_0' \leq_s M_0'' \leq_s M_3, a \in M_3 \) and \(p'' := tp_s(a, M_0'', M_3) \) does not fork over \(M_0' \) and \(p' := tp_s(a, M_0', M_3) \) does not fork over \(M_0 \). Let
2.19 Claim. 1) The symmetry axiom \((E)(f)\) is equivalent to \((E)(f)'\) below if we assume \((A),(B),(C),(D),(a),(b),(E),(a),(b),(g)\) in Definition 2.1

\((E)(f)\) there are no \(M_\ell(\ell \leq 3)\) and \(a_\ell(\ell \leq 2)\) such that
(a) \(M_0 \leq_s M_1 \leq_s M_2 \leq_s M_3\)
(b) \(tp(a_\ell, M_\ell, M_{\ell+1})\) does not fork over \(M_0\) for \(\ell = 0, 1, 2\)
(c) \(tp_s(a_0, M_0, M_1) = tp_s(a_2, M_0, M_3)\)
(d) \(tp_s(\langle a_0, a_1\rangle, M_0, M_1) \neq tp_s(\langle a_2, a_1\rangle, M_0, M_1)\).

Proof. Easy.

* * *

A most interesting case of 2.15 is the following. In particular it tells us that the categoricity assumption is not so rare and it will have essential uses here.

2.20 Claim. If \(s = (\mathbb{R}, \bigcup_{\lambda} \mathcal{S}_{bs}^{\lambda})\) is a good \(\lambda\)-frame and \(M \in K_\lambda\) is a superlimit model in \(\mathbb{R}_\lambda\) and we define \(s' = s[M] = s[M] = (\mathbb{R}[s[M]], \bigcup_{\lambda} [s[M]], \mathcal{S}_{bs}[s[M]])\) by

\[
\mathbb{R}[s[M]] = \mathbb{R}[M], \text{ see Definition 1.25 so } \mathbb{R}_{s[M]} = \mathbb{R} \upharpoonright \{N : N \equiv M\}
\]

\[
\bigcup_{\lambda} [s[M]] = \{\langle M_0, M_1, a, M_3 \rangle \in \bigcup_{\lambda} : M_0, M_1, M_3 \in K_\lambda[M]\}
\]

\[
\mathcal{S}_{bs}[s[M]] = \{tp_{\mathbb{R}[M]}(a, M_0, M_1) : M_0 \leq_{\mathbb{R}} M_1, M_0 \in K_\lambda[M], N \in K_\lambda[M] \text{ and } tp_{\mathbb{R}}(a, M_0, M_1) \in \mathcal{S}_{bs}(M_0)\}.
\]
Then

(a) s' is a good λ-frame
(b) $R[s'] \subseteq R_{\geq \lambda}[s]
(c) \leq_{R[s']} = \leq_{R[s']} K[s']$
(d) $K_{\lambda}[s']$ is categorical.

Proof. Straight by 1.23, 1.26, 2.15. \hfill \Box_{2.20}
§3 Examples

We show here that the context from §2 occurs in earlier investigation: in [Sh 88] = Chapter I, [Sh 576] that is [Sh: E46], [Sh 48] (and [Sh 87a], [Sh 87b]). Of course, also the class K of models of a superstable (first order) theory T (working in C^{eq}), with $\leq_R = \preceq$ and $\mathcal{S}^{bs}(M)$ being the set of regular types (when we work in C^{eq}) or just “the set non-algebraic types” works, with $\bigcup(M_0, M_1, a, M_3)$ iff $M_0 \leq_R M_1 \leq_R M_3$ are in K_λ, $a \in M_3$ and $tp(a, M_1, M_3) \in \mathcal{S}^{bs}(M_1)$ does not fork over M_0, (in the sense of [Sh:c, III], of course). The reader may concentrate on 3.7 (or 3.4) below for easy life.

Note that 3.4 (or 3.5) will be used to continue [Sh 88] = Chapter I and also to give an alternative proof to the theorem of [Sh 87a], [Sh 87b] + (deducing “there is a model in \aleph_n” if there are not too many models in \aleph_ℓ for $\ell < n$) and note that 3.5 will be used to continue [Sh 576]. Many of the axioms from 2.1 are easy.

(A) The superstable prototype.

3.1 Claim. Assume T is a first order complete theory and λ be a cardinal $\geq |T| + \aleph_0$; let $K = K_{T, \lambda} = (K_{T, \lambda} \leq_R K_{T, \lambda})$ be defined by:

(a) $K_{T, \lambda}$ is the class of models of T of cardinality $\geq \lambda$

(b) $\leq_R K_{T, \lambda}$ is “being an elementary submodel”.

0) K is an a.e.c. with $L_S(K) = \lambda$.

1) If T is superstable, stable in λ, then $s = s_{T, \lambda}$ is a good λ-frame when $s = (K_{T, \lambda}, \mathcal{S}^{bs}, \bigcup)$ is defined by:

(c) $p \in \mathcal{S}^{bs}(M)$ iff $p = tp_{K_{T, \lambda}}(a, M, N)$ for some a, N such that $tp_{L(\tau_T)}(a, M, N)$, see Definition 3.2 is a non-algebraic complete 1-type over M, so $M \preceq N, a \in N \setminus M$

(d) $\bigcup(M_0, M_1, a, M_3)$ iff $M_0 \preceq M_1 \preceq M_3$ are in $K_{T, \lambda}$ and $a \in M_3$ and $tp_{L(\tau_T)}(a, M_1, M_3)$ is a type that does not fork over M_0 in the sense of [Sh:c, III].

2) Let $\kappa = \text{cf}(\kappa) \leq \lambda$. The model M is a (λ, κ)-brimmed model for $K_{T, \lambda}$ iff (i)+(ii) or (i)+(iii) where

(i) T is stable in λ

(ii) $\kappa = \text{cf}(\kappa) \geq \kappa(T)$ and M is a saturated model of T of cardinality λ
(iii) $\kappa = \text{cf}(\kappa) < \kappa(T)$ and there is a \prec-increasing continuous sequence $\langle M_i : i \leq \kappa \rangle$ (by \prec, equivalently by \leq_s) such that $M = M_\kappa$ and $(M_{i+1}, c)_{c \in M_i}$ is saturated for $i < \kappa$.

2A) So there is a (λ, κ)-brimmed model for $\mathcal{R}_{T, \lambda}$ iff T is stable in λ.

3) Assume T is superstable first order complete theory stable in λ and we define $s^\text{reg}_{T, \lambda}$ as above only $\mathcal{J}^\text{bs}(M)$ is the set of regular types $p \in \mathcal{J}_{\mathcal{R}_T}(M)$ and we work in T^eq. Then $s^\text{reg}_{T, \lambda}$ is a good λ-frame.

5) For $\kappa \leq \lambda$ or $\kappa = \aleph_\varepsilon$ (abusing notation), $s^\text{reg}_{T, \lambda}$ is defined similarly restricting ourselves to F^ε_n-saturated models. (Let $s^0_{T, \lambda} = s_{T, \lambda}$.) If T is superstable, stable in λ then $s^\text{reg}_{T, \lambda}$ is a good λ frame.

Remark. We can replace (c) of 3.1 by:

$$(c)' \quad p \in \mathcal{J}^\text{bs}(M) \text{ iff } p = \text{tp}_{\mathcal{R}_{T, \lambda}}(a, M, N) \text{ for some } a, N \text{ such that } \text{tp}_{L(\tau_T)}(a, M, N)$$

is a complete 1-type over M except that clause (D)(b) of Definition 2.1 fail. In fact the proofs are easier in this case; of course, the two meaning of types essentially agree.

Proof. 0),1),2),2A),3) Obvious (see [Sh:c]).
4) As in (1), except density of regular types which holds by [HuSh 342].
5) Also by [Sh:c]. $\square_{3.1}$

Recall

3.2 Definition. 1) For a logic \mathcal{L} and vocabulary τ, $\mathcal{L}(\tau)$ is the set of \mathcal{L}-formulas in this vocabulary.
2) $\mathcal{L} = \mathcal{L}_{\omega, \omega}$ is first order logic.
3) A theory in $\mathcal{L}(\tau)$ is a set of sentences from $\mathcal{L}(\tau)$ which we assume has a model if not said otherwise. Similarly in a language $L(\subseteq \mathcal{L}(\tau))$

Very central in Chapter I (and Chapter IV) but peripheral here (except when in (parts of) §3 we continue Chapter I in our framework) is:

3.3 Definition. Let T_1 be a theory in $\mathcal{L}(\tau_1)$, $\tau \subseteq \tau_1$ vocabularies, Γ a set of types in $\mathcal{L}(\tau_1)$; (i.e. for some m, a set of formulas $\varphi(x_0, \ldots, x_{m-1}) \in \mathcal{L}(\tau_1)$).
1) $\text{EC}(T_1, \Gamma) = \{ M : M \text{ a } \tau_1\text{-model of } T_1 \text{ which omits every } p \in \Gamma \}$.

(So without loss of generality τ_1 is reconstructible from T_1, Γ) and
PC_\tau(T_1, \Gamma) = PC(T_1, \Gamma, \tau) = \{M : M \text{ is a } \tau\text{-reduct of some } M_1 \in \text{EC}(T_1, \Gamma)\}.

2) We say that \mathcal{R} is PC^\mu_\lambda or PC_{\lambda, \mu} if for some \(T_1, T_2, \Gamma_1, \Gamma_2\) and \(\tau_1\) and \(\tau_2\) we have: \((T_\ell, a \text{ first order theory in the vocabulary } \tau_\ell, \Gamma_\ell \text{ a set of types in } L(\tau_\ell) \text{ and})\)

\[K = PC(T_1, \Gamma_1, \tau) \text{ and } \{(M, N) : M \leq_{R} N \text{ and } M, N \in K\} = PC(T_2, \Gamma_2, \tau') \]

where \(\tau' = \tau_R \cup \{P\}\), \((P \text{ a new one place predicate and } (M, N) \text{ means the } \tau'\text{-model } N^+ \text{ expanding } N \text{ where } P^{N^+} = |M|)\) and \(|T_\ell| \leq \lambda, |\Gamma_\ell| \leq \mu \text{ for } \ell = 1, 2\).

3) If \(\mu = \lambda\), we may omit \(\mu\).

(B) An abstract elementary class which is PC_{\aleph_0}.

3.4 Theorem. Assume \(2^{\aleph_0} < 2^{\aleph_1}\) and consider the statements

(a) \(\mathcal{R}\) is an abstract elementary class with LS(\(\mathcal{R}\)) = \(\aleph_0\) (the last phrase follows by clause (b)) and \(\tau = \tau(\mathcal{R})\) is countable

(b) \(\mathcal{R}\) is PC_{\aleph_0}, equivalently for some sentences \(\psi_1, \psi_2 \in L_{\omega_1, \omega}(\tau_1)\) where \(\tau_1\) is a countable vocabulary extending \(\tau\) we have

\[K = \{M_1 \mid \tau : M_1 \text{ a model of } \psi_1\} \]

\[\{(N, M) : M \leq_{R} N\} = \{(N_1 \mid \tau, M_1 \mid \tau) : (N_1, M_1) \text{ a model of } \psi_2\} \]

(c) \(1 \leq I(\aleph_1, \mathcal{R}) < 2^{\aleph_1}\)

(d) \(\mathcal{R}\) is categorical in \(\aleph_0\), has the amalgamation property in \(\aleph_0\) and is stable in \(\aleph_0\)

(e) like (d) but “stable in \(\aleph_0\)” is weakened to: \(M \in \mathcal{R}_{\aleph_0} \Rightarrow |\mathcal{F}(M)| \leq \aleph_1\)

\(\mathcal{R}\) is a set of types in \(L_{\omega_1, \omega}\)-equivalent and \(M \leq_R N \Rightarrow M \prec_{L_{\omega_1, \omega}} N\).

For \(M \in \mathcal{R}_{\aleph_0}\) we define \(\mathcal{R}_M\) as follows: the class of members is

\[\{N \in K : N \equiv_{L_{\omega_1, \omega}} M\} \text{ and } N_1 \leq_{R_M} N_2 \iff N_1 \leq_R N_2 \& N_1 \prec_{L_{\omega_1, \omega}} N_2. \]

1) Assume \((\alpha) + (\beta) + (\gamma), \text{ then for some } M \in \mathcal{R}_{\aleph_0} \text{ the class } \mathcal{R}_M \text{ satisfies } (\alpha) + (\beta) + (\gamma) + (\delta^- + (\varepsilon))\); in fact any \(M \in \mathcal{R}_{\aleph_0}\) such that \((\mathcal{R}_M)^{N_1} \neq \emptyset\) will do and there are such \(M \in K_{\aleph_0}\). Moreover, if \(\mathcal{R}\) satisfies (d) then also \(\mathcal{R}_M\) satisfies it; also trivially \(K'_M \subseteq K\) and \(\leq_{R_M} \subseteq \leq_R\).

1A) Also there is \(\mathcal{R}'\) such that: \(\mathcal{R}'\) satisfies \((\alpha) + (\beta) + (\gamma) + (\delta) + (\varepsilon)\), and for every \(\mu\) we have \(K'_{\mu} \subseteq K_{\mu}\). In fact, in the notation of I.? for every \(\alpha < \omega_1\) we can choose \(\mathcal{R}' = \mathcal{R}_{D_\alpha}\).
2) Assume \((\alpha) + (\beta) + (\gamma) + (\delta)\). Then \((R, \mathcal{U}, \mathcal{F}_{bs})\) is a good \(\aleph_0\)-frame for some \(\mathcal{U}\) and \(\mathcal{F}_{bs}\).

3) In fact, in part (2) we can choose \(\mathcal{F}_{bs}(M) = \{p \in \mathcal{F}(M) : p \text{ not algebraic}\}\) and \(\mathcal{U}\) is defined by I.? (the definable extensions).

Remark. 1) In I.? we use the additional assumption \(\bar{I}(\aleph_2, K) < \mu_{\text{unif}}(\aleph_2, 2^{\aleph_1})\). But this Theorem is not used here!

2) Note that \(\mathcal{R}'_M\) is related to \(K[\mathcal{M}]\) from Definition 1.25 but is different.

3) In the proof we relate the types in the sense of \(\mathcal{S}(M)\), and those in I.§ 5. Now in I.§5 we have lift types, from \(K\aleph_0\) to any \(K\mu\), i.e., define \(D(N)\) for \(N \in \mathcal{R}_\mu\). In \(\mu > \aleph_0\), in general we do not know how to relate them to types \(\mathcal{S}(N)\). But when \(s^+\) is defined (in the “successful” cases, see §8 here and III§1) we can get the parallel claim.

Discussion: 1) What occurs if we do not pass in 3.4 to the case “\(D(N)\) countable for every \(N \in K\aleph_0\)”? If we still assume “\(K\) categorical in \(\aleph_0\)” then as \(|D(N_0)| \leq \aleph_1\), if we assume “there is a superlimit model in \(K\aleph_1\)” we can find a good \(\aleph_1\)-frame \(s\); this assumption is justified by I.?, I.?.

Proof. 1) Note that for any \(M \in K\aleph_0\), the class \(\mathcal{R}'_M\) satisfies \((\alpha), (\beta), (\varepsilon)\) and it is categorical in \(\aleph_0\) and \((K'_M)_\mu \subseteq K_\mu\) hence \(\bar{I}(\mu, K'_M) \leq \bar{I}(\mu, K)\). By Theorem I.?, (note: if you use the original version (i.e., [Sh 88]) by its proof or use it and get a less specified class with the desired properties) for some \(M \in K\aleph_0\) we have \((\mathcal{R}'_M)_{\aleph_1} \neq \emptyset\). By I.? we get that \(\mathcal{R}'_M\) has amalgamation in \(\aleph_0\) and by Chapter I almost we get that in \(\mathcal{R}'_M\) the set \(\mathcal{S}(M)\) is of small cardinality \((\leq \aleph_1)\); be careful - the types there are defined differently than here, but by the amalgamation (in \(\aleph_0\)) and the omitting types theorem in this case they are the same, see more in the proof of part (3) below. So by I.?I.? we have \(M \in (\mathcal{R}'_\mu)_{\aleph_0} \Rightarrow |\mathcal{S}_{\mathcal{R}'_\mu}(M)| \leq \aleph_1\). Also the second sentence in (1) is easy.

1A) Use I.?I.?.

In more detail, (but not much point in reading without some understanding of I.§5, however we should not use I.? as long as we do not strengthen our assumptions) by part (1) we can assume that clauses \((\delta)^{-} + (\varepsilon)\) hold. (Looking at the old version [Sh 88] of Chapter I remember that there \(<\) means \(\leq\).) We can find \(D_\alpha = D^*_\alpha, \alpha < \omega_1\), which is a good countable diagram (see Definition I.? and Fact I.? or I.?, I.?). So in particular (give the non-maximality of models below) such that for some countable \(M_0 <_R M_1 <_R M_2\) we have \(M_n\) is \((D^*(M_\ell), \aleph_0)\)-homogeneous for \(\ell < m \leq 2\). In I.? we define \((K_{D_*}, \leq_{D_*})\). By I.? the pair \((K_{D_*}, \leq_{D_*})\) is an abstract elementary
class (the choice of \(D \) a part, e.g. transitivity = Axiom II which holds by the existence of the \(M_i \)’s above and I.?) categorical in \(\aleph_0 \) and no maximal countable model (by \(\leq_{D^*} \), see I.?(2). Now \(\aleph_0 \)-stability holds by I.?(2) and the equality of the three definitions of types in the proof of parts (2),(3) and \(K_{D^*} \subseteq K \) so we are done by part 3) below.

2),3) The first part of the proof serves also part (1) of the theorem so we assume \((\delta)^- \) instead of \((\delta) \). We should be careful: the notion of type has three relevant meanings here. For \(N \in K_{\aleph_0} \) the three definitions for \(S_{<\omega}(N) \) and of \(tp(\bar{a}, N, M) \) when \(\bar{a} \in \omega^> M, N \leq M \in K_{\aleph_0} \) (of course we can use just 1-types) are:

\((\alpha) \) the one we use here (recall 1.9) which uses elementary mappings; for the present proof we call them \(\mathcal{S}_{0}^{<\omega}(M), tp_{0}(\bar{a}, M, N) \)

\((\beta) \) \(S_1(N) \) which is (recall: materialization is close to but different from realize)

\(D(N) = \{ p : p \) a complete \(L_{\aleph_1, \aleph_0}(N) \)-type over \(N \)

(\text{so in each formula only finitely many parameters from } N \text{ appear})

\text{such that for some } M, \bar{a} \in \omega^> M, \bar{a} \text{ materializes } p \text{ in } (M, N) \}\}

(“materializing a type” is defined in I.?2) so

\(S_1(N) = \{ tp_1(\bar{a}, N, M) : \bar{a} \in \omega^> M \text{ and } N \leq M \in K_{\aleph_0} \} \)

where

\(tp_1(\bar{a}, N, M) = \{ \varphi(\bar{x}) \in L_{\aleph_1, \aleph_0}(N) : M \models^{\aleph_1} \varphi(\bar{a}) \} \)

(see I.?1 on the meaning of this forcing relation).

\((\gamma) \) \(S_2(N) \) which is

\(D^*(N) = \{ p : p \) a complete \(L_{\aleph_1, \aleph_0}(N; N) \)-type over \(N \)

(\text{so in each formula all members of } N \text{ may appear})

\text{such that for some } M \in K_{\aleph_0} \text{ and}

\(\bar{a} \in \omega^> M \text{ satisfying } N \leq M \text{ the sequence}

\(\bar{a} \text{ materializes } p \text{ in } (M, N) \}\}

so

\(S_2(N) = \{ tp_2(\bar{a}, N, M) : \bar{a} \in \omega^> M \text{ and } N \leq M \in K_{\aleph_0} \} \)

\(tp_2(\bar{a}, N, M) = \{ \varphi(\bar{x}) \in L_{\aleph_1, \aleph_0}(N, N) : M \models^{\aleph_1} \varphi(\bar{a}) \} \).
As we have amalgamation in K_{\aleph_0}, it is enough to prove for $\ell, m < 3$ that

\[(*)_{\ell,m} \text{ if } k < \omega, N \leq_R M \in K_{\aleph_0} \text{ and } \bar{a}, \bar{b} \in ^k M, \text{ then}
\]

\[tp_\ell(\bar{a}, N, M) = tp_\ell(\bar{b}, N, M) \Rightarrow tp_m(\bar{a}, N, M) = tp_m(\bar{b}, N, M).
\]

Now $(*)_{2,1}$ holds trivially (more formulas) and $(*)_{1,2}$ holds by I.?. By amalgamation in K_{\aleph_0}, if $tp_0(\bar{a}, N, M) = tp_0(\bar{b}, N, M)$, then for some $M', M \leq_R M' \in K_{\aleph_0}$ there is an automorphism f of M' over N such that $f(\bar{a}) = \bar{b}$, so trivially $(*)_{0,1}, (*)_{0,2}$ hold (we use the facts that $tp_\ell(\bar{a}, N, M)$ is preserved by isomorphism and by replacing M by M_1 if $M \leq_R M_2 \in K_{\aleph_0}$ and $N \cup \bar{a} \subseteq M_1 \leq_R M_2$). Lastly we prove $(*)_{2,0}$.

So $N \leq_R M \in K_{\aleph_0}$, hence $tp_2(\bar{c}, N, M) : \bar{c} \in \omega^\ast \Rightarrow \bar{c} \in M^\ast$ is countable so by I.?(f) for some countable $\alpha < \omega_1$ we have \[\{tp_2(\bar{c}, N, M) : \bar{c} \in \omega^\ast \} \subseteq D^\ast(N).
\]

Now there is $M' \in K_{\aleph_0}$ such that $M \leq_R M', M'$ is $(D^\ast(N), \aleph_0)^\ast$-homogeneous (by I.?(e) see Definition I.?) hence M' is $(D^\ast_N(N), \aleph_0)^\ast$-homogeneous (by I.?(f)), and $tp_2(\bar{a}, N, M') = tp_2(\bar{b}, N, M')$ by I.?(3), (N here means N_0 there, that is increasing the model preserve the type).

Lastly by Definition I. there is an automorphism f of M' over N mapping \bar{a} to \bar{b}, so we have proved $(*)_{2,0}$, so the three definitions of type are equivalent.

Now we define for $M \in K_{\aleph_0}$:

(a) $\mathcal{S}^{bs}(M) = \{p \in \mathcal{S}_R(M) : p \text{ not algebraic}\}$

(b) for $M_0, M_1, M_3 \in K_{\aleph_0}$ and an element $a \in M_3$ we define:

\[\| (M_0, M_1, a, M_3) \iff M_0 \leq_R M_1 \leq_R M_3 \text{ and } a \in M_3 \setminus M_1\]

\[tp_1(a, M_1, M_3) = gtp(a, M_1, M_3) \text{ in Chapter I's notation}
\]

is definable over some finite $\bar{b} \in \omega^\ast M_0$ (equivalently is preserved by every automorphism of M_1 over \bar{b} (see I.?)

equivalently $gtp(a, M_1, M_3)$ is the stationarization of $gtp(a, M_0, M_3)$.

Now we should check the axioms from Definition 2.1.

Clause (A): By clause (a) of the assumption.

Clauses (B),(C): By clause (\(\delta\)) or (\(\delta^-\)) of the assumption except “the superlimit $M \in K_{\aleph_0}$ is not \leq_R-maximal” which holds by clause (\(\gamma\)) + (\(\delta\)) or (\(\gamma\)) + (\(\delta^-\)).

Clause (D): By the definition (note that about clause (d), bs-stability, that it holds by assumption (\(\delta\)), and about clause (c), i.e., the density is trivial by the way we have defined \mathcal{S}^{bs}).

Subclause (E)(a): By the definition.

Subclause (E)(b)(monotonicity):

Let $M_0 \leq_R M_0' \leq_R M_1' \leq_R M_1 \leq_R M_3 \leq_R M_3'$ be all in K_{\aleph_0} and assume $\| (M_0, M_1, a, M_3)$. So $M_0' \leq_R M_1' \leq_R M_3 \leq_R M_3'$ and $a \in M_3 \setminus M_1 \subseteq M_3' \setminus M_1'$. Now
by the assumption and the definition of \(\bigcup \), for some \(\bar{b} \in \omega^>(M_0) \), \(\text{gtp}(a, M_1, M_3) \) is definable over \(\bar{b} \). So the same holds for \(\text{gtp}(a, M'_1, M_3) \) by I.?, in fact (with the same definition) and hence for \(\text{gtp}(a, M'_1, M'_3) = \text{gtp}(a, M'_1, M_3) \) by I.?\((3) \), so as \(\bar{b} \in \omega^>(M_0) \subseteq \omega^>(M'_0) \) we have gotten \(\bigcup(M'_0, M'_1, a, M'_3) \).

For the additional clause in the monotonicity Axiom, assume in addition \(M'_1 \cup \{a\} \subseteq M'_3 \leq K_{\aleph_0} \) again by I.?\((3) \) clearly \(\text{gtp}(a, M'_1, M'_3) = \text{gtp}(a, M'_1, M_3) \), so (recalling the beginning of the proof) we are done.

Subclause (E)(c)(local character):

So let \(\langle M_i : i \leq \delta + 1 \rangle \) be \(\leq \aleph \)-increasing continuous in \(K_{\aleph_0} \) and \(a \in M_{\delta + 1} \) and \(\text{tp}(a, M_\delta, M_{\delta + 1}) \in \mathcal{S}^{bs}(M_\delta) \), so \(a \notin M_\delta \) and \(\text{gtp}(a, M_\delta, M_{\delta + 1}) \) is definable over some \(\bar{b} \in \omega^>(M_\delta) \) by I.?.

As \(\bar{b} \) is finite, for some \(\alpha < \delta \) we have \(\bar{b} \subseteq M_\alpha \), hence we have \(\text{tp}(a, M_\beta, M_{\delta + 1}) \in \mathcal{S}^{bs}(M_\beta) \) trivially and \(\text{tp}(a, M_\delta, M_{\delta + 1}) \) does not fork over \(M_\beta \).

Subclause (E)(d)(transitivity):

By I.?\((2) \) or even better I.?.

Subclause (E)(e)(uniqueness):

Holds by the Definition I.?.

Subclause (E)(f)(symmetry):

By I.? + uniqueness we get (E)(f). Actually I.? gives this more directly.

Subclause (E)(g)(extension existence):

By I.? (i.e., by I.? + all \(M \in K_{\aleph_0} \) are \(\aleph_0 \)-homogeneous).

Alternatively, see I.?.

Subclause (E)(h)(continuity):

Suppose \(\langle M_\alpha : \alpha \leq \delta \rangle \) is \(\leq \aleph \)-increasingly continuous, \(M_\alpha \in K_{\aleph_0}, \delta < \omega_1, p \in \mathcal{S}(M_\delta) \) and \(\alpha < \delta \Rightarrow p \upharpoonright M_\alpha \) does not fork over \(M_0 \). Now we shall use (E)(c)+(E)(d).

As \(p \upharpoonright M_\alpha \in \mathcal{S}^{bs}(M_\alpha) \) clearly \(p \upharpoonright M_\alpha \) is not realized in \(M_\alpha \) hence \(p \) is not realized in \(M_\alpha \); as \(M_\delta = \bigcup_{\alpha < \delta} M_\alpha \) necessarily \(p \) is not realized in \(M_\delta \), hence \(p \) is not algebraic.

So \(p \in \mathcal{S}^{bs}(M_\delta) \). For some finite \(\bar{b} \in \omega^>(M_\delta), p \) is definable over \(\bar{b} \), let \(\alpha < \delta \) be such that \(\bar{b} \in \omega^>(M_\alpha) \), so as in the proof of (E)(c), (or use it directly) the type \(p \) does not fork over \(M_\alpha \). As \(p \upharpoonright M_\alpha \) does not fork over \(M_0 \), by (E)(d) we get that \(p \) does not fork over \(M_0 \) as required. Actually we can derive (E)(h) by 2.17.

Subclause (E)(i)(non-forking amalgamation):

One way is by I.?; (note that in I.? we get more, but assuming, by our present notation \(\hat{I}(\aleph_2, K) < \mu_{wd}(\aleph_2) \); but another way is just to use 2.16.

\(\square \)
(C) The uncountable cardinality quantifier case, $\mathbb{L}_{\omega_1,\omega}(Q)$.

Now we turn to sentences in $\mathbb{L}_{\omega_1,\omega}(Q)$.

3.5 Conclusion. Assume $\psi \in \mathbb{L}_{\omega_1,\omega}(Q)$ and $1 \leq \dot{I}(\aleph_1, \psi) < 2^{\aleph_1}$ and $2^{\aleph_0} < 2^{\aleph_1}$.

Then for some abstract elementary classes $\mathcal{K}, \mathcal{K}^+$ (note $\tau_\psi \subset \tau_{\mathcal{K}} = \tau_{\mathcal{K}^+}$) we have:

(a) \mathcal{K} satisfies $(\alpha), (\beta), (\delta), (\varepsilon)$ from 3.4 with $\tau_\mathcal{K} \supseteq \tau_\psi$ countable (for (γ), (b) is a replacement)

(b) for every $\mu > \aleph_0$, $\dot{I}(\mu, \mathcal{K}(\aleph_1\text{-saturated})) \leq \dot{I}(\mu, \psi)$, where $^{\text{12}}$ $\aleph_1\text{-saturated}$

is well defined as \mathcal{K}_{\aleph_0} has amalgamation, see 1.14

(c) for some $[\mathcal{K}], \mathcal{K}^{bs}$ (and $\lambda = \aleph_0$), the triple $(\mathcal{K}, [\mathcal{K}], S^{bs})$ is as in 3.4(2) so is a good \aleph_0-frame

(d) every \aleph_1-saturated member of \mathcal{K} belongs to \mathcal{K}^+ and there is an \aleph_1-saturated member of \mathcal{K} (and naturally it is uncountable, even of cardinality \mathcal{K})

(e) \mathcal{K}^+ is an a.e.c., has LS number \aleph_1 and $\{M \upharpoonright \tau_\psi : M \in \mathcal{K}^+\} \subseteq \{M : M \models \psi\}$ and every τ-model M of ψ has a unique expansion in \mathcal{K}^+ hence $\mu \geq \aleph_1 \Rightarrow \dot{I}(\mu, \psi) = \dot{I}(\mu, \mathcal{K}^+)$ and \mathcal{K}^+ is the class of models of some complete $\psi \in \mathbb{L}_{\omega_1,\omega}(Q)$.

Proof. Essentially by [Sh 48] and 3.4.

I feel that upon reading [Sh 48] the proof should not be inherently difficult, much more so having read 3.4, but will give full details.

Recall Mod(ψ) is the class of τ_ψ-models of ψ. We can find a countable fragment \mathcal{L} of $\mathbb{L}_{\omega_1,\omega}(Q)(\tau_\psi)$ to which ψ belongs and a sentence $\psi_1 \in \mathcal{L} \subseteq \mathbb{L}_{\omega_1,\omega}(Q)(\tau_\psi)$ such that ψ_1 is “nice” for [Sh 48, Definition 3.1,3.2], [Sh 48, Lemma 3.1]

\begin{itemize}
 \item[(\dagger_1)]
 \begin{itemize}
 \item[(a)] ψ_1 has uncountable models
 \item[(b)] $\psi_1 \vdash \psi$, i.e., every model of ψ_1 is a model of ψ
 \item[(c)] ψ_1 is $\mathbb{L}_{\omega_1,\omega}(Q)$-complete
 \item[(d)] every model $M \models \psi_1$ realizes just countably many complete
 $\mathbb{L}_{\omega_1,\omega}(Q)(\tau_\psi)$-types (of any finite arity, over the empty set), each isolated by a formula in \mathcal{L}.
 \end{itemize}
\end{itemize}

The proof of $\dagger_1(d)$ is sketched in Theorem 2.5 of [Sh 48]. The reference to Keisler [Ke71] is to the generalization of theorems 12 and 28 of Keisler’s book from $\mathbb{L}_{\omega_1,\omega}$ to $\mathbb{L}_{\omega_1,\omega}(Q)$, see I.?.

Let $^{\text{12}}$ much less than saturation suffice, like “obeying” $<^*$
Toward defining \mathfrak{R}, let $\tau_\mathfrak{R} = \tau_\psi \cup \{ R_{\varphi(x)} : \varphi(x) \in \mathcal{L} \}$, $\ell g(x)$-predicate and let $\psi_2 = \psi_1 \land \{ (\forall \bar{y})(R_{\varphi(x)}(\bar{y}) = \varphi(\bar{y}) : \varphi(x) \in \mathcal{L} \}$. For every $M \in \text{Mod}(\psi)$ we define M^+ by

$\mathfrak{R}_0 = (\text{Mod}(\psi), \prec_{\mathfrak{R}})$,

$\mathfrak{R}_1 = (\text{Mod}(\psi_1), \prec_{\mathfrak{R}})$

\mathfrak{R}_ℓ is an a.e.c. with L.S. number \aleph_1 for $\ell = 0, 1$.

Clearly

So it is natural to define \mathfrak{R}:

$\mathfrak{R}_0^+ = \{ \{ M^+ : M \in \text{Mod}(\psi) \}, \prec_{L_S} \}$ is an a.e.c. with L.S. \aleph_1.

(a) $\mathfrak{R}^+_0 = \{ \{ M^+ : M \in \text{Mod}(\psi_1) \}, \prec_{L_S} \}$ is an a.e.c. with L.S. \aleph_1.

(b) $\mathfrak{R}^+_1 = \{ \{ M^+ : M \in \text{Mod}(\psi_1) \}, \prec_{L_S} \}$ is an a.e.c. with L.S. \aleph_1.

Clearly

\mathfrak{R}_1 if $M \models \psi_1$ then M^+ is an atomic model of the complete first-order theory T_{ψ_1} where T_{ψ_1} is the set of first order consequences in $L(\tau_\mathfrak{R})$ of ψ_2.

So it is natural to define \mathfrak{R}:

(a) $N \in \mathfrak{R}$ iff

(\alpha) N is a $\tau_\mathfrak{R}$-model which is an atomic model of T_{ψ_1}

(\beta) if $\psi_1 \models (\forall \bar{x})[\varphi_1(\bar{x}) = (Qy)\varphi_2(y, \bar{x})]$ and $\varphi_1, \varphi_2 \in \mathcal{L}$ and $N \models \neg R_{\varphi_1(x)}[\bar{a}]$ then $\{ b \in N : N \models R_{\varphi_2(y, \bar{x})}(b, \bar{a}) \}$ is countable

(b) $N_1 \preceq \mathfrak{R} N_2$ iff ($N_1, N_2 \in K, N_1 \prec L N_2$ equivalently $N_1 \subseteq N_2$ and) for $\varphi_1(\bar{x}), \varphi_2(y, \bar{x})$ as in subclause (\beta) of clause (a) above, if $\bar{a} \in \ell g(x)(N_1)$, $N_1 \models \neg R_{\varphi_1(x)}[\bar{a}]$ and $b \in N_2 \setminus N_1$ then $N_2 \models \neg R_{\varphi_2(y, \bar{x})}[b, \bar{a}]$.

Observe

$N \in \mathfrak{R}$ iff N is an atomic $\tau_\mathfrak{R}$-model of the first order $L(\tau_\mathfrak{R})$-consequences ψ_2 (i.e. of ψ and every $\tau_\mathfrak{R}$ sentence of the form $\forall \bar{x}[R_{\varphi}(\bar{x}) \equiv \varphi(\bar{x})]$) and clause (\beta) of $\oplus_7(a)$ holds.

\mathfrak{R} is an a.e.c. with L.S. \aleph_0 and is PC\aleph_0, \mathfrak{R} is categorical in \aleph_0 (and $\preceq_\mathfrak{R}$ is called \leq^* in [Sh 48, Definition 3.3]).

Note that $\mathfrak{R}_1, \mathfrak{R}_1^+$ has the same number of models, but \mathfrak{R} has “more models” than \mathfrak{R}_1^+, in particular, it has countable members and \mathfrak{R}_0 has at least as many models as \mathfrak{R}_1. For $N \in \mathfrak{R}$ to be in $\mathfrak{R}_1^+ = \{ M^+ : M \in \text{Mod}(\psi_1) \}$ what is missing is the other implications in $\oplus_7(a)(\beta)$.

This is very close to 3.4, but \mathfrak{R} may have many models in \aleph_1 (as Q is not necessarily interpreted as expected). However,

\begin{enumerate}
 \item[\circledast_{10}] constructing $M \in K_{\aleph_1}$ by the union as $\leq\mathcal{R}$-increasing continuous chain $\langle M_i : i < \omega_1 \rangle$, to make sure $M \in K_{\aleph_1}^+$ it is enough that for unboundedly many $\alpha < \omega_1$, $M_\alpha <^{**} M_{\alpha+1}$ and $(\forall M \in K_{\aleph_0})(\exists N \in K_{\aleph_0})(M <^{**} N)$
 \item[\circledast_{11}] for $M, N \in \mathfrak{R}$, $M <^{**} N$ iff
 \begin{enumerate}
 \item[(i)] $M \leq_{\mathcal{R}} N$
 \item[(ii)] in $\circledast_7(b)$ also the inverse direction holds.
 \end{enumerate}
\end{enumerate}

Does \mathfrak{R} have amalgamation in \aleph_0? Now [Sh 48, Lemma 3.4], almost says this but it assumed \Diamond_{\aleph_1} instead of $2^{\aleph_0} < 2^{\aleph_1}$; and I.? almost says this, but the models are from \mathfrak{R}_{\aleph_1} rather than $\mathfrak{R}_{\aleph_1}^+$ but I.? fully says this using the so called $K_{\aleph_1}^F$, see Definition I.? and using \mathbf{F} such that $M \in K_{\aleph_0} \Rightarrow M <^{**} \mathbf{F}(N) \in K_{\aleph_0}$; or pedantically $\mathbf{F} = \{(M, N) : M <^{**} N \text{ are from } \mathfrak{R}\}$. So

\begin{enumerate}
 \item[\circledast_{12}] \mathfrak{R} has the amalgamation property in \aleph_0.
\end{enumerate}

It should be clear by now that we have proved clauses (a),(b),(d),(e) of 3.5 using \mathfrak{R}. We have to prove clause (c); we cannot quote 3.4 as clause (γ) there is only almost true. The proof is similar to (but simpler than) that of 3.4 quoting [Sh 48] instead of Chapter I; a marked difference is that in the present case the number of types over a countable model is countable (in \mathfrak{R}) whereas in Chapter I it seemingly could be \aleph_1, generally [Sh 48] situation is more similar to the first order logic case.

Recall that all models from \mathfrak{R} are atomic (in the first order sense) and we shall use below tp_L.

As \mathfrak{R} has \aleph_0-amalgamation (by \circledast_{12}), clearly [Sh 48, §4] applies; now by [Sh 48, Lemma 2.1](B) + Definition 3.5, being $(\aleph_0, 1)$-stable as defined in [Sh 48, Definition 3.5](A) holds. Hence all clauses of [Sh 48, Lemma 4.2] hold, in particular ((D)(\beta) there and clause (A), i.e., [Sh 48, Def.3.5](B)), so

\begin{enumerate}
 \item[\circledast_{13}] (i) if $M \leq_{\mathcal{R}} N$ and $\bar{a} \in N$ then $tp_L(\bar{a}, M, N)$ is definable over a finite subset of M
 \item[(ii)] if $M \in K_{\aleph_0}$ then $\{tp_L(\bar{a}, M, N) : \bar{a} \in \omega > N$ and $M \leq_{\mathcal{R}} N\}$ is countable.
\end{enumerate}

By [Sh 48, Lemma 4.4] it follows that

\begin{enumerate}
 \item[\circledast_{14}] if $M \leq_{\mathcal{R}} N$ are countable and $\bar{a} \in M$ then $tp_L(\bar{a}, M, N)$ determine $tp_{\mathcal{R}}(\bar{a}, M, N)$.
\end{enumerate}
Now we define $s = (\mathcal{R}_{\aleph_0}, \mathcal{S}^{bs}, \emptyset)$ by

\[\mathcal{S}^{bs}(M) = \{ \text{tp}_{\mathcal{R}}(\bar{a}, M, N) : M \preceq \aleph_0 \text{ are countable and } \bar{a} \in \omega^\rightarrow N \text{ but } \bar{a} \notin \omega^\rightarrow M \} \]

\[\text{tp}_{\mathcal{R}}(\bar{a}, M_1, M_3) \text{ does not fork over } M_0 \text{ where } M_0 \preceq \aleph_0 M_1 \preceq \aleph_0 M_3 \in \mathcal{R}_{\aleph_0} \iff \text{tp}_{\mathcal{L}}(\bar{a}, M_1, M_3) \text{ is definable over some finite subset of } M_0. \]

Now we check “s is a good frame”, i.e., all clauses of Definition 2.1.

Clause (A): By $\hat{\circ}9$ above.

Clause (B): As \mathcal{R} is categorical in \aleph_0, has an uncountable model and $\text{LS}(\mathcal{R}) = \aleph_0$ this should be clear.

Clause (C): \mathcal{R}_{\aleph_0} has amalgamation by $\hat{\circ}12$ and has the JEP by categoricity in \aleph_0 and \mathcal{R}_{\aleph_0} has no maximal model by (categoricity and) having uncountable models (and $\text{LS}(\mathcal{R}) = \aleph_0$).

Clause (D): Obvious; stability, i.e., (D)(d) holds by $\hat{\circ}13(ii) + \hat{\circ}14$.

Subclause (E)(a),(b): By the definition.

Subclause (E)(c): (Local character).

If $\langle M_i : i \leq \delta + 1 \rangle$ is $\leq_{\mathcal{R}}$-increasing continuous $M_i \in K_{\aleph_0}, \bar{a} \in \omega^\rightarrow (M_{\delta+1})$ and $\bar{a} \in \omega^\rightarrow (M_\delta)$ then for some finite $A \subseteq M_\delta, \text{tp}_{\mathcal{L}}(\bar{a}, M_\delta, M_{\delta+1})$ is definable over A, so for some $i < \delta, A \subseteq M_\delta$ hence $j \in [i, \delta) \Rightarrow \text{tp}_{\mathcal{L}}(\bar{a}, M_i, M_{\delta+1})$ is definable over $A \Rightarrow \emptyset(M_i, M_\delta, \bar{a}, M_{\delta+1})$.

Subclause (E)(d): (Transitivity).

As if $M' \preceq_{\mathcal{R}} M'' \in \mathcal{R}_{\aleph_0}$, two definitions in M' of complete types, which give the same result in M' give the same result in M''.

Subclause (E)(e)(uniqueness): By $\hat{\circ}14$ and the justification of transitivity.

Subclause (E)(f)(symmetry): By [Sh 48, Theorem 5.4], we have the symmetry property see [Sh 48, Definition 5.2]. By [Sh 48, 5.5] + the uniqueness proved above we can finish easily.

Subclause (E)(g): Extension existence.

Easy, included in [Sh 48, 5.5].
Subclause (E)(h): Continuity.

As $\mathcal{A}_{bs}^n(M)$ is the set of non-algebraic types this follows from “finite character”, that is by 2.17(3)(4).

Subclause (E)(i): non-forking amalgamation

By 2.16. \(\square_{3.5}\)

3.6 Remark. So if $\psi \in L_{\omega_1,\omega}(Q)$ and $1 \leq \check{I}(R_1, \psi) < 2^{R_1}$, we essentially can apply Theorem 0.1, exactly see 9.4.

(D) Starting at $\lambda > R_0$.

The next theorem puts the results of [Sh 576] in our context hence rely on it heavily.

(Alternatively, even eliminating “$WDMd(\lambda^+)$ is λ^{++}-saturated” we can deduce 3.7 by [Sh:E46], [Sh 838], i.e. by [Sh:E46, 0z.1](2) there is a so called almost good λ-frame s and by [Sh 838, e.6A] it is even a good λ-frame, and by §9 here, also s^+ is a good λ^+-frame and easily it is the frame described in 3.7(2).

We use $K^3_{\lambda, na}$ as in [Sh:E46] called K^3_{λ} is [Sh 576]. Note that while the material does not [Sh 576, §1,§2,§4,§7] appears in [Sh:E46], the material in [Sh 576, §8,§9,§10] similar to §6 - §9 here, so we still need some parts of [Sh 576], though as said above we can avoid it.

3.7 Theorem. Assume $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ and

(α) R is an abstract elementary class with $LS(R) \leq \lambda$

(β) R is categorical in λ and in λ^+

(γ) R has a model in λ^{++}

(δ) $\check{I}(\lambda^{++}, K) < \mu_{unif}(\lambda^{++}, 2^{\lambda^+})$ and $WDMd(\lambda^+)$ is not λ^{++}-saturated or just some consequences: density of minimal types (see by [Sh:E46, 4d.19,4d.23]) and \otimes, i.e. $K^3_{\lambda, na} \neq \emptyset$ of [Sh 576, 6.4,pg.99] = [Sh:E46, 6f.5] proved by the conclusion of [Sh 576, Th.6.7](pg.101) or [Sh:E46, 6f.13].

Then 1) Letting $\mu = \lambda^+$ we can choose $\bigcup_{\mu}, \mathcal{A}_{bs}$ such that $(R_{\geq \mu}, \bigcup_{\mu}, \mathcal{A}_{bs})$ is a μ-good frame.

2) Moreover, we can let

(a) $\mathcal{A}_{bs}(M) := \{tp_R(a, M, N) : \text{for some } M, N, a \text{ we have } (M, N, a) \in K^3_{\lambda, na} \text{ and for some } M' \leq_R M \text{ we have } M' \in K_{\lambda} \text{ and } tp_R(a, M', N) \in \mathcal{A}_{bs}(M') \text{ is minimal}\}$
(see Definition [Sh 576, 2.3](4), pg.56 and [Sh 576, 2.5](1), (13), pg.57-58 or ([Sh:E46, 1a.19, 1a.34])

(b) \(\bigcup_{\mu} \) be defined by: \(\bigcup(M_0, M_1, a, M_3) \) iff \(M_0 \leq_{\mathfrak{R}} M_1 \leq_{\mathfrak{R}} M_3 \) are from
\(K_{\mu}, a \in M_3 \setminus M_1 \) and for some \(N \leq_{\mathfrak{R}} M_0 \) of cardinality \(\lambda \), the type \(tp_{\mathfrak{R}}(a, N, M_3) \in \mathcal{S}_{\mathfrak{R}}(N) \) is minimal.

Proof. 1), 2). Note that \(\mathfrak{R} \) has amalgamation in \(\lambda \) and in \(\lambda^+ \), see I.? By clause (\(\delta \)) of the assumption, we can use the “positive” results of [Sh 576] in particular [Sh 576] freely. Now (see Definition 1.12(2))

\((*) \) if \((M, N, a) \in K_{\lambda^+, na}^3 \) and \(M', M'' \in K_\lambda \) and \(p = tp_{\mathfrak{R}}(a, M', N) \) is minimal (see Definition 1.9(0)) then
(a) if \(q \in \mathcal{S}_{\mathfrak{R}}(M) \) is not algebraic and \(q \upharpoonright M' = p \) then \(q = tp_{\mathfrak{R}}(a, M, N) \)
(b) if \(\langle M_\alpha : \alpha < \mu \rangle, \langle N_\alpha : \alpha < \mu \rangle \) are \(\leq_{\mathfrak{R}} \)-representations of \(M, N \) respectively then for a club of \(\delta < \mu \) we have \(tp_{\mathfrak{R}}(a, M, N) \in \mathcal{S}_{\mathfrak{R}}(M_\delta) \) is minimal and reduced

[Why? For clause (b) let \(\alpha^* = \text{Min}\{ \alpha : M' \leq_{\mathfrak{R}} M_\alpha \} \), so \(\alpha^* \) is well defined and as \(M \) is saturated (for \(\mathfrak{R} \)), for a club of \(\delta < \mu = \lambda^+ \), the model \(M_\delta \) is \((\lambda, \text{cf}(\delta)) \)-brimmed over \(M' \) hence by [Sh 576, 7.5](2)(pg.106) we are done.

For clause (a) let \(M^0 = M, M^1 = N \) and \(a^1 = a \) and \(M^2, a^2 = a \) be such that \((M^0, M^2, a^2) \in K_{\mu}^{3, na} = K_{\lambda^+}^{3, na} \) and \(q = tp_{\mathfrak{R}}(a^2, M^0, M) \). Now we repeat the proof of [Sh 576, 9.5](pg.120) but instead \(f(a^2) \notin M^1 \) we require \(f(a^2) = a^1 \); we are using [Sh 576, 10.5](1)(pg.125) which says \(\lambda^+ = \lambda^1_{\mathfrak{R}} \).

In particular we have used

\((** \) if \(M_0 \leq_{\mathfrak{R}} M_1, M_1 \) is \((\lambda, \kappa) \)-brimmed over \(M_0, p \in \mathcal{S}_{\mathfrak{R}}(M_1) \) is not algebraic and \(p \upharpoonright M_0 \) is minimal, then \(p \) is minimal and reduced.

Clause (A):

This is by assumption (\(\alpha \)).

Clause (B):

As \(K \) is categorical in \(\mu = \lambda^+ \), the existence of superlimit \(M \in K_\mu \) follows; the superlimit is not maximal as \(\text{LS}(\mathfrak{R}) \leq \lambda \) & \(K_{\mu^+} = K_{\lambda^+} \neq \emptyset \) by assumption (\(\gamma \)).

Clause (C):
K_{λ^+} has the amalgamation property by I.? or [Sh 576, 1.4](pg.46), 1.6(pg.48) and \mathfrak{R}_λ has the JEP in λ^+ by categoricity in λ^+.

Clause (D):
Subclause (D)(a), (b):
By the definition of $\mathcal{S}^{bs}(M)$ and of minimal types (in $\mathcal{S}(N)$, $N \in K_{\lambda}$, [Sh 576, 2.5(1)+(3)(pg.57), 2.3(4)+(6)(pg.56)], this is clear.

Subclause (D)(c):
Suppose $M \leq_{\mathfrak{R}} N$ are from K_{μ} and $M \neq N$; let $\langle M_i : i < \lambda^+ \rangle, \langle N_i : i < \lambda^+ \rangle$ be a $\leq_{\mathfrak{R}}$-representation of M, N respectively, choose $b \in N \setminus M$ so $E = \{ \delta < \lambda^+ : N_\delta \cap M = M_\delta$ and $b \in N_\delta \}$ is a club of λ^+. Now for $\delta = \text{Min}(E)$ we have $M_\delta \neq N_\delta, M_\delta \leq_{\mathfrak{R}} N_\delta$ and there is a minimal inevitable $p \in \mathcal{S}(M_\delta)$ by [Sh 576, 5.3(pg.94)] and categoricity of K in λ; so for some $a \in N_\delta \setminus M_\delta$ we have $p = \text{tp}_{\mathfrak{R}}(a, M_\delta, N_\delta)$. So $\text{tp}_{\mathfrak{R}}(a, M, N)$ is non-algebraic as $a \in M \Rightarrow a \in M \cap N_\delta = M_\delta$, a contradiction, so $\text{tp}_{\mathfrak{R}}(a, M, N) \in \mathcal{S}^{bs}(M)$ as required.

Subclause (D)(d): If $M \in K_{\mu}$ let $\langle M_i : i < \lambda^+ \rangle$ be a $\leq_{\mathfrak{R}}$-representation of M, so by $(*)$ above $p \in \mathcal{S}^{bs}(M)$ is determined by $p \upharpoonright M_\alpha$ if $p \upharpoonright M_\alpha$ is minimal and reduced. But for every such p there is such $\alpha(p) < \lambda^+$ by the definition of $\mathcal{S}^{bs}(M)$ and for each $\alpha < \lambda^+$ there are $\leq \lambda$ possible such $p \upharpoonright M_\alpha$ as \mathfrak{R} is stable in λ by [Sh 576, 5.7](a)(pg.97), so the conclusion follows. Alternatively, $M \in K_{\mu} \Rightarrow |\mathcal{S}^{bs}(M)| \leq \mu$ as by [Sh 576, 10.5](pg.125), we have $\leq^*_{\lambda^+} \leq_{\mathfrak{R}} K_{\lambda^+}$, so we can apply [Sh 576, 9.7](pg.121); or use $(*)$ above.

Clause (E):
Subclause (E)(a):
Follows by the definition.

Subclause (E)(b): (Monotonicity)

Obvious properties of minimal types in $\mathcal{S}(M)$ for $M \in K_{\lambda}$.

Subclause (E)(c): (Local character)

Let $\delta < \mu^+ = \lambda^{++}$ and $M_i \in K_{\mu}$ be $\leq_{\mathfrak{R}}$-increasing continuous for $i \leq \delta$ and $p \in \mathcal{S}^{bs}(M_\delta)$, so for some $N \leq_{\mathfrak{R}} M_\delta$ we have $N \in K_{\lambda}$ and $p \upharpoonright N \in \mathcal{S}(N)$ is minimal. Without loss of generality $\delta = \text{cf}(\delta)$ and if $\delta = \lambda^+$, there is $i < \delta$ such that $N \subseteq M_i$ and easily we are done. So assume $\delta = \text{cf}(\delta) < \lambda^+$.

Let $\langle M_i^\zeta : \zeta < \lambda^+ \rangle$ be a $\leq_{\mathfrak{R}}$-representation of M_i for $i \leq \delta$, hence E is a club of λ^+ where:
Let ζ_i be the i-th member of E for $i \leq \delta$, so $\langle \zeta_i : i \leq \delta \rangle$ is increasing continuous, $\langle M^i : i \leq \delta \rangle$ is $\leq R$-increasingly continuous in K_λ and $M^{i+1}_{\zeta_i}$ is $\langle \lambda, cf(\zeta_i) \rangle$-brimmed over $M^i_{\zeta_i}$ hence also over $M^1_{\zeta_i}$. Also $p \upharpoonright M^i_{\zeta_i}$ is non-algebraic (as p is) and extends $p \upharpoonright N$ (as $N \leq R M^\delta_{\zeta} \equiv \zeta \in E$) hence $p \upharpoonright M^i_{\zeta_i}$ is minimal.

Also $M^i_{\zeta_i}$ is $\langle \lambda, cf(\zeta_i) \rangle$-brimmed over $M^i_{\zeta_i}$ hence over N, hence by $(**)$ above we get that $p \upharpoonright M^i_{\zeta_i}$ is not only minimal but also reduced. Hence by [Sh 576, 7.3](2)(pg.103) applied to $\langle M^i : i \leq \delta \rangle$, $p \upharpoonright M^i_{\zeta_i}$ we know that for some $i < \delta$ the type $p \upharpoonright M^i_{\zeta_i} = (p \upharpoonright M^i_{\zeta_i}) \upharpoonright M^i_{\zeta_i}$ is minimal and reduced, so it witnesses that $p \upharpoonright M_j \in \mathcal{S}^{bs}(M_j)$ for every $j \in [i, \delta)$, as required.

Subclause (E)(d): (Transitivity)

Easy by the definition of minimal.

Subclause (E)(e): (Uniqueness)

By $(*)$ above.

Subclause (E)(f): (Symmetry)

By the symmetry in the situation assume $M_0 \leq R M_1 \leq R M_3$ are from K_μ, $a_1 \in M_1 \setminus M_0, a_2 \in M_3 \setminus M_1$ and $\text{tp}_R(a_1, M_0, M_3) \in \mathcal{S}^{bs}(M_0)$ and $\text{tp}_R(a_2, M_1, M_3) \in \mathcal{S}^{bs}(M_1)$ does not fork over M_0; hence for $\ell = 1, 2$ we have $\text{tp}_R(a_\ell, M_0, M_3) \in \mathcal{S}^{bs}(M_0)$. By the existence of disjoint amalgamation (by [Sh 576, 9.11](pg.122),10.5(1)(pg.125)) there are M_2, M_3, f such that $M_0 \leq R M_2 \leq R M_3 \in K_\mu, M_3 \leq R M_3, f$ is an isomorphism from M_2 onto M_2 over M_0, and $M_3 \cap M_2 = M_0$. By $\text{tp}_R(a_2, M_0, M_3) \in \mathcal{S}^{bs}(M_1)$ and as $f(a_2) \notin M_1$ being in $M_2 \setminus M_0 = M_2 \setminus M_3$ and $a_2 \notin M_1$ by assumption and as $a_2, f(a_2)$ realize the same type from $\mathcal{S}(M_0)$ clearly by $(*)$ above we have $\text{tp}_R(a_2, M_1, M_3') = \text{tp}_R(f(a_2), M_1, M_3')$.

Using amalgamation in \mathcal{R}_μ (and equality of types) there is M_3'' such that:

$M_2 \leq R M_3'' \in K_\mu$, and there is an $\leq R$-embedding g of M_3'' into M_3' such that $g \upharpoonright M_1 = \text{id}_{M_1}$ and $g(f(a_2)) = a_2$. Note that as $a_1 \notin g(M_2), M_1 \leq R g(M_2) \in K_\mu$ and $\text{tp}_R(a_1, M_1, M_3'')$ is minimal then necessarily $\text{tp}_R(a_1, g(M_2), M_3'')$ is its non-forking extension. So $g(M_2), M_3''$ are models as required.

Subclause (E)(g): (Extension existence)
Claims [Sh 576, 9.11](pg.122),10.5(1)(pg.125) do even more.

Subclause \((E)(h)\): (Continuity)
Easy.

Subclause \((E)(i)\): (Non-forking amalgamation)
Like \((E)(f)\) or use 2.16. □

3.8 Question: If \(\mathcal{R}\) is categorical in \(\lambda\) and in \(\mu\) and \(\mu > \lambda \geq \text{LS}(\mathcal{R})\), can we conclude categoricity in \(\chi \in (\mu, \lambda)\)?

3.9 Fact. In 3.7:
1) If \(p \in \mathcal{S}^{\text{bs}}(M)\) and \(M \in K_{\mu}\), then for some \(N \leq_{\mathcal{R}} M, N \in K_{\lambda}\) and \(p \upharpoonright N\) is minimal and reduced.
2) If \(M <_{\mathcal{R}} N, M \in K_{\mu}\) and \(p \in \mathcal{S}^{\text{bs}}(M)\), then some \(a \in N \setminus M\) realizes \(p\), (i.e., “a strong version of uni-dimensionality” holds).

Proof. The proof is included in the proof of 3.7.

(E) An Example:
A trivial example (of an approximation to good \(\lambda\)-frame) is:

3.10 Definition/Claim. 1) Assume that \(\mathcal{R}\) is an a.e.c. and \(\lambda \geq \text{LS}(\mathcal{R})\) or \(\mathcal{R}\) is a \(\lambda\)-a.e.c. We define \(\mathfrak{s} = \mathfrak{s}_{\lambda}[\mathcal{R}]\) as the triple \(\mathfrak{s} = (\mathfrak{R}_{\lambda}, \mathcal{S}^{\text{na}}, \mathcal{U})\) where:

\[
\begin{align*}
(a) & \quad \mathcal{S}^{\text{na}}(M) = \{\text{tp}_{\mathcal{R}}(a,M,N), M \leq_{\mathcal{R}} N \text{ and } a \in N \setminus M\} \\
(b) & \quad \mathcal{U}(M_0,M_1,a,M_3) \iff M_0 \leq_{\mathcal{R}} M_1 \leq_{\mathcal{R}} M_3 \text{ and } a \in M_3 \setminus M_1.
\end{align*}
\]

2) Then \(\mathfrak{s}\) satisfies Definition 2.1 of good \(\lambda\)-frame except possibly: (B), existence of superlimits, (C) amalgamation and JEP, (D)(d) stability and (E)(e),(f),(g),(i) uniqueness, symmetry, extension existence and non-forking amalgamation.
§4 Inside the frame

We investigate good λ-frames. We prove stability in λ (we have assumed in Definition 2.1 only stability for basic types), hence the existence of a (λ, ∂)-brimmed \leq_{R}-extension in K_λ over $M_0 \in K_\lambda$ (see 4.2), and we give a sufficient condition for “M_δ is $(\lambda, \text{cf}(\delta))$-brimmed over M_0” (in 4.3). We define again $K_\lambda^{3, bs}$ (like K_λ^3 from 1.12(2) but the type is basic) and the natural order \leq_{bs} on them as well as “reduced” (Definition 4.5), and indicate their basic properties (4.6).

We may like to construct sometimes pairs $N_i \leq K_\lambda M_i$ such that M_i, N_i are increasing continuous with i and we would like to guarantee that M_γ is $(\lambda, \text{cf}(\gamma))$-brimmed over N_γ, of course we need to carry more inductive assumptions. Toward this we may give a sufficient condition for building a $(\lambda, \text{cf}(\gamma))$-brimmed extension over N_γ where $\langle N_i : i \leq \gamma \rangle$ is \leq_{R}-increasing continuous, by a triangle of extensions of the N_i’s, with non-forking demands of course (see 4.7). We also give conditions on a rectangle of models to get such pairs in both directions (4.11), for this we use nice extensions of chains (4.9, 4.10).

Then we can deduce that if “M_1 is (λ, ∂)-brimmed over M_0” then the isomorphism type of M_1 over M_0 does not depend on ∂ (see 4.8), so the brimmed N over M_0 is unique up to isomorphism (i.e. being (λ, ∂)-brimmed over M_0 does not depend on ∂). We finish giving conclusion about $K^{+}_{\lambda}, K^{++}_{\lambda}$.

4.1 Hypothesis. $s = (R, \bigcup, \mathcal{S}^{bs})$ is a good λ-frame.

4.2 Claim. 1) R is stable in λ, i.e., $M \in \mathcal{R}_{\lambda} \Rightarrow |\mathcal{S}(M)| \leq \lambda$.

2) For every $M_0 \in K_\lambda$ and $\partial \leq \lambda$ there is M_1 such that $M_0 \leq_{R} M_1 \in K_\lambda$ and M_1 is (λ, ∂)-brimmed over M_0 (see Definition 1.15) and it is universal13 over M_0.

Proof. 1) Let $M_0 \in K_\lambda$ and we choose by induction on $\alpha \in [1, \lambda], M_\alpha \in K_\lambda$ such that:

(i) M_α is \leq_{R}-increasing continuous

(ii) if $p \in \mathcal{S}^{bs}(M_\alpha)$ then this type is realized in $M_{\alpha+1}$.

No problem to carry this: for clause (i) use Axiom (A), for clause (ii) use Axiom (D)(d) and amalgamation in R_λ, i.e., Axiom (C). If every $q \in \mathcal{S}(M_0)$ is realized in M_λ we are done. So let q be a counterexample, so let $M_0 \leq_{R} N \in K_\lambda$ be such that

\[\text{in fact, this follows}\]
q is realized in N. We now try to choose by induction on $\alpha < \lambda$ a triple $(N_\alpha, f_\alpha, \bar{a}_\alpha)$ such that:

(A) $N_\alpha \in K_\lambda$ is $\leq_\mathcal{R}$-increasingly continuous

(B) f_α is a $\leq_\mathcal{R}$-embedding of M_α into N_α

(C) f_α is increasing continuous

(D) $f_0 = \text{id}_{M_0}$ and $N_0 = N$

(E) $\bar{a}_\alpha = \langle a_{\alpha,i} : i < \lambda \rangle$ lists the elements of N_α

(F) if there are $\beta \leq \alpha, i < \lambda$ such that $\text{tp}(a_{\beta,i}, f_\alpha(M_\alpha), N_\alpha) \in \mathcal{S}^b(a(M_\alpha))$

then for some such pair (β_α, i_α) we have:

(i) the pair (β_α, i_α) is minimal in an appropriate sense, that is: if (β, i) is another such pair then $\beta + i > \beta_\alpha + i_\alpha$ or $\beta + i = \beta_\alpha + i_\alpha$ & $\beta > \beta_\alpha$ or $\beta + i = \beta_\alpha + i_\alpha$ & $\beta = \beta_\alpha$ & $i \geq i_\alpha$

(ii) $a_{\beta_\alpha,i_\alpha} \in \text{Rang}(f_{\alpha+1})$.

This is easy: for successor α we use the definition of type and let $N_\lambda := \cup \{N_\alpha : \alpha < \lambda \}$. Clearly $f_\lambda := \cup \{f_\alpha : \alpha < \lambda \}$ is a $\leq_\mathcal{R}$-embedding of M_λ into N_λ over M_0.

As in N, the type q is realized and it is not realized in M_λ necessarily $N \not\subseteq f_\lambda(M_\lambda)$ hence $N_\lambda \neq f_\lambda(M_\lambda)$ but easily $f_\lambda(M_\lambda) \leq_\mathcal{R} N_\lambda$. So by Axiom (D)(c) for some $c \in N_\lambda \setminus f_\lambda(M_\lambda)$ we have $p = \text{tp}(c, f_\lambda(M_\lambda), N_\lambda) \in \mathcal{S}^b(f_\lambda(M_\lambda))$. As $(f_\gamma(M_\gamma) : \gamma \leq \lambda) \leq_\mathcal{R}$-increasing continuous, by Axiom (E)(c) for some $\gamma < \lambda$ we have $\text{tp}(c, f_\lambda(M_\lambda), N_\lambda)$ does not fork over $f_\gamma(M_\gamma)$, also as $c \in N_\lambda = \bigcup_{\beta < \lambda} N_\beta$ clearly $c \in N_\beta$ for some $\beta < \lambda$ and let $i < \lambda$ be such that $c = a_{\beta,i}$. Now if $\alpha \in \text{max}\{\gamma, \beta\}$ then (β, i) is a legitimate candidate for (β_α, i_α) that is $\text{tp}(a_{\beta,i}, f_\alpha(M_\alpha), N_\alpha) \in \mathcal{S}^b(f_\alpha(M_\alpha))$ by monotonicity of non-forking, i.e., Axiom (E)(b). So (β_α, i_α) is well defined for any such α and $\beta_\alpha + i_\alpha \leq \beta + i$ by clause (F)(i). But $a_1 < a_2 \Rightarrow a_{\beta_1,i_1} \neq a_{\beta_2,i_2}$ (as one belongs to $f_{\alpha+1}(M_{\alpha+1})$ and the other not), contradiction by cardinality consideration.

2) So N_λ is stable in λ and has amalgamation, hence (see 1.16) the conclusion holds; alternatively use 4.3 below. \qed

4.3 Claim. Assume

(a) $\delta < \lambda^+$ is a limit ordinal divisible by λ

(b) $\bar{M} = \langle M_\alpha : \alpha \leq \delta \rangle$ is $\leq_\mathcal{R}$-increasing continuous sequence in N_λ

(c) if $i < \delta$ and $p \in \mathcal{S}^b(M_i)$, then for λ ordinals $j \in (i, \delta)$ there is $c' \in M_{j+1}$ realizing the non-forking extension of p in $\mathcal{S}^b(M_j)$.
Then M_δ is $(\lambda, \text{cf}(\delta))$-brimmed over M_0 and universal over it.

4.4 Remark. 1) See end of proof of 6.29.
2) Of course, by renaming, M_δ is $(\lambda, \text{cf}(\delta))$-brimmed over M_α for any $\alpha < \delta$.
3) Why in clause (c) of 4.3 we ask for “λ ordinals $j \in (i, \delta)$” rather than “for unboundedly many $j \in (i, \delta)$”? For λ regular there is no difference but for λ singular not so. Think of \mathfrak{R} the class of $(A, R), R$ an equivalence relation on A; (so it is not categorical) but for some λ-good frames $\mathfrak{s}, \mathfrak{R}_s = \mathfrak{R}_{\lambda}$ and exemplifies a problem; some equivalence class of M_δ may be of cardinality $< \lambda$.

Proof. Like 4.2, but we give details.

Let $g : \delta \to \lambda$ be a one to one and choose by induction on $\alpha \leq \delta$ a triple $(N_\alpha, f_\alpha, \bar{a}_\alpha)$ such that

(A) $N_\alpha \in K_\lambda$ is $\leq_{\mathfrak{R}}$-increasing continuous
(B) f_α is a $\leq_{\mathfrak{R}}$-embedding of M_α into N_α
(C) f_α is increasing continuous
(D) $f_0 = \text{id}_{M_0}, N_0 = M_0$
(E) $\bar{a}_\alpha = (a_{\alpha, i} : i < \lambda)$ list the elements of N_α
(F) $N_{\alpha+1}$ is universal over N_α
(G) if $\alpha < \delta$ and there is a pair $(\beta, i) = (\beta_\alpha, i_\alpha)$ satisfying the condition $(\ast)_{f_\alpha, N_\alpha}^\beta, i$

stated below and it is minimal in the sense that

$(\ast)_{f_\alpha, N_\alpha}^\beta, i \Rightarrow (\ast)^{\beta', i', \beta, i}_g$, see below, then $a_{\beta, i} \in \text{Rang}(f_{\alpha+1})$

where

$(\ast)_{f_\alpha, N_\alpha}^\beta, i$:

(a) $\beta \leq \alpha$ and $i < \lambda$

(b) $\text{tp}(a_{\beta, i}, f_\alpha(M_\alpha), N_\alpha) \in \mathcal{S}^{\text{bs}}(f_\alpha(M_\alpha))$

(c) some $c \in M_{\alpha+1}$ realizes $f_\alpha^{-1}(\text{tp}(a_{\beta, i}, f_\alpha(M_\alpha), N_\alpha)$, so by

clause (b) it follows that $c \in M_{\alpha+1} \setminus M_\alpha$

$(\ast)_{f_\alpha, N_\alpha}^{\beta', i', \beta, i}_g$:

$\begin{align*}
[g(\beta) + i < g(\beta') + i'] \lor \\
g(\beta) + i = g(\beta') + i' & \land g(\beta) < g(\beta') \lor [g(\beta) + i = g(\beta') + i' \land g(\beta) = g(\beta') \land i \leq i']
\end{align*}$

There is no problem to choose f_α, N_α. Now in the end, by clauses (A),(F) clearly N_δ is $(\lambda, \text{cf}(\delta))$-brimmed over N_0, i.e., over M_0, so it suffices to prove that f_δ is onto N_δ. If not, then by Axiom (D)(c), the density, there is $d \in N_\delta \setminus f_\delta(M_\delta)$ such that $p := \text{tp}(d, f_\delta(M_\delta), N_\delta) \in \mathcal{S}^{\text{bs}}(f_\delta(M_\delta))$ hence for some $\beta(\ast) < \delta$ we have
\[d \in N_{\beta(*)} \text{ so for some } i(*) < \lambda, d = a_{\beta(*)i(*)}. \] Also by Axiom (E)(c), (the local character) for every \(\beta < \delta \) large enough say \(\geq \beta_d \) the type \(p \) does not fork over \(f_\delta(M_\beta) \), without loss of generality \(\beta_d = \beta(*) \). Let \(q = f_\delta^{-1}(\tp(d, f_\delta(M_\delta), N_\delta) \), so it \in \mathcal{S}_{\text{bs}}(M_\delta).

Let \(u = \{ \alpha : \beta(*) \leq \alpha < \delta \) and \(q \upharpoonright M_\alpha \in \mathcal{S}_{\text{bs}}(M_\alpha) \) (note \(\beta(*) \leq \alpha \) is realized in \(M_{\alpha+1} \). By clause (c) of the assumption clearly \(|u| = \lambda \). Also by the definition of \(v \) for every \(\alpha \in u \) the condition \(\beta(*)_{\lambda,\alpha}f_\delta \) holds, hence in clause (F) the pair \((\beta, i*) \) is well defined and is “below” \((\beta(*), i(*)) \) in the sense of clause (G). But there are only \(\leq |g(\beta(*)) \times i(*)| < \lambda \) such pairs hence for some \(\alpha_1 < \alpha_2 < u \) we have \((\beta_{\alpha_1}, i_{\alpha_1}) = (\beta_{\alpha_2}, i_{\alpha_2}) \), a contradiction: \(a_{\beta_{\alpha_1}, i_{\alpha_1}} \in \text{Rang}(f_{\alpha_1+1}) \subseteq \text{Rang}(f_{\alpha_2}) = f_{\alpha_2}(M_{\alpha_2}) \) hence \(\tp(a_{\beta_{\alpha_1}, i_{\alpha_1}}, f_{\alpha_2}(M_{\alpha_2}), N_{\alpha_2}) \notin \mathcal{S}_{\text{bs}}(f_{\alpha_2}(M_{\alpha_2})) \), contradiction. So we are done.

\[\blacksquare \]

\[\ast \ast \ast \]

The following is helpful for constructions so that we can amalgamate disjointly preserving non-forking of a type; we first repeat the definition of \(K^3_{\lambda, \bs} \), \(\leq_{\bs} \).

4.5 Definition. 1) Let \((M, N, a) \in K^3_{\lambda, \bs} \) if \(M \leq \lambda \) \(N \) are models from \(K_{\lambda, a} \in N' \setminus M \) and \(\tp(a, M, N) \in \mathcal{S}_{\text{bs}}(M) \). Let \((M_1, N_1, a) \leq_{\bs} (M_2, N_2, a) \) or write \(\leq_{\bs}^* \), when: both triples are in \(K^3_{\lambda, \bs} \), \(M_1 \leq \lambda \) \(M_2, N_1 \leq \lambda \) \(N_2 \) and \(\tp(a, M_2, N_2) \) does not fork over \(M_1 \). 2) We say \((M, N, a) \) is \(\bs \)-reduced when if it belongs to \(K^3_{\lambda, \bs} \) and \((M, N, a) \leq_{\bs} (M', N', a) \in K^3_{\lambda, \bs} \Rightarrow N \cap M' = M \). 3) We say \(p \in \mathcal{S}_{\text{bs}}(N) \) is a (really the) stationarization of \(q \in \mathcal{S}_{\text{bs}}(M) \) if \(M \leq \lambda \) \(N \) and \(p \) is an extension of \(q \) which does not fork over \(M \).

Remark. 1) The definition of \(K^3_{\lambda, \bs} \) is compatible with the one in 2.4 by 2.6(1). 2) We could have strengthened the definition of \(\bs \)-reduced (4.5), e.g., add: for no \(b \in N' \setminus M' \), do we have \(\tp(b, M', N') \in \mathcal{S}_{\text{bs}}(M') \) and there are \(M'', N'' \) such that \((M', N', a) \leq_{\bs} (M'', N'', a) \) and \(\tp(b, M'', N'') \) forks over \(M' \).

4.6 Claim. For parts (3),(4),(5) assume \(s \) is categorical (in \(\lambda \)).

1) If \(\kappa \leq \lambda \), \((M, N, a) \in K^3_{\lambda, \bs} \), then we can find \(M', N' \) such that: \((M, N, a) \leq_{\bs} (M', N', a) \in K^3_{\lambda, \bs} \), \(M' \) is \((\lambda, \kappa)\)-brimmed over \(M, N' \) is \((\lambda, \kappa)\)-brimmed over \(N \) and \((M', N', a) \) is \(\bs \)-reduced.

1A) If \((M, N_\ell, a_\ell) \in K^3_{\lambda, \bs} \) for \(\ell = 1, 2 \), then we can find \(M^+, f_1, f_2 \) such that: \(M \leq \lambda \) \(M^+ \in K_\lambda \) and for \(\ell \in \{1, 2\} \), \(f_\ell \) is a \(\leq R \)-embedding of \(N_\ell \) into \(M^+ \) over \(M \) and \((M, f_\ell(N_\ell), f_\ell(a_\ell)) \leq_{\bs} (f_{3-\ell}(N_{3-\ell}), M^+, f_{3-\ell}(a_\ell)) \), equivalently \(\tp(f_{3-\ell}(a_\ell), f_{3-\ell}(N_{3-\ell}), M^+) \).
does not fork over M.
2) If $(M_\alpha, N_\alpha, a) \in K^\text{bs}_\lambda$ is \leq_{bs}-increasing for $\alpha < \delta$ and $\delta < \lambda^+$ is a limit ordinal then their union $\left(\bigcup_{\alpha < \delta} M_\alpha, \bigcup_{\alpha < \delta} N_\alpha, a \right)$ is a \leq_{bs}-lub. If each (M_α, N_α, a) is bs-reduced then so is their union.

3) Let λ divide $\delta, \delta < \lambda^+$. We can find $(N_j, a_i : j \leq \delta, i < \delta)$ such that: $N_j \in K_\lambda$ is \leq_{R}-increasing continuous, $(N_j, N_{j+1}, a_j) \in K^\text{bs}_\lambda$ is bs-reduced and if $i < \delta, p \in \mathcal{S}^\text{bs}(\lambda)$ then for λ ordinals $j < i, i + \lambda$ the type $\text{tp}(a_j, N_j, N_{j+1})$ is a non-forking extension of p; so N_δ is $(\lambda, \text{cf}(\delta))$-brimmed over each $N_i, i < \delta$. We can add “N_0 is brimmed”.

4) For any $(M_0, M_1, a) \in K^\text{bs}_\lambda$ and $M_2 \in K_\lambda$ such that $M_0 \leq_{\text{R}} M_2$ there are N_0, N_1 such that $(M_0, M_1, a) \leq_{\text{bs}} (N_0, N_1, a)$, $M_0 = M_1 \cap N_0$ and M_2, N_0 are isomorphic over M_0. (In fact, if $(M_0, M_2, b) \in K^\text{bs}_\lambda$ we can add that for some isomorphism f from M_2 onto N_0 over M_0 we have $(M_0, N_0, f(a)) \leq_{\text{bs}} (N_1, M_1, f(a))$.)

5) If $M_0 \in K_\lambda$ is brimmed and $M_0 \leq_{\text{bs}} M_\ell$ for $\ell = 1, 2$ and there is a disjoint \leq_{s}-amalgamation of M_1, M_2 over M_0.

Proof. 1) We choose $M_i, N_i, b_i^\ell (\ell = 1, 2), \bar{c}_i$ by induction on $i \leq \delta := \lambda$ such that

(a) $(M_i, N_i, a) \in K^\text{bs}_\lambda$ is \leq_{bs}-increasing continuous

(b) $(M_0, N_0) = (M, N)$

(c) $b_i^1 \in M_{i+1} \setminus M_i$ and $\text{tp}(b_i^1, M_i, M_{i+1}) \in \mathcal{S}^\text{bs}(M_i)$,

(d) $b_i^2 \in N_{i+1} \setminus N_i$ and $\text{tp}(b_i^2, M, N_{i+1}) \in \mathcal{S}^\text{bs}(N_i)$

(e) $\bar{c}_i = \langle c_{i, j} : j < \lambda \rangle$ list N_i

(f) if $\alpha < \lambda, i \leq \alpha, j < \lambda, c_{i, j} \notin M_\alpha$ but for some (M'', N'') we have $(M_{\alpha+1}, N_{\alpha+1}, a) \leq_{\text{bs}} (M'', N'', a)$ and $c_{i, j} \in M''$ then for some $i_1, j_1 \leq \max\{i, j\}$ we have $c_{i_1, j_1} \in M_{\alpha+1} \setminus M_\alpha$.

Lastly, let $M' = \cup \{M_i : i < \lambda\}, N' = \cup \{N_i : i < \lambda\}$, by 4.3 M' is $(\lambda, \text{cf}(\lambda))$-brimmed over M (using (d)_1), and N' is $(\lambda, \text{cf}(\lambda))$-brimmed over N (using (d)_2).

Lastly, being bs-reduced holds by clauses (e)+(f).

1A) Easy.

2) Recall $\text{Ax(E)}(h)$.

3) For proving part (3) use part (1) and the “so” is by using 4.3.
4) For proving part (4), without loss of generality \(M_2 \) is \((\lambda, cf(\lambda))-brimmed\) over \(M_0 \), as we can replace \(M_2 \) by \(M'_2 \) if \(M_2 \not\leq_R M'_2 \in K_\lambda \). By part (3) there is a sequence \(\langle a_i : i < \delta \rangle \) and an \(\leq_R \)-increasing continuous \(\langle N_i : i \leq \delta \rangle \) with \(N_0 = M_0, N_\delta = M_2 \) and \((N_i, N_{i+1}, a_i) \in K_\lambda^{3, bs} \) is reduced. Then use (1A) successively.

5) By part (3) as in the proof of part (4).

\[\square_{4.6} \]

4.7 Claim. Assume

(a) \(\gamma < \lambda^+ \) is a limit ordinal
(b) \(\delta_i < \lambda^+ \) is divisible by \(\lambda \) for \(i \leq \gamma, \langle \delta_i : i \leq \gamma \rangle \) is increasing continuous
(c) \(\langle N_i : i < \gamma \rangle \) is \(\leq_R \)-increasing continuous in \(K_\lambda \)
(d) \(\langle M_i : i < \gamma \rangle \) is \(\leq_R \)-increasing continuous in \(K_\lambda \)
(e) \(N_i \leq_R M_i \) for \(i < \gamma \)
(f) \(\langle M_{i,j} : j \leq \delta_i \rangle \) is \(\leq_R \)-increasing continuous in \(K_\lambda \) for each \(i < \gamma \)

\[M_{i,0} = N_i, M_i, \delta_i = M_i, a_j \in M_{i,j+1} \setminus M_i, j \text{ and } \text{tp}(a_j, M_{i,j}, M_{i,j+1}) \in \mathcal{I}^{bs}(M_{i,j}) \] when \(i < \gamma, j < \delta_i \)

(h) if \(j \leq \delta_i, i(*) < \gamma \) then \(\langle M_{i,j} : i \in [i(*)], \gamma \rangle \) is \(\leq_R \)-increasing continuous
(i) \(\text{tp}(a_j, M_{\beta,j}, M_{\beta,j+1}) \) does not fork over \(M_{i,j} \) when \(i < \gamma, j < \delta_i, i \leq \beta < \gamma \)

(j) if \(i < \gamma, j < \delta_i, p \in \mathcal{I}^{bs}(M_{i,j}) \) then for \(\lambda \) ordinals \(j_1 \in [j, \delta_i) \) we have \(\text{tp}(a_{j_1}, M_{i,j_1}, M_{i,j_1+1}) \in \mathcal{I}^{bs}(M_{i,j_1}) \) is a non-forking extension of \(p \)
or we can ask less

\[(j^-) \text{ if } i < \gamma, j < \delta_i \text{ and } p \in \mathcal{I}^{bs}(M_{i,j}) \text{ then for } \lambda \text{ ordinals } j_1 \in [j, \delta_\gamma) \text{ for some } i_1 \in [i, \gamma) \text{ we have } \text{tp}(a_{i_1}, M_{i_1,j_1}, M_{i_1,j_1+1}) \in \mathcal{I}^{bs}(M_{i_1,j_1}) \text{ is a non-forking extension of } p. \]

Then \(M_\gamma := \cup \{ M_{i,j} : i < \gamma, j < \delta_i \} = \{ M_i : i < \gamma \} \) is \((\lambda, cf(\gamma))-brimmed\) over \(N_\gamma := \cup \{ N_i : i < \gamma \} \).

\[\text{Proof. For } j < \delta_\gamma \text{ let } M_{\gamma,j} = \cup \{ M_{i,j} : i < \gamma \}, \text{ and let } M_{\gamma, i} := M_\gamma \setminus M_{\gamma, j}. \text{ Easily } \langle M_{\gamma,j} : j \leq \gamma \rangle \text{ is } \leq_R \text{-increasing continuous, } M_{\gamma,j} \in K_\lambda \text{ and } i < \gamma \land j < \delta_i \Rightarrow M_{i,j} \leq_R M_{\gamma,j}. \text{ Also if } i < \gamma, j < \delta_i \text{ then } \text{tp}(a_j, M_{\gamma,j}, M_{\gamma,j+1}) \in \mathcal{I}^{bs}(M_{\gamma,j}) \text{ does not fork over } M_{i,j} \text{ by Axiom (E)(h), continuity.} \]

Now if \(j < \delta_\gamma \) and \(p \in \mathcal{I}^{bs}(M_{\gamma,j}) \) then for some \(i < \gamma, p \) does not fork over \(M_{i,j} \) (by Axi(E)(c)) and without loss of generality \(j < \delta_i \). Hence if clause (j) holds we have \(u := \{ \varepsilon : j < \varepsilon < \delta_i \text{ and } \text{tp}(a_\varepsilon, M_{i,\varepsilon}, M_{i,\varepsilon+1}) \text{ is a non-forking extension of } p \upharpoonright M_{i,j} \} \) has \(\lambda \) members. But for \(\varepsilon \in u \), \(\text{tp}(a_\varepsilon, M_{\gamma,\varepsilon}, M_{\gamma,\varepsilon+1}) \) does not fork over \(M_{i,\varepsilon} \) (by clause (i) of the assumption) hence does not fork over \(M_{i,j} \) and by monotonicity it does not fork over \(M_{\gamma,i} \) and by uniqueness it extends \(p. \)
If clause $(j)^-$ holds the proof is similar. By 4.3 the model M_{γ} is $(\lambda, \text{cf}(\gamma))$-brimmed over N_{γ}. $\square_{4.7}$

4.8 Lemma. 1) If $M \in K_\lambda$ and the models $M_1, M_2 \in K_\lambda$ are $(\lambda, *)$-brimmed over M (see Definition 1.15(2)), then M_1, M_2 are isomorphic over M. 2) If $M_1, M_2 \in K_\lambda$ are $(\lambda, *)$-brimmed then they are isomorphic.

We prove some claims before proving 4.8; we will not much use the lemma, but it is of obvious interest and its proof is crucial in one point of §6.

4.9 Claim. 1)

\((E)(i)^+\) long non-forking amalgamation for $\alpha < \lambda^+$:

if \((N_i : i \leq \alpha)\) is \leq_R-increasing continuous sequence of members of $K_\lambda, a_i \in N_{i+1}\setminus N_i$ for $i < \alpha, p_i = \text{tp}(a_i, N_i, N_{i+1}) \in \mathcal{S}^{bs}(N_i)$ and $q \in \mathcal{S}^{bs}(N_0)$, then we can find a \leq_R-increasing continuous sequence $\langle N'_i : i \leq \alpha \rangle$ of members of K_λ such that: $i \leq \alpha \Rightarrow N_i \leq_R N'_i$, some $b \in N'_0 \setminus N_0$ realizes $q, \text{tp}(b, N_\alpha, N'_\alpha)$ does not fork over N_0 and $\text{tp}(a_i, N'_i, N_{i+1}')$ does not fork over N_i for $i < \alpha$.

2) Above assume in addition that there are M, b^* such that $N_0 \leq_R M \in K_\lambda, b^* \in M$ and $\text{tp}(b^*, N_0, M) = q$. Then we can add: there is a \leq_R-embedding of M into N'_0 over N_0 mapping b^* to b.

Proof. Straight (remembering Axiom (E)(i) on non-forking amalgamation of Definition 2.1). In details

1) Let M_0, b^* be such that $N_0 \leq_R M_0$ and $q = \text{tp}(b^*, N_0, M_0)$ and apply part (2).

2) We choose (M_i, f_i) by induction on $i \leq \alpha$ such that

\[(a) \] $M_i \in \mathcal{R}_{\alpha}$ is \leq_R-increasing continuous
\[(b) \] f_i is a \leq_R-embedding of N_i into M_i
\[(c) \] f_i is increasing continuous with $i \leq \alpha$
\[(d) \] $M_0 = M$ and $f_0 = \text{id}_{N_0}$
\[(e) \] $\text{tp}(b^*, f_i(N_i), M_i)$ does not fork over N_0
\[(f) \] $\text{tp}(f_{i+1}(a_i), M_i, M_{i+1})$ does not fork over $f_i(N_i)$.

For $i = 0$ there is nothing to do. For i limit take unions; clause (e) holds by Ax(E)(h). Lastly, for $i = j + 1$, we can find (M'_i, f'_i) such that $f_j \subseteq f'_i$ and f'_i is an isomorphism from N_i onto M. Hence $f_j(N_j) \leq_R N'_i$ and $\text{tp}(b^*)$. Now use Ax(E)(i) for $f_j(N_j), M'_i, N_i, f'_i(a_j), b^*$.

Having carried the induction, we rename to finish. □

In the claim below, we are given a \(\leq_{R_\lambda} \)-increasing continuous \(\langle M_i : i \leq \delta \rangle \) and \(u_0, u_1, u_2 \subseteq \delta \) such that: \(u_0 \) is where we are already given \(a_i \in M_{i+1} \setminus M_i, u_1 \subseteq \delta \) is where we shall choose \(a_i (\in M'_{i+1} \setminus M'_i) \) and \(u_2 \subseteq \delta \) is the place which we “leave for future use”; main case is \(u_1 = \delta; u_0 = u_2 = \emptyset \).

4.10 Claim. 1) Assume

(a) \(\delta < \lambda^+ \) is divisible by \(\lambda \)
(b) \(u_0, u_1, u_2 \) are disjoint subsets of \(\delta \)
(c) \(\delta = \text{sup}(u_1) \) and \(\text{otp}(u_1) \) is divisible by \(\lambda \)
(d) \(\langle M_i : i \leq \delta \rangle \) is \(\leq_{R} \)-increasing continuous in \(R_\lambda \)
(e) \(\bar{a} = \langle a_i : i \in u_0 \rangle, a_i \in M_{i+1} \setminus M_i, \text{tp}(a_i, M_i, M_{i+1}) \in \mathcal{S}_{bs}(M_i) \).

Then we can find \(\bar{M}' = \langle M'_i : i \leq \delta \rangle \) and \(\bar{a}' = \langle a_i : i \in u_1 \rangle \) such that

(a) \(\bar{M}' \) is \(\leq_{R} \)-increasing continuous in \(K_\lambda \)
(b) \(M_i \leq_{R} M'_i \)
(c) if \(i \in u_0 \) then \(\text{tp}(a_i, M'_i, M'_{i+1}) \) is a non-forking extension of \(\text{tp}(a_i, M_i, M_{i+1}) \)
(d) if \(i \in u_2 \) then \(M_i = M_{i+1} \Rightarrow M'_i = M'_{i+1} \)
(e) if \(i \in u_1 \) then \(\text{tp}(a_i, M'_i, M'_{i+1}) \in \mathcal{S}_{bs}(M'_i) \)
(f) if \(i < \delta, p \in \mathcal{S}_{bs}(M'_i) \) then for \(\lambda \) ordinals \(j \in u_1 \cap (i, \delta) \) the type \(\text{tp}(a_j, M'_j, M'_{j+1}) \)

is a non-forking extension of \(p \).

2) If we add in part (1) the assumption

(g) \(M_0 \leq_{R} N \in K_\lambda \)

then we can add to the conclusion

(\eta) there is an \(\leq_{R} \)-embedding \(f \) of \(N \) into \(M'_0 \) over \(M_0 \) and moreover \(f \) is onto.

3) If we add in part (1) the assumption

(h) \(M_0 \leq_{R} N \in K_\lambda \) and \(b \in N \setminus M_0, \text{tp}(b, M_0, N) \in \mathcal{S}_{bs}(M_0) \)

then we can add to the conclusion

(\eta) as in (\eta) and \(\text{tp}(f(b), M_\delta, M'_\delta) \) does not fork over \(M_0 \).
4) We can strengthen clause (ζ) in part (1) to

\[(\zeta)^+ \text{ if } i < \delta \text{ and } p \in \mathcal{S}^{bs}(M^\ell_i) \text{ then for } \lambda \text{ ordinals } j \text{ we have } j \in [i, \delta) \cap u_1 \text{ and } \text{tp}(a_j, M^\ell_j, M^\ell_{j+1}) \text{ is a non-forking extension of } p \text{ and } \text{otp}(u_1 \cap j \setminus i) < \lambda.\]

\[\text{Proof.}\] Straight like 4.9(2). Note that we can find a sequence $\langle u_{1,i,\varepsilon} : i < \delta, \varepsilon < \lambda \rangle$ such that: this is a sequence of pairwise disjoint subsets of u_1 each of cardinality λ satisfying $u_{1,i,\varepsilon} \subseteq \{ j : i < j, j \in u_1 \text{ and } |u_1 \cap (i,j)| < \lambda \}$ (or we can demand that $i \leq i_1 < i_2 \leq \delta \land |u_1 \cap (i_1, i_2)| = \lambda \Rightarrow |u_{1,i,\varepsilon} \cap (i_1, i_2)| = \lambda$). \[\square_{4.10}\]

Toward building our rectangles of models with sides of difference lengths (and then we shall use 4.7) we show (to understand the aim of the clauses in the conclusion of 4.11 see the proof of 4.8 below):

4.11 Claim. Assume

(a) $\delta_\ell < \lambda^+$ is divisible by λ for $\ell = 1, 2$

(b) $\bar{M}_\ell = \langle M^\ell_\alpha : \alpha \leq \delta_\ell \rangle$ is $\leq R$-increasing continuous for $\ell = 1, 2$

(c) $u^\ell_0, u^\ell_1, u^\ell_2$ are disjoint subsets of δ_ℓ, otp(u^ℓ_1) is divisible by λ and $\delta_\ell = \sup(u^\ell_i)$ for $\ell = 1, 2$

(d) $\bar{a}^\ell_\alpha = \langle a^\ell_\alpha : \alpha \in u^\ell_0 \rangle$ and $\text{tp}(a^\ell_\alpha, M^\ell_\alpha, M^\ell_{\alpha+1}) \in \mathcal{S}^{bs}(M^\ell_\alpha)$ for $\ell = 1, 2, \alpha \in u^\ell_0$

(e) $M^\ell_0 = M^\ell_2$

(f) $\alpha \in u^\ell_1 \cup u^\ell_2 \Rightarrow M^\ell_\alpha = M^\ell_{\alpha+1}$ for $\ell = 1, 2$.

Then we can find $\bar{f}^\ell = \langle f^\ell_\alpha : \alpha \leq \delta_\ell \rangle, \bar{b}^\ell = \langle b^\ell_\alpha : \alpha \in u^\ell_0 \cup u^\ell_1 \rangle$ for $\ell = 1, 2$ and $M = \langle M_{\alpha,\beta} : \alpha \leq \delta_1, \beta \leq \delta_2 \rangle$ and functions $\zeta : u^\ell_1 \rightarrow \delta_2$ and $\varepsilon : u^\ell_2 \rightarrow \delta_1$ such that

(\alpha)_1 for each $\alpha \leq \delta_1, \langle M_{\alpha,\beta} : \beta \leq \delta_2 \rangle$ is $\leq R$-increasing continuous

(\alpha)_2 for each $\beta \leq \delta_2, \langle M_{\alpha,\beta} : \alpha \leq \delta_1 \rangle$ is $\leq R$-increasing continuous

(\beta)_1 for $\alpha \in u^\ell_1, b^\ell_\alpha$ belongs to $M_{\alpha+1,0}$ and $\text{tp}(b^\ell_\alpha, M_{\alpha,\delta_2}, M_{\alpha+1,\delta_2}) \in \mathcal{S}^{bs}(M_{\alpha,\delta_2})$ does not fork over $M_{0,0}$

(\beta)_2 for $\beta \in u^\ell_2, b^\ell_\beta$ belongs to $M_{0,\beta+1}$ and $\text{tp}(b^\ell_\beta, M_{\delta_1,\beta}, M_{\delta_1,\beta+1}) \in \mathcal{S}^{bs}(M_{\delta_1,\beta})$ does not fork over $M_{0,\beta}$

(\gamma)_1 for $\alpha \in u^\ell_1, \zeta(\alpha) < \delta_2$ and we have $b^\ell_\alpha \in M_{\alpha+1,\zeta(\alpha)+1}$ and $\text{tp}(b^\ell_\alpha, M_{\alpha,\delta_2}, M_{\alpha+1,\delta_2})$ does not fork over $M_{\alpha,\zeta(\alpha)+1}$

(\gamma)_2 for $\beta \in u^\ell_2, \varepsilon(\beta) < \delta_1$ and we have $b^\ell_\beta \in M_{\varepsilon(\beta)+1,\beta+1}$ and $\text{tp}(b^\ell_\beta, M_{\delta_1,\beta}, M_{\delta_1,\beta+1})$ does not fork over $M_{\varepsilon(\beta)+1,\beta}$.

\[\square\]
(δ_1) if $\alpha < \delta_1, \beta < \delta_2$ and $p \in \mathcal{S}^{\text{bs}}(M_{\alpha, \beta})$ or just $p \in \mathcal{S}^{\text{bs}}(M_{\alpha, \beta+1})$ then for λ ordinals\(^{14}\) $\alpha' \in (\alpha, \delta_1) \cap u_1^1$, the type $\text{tp}(b_{\alpha', \alpha}^1, M_{\alpha', \beta+1}, M_{\alpha+1, \beta+1})$ is a (well defined) non-forking extension of p and $\beta = \zeta(\alpha')$.

(δ_2) if $\alpha < \delta_1, \beta < \delta_2$ and $p \in \mathcal{S}^{\text{bs}}(M_{\alpha, \beta})$ or just $p \in \mathcal{S}^{\text{bs}}(M_{\alpha+1, \beta})$ then for λ ordinals\(^{15}\) $\beta' \in [\beta, \delta_2) \cap u_1^2$, the type $\text{tp}(b_{\beta', \beta}^2, M_{\alpha+1, \beta'}, M_{\alpha+1, \beta'+1})$ is a non-forking extension of p and $\alpha = \varepsilon(\beta')$.

(ε) $M_{0, 0} = M_0^1 = M_0^2$

(ζ_1) f^1_α is an isomorphism from $M_{\alpha, 0}^1$ onto $M_{\alpha, 0}$ such that $\alpha \in u_0^1 \Rightarrow f^1_\alpha(a^1_\alpha) = b^1_\alpha$

(ζ_2) f^2_β is an isomorphism from $M_{\beta, 0}^2$ onto $M_{0, \beta}$ such that $\beta \in u_0^2 \Rightarrow f^2_\beta(a^2_\beta) = b^2_\beta$

(η_1) if $\alpha \in u_1^1$ then $M_{\alpha, \beta} = M_{\alpha+1, \beta}$ for every $\beta \leq \delta_2$

(η_2) if $\beta \in u_1^2$ then $M_{\alpha, \beta} = M_{\alpha, \beta+1}$ for every $\alpha \leq \delta_1$.

Proof. Straight, divide u_1^1 to $\delta_3-\ell$ subsets large enough, in fact, we can first choose the function $\zeta(-), \varepsilon(-)$. Now choose $(M_{\alpha, \beta} : \alpha \leq \delta_1, \beta \leq \beta^*)$, $(f^1_\alpha : \alpha \leq \delta_1)$, $(f^2_\beta : \beta \leq \beta^*)$ and $(b^1_\alpha : \zeta(\alpha) \in \beta^*)$, $(b^2_\beta : \beta < \beta^*)$ by induction on β^* using 4.10. \hfill $\square_{4.11}$

Proof of 4.8. By 1.16(3), i.e., uniqueness of the (λ, θ_ℓ)-brimmed model over M, it is enough to show for any regular $\theta_1, \theta_2 \leq \lambda$ that there is a model $N \in K_\lambda$ which is (λ, θ_ℓ)-brimmed over M for $\ell = 1, 2$. Let $\delta_1 = \lambda \times \theta_1, \delta_2 = \lambda \times \theta_2$ (ordinal multiplication, of course), $M_\alpha^1 = M_\beta^2 = M$ for $\alpha \leq \delta_1, \beta \leq \delta_2, u_0^1 = u_0^2 = \emptyset, u_1^1 = \delta_1, u_1^2 = \delta_2, u_2^1 = u_2^2 = \emptyset$. So there are $(M_{\alpha, \beta} : \alpha \leq \delta_1, \beta \leq \delta_2)$, $(b^1_\alpha : \alpha < \delta_1, \beta < \delta_2)$ and $(f^1_\alpha : \alpha \leq \delta_1, \beta < \delta_2)$. Now lose of generality $f^1_\alpha = f^2_\alpha = 1_\text{dM}$.\hfill \hfill $\square_{4.10}$

$(*)_1$ $(M_{\delta_2, \alpha} : \alpha \leq \delta_1)$ is $\leq \text{r}$-increasing continuous in K_λ (by clause $(\alpha)_1$, of 4.11).

$(*)_2$ if $\alpha < \delta_1$ and $p \in \mathcal{S}(M_{\alpha, \delta_2})$ then for λ ordinals $\alpha' \in (\alpha, \delta_1) \cap u_1^1$ the type $\text{tp}(b_{\alpha', \delta_2}^1, M_{\alpha', \delta_2}, M_{\alpha', \delta_2+1})$ is a non-forking extension of p.

(Easy, by Axiom (E)(c) for some $\beta < \delta_2, p$ does not fork over $M_{\alpha, \beta+1}$ and use clause $(\delta)_1$ of 4.11).

So by 4.7, M_{δ_1, δ_2} is $(\lambda, \text{cf}(\delta_1))$-brimmed over M_{0, δ_2} which is M.\hfill \hfill $\square_{4.11}$

\(^{14}\text{we can add "and } \text{otp}(\alpha \cap u_1^1 \setminus \alpha_2) < \lambda"\)

\(^{15}\text{we can add "and } \text{otp}(\beta \cap u_1^2 \setminus \beta_2) < \lambda"\)
Similarly M_{δ_1,δ_2} is $(\lambda, \text{cf} (\delta_2))$-brimmed over $M_{\delta_1,0}$ which is M; so together we are done.

\[\square_{4.8} \]

4.12 Claim. 1) If $M \in K_{\lambda^+}$ and $p \in \mathcal{S}^{\text{bs}}(M_0), M_0 \leq_R M$ (so $M_0 \in K_{\lambda}$), then we can find $b, \langle N_0^\alpha : \alpha \leq \lambda^+ \rangle$ and $\langle N_1^\alpha : \alpha \leq \lambda^+ \rangle$ such that

- (a) $\langle N_0^\alpha : \alpha < \lambda^+ \rangle$ is a \leq_R-representation of $N_{\lambda^+} = M$
- (b) $\langle N_1^\alpha : \alpha < \lambda^+ \rangle$ is a \leq_R-representation of $N_{\lambda^+}^1 \in K_{\lambda^+}$
- (c) $N_{\alpha+1}^1$ is (λ, λ)-brimmed over N_{α}^1 (hence $N_{\lambda^+}^1$ is saturated over λ in R)
- (d) $M_0 \leq N_0^\alpha$ and $N_0^\alpha \leq_R N_1^\alpha$
- (e) $\text{tp}_s (b, N_0^\alpha, N_1^\alpha)$ is a non-forking extension of p for every $\alpha < \lambda^+$.

2) We can add

- (f) for $\alpha < \beta < \lambda^+, N_\beta^1$ is (λ, \ast)-brimmed over $N_\beta^0 \cup N_\alpha^1$.

Proof. 1) Easy by long non-forking amalgamation 4.9 (see 1.17).
2) Use 4.7. \[\square_{4.12} \]

4.13 Conclusion. 1) $K_{\lambda^{++}} \neq \emptyset$.
2) $K_{\lambda^+} \neq \emptyset$.
3) No $M \in K_{\lambda^+}$ is \leq_R-maximal.

Proof. 1) By (2) + (3).
2) By (B) of 2.1.
3) By 4.12. \[\square_{4.13} \]

4.14 Exercise: 1) Let $M \in K_s$ be superlimit and $t = s_M$, so K_1 is categorical. If $(M, N, a) \in K_1^{\text{bs}}$ is reduced for t, then it is reduced for s.
2) In 4.6(3),(4),(5), we can omit the assumption “s is categorical” if:

- (a) we add in part (3), each N_i is superlimit (equivalently brimmed)
- (b) in parts (4),(5) add the assumption “M_0 is superlimit”.

2) Some extra assumption in 4.6(5) is needed.
§5 Non-structure or some unique amalgamation

We shall assuming $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ get from essentially $I(\lambda^{+}, K) < 2^{\lambda^{++}}$ pedantically $< \mu_{unif}(\lambda^{++}, 2^{\lambda^+})$ or just $I(\lambda^{+}, K(\lambda^{++}-saturated)) < \mu_{unif}(\lambda^{++}, 2^{\lambda^+})$, many cases of uniqueness of amalgamation assuming in addition WDMdKd(λ^+) is not λ^{++}-saturated, a weak assumption. The proof is similar to [Sh 482], [Sh 576, §3] but now we rely on [Sh 838], the “lean” version; and by the “full version” without we can eliminate the additional assumption.

We define K^3, bt_{λ}, it is a brimmed relative of K^3, bs_{λ} hence the choice of bt; it guarantees much brimness (see Definition 5.2) hence it guarantees some uniqueness, that is, if $(M, N, a) \in K^3, bt_{\lambda}$, M is unique (recalling the uniqueness of the brimmed model) and more crucially, we consider K^3, uq_{λ}, (the family of members of K^3, bs_{λ} for which we have uniqueness in relevant extensions). Having enough such triples is the main conclusion of this section (in 5.9 under “not too many non-isomorphic models” assumptions). In 5.4 we give some properties of $K^3, bt_{\lambda}, K^3, uq_{\lambda}$.

To construct models in λ^{++} we use approximations of cardinality in λ^+ with “obligation” on the further construction, which are presented as pairs $(\bar{M}, \bar{a}) \in K^{sq}_{\lambda}$ ordered by \leq_{ct}, see Definition 5.5, Claims 5.6, 5.7. We need more: the triples $(\bar{M}, \bar{a}, \bar{f}) \in K^{mr}_{S}, K^{mr}_{S}$ in Definition 5.12, Claim 5.13. All this enables us to quote results of [Sh 576, §3] or better [Sh 838, §2], but apart from believing the reader do not need to know non of them.

5.1 Hypothesis.

(a) $s = (\mathcal{F}, \cup, \mathcal{F}^{bs})$ is a good λ-frame.

5.2 Definition. 1) Let $K^3, bt_{\lambda} = K^3, bt_{S}$ be the set of triples (M, N, a) such that for some $\partial = \cf(\partial) \leq \lambda, M \leq_{\mathcal{F}} N$ are both (λ, ∂)-brimmed members of $K_{\lambda}, a \in N \setminus M$ and $\tp(a, M, N) \in \mathcal{F}^{bs}(M)$.

2) For $(M_\ell, N_\ell, a_\ell) \in K^3, bt_{\lambda}$ for $\ell = 1, 2$ let $(M_1, N_1, a_1) <_{bt} (M_2, N_2, a_2)$ mean $a_1 = a_2$, $\tp(a_1, M_2, N_2)$ does not forking over M_1 and for some $\partial_2 = \cf(\partial_2) \leq \lambda$, the model M_2 is (λ, ∂_2)-brimmed over M_1 and the model N_2 is (λ, ∂_2)-brimmed over N_1. Finally $(M_1, N_1, a_2) \leq_{bt} (M_2, N_2, a_2)$ means $(M_1, N_1, a_1) <_{bt} (M_2, N_2, a_2)$ or $(M_1, N_1, a_1) = (M_2, N_2, a_2)$.

5.3 Definition. 1) Let “$(M_0, M_2, a) \in K^3, uq_{\lambda}$” mean: $(M_0, M_2, a) \in K^3, bs_{\lambda}$ and: for every M_1 satisfying $M_0 \leq_{\mathcal{F}} M_1 \in K_{\lambda}$, the amalgamation M of M_1, M_2 over M_0, with $\tp(a, M_1, M)$ not forking over M_0, is unique, that is:
if for $\ell = 1, 2$ we have $M_0 \leq_R M_1 \leq_R M^\ell \in K_\lambda$ and f_ℓ is a \leq_R-embedding of M_2 into M^ℓ over M_0 (so $f_1 \upharpoonright M_0 = f_2 \upharpoonright M_0 = \text{id}_{M_0}$) such that $tp(f_\ell(a), M_1, M^\ell)$ does not fork over M_0, then

(a) [uniqueness]:
for some M', g_1, g_2 we have: $M_1 \leq K M' \in K_\lambda$ and g_ℓ is a $\leq K$-embedding of M^ℓ into M' over M_1 for $\ell = 1, 2$ such that $g_1 \circ f_1 \upharpoonright M_2 = g_2 \circ f_2 \upharpoonright M_2$

(b) [being reduced] $f_\ell(M_2) \cap M_1 = M_0$

[this is “for free” in the proofs; and is not really necessary so the decision if to include it is not important but simplify notation, but see 5.4(3)].

2) $K_\lambda^{3,\text{sq}}$ is dense (or $\mathfrak s$ has density for $K_\lambda^{3,\text{sq}}$) when $K_\lambda^{3,\text{sq}}$ is dense in $(K_\lambda^{3,\text{bs}}, \leq_{\text{bs}})$, i.e., for every $(M_1, M_2, a) \in K_\lambda^{3,\text{bs}}$ there is $(M_1, N_2, a) \in K_\lambda^{3,\text{sq}}$ such that $(M_1, M_2, a) \leq_{\text{bs}} (N_1, N_2, a) \in K_\lambda^{3,\text{sq}}$.

3) $K_\lambda^{3,\text{sq}}$ has existence or $\mathfrak s$ has existence for $K_\lambda^{3,\text{sq}}$ when for every $M_0 \in K_\lambda$ and $p \in \mathcal P_{\text{bs}}(M_0)$ for some M_1, a we have $(M_0, M_1, a) \in K_\lambda^{3,\text{sq}}$ and $p = tp(a, M_0, M_1)$.

4) $K_\lambda^{3,\text{sq}} = K_\lambda^{3,\text{sq}}$.

5.4 Claim. 1) The relation \leq_{bt} is a partial order on $K_\lambda^{3,\text{bt}}$ that is transitive and reflexive (but not necessarily satisfying the parallel of Ax V of a.e.c. see Definition 1.4).

2) If $(M_\alpha, N_\alpha, a) \in K_\lambda^{3,\text{bt}}$ is \leq_{bt}-increasing continuous for $\alpha < \delta$ where δ is a limit ordinal $< \lambda^+$ then $(M, N, a) = (\bigcup_{\alpha<\delta} M_\alpha, \bigcup_{\alpha<\delta} N_\alpha, a)$ belongs to $K_\lambda^{3,\text{bt}}$ and $\alpha < \delta \Rightarrow (M_\alpha, N_\alpha, a) \leq_{\text{bt}} (M, N, a)$ and so (M, N, a) is a \leq_{bt}-upper bound of $\langle (M_\alpha, N_\alpha, a) : \alpha < \delta \rangle$.

3) In (*) of 5.3(1), clause (b) follows from (a).

Proof. Easy, e.g. (3) by the uniqueness (i.e., clause (a)) and 4.6(4). $\square_{5.4}$

We now define K_λ^{sq}, a family of \leq_R-increasing continuous sequences (the reason for sq) in K_λ of length λ^+, will be used to approximate stages in constructing models in K_λ^{++}.

5.5 Definition. 1) Let $K_\lambda^{\text{sq}} = K_\mathfrak s^{\text{sq}}$ be the set of pairs $(\bar M, \bar a)$ such that (sq stands for sequence):
CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES

\(\overline{M} = \langle M_\alpha : \alpha < \lambda^+ \rangle \) is a \(\leq_{ct} \)-increasing continuous sequence of models from \(K_{\lambda} \)

(b) \(\overline{a} = \langle a_\alpha : \alpha \in S \rangle \), where \(S \subseteq \lambda^+ \) is stationary in \(\lambda^+ \) and \(a_\alpha \in M_{\alpha+1} \setminus M_\alpha \)

(c) for some club \(E \) of \(\lambda^+ \) for every \(\alpha \in S \cap E \) we have \(\text{tp}(a_\alpha, M_\alpha, M_{\alpha+1}) \in \mathcal{S}^{bs}(M_\alpha) \)

(d) if \(p \in \mathcal{S}^{bs}(M_\alpha) \) then for stationarily many \(\delta \in S \) we have: \(\text{tp}(a_\delta, M_\delta, M_{\delta+1}) \in \mathcal{S}^{bs}(M_\delta) \) does not fork over \(M_\alpha \) and extends \(p \).

In such cases we let \(M = \bigcup_{\alpha<\lambda^+} M_\alpha \).

2) When for \(\ell = 1, 2 \) we are given \((\overline{M}^\ell, \overline{a}^\ell) \in K_{\lambda^+}^{sq} \) we say \((\overline{M}^1, \overline{a}^1) \leq_{ct} (\overline{M}^2, \overline{a}^2) \) if for some club \(E \) of \(\lambda^+ \), letting \(\overline{a}^\ell = \langle a_\delta^\ell : \delta \in S^\ell \rangle \) for \(\ell = 1, 2 \), of course, we have

(a) \(S^1 \cap E \subseteq S^2 \cap E \)

(b) if \(\delta \in S^1 \cap E \) then
 \(\alpha \) \(M_\delta^1 \leq R M_\delta^2 \),
 \(\beta \) \(M_{\delta+1}^1 \leq R M_{\delta+1}^2 \)
 \(\gamma \) \(a_\delta^2 = a_\delta^1 \)
 \(\delta \) \(\text{tp}(a_\delta^1, M_{\delta}^1, M_{\delta+1}^1) \) does not fork over \(M_\delta^1 \), so in particular \(a_\delta^1 \notin M_\delta^2 \).

5.6 Observation. 1) If \((\overline{M}, \overline{a}) \in K_{\lambda^+}^{sq} \) then \(M := \bigcup_{\alpha<\lambda^+} M_\alpha \in K_{\lambda^+} \) is saturated.

2) \(K_{\lambda^+}^{sq} \) is partially ordered by \(\leq_{ct} \). \(\square_{5.6} \)

5.7 Claim. Assume \(\langle (\overline{M}_\zeta, \overline{a}_\zeta) : \zeta < \zeta^* \rangle \) is \(\leq_{ct} \)-increasing in \(K_{\lambda^+}^{sq} \), and \(\zeta^* \) is a limit ordinal \(< \lambda^{++} \), then the sequence has a \(\leq_{ct} \)-lub \((\overline{M}, \overline{a}) \).

Proof. Let \(\overline{a}_\zeta = \langle a_\delta^\zeta : \delta \in S_\zeta \rangle \) for \(\zeta < \zeta^* \) and without loss of generality \(\zeta^* = \text{cf}(\zeta^*) \) and for \(\zeta < \xi < \zeta^* \) let \(E_{\zeta, \xi} \) be a club of \(\lambda^+ \) consisting of limit ordinals witnessing \((\overline{M}_\zeta, \overline{a}_\zeta) \leq_{ct} (\overline{M}_\xi, \overline{a}_\xi) \), i.e. as in 5.5(2).

Case 1: \(\zeta^* < \lambda^+ \).

Let \(E = \cap \{ E_{\zeta, \xi} : \zeta < \xi < \zeta^* \} \) and for \(\delta \in E \) let \(M_\delta = \bigcup \{ M_\zeta^\zeta : \zeta < \zeta^* \} \) and \(M_{\delta+1} = \bigcup \{ M_\zeta^\zeta : \zeta < \zeta^* \} \) and for any other \(\alpha, M_\alpha = M_{\text{Min}(E \setminus \alpha)} \). Let \(S = \)
\[\bigcup S_\zeta \cap E \text{ and for } \delta \in S \text{ let } a_\delta = a_\delta^\zeta \text{ for every } \zeta \text{ for which } \delta \in S_\zeta. \text{ Clearly } M_\alpha \in K_\lambda \zeta < \zeta^* \]

is \(\leq_R \)-increasing continuous and \(\zeta < \zeta^* \wedge \delta \in E \Rightarrow M_\delta^\zeta \leq_R M_\delta \& M_{\delta+1}^\zeta \leq_R M_{\delta+1}. \)

Now if \(\delta \in E \cap S_\zeta \) then \(\zeta \in [\zeta, \zeta^*) \) implies \(\text{tp}(a_\delta, M_\delta^\zeta, M_{\delta+1}) = \text{tp}(a_\delta^\zeta, M_\delta^\xi, M_{\delta+1}^\xi) \)
does not fork over \(M_\delta^\zeta \) (and \(\langle M_{\delta+1}^\xi : \xi \in [\zeta, \delta) \rangle, \langle M_{\delta+1}^\zeta : \xi \in [\zeta, \delta) \rangle \) are \(\leq_R \)-increasing continuous); hence by Axiom (E)(h) we know that \(\text{tp}(a_\delta, M_\delta, M_{\delta+1}) \) does not fork over \(M_\delta \) and in particular \(\in \mathcal{S}^{bs}(M_\delta). \) Also if \(N \leq_R M := \bigcup M_\alpha, N \in K_\lambda \)

and \(p \in \mathcal{S}^{bs}(N) \) then for some \(\delta(\ast) \in E, N \leq_R M_\delta(\ast), \) let \(p_1 \in \mathcal{S}^{bs}(\delta(\ast)) \) be a non-forking extension of \(p, \) so for some \(\zeta < \zeta^*, p \) does not fork over \(M_\delta(\ast) \) hence for stationarily many \(\delta \in S_\zeta, q_\delta^0 = \text{tp}(a_\delta, M_\delta^\zeta, M_{\delta+1}^\zeta) \) is a non-forking extension of \(p_1 \restriction M_\delta(\ast), \) hence this holds for stationarily many \(\delta \in S \cap E \) and for each such \(\delta, q_\delta = \text{tp}(a_\delta, M_\delta, M_{\delta+1}) \) is a non-forking extension of \(p_1 \restriction M_\delta(\ast), \) hence of \(p_1 \) hence of \(p. \)

Looking at the definitions, clearly \((\overline{M}, \overline{a}) \in K_\lambda^{eq} \) and \(\zeta < \zeta^* \Rightarrow (\overline{M}, \overline{a}) \leq_{ct} (M, \overline{a}). \)

Lastly, it is easy to check the \(\leq_{ct} \text{-l.u.b.} \)

Case 2: \(\zeta^* = \lambda^+. \)

Similarly using diagonal union, i.e., \(E = \{ \delta < \lambda^+ : \delta \text{ is a limit ordinal such that } \zeta < \zeta < \delta \Rightarrow \delta \in E_{\zeta, \epsilon} \} \) and we choose \(M_\alpha = \bigcup \{ M_\alpha^\zeta : \zeta < \alpha \} \) when \(\alpha \in E \) and \(M_\alpha = M_{\min(E \setminus (\alpha+1))} \) otherwise. \(\Box_{5.7} \)

5.8 Observation. Assume \(K^{3,\text{unq}}_\lambda \) is dense in \(K^{3,\text{bs}}_\lambda, \) i.e., in \((K^{3,\text{bs}}_\lambda, \leq_{\text{bs}}) \) and even in \((K^{3,\text{bs}}_\lambda, <_{\text{bt}}). \) Then

(a) if \(M \in K_\lambda \) is superlimit and \(p \in \mathcal{S}^{bs}(M) \) then there are \(N, a \) such that \((M, N, a) \in K^{3,\text{unq}}_\lambda \) and \(p = \text{tp}(a, M, N) \)

(b) if in addition \(K_\delta \) is categorical (in \(\lambda) \) then \(\mathfrak{s} \) has existence for \(K^{3,\text{unq}}_\lambda \) (recall that this means that for every \(M \in K_\delta \) and \(p \in \mathcal{S}^{bs}(M) \) for some pair \((N, a) \) we have \((M, N, a) \in K^{3,\text{unq}}_\lambda \) and \(p = \text{tp}(a, M, N) \)).

Proof. Should be clear. \(\Box_{5.8} \)

Now the assumption of 5.8 are justified by the following theorem (and the categoricity in (b) is justified by Claim 1.26).
5.9 First Main Claim. Assume that

(a) as in 5.1
(b) WDmId(\lambda^+) is not \lambda^{++}-saturated and\(^{16} \) \(2^\lambda < 2^\lambda < 2^{\lambda^+}\).

If \(\hat{I}(\lambda^+, K) < \mu_{\text{uni}(\lambda^+, 2^\lambda)}\) or just \(\hat{I}(\lambda^+, K(\lambda^+-\text{saturated})) < \mu_{\text{uni}(\lambda^+, 2^\lambda)}\),
then for every \((M, N, a) \in K^{3,\text{bs}}\) there is \((M^*, N^*, a) \in K^{3,\text{bt}}\) such that \((M, N, a) \prec_{\text{bt}} (M^*, N^*, a) \in K^{3,\text{ab}}\).

5.10 Explanation. The reader who agrees to believe in 5.9 can ignore the rest of this section (though it can still serve as a good exercise).

Let \(\langle S_\alpha : \alpha < \lambda^+ \rangle\) be a sequence of subsets of \(\lambda^+\) such that \(\alpha < \beta \Rightarrow |S_\alpha \setminus S_\beta| \leq \lambda\) and \(S_{\alpha+1} \setminus S_\alpha \neq \emptyset\) mod WDmId(\(\lambda^+)\), exists by assumption.

Why having \((M, N, a)\) failing the conclusion of 5.9 helps us to construct many models in \(K_{\lambda^+}\)? The point is that we can choose \((\bar{M}^\alpha, \bar{a}^\alpha) \in K^{3,\text{ab}}\) with \(\text{Dom}(\bar{a}^\alpha) = S_\alpha\) for \(\alpha < \lambda^+, <_{\text{ct}}\)-increasing continuous (see 5.7).

Now for \(\alpha = \beta + 1\), having \((\bar{M}^\beta, \bar{a}^\beta)\), without loss of generality \(M^\beta_{i+1}\) is brimmed over \(M^\beta_i\) and we shall choose \(M^\alpha_i\) by induction on \(i < \lambda^+\) (for simplicity we assume \(M^\alpha_i \cap \cup \{M^\beta_j : j < \lambda^+\} = M^\beta_i\) and \(M^\beta_i \leq_{\text{bt}} M^\alpha_i \in K_\lambda\) and \(\text{tp}(a^\beta_i, M^\alpha_i, M^\alpha_{i+1})\) does not fork over \(M^\beta_i\) and \(M^\alpha_{i+1}\) is brimmed over \(M^\alpha_i\).)

Given \((\bar{M}^\beta, \bar{a}^\beta)\), \(\bar{M}^\beta = (M^\beta_i : i < \lambda^+), \bar{a}^\beta = (a^\beta_i : i \in S_\beta)\) we work toward building \((\bar{M}^\alpha, \bar{a}^\alpha), \alpha_{\beta+1}\).

We start with choosing \((M^\alpha_0, b)\) such that no member of \(K^{3,\text{bs}}\) which is \(\leq_{\text{bs}}\)-above \((M^\alpha_0, b) \in K^{3,\text{bs}}\) belongs to \(K^{3,\text{ab}}\) and will choose \(M^\beta_i\) by induction on \(i\) such that \((M^\beta_i, M^\alpha_i, b) \in K^{3,\text{bs}}\) is \(\leq_{\text{bs}}\)-increasing continuous and even \(\prec_{\text{bt}}\)-increasing hence in particular \(\text{tp}(b, M^\beta_i, M^\alpha_i)\) does not fork over \(M^\alpha_0\). Now in each stage \(i = j + 1\), as \(M^\beta_i\) is universal over \(M^\beta_j\), and the choice of \(M^\alpha_0, b\) we have some freedom. So it makes sense that we will have many possible outcomes, i.e., models \(M = \cup \{M^\alpha_i : \alpha < \lambda^+, i < \lambda^+\}\) which are in \(K_{\lambda^+}\). The combination of what we have above and [Sh 576, §3] better [Sh 838, §2] gives that \(2^\lambda < 2^\lambda < 2^{\lambda^+}\) is enough to materialize this intuition. If in addition \(2^\lambda = \lambda^+\) and moreover \(\Diamond_{\lambda^+}\) it is considerably easier. In the end we still have to define \(\bar{a}^\alpha \upharpoonright (S_\alpha \setminus S_\beta)\) as required in Definition 5.5, [Sh 832]. An alternative is to force a model in \(\lambda^{++}\). Now below we replace \(K^{3,\text{ab}}\) by \(K^{\text{mar}}, K^{\text{nqr}}\) but actually \(K^{3,\text{ab}}\) is enough. So we need a somewhat more complicated relative as elaborated below which anyhow seems to me more natural.

\(^{16}\)Alternatively the parallel versions for the definitional weak diamond, but not here
5.11 Second Main Claim. Assume $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ (or the parallel versions for the definitional weak diamond). If $I(\lambda^{++}, K(\lambda^{+-saturated})) < \mu_{\text{unif}}(\lambda^{++}, 2^{\lambda^+})$, then for every $(M, N, a) \in K^{3,\text{bt}}_\lambda$ there is $(M^*, N^*, a) \in K^{3,\text{bt}}_\lambda$ such that $(M, N, a) <_{\text{bt}} (M^*, N^*, a)$ and $(M^*, N^*, a) \in K^{3,\text{unq}}_\lambda$.

We shall not prove here 5.11 and shall not use it, it is proved in the full version of [Sh 838]; toward proving 5.9 (by quoting) let

5.12 Definition. Let $S \subseteq \lambda^+$ be a stationary subset of λ^+.

1) Let K^{mqr}^λ or $K^{\text{mqr}}^\lambda[S]$ be the set of triples (\bar{M}, \bar{a}, f) such that:

- $\bar{M} = \langle M_\alpha : \alpha < \lambda^+ \rangle$ is $\leq_\mathcal{R}$-increasing continuous, $M_\alpha \in K_\lambda$ (we denote $\bigcup_{\alpha<\lambda^+} M_\alpha$ by M) and demand $M \in K_{\lambda^+}$
- $\bar{a} = \langle a_\alpha : \alpha < \lambda \rangle$ with $a_\alpha \in M_{\alpha+1}$
- f is a function from λ^+ to λ^+ such that for some club E of λ^+ for every $\delta \in E \cap S$ and ordinal $i < f(\delta)$ we have $\text{tp}(a_{\delta+i}, M_{\delta+i}, M_{\delta+i+1}) \in \mathcal{S}^{\text{bs}}(M_{\delta+i})$
- for every $\alpha < \lambda^+$ and $p \in \mathcal{S}^{\text{bs}}(M_{\alpha})$, stationarily many $\delta \in S$ satisfies: for some $\varepsilon < f(\delta)$ we have $\text{tp}(a_{\delta+\varepsilon}, M_{\delta+\varepsilon}, M_{\delta+\varepsilon+1})$ is a non-forking extension of p.

1A) $K^{\text{mqr}}_\lambda[S] = K^{\text{mqr}}_S$ is the set of triples $(\bar{M}, \bar{a}, f) \in K^{\text{mqr}}_\lambda$ such that:

- for a club of $\delta < \lambda^+$, if $\delta \in S$ then $f(\delta)$ is divisible by λ and 17 for every $i < f(\delta)$ if $q \in \mathcal{S}^{\text{bs}}(M_{\delta+i})$ then for λ ordinals $\varepsilon \in [i, f(\delta))$ the type $\text{tp}(a_{\delta+i}, M_{\delta+i}, M_{\delta+i+1}) \in \mathcal{S}^{\text{bs}}(M_{\delta+i})$ is a stationarization of q (= non-forking extension of q, see Definition 4.5).

2) Assume $(\bar{M}^\ell, \bar{a}^\ell, f^\ell) \in K^{\text{mqr}}_S$ for $\ell = 1, 2$; we say $(\bar{M}^1, \bar{a}^1, f^1) \leq^0_S (\bar{M}^2, \bar{a}^2, f^2)$ iff for some club E of λ^+, for every $\delta \in E \cap S$ we have:

- $M^1_{\delta+i} \leq_R M^2_{\delta+i}$ for $i \leq f^1(\delta)$
- $f^1(\delta) \leq f^2(\delta)$
- for $i < f^1(\delta)$ we have $a^1_{\delta+i} = a^2_{\delta+i}$ and $\text{tp}(a^1_{\delta+i}, M^2_{\delta+i}, M^2_{\delta+i+1})$ does not fork over $M^1_{\delta+i}$.

\footnote{if we have an a priori bound $f^* : \lambda^+ \to \lambda^+$ which is a $\leq_\mathcal{R}$-upper bound of the “first” λ^{++} functions in $\lambda^+(\lambda^+)/D$, we can use bookkeeping for u_i’s as in the proof of 4.10}

\footnote{could have used (systematically) $i < f^1(\delta)$}
3) We define the relation $<_S^I$ on K^{mqr}_S as in part (2) adding

(d) if $\delta \in E$ and $i < f^1(\delta)$ then $M_{\delta+i+1}^2$ is (λ, \ast)-brimmed over $M_{\delta+i+1}^1 \cup M_{\delta+i}^2$.

5.13 Claim. 0) If $(\tilde{M}, \tilde{a}, f) \in K^{mqr}_S$ then $\bigcup_{\alpha < \lambda^+} M_\alpha \in K_{\lambda^+}$ is saturated.

1) The relation \leq_S is a quasi-order\(^{19}\) on K^{mqr}_λ; also $<_S$ is.

2) $K^{mqr}_S \supseteq K^{mqr}_\lambda \neq \emptyset$ for any stationary $S \subseteq \lambda^+$.

3) For every $(\tilde{M}, \tilde{a}, f) \in K^{mqr}_\lambda$ for some $(\tilde{M}', \tilde{a}, f') \in K^{mqr}_\lambda[S]$ we have $(\tilde{M}, \tilde{a}, f) <_S^{1/2} (\tilde{M}', \tilde{a}, f')$.

4) For every $(\tilde{M}^1, \tilde{a}^1, f^1) \in K^{mqr}_\lambda$ and $q \in \mathcal{S}^{bs}(M^1_\alpha), \alpha < \lambda^+$, there is $(M^2, \tilde{a}^2, f^2) \in K^{mqr}_\lambda$ such that $(\tilde{M}^1, \tilde{a}^1, f^1) <_S^{1/2} (M^2, \tilde{a}^2, f^2) \in K^{mqr}_\lambda$ and $b \in M^2_\lambda$ realizing q such that for every $\beta \in [\alpha, \lambda^+]$ we have $\text{tp}(b, M^1_\beta, M^2_\beta) \in \mathcal{S}^{bs}(M^1_\beta)$ does not fork over M^1_β.

5) If $(\tilde{M}^c, \tilde{a}^c, f^c : \zeta < \xi(*)$ is $<_S^{1/2}$-increasing continuous in K^{mqr}_λ and $\xi(*) < \lambda^+$ a limit ordering, then the sequence has a $<_S^{1/2}$-lub.

Proof. 0) Easy.

2) The inclusion $K^{mqr}_S \supseteq K^{mqr}_\lambda$ is obvious, so let us prove $K^{mqr}_S \neq \emptyset$. We choose by induction on $\alpha < \lambda^+, a_\alpha, M_\alpha, p_\alpha$ such that

(a) $M_\alpha \in K_\lambda$ is a super limit model,

(b) M_α is \leq_S-increasingly continuous,

(c) if $\alpha = \beta + 1$, then $a_\beta \in M_\alpha \setminus M_\beta$ realizes $p_\beta \in \mathcal{S}^{bs}(M_\beta)$,

(d) if $p \in \mathcal{S}^{bs}(M_\alpha)$, then for some $i < \lambda$, for every $j \in [i, \lambda)$ for at least one ordinal $\varepsilon \in [j, j+i), p_{a_\alpha + \varepsilon} \setminus M_\alpha = p$ and $p_{a_\alpha + \varepsilon}$ does not fork over M_α.

For $\alpha = 0$ choose $M_0 \in K_\lambda$. For α limit, $M_\alpha = \bigcup_{\beta < \alpha} M_\beta$ is as required. Then use Axiom(E)(g) to take care of clause (d) (with careful bookkeeping). Lastly, let $f : \lambda^+ \rightarrow \lambda^+$ be constantly $\lambda, \tilde{M} = \langle M_\alpha : \alpha < \lambda, \tilde{a} = \langle a_\alpha : \alpha < \lambda \rangle$; now for any stationary $S \subseteq \lambda^+$, the triple $(\tilde{M}, \tilde{a} \upharpoonright S, f \upharpoonright S)$ belong to K^{mqr}_S.

3) Let E be a club witnessing $(\tilde{M}^1, \tilde{a}^1, f^1) \in K^{mqr}_S$ such that $\delta \in E \Rightarrow \delta + f^1(\delta) < \text{Min}(E \setminus (\delta + 1))$. Choose $f^2 : \lambda^+ \rightarrow \lambda^+$ such that $\alpha < \lambda^+$ implies $f^1(\alpha) < f^2(\alpha) < \lambda^+$ and $f^2(\alpha)$ is divisible by λ. We choose by induction on $\alpha < \lambda^+, f_\alpha, M^2_\alpha, p_\alpha, a^\alpha_\alpha$ such that:

(a), (b), (c) as in the proof of part (2)

\(^{19}\)quasi order \leq is a transitive relation, so we waive $x \leq y \leq x \Rightarrow x = y$
(d) f_α is a \leq_{fr}-embedding of M^1_α into M^2_α.

(e) f_α is increasing continuous.

(f) if $\delta \in E \cap S$ and $i < f^1(\delta)$ hence $tp(a^1_{\delta+i}, M^1_{\delta+i}, M^1_{\delta+i+1}) \in \mathcal{S}^{bs}(M^1_{\delta+i})$, then $f_{\delta+i+1}(a^1_{\delta+i}) = a^2_{\delta+i}$ and $p_\epsilon+i = tp(a^2_{\delta+i}, M^2_{\delta+i}, M^2_{\delta+i+1}) \in \mathcal{S}^{bs}(M^2_{\delta+i})$ is a stationarization of $tp(f_{\delta+i+1}(a^1_{\delta+i}), f_{\delta+i}(M^1_{\delta+i}), f_{\delta+i+1}(M^1_{\delta+i+1})) = \mathcal{S}(a^2_{\delta+i}, f_{\delta+i}(M^1_{\delta+i}), M^2_{\delta+i+1})$

(g) if $\delta \in E$ and $i < f^2(\delta)$, $q \in \mathcal{S}^{bs}(M^2_{\delta+i})$ then for some λ ordinals $\epsilon \in (i, f^2(\delta))$ the type $p_{\delta+\epsilon}$ is a stationarization of q

(h) if $\delta \in E$, $i < f^2(\delta)$ then $M^1_{\delta+i+1}$ is $(\lambda, *)$-brimmed over $M^1_{\delta+i} \cup f^2(\delta)$.

The proof is as in part (2) only the bookkeeping is different. At the end without loss of generality $\bigcup_{\alpha < \lambda^+} f_\alpha$ is the identity and we are done.

4) Similar proof but in some cases we have to use Axiom (E)(i), the non-forking amalgamation of Definition 2.1, in the appropriate cases.

5) Without loss of generality cf$(\xi(\ast)) = \xi(\ast)$. First assume that $\xi(\ast) \leq \lambda$. For $\epsilon < \zeta < \xi(\ast)$ let $E_{\epsilon, \zeta}$ be a club of λ^+ witnessing $M^\epsilon <_S M^\zeta$. Let $E^* = \bigcap_{\epsilon < \zeta < \xi(\ast)} E_{\epsilon, \zeta} \cap \{ \delta < \lambda^+ : \text{for every } \alpha < \delta \text{ we have } \sup_{\epsilon < \xi(\ast)} f^\epsilon(\alpha) < \delta \}$, it is a club of λ^+. Let $f^\xi(\ast) : \lambda^+ \rightarrow \lambda^+$ be $f^\xi(\ast)(i) = \sup_{\epsilon < \xi(\ast)} f^\epsilon(i)$ now define $M^{\xi(\ast)}_i$ as follows:

Case 1: If $\delta \in E^*$ and $\epsilon < \xi(\ast)$ and $i < f^\epsilon(\delta)$ and $i \geq \bigcup_{\zeta < \epsilon} f^\zeta(\delta)$ then

(a) $M^{\xi(\ast)}_{\delta+i} = \bigcup \{ M^{\xi(\ast)}_{\delta+i} : \zeta \in [\epsilon, \xi(\ast)) \}$

(b) $i < f^\epsilon(\delta) \Rightarrow a^{\xi(\ast)}_{\delta+i} = a^{\xi(\ast)}_{\delta+i}$.

(Note: we may define $M^{\xi(\ast)}_{\delta+i}$ twice if $i = f^\epsilon(\delta)$, but the two values are the same).

Case 2: If $\delta \in E^*$, $i = f^\xi(\ast)(\delta)$ is a limit ordinal let $M^{\xi(\ast)}_{\delta+i} = \bigcup_{j < i} M^{\xi(\ast)}_{\delta+j}$.

Case 3: If $M^{\xi(\ast)}_i$ has not been defined yet, let it be $M^{\xi(\ast)}_{\text{Min}(E^* \setminus i)}$.

Case 4: If $a^{\xi(\ast)}_i$ has not been defined yet, let $a^{\xi(\ast)}_i \in M^{\xi(\ast)}_{i+1}$ be arbitrary.

Note that Case 3,4 deal with the “unimportant” cases.

Let $\epsilon < \xi(\ast)$, why $(\bar{M}^\epsilon, \bar{a}^\epsilon, f^\epsilon) \subseteq_S (\bar{M}^{\xi(\ast)}, \bar{a}^{\xi(\ast)}, f^{\xi(\ast)}) \in K^{mqr}_S$? Enough to check
that the club E^* witnesses it.

Why $tp(a_{\delta+i}, M_{\delta+i}^\xi, M_{\delta+i+1}^\xi) \in S^{bs}(M_{\delta+i}^\xi)$ and when $\delta \in E^*, i < f^\xi(i)$, and does not fork over $M_{\delta+i}^\xi$ when $i < f^\xi(\delta)$? by Axiom (E)(h) of Definition 2.1.

Why clause (e) of Definition 5.12(1A)? By Axiom (E)(c), local character of non-forking.

The case $\xi(*) = \lambda^+$ is similar using diagonal intersections. □

Remark. If we use weaker versions of “good λ-frames”, we should systematically concentrate on successor $i < f(\delta)$.

Proof of 5.9. We can use [Sh 838, 2b.3] or more explicitly [Sh 838, e.4]: the older version runs as follows. The use of $\lambda^{++} \notin WDmId(\lambda^{++})$ is as in the proof of [Sh 576, 3.19](pg.79)=3.12t. But now we need to preserve saturation in limit stages $\delta < \lambda^{++}$ of cofinality $< \lambda^+$, we use $<_{5^*}$, otherwise we act as in [Sh 576, §3]. □

Let us elaborate

5.14 Definition. We define $C = (\mathcal{R}^+, Seq, \leq^*)$ as follows:

(a) $\tau^+ = \tau \cup \{P, <\}$, \mathcal{R}^+ is the set of $(M, P^M, <^M)$ where $M \in \mathcal{R}_{<\lambda}$, $P^M \subseteq M$, $<^M$ a linear ordering of P^M (but $=^M$ may be as in [Sh 576, 3.1](2) and $M_1 \leq_{\mathcal{R}^+} M_2$ iff $(M_1 \upharpoonright \tau) \leq_{\mathcal{R}} (M_2 \upharpoonright \tau)$ and $M_1 \subseteq M_2$

(b) $Seq_\alpha = \{ \bar{M} : M = \langle M_i : i \leq \alpha \rangle$ is an increasing continuous sequence of members of \mathcal{R}^+ and $(M_i \upharpoonright \tau : i \leq \alpha)$ is $\leq_{\mathcal{R}}$-increasing, and for $i < j < \alpha : P^{M_i}$ is a proper initial segment of $(P^{M_j}, <^{M_j})$ and there is a first element in the difference\}

we denote the $<^{M_i+1}$-first element of $P^{M_i+1}\setminus P^{M_i}$, by $a_i[M]$ and we demand $tp(a_i(M), M_i \upharpoonright \tau, M_{i+1} \upharpoonright \tau) \in S^{bs}(M_i \upharpoonright \tau)$ and if $\alpha = \lambda, M = \cup\{M_i \upharpoonright \tau : i < \lambda^+\}$ is saturated

(c) $\bar{M} <^* \bar{N}$ iff $\bar{M} = \langle M_i : i < \alpha^* \rangle, \bar{N} = \langle N_i : i < \alpha^{**} \rangle$ are from Seq, t is a set of pairwise disjoint closed intervals of α^* and for any $[\alpha, \beta] \in t$ we have ($\beta < \alpha^*$ and):

$\gamma \in [\alpha, \beta) \Rightarrow M_\gamma \leq_{\mathcal{R}} N_\gamma \ & a_\gamma[M] \notin N_\gamma$, moreover $a_\gamma[M] = a_\gamma[N]$ and $tp(a_j[M], N_\gamma \upharpoonright \tau, N_{\gamma+1}, \tau)$ does not fork over $M_\gamma \upharpoonright \tau$.

5.15 Claim. 1) C is a $\lambda^+\text{-construction framework}$ (see [Sh 576, 3.3](pg.68)).
2) C is weakly nice (see Definition [Sh 576, 3.14](2)(pg.76)).
4) C has the weakening $\lambda^+-\text{coding property}$.

Discussion: Is it better to use (see [Sh 576, 3.14](1)(pg.75)) stronger axiomatization in [Sh 576, §3] to cover this? But at present this will be the only case.

Proof. Straight. \[\square_{5.15}\]

Now 5.11 follows by [Sh 576, 3.19](pg.79).
§6 Non-forking amalgamation in \mathcal{R}_λ

We deal in this section only with \mathcal{R}_λ.
We would like to, at least, approximate “non-forking amalgamation of models” using as a starting point the conclusion of 5.9, i.e., $K_\lambda^{3,uq}$ is dense. We use what looks like a stronger hypothesis: the existence for $K_\lambda^{3,uq}$ (also called “weakly successful”); but in our application we can assume categoricity in λ; the point being that as we have a superlimit $M \in K_\lambda$, this assumption is reasonable when we restrict ourselves to $\mathcal{R}_{[M]}$, recalling that we believe in first analyzing the saturated enough models; see 5.8. By 4.8, the “$(\lambda, cf(\delta))$-brimmed over” is the same for all limit ordinals $\delta < \lambda^+$, (but not for $\delta = 1$ or just δ non-limit); nevertheless for possible generalizations we do not use this.

It may help the reader to note, that (assuming 6.8 below, of course), if there is a 4-place relation $NF_\lambda(M_0, M_1, M_2, M_3)$ on K_λ, satisfying the expected properties of “M_1, M_2 are amalgamated in a non-forking = free way over M_0 inside M_3”, i.e., is a \mathcal{R}_λ-non-forking relation from Definition 6.1 below then Definition 6.12 below (of NF_λ) gives it (provably!). So we have “a definition” of NF_λ satisfying that: if desirable non-forking relation exists, our definition gives it (assuming the hypothesis 6.8). So during this section we are trying to get better and better approximations to the desirable properties; have the feeling of going up on a spiral, as usual.

For the readers who know on non-forking in stable first order theory we note that in such context $NF_\lambda(M_0, M_1, M_2, M_3)$ says that $tp(M_2, M_1, M_3)$, the type of M_2 over M_1 inside M_3, does not fork over M_0. It is natural to say that there are $(N_1, \alpha, N_2, \alpha : \alpha \leq \alpha^*)$, $N_{\ell, \alpha}$ is increasing continuous. $N_{1,0} = M_0, N_{2,0} = M_2, M_1 \subseteq M_1, \alpha, M_3 \subseteq M'_3, N_{2, \alpha} \subseteq M'_3, N_{\ell, \alpha} + 2$ is prime over $N_{\ell, \alpha} + a_{\alpha}$ for $\ell = 1, 2$ and $tp(a_{\alpha}, N_{2, \alpha})$ does not fork over $N_{1, \alpha}$ but this is not available. The $K_\lambda^{3,uq}$ is a substitute.

6.1 Definition. 1) Assume that $\mathcal{R} = \mathcal{R}_\lambda$ is a λ-a.e.c. We say NF is a non-forking relation on $^4(\mathcal{R}_\lambda)$ or just a \mathcal{R}_λ-non-forking relation when:

\[\Xi_{NF}(a) \] NF is a 4-place relation on K_λ and NF is preserved under isomorphisms

- $NF(M_0, M_1, M_2, M_3)$ implies $M_0 \leq_\mathcal{R} M_\ell \leq_\mathcal{R} M_3$ for $\ell = 1, 2$
- $(c)_1$ (monotonicity): if $NF(M_0, M_1, M_2, M_3)$ and $M_0 \leq_\mathcal{R} M'_\ell \leq_\mathcal{R} M_\ell$ for $\ell = 1, 2$ then $NF(M_0, M'_1, M'_2, M_3)$
- $(c)_2$ (monotonicity): if $NF(M_0, M_1, M_2, M_3)$ and $M_3 \leq_\mathcal{R} M'_3 \in K_\lambda, M_1 \cup M_2 \subseteq M'_3 \leq_\mathcal{R} M'_3$ then $NF(M_0, M_1, M_2, M'_3)$
- (d) (symmetry) $NF(M_0, M_1, M_2, M_3)$ iff $NF(M_0, M_2, M_1, M_3)$
(e) ((long) transitivity) if $\text{NF}(M_i, N_i, M_{i+1}, N_{i+1})$ for $i < \alpha, \langle M_i : i \leq \alpha \rangle$ is $\leq_{\mathcal{R}}$-increasing continuous and $\langle N_i : i \leq \alpha \rangle$ is $\leq_{\mathcal{R}}$-increasing continuous then $\text{NF}(M_0, N_0, M_\alpha, N_\alpha)$.

(f) (existence) if $M_0 \leq_{\mathcal{R}} M_\ell$ for $\ell = 1, 2$ (all in K_λ) then for some $M_3 \in K_\lambda, f_1, f_2$ we have $M_0 \leq_{\mathcal{R}} M_3, f_\ell$ is a $\leq_{\mathcal{R}}$-embedding of M_ℓ into M_3 over M_0 for $\ell = 1, 2$ and $\text{NF}(M_0, f_1(M_1), f_2(M_2), M_3)$

(g) (uniqueness) if $\text{NF}(M_0^\ell, M_1^\ell, M_2^\ell, M_3^\ell)$ and for $\ell = 1, 2$ and f_i is an isomorphism from M_1^ℓ onto M_2^ℓ for $i = 0, 1, 2$ and $f_0 \subseteq f_1, f_0 \subseteq f_2$ then $f_1 \cup f_2$ can be extended to an embedding f_3 of M_3^1 into some $M_3^2, M_3^2 \leq_{\mathcal{R}} M_3^2$.

2) We say that NF is a pseudo non-forking relation on $^4(K_\lambda)$ or a weak \mathcal{R}_λ-non-forking relation if clauses (a)-(f) of \mathbb{E}_{NF} above holds but not necessarily clause (g).

3) Assume s is a good λ-frame and NF is a non-forking relation on \mathcal{R} or just a weak one. We say that NF respects s or NF is an s-non-forking relation when:

(h) if $\text{NF}(M_0, M_1, M_2, M_3)$ and $a \in M_2\setminus M_0, \text{tp}_s(a, M_0, M_2) \in \mathcal{P}^{h_\mathcal{R}}(M_0)$ then $\text{tp}_s(a, M_1, M_3)$ does not fork over M_0 in the sense of s.

6.2 Observation. Assume \mathcal{R}_λ is a λ-a.e.c. and NF is a non-forking relation on $^4(\mathcal{R}_\lambda)$.

1) Assume \mathcal{R} is stable in λ. If in clause (g) of 6.1(1) above we assume in addition that M_3^ℓ is (λ, ∂)-branched over $M_1^\ell \cup M_2^\ell$, then in the conclusion of (g) we can add $M_3^\ell = M_2^\ell$, i.e., $f_1 \cup f_2$ can be extended to an isomorphism from M_3^1 onto M_3^2. This version of (g) is equivalent to it (assuming stability in λ; note that “\mathcal{R}_λ has amalgamation” follows by clause (f) of Definition 6.1).

2) If $M_0 \leq_{\mathcal{R}} M_1 \leq_{\mathcal{R}} M_3$ are from K_λ then $\text{NF}(M_0, M_0, M_1, M_3)$.

3) In Definition 6.1(1), clause (d), symmetry, it is enough to demand “if”.

Proof. 1) Chase arrows and the uniqueness from 1.16.

2) By clause (f) of \mathbb{E}_{NF} of 6.1(1) and clause (c)2, i.e., first apply existence with (M_0, M_0, M_3) here standing for (M_0, M_1, M_2) there, then chase arrows and use the monotonicity as in (c)2.

3) Easy. \hfill $\blacksquare_{6.2}$

The main point of the following claim shows that there is at most one non-forking relation respecting s, so it justifies the definition of NF_s later. The assumption “NF respects s” is not so strong by 6.7.

6.3 Claim. 1) If s is a good λ-frame and NF is a non-forking relation on $^4(\mathcal{R}_s)$ respecting s and $(M_0, N_0, a) \in K_\lambda^{3,\text{un}}$ and $(M_0, N_0, a) \leq_{bs} (M_1, N_1, a)$ then $\text{NF}(M_0, N_0, M_1, N_1)$.

2) If s is a good λ-frame, weakly successful (which means $K^{3,\text{eq}}_\lambda$ has existence in $K^{3,\text{eq}}_\lambda$, i.e., s satisfies hypothesis 6.8 below) and NF is a non-forking relation on $^4(\mathfrak{R}_a)$ respecting s then the relation $\text{NF}_\lambda = \text{NF}_s$, i.e., $N_1 \bigcup N_2$ defined in Definition 6.12 below is equivalent to $\text{NF}(N_0, N_1, N_2, N_3)$. [Recalling 6.34, but see 6.35(2), 6.36.]

3) If s is a weakly successful good λ-frame and for $\ell = 1, 2$, the relation NF_ℓ is a non-forking relation on $^4(\mathfrak{R}_a)$ respecting s, then $\text{NF}_1 = \text{NF}_2$.

\textbf{Proof.} Straightforward but we elaborate.

1) We can find (M'_1, N'_1) such that $\text{NF}(M_0, N_0, M'_1, N'_1)$ and M_1, M'_1 are isomorphic over M_0, say f_1 is such an isomorphism from M_1 onto M'_1 over M_0; why such (M'_1, N'_1, f_1) exists? by clause (f) of \mathfrak{Z}_{NF} of Definition 6.1.

As NF respects s, see Definition 6.1(2), recalling $\text{tp}(a, M_0, N_0) \in \mathcal{S}^{bs}(M_0)$ we know that $\text{tp}(a, M'_1, N'_1)$ does not fork over M_0, so by the definition of \leq_{bs} we have $(M_0, N_0, a) \leq_{bs} (M'_1, N'_1, a)$.

As $(M_0, N_0, a) \in K^{3,\text{eq}}_\lambda$, by the definition of $K^{3,\text{eq}}_\lambda$ (and chasing arrows) we conclude that there are N_2, f_2 such that:

\[(*) \quad N_1 \leq_{\mathfrak{R}[s]} N_2 \in K_\lambda \text{ and } f_2 \text{ is a } \leq_{\mathfrak{R}}\text{-embedding of } N'_1 \text{ into } N_2 \text{ extending } f_1^{-1} \text{ and } \text{id}_{N_0}. \]

As $\text{NF}(M_0, N_0, M'_1, N'_1)$ and NF is preserved under isomorphisms (see clause (a) in 6.1(1)) it follows that $\text{NF}(M_0, N_0, M_1, f_2(N'_1))$. By the monotonicity of NF (see clause (c)2 of Definition 6.1) it follows that $\text{NF}(M_0, N_0, M_1, N_2)$. Again by the same monotonicity we have $\text{NF}(M_0, N_0, M_1, N_1)$, as required.

2) First we prove that $\text{NF}_{\lambda \delta}(N_0, N_1, N_2, N_3)$, which is defined in Definition 6.11 below implies $\text{NF}(N_0, N_1, N_2, N_3)$. By definition 6.11, clause (f) there are $\langle (N_1, i, N_2, i : i \leq \lambda \times \delta_1) \rangle, \langle c_i : i < \lambda \times \delta_1 \rangle$ as there. Now we prove by induction on $j \leq \lambda \times \delta_1$ that $i \leq j \Rightarrow \text{NF}(N_{1,i}, N_{2,i}, N_{1,j}, N_{2,j})$. For $j = 0$ or more generally when $i = j$ this is trivial by 6.2(2). For j a limit ordinal use the induction hypothesis and transitivity of NF (see clause (e) of 6.1(1)).

Lastly, for j successor by the demands in Definition 6.11 we know that $N_{1,j-1} \leq_{\mathfrak{R}} N_{1,j} \leq_{\mathfrak{R}} N_{2,j}, N_{1,j-1} \leq_{\mathfrak{R}} N_{2,j-1} \leq_{\mathfrak{R}} N_{2,j}$ are all in K_λ, $\text{tp}(c_{j-1}, N_{2,j-1}, N_{2,j})$ does not fork over $N_{1,j-1}$ and $(N_{1,j-1}, N_{1,j}, N_{2,j-1}, N_{2,j}) \in K^{3,\text{eq}}_\lambda$. By part (1) of this claim we deduce that $\text{NF}(N_{1,j-1}, N_{1,j}, N_{2,j-1}, N_{2,j})$ hence by symmetry (i.e., clause (d) of Definition 6.1(1)) we deduce $\text{NF}(N_{1,j-1}, N_{2,j-1}, N_{1,j}, N_{2,j})$.

So we have gotten $i < j \Rightarrow \text{NF}(N_{1,i}, N_{2,i}, N_{1,j}, N_{2,j})$.

[Why? If $i = j - 1$ by the previous sentence and for $i < j - 1$ note that by the
induction hypothesis $\text{NF}(N_{1,i}, N_{2,i}, N_{1,j-1}, N_{1,j-1})$ so by transitivity (clause (e) of 6.1(1) of Definition 6.1) we get $\text{NF}(N_{1,i}, N_{2,i}, N_{1,j}, N_{2,j})].$

We have carried the induction so in particular for $i = 0, j = \alpha$ we get $\text{NF}(N_{1,0}, N_{2,0}, N_{1,\alpha}, N_{2,\alpha})$ which means $\text{NF}(N_0, N_1, N_2, N_3)$ as promised. So we have proved $\text{NF}_{\lambda,\delta}(N_0, N_1, N_2, N_3) \Rightarrow \text{NF}(N_0, N_1, N_2, N_3).

Second, if $\text{NF}_\lambda(N_0, N_1, N_2, N_3)$ as defined in Definition 6.12 then there are $M_0, M_1, M_2, M_3 \in K_\lambda$ such that $\text{NF}_\lambda(\langle \lambda \rangle)(M_0, M_1, M_2, M_3), N_\ell \leq M_\ell$ for $\ell < 4$ and $N_0 = M_0$. By what we have proved above we can conclude $\text{NF}(M_0, M_1, M_2, M_3)$. As $N_0 = M_0 \leq M_\ell$ $N_\ell \leq M_\ell$ for $\ell = 1, 2$ by clause (c)1 of Definition 6.1(1) we get $\text{NF}(M_0, N_1, N_2, M_3)$ and by clause (c)2 of Definition 6.1(1) we get $\text{NF}(N_0, N_1, N_2, N_3)$. So we have proved the implication $\text{NF}_\lambda(N_0, N_1, N_2, N_3) \Rightarrow \text{NF}(N_0, N_1, N_2, N_3)$.

For the other implication assume $\text{NF}(N_0, N_1, N_2, M_3)$. Now as we have existence for NF_λ (as proved below, see 6.21), we can find N_ℓ^M for $\ell = 0, 1, 2, 3$ and f_ℓ for $\ell = 0, 1, 2$ such that $\text{NF}_\lambda(\langle \ell \rangle)(N_0', N_1', N_2', N_3'), f_\ell$ is an isomorphism from N_ℓ onto N_ℓ^M for $\ell = 0, 1, 2$, and $f_0 \subseteq f_1, f_0 \subseteq f_2$. But what we have already proved it follows that $\text{NF}(N_0', N_1', N_2', N_3')$. As we have uniqueness for NF by clause (g) of Definition 6.1 we can find (f_3, N_3') such that $N_3' \leq N_3$ and f_3 is a \leq-embedding of N_3 into N_3'' extending $f_1 \cup f_2$. As NF_λ satisfies clause (c)2 of 6.1, recalling $\text{NF}_\lambda(\langle \ell \rangle)(N_0', N_1', N_2', N_3')$ it follows that $\text{NF}_\lambda(N_0', N_1', N_2', f_3(N_3))$ holds. As NF_λ is preserved by isomorphisms, it follows that $\text{NF}_\lambda(N_0, N_1, N_2, N_3)$ holds as required.

3) By the rest of this section, i.e., the main conclusion 6.34, the relation NF_λ defined in 6.12 is a non-forking relation on $4(K_\lambda)$ respecting s. Hence by part (2) of the present claim we have $\text{NF}_1 = \text{NF}_\lambda = \text{NF}_2$.

"See III§1 in particular Definition III.1.3.

6.4 Example: Do we need s in 6.3(3)? Yes.

Let \mathfrak{R} be the class of graphs and $M \leq N$ iff $M \subseteq N$; so \mathfrak{R} is an a.e.c. with $\text{LS}(R) = \aleph_0$. For cardinal λ and $\ell = 1, 2$ we define $\text{NF}^\ell = \{(M_0, M_1, M_2, M_3) : M_0 \leq M_1 \leq M_2 \leq M_3 \text{ and } M_1 \cap M_2 = M_0 \text{ and if } a \in M_1 \setminus M_0, b \in M_2 \setminus M_0 \text{ then } \{a, b\} \text{ is an edge of } M_3 \text{ iff } \ell = 2\}$ and $\text{NF}^\ell_\lambda := \{(M_0, M_1, M_2, M_3) \in \text{ NF} : M_0, M_1, M_2, M_3 \in K_\lambda\}$. Then NF^ℓ_λ is a non-forking relation on $4(\mathfrak{R}_\lambda)$ but $\text{NF}^\ell_\lambda \neq \text{NF}^2_\lambda$.

6.5 Remark: 1) So the assumption on \mathfrak{R}_λ that for some good λ-frame s we have $\mathfrak{R}_s = \mathfrak{R}_\lambda$ is quite a strong demand on \mathfrak{R}_λ.

2) However, the assumption "respect" essentially is not necessary as it can be deduced when s is good enough.

3) Below on "good+" see III§1 in particular Definition III.1.3.

6.6 Exercise: 1) Assume NF_1, NF_2 are non-forking relations on $4(\mathfrak{R}_\lambda)$.
If $\text{NF}_1 \subseteq \text{NF}_2$ then $\text{NF}_1 = \text{NF}_2$.
2) In part (1) write down the clauses from 6.1. We need to assume on NF, and those we need assume on NF.

[Hint: Read the last paragraph of the proof of 6.3(3).]

6.7 Claim. Assume that s is a good $^+\lambda$-frame and NF is a non-forking relation on $^4(\mathfrak{A}_s)$. Then NF respects s.

Remark. The construction in the proof is similar to the ones in 4.9, 6.14.

Proof. Assume NF(M_0, M_1, M_2, M_3) and $a \in M_2\setminus M_0$, $\text{tp}(a, M_0, M_2) \in \mathcal{F}^{bs}(M_0)$. We define (N_0, i, N_1, i, f_i) for $i < \lambda^+$ as follows:

- (a) N_0, i is \leq_s-increasing continuous and $N_0, 0 = M_0$
- (b) N_1, i is \leq_s-increasing continuous and $N_1, 0 = M_1$
- (c) NF$(N_0, i, N_1, i, N_0, i+1, N_1, i+1)$
- (d) f_i is a $\leq_{\mathfrak{A}}$-embedding of M_2 into $N_{0, i+1}$ over $M_0 = N_{0, 0}$ such that $\text{tp}(f_i(a), N_0, i, N_0, i+1)$ does not fork over $M_0 = N_{0, 0}$.

We shall choose f_i together with $N_0, i+1, N_1, i+1$.

Why can we define? For $i = 0$ there is nothing to do. For i limit take unions. For $i = j + 1$ choose $f_j, N_{0, i}$ satisfying clause (d) and $N_{0, j} \leq_s N_{0, i}$; this is possible for s as we have the existence of non-forking extensions of $\text{tp}(a, M_0, M_2)$ (and amalgamation).

Lastly, we take care of the rest (mainly clause (c) of \otimes_1 by clause (f) of Definition 6.1(1), existence). Now

- \otimes_2 for $i < j < \lambda^+$ we have NF$(N_0, i, N_1, i, N_0, j, N_1, j)$
 [why? by transitivity for NF, i.e., clause (e) of Definition 6.1(1), transitivity]
- \otimes_3 for some i, $\text{tp}(f_i(a), N_1, i, N_1, i+1)$ does not fork over M_0
 [why? by the definition of good $^+]$.

So for this $i, M_0 \leq_s f_i(M_2) \leq_s N_{0, i+1}$ by clause (d) of \otimes_1, hence by clause (c) of Definition 6.1, monotonicity we have NF$(M_0, M_1, f_i(M_2), N_{1, i+1})$. Now again by the choice of i, i.e., by \otimes_3 we have $\text{tp}(f_i(a), M_1, N_{1, i+1})$ does not fork over M_0. By clause (g) of Definition 6.1(1), i.e., uniqueness of NF (and preservation by isomorphisms) we get $\text{tp}(a, M_1, M_3)$ does not fork over M_0 as required. $\square_{6.7}$

We turn to our main task in this section proving that such NF exist; till 6.34 we assume:
6.8 Hypothesis. 1) $s = (\mathfrak{R}, \mathcal{J})$ is a good λ-frame.

2) s is weakly successful which just means that it has existence for $K^{3,\text{uq}}_\lambda$: for every $M \in K_\lambda$ and $p \in \mathcal{J}^{\text{bs}}(M)$ there are N, a such that $(M, N, a) \in K^{3,\text{uq}}_\lambda$ (see Definition 5.3) and $p = \text{tp}(a, M, N)$. (This follows by $K^{3,\text{uq}}_s$ is dense in $K^{3,\text{bs}}_s$; when s is categorical, see 5.8.)

In this section we deal with models from K_λ only.

6.9 Claim. If $M \in K_\lambda$ and N is (λ, κ)-brimmed over M, then we can find $\tilde{M} = \langle M_i : i \leq \delta \rangle, \leq_{\mathcal{R}}$-increasing continuous, $(M_i, M_{i+1}, c_i) \in K^{3,\text{uq}}_\lambda, M_0 = M, M_\delta = N$ and δ any pregiven limit ordinal $< \lambda^+$ of cofinality κ divisible by λ.

Proof. Let δ be given, e.g., $\delta = \lambda \times \kappa$. By 6.8(2) we can find a $\leq_{\mathcal{R}}$-increasing sequence $\langle M_i : i \leq \delta \rangle$ of members of K_λ and $\langle a_i : i < \delta \rangle$ such that $M_0 = M$ and $i < \delta \Rightarrow (M_i, M_{i+1}, a_i) \in K^{3,\text{uq}}_\lambda$ and for every $i < \delta, p \in \mathcal{J}^{\text{bs}}(M_i)$ for λ ordinals $j \in (i, i+\lambda)$ we have $\text{tp}(a_j, M_j, M_{j+1})$ is a non-forking extension of p. So the demands in 4.3 hold hence M_δ is (λ, κ)-brimmed over $M_0 = M$. Now we are done by the uniqueness of N being (λ, κ)-brimmed over M_0, see 1.16(3). \hfill \Box

6.10 Claim. If $M'_0 \leq_{\mathcal{R}} M'_1 \leq_{\mathcal{R}} M'_3$ and $M'_0 \leq_{\mathcal{R}} M'_2 \leq_{\mathcal{R}} M'_3, c_\ell \in M'_1$ and $(M'_0, M'_1, c_\ell) \in K^{3,\text{uq}}_\lambda$ and $\text{tp}(c_\ell, M'_2, M'_3) \in \mathcal{J}^{\text{bs}}(M'_2)$ does not fork over M'_0 and M'_3 is (λ, δ)-brimmed over $M'_1 \cup M'_2$ all this for $\ell = 1, 2$ and f_ℓ is an isomorphism from M'_1 onto M'_2 for $i = 0, 1, 2$ such that $f_0 \subseteq f_1, f_0 \subseteq f_2$ and $f_1(c_1) = c_2$, then $f_1 \cup f_2$ can be extended to an isomorphism from M'_3 onto M'_2.

Proof. Chase arrows (and recall definition of $K^{3,\text{uq}}_\lambda$), that is by 6.1(1) and Definition 6.2(1) and 1.16(3). \hfill \Box

6.11 Definition. Assume $\delta' = \langle \delta_1, \delta_2, \delta_3 \rangle, \delta_1, \delta_2, \delta_3$ are ordinals $< \lambda^+$, maybe 1. We say that $\text{NF}_{\lambda, \delta}(N_0, N_1, N_2, N_3)$ or, in other words N_1, N_2 are brimmedly smoothly amalgamated in N_3 over N_0 for δ when:

(a) $N_\ell \in K_\lambda$ for $\ell \in \{0, 1, 2, 3\}$
(b) $N_0 \leq_{\mathcal{R}} N_\ell \leq_{\mathcal{R}} N_3$ for $\ell = 1, 2$
(c) $N_1 \cap N_2 = N_0$ (i.e. in disjoint amalgamation, actually follows by clause (f))
(d) N_1 is $(\lambda, \text{cf}(\delta_1))$-brimmed over N_0; recall that if $\text{cf}(\delta_1) = 1$ this just means $N_0 \leq_{\mathcal{R}} N_1$.

(e) N_2 is $\langle \lambda, \text{cf}(\delta_2) \rangle$-brimmed over N_0; so that if $\text{cf}(\delta_2) = 1$ this just means $N_0 \leq \mathfrak{r} N_2$ and

(f) there are $N_{1,i}, N_{2,i}$ for $i \leq \lambda \times \delta_1$ and c_i for $i < \lambda \times \delta_1$ (called witnesses and $\langle N_{1,i}, N_{2,i}, c_j : i \leq \lambda \times \delta_1, j < \lambda \times \delta_1 \rangle$ is called a witness sequence as well as $\langle N_{1,i} : i \leq \lambda \times \delta_1 \rangle, \langle N_{2,i} : i \leq \lambda \times \delta_1 \rangle$) such that:

(\alpha) $N_{1,0} = N_0, N_{1,\lambda \times \delta_1} = N_1$

(\beta) $N_{2,0} = N_2$

(\gamma) $\langle N_{\ell,i} : i \leq \lambda \times \delta_1 \rangle$ is a $\leq \mathfrak{r}$-increasing continuous sequence of models for $\ell = 1, 2$

(\delta) $(N_{1,i}, N_{1,i+1}, c_i) \in K^{3,\text{uq}}_{\lambda}$

(\varepsilon) $\text{tp}(c_i, N_{2,i}, N_{2,i+1}) \in \mathcal{S}^{\text{bs}}(N_2, i)$ does not fork over $N_{1,i}$ and $N_{2,i} \cap N_1 = N_{1,i}$, for $i < \lambda \times \delta_1$ (follows by Definition 5.3)

(\zeta) N_3 is $\langle \lambda, \text{cf}(\delta_3) \rangle$-brimmed over $N_{2,\lambda \times \delta_1}$; so for $\text{cf}(\delta_3) = 1$ this means just $N_{2,\lambda \times \delta_1} \leq \mathfrak{r} N_3$

6.12 Definition. 1) We say $N_1 \bigcup_{N_0} N_2$ (or N_1, N_2 are smoothly amalgamated over N_0 inside N_3 or $\text{NF}_{\lambda}(N_0, N_1, N_2, N_3)$ or $\text{NF}_s(N_0, N_1, N_2, N_3)$) when we can find $M_{\ell} \in K_{\lambda}$ (for $\ell < 4$) such that:

(a) $\text{NF}_{\lambda, \langle \lambda, \lambda, \lambda \rangle}(M_0, M_1, M_2, M_3)$

(b) $N_{\ell} \leq \mathfrak{r} M_{\ell}$ for $\ell < 4$

(c) $N_0 = M_0$

(d) M_1, M_2 are $\langle \lambda, \text{cf}(\lambda) \rangle$-brimmed over N_0 (follows by (a) see clauses (d), (e) of 6.11).

2) We call (M, N, a) strongly bs-reduced if $(M, N, a) \in K^{3,\text{bs}}_{\lambda}$ and $(M, N, a) \leq \text{bs} (M', N', a) \in K^{3,\text{bs}}_{\lambda} \Rightarrow \text{NF}_{\lambda}(M, N, M', N')$; not used.

Clearly we expect “strongly bs-reduced” to be equivalent to $\in K^{3,\text{uq}}_{\lambda}$, e.g. as this occurs in the first order case. We start by proving existence for $\text{NF}_{\lambda, \delta}$ from Definition 6.11.
6.13 Claim. 1) Assume \(\delta = (\delta_1, \delta_2, \delta_3), \delta_\ell \) an ordinal < \(\lambda^+ \) and \(N_\ell \in K_\lambda \) for \(\ell < 3 \) and \(N_1 \) is \((\lambda, \text{cf}(\delta_1))- \)brimmed over \(N_0 \) and \(N_2 \) is \((\lambda, \text{cf}(\delta_2))- \)brimmed over \(N_0 \) and \(N_0 \leq_\mathfrak{r} N_1 \) and \(N_0 \leq_\mathfrak{r} N_2 \) and for simplicity \(N_1 \cap N_2 = N_0 \). Then we can find \(N_3 \) such that \(\text{NF}_{\lambda, \lambda}(N_0, N_1, N_2, N_3) \).

2) Moreover, we can choose any \(\langle N_{1, i} : i \leq \lambda \times \delta_1 \rangle, \langle c_i : i < \lambda \times \delta_1 \rangle \) as in 6.11 subclauses (f)(\(\alpha \)), (\(\gamma \)), (\(\delta \)) as part of the witness.

3) If \(\text{NF}_{\lambda}(N_0, N_1, N_2, N_3) \) then \(N_1 \cap N_2 = N_0 \).

Proof. 1) We can find \(\langle N_{1, i} : i \leq \lambda \times \delta_1 \rangle \) and \(\langle c_i : i < \lambda \times \delta_1 \rangle \) as required in part (2) by Claim 6.9, the \((\lambda, \text{cf}(\lambda \times \delta_1))- \)brimness holds by 4.3 and apply part (2).

2) We choose the \(N_{2, i} \) (by induction on \(i \)) by 4.9 preserving \(N_{2, i} \cap N_{1, \lambda \times \delta_2} = N_{1, i} \); in the successor case use Definition 5.3 + Claim 5.4(3). We then choose \(N_3 \) using 4.2(2).

3) By the definitions of \(\text{NF}_\lambda, \text{NF}_{\lambda, \delta} \). □

The following claim tells us that if we have \((\lambda, \text{cf}(\delta_3))- \)brimmed” in the end, then we can have it in all successor stages.

6.14 Claim. In Definition 6.11, if \(\delta_3 \) is a limit ordinal and \(\kappa = \text{cf}(\kappa) \geq \aleph_0 \), then without loss of generality (even without changing \(\langle N_{1, i} : i \leq \lambda \times \delta_1 \rangle, \langle c_i : i < \lambda \times \delta_1 \rangle \))

\((g) \) \(N_{2, i+1} \) is \((\lambda, \kappa)- \)brimmed over \(N_{1, i+1} \cup N_{2, i} \) (which means that it is \((\lambda, \kappa)- \)brimmed over some \(N \), where \(N_{1, i+1} \cup N_{2, i} \subseteq N \leq_\mathfrak{r} N_{2, i+1} \)).

Proof. So assume \(\text{NF}_{\lambda, \delta}(N_0, N_1, N_2, N_3) \) holds as being witnessed by \(\langle N_{\ell, i} : i \leq \lambda \times \delta_1 \rangle, \langle c_i : i < \lambda \times \delta_1 \rangle \) for \(\ell = 1, 2 \). Now we choose by induction on \(i \leq \lambda \times \delta_1 \) a model \(M_{2, i} \in K_\lambda \) and \(f_i \) such that:

\((i) \) \(f_i \) is a \(\leq_\mathfrak{r} \)-embedding of \(N_{2, i} \) into \(M_{2, i} \)

\((ii) \) \(M_{2, 0} = f_i(N_2) \)

\((iii) \) \(M_{2, i} \) is \(\leq_\mathfrak{r} \)-increasing continuous and also \(f_i \) is increasing continuous

\((iv) \) \(M_{2, j} \cap f_i(N_{1, i}) = f_i(N_{1, j}) \) for \(j \leq i \)

\((v) \) \(M_{2, i+1} \) is \((\lambda, \kappa)- \)brimmed over \(M_{2, i} \cup f_i(N_{2, i+1}) \)

\((vi) \) \(\text{tp}(f_{i+1}(c_i), M_{2, i}, M_{2, i+1}) \in \mathcal{S}^{bs}(M_{2, i}) \) does not fork over \(f_i(N_{1, i}) \).

There is no problem to carry the induction. Using in the successor case \(i = j + 1 \) the existence Axiom (E)(g) of Definition 2.1 there is a model \(M_{2, i}^j \in K_\lambda \) such that \(M_{2, j} \leq_\mathfrak{r} M_{2, i}^j \) and \(f_i \supseteq f_j \) as required in clauses (i), (iv), (vi) and then use Claim 4.2 to find a model \(M_{2, i} \in K_\lambda \) which is \((\lambda, \kappa)- \)brimmed over \(M_{2, j} \cup f_i(N_{2, i}) \).
Having carried the induction, without loss of generality \(f_i = \text{id}_{N_i} \). Let \(M_3 \) be such that \(M_2, \lambda \times \delta_1 \leq R M_3 \in K_\lambda \) and \(M_3 \) is \((\lambda, \text{cf}(\delta_3)) \)-brimmed over \(M_2, \lambda \times \delta_1 \), it exists by \(4.2(2) \) but \(N_2, \lambda \times \delta_1 \leq R M_2, \lambda \times \delta_1 \), hence it follows that \(M_3 \) is \((\lambda, \kappa) \)-brimmed over \(N_1, \lambda \times \delta_1 \). So both \(M_3 \) and \(N_3 \) are \((\lambda, \text{cf}(\delta_3)) \)-brimmed over \(N_2, \lambda \times \delta_1 \), hence they are isomorphic over \(N_2, \lambda \times \delta_1 \) (by \(1.16(1) \)) so let \(f \) be an isomorphism from \(M_3 \) onto \(N_3 \) which is the identity over \(N_2, \lambda \times \delta_1 \). Clearly \(\langle N_{1,i} : i \leq \lambda \times \delta_1 \rangle \), \(\langle f(M_{2,i}) : i \leq \lambda \times \delta_1 \rangle \) are also witnesses for \(\text{NF}_{\lambda, \delta}(N_0, N_1, N_2, N_3) \) satisfying the extra demand \((g)\) from \(6.14 \).

\[\Box_{6.14} \]

The point of the following claim is that having uniqueness in every atomic step we have uniqueness in the end (using the same “ladder” \(N_{1,i} \) for now).

6.15 Claim. *(Weak Uniqueness).*

Assume that for \(x \in \{a, b\} \), we have \(\text{NF}_{\lambda, \delta^x}(N^a_0, N^x_1, N^x_2, N^x_3) \) holds as witnessed by \(\langle N^x_{1,i} : i \leq \lambda \times \delta^x_1 \rangle, \langle c^x_i : i < \lambda \times \delta^x_1 \rangle, \langle N^x_{2,i} : i \leq \lambda \times \delta^x_1 \rangle \) and \(\delta^x_1 := \delta^x_1, \text{cf}(\delta^x_3) = \text{cf}(\delta^x_3) \) and \(\text{cf}(\delta^x_3) = \text{cf}(\delta^x_3) \geq \kappa_0 \).

(Note that \(\text{cf}(\lambda \times \delta^x_1) \geq \kappa_0 \) by the definition of \(\text{NF} \)).

Suppose further that \(f_\ell \) is an isomorphism from \(N^a_\ell \) onto \(N^b_\ell \) for \(\ell = 0, 1, 2 \), moreover: \(f_0 \subseteq f_1, f_0 \subseteq f_2 \) and \(f_1(N^a_{1,i}) = N^b_{1,i}, f_1(c^a_i) = c^b_i \).

Then we can find an isomorphism \(f \) from \(N^a_3 \) onto \(N^b_3 \) extending \(f_1 \cup f_2 \).

Proof. Without loss of generality for each \(i < \lambda \times \delta_1 \), the model \(N^x_{2,i+1} \) is \((\lambda, \lambda) \)-brimmed over \(N^x_{1,i+1} \cup N^x_{2,i} \) (by \(6.14 \), note there the statement “without changing the \(N_{1,i} \)'s”). Now we choose by induction on \(i \leq \lambda \times \delta_1 \) an isomorphism \(g_i \) from \(N^a_{2,i} \) onto \(N^b_{2,i} \) such that: \(g_i \) is increasing with \(i \) and \(g_i \) extends \((f_1 \upharpoonright N^a_{1,i}) \cup f_2 \).

For \(i = 0 \) choose \(g_0 = f_2 \) and for \(i \) limit let \(g_i \) be \(\bigcup_{j < i} g_j \) and for \(i = j + 1 \) it exists by 6.10, whose assumptions hold by \((N^x_{1,i}, N^x_{1,i+1}, c^x_i) \in K^2_{\lambda, \text{cf}(\delta)} \) (see 6.11, clause \((f)(\delta)\)) and the extra brimmness clause from 6.14. Now by 1.16(3) we can extend \(g_{\lambda \times \delta_1} \) to an isomorphism from \(N^a_3 \) onto \(N^b_3 \) as \(N^x_3 \) is \((\lambda, \text{cf}(\delta_3)) \)-brimmed over \(N^x_{2, \lambda \times \delta_1} \) (for \(x \in \{a, b\} \)).

\[\Box_{6.15} \]

Note that even knowing 6.15 the choice of \(\langle N_{1,i} : i \leq \lambda \times \delta_1 \rangle, \langle c^x_i : i < \lambda \times \delta_1 \rangle \) still possibly matters. Now we prove an “inverted” uniqueness, using our ability to construct a “rectangle” of models which is a witness for \(\text{NF}_{\lambda, \delta} \) in two ways.

6.16 Claim. Suppose that

\((a) \) for \(x \in \{a, b\} \) we have \(\text{NF}_{\lambda, \delta^x}(N^x_0, N^x_1, N^x_2, N^x_3) \)
(b) $\delta^x = \langle \delta^x_1, \delta^x_2, \delta^x_3 \rangle$, $\delta^a_1 = \delta^b_1$, $\delta^a_2 = \delta^b_2$, $\cf(\delta^a_3) = \cf(\delta^b_3)$, all limit ordinals
(c) f_0 is an isomorphism from N^a_0 onto N^b_0
(d) f_1 is an isomorphism from N^a_1 onto N^b_2
(e) f_2 is an isomorphism from N^a_2 onto N^b_1
(f) $f_0 \subseteq f_1$ and $f_0 \subseteq f_2$.

Then there is an isomorphism from N^a_3 onto N^b_3 extending $f_1 \cup f_2$.

Before proving we shall construct a third “rectangle” of models such that we shall be able to construct appropriate isomorphisms each of N^a_3, N^b_3

6.17 Subclaim. Assume

(a) $\delta^a_1, \delta^a_2, \delta^a_3 < \lambda^+$ are limit ordinals
(b) $M^1 = (M^1_\alpha : \alpha \leq \lambda \times \delta^a_1)$ is $\leq \kappa$-increasing continuous in K_λ
 and $(M^1_\alpha, M^1_{\alpha+1}, c_\alpha) \in K^3_{\lambda, K_\lambda}$
(b) $M^2 = (M^2_\alpha : \alpha \leq \lambda \times \delta^a_2)$ is $\leq \kappa$-increasing continuous in K_λ
 and $(M^2_\alpha, M^2_{\alpha+1}, d_\alpha) \in K^3_{\lambda, K_\lambda}$
(c) $M^1_\alpha = M^2_\beta, \text{ we call it } M \text{ and } M^1_\alpha \cap M^2_\beta = M \text{ for } \alpha \leq \lambda \times \delta^a_1, \beta \leq \lambda \times \delta^a_2$.

Then we can find $M_{i,j}$ (for $i \leq \lambda \times \delta^a_1$ and $j \leq \lambda \times \delta^a_2$) and M_3 such that:

(A) $M_{i,j} \in K_\lambda$ and $M_{0,0} = M$ and $M_{i,0} = M^1_i$, $M_{0,j} = M^2_j$
(B) $i_1 \leq i_2$ & $j_1 \leq j_2 \Rightarrow M_{i_1,j_1} \leq \kappa M_{i_2,j_2}$
(C) if $i \leq \lambda \times \delta^a_1$ is a limit ordinal and $j \leq \lambda \times \delta^a_2$ then $M_{i,j} = \bigcup_{\xi<i} M_{\xi,j}$
(D) if $i \leq \lambda \times \delta^a_1$ and $j \leq \lambda \times \delta^a_2$ is a limit ordinal then $M_{i,j} = \bigcup_{\xi<j} M_{i,\xi}$
(E) $M_{\lambda \times \delta^a_1, j+1}$ is $(\lambda, \cf(\delta^a_1))$-brimmed over $M^a_{\lambda \times \delta^a_1, j}$ for $j < \lambda \times \delta^a_2$
(F) $M_{i+1, \lambda \times \delta^a_2}$ is $(\lambda, \cf(\delta^a_2))$-brimmed over $M_{i, \lambda \times \delta^a_2}$ for $i < \lambda \times \delta^a_1$
(G) $M_{\lambda \times \delta^a_1, \lambda \times \delta^a_2} \leq \kappa M_3 \in K_\lambda$ moreover
 M_3 is $(\lambda, \cf(\delta^a_3))$-brimmed over $M_{\lambda \times \delta^a_1, \lambda \times \delta^a_2}$
(H) for $i < \lambda \times \delta^a_1, j \leq \lambda \times \delta^a_2$ we have $\tp(c_i, M_{i,j}, M_{i+1,j})$ does not fork over $M_{i,0}$
(I) for $j < \lambda \times \delta^a_2, i \leq \lambda \times \delta^a_1$ we have $\tp(d_j, M_{i,j}, M_{i,j+1})$ does not fork over $M_{0,j}$.
We can add

\[(\text{J}) \quad \text{for } i < \lambda \times \delta^a_1, j < \lambda \times \delta^b_2 \text{ the model } M_{i+1,j+1} \text{ is } (\lambda, *)\text{-brimmed over } M_{i,j+1} \cup M_{i+1,j}. \]

\[\text{Remark. 1) We can replace in 6.17 the ordinals } \lambda \times \delta^a_\ell (\ell = 1, 2, 3) \text{ by any ordinal } \alpha^*_\ell < \lambda^+ \text{ (for } \ell = 1, 2, 3) \text{ we use the present notation just to conform with its use in the proof of 6.16.} \]

2) Why do we need \(u_1^* \) in the proof below? This is used to get the brimmness demands in 6.17.

Proof. We first change our towers, repeating models to give space for bookkeeping. That is we define \(\ast M^1_\alpha \) for \(\alpha \leq \lambda \times \lambda \times \delta^a_1 \) as follows:

- if \(\lambda \times \beta < \alpha \leq \lambda \times \beta + \lambda \) and \(\beta < \lambda \times \delta^a_1 \) then \(\ast M^1_\alpha = M^1_{\beta+1} \)
- if \(\alpha = \lambda \times \beta \), then \(\ast M^1_\alpha = M^1_\beta \).

Let \(u_0^1 = \{ \lambda \beta : \beta < \delta^a_1 \}, u_1^1 = \lambda \times \lambda \times \delta^a_1 \setminus u_0^1, u_2^1 = \emptyset \) and for \(\alpha = \lambda \beta \in u_0^1 \) let \(a^1_\alpha = c_\beta \).

Similarly let us define \(\ast M^2_\alpha \) (for \(\alpha \leq \lambda \times \lambda \times \delta^a_2 \)), \(u_0^2, u_1^2, u_2^2 \) and \(\langle a^2_\alpha : \alpha \in u_0^2 \rangle \).

Now apply 4.11 (check) and get \(\ast M_{i,j}, (i \leq \lambda \times \lambda \times \delta^a_1, j \leq \lambda \times \lambda \times \delta^a_2) \).

Lastly, for \(i \leq \delta^a_1, j \leq \delta^a_2 \) let \(M_{i,j} = \ast M_{x_i,y_j}^{\lambda, \lambda, \lambda} \). By 4.3 clearly \(\ast M_{x_i,y_j}^{\lambda, \lambda, \lambda} \) is \((\lambda, cf(\lambda))\)-brimmed over \(\ast M_{x_i,y_j}^{\lambda, \lambda, \lambda} \) hence \(M_{i+1,j+1} \) is \((\lambda, cf(\lambda))\)-brimmed over \(M_{i+1,j} \cup M_{i,j+1} \). And, by 4.2(1) choose \(M_3 \in K^\lambda \) which is \((\lambda, cf(\delta^a_1))\)-brimmed over \(M_{\lambda \times \delta^a_1, \lambda \times \delta^a_2} \).

Proof of 6.16. We shall let \(M_{i,j}, M_3 \) be as in 6.17 for \(\bar{\delta}^a \) and \(\bar{M}^1, \bar{M}^2 \) determined below. For \(x \in \{ a, b \} \) as \(NF_{x, \bar{\delta}^a} \) \((N^x_0, N^x_1, N^x_2, N^x_\lambda) \), we know that there are witnesses \(\langle N^x_{1,i} : i \leq \lambda \times \delta^a_1 \rangle, \langle c^a_i : i < \lambda \times \delta^a_1 \rangle, \langle N^x_{2,i} : i \leq \lambda \times \delta^a_2 \rangle \) for this. So \(\langle N^x_{1,i} : i \leq \lambda \times \delta^a_1 \rangle \) is \(\leq \gamma \)-increasing continuous and \(\langle N^x_{1,i}, N^x_{1,i+1}, c^a_i \rangle \in K^\lambda_{\leq \gamma} \) for \(i < \lambda \times \delta^a_1 \). Hence by the freedom we have in choosing \(\bar{M}^1 \) and \(\langle c_i : i < \lambda \times \delta^a_1 \rangle \) without loss of generality there is an isomorphism \(g_1 \) from \(N^a_{1,\lambda \times \delta^a_1} \) onto \(M_{\lambda \times \delta^a_1} \) mapping \(N^a_{1,i} \) onto \(M^1_i = M_{i,0} \) and \(c^a_i \) to \(c_i \); remember that \(N^a_{1,\lambda \times \delta^a_1} = N^a_\lambda \). Let \(g_0 = g_1 \upharpoonright N^a_0 = g_1 \upharpoonright N^a_{1,0} \) so \(g_0 \circ f_0^{-1} \) is an isomorphism from \(N^b_0 \) onto \(M_{0,0} \).

Similarly as \(\delta^b_1 = \delta^b_2 \), and using the freedom we have in choosing \(\bar{M}^2 \) and \(\langle d_i : i < \lambda \times \delta^b_1 \rangle \) without loss of generality there is an isomorphism \(g_2 \) from \(N^b_{1,\lambda \times \delta^b_1} \) onto \(M^2_j = M_{0,\lambda \times \delta^b_2} \) mapping \(N^b_{1,j} \) onto \(M_{0,j} \) (for \(j \leq \lambda \times \delta^b_2 \)) and mapping \(c^b_i \) to \(d_i \) and
g_2 \text{ extends } g_0 \circ f_0^{-1}.
Now would like to use the weak uniqueness 6.15 and for this note:

\((\alpha)\) \text{ NF}_{\lambda, \delta^*}(N_0^a, N_1^a, N_2^a, N_3^a) \text{ is witnessed by the sequences } \langle N_{1,i}^a : i \leq \lambda \times \delta_1^a \rangle,\n\text{ and } \langle N_{2,i}^a : i \leq \lambda \times \delta_1^a \rangle
\text{ [why? an assumption]}

\((\beta)\) \text{ NF}_{\lambda, \delta^*}(M_{0,0}, M_{\lambda \times \delta_1^a, 0}, M_{0,\lambda \times \delta_2^a}, M_3) \text{ is witnessed by the sequences }
\langle M_{i,0}^i : i \leq \lambda \times \delta_1^a \rangle, \langle M_{i,\lambda \times \delta_2^a}^i : i \leq \lambda \times \delta_1^a \rangle
\text{ [why? check]}

\((\gamma)\) \text{ } g_0 \text{ is an isomorphism from } N_0^a \text{ onto } M_{0,0}
\text{ [why? see its choice]}

\((\delta)\) \text{ } g_1 \text{ is an isomorphism from } N_1^a \text{ onto } M_{\lambda \times \delta_1^a, 0} \text{ mapping } N_{1,i}^a \text{ onto } M_{i,0}^i \text{ for } i < \lambda \times \delta_1^a \text{ and } c_i^a \text{ to } c_i \text{ for } i < \lambda \times \delta_1^a \text{ and extending } g_0
\text{ [why? see the choice of } g_1 \text{ and of } g_0]

\((\epsilon)\) \text{ } g_2 \circ f_2 \text{ is an isomorphism from } N_2^a \text{ onto } M_{0,\lambda \times \delta_2^a} \text{ extending } g_0
\text{ [why? } f_2 \text{ is an isomorphism from } N_2^a \text{ onto } N_1^b \text{ and } g_2 \text{ is an isomorphism from } N_1^b \text{ onto } M_{0,\lambda \times \delta_2^a} \text{ extending } g_0 \circ f_0^{-1} \text{ and } f_0 \subseteq f_2].

So there is by 6.15 an isomorphism } g_3^a \text{ from } N_3^a \text{ onto } M_3 \text{ extending both } g_1 \text{ and } g_2 \circ f_2.

We next would like to apply 6.15 to the } N_i^b \text{'s; so note:

\((\alpha)'\) \text{ NF}_{\lambda, \delta^*}(N_0^b, N_1^b, N_2^b, N_3^b) \text{ is witnessed by the sequences } \langle N_{1,i}^b : i \leq \lambda \times \delta_1^b \rangle,
\langle N_{2,i}^b : i \leq \lambda \times \delta_1^b \rangle
\text{ [why? see the choice of } g_2\text{: it maps } N_{1,j}^b \text{ onto } M_{0,j}\]

\((\beta)'\) \text{ NF}_{\lambda, \delta^*}(M_{0,0}, M_{0,\lambda \times \delta_2^b}, M_{\lambda \times \delta_1^b, 0}, M_3) \text{ is witnessed by the sequences }
\langle M_{0,j}^j : j \leq \lambda \times \delta_1^b \rangle, \langle M_{\lambda \times \delta_1^b, j}^j : j \leq \lambda \times \delta_1^b \rangle
\text{ [why? Check.]}

\((\gamma)'\) \text{ } g_0 \circ (f_0)^{-1} \text{ is an isomorphism from } N_0^b \text{ onto } M_{0,0}
\text{ [why?]}

\((\delta)'\) \text{ } g_2 \text{ is an isomorphism from } N_1^b \text{ onto } M_{0,\lambda \times \delta_2^b} \text{ mapping } N_{1,j}^b \text{ onto } M_{0,j}^0
\text{ and } c_j^a \text{ to } d_j \text{ for } j \leq \lambda \times \delta_2^b \text{ and extending } g_0 \circ (f_2)^{-1}
\text{ [why? see the choice of } g_2\text{: it maps } N_{1,j}^b \text{ onto } M_{0,j}\]

\((\epsilon)'\) \text{ } g_1 \circ (f_1)^{-1} \text{ is an isomorphism from } N_2^b \text{ onto } M_{\lambda \times \delta_1^b} \text{ extending } g_0
\text{ [why? remember } f_1 \text{ is an isomorphism from } N_1^a \text{ onto } N_2^b \text{ extending } f_0 \text{ and the choice of } g_1\text{: it maps } N_1^a \text{ onto } M_{\lambda \times \delta_1^a, 0}.\]

So there is an isomorphism } g_3^b \text{ form } N_3^b \text{ onto } M_3 \text{ extending } g_2 \text{ and } g_1 \circ (f_1)^{-1}.
Lastly } (g_3^b)^{-1} \circ g_3^a \text{ is an isomorphism from } N_3^a \text{ onto } N_3^b \text{ (chase arrows). Also}
Similarly \((g_3^b)^{-1} \circ g_3^a \upharpoonright N_1^a = (g_3^b)^{-1} (g_3^a \upharpoonright N_1^a)\)
\[= (g_3^b)^{-1} g_1 = ((g_3^b)^{-1} \upharpoonright M_{\lambda \times \delta_1^*, 0}) \circ g_1\]
\[= (g_3^b \upharpoonright N_2^b)^{-1} \circ g_1 = ((g_1 \circ (f_1)^{-1})^{-1}) \circ g_1\]
\[= (f_1 \circ (g_1)^{-1}) \circ g_1 = f_1.\]

So we have finished. \(\Box 6.16\)

But if we invert twice we get straight; so

6.18 Claim. [Uniqueness]. Assume for \(x \in \{a, b\}\) we have
\(\text{NF}_{\lambda, \delta} \ast (N_0^a, N_1^a, N_2^a, N_3^a)\) and \(\text{cf}(\delta_1^*) = \text{cf}(\delta_1^b), \text{cf}(\delta_2^b) = \text{cf}(\delta_2^b), \text{cf}(\delta_3^a) = \text{cf}(\delta_3^b),\) all \(\delta_\ell^\ast\) limit ordinals < \(\lambda^+\).

If \(f_\ell\) is an isomorphism from \(N_\ell^a\) onto \(N_\ell^b\) for \(\ell < 3\) and \(f_0 \subseteq f_1, f_0 \subseteq f_2\) then there is an isomorphism \(f\) from \(N_3^a\) onto \(N_3^b\) extending \(f_1, f_2\).

Proof. Let \(\bar{\delta}^c = (\bar{\delta}_1^c, \bar{\delta}_2^c, \bar{\delta}_3^c) = (\delta_2^a, \delta_1^a, \delta_3^a)\); by 6.13(1) there are \(N_\ell^c\) (for \(\ell \leq 3\)) such that \(\text{NF}_{\lambda, \bar{\delta}^c} \ast (N_0^c, N_1^c, N_2^c, N_3^c)\) and \(N_0^c \cong N_0^a\). There is for \(x \in \{a, b\}\) an isomorphism \(g_0\) from \(N_0^x\) onto \(N_0^{\bar{c}}\) and without loss of generality \(g_0^a = g_0^b \circ f_0\). Similarly for \(x \in \{a, b\}\) there is an isomorphism \(g_1^x\) from \(N_1^x\) onto \(N_2^{\bar{c}}\) extending \(g_0^x\) (as \(N_1^x\) is \((\lambda, \text{cf}(\delta_1^x))-\text{brimmermed over } N_0^x\) and also \(N_2^c\) is \((\lambda, \text{cf}(\delta_2^c))-\text{brimmermed over } N_0^c\) and \(\lambda, \text{cf}(\delta_2^c) = \text{cf}(\delta_2^c) = \text{cf}(\delta_1^f)\)) and without loss of generality \(g_1^b = g_1^a \circ f_1\). Similarly for \(x \in \{a, b\}\) there is an isomorphism \(g_2^x\) from \(N_2^x\) onto \(N_3^{\bar{c}}\) extending \(g_1^x\) (as \(N_2^x\) is \((\lambda, \text{cf}(\delta_2^x))-\text{brimmermed over } N_0^x\) and also \(N_3^c\) is \((\lambda, \text{cf}(\delta_3^c))-\text{brimmermed over } N_0^c\) and \(\lambda, \text{cf}(\delta_3^c) = \text{cf}(\delta_3^c) = \text{cf}(\delta_1^c)\)) and without loss of generality \(g_2^a = g_2^b \circ f_2\).

So by 6.16 for \(x \in \{a, b\}\) there is an isomorphism \(g_3^x\) from \(N_3^x\) onto \(N_3^{\bar{c}}\) extending \(g_2^x\) and \(g_2^x\). Now \((g_3^b)^{-1} \circ g_3^a\) is an isomorphism from \(N_3^a\) onto \(N_3^b\) extending \(f_1, f_2\) as required. \(\Box 6.18\)

So we have proved the uniqueness for \(\text{NF}_{\lambda, \bar{\delta}}\) when all \(\delta_\ell\) are limit ordinals; this means that the arbitrary choice of \(\langle N_{1,i} : i \leq \lambda \times \delta_1 \rangle\) and \(\langle c_i : i < \lambda \times \delta_1 \rangle\) is immaterial; it figures in the definition and, e.g. existence proof but does not influence the net result. The power of this result is illustrated in the following conclusion.

6.19 Conclusion. [Symmetry].

If \(\text{NF}_{\lambda, (\delta_1, \delta_2, \delta_3)} \ast (N_0, N_1, N_2, N_3)\) where \(\delta_1, \delta_2, \delta_3\) are limit ordinals < \(\lambda^+\) then \(\text{NF}_{\lambda, (\delta_2, \delta_1, \delta_3)} \ast (N_0, N_2, N_1, N_3)\).
Proof. By 6.17 we can find $N'_3(\ell \leq 3)$ such that: $N'_0 = N_0, N'_1$ is $(\lambda, \text{cf}(\delta_1))$-brimmed over N'_0, N'_2 is $(\lambda, \text{cf}(\delta_2))$-brimmed over N'_0 and N'_3 is $(\lambda, \text{cf}(\delta_3))$-brimmed over $N'_1 \cup N'_2$ and $\text{NF}_{\lambda, (\delta_1, \delta_2, \delta_3)}(N'_0, N'_1, N'_2, N'_3)$ and $\text{NF}_{\lambda, (\delta_2, \delta_1, \delta_3)}(N'_0, N'_2, N'_1, N'_3)$. Let f_1, f_2 be an isomorphism from N_1, N_2 onto N'_1, N'_2 over N_0, respectively. By 6.18 (or 6.16) there is an isomorphism f'_3 form N_3 onto N'_3 extending $f_1 \cup f_2$. As isomorphisms preserve NF we are done. \hfill \Box_{6.19}

Now we turn to smooth amalgamation (not necessarily brimmed, see Definition 6.12). If we use Lemma 4.8, of course, we do not really need 6.20.

6.20 Claim. 1) If $\text{NF}_{\lambda, \delta}(N_0, N_1, N_2, N_3)$ and $\delta_1, \delta_2, \delta_3$ are limit ordinals, then $\text{NF}_{\lambda}(N_0, N_1, N_2, N_3)$ (see Definition 6.12). 2) In Definition 6.12(1) we can add:

(d) M_ℓ is $(\lambda, \text{cf}(\lambda))$-brimmed over N_0 and moreover over N_ℓ,

(e) M_3 is $(\lambda, \text{cf}(\lambda))$-brimmed over $M_1 \cup M_2$ (actually this is given by clause (f)(\zeta) of Definition 6.11).

3) If $N_0 \preceq_{\mathfrak{R}} N_\ell$ for $\ell = 1, 2$ and $N_1 \cap N_2 = N_0$, then we can find N_3 such that $\text{NF}_{\lambda}(N_0, N_1, N_2, N_3)$.

Proof. 1) Note that even if every δ_ℓ is limit and we waive the “moreover” in clause (d), the problem is in the case that e.g. $(\text{cf}(\delta^a), \text{cf}(\delta^b), \text{cf}(\delta^c)) \neq (\text{cf}(\lambda), \text{cf}(\lambda), \text{cf}(\lambda))$. For $\ell = 1, 2$ we can find $M_\ell = (M_\ell^i : i \leq \lambda \times (\delta_\ell + \lambda))$ and $(c_\ell^i : i < \lambda \times (\delta_\ell + \lambda))$ such that $M_\ell^0 = N_0, M_\ell^1$ is $\preceq_{\mathfrak{R}}$-increasing continuous $(M_\ell^i, M_{i+1, c_\ell^i}) \in K^{3, \text{aq}}$ and if $p \in \mathcal{S}^{\text{bs}}(M_\ell^0)$ and $i < \lambda \times (\delta_\ell + \lambda)$ then for λ ordinals $j < \lambda$, $\text{tp}(c_\ell^i, M_{i+j, M_{i+j+1}}^\ell)$ is a non-forking extension of p. So $M_{\lambda \times \delta_\ell}$ is $(\lambda, \text{cf}(\delta_\ell))$-brimmed over $M_0^\ell = N_0$ and $M_{\lambda \times (\delta_\ell + \lambda)}^\ell$ is $(\lambda, \text{cf}(\lambda))$-brimmed over $M_1^\ell \times \delta_\ell$; so without loss of generality $M_{\lambda \times \delta_\ell}^\ell = N_\ell$ for $\ell = 1, 2$.

By 6.17 we can find $M_{i,j}$ for $i \leq \lambda \times (\delta_1 + \lambda), j \leq \lambda \times (\delta_2 + \lambda)$ for $\delta' := (\delta_1 + \lambda, \delta_2 + \lambda, \delta_3)$ such that they are as in 6.17 for M^1, M^2 so $M_{0,0} = N_0$; then choose $M_3' \in K_{\lambda}$ which is $(\lambda, \text{cf}(\delta_3))$-brimmed over $M_{\lambda \times \delta_3, \lambda \times \delta_2}$. So $\text{NF}_{\lambda, \delta}(M_{0,0}, M_{\lambda \times \delta_1, 0}, M_{0, \lambda, \lambda \times \delta_2})$, hence by 6.18 without loss of generality $M_{0,0} = N_0, M_{\lambda \times \delta_1, 0} = N_1, M_{0, \lambda, \lambda \times \delta_2} = N_2$, and $N_3 = M_3'$. Lastly, let M_3 be $(\lambda, \text{cf}(\lambda))$-brimmed over M_3'. Now clearly also $\text{NF}_{\lambda, (\delta_1 + \lambda, \delta_2 + \lambda, \delta_3)}(M_{0,0}, M_{\lambda \times (\delta_1 + \lambda), 0}, M_{0, \lambda \times (\delta_2 + \lambda), 0})$ and $N_0 = M_{0,0}, N_0 = M_{0, \lambda \times \delta_2} \preceq_{\mathfrak{R}} M_{0, \lambda \times (\delta_1 + \lambda), 0}, N_2 = M_{0, \lambda \times \delta_2} \preceq_{\mathfrak{R}} M_{0, \lambda \times (\delta_1 + \lambda), 0}$ and $M_{\lambda \times (\delta_1 + \lambda), 0}$ is $(\lambda, \text{cf}(\lambda))$-brimmed over $M_{\lambda \times \delta_1, 0}$ and $M_{0, \lambda \times (\delta_2 + \lambda)}$ is $(\lambda, \text{cf}(\lambda))$-brimmed over $M_{0, \lambda \times \delta_2}$ and $N_3 = M_3' \preceq_{\mathfrak{R}} M_3$. So we get all the requirements for $\text{NF}_{\lambda}(N_0, N_1, N_2, N_3)$ (as witnessed by $M_{0,0}, M_{\lambda \times (\delta_1 + \lambda), 0}, M_{0, \lambda \times (\delta_2 + \lambda), 0}$).

2) Similar proof.

3) By 6.13 and the proof above. \hfill \Box_{6.20}
Now we turn to NF_λ; existence is easy.

6.21 Claim. NF_λ has existence, i.e., clause (f) of 6.1(1).

Proof. By 6.20(3). \hfill $\square_{6.21}$

Next we deal with real uniqueness

6.22 Claim. [Uniqueness of smooth amalgamation]:

1) If $NF_\lambda(N_0^a, N_1^a, N_2^a, N_3^a)$ for $x \in \{a, b\}$, f_ℓ an isomorphism from N_ℓ^a onto N_ℓ^b for $\ell < 3$ and $f_0 \subseteq f_1, f_0 \subseteq f_2$ then $f_1 \cup f_2$ can be extended to a \leqR-extension of N_3^3 into some \leqR-embedding of N_3^3.

2) So if above N_ℓ^a is (λ, κ)-brimmed over $N_1^a \cup N_2^a$ for $x = a, b$, we can extend $f_1 \cup f_2$ to an isomorphism from N_3^a onto N_3^b.

Proof. 1) For $x \in \{a, b\}$ let the sequence $\langle M_\ell^x : \ell < 4 \rangle$ be a witness to $NF_\lambda(N_0^a, N_1^a, N_2^a, N_3^a)$ as in 6.12, 6.20(2), so in particular $NF_{\lambda, (\lambda, \lambda, \lambda)}(M_0^\lambda, M_1^\lambda, M_2^\lambda, M_3^\lambda)$. By chasing arrows (disjointness) and uniqueness, i.e. 6.18 without loss of generality $M_\ell^a = M_\ell^b$ for $\ell < 4$ and $f_0 = \text{id}_{N_0^a}$. As M_0^a is $(\lambda, \text{cf}(\lambda))$-brimmed over N_0^a and also over N_3^a (by clause (d)$^+$ of 6.20(2)) and f_1 is an isomorphism from N_1^a onto N_1^b, clearly by 1.16 there is an automorphism g_1 of M_1^a such that $f_1 \subseteq g_1$, hence also $\text{id}_{N_0^a} = f_0 \subseteq f_1 \subseteq g_1$. Similarly there is an automorphism g_2 of M_2^a extending f_2 hence f_0. So $g_\ell \in \text{AUT}(M_\ell^a)$ for $\ell = 1, 2$ and $g_1 \upharpoonright M_0^a = f_0 = g_2 \upharpoonright M_0^a$. By the uniqueness of $NF_{\lambda, (\lambda, \lambda, \lambda)}$ (i.e. Claim 6.18) there is an automorphism g_3 of M_3^a extending $g_1 \cup g_2$. This proves the desired conclusion.

2) Should be clear. \hfill $\square_{6.22}$

We now show that in the cases the two notions of non-forking amalgamations are meaningful then they coincide, one implication already is a case of 6.20.

6.23 Claim. Assume

(a) $\bar{\delta} = (\delta_1, \delta_2, \delta_3), \delta_\ell < \lambda^+$ is a limit ordinal for $\ell = 1, 2, 3$;

$N_0 \leqR N_1 \leqR N_3$ are in K_λ for $\ell = 1, 2$;

(b) N_ℓ is $(\lambda, \text{cf}(\delta_\ell))$-brimmed over N_0 for $\ell = 1, 2$;

(c) N_3 is $\text{cf}(\delta_3)$-brimmed over $N_1 \cup N_2$.

Then $NF_\lambda(N_0, N_1, N_2, N_3)$ iff $NF_{\lambda, \bar{\delta}}(N_0, N_1, N_2, N_3)$.

Proof. The “if” direction holds by 6.20(1). As for the “only if” direction, basically it follows from the existence for $NF_{\lambda, \bar{\delta}}$ and uniqueness for NF_λ; in details by the
proof of 6.20(1) (and Definition 6.11, 6.12) we can find $M_\ell (\ell \leq 3)$ such that $M_0 = N_0$ and $\text{NF}_{\lambda,\delta}(M_0, M_1, M_2, M_3)$ and clauses (b), (c), (d) of Definition 6.12 and (d)$^+$ of 6.20(2) hold so by 6.20 also $\text{NF}_{\lambda}(M_0, M_1, M_2, M_3)$. Easily there are for $\ell < 3$, isomorphisms f_ℓ from M_ℓ onto N_ℓ such that $f_0 = f_\ell \upharpoonright M_\ell$ where $f_0 = \text{id}_{N_0}$. By the uniqueness of smooth amalgamations (i.e., 6.22(2)) we can find an isomorphism f_3 from M_3 onto N_3 extending $f_1 \cup f_2$. So as $\text{NF}_{\lambda,\delta}(M_0, M_1, M_2, M_3)$ holds also $\text{NF}_{\lambda,\delta}(f_0(M_0), f_3(M_1), f_3(M_2), f_3(M_3))$; that is $\text{NF}_{\lambda,\delta}(N_0, N_1, N_2, N_3)$ is as required. \hfill $\Box_{6.23} \\

6.24 \textbf{Claim.} [\textbf{Monotonicity}: If} \text{NF}_{\lambda}(N_0, N_1, N_2, N_3) \text{ and } N_0 \leq_R N'_1 \leq_R N_1 \text{ and } N_0 \leq_R N'_2 \leq_R N_2 \text{ and } N'_1 \cup N'_2 \subseteq N'_3 \leq_R N''_3, N_3 \leq_R N''_3 \text{ then } \text{NF}_{\lambda}(N_0, N'_1, N'_2, N'_3). \\

\textbf{Proof.} \text{Read Definition 6.12(1).} \hfill \Box_{6.24} \\

6.25 \textbf{Claim.} [\textbf{Symmetry}: NF}_{\lambda}(N_0, N_1, N_2, N_3) \text{ holds if and only if } NF}_{\lambda}(N_0, N_2, N_1, N_3) \text{ holds.} \\

\textbf{Proof.} \text{By Claim 6.19 (and Definition 6.12).} \hfill \Box_{6.25} \\

6.26 \textbf{Conclusion.} If NF}_{\lambda}(N_0, N_1, N_2, N_3), N_3 \text{ is } (\lambda, \partial)-\text{brimmed over } N_1 \cup N_2 \text{ and } \lambda \geq \partial, \kappa \geq \aleph_0, \text{ then there is } N^+_2 \text{ such that} \\

(a) \text{NF}_{\lambda}(N_0, N_1, N^+_2, N_3) \\
(b) N_2 \leq_R N^+_2 \\
(c) N^+_2 \text{ is } (\lambda, \kappa)-\text{brimmed over } N_0 \text{ and even over } N_2 \\
(d) N_3 \text{ is } (\lambda, \partial)-\text{brimmed over } N_1 \cup N^+_2. \\

\textbf{Proof.} \text{Let } N^+_2 \text{ be } (\lambda, \kappa)-\text{brimmed over } N_2 \text{ be such that } N^+_2 \cap N_3 = N_2. \text{ So by existence 6.21 there is } N^+_3 \text{ such that } \text{NF}_{\lambda}(N_0, N_1, N^+_2, N^+_3) \text{ and } N^+_3 \text{ is } (\lambda, \partial)-\text{brimmed over } N_1 \cup N^+_3. \text{ By monotonicity 6.24 we have } \text{NF}_{\lambda}(N_0, N_1, N_2, N^+_3). \text{ So by uniqueness (i.e., 6.22(2)) without loss of generality } N_3 = N^+_3, \text{ so we are done.} \hfill \Box_{6.26} \\

The following claim is a step toward proving transitivity for NF}_{\lambda}; \text{ so we first deal with NF}_{\lambda,\delta}. \text{ Note below: if we ignore } N^+_i \text{ we have problem showing } \text{NF}_{\lambda,\delta}(N^+_0, N^+_a, N^+_b, N^+_c). \text{ Note that it is not clear at this stage whether, e.g. } N^+_b \text{ is even universal over } N^+_a, \text{ but } N^+_c \text{ is; note that the } N^+_i \text{ are } \leq_R \text{-increasing with } i \text{ but not necessarily continuous. However once we finish proving that } \text{NF}_{\lambda} \text{ is a non-forking relation on } \mathbb{R}_s \text{ respecting } s \text{ this claim will lose its relevance.}
6.27 Claim. Assume $\alpha < \lambda^+$ is an ordinal and for $x \in \{a, b, c\}$ the sequence $N^x = \langle N^x_i : i \leq \alpha \rangle$ is a $\leq_\mathfrak{R}$-increasing sequence of members of K_λ, and for $x = a, b$ the sequence N^x is $\leq_\mathfrak{R}$-increasing continuous, $N^b_i \cap N^a_\alpha = N^a_i, N^c_i \cap N^a_\alpha = N^a_i, N^b_0 \leq_\mathfrak{R} \mathfrak{R} N^b_i$ and N^b_0 is (λ, δ_2)-brimmed over N^a_0 and $\text{NF}_{\lambda, \delta}(N^a_i, N^a_{i+1}, N^c_i, N^b_{i+1})$ (so necessarily $i < \alpha \Rightarrow N^b_i \leq_\mathfrak{R} N^b_{i+1}$) where $\bar{\delta}^i = \langle \delta^i_1, \delta^i_2, \delta^i_3 \rangle$ with $\delta^i_1, \delta^i_2, \delta^i_3$ are ordinals $< \lambda^+$ and $\delta_3 < \lambda^+$ is limit, N^c_i is $(\lambda, \text{cf}(\delta_3))$-brimmed over N^a_i, $\delta_1 = \sum_{\beta < \alpha} \delta^i_1$ and $\delta_3 = \delta^a_\alpha$ and $\delta_2 = \delta^b_0, \bar{\delta} = \langle \delta_1, \delta_2, \delta_3 \rangle$.

Then $\text{NF}_{\lambda, \delta}(N^a_0, N^a_\alpha, N^b_0, N^c_\alpha)$.

Proof. For $i < \alpha$ let $\langle N^b_i, N^c_i, d^i_\varepsilon : \varepsilon \leq \lambda \times \delta_1, \varepsilon < \lambda \times \delta^i_1 \rangle$ be a witness to $\text{NF}_{\lambda, \delta}(N^a_i, N^a_{i+1}, N^c_i, N^b_{i+1})$. Now we define a sequence $\langle N^c_i, N^c_{i+1}, d^i_\varepsilon : \varepsilon \leq \lambda \times \delta_1$ and $\varepsilon < \lambda \times \delta^i_1 \rangle$ where

(a) $N^c_{1,0} = N^a_0, N^c_{2,0} = N^b_0$ and

(b) if $\lambda \times (\sum_{j<i} \delta^i_j) < \varepsilon \leq \lambda \times (\sum_{j<i} \delta^i_j)$ then we let $N^c_{1,\varepsilon} = N^a_i, N^c_{2,\varepsilon} = N^b_i$ where $\varepsilon_\varepsilon = \varepsilon - \lambda \times (\sum_{j<i} \delta^i_j)$ and

(c) if $0 < \varepsilon = \lambda \times \sum_{j<\alpha} \delta^i_j$ we let $\varepsilon_\varepsilon = \varepsilon - \lambda \times \sum_{j<\alpha} \delta^i_j$ and

(d) if $\lambda \times (\sum_{j<i} \delta^i_j) \leq \varepsilon < \lambda \times (\sum_{j<i} \delta^i_j)$ then we let $d^i_\varepsilon = d^i_\varepsilon$ where $\varepsilon_\varepsilon = \varepsilon - \lambda \times (\sum_{j<i} \delta^i_j)$. ($\sum_{j<i} \delta^i_j = \cup \{N^a_{2,\varepsilon} : \varepsilon \leq \lambda \times (\sum_{j<i} \delta^i_j) \}$.)

Clearly $\langle N^c_{1,\varepsilon} : \varepsilon \leq \lambda \times \delta_1 \rangle$ is $\leq_\mathfrak{R}$-increasing continuous, and also $\langle N^c_{2,\varepsilon} : \varepsilon \leq \lambda \times \delta_1 \rangle$ is. Obviously $\langle N^c_{1,\xi}, N^c_{1,\xi+1}, d^i_\varepsilon \rangle \in K^3, \mu_\xi$ as this just means $\langle N^a_{1,\varepsilon}, N^a_{1,\varepsilon+1}, d^i_\varepsilon \rangle \in K^3, \mu_\xi$ when $\lambda \times \sum_{j<i} \delta^i_j : j \leq \varepsilon < \lambda \times \sum_{j<i} \delta^i_j$ and ε_ε as above.

Why $\text{tp}(d^i_\varepsilon, N^c_{2,\varepsilon}, N^c_{2,\varepsilon+1})$ does not fork over $N^c_{1,\varepsilon}$ for ε, i such that $\lambda \times (\sum_{j<i} \delta^i_j) \varepsilon < \lambda \times (\sum_{j<i} \delta^i_j)$? If $\lambda \times \sum_{j<i} \delta^i_j < \varepsilon$ this holds as it means $\text{tp}(d^i_\varepsilon, N^a_{2,\varepsilon}, N^a_{2,\varepsilon+1})$ does not fork over $N^a_{1,\varepsilon}$. If $\lambda \times \sum_{j<i} \delta^i_j = \varepsilon$ this is not the case but $N^c_{1,0} = N^c_{1,\varepsilon} \leq_\mathfrak{R} N^c_{2,\varepsilon} \leq_\mathfrak{R}$.
\[N^c_i = N^i_{2,0} \] and we know that \(tp(d_\zeta, N^i_{2,0}, N^i_{2,1}) \) does not fork over \(N^i_{1,0} = N^i_{1,\zeta} \) hence by monotonicity of non-forking \(tp(d_\zeta, N^i_{2,\zeta}, N^i_{2,\zeta+1}) \) does not fork over \(N^i_{1,\zeta} \) is as required.

Note that we have not demanded or used "\(\bar{N}^c \) continuous"; the \(N^c_i \) is really needed for \(i \) limit as we do not know that \(N^b_i \) is brimmed over \(N^a_i \).

\[\square_{6.27} \]

6.28 Claim. [transitivity] 1) Assume that \(\alpha < \lambda^+ \) and for \(x \in \{a, b\} \) we have \(\langle N^x_i : i \leq \alpha \rangle \) is a \(\leq \mathcal{K} \) increasing continuous sequence of members of \(K_\lambda \).

If \(NF_\lambda(N^a_i, N^a_{i+1}, N^b_i, N^b_{i+1}) \) for each \(i < \alpha \) then \(NF_\lambda(N^a_0, N^a_\alpha, N^b_0, N^b_\alpha) \).

2) Assume that \(\alpha_1 < \lambda^+, \alpha_2 < \lambda^+ \) and \(M_{i,j} \in K_\lambda \) (for \(i \leq \alpha_1, j \leq \alpha_2 \)) satisfy clauses (B), (C), (D), from 6.17, and for each \(i < \alpha_1, j < \alpha_2 \) we have:

\[M_{i+1,j+1} \bigcup_{M_{i,j}} M_{i+1,j}. \]

Then \(M_{i,0} \bigcup_{M_{0,j}} M_{0,0} \) for \(i \leq \alpha_1, j \leq \alpha_2 \).

Proof. 1) We first prove special cases and use them to prove more general cases.

Case A: \(N^a_{i+1} \) is \((\lambda, \kappa_i) \)-brimmed over \(N^a_i \) and \(N^b_{i+1} \) is \((\lambda, \partial_i) \)-brimmed over \(N^a_{i+1} \cup N^b_i \) for \(i < \alpha \) (\(\partial_i \) infinite, of course).

In essence the problem is that we do not know "\(N^b_i \) is brimmed over \(N^a_i \)" (i limit) so we shall use 6.27; for this we introduce appropriate \(N^c_i \).

Let \(\delta^1_i = \kappa_i, \delta^2_i = \kappa_i, \delta^3_i = \partial_i \) where we stipulate \(\partial_\alpha = \lambda \). For \(i \leq \alpha \) we can choose \(N^c_i \in K_\lambda \) such that

(a) \(N^b_i \leq \mathcal{R} N^c_i \leq \mathcal{R} N^b_{i+1}, N^c_i \) is \((\lambda, \kappa_i) \)-brimmed over \(N^b_i \), and

\(NF_{\lambda, (\delta^1_i, \delta^2_i, \delta^3_i)}(N^a_i, N^a_{i+1}, N^c_i, N^b_{i+1}) \)

(b) \(N^c_\alpha \in K_\lambda \) is \((\lambda, \delta^3_\alpha) \)-brimmed over \(N^b_\alpha \)

(c) \(\langle N^c_i : i < \alpha \rangle \) is \(\leq \mathcal{R} \) increasing (in fact follows)

(All possible by 6.26). Now we can use 6.27.

Case B: For each \(i < \alpha \) we have: \(N^a_{i+1} \) is \((\lambda, \kappa_i) \)-brimmed over \(N^a_i \).

In essence our problem is that we do not know anything about brimmness of the \(N^b_i \), so we shall "correct it".
Let $\bar{\delta}^i = (\kappa_i, \lambda, \lambda)$. We can find a \leq_R-increasing sequence $\langle M^x_i : i \leq \alpha \rangle$ of models in K_λ for $x \in \{a, b, c\}$, continuous for $x = a, b$ such that $i < \alpha \Rightarrow M^a_i \leq_R M^b_i \leq_R M^c_i$ for each i. Case C and λ is (λ, κ_i)-brimmed over M^b_i (hence over M^a_i) and $\text{NF}_{\lambda,\bar{\delta}^i}(M^a_i, M^a_{i+1}, M^c_i, M^b_{i+1})$ by choosing M^a_i, M^b_i, M^c_i by induction on i, $M^a_0 = N^a_0$ and M^b_0 is universal over M^a_0 recalling that the $\text{NF}_{\lambda,\bar{\delta}^i}$ implies some brimness condition, e.g. M^b_{i+1} is $(\lambda, \text{cf}(\bar{\delta}^i))$-brimmed over $M^a_{i+1} \cup M^b_i$. By Case A we know that $\text{NF}_{\lambda}(M^a_0, M^a_0, M^b_0, M^c_0)$ holds.

We can now choose an isomorphism f^a_0 from N^a_0 onto M^a_0, as the identity (exists as $M^a_0 = N^a_0$) and then a \leq_R-embedding f^b_0 of N^a_0 into M^b_0 extending f^a_0. Next we choose by induction on $i \leq \alpha$, f^a_i an isomorphism from N^a_i onto M^a_i such that: $j < i \Rightarrow f^a_j \subseteq f^a_i$, possible by “uniqueness of the (λ, κ_i)-brimmed model over M^a_i” so here we are using the assumption of this case.

Now we choose by induction on $i \leq \alpha$, a \leq_R-embedding f^b_i of N^a_i into M^b_i extending f^a_i and f^b_j for $j < i$. For $i = 0$ we have done it, for i limit use $\bigcup_{j<i} f^b_j$, lastly for i a successor ordinal let $i = j + 1$, now we have

\[(*)_2 \quad \text{NF}_{\lambda}(M^a_j, M^a_{j+1}, f^b_j(N^a_j), M^b_{j+1}) \]

[why? because $\text{NF}_{\lambda,\bar{\delta}^i}(M^a_j, M^a_{j+1}, M^b_i, M^b_{i+1})$ by the choice of the M^x_i's hence by 6.23 we have $\text{NF}_{\lambda}(M^a_j, M^a_{j+1}, M^c_i, M^b_{j+1})$ and as $M^a_j = f^a_j(N^a_j) \leq_R f^b_j(N^b_j) \leq_R M^b_i \leq_R M^c_i$ by 6.24 we get $(*)_2$.]

By $(*)_2$ and the uniqueness of smooth amalgamation 6.22 and as M^b_{j+1} is $(\lambda, \text{cf}(\bar{\delta}^i))$-brimmed over $M^a_{j+1} \cup M^b_j$ hence over $M^a_{j+1} \cup f^b_j(N^b_j)$ clearly there is f^b_j as required. So without loss of generality f^a_i is the identity, so we have $N^a_0 = M^a_0, N^a_i = M^a_i, N^b_0 \leq_R M^b_0, N^b_i \leq_R M^b_i$; also as said above $\text{NF}_{\lambda}(M^a_0, M^a_1, M^b_0, M^b_1)$ holds (using Case A) so by monotonicity, i.e., 6.24 we get $\text{NF}_{\lambda}(N^a_0, N^a_1, N^b_0, N^b_1)$ as required.

Case C: General case.

We can find M^ℓ_i for $\ell < 3, i \leq \alpha$ such that (note that $M^1_i = M^0_i$):

(a) $M^\ell_i \in K_\lambda$
(b) for each $\ell < 3, M^\ell_i$ is \leq_R-increasing in i (but for $\ell = 1, 2$ they are not required to be continuous)
(c) $M^0_i = N^a_i$
(d) M^ℓ_{i+1} is (λ, λ)-brimmed over $M^\ell_{i+1} \cup M^\ell_{i+1}$ for $\ell < 2, i < \alpha$
(e) $\text{NF}_{\lambda}(M^\ell_i, M^\ell_{i+1}, M^\ell_{i+1}, M^\ell_{i+1})$ for $\ell < 2, i < \alpha$
(f) $M^0_i = M^0_0$ and M^0_i is $(\lambda, \text{cf}(\lambda))$-brimmed over M^0_0.
(g) for $\ell < 2$ and $i<\alpha$ limit we have

$$M_{i+1}^\ell \text{ is } (\lambda, \lambda)-\text{brimmed over } \bigcup_{j<i} M_{j+1}^\ell \cup M_i^\ell$$

(h) for $i<\alpha$ limit we have

$$\operatorname{NF}_\lambda \left(\bigcup_{j<i} M_{j, i}^1, M_i^1 \cup \bigcup_{j<i} M_{j, i}^2, M_i^2 \right).$$

[How? As in the proof of 6.17 or just do by hand.]

Now note:

$$(*)_3 \ M_i^\ell+1 \text{ is } (\lambda, \text{cf}(\lambda \times (1 + i)))-\text{brimmed over } M_i^\ell \text{ if } \ell = 1 \lor i \neq 0$$

[why? If $i = 0$ by clause (f), if i a successor ordinal by clause (d) and if i is a limit ordinal then by clause (g)]

$$(*)_4 \text{ for } i<\alpha, \operatorname{NF}_\lambda(M_0^0, M_0^{i+1}, M_i^0, M_i^1).$$

[Why? If $i = 0$ by clause (e) for $\ell = 1, i = 0$ we get $\operatorname{NF}_\lambda(M_0^1, M_1^0, M_0^2, M_1^2)$ so by clause (f) (i.e., $M_0^1 = M_0^0$) and monotonicity (i.e., Claim 6.24) we have $\operatorname{NF}_\lambda(M_0^0, M_0^0, M_0^1, M_0^2)$] for $i>0$ we use Case B for $\alpha = 2$ with $M_0^0, M_0^{i+1}, M_i^1, M_{i+1}^1, M_i^2, M_{i+1}^2$ here standing for $N_0^0, N_0^0, N_1^0, N_1^1, N_2^0, N_2^1$ there (and symmetry).]

Let us define N_i^ℓ for $\ell < 3, i \leq \alpha$ by: N_i^ℓ is M_i^ℓ if i is non-limit and $N_i^\ell = \bigcup \{N_j^\ell : j < i\}$ if i is limit.

$$(*)_5(i) \ (N_i^\ell : i \leq \alpha) \text{ is } \leq_{\mathcal{R}} \text{-increasing continuous, } N_i^0 = N_i^a \text{ and } N_i^\ell \leq_{\mathcal{R}} M_i^\ell$$

$$\ (ii) \text{ for } i<\alpha, \operatorname{NF}_\lambda(N_i^0, N_{i+1}^0, N_i^2, N_{i+1}^2)$$

[why? by $(*)_4+$ monotonicity of $\operatorname{NF}_\lambda$]

$$\ (iii) \text{ for } i<\alpha, N_{i+1}^2 = (\lambda, \text{cf}(\lambda))-\text{brimmed over } N_{i+1}^0 \cup N_i^2 \text{ and even over } N_{i+1}^1 \cup N_i^2$$

[why? by clause (d)]

$$(*)_6 \operatorname{NF}_\lambda(\lambda, \lambda, \alpha) \ (N_0^1, N_1^1, N_0^2, N_1^2).$$

[Why? As we have proved case A (or, if you prefer, by 6.27; easily the assumption there holds).]

Choose $f_i^a = \text{id}_{N_i^a}$ for $i \leq \alpha$ and let f_i^b be a $\leq_{\mathcal{R}}$-embedding of N_i^0 into N_i^2.

Now we continue as in Case B defining by induction on i a $\leq_{\mathcal{R}}$-embedding f_i^b of N_i^b into N_i^2, the successor case is possible by $(*)_5(ii) + (*)_5(iii)$. In the end by $(*)_6$ and monotonicity of $\operatorname{NF}_\lambda$ (i.e., Claim 6.24) we are done.

2) Apply for each $i<\alpha_2$ part (1) to the sequences $\langle M_{\beta, i} : \beta \leq \alpha_1 \rangle, \langle M_{\beta, i+1} : \beta \leq \alpha_1 \rangle$. (600)
\[\beta \leq \alpha_1 \) so we get \(M_{\alpha_1,i+1} \bigcup_{M_0,i} M_{0,i+1} \) hence by symmetry (i.e., 6.22) we have
\[M_{\alpha_1,i+1} \bigcup_{M_0,i} M_{\alpha_1,i,0} \]. Applying part (1) to the sequences \(\langle M_{0,j} : j \leq \alpha_2 \rangle, \langle M_{\alpha_1,j} : j \leq \alpha_2 \rangle \) we get \(M_{0,\alpha_2} \bigcup_{M_0,0} M_{\alpha_1,\alpha_2} \) hence by symmetry (i.e. 6.22) we have \(M_{\alpha_1,0} \bigcup_{M_0,0} M_{\alpha_1,\alpha_2} \);

so we get the desired conclusion.

6.29 Claim. Assume \(\alpha < \lambda^+, \langle N^\ell_i : i \leq \alpha \rangle \) is \(\leq_R \)-increasing continuous sequence of models for \(\ell = 0,1 \) where \(N^\ell_i \in K_\lambda \) and \(N^1_{i+1} \) is \((\lambda, \kappa_i) \)-brimmed over \(N^0_{i+1} \sqcup N^1_i \) and \(NF_\lambda(N^0_i, N^1_i, N^0_{i+1}, N^1_{i+1}) \).

Then \(N^1_\alpha \) is \((\lambda, cf(\bigcup_{i<\alpha} \kappa_i)) \)-brimmed over \(N^0_\alpha \sqcup N^1_\alpha \).

6.30 Remark. 1) If our framework is uni-dimensional (see III§2; as for example when it comes from [Sh 576]) we can simplify the proof.
2) Assuming only “\(N^1_{i+1} \) is universal over \(N^0_{i+1} \sqcup N^1_i \)” suffices when \(\alpha \) is a limit ordinal, i.e., we get \(N^1_\alpha \) is \((\lambda, cf(\alpha)) \)-brimmed over \(N^0_\alpha \). Why? We choose \(N^2_j \) for \(j \leq i \) such that \(N^2_j = N^1_j \) if \(j = 0 \) or \(j \) a limit ordinal and \(N^2_j \) is a model \(\leq_R N^1_j \) and \((\lambda, \kappa_1) \)-brimmed over \(N^0_j \sqcup N^1_j \) when \(j = i + 1 \). Now \(\langle N^2_j : j \leq \alpha \rangle \) satisfies all the requirements in \(\langle N^1_j : j \leq \alpha \rangle \) in 6.29.
3) We could have proved this earlier and used it, e.g. in 6.28.

Proof. The case \(\alpha \) not a limit ordinal is trivial so assume \(\alpha \) is a limit ordinal. We choose by induction on \(i \leq \alpha \), an ordinal \(\varepsilon(i) \) and a sequence \(\langle M_{i,\varepsilon} : \varepsilon \leq \varepsilon(i) \rangle \) and \(\langle c_\varepsilon : \varepsilon \leq \varepsilon(i) \rangle \) non-limit such that:

\(a) \ \langle M_{i,\varepsilon} : \varepsilon \leq \varepsilon(i) \rangle \) is (strictly) \(\leq_R \)-increasing continuous in \(K_\lambda \)
\(b) \ N^0_i \leq_R M_{i,\varepsilon} \leq_R N^1_i \)
\(c) \ N^0_i = M_{i,0} \) and \(N^1_i = M_{i,\varepsilon(i)} \)
\(d) \ \varepsilon(i) \) is (strictly) increasing continuous in \(i \) and \(\varepsilon(i) \) is divisible by \(\lambda \)
\(e) \ j < i \) & \(\varepsilon \leq \varepsilon(j) \Rightarrow M_{i,\varepsilon} \cap N^1_j = M_{j,\varepsilon} \)
\(f) \ for \ j < i \) and \(\varepsilon \leq \varepsilon(j+1) \), the sequence \(\langle M_{\beta,\varepsilon} : \beta \in \langle j, i \rangle \rangle \) is \(\leq_R \)-increasing continuous
(g) for $j < i$, $\varepsilon < \varepsilon(j)$ non-limit; the type $tp(c_\varepsilon, M_{i,\varepsilon}, M_{i,\varepsilon+1}) \in \mathcal{S}^{bs}(M_{i,\varepsilon})$ does not fork over $M_{j,\varepsilon}$ (actually, here allowing all ε is O.K., too).

(h) $M_{i+1,\varepsilon+1}$ is $(\lambda, \text{cf}(\lambda))$-brimmed over $M_{i+1,\varepsilon} \cup M_{i,\varepsilon+1}$

(i) if $\varepsilon < \varepsilon(i)$ and $p \in \mathcal{S}^{bs}(M_{i,\varepsilon})$ then for λ successor ordinals $\xi \in [\varepsilon, \varepsilon(i))$ the type $tp(c_\xi, M_{i,\xi}, M_{i,\xi+1})$ is a non-forking extension of p.

If we succeed, then $\langle M_{\alpha,\varepsilon} : \varepsilon \leq \varepsilon(\alpha) \rangle$ is a (strictly) $\leq_\mathfrak{a}$-increasing continuous sequence of models from K_λ, $M_{\alpha,0} = N_\alpha^0$, and $M_{\alpha,\varepsilon(\alpha)} = N_\alpha^1$. We can apply 4.3 and we conclude that $N^1_\alpha = M_{\alpha,\varepsilon(\alpha)}$ is $(\lambda, \text{cf}(\alpha))$-brimmed over $M_{\alpha,\varepsilon(j)}$ hence over $N^0_\alpha \cup N^1_\alpha$ (both $\leq_\mathfrak{a} M_{\alpha,1}$).

Carrying the induction is easy. For $i = 0$, there is not much to do. For i successor we use “N^j_{i+1} is brimmed over $N^0_{i+1} \cup N^1_1$” the existence of non-forking amalgamations and 4.2, bookkeeping and the extension property $(E)(g)$. For i limit we have no problem.

\[\square \]

6.31 Conclusion. 1) If $\text{NF}_\lambda(N_0, N_1, N_2, N_3)$ and $\langle M_{0,\varepsilon} : \varepsilon \leq \varepsilon(*) \rangle$ is an $\leq_\mathfrak{a}$-increasing continuous sequence of models from K_λ, $N_0 \leq_\mathfrak{a} M_{0,\varepsilon} \leq_\mathfrak{a} N_2$ then we can find $\langle M_{1,\varepsilon} : \varepsilon \leq \varepsilon(*) \rangle$ and N'_3 such that:

(a) $N_3 \leq_\mathfrak{a} N'_3 \in K_\lambda$

(b) $\langle M_{1,\varepsilon} : \varepsilon \leq \varepsilon(*) \rangle$ is $\leq_\mathfrak{a}$-increasing continuous

(c) $M_{1,\varepsilon} \cap N_2 = M_{0,\varepsilon}$

(d) $N_1 \leq_\mathfrak{a} M_{1,\varepsilon} \leq_\mathfrak{a} N'_3$

(e) if $M_{0,0} = N_0$ then $M_{1,0} = N_1$

(f) $\text{NF}_\lambda(M_{0,\varepsilon}, M_{1,\varepsilon}, N_2, N'_3)$, for every $\varepsilon \leq \varepsilon(*)$.

2) If N_3 is universal over $N_1 \cup N_2$, then without loss of generality $N'_3 = N_3$.

3) In part (1) we can add

(g) $M_{1,\varepsilon+1}$ is brimmed over $M_{0,\varepsilon+1} \cup M_{1,\varepsilon}$.

Proof. 1) Define $M'_{0,i}$ for $i \leq \varepsilon^* := 1 + \varepsilon(*) + 1$ by $M'_{0,0} = N_0, M'_{0,1+\varepsilon} = M_{0,\varepsilon}$ for $\varepsilon \leq \varepsilon(*)$ and $M'_{0,1+\varepsilon(*)+1} = N_2$. By existence (6.21) we can find an $\leq_\mathfrak{a}$-increasing continuous sequence $\langle M'_{1,\varepsilon} : \varepsilon \leq \varepsilon^* \rangle$ with $M'_{1,0} = N_1$ and $\leq_\mathfrak{a}$-embedding f of N_2 into M'_{1,ε^*}, such that $\varepsilon < \varepsilon^* \Rightarrow \text{NF}_\lambda(f(M'_{0,\varepsilon}), M'_{1,0}, f(M'_{0,\varepsilon+1}), M'_{1,\varepsilon+1})$. By transitivity we have $\text{NF}_\lambda(f(M'_{0,0}), M'_{1,0}, f(M'_{0,\varepsilon}), M'_{1,\varepsilon})$. By disjointness (i.e., $f(M'_{0,\varepsilon^*}) \cap M'_{1,0} = M_{0,0}$, see 6.13(3)) without loss of generality f is the identity. By uniqueness for NF there are $N'_3, N_3 \leq_\mathfrak{a} N'_3 \in K_\lambda$ and $\leq_\mathfrak{a}$-embedding of $M'_{1,\varepsilon}$, onto
\[N'_3 \text{ over } N_1 \cup N_2 = M'_{0,e^*} \cup M'_{1,0} \text{ so we are done.} \]

2) Follows by (1).

3) Similar to (1). \[\square \text{6.31} \]

6.32 Claim. \(\text{NF}_\lambda \text{ respects } s; \text{ that is assume } \text{NF}_\lambda(M_0, M_1, M_2, M_3) \text{ and } a \in M_1 \setminus M_0 \) satisfies \(\text{tp}(a, M_0, M_3) \in \mathcal{S}^{bs}(M_0) \), then \(\text{tp}(a, M_2, M_3) \in \mathcal{S}^{bs}(M_2) \) does not fork over \(M_0 \).

Proof. Without loss of generality \(M_1 \) is \((\lambda, *) \)-brimmed over \(M_0 \). [Why? By the existence we can find \(M_1^+ \) which is a \((\lambda, *) \)-brimmed extension of \(M_1 \). By the existence for \(\text{NF}_\lambda \) without loss of generality we can find \(M_3^+ \) such that \(\text{NF}_\lambda(M_1, M_1^+, M_3, M_3^+) \), hence by transitivity for \(\text{NF}_\lambda \) we have \(\text{NF}_\lambda(M_0, M_1^+, M_2, M_3^+) \).] By the hypothesis of the section there are \(M_1', a' \) such that \(M_0 \cup \{ a' \} \subseteq M_1' \) and \(\text{tp}(a', M_0, M_1') = \text{tp}(a, M_0, M_1) \) and \((M_0, M_1', a) \in K^{3,\text{aq}} \); as \(M_1^+ \) is \((\lambda, *) \)-brimmed over \(M_0 \) without loss of generality \(M' \leq \mathcal{M}_1^+ \) and \(a' = a \) and \(M_1 \) is \((\lambda, *) \)-brimmed over \(M_1' \). We can apply 6.9 to \(M_1', M_1^+ \) getting \((M_1^*, a_i : i \leq \delta < \lambda^+) \) as there. Let \(M_1' \) be: \(M_0 \) if \(i = 0 \), \(M_j^* \) if \(1 + j = i \) so \(M_1' = M_0^* = M_1 \) and let \(a_i \) be \(a \) if \(i = 0 \), \(a_j \) if \(1 + j = i \). So we can find \(M_3^* \) and \(f \) such that \(M_2 \leq \mathcal{M}_1^+ \), \(f \) is a \(\leq \mathcal{M}_1^+ \)-embedding of \(M_1^+ \) into \(M_3^* \) extending \(\text{id}_{M_0} \) such that \(\text{NF}_{\lambda, (\delta, \lambda)}(M_0, f(M_1^+), M_2, M_3^*) \) and \(M_3 \), this is witnessed by \((f(M_1^*) : i \leq \delta), (M_i^* : i \leq \delta), (f(a_i) : i < \delta) \) and \(M_0'' = M_2 \); this is possible by 6.13(2). Hence \(\text{NF}_{\lambda}(M_0, f(M_1^+), M_2, N) = \text{NF}_{\lambda}(f(M_0), f(M_1^+), M_0'', N) \) hence by the uniqueness for \(\text{NF}_\lambda \) without loss of generality \(f = \text{id}_{M_1^+} \) and \(M_3 \leq \mathcal{M}_N \). By the choice of \(f, N \) we have \(\text{tp}(a, M_2, M_3) = \text{tp}(a_0, M_2, N) = \text{tp}(a_0, M_0'', M_1') \in \mathcal{S}^{bs}(M_0'') = \mathcal{S}^{bs}(M_2) \) does not fork over \(M_0' = M_0 \) as required. \[\square \text{6.32} \]

6.33 Conclusion. If \(M_0 \leq \mathcal{M}_\ell \leq \mathcal{M}_3 \) for \(\ell = 1, 2 \) and \((M_0, M_1, a) \in K^{3,\text{aq}} \) and \(\text{tp}(a, M_2, M_3) \in \mathcal{S}^{bs}(M_2) \) does not fork over \(M_0 \) then \(\text{NF}(M_0, M_1, M_2, M_3) \).

Proof. By the definition of \(K^{3,\text{aq}} \) and existence for \(\text{NF}_\lambda \) and 6.32 (or use 6.3 + 6.34).

We can sum up our work by

6.34 Main Conclusion. \(\text{NF}_\lambda \) is a non-forking relation on \(4(\mathcal{K}_\lambda) \) which respects \(s \).

Proof. We have to check clauses (a)-(g)+(h) from 6.1. Clauses (a),(b) hold by the Definition 6.12 of \(\text{NF}_\lambda \). Clauses (c), (c), \(\lambda \), i.e., monotonicity hold by 6.24. Clause
(d), i.e., symmetry holds by 6.25. Clause (e), i.e., transitivity holds by 6.28. Clause (f), i.e., existence hold by 6.21. Clause (g), i.e., uniqueness holds by 6.22.
Lastly, clause (h), i.e., NF \(\lambda \) respecting \(s \) by 6.32. \(\square \)

The following definition is not needed for now but is natural (of course, we can omit “there is superlimit” from the assumption and the conclusion). For the rest of the section we stop assuming Hypothesis 6.8.

6.35 Definition. 1) A good \(\lambda \)-frame \(s \) is type-full when for \(M \in R_s, \mathcal{S}^{bs}(M) = \mathcal{S}^{na}(M) \).
2) Assume \(R_\lambda \) is a \(\lambda \)-a.e.c. and NF is a 4-place relation on \(K_\lambda \). We define \(t = t_{R_\lambda, NF} = (K_t, \bigcup_t \mathcal{S}^{bs}) \) as follows:

(a) \(R_t \) is the \(\lambda \)-a.e.c. \(R_\lambda \)
(b) \(\mathcal{S}^{bs}_t(M) \) is \(\mathcal{S}^{na}_{R_\lambda}(M) \) for \(M \in R_\lambda \)
(c) \(\bigcup_t \) is defined by: \((M_0, M_1, a, M_3) \in \bigcup_t \) when we can find \(M_2, M'_3 \) such that \(M_0 \leq R_\lambda M_2 \leq R_\lambda M'_3, M_3 \leq R_\lambda M'_3, a \in M_2 \setminus M_0 \) and NF(\(M_0, M_1, M_2, M'_3 \)).

6.36 Claim. 1) Assume that

(a) \(R_\lambda \) is a \(\lambda \)-a.e.c. with amalgamation (actually follows by (c)) and a superlimit model
(b) \(R_\lambda \) is stable
(c) NF is a \(R_\lambda \)-non-forking relation, see Definition 6.1(1).

Then \(t = t_{R_\lambda, NF} \) is a type-full good \(\lambda \)-frame.
2) Assume that \(s \) is a good \(\lambda \)-frame which has existence for \(K^{3, uq}_\lambda \) (see 6.8(2)) and NF = NF_\lambda. Then \(t \) is very close to \(s \), i.e.:

(a) \(R_s = R_t \)
(b) if \(p \in \mathcal{S}^{bs}_s(M_1) \) and \(M_0 \leq R_\lambda M_1 \) then \(p \in \mathcal{S}^{bs}_t(M_1) \) and \(p \) forks over \(M_0 \) for \(s \) iff \(p \) forks over \(M_0 \) for \(t \).

Proof. For the time being, left to the reader (but before it is really used it is proved in III.9.6).

Remark. Note that this actually says that from now on we could have used type-full \(s \), but it is not necessary for a long time.
6.37 Definition. 1) Let \(s \) be a good \(\lambda \)-frame. We say that \(NF \) is a weak \(s \)-non-forking relation when

(a) \(NF \) is a pseudo \(R_s \)-non-forking relation, see Definition 6.1(2), i.e., uniqueness is omitted

(b) \(NF \) respects \(s \), see Definition 6.1(3)

(c) \(NF \) satisfies 6.31, (NF-lifting of an \(\leq_R \)-increasing sequence).

1A) If in part (1) we replace “\(s \)-non-forking” by “non-forking”, we mean that we omit clause (c).

1B) In part (1) we omit “weak” when we omit the “pseudo” in clause (a), so clause (c) becomes redundant.

2) We say \(s \) is pseudo-successful if some \(NF \) is a weak \(s \)-non-forking relation witnesses it.

6.38 Observation. 1) If \(s \) is a good \(\lambda \)-frame which is weakly successful (i.e., has existence for \(K^{3,\text{aq}} \), i.e., 6.8) then \(NF_\lambda = NF_s \) is a \(s \)-non-forking relation.

2) If \(s \) is a good \(\lambda \)-frame and \(NF \) is a weak \(s \)-non-forking relation then 6.33 holds.

3) If \(s \) is a good \(\lambda \)-frame and \(NF \) is an \(s \)-non-forking relation then \(NF \) is a weak \(s \)-non-forking relation which implies \(NF \) is a pseudo non-forking relation.

Proof. Straight.

1) Follows by 6.34, \(NF_\lambda \) satisfies clauses (a)+(b) and by 6.31 it satisfies also clause (c) of Definition 6.1(1).

2) Also easy.

3) We have just to check the proof of 6.31 still works.

6.39 Remark. 1) In Chapter III ,§1 -§11 we can use “\(s \) is pseudo successful as witnessed by \(NF \)” so has lifting of decompositions instead of “\(s \) is weakly successful”. We shall return to this elsewhere, see [Sh 838], [Sh 842].
§7 Nice extensions in K_{λ^+}

7.1 Hypothesis. Assume the hypothesis 6.8.

So by §6 we have reasonable control on smooth amalgamation in K_λ. We use this to define “nice” extensions in K_{λ^+} and prove some basic properties. This will be treated again in §8.

7.2 Definition. 1) $K_{\lambda^+}^{nice}$ is the class of saturated $M \in K_{\lambda^+}$.
2) Let $M_0 \leq_{\lambda^+} M_1$ mean:

$$M_0 \leq_{\mathcal{R}} M_1$$ and they are from K_{λ^+} and we can find $\bar{M}^\ell = \langle M_i^\ell : i < \lambda^+ \rangle$, a $\leq_{\mathcal{R}}$-representation of M_ℓ for $\ell = 0, 1$ such that:

$$\text{NF}_{\lambda}(M_0^0, M_0^1, M_1^0, M_1^1)$$ for $i < \lambda^+$.

3) Let $M_0 \prec_{\lambda^+} M_1$ mean20 that $(M_0, M_1 \in K_{\lambda^+} and) M_0 \prec_{\lambda^+} M_1$ by some witnesses M_i^ℓ (for $i < \lambda^+, \ell < 2$) such that $\text{NF}_{\lambda, (1, 1, \kappa)}(M_0^0, M_0^1, M_1^0, M_1^1)$ for $i < \lambda^+$; of course $M_0 \leq_{\mathcal{R}} M_1$ in this case. Let $M_0 \prec_{\lambda^+} M_1$ mean $(M_0 = M_1 \in K_{\lambda^+}) \lor (M_0 \prec_{\lambda^+} M_1)$. If $\kappa = \lambda$, we may omit it.

4) Let $K_{\lambda^+}^{3, bs} = \{ (M, N, a) : M \prec_{\lambda^+} N \text{ are from } K_{\lambda^+} \text{ and } a \in N \setminus M \}$ and for some $M_0 \leq_{\mathcal{R}} M, M_0 \in K_{\lambda^+}$ we have $[M_0 \leq_{\mathcal{R}} M_1 \leq_{\mathcal{R}} M \amp M_1 \in K_{\lambda^+}]$ implies $tp(a, M_1, N) \in \mathcal{J}^{bs}(M_1)$ and does not fork over M_0. We call M_0 or $tp(a, M_0, N)$ a witness for $(M, N, a) \in K_{\lambda^+}^{3, bs}$. (In fact this definition on $K_{\lambda^+}^{3, bs}$ is compatible with the definition in §2 for triples such that $M \leq_{\lambda^+} N$ but we do not know now whether even $(K_{\lambda^+}^{nice}, \leq_{\lambda^+}^*)$ is a λ^+-a.e.c.)

7.3 Claim. 0) $K_{\lambda^+}^{nice}$ has one and only one model up to isomorphism and $M \in K_{\lambda^+}^{nice}$ implies $M \leq_{\lambda^+}^* M$ and $M \leq_{\lambda^+} M$; moreover, $M \in K_{\lambda^+} \Rightarrow M \leq_{\lambda^+} M$. Also $\leq_{\lambda^+}^*$ is a partial order and if $M_\ell \in K_{\lambda^+}$ for $\ell = 0, 1, 2$ and $M_0 \leq_{\mathcal{R}} M_1 \leq_{\mathcal{R}} M_2$ and $M_0 \leq_{\lambda^+} M_2$ then $M_0 \leq_{\lambda^+} M_1$.

1) If $M_0 \leq_{\lambda^+} M_1$ and $\bar{M}^\ell = \langle M_i^\ell : i < \lambda^+ \rangle$ is a representation of M_ℓ for $\ell = 0, 1$ then

\[(*) \text{ for some club } E \text{ of } \lambda^+, \]

\begin{itemize}
 \item[(a)] for every $\alpha < \beta$ from E we have $\text{NF}_\lambda(M_0^\alpha, M_\beta^\alpha, M_1^\alpha, M_1^\beta)$
 \item[(b)] if $\ell < 2$ and $M_\ell \in (K_{\lambda^+}^{nice})$ then for $\alpha < \beta$ from E the model M_β^ℓ is (λ, \ast)-brimmed over M_α^ℓ.
\end{itemize}

20 Note that $M_0 \prec_{\lambda^+} M_1$ implies $M_1 \in K_{\lambda^+}^{nice}$ but in general $M_0 \in K_{\lambda^+}^{nice}$ does not follow.
Proof. 0) Obvious by now (for the second sentence use part (1) and NF\textsubscript{\textalpha} non-forking relation on \(M \)

2) Similarly for \(\prec_{\lambda^+}^\kappa \): if \(M_0 \prec_{\lambda^+}^\kappa M_1, M_i^\ell = \langle M_i^\ell : i < \lambda^+ \rangle \) a representation of \(M_\ell \) for \(\ell = 0, 1 \) then for some club \(E \) of \(\lambda^+ \) for every \(\alpha < \beta \) from \(E \) we have \(\text{NF}_{\lambda, (1, 1, \kappa)} (M_\alpha^0, M_\beta^0, M_\alpha^1, M_\beta^1) \), moreover \(\text{NF}_{\lambda, (\langle \lambda \times (1 + \beta) \rangle, \kappa)} (M_\alpha^0, M_\beta^0, M_\alpha^1, M_\beta^1) \) and if \((M_\alpha, M_\beta^0, M_\alpha^1, M_\beta^1), M_0 \in K^\kappa \) then we can add \(\text{NF}_{\lambda, (\langle \lambda \times (1 + \beta) \rangle, \kappa)} (M_\alpha^0, M_\beta^0, M_\alpha^1, M_\beta^1) \).

3) The \(\kappa \) in Definition 7.2(3) does not matter.

4) If \(M_0 \prec_{\lambda^+}^\kappa M_1, \) then \(M_1 \in K^\kappa_{\lambda^+} \).

5) If \(M \in K_{\lambda^+} \) is saturated, equivalently \(M \in K^\kappa_{\lambda^+} \) then \(M \) has a \(\leq_R \)-representation \(\tilde{M} = \langle M_\alpha : \alpha < \lambda^+ \rangle \) such that \(M_{i+1} \) is \((\lambda, \lambda) \)-brimmed over \(M_i \) for \(i < \lambda^+ \) and also the inverse is true.

6) If \(M \preceq_{\lambda^+}^\kappa N \) and \(N_0 \preceq_R N, N_0 \in K_\lambda \) then we can find \(M_1 \preceq_R N_1 \) from \(K_\lambda \) such that \(M_1 \preceq_R M, N_0 \preceq_R N_1 \preceq_R N \) and for every \(M_2 \in K_\lambda \) satisfying \(M_1 \preceq_R M_2 \preceq_R M \) there is \(N_2 \preceq_R N \) such that \(\text{NF}_a (M_1, M_2, N_1, N_2) \).

7.4 Claim. 0) For every \(M_0 \in K_{\lambda^+} \) for some \(M_1 \in K^\kappa_{\lambda^+} \) we have \(M_0 \preceq_R M_1 \).

1) For every \(M_0 \in K_{\lambda^+} \) and \(\kappa = \text{cf}(\kappa) \leq \lambda \) for some \(M_1 \in K_{\lambda^+} \) we have \(M_0 \prec_{\lambda^+}^\kappa M_1 \) so \(M_1 \in K^\kappa_{\lambda^+} \).

1A) Moreover, if \(N_0 \preceq_R M_0 \in K_{\lambda^+}, N_0 \in K_\lambda, p \in \mathcal{S}^{bs}(N_0) \) then in (1) we can add that for some \(a, (M_0, M_1, a) \in K^{3, bs}_{\lambda^+} \) as witnessed by \(p \).

2) \(\preceq_{\lambda^+} \) and \(\prec_{\lambda^+}^\kappa \) are transitive.

3) If \(M_0 \preceq_R M_1 \preceq_R M_2 \) are in \(K_{\lambda^+} \) and \(M_0 \preceq^*_R M_2, \) then \(M_0 \preceq^*_R M_1 \).

4) If \(M_1 \prec_{\lambda^+}^\kappa M_2, \) then \(M_1 \prec_{\lambda^+} M_2 \).

5) If \(M_0 \prec_{\lambda^+} M_1 \prec_{\lambda^+}^\kappa M_2 \) then \(M_0 \prec_{\lambda^+}^\kappa M_2 \).

Proof. 0) Easy and follows by the proof of part (1) below.

1), 1A) Let \(\langle M_i^0 : i < \lambda^+ \rangle \) be a \(\leq_R \)-representation of \(M_0 \) with \(M_i^0 \) brimmed and
brimmed over M_j^0 for $j < i$ and for part (1A) we have $M_0^0 = N_0$, and for part (1)
let p be any member of $J_{\lambda^+}(M_0^0)$. We choose by induction on i a model $M_i^1 \in K_\lambda$ and $a \in M_i^0$ such that M_i^1 is $(\lambda, \text{cf}(\lambda \times (1 + i)))-$brimmed over M_i^0, $(M_i^1 : i < \lambda^+)$ is $<_{\mathfrak{R}}$-increasing continuous, $M_i^1 \cap M_0 = M_i^0$ and $tp(a, M_0^0, M_i^0) = p$ and M_i^1 is
(λ, κ)-brimmed over $M_{i+1}^0 \cup M_i^1$ and $\text{NF}_{\lambda,(\text{cf}(\lambda \times (1 + i)), \kappa)}(M_i^0, M_{i+1}^0, M_i^1, M_{i+1}^1)$ for $i < \lambda^+$. Note that for limit i, by 6.29, M_i^1 is $(\lambda, \text{cf}(i))$-brimmed over $M_i^0 \cup M_i^1$ for any $j < i$.

Note that for $i < \lambda^+$, the type $tp(a, M_i^1, M_{1})$ does not fork over $M_0^0 = N_0$ and extends p by 6.32 (saying NF_λ respects κ). So clearly we are done.

2) Concerning $<_{\lambda^+, \kappa}$ use 7.3 and 6.28 (i.e. transitivity for smooth amalgamations). The proof for $<_{\lambda^+}$ is the same.

3) By monotonicity for smooth amalgamations in \mathfrak{R}_λ; i.e., 6.24.

4), 5) Check. \[7.4\]

7.5 Claim. 1) If $(M_0, M_1, a) \in K^{3, \text{bs}}_{\lambda^+}$ and $M_1 \leq^*_\lambda M_2 \in K_{\lambda^+}$ then $(M_0, M_2, a) \in K^{3, \text{bs}}_{\lambda^+}$.

2) If $M_0 <^*_\lambda M_1$, then for some a, $(M_0, M_1, a) \in K^{3, \text{bs}}_{\lambda^+}$.

Proof. 1) By the transitivity of \leq^*_λ which holds by 7.4(2).

2) As in the proof of 2.9, in fact it follows from it. \[7.5\]

Remark. Note that the parallel to 7.4(1A) is problematic in § 2 as, e.g. locality may fail, i.e., $(M, N_i, a_i) \in K^{3, \text{bs}}_{\lambda^+}$ and $M' \leq_{\mathfrak{R}} M \wedge M' \in K_\lambda \Rightarrow tp_s(a_1, M', N_1) = tp_s(a_2, M', N_2)$ but $tp_{K^*_{\lambda^+}}(a_1, M, N_1) \neq tp_{K^*_{\lambda^+}}(a_2, M, N_2)$. \[7.5\]

7.6 Claim. 1) [Amalgamation of \leq^*_λ and toward extending types] If $M_0 \leq^*_\lambda M_\ell$ for $\ell = 1, 2, \kappa = \text{cf}(\kappa) \leq \lambda$ and $a \in M_2 \setminus M_0$ is such that $(M_0, M_2, a) \in K^{3, \text{bs}}_{\lambda^+}$ is witnessed by p, then for some M_3 and f we have: $M_1 <^+_{\lambda^+, \kappa} M_3$ and f is an $\leq_{\mathfrak{R}}$-embedding of M_2 into M_0 with $f(a) \notin M_1$, moreover, $f(M_2) \leq^*_\lambda M_3$ and $(M_1, M_3, f(a)) \in K^{3, \text{bs}}_{\lambda^+}$ is witnessed by p.

2) [uniqueness] Assume $M_0 <^+_{\lambda^+, \kappa} M_\ell$ for $\ell = 1, 2$ then there is an isomorphism f from M_1 onto M_2 over M_0.

3) [locality] Moreover, in (2) if $a_\ell \in M_\ell \setminus M_0$ for $\ell = 1, 2$ and $[N \leq_{\mathfrak{R}} M_0 \wedge N \in K_\lambda \Rightarrow tp(a_1, N, M_1) = tp(a_2, N, M_2)]$, then we can demand $f(a_1) = a_2$ (so in

\[21\] the meaning of this will be that types over $M \in K^{\text{nice}}_{\lambda^+}$ for $(K^{\text{nice}}_{\lambda^+}, \leq^*_\lambda)$ can be reduced to basic types over a model in K_λ, i.e., locality
particular $\text{tp}(a_1, M_0, M_1) = \text{tp}(a_2, M_0, M_2)$ where the types are as defined in \mathcal{R}_{λ^+} and even in $(K_{\lambda^+}, \leq_{\lambda^+})$.

4) Moreover in (2), assume further that for $\ell = 1, 2$, the following hold: $N_0 \leq_{\mathcal{R}} N_\ell, N_0 \in K_{\lambda}, N_0 \leq_{\mathcal{R}} N_\ell, N_\ell \in K_{\lambda}$ and $(\forall N \in K_{\lambda})[N_0 \leq_{\mathcal{R}} N \leq_{\mathcal{R}} M_0 \rightarrow (\exists N' \in K_{\lambda})(N \cup N_\ell \leq_{\mathcal{R}} M_\ell \land \text{NF}_{\lambda}(N_0, N_\ell, N, N'))]$. If f_0 is an isomorphism from N_1 onto N_2 over N_0 then we can add $f \supseteq f_0$.

Proof. We first prove part (2).

2) By 7.3(1) + (2) there are representations $\bar{M}_\ell = \langle M_\ell^i : i < \lambda^+ \rangle$ of M_ℓ for $\ell < 3$ such that for $\ell = 1, 2$ we have: $M_\ell^i \cap M_0 = M_0^0$ and $\text{NF}_{\lambda, (1, 1, \kappa)}(M_0^{i_0}, M_{i_1}^{i_1}, M_{i_2}^{i_2}, M_{i_3}^{i_3})$ and without loss of generality $M_\ell^{i_3}$ is (λ, κ)-brimmed over $M_0^{i_3}$ for $\ell = 1, 2$.

Now we choose by induction on $i < \lambda^+$ an isomorphism f_i from $M_1^{i_3}$ onto $M_2^{i_3}$, increasing with i and being the identity over $M_0^{i_3}$. For $i = 0$ use “$M_\ell^{i_3}$ is (λ, κ)-brimmed over $M_0^{i_3}$ for $\ell = 1, 2$” which we assume above. For i limit take unions, for i successor ordinal use uniqueness (Claim 6.18).

Proof of part (1). By 7.4(1) there are for $\ell = 1, 2$ models $N_\ell^* \in K_{\lambda^+}$ such that $M_\ell <_{\lambda^+, \kappa} N_\ell^*$. Now let $\bar{M}_\ell = \langle M_\ell^i : i < \lambda^+ \rangle$ be a representation of M_ℓ for $\ell = 0, 1, 2$ and let $\bar{N}_\ell = \langle N_\ell^i : i < \lambda^+ \rangle$ be a representation of N_ℓ^* for $\ell = 1, 2$. By 7.4(4) and 7.3(2) without loss of generality N_0^0 is (λ, κ)-brimmed over M_0^0 and $\text{NF}_{\lambda}(M_0^0, M_0^{i_1}, M_0^{i_2}, M_0^{i_3})$ and $\text{NF}_{\lambda, (1, 1, \kappa)}(M_0^{i_0}, M_{i_1}^{i_1}, M_{i_2}^{i_2}, M_{i_3}^{i_3})$ respectively for $i < \lambda^+, \ell = 1, 2$. Let M_0^0 be such that $p \in \mathcal{R}^{bs}(M_0^0), M_0^0 \in K_{\lambda}, M_0^0 <_{\mathcal{R}} M_0^0; \text{without loss of generality } M_0^0 <_{\mathcal{R}} M_0^0$ and $a \in M_0^0 \leq_{\mathcal{R}} N_0^0$. Now N_0^0 is (λ, κ)-brimmed over M_0^0 hence over M_0^0 (for $\ell = 1, 2$) so there is an isomorphism f_0 from N_0^0 onto N_0^1 extending id$_{M_0^0}$. There is $a' \in N_0^1$ such that $\text{tp}(a', M_1^0, N_1^0)$ is a non-forking extension of p and without loss of generality $f_0(a) = a'$ hence $\text{tp}(f_0(a), M_0^0, N_0^0) \in \mathcal{R}^{bs}(M_0^0)$ does not fork over M_0^0.

We continue as in the proof of part (2). In the end $f = \bigcup_{i < \lambda^+} f_i$ is an isomorphism of N_2^* onto N_1^* over M_0 and as $f_0(a)$ is well defined and in $N_0^0 \setminus M_0^0$ clearly $\text{tp}(f(a), M_1^0, N_1^0)$ does not fork over M_0^0 and extends p hence the pair $(N_1^*, f \upharpoonright M_2)$ is as required.

Proof of part (3), (4). Like part (2). \hfill $\square_{7.6}$
7.7 Claim. 1) If \(\delta \) is a limit ordinal \(< \lambda^+ \) and \(\langle M_i : i < \delta \rangle \) is a \(\leq_{\lambda^+}^* \)-increasing continuous (in \(K_{\lambda^+} \)) and \(M_\delta = \bigcup_{i<\delta} M_i \) (so \(M_\delta \in K_{\lambda^+} \)), then \(M_i \leq_{\lambda^+}^* M_\delta \) for each \(i < \delta \).

2) If \(\delta \) is a limit ordinal \(< \lambda^+ \) and \(\langle M_i : i < \delta \rangle \) is a \(\leq_{\lambda^+}^* \)-increasing sequence, each \(M_i \) is in \(K_{\lambda^+}^{nice} \), then \(\bigcup_{i<\delta} M_i \) is in \(K_{\lambda^+}^{nice} \).

3) If \(\delta \) is a limit ordinal \(< \lambda^+ \) and \(\langle M_i : i < \delta \rangle \) is a \(<_{\lambda^+}^* \)-increasing continuous (or just \(<_{\lambda^+}^* \)-increasing continuous, and \(M_{2i+1} <_{\lambda^+}^* M_{2i+2} \) for \(i < \delta \)), then \(i < \delta \Rightarrow M_i <_{\lambda^+}^* \bigcup_{j<\delta} M_j \).

Proof. 1) We prove it by induction on \(\delta \). Now if \(C \) is a club of \(\delta \), (as \(\leq_{\lambda^+}^* \) is transitive) then we can replace \(\langle M_j : j \leq \delta \rangle \) by \(\langle M_j : j \in C \rangle \) so without loss of generality \(\delta = \text{cf}(\delta) \), so \(\delta \leq \lambda^+ \); similarly it is enough to prove \(M_0 \leq_{\lambda^+}^* M_\delta := \bigcup_{j<\delta} M_j \). For each \(i \leq \delta \) let \(\langle M^i_\zeta : \zeta < \lambda^+ \rangle \) be a \(<_{\lambda^+}^* \)-representation of \(M_i \).

Case A: \(\delta < \lambda^+ \).

Without loss of generality (see 7.3(1)) for every \(i < j < \delta \) and \(\zeta < \lambda^+ \) we have:

\(M^\delta_\zeta \cap M_i = M^i_\zeta \) and NF\(\lambda(M^i_\zeta, M^i_{\zeta+1}, M^j_\zeta, M^j_{\zeta+1}) \). Let \(M^\delta_\zeta = \bigcup_{i<\delta} M^i_\zeta \), so

\(\langle M^\delta_\zeta : \zeta < \lambda^+ \rangle \) is \(\leq_{\lambda^+} \)-increasing continuous sequence of members of \(K_\lambda \) with limit \(M_\delta \), and for \(i < \delta, M^\delta_\zeta \cap M_i = M^i_\zeta \). By symmetry (see 6.25) we have NF\(\lambda(M^0_\zeta, M^0_{\zeta+1}, M^i_{\zeta+1}) \) so as \(\langle M^i_\zeta : i \leq \delta \rangle, \langle M^i_{\zeta+1} : i \leq \delta \rangle \) are \(\leq_{\lambda^+} \)-increasing continuous, by 6.28, the transitivity of NF\(\delta \), we know NF\(\lambda(M^0_\zeta, M^\delta_\zeta, M^0_{\zeta+1}, M^\delta_{\zeta+1}) \) hence by symmetry (6.25) we have NF\(\lambda(M^0_\zeta, M^0_{\zeta+1}, M^\delta_\zeta, M^\delta_{\zeta+1}) \).

So \(\langle M^0_\zeta : \zeta < \lambda^+ \rangle, \langle M^\delta_\zeta : \zeta < \lambda^+ \rangle \) are witnesses to \(M_0 \leq_{\lambda^+}^* M_\delta \).

Case B: \(\delta = \lambda^+ \).

By 7.3(1) (using normality of the club filter, restricting to a club of \(\lambda^+ \) and renaming), without loss of generality for \(i < j \leq 1 + \zeta < 1 + \xi < \lambda^+ \) we have \(M^j_\zeta \cap M_i = M^i_\zeta \), and NF\(\lambda(M^i_\zeta, M^j_\zeta, M^j_\zeta, M^j_\zeta) \). Let us define \(M^\lambda_{\zeta+} = \bigcup_{j<1+\zeta} M^j_\zeta \). So

\(\langle M^\lambda_{\zeta+} : \zeta < \lambda^+ \rangle \) is a \(<_{\lambda^+} \)-representation of \(M_{\lambda^+} = M_\delta \) and continue as before.

2) Again without loss of generality \(\delta = \text{cf}(\delta) \) call it \(\kappa \). Let \(\langle M^i_\zeta : \zeta < \lambda^+ \rangle \) be a \(<_{\lambda^+} \)-representation of \(M_i \) for \(i < \delta \).
Case A: \(\delta = \kappa < \lambda^+ \).

Easy by now, yet we give details, noting 7.8. So without loss of generality (see 7.3(1)) for every \(i < \delta \) and \(\zeta < \xi < \lambda^+ \) we have: \(M^j_\zeta \cap M_\xi = M^j_\zeta \), \(\text{NF}_\lambda(M^j_\zeta, M^j_\xi, M^j_\xi, M^j_\xi) \) and \(M^j_{\xi+1} \) is \((\lambda, \lambda)\)-brimmed over \(M^j_\xi \). Let \(M^j_\zeta = \bigcup_{\beta < \delta} M^\beta_\zeta \). Let \(\xi < \lambda^+ \). Now if \(p \in \mathcal{S}^{bs}(M^\beta_\xi) \) then by the local character Axiom \((E)(c) + \text{the uniqueness Axiom (E)(e)}\), for some \(i < \delta, p \) does not fork over \(M^j_\xi \).

As \(M_i \) is \(\lambda^+ \)-saturated above \(\lambda \), the type \(p \upharpoonright M^j_\xi \) is realized in \(M_i \). So let \(b \in M_i \) realize \(p \upharpoonright M^j_\xi \) and by Axiom \((E)(h)\), continuity, it suffices to prove that for every \(j \in (i, \delta) \), \(b \) realizes \(p \upharpoonright M^j_\xi \) in \(M_j \) which holds by 6.32 (note that \(b \in M_i \leq \lambda M_j \) as \(j \in [i, \delta) \)). So \(p \) is realized in \(M_\delta = \bigcup_{i < \delta} M_i \). As this holds for every \(\xi < \lambda^+ \) and \(p \in \mathcal{S}^{bs}(M^\beta_\xi) \), the model \(M_\delta \) is saturated.

Case B: \(\text{cf}(\delta) = \lambda^+ \).

Straight, in fact true for \(\mathcal{R} \) a.e.c. with the \(\lambda \)-amalgamation property.

3) Similar. \(\square_{7.7} \)

7.8 Remark. Note that in \(\text{Ax}(E)(c) \), \(\text{Ax}(E)(h) \) the continuity of the sequences is not required.

7.9 Claim. 1) If \(M_0 \in K_{\lambda^+} \) then there is \(M_1 \) such that \(M_0 <^+_{\lambda^+} M_1 \in K^{\text{nice}}_{\lambda^+} \), and any such \(M_1 \) is universal over \(M_0 \) in \((K_{\lambda^+}, <^+_{\lambda^+}) \).

2) Assume \(\exists N_0, N_1, N_2, M_1, M_2 \) below holds. Then \(M_1 <^+_{\lambda^+} M_2 \) iff for every \(\alpha < \lambda^+ \) for stationarily many \(\beta < \lambda^+ \) there is \(N \) such that \(N_1^1 \cup N_2^1 \subseteq N \leq \lambda N_2^2 \) and \(N_2^2 \) is \((\lambda, \ast)\)-brimmed over \(N \) where

\[\exists N_1, N_2, M_1, M_2 \mid M_1 <^+_{\lambda^+} M_2 \text{ is being witnessed by } N_1, N_2 \text{ that is } N_\ell = \{ N_\alpha^\ell : \alpha < \lambda^+ \} \text{ is a } \leq \lambda \text{-representation of } M_\ell \text{ for } \ell = 1, 2 \text{ and } \alpha < \lambda^+ \Rightarrow \text{NF}_\lambda(N_\alpha^1, N_\alpha^1, N_\alpha^2, N_\alpha^2, N_\alpha^2) \Rightarrow \text{NF}_\lambda(N_\alpha^1, N_\alpha^1, N_\alpha^2, N_\alpha^2, N_\alpha^2))\]

Proof. 1) The existence by 7.4(1). Why “any such \(M_1, \ldots ? \)” if \(M_0 \leq^*_{\lambda^+} M_2 \) then for some \(M^*_2 \in K^{\text{nice}}_{\lambda^+} \) we have \(M_2 <^+_{\lambda^+} M^*_2 \in K^{\text{nice}}_{\lambda^+} \) so \(M_0 \leq^*_{\lambda^+} M_1 <^+_{\lambda^+} M^*_2 \) hence by 7.4(5) we have \(M_0 >^+_{\lambda^+} M^*_2 \); so by 7.6(2) the models \(M^*_2, M_1 \) are isomorphic over \(M_0 \), so \(M_2 \) can be \(\leq^*_{\lambda^+} \)-embedded into \(M_1 \) over \(M_0 \), so we are done.

2) Not hard. \(\square_{7.9} \)
§8 Is $K^{\text{nice}}_{\lambda^+}$ with \leq^*_λ an a.e.c.?

8.1 Hypothesis. The hypothesis 6.8.

An important issue is whether $(K^{\text{nice}}_{\lambda^+}, \leq^*_\lambda)$ satisfies Ax IV of a.e.c. So a model $M \in K_{\lambda^{++}}$ may be the union of a \leq^*_λ-increasing chain of length λ^{++}, but we still do not know if there is a continuous such sequence.

E.g. let $\langle M_\alpha : \alpha < \lambda^+ \rangle$ be \leq^*_λ-increasing with union $M \in K_{\lambda^{++}}$ let $M'_n = M_n, M'_\omega + \alpha + 1 = M_\omega + \alpha$ and $M'_\delta = \bigcup \{M_\beta : \beta < \delta \}$ for δ limit. So $\langle M'_\delta : \alpha < \lambda^{++} \rangle$ is \leq^*_λ-increasing continuous, $\langle M'_{\alpha + 1} : \alpha < \lambda^{++} \rangle$ is \leq^*_λ-increasing, but we do not know whether $M'_\delta \leq^*_\lambda M'_{\delta + 1}$ for limit $\delta < \lambda^{++}$.

8.2 Definition. Let $M \in \mathcal{R}_{\lambda^{++}}$ be the union of an \leq^*_λ-increasing continuous chain from $(K^{\text{nice}}_{\lambda^+}, \leq^*_\lambda)$ or just $(K_{\lambda^+}, \leq^*_\lambda)$, $M = \langle M_i : i < \lambda^{++} \rangle$ such that $\langle M_i : i < \lambda^{++} \text{ non-limit} \rangle$ is \leq^*_λ-increasing.

1) Let $S(M) = \{\delta : M_\delta \not\leq^*_\lambda M_{\delta + 1} \text{ (see 8.3(3) below)}\}$, so $S(M) \subseteq \lambda^{++}$.
2) For such M let $S(M)$ be $S(M)/\mathcal{P}_{\lambda^{++}}$ where M is a \leq^*_λ-representation of M and $\mathcal{P}_{\lambda^{++}}$ is the club filter on λ^{++}; it is well defined by 8.3 below.
3) We say $\langle M_i : i < \delta \rangle$ is non-limit $<^*_\lambda$-increasing if for non-limit $i < j < \delta$ we have $M_i \leq^*_\lambda M_j$.

8.3 Claim. 1) If $\bar{M}^\ell = \langle M_i^\ell : i < \lambda^{++} \rangle$ for $\ell \in \{1, 2\}$ is \leq^*_λ-increasing continuous and $i < j < \lambda^{++} \Rightarrow M_0 \leq^*_\lambda M_{i + 1} \leq^*_\lambda M_{j + 1}$ and $M = \bigcup_{i < \lambda^{++}} M_i^1 = \bigcup_{i < \lambda^{++}} M_i^2$ has cardinality λ^{++} then $S(M^1) = S(M^2) \mod \mathcal{P}_{\lambda^{++}}$.
2) If M, \bar{M} are as in 8.2 hence $M = \bigcup_{i < \lambda^{++}} M_i$ then $S(\bar{M})/\mathcal{P}_{\lambda^{++}}$ depends just on M/\cong.
3) If M is as in 8.2 or, equivalently as in part (1), and $i < j < \lambda^{++}$, then $M_i \leq^*_\lambda M_{i + 1} \iff M_i \leq^*_\lambda M_j$.
4) If $M \in \mathcal{R}_{\lambda^{++}}$ is the union of a \leq^*_λ-increasing chain from $(K_{\lambda^+}, \leq^*_\lambda)$, not necessarily continuous, then there is M as in Definition 8.2, that is $M = \langle M_i : i < \lambda^{++} \rangle$, a \leq^*_λ-representation of M with $M_i \leq^*_\lambda M_j$ for non-limit $i < j$.

Proof. 1) We can find a club E of λ^{++} consisting of limit ordinals such that $i \in E \Rightarrow M_i^1 = M_i^2$. Now if $\delta_1 < \delta_2$ are from E then $\delta_1 \in S(M^1) \iff M_{\delta_1}^1 \leq^*_\lambda M_{\delta_1 + 1}^1 \iff M_{\delta_1}^1 \leq^*_\lambda M_{\delta_1 + 1}^1 \iff M_{\delta_1}^1 \leq^*_\lambda M_{\delta_1}^2 \iff M_{\delta_1}^2 \leq^*_\lambda M_{\delta_1 + 1}^2 \iff \delta_1 \in S(M^2)$.
[Why? By the definition of $S(M^1)$, by part (3), by “$\delta_1, \delta_2 \in E$”, by part (3), by the definition of $S(M^2)$, respectively.] So we are done.
2) Follows by parts (1) and (3).
3) The implication \Leftarrow is by 7.4(3); for the implication \Rightarrow, note that assuming $M_i <_{\lambda^+} M_{i+1}$, as \leq^*_λ is a partial order, noting that by the assumption on M we have $M_{i+1} \leq^*_\lambda M_{j+1}$, and by 7.4(3) we are done.
4) Trivial. □

8.4 Claim. If (*) below holds then for every stationary $S \subseteq S_{\lambda^+}^{\lambda^+} (= \{ \delta < \lambda^+: \text{cf}(\delta) = \lambda^+ \})$ for some λ^+-saturated $M \in K_{\lambda^+}$ we have $S(M)$ is well defined and equal to $S/\mathcal{D}_{\lambda^+}$, where

$$(*) \text{ we can find } \langle M_i : i \leq \lambda^+ + 1 \rangle \text{ which is } <_{\mathcal{R}} \text{-increasing continuous sequence of members of } K_{\lambda^+}^{\text{nice}} \text{ such that } i < j \leq \lambda^+ + 1 \& (i, j) \neq (\lambda^+, \lambda^+ + 1) \Rightarrow M_i <_{\lambda^+} M_j \text{ but } \neg(M_{\lambda^+} \leq^*_\lambda M_{\lambda^++}) \rangle$$

Proof. Fix $S \subseteq S_{\lambda^+}^{\lambda^+}$ and $\langle M_i : i \leq \lambda^+ + 1 \rangle$ as in (*).
Without loss of generality $|M_{\lambda^+ + 1}| \setminus M_{\lambda^+} = \lambda^+$.
We choose by induction on $\alpha < \lambda^{+2}$ a model M^S_α such that:

(a) $M^S_\alpha \in K_{\lambda^+}^{\text{nice}}$ has universe an ordinal $< \lambda^+$
(b) for $\beta < \alpha$ we have $M^S_\beta \leq_{\mathcal{R}} M^S_\alpha$
(c) if $\alpha = \beta + 1$, $\beta \notin S$ then $M^S_\beta <_{\lambda^+} M^S_\alpha$
(d) if $\alpha = \beta + 1$, $\beta \in S$ then $(M^S_\beta, M^S_\alpha) \cong (M_{\lambda^+}, M_{\lambda^+ + 1})$
(e) if $\beta < \alpha$, $\beta \notin S$ then $M^S_\beta \leq_{\lambda^+} M^S_\alpha$
(f) if α is a limit ordinal, then $M_\alpha = \cup\{M_\beta : \beta < \alpha\}$.

We use freely the transitivity and continuity of \leq^*_λ and of $<_{\lambda^+}^\lambda$.

For $\alpha = 0$ no problem.

For α limit no problem; choose an increasing continuous sequence $\langle \gamma_i : i < \text{cf}(\alpha) \rangle$ of ordinals with limit α each of cofinality $< \lambda$, $\gamma_i \notin S$, and use 7.7(3) for clause (e).

For $\alpha = \beta + 1$, $\beta \notin S$ no problem.

For $\alpha = \beta + 1$, $\beta \in S$ so $\text{cf}(\beta) = \lambda^+$, let $\langle \gamma_i : i < \lambda^+ \rangle$ be increasing continuous with limit β and $\text{cf}(\gamma_i) \leq \lambda$, hence $\gamma_i \notin S$ and each γ_{i+1} a successor ordinal. By clause (e) above and 7.4(5) we have $M^S_{\gamma_i} <_{\lambda^+} M^S_{\gamma_{i+1}}$, hence $\langle M_{\gamma_i} : i < \lambda^+ \rangle$ is $<_{\lambda^+}$-increasing continuous. Now there is an isomorphism f_β from M_{λ^+} onto M^S_β mapping M_i onto $M^S_{\gamma_i}$ for $i < \lambda$ (why? choose $f_\beta | M_i$ by induction on i, for $i = 0$ by 7.3(0), for
4) If \(M_{\gamma_i} \prec \lambda^+ M_{\gamma_{i+1}} \) by 7.4(3) as \(M_{\gamma_i} \prec \lambda^+ M_{\gamma_{i+1}} \prec \lambda^+ M_{\gamma_{i+1}} \) so we can use 7.6(2)). So we can choose a one-to-one function \(f_{\alpha} \) from \(M_{\lambda^+} \) onto some ordinal \(\lambda^+ \) extending \(f_\beta \) and let \(M_\alpha = f_\alpha(M_{\lambda^+}) \).

Finally having carried the induction, let \(M_S = \bigcup_{\alpha < \lambda^+} M_\alpha \), it is easy to check that \(M_S \in K_{\lambda^+} \) is \(\lambda^+ \)-saturated and \(M = \langle M_\alpha : \alpha < \lambda^+ \rangle \) witnesses that \(S(M_S) / \mathcal{D}_{\lambda^+} \) is well defined and \(S(M_S) / \mathcal{D}_{\lambda^+} = S(\langle M_\alpha : \alpha < \lambda^+ \rangle) / \mathcal{D}_{\lambda^+} = S / \mathcal{D}_{\lambda^+} \) as required. \(\square \)

Below we prove that some versions of non-smoothness are equivalent.

8.5 Claim. 1) We have \((**)_{M_1^*, M_2^*} \Rightarrow (**)_{M_1, M_2} \) (see below).

2) If \((*)\) then \((**)_{M_1^*, M_2^*} \) for some \(M_1^*, M_2^* \) and trivially \((***) \Rightarrow (*)\).

3) In part (1) we get \(\langle M_i : i \leq \lambda^+ + 1 \rangle \) as in \((***)\), see below, such that \(M_{\lambda^+} = M_1^*, M_{\lambda^++1} = M_2^* \) if we waive \(i < \lambda^+ \Rightarrow M_i <_\lambda^+ M_{\lambda^+} \) or assume \(M_1^* <_R M^* <_\lambda^+ \) if some \(M_i^* \).

4) If \(M_1^* \leq \lambda^+ M_2^* \) and \(M_2^* \in K_{\lambda^+}^{\text{nice}} \) and \(N_1 \leq_R N_2 \in K_\lambda, N \leq M_2^* \) for \(\ell = 1, 2 \) and \(p \in \mathcal{P}^\text{bs}(N) \) does not fork over \(N_1 \) then some \(c \in M_1^* \) realizes \(p \) where

\[
(*) \quad \text{there are limit } \delta < \lambda^+ \text{, } N \text{ and } \bar{M} = \langle M_i : i \leq \delta \rangle \text{ a } <_\lambda^+ \text{-increasing continuous sequence with } M_i, N \in K_{\lambda^+}^{\text{nice}} \text{ such that: } M_i \leq \lambda^+ N \iff i < \delta
\]

\[
(**)_{M_1^*, M_2^*} \quad (i) \quad M_1^* \in K_{\lambda^+}^{\text{nice}}, M_2^* \in K_{\lambda^+}^{\text{nice}}
(ii) \quad M_1^* \leq_R M_2^*
(iii) \quad M_1^* \not<_{\lambda^+} M_2^*
(iv) \quad \text{if } N_1 \leq_R N_2 \text{ are from } K_\lambda, N \leq M_i^* \text{ for } \ell = 1, 2 \text{ and } p \in \mathcal{P}^\text{bs}(N_2) \text{ does not fork over } N_1, \text{ then some } c \in M_1^* \text{ realizes } p \text{ in } M_2^*
\]

\[
(***) \quad \text{there is } \bar{M} = \langle M_i : i \leq \lambda^+ + 1 \rangle, \leq_{\lambda^+} \text{-increasing continuous, every } M_i \in K_{\lambda^+}^{\text{nice}} \text{ and } M_{\lambda^+} \not<_{\lambda^+} M_{\lambda^++1} \text{ but }
\quad i < j \leq \lambda^+ + 1 \text{ & } i \neq \lambda^+ \Rightarrow M_i \not<_{\lambda^+} \lambda \text{; }
\quad \text{note that this is } (*) \text{ of } 8.4.
\]

Proof. 1). 2) Let \(\langle a_i^\ell : i < \lambda^+ \rangle \) list the elements of \(M_\ell^* \) for \(\ell = 1, 2 \). Let \(\langle N^\ell_{2,i} : i < \lambda^+ \rangle \) be a \(\leq_R \)-representation of \(M_2^* \).

Let \(\langle p_\zeta, N^\zeta_\gamma, \gamma_\zeta : \zeta < \lambda^+ \rangle \) list the triples \((p, N, \gamma) \) such that \(\gamma < \lambda^+, p \in \mathcal{P}^\text{bs}(N) , N \in \{ N^\ell_{2,i} : i < \lambda^+ \} \) with each such triple appearing \(\lambda^+ \) times. By induction on \(\alpha < \lambda^+ \) we choose \(\langle N^\alpha_1 : i \leq \alpha \rangle, N_\alpha \) such that:
(a) \(N_i^\alpha \in K_\lambda\) and \(N_i^\alpha \leqR M_i^*\)

(b) \(N_\alpha \leqR M_2^*\) and \(N_\alpha \in K_\lambda\)

(c) \(\langle N_i^\alpha : i \leq \alpha \rangle\) is \(\leqR\)-increasing continuous

(d) \(N_\alpha^\leqR N_\alpha, N_\alpha \cap M_i^* = N_\alpha^\)

(e) if \(i \leq \alpha\) then \(\langle N_i^\beta : \beta \in [i, \alpha]\rangle\) is \(\leqR\)-increasing continuous

(f) \(\langle N_\beta : \beta \leq \alpha \rangle\) is \(\leqR\)-increasing continuous

(g) if \(\alpha = \beta + 1, i \leq \beta\) then \(NF_\lambda(N_i^\beta, N_\beta, N_\lambda^\alpha, N_\alpha)\)

(h) if \(\alpha = 2\beta + 1\) then \(a_\beta^2 \in N_{\alpha + 1}\)

(i) if \(\alpha = 2\beta + 2\) and \(i < \alpha\) then \(N_i^\alpha \cap N_{i+1}^{2\beta+1}\) and \(N_0^\alpha\) is brimmed over \(N_0^{2\beta}\).

Why is this enough?

We let \(M_\lambda^+ = M_1^*, M_{\lambda+1}^+ = M_2^*\) and let \(M_\lambda'^{\alpha+1} \in K_\lambda^{nice}\) be such that \(M_{\lambda+1}^+ < \alpha^+\) and \(M_{\lambda+1}^+\) and for \(i < \lambda^+\) we let \(M_i = \bigcup\{N_i^\alpha : \alpha \in [i, \lambda^+)\}\); now

\[
\begin{align*}
(\alpha) & M_i^* = \bigcup_{\alpha < \lambda^+} N_i^\alpha = \bigcup_{i < \lambda^+} M_i \quad \text{and} \quad M_2^* = \bigcup_{\alpha < \lambda^+} N_\alpha \\
\text{[why? the second by clause (h) (and (b) of course), the first as } N_\alpha \cap M_i^* = N_\alpha].
\end{align*}
\]

Now:

(\(\beta\)) \(\langle M_i : i \leq \lambda^+ + 1 \rangle\) is \(\leqR\)-increasing continuous

[trivial by clauses (c) + (e) if \(i < \lambda^+\) and (d) if \(i = \lambda^+\)]

(\(\gamma\)) for \(i < \lambda^+\), \(M_i\) is saturated, i.e., \(\in K_\lambda^{nice}\).

[Why? Clearly \(\langle N_i^\alpha : \alpha \in (i, \lambda^+)\rangle\) is a \(\leqR\)-representation of \(M_i\) by clause (e) and the choice of \(M_i\). If \(i = 0\) this follows by clauses (i) + (e). If \(i = j + 1\) this follows by clauses (e) + (i). If \(i\) is a limit ordinal use 7.7(2) and clause (g)]

(\(\delta\)) for \(i < \lambda^+, i < j < \lambda^* + 1\) we have \(M_i \leqR M_j\).

[Why? Let \(N_\lambda^\gamma := N_\alpha^\alpha, N_{\lambda+1}^\alpha = N_\alpha\) for \(\alpha < \lambda^+\) and let \(\gamma\) be \(i\) if \(j = \lambda^+, \lambda^* + 1\) and be \(j\) if \(j < \lambda^*\); so in any case \(\gamma < \lambda^*\). Now as \(\langle N_i^\alpha : \alpha \in [\gamma, \lambda^+)\rangle\) is a \(\leqR\)-representation of \(M_i\) and \(\langle N_\beta^\gamma : \alpha \in [\gamma, \lambda^+)\rangle\) is a \(\leqR\)-representation of \(M_j\) and if \(\gamma \leq \beta < \lambda^\) then by clause (g) we have \(NF_\lambda(N_i^\beta, N_\beta, N_{\beta+1}^\gamma, N_{\beta+1})\) hence by symmetry \(NF_\lambda(N_i^\beta, N_{\beta+1}^\beta, N_\beta, N_{\beta+1})\) hence by monotonicity \(NF_\lambda(N_i^\beta, N_{\beta+1}, N_\beta, N_{\beta+1})\); this suffices]
(ε) if $i < j \leq \lambda^+$ then $M_i \prec_{\lambda^+} M_j$

[why? by 7.7(3) it suffices to prove this in the cases $j = i + 1$. Now claim 7.9(2), clause (i) guaranteed this.]

Clearly $\langle M_i : i \leq \lambda^+ + 1 \rangle$ is as required for part (1) and for part (3) for first possibility (with waiving) obviously. For the second possibility in part (2), easily $\langle M_i : i \leq \lambda^+ \rangle \prec (M_{\lambda^+}^1 + 1)$ is as required but $M_2', M_{\lambda^+ + 1}^1$ are isomorphic over M^*, so also $\langle M_i : i \leq \lambda^+ + 1 \rangle$ is O.K.

So we are done.

So let us carry the construction.

For $\alpha = 0$ trivially.

For α limit: straightforward.

For $\alpha = 2\beta + 1$ we let $N_\alpha = N_\beta^{2\beta}$ for $i \leq 2\beta$ and $N_\alpha \in K_\lambda$ is chosen such that $N_{2\beta} \cup \{a_\beta^2\} \subseteq N_\alpha \leq R M_2^* \ast$ and $N_\alpha \upharpoonright M_1^* \leq R M_1^*$, easy by the properties of abstract elementary class and we let $N_\alpha^{2\beta + 1} = N_\alpha \upharpoonright M_1^*$.

For $\alpha = 2\beta + 2$ we choose by induction on $\varepsilon < \lambda^2$, a triple $(N_{\alpha,\varepsilon}^\oplus, N_{\alpha,\varepsilon}^{\oplus \ominus}, a_{\alpha,\varepsilon})$ such that:

(A) $N_{\alpha,\varepsilon}^\oplus \leq R M_2^*$ belongs to K_λ and is $\leq R$-increasing continuous with ε

(B) $N_{\alpha,0}^\oplus = N_{2\beta + 1}^\beta$ and $N_{\alpha,\varepsilon}^\oplus \mid M_1^* \leq R M_1^*$

(C) $N_{\alpha,\varepsilon}^\ominus \leq R M_1^*$ belongs to K_λ and is $\leq R$-increasing continuous with ε

(D) $N_{\alpha,0}^\ominus = N_{2\beta + 1}^\beta$

(E) $(N_{\alpha,\varepsilon}, N_{\alpha,\varepsilon}^{\ominus + 1}, a_{\alpha,\varepsilon}) \in K_\lambda^{3,\text{aq}}$

(F) $\text{tp}(a_{\alpha,\varepsilon}, N_{\alpha,\varepsilon}^{\ominus}, M_2^*)$ does not fork over $N_{\alpha,\varepsilon}^\ominus$

(G) $N_{\alpha,\varepsilon}^\ominus \leq R N_{\alpha,\varepsilon}^\ominus$

(H) for every $p \in S^\text{bs}(N_{\alpha,\varepsilon}^\ominus)$ for some odd $\zeta \in [\varepsilon, \varepsilon + \lambda)$ the type $\text{tp}(a_{\alpha,\zeta}, N_{\alpha,\zeta}^\ominus, N_{\alpha,\zeta}^\ominus)$ is a non-forking extension of p.

No problem to carry this. [Why? For $\varepsilon = 0$ and ε limit there are no problems. In stage $\varepsilon + 1$ by bookkeeping gives you a type $p_\varepsilon \in S^\text{bs}(N_{\alpha,\varepsilon}^\ominus)$ and let $q_\varepsilon \in S^\text{bs}(N_{\alpha,\varepsilon}^\ominus)$ be a non-forking extension of p_ε. By assumption (iv) of $(* *)_{M_1^*, M_2^*}$ there is an element $a_{\alpha,\varepsilon} \in M_1^*$ realizing q_ε. Now M_1^* is saturated hence there is a model $N_{\alpha,\varepsilon + 1}^\ominus \leq R M_1^*$ and $(N_{\alpha,\varepsilon}^\ominus, N_{\alpha,\varepsilon + 1}^\ominus, a_{\alpha,\varepsilon}) \in K_\lambda^{3,\text{aq}}$.

Lastly, choose $N_{\alpha,\varepsilon + 1}^\ominus$ satisfying clauses (A), (B), (G) so we have carried the induction on ε.]
Note that $\text{NF}_\lambda(N_{\alpha,\varepsilon}^\alpha, N_{\alpha,\varepsilon}^\delta, N_{\alpha,\varepsilon+1}^\alpha, N_{\alpha,\varepsilon+1}^\delta)$ for each $\varepsilon < \lambda^2$ by clauses (E),(F) and 6.33, hence $\text{NF}(N_{2\beta+1}^\alpha, N_{2\beta+1}^\delta, N_{\alpha,\varepsilon}^\alpha : \varepsilon < \lambda^2, N_{\alpha,\varepsilon}^\alpha : \varepsilon < \lambda^2)$ by 6.28 as $(N_{\alpha,0}^\alpha, N_{\alpha,0}^\delta) = (N_{2\beta+1}^\alpha, N_{2\beta+1}^\delta)$ and the sequence $(N_{\alpha,0}^\alpha : \varepsilon < \lambda^+), (N_{\alpha,0}^\delta : \varepsilon < \lambda^+)$ are increasing continuous.

Now let $N_\alpha = \bigcup\{N_{\alpha,\varepsilon}^\alpha : \varepsilon < \lambda^2\}, N_\alpha^\alpha = N_\alpha \cap M_1^*$ recalling clauses (A)+(B).

Now $\bigcup\{N_{\alpha,\varepsilon}^\alpha : \varepsilon < \lambda^2\} \leq R M_1^*$ is ($\lambda,*)$-brimmed over $N_{2\beta+1}^\alpha$ by 4.3 (and clause (H) above). Hence there is no problem to choose $N_i^\alpha \leq R N_i^\alpha$ for $i \leq 2\beta + 1$ as required, that is $N_i^{2\beta+1} \leq R N_i^\alpha, (N_i^\alpha : i \leq 2\beta + 1)$ is $\leq R$-increasing continuous, $\text{NF}_\lambda(N_i^{2\beta+1}, N_i^{2\beta+1}, N_i^\alpha, N_i^\alpha, N_i^\alpha) \text{ and } N_i^\alpha$ is ($\lambda,*)$-brimmed over $N_{i+1}^\alpha \cup N_i^\alpha$ and N_0^α is ($\lambda,*)$-brimmed over $N_0^{2\beta+1}$. So we have finished the induction step on $\alpha = 2\beta + 2$.

Having carried the induction we are done.

2) So assume ($*$) and let $M_{\delta+1} := N$ from ($*$). It is enough to prove that ($**$) $M_\delta, M_{\delta+1}$ holds. Clearly clauses (i), (ii), (iii) hold, so we should prove (iv). Without loss of generality $\delta = cf(\delta)$ so $\delta = \lambda^+$ or $\delta \leq \lambda$. For $i \leq \delta + 1$ let $\langle M_{i,\alpha} : \alpha < \lambda^+ \rangle$ be a $\leq R$-representation of M_i and for $i < \delta, j \in \{i, \delta + 1\}$ let $E_{i,j}$ be a club of λ^+ witnessing $M_i \leq^* M_j$ for M_i, M_j. First assume $\delta \leq \lambda$. Let $E = \cap \{E_{i,j} : i < \delta, j \in \{i, \delta + 1\}\}$, it is a club of λ^+. So assume $N_2 \leq R M_{\delta+1}, N_1 \leq R N_2, N_1 \leq R M_\delta$ and $N_1, N_2 \in K_\lambda$ and $p \in \mathcal{J}^{bs}(N_2)$ does not fork over N_1. We can choose $\zeta \in E$ such that $N_2 \subseteq M_{\delta+1,\zeta}, \zeta$, let $p_1 \in \mathcal{J}^{bs}(M_{\delta+1,\zeta})$ be a non-forking extension of p, so p_1 does not fork over N_1 hence (by monotonicity) over $M_{\delta,\zeta}$ so $p_2 := p_1 \restriction M_{\delta,\zeta} \in \mathcal{J}^{bs}(M_{\delta,\zeta})$. By Axiom (E)(c) for some $\alpha < \delta, p_2$ does not fork over $M_{\delta,\zeta}$ hence $p_2 \restriction M_{\alpha,\zeta} \in \mathcal{J}^{bs}(M_{\alpha,\zeta})$. As $M_\delta \in K_{\lambda^+}^{\text{nice}}$, i.e., M_δ is λ^+-saturated (above λ), clearly for some $\xi \in (\zeta, \lambda^+) \cap E$ some $c \in M_{\alpha,\zeta}$ realizes $p_2 \restriction M_{\alpha,\zeta}$ but $\text{NF}_\lambda(M_{\alpha,\zeta}, M_{\delta+1,\zeta}, M_{\alpha,\zeta}, M_{\delta+1,\zeta})$ hence by 6.32 we know that $\text{tp}(c, M_{\delta+1,\zeta}, M_{\delta+1,\zeta})$ belongs to $\mathcal{J}^{bs}(M_{\delta+1,\zeta})$ and does not fork over $M_{\delta,\zeta}$ hence c realizes p_2 and even p_1 hence p and we are done.

Second, assume $\delta = \lambda^+$, then for some $\delta^* < \delta$ we have $N_1 \leq R M_{\delta^*}$, and use the proof above for $\langle M_i : i \leq \delta^* \rangle, M_{\delta+1}$ (or use $M_{\delta^*} \leq^* R M_{\delta+1}$).

4) Straight, in fact included the proof of 7.7(2).

The definition below has affinity to "blowing \mathfrak{R}_λ to $\mathfrak{R}^{\text{sp}+}_\lambda$ in §1.

8.6 Definition. 0) $K_{\lambda^+}^{\text{cs}} = \{(M, N, a) \in K_{\lambda^+}^{\text{bs}} : M, N$ are from $K_{\lambda^+}^{\text{nice}}\}$; we say $N' \in K_{\lambda^+}^{\text{cs}}$ (or p') witness $(M, N, a) \in K_{\lambda^+}^{\text{cs}}$ if it witnesses $(M, N, a) \in K_{\lambda^+}^{\text{bs}}$.

1) $\mathcal{J}_{\lambda^+}^{\text{cs}} := \text{tp}(a, M, N) : M \leq^*_{\lambda^+} N$ are in $K_{\lambda^+}^{\text{nice}}, a \in N$ and $(M, N, a) \in K_{\lambda^+}^{\text{cs}}\}$, the type being for $K_{\lambda^+}^{\text{cs}} = (K_{\lambda^+}^{\text{nice}}, \leq^*_{\lambda^+})$, see below\footnote{Actually to define $\text{tp}_{\mathfrak{R}_\lambda}(a, M, N)$ where $M \leq^*_{\mathfrak{R}_\lambda} N, a \in N$ we need less that “\mathfrak{R}_λ is a λ-a.e.c.”, and we know on $(K_{\lambda^+}^{\text{nice}}, \leq^*_{\lambda^+})$ more than enough} so the notation is justified by...
8.7 Conclusion. Assume\(^{23}\) (recalling 8.4):

\(\not\exists\) not for every \(S \subseteq S_{\lambda^+}^{\lambda^+}\) is there \(\lambda^+\)-saturated \(M \in K_{\lambda^+}\) such that \(S(M) = S/\mathcal{D}_{\lambda^+}\).

0) On \(K_{\lambda^+}\), the relations \(\leq^\ast\), \(\leq\) agree.

1) \(\mathcal{R}_{\lambda^+} = (K_{\lambda^+}, \leq^\ast)\) is a \(\lambda^+\)-abstract elementary class and is categorical in \(\lambda^+\) and has no maximal member and has amalgamation.

2) \(K^\otimes\) is included in the class of \(\lambda^+\)-saturated models in \(\mathcal{R}\) and \(K^\otimes_{\lambda^+} = K_{\lambda^+}\).

3) \(K^\otimes\) is an a.e.c. with LS\((K^\otimes) = \lambda^+\) and is the lifting of \(\mathcal{R}_{\lambda^+}\).

4) On \(K_{\lambda^+}^{\text{nice}}, (\mathcal{R}_{\lambda^+}^{\text{cs}}, \mathcal{U})\) are equal to \((\mathcal{R}_{\lambda^+}^{\text{bs}}, K_{\lambda^+}^{\text{nice}}, \mathcal{U}, K_{\lambda^+}^{\text{nice}})\) where they are defined in 2.4, 2.5.

5) \((\mathcal{R}_{\lambda^+}^{\text{nice}}, \mathcal{R}_{\lambda^+}^{\text{cs}}, \mathcal{U})\) is a good \(\lambda^+\)-frame.

6) For \(M_1 \leq_{\lambda^+} M_2\) from \(K_{\lambda^+}\) and \(a \in M_2 \setminus M_1\), the type \(\text{tp}_{K^\otimes}(a, M_1, M_2)\) is determined by \(\text{tp}_{\mathcal{R}_{\lambda^+}}(a, N_1, M_2)\) for all \(N_1 \leq_R M_1, N_1 \in K_{\lambda^+}\).

\textbf{Proof.} 0) By 8.4 and our assumption \(\not\exists\), we have \(M_1, M_2 \in K_{\lambda^+}^{\text{nice}} \& M_1 \leq M_2 \Rightarrow M_1 \leq_{\lambda^+} M_2\) (otherwise (**))\(M_1, M_2\) of 8.5 holds hence (***) of 8.5 holds and by 8.4

\(^{23}\) this is like (**))\(M_1, M_2\) from 8.5, particularly see clause (iv) there
we get $\neg \Box$, contradiction). The other direction is easier just see 8.5(4).

1) We check the axioms for being a λ^+-a.e.c.:

Ax 0: (Preservation under isomorphisms) Obviously.

Ax I: Trivially.

Ax II: By 7.4(2).

Ax III: By 7.7(2) the union belongs to $K_{\lambda}^{\text{nice}}$ and it $\leq^*_{\lambda^+}$-extends each member of the union by 7.7(1).

Ax IV: Otherwise (\ast) of 8.5 holds, hence by 8.5 also ($\ast \ast \ast$) of 8.5 holds. So by 8.4 our assumption \Box fail, contradiction; this is the only place we use \Box in the proof of (1).

Ax V: By 7.4(3) and Ax V for \mathcal{R}.

Also $K_{\lambda}^{\text{nice}}$ is categorical by the uniqueness of the saturated model in λ^+ for \mathcal{R} has no maximal model by 7.4(1). $K_{\lambda}^{\text{nice}}$ has amalgamation by 7.6(1).

2) Every member of K^\otimes_λ is λ^+-saturated in $K_{\lambda}^{\text{nice}}$ by 7.7(2) (prove by induction on the cardinality of the directed family in Definition 8.6(2), i.e., by the LS-argument it is enough to deal with the index family of $\leq \lambda^+$ models each of cardinality λ^+, which holds by part (0) + (1)). If $M \in K_{\lambda}$ is λ^+-saturated, clearly $\in K_{\lambda}^{\text{nice}}$.

3),4) Easy by now (or see §1).

5) We have to check all the clauses in Definition 2.1. We shall use parts (0)-(3) freely.

Axiom (A):

By part (3) (of 8.7).

Axiom (B):

There is a superlimit model in $K^\otimes_{\lambda} = K_{\lambda}^{\text{nice}}$ by part (1) and uniqueness of the saturated model.

Axiom (C):

By part (1), i.e., 7.6(1) we have amalgamation; JEP holds as $K_{\lambda}^{\text{nice}}$ is categorical in λ^+. “No maximal member in K^\otimes_{λ}” holds by 7.4(1).

Axiom (D)(a),(b):

By the definition 8.6(1).

Axiom (D)(c):

By 2.9 (and Definition 8.6(1)). Clearly $K^{3,\text{cs}}_{\lambda} = K^{3,\text{bs}} \upharpoonright K_{\lambda}^{\text{nice}}$.

Axiom (D)(d):
For $M \in R_{\lambda^+}^\otimes$ let $\bar{M} = \langle M_i : i < \lambda^+ \rangle \leq_{\mathfrak{A}}$-represent M, so if $M \leq_{\mathfrak{A}} N \in K_{\lambda^+}^\otimes$, (hence $M \leq_{\mathfrak{A}}^\otimes N \in K_{\lambda^+}^\otimes = K_{\lambda^+}^\nice$) and $a \in N$, $\mathfrak{tp}_{\mathfrak{R}_{\lambda^+}^\nice}(a, M, N) \in \mathcal{S}_{\lambda^+}^\nice(M)$, we let $\alpha(a, N, \bar{M}) = \min \{ \alpha \in \mathfrak{tp}(a, M, N) \in \mathcal{S}_{\lambda^+}^\nice(M) \}$.

Now

(a) $\alpha(a, N, \bar{M})$ is well defined for a, N as above

[Why? By Definition 2.7 + 8.6(1)]

(b) if a_ℓ, N_ℓ are above for $\ell = 1, 2$ and $\alpha(a_1, N_1, M) = \alpha(a_2, N_2, M)$ call it α and $\mathfrak{tp}_s(a_1, M_\alpha, N) = \mathfrak{tp}_s(a_2, M_\alpha, N)$ then

(*) for $\beta < \lambda^+$ we have $\mathfrak{tp}_s(a_1, M_\beta, N) = \mathfrak{tp}_s(a_2, M_\beta, N) \in \mathcal{S}_{bs}(M_\beta)$

[Why? By the non-forking uniqueness (Ax(E)(e)) when $\beta \geq \alpha$ by monotonicity if $\beta \leq \alpha$]

(c) if a_ℓ, N_ℓ are as above for $\ell = 1, 2$ and (*) above holds then

(**) $\mathfrak{tp}_{R_{\lambda^+}^\otimes}(a_1, M_1, N_1) = \mathfrak{tp}_{R_{\lambda^+}^\otimes}(a_2, M_2, N_2)$

[Why? Use 7.6(3) or by part (6) below].

As $\alpha < \lambda \Rightarrow |\mathcal{S}_{bs}(M_\alpha)| \leq \lambda$ (by the stability Axiom (D)(d) for \mathfrak{s}), clearly $|S_{\lambda^+(M)}| \leq \sum_{\alpha < \lambda^+} |\mathcal{S}_{bs}(M_\alpha)| \leq \lambda^+ = \|M\|$ as required.

The reader may ask why do we not just quote the parallel result from §2: The answer is that the equality of types there is “a formal, not the true one”. The crux of the matter is that we prove locality (in clause (c) above).

Axiom (E)(a):
By 2.4 - 2.7.

Axiom (E)(b): monotonicity:
Follows by Axiom (E)(b) for \mathfrak{s} and the definition.

Axiom (E)(c): local character:
By 2.11(5) or directly by translating it to the \mathfrak{s}-case.

Axiom (E)(d): (transitivity):
By 2.11(4).

Axiom (E)(e): uniqueness:
By 7.6(3) or by part (6) below.
Axiom (E)(f): symmetry:

So assume $M_0 \leq_{\lambda^+}^* M_1 \leq_{\lambda^+}^* M_2$ are from $K_{\lambda^+}^\otimes$ and for $\ell = 1, 2$ we have $a_{\ell} \in M_{\ell}$, $\text{tp}_{\mathcal{E}_{\lambda^+}^\otimes}(a_{\ell}, M_0, M_{\ell}) \in \mathcal{S}_{\lambda^+}^c(M_0)$ as witnessed by $p_{\ell} \in \mathcal{S}_{s}^{\text{bs}}(N_{\ell}^*)_*, N_{\ell}^* \subseteq K_{\lambda}, N_{\ell}^* \leq_{\mathcal{S}} M_0$ and $\text{tp}_{\mathcal{E}_{\lambda^+}^\otimes}(a_{2}, M_1, M_2)$ does not fork (in the sense of (\mathcal{U})) over M_0 (note that M_0, M_1, M_2 here stand for M_0, M_1, M'_3 in clause (i) of Ax(E)(f) from Definition 2.1). As we know by monotonicity without loss of generality $M_1 <_{\lambda^+} M_2$. We can finish by 7.6(4) (and Axiom (E)(e) for \mathcal{S}).

In more details, we can find N_0, N_1, N_2 such that: $N_\ell \leq_{\mathcal{S}} M_\ell$ and $N_\ell \in K_{\lambda}$ for $\ell = 0, 1, 2$ and $N_1^* \cup N_2^* \subseteq N_0 \leq_{\mathcal{S}} N_1 \leq_{\mathcal{S}} N_2$ and $a_1 \in N_1, a_2 \in N_2$ and N_2 is $(\lambda, *)$-brimmed over N_1 hence over N_0, and $(\forall N \in K_{\lambda})[N_0 \leq_{\mathcal{S}} N \leq_{\mathcal{S}} M_0 \rightarrow (\exists M \in K_{\lambda})(M \leq_{\mathcal{S}} M_2 \& \mathcal{N}(N_0, N, N_2, M))]$.

By Axiom (E)(f) for $\mathcal{S} = (\mathcal{S}, \mathcal{S}_{\text{bs}}, (\mathcal{U}))$ we can find N' such that $N_0 \leq_{\mathcal{S}} N' \leq_{\mathcal{S}} N_2$ such that $a_2 \in N'$ and $\text{tp}_{\mathcal{S}}(a_1, N', N_2)$ does not fork over N_0. Now we can find f_0', M'_1 such that $M_0 \leq_{\lambda^+}^*, M'_1, f_0'$ is a $\leq_{\mathcal{S}}$-embedding of N' into M'_1 and $(\forall N \in K_{\lambda})[N_0 \leq_{\mathcal{S}} N \leq_{\mathcal{S}} M_0 \rightarrow (\exists M \in K_{\lambda})(M \leq_{\mathcal{S}} M_1 \& \mathcal{N}(N_0, N, f_0(N'), M))]$. Next we can find f_0'', M_2' such that $M'_1 \leq_{\lambda^+}^* M_2', f_0'' \geq f_0'$ and f_0'' is a $\leq_{\mathcal{S}}$-embedding of N_2 into M_2' and $(\forall N \in K_{\lambda})[N_0 \leq_{\mathcal{S}} N \leq_{\mathcal{S}} M_0 \rightarrow (\exists M \in K_{\lambda})(M \leq_{\mathcal{S}} M_2' \& \mathcal{N}(N_0, N, f_0''(N_2), M))].$

Lastly, by 7.6(4) there is an isomorphism f from M_2 onto M_2' over M_0 extending f_0''. Now $f^{-1}(M'_1)$ is a model as required.

Axiom (E)(g): extension existence:

Assume $M_0 \leq^*_{\lambda^+} M_1$ are from $K_{\lambda^+}^\text{nice}, p \in \mathcal{S}_{\lambda^+}^c(M_0)$, hence there is $N_0 \leq_{\mathcal{S}} M_0, N_0 \in K_{\lambda}$ such that $(\forall N \in K_{\lambda})[N_0 \leq_{\mathcal{S}} N \leq_{\mathcal{S}} M_0 \rightarrow p \upharpoonright N$ does not fork over $N_0]$. By 7.4(1A) there are $M_2 \in K_{\lambda^+}^\otimes$ and $a \in M_2$ such that $M_1 \leq_{\lambda^+}^* M_2$ and $\text{tp}_{\mathcal{E}_{\lambda^+}^\otimes}(a, M_1, M_2) \in \mathcal{S}_{\lambda^+}^c(M_1)$ is witnessed by $p \upharpoonright N_0$ and by part (6) we have $\text{tp}_{\mathcal{E}_{\lambda^+}^\otimes}(a, M_0, M_2) = p$. Checking the definition of does not fork, i.e., (\mathcal{U}) we are done.

Axiom (E)(h), (continuity):

By 2.11(6).

Axiom (E)(i):

It follows from the rest by 2.16.

6) So assume $\leq^*_{\lambda^+} M_\ell, a_\ell \in M_\ell \setminus M$ for $\ell = 1, 2$ and $N \leq_{\mathcal{S}} M \land N \in K_{\lambda}$ \Rightarrow $\text{tp}_{\mathcal{S}}(a_1, N, M_1) = \text{tp}_{\mathcal{S}}(a_2, N, M_2)$. By 7.4(1) there are $M_1^+, M_2^+ \in K_{\lambda^+}^\text{nice}$ such that $M_\ell <_{\lambda^+}^* M_\ell^+$ for $\ell = 1, 2$. By 7.6(2),(3) there is an isomorphism f from M_1^+ onto M_2^+ over M which maps a_1 to a_2. This clearly suffices. □
§9 Final conclusions

We now show that we have actually solved our specific test questions about categoricity and few models. First we deal with good λ-frames.

9.1 Main Lemma. 1) Assume

(a) $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}} < \ldots < 2^{\lambda^n}$, and $n \geq 2$

(b) and $\text{WDmId}(\lambda^{+\ell})$ is not $\lambda^{+\ell+1}$-saturated (normal ideal on $\lambda^{+\ell}$) for $\ell = 1, \ldots, n-1$

(c) $s = (R, S^b_s, \bigcup)$ is a good λ-frame

(\beta) there is a $\lambda^{+\ell}$-frame $s_\ell = (R^\ell, S^b_{s_\ell}, \bigcup)$ such that $K^{\lambda^{+\ell}}_{s_\ell} \subseteq K^{\lambda^{+\ell}}_s$ and $\leq R^\ell \subseteq \leq R$

(\gamma) $s_0 = s$ and if $\ell < m < n$ then $K^{\lambda^{+\ell}}_{s_\ell} \supseteq K^{\lambda^{+m}}_{s_m} \cap \leq R^\ell \cap K^m \supseteq R^m$.

2) Like part (1) omitting (\beta) of clause (a).

Proof. 1) We prove this by induction on n.

For $n = m + 1 \geq 2$, by the induction hypothesis for $\ell = 0, \ldots, m - 1$, there is a frame $s_\ell = (R^\ell, S^b_{s_\ell}, \bigcup)$ which is $\lambda^{+\ell}$-good and $K^{\lambda^{+\ell}}_{s_\ell} \subseteq K^{\lambda^{+\ell}}_{s_\ell}$ and $\leq R^\ell \subseteq \leq R^\ell$. By 5.9 and clause (c) of the assumption we know that s has density for $K^{3, \text{uq}}_{s_\ell}$. Now without loss of generality $K^{\lambda^{+m-1}}_s$ is categorical in $\lambda^{+(m-1)}$ (by 2.20 really necessary only for $\ell = 0$) and by Observation 5.8 we get the assumption 6.8 of §6 hence the results of §6, §7, §8 apply. Now apply 8.7 to $(R^{m-1}, S^b_{s_{m-1}}, \bigcup)$ and get a λ^{+m}-frame s_m as required in clause (\beta). By 4.13 we have $K^{\lambda^{+m}}_{\lambda^{+m+1}} \neq \emptyset$ which is clause (a) in the conclusion. Clause (\beta) has already been proved and clause (\gamma) should be clear.

2) Similarly but we use 5.11 instead of 5.9, i.e. we use the full version. \(\square_{9.1}\)

Second (this fulfills the aim of [Sh 576] equivalently [Sh:E46]).
9.2 Theorem. 1) Assume $2^{\lambda^\ell} < 2^{\lambda+(\ell+1)}$ for $\ell = 0, \ldots, n-1$ and the normal ideal $\text{WDmId}(\lambda^\ell)$ is not $\lambda^{+\ell+1}$-saturated for $\ell = 1, \ldots, n-1$.

If \mathcal{K} is an abstract elementary class with $\text{LS}(\mathcal{K}) \leq \lambda$ which is categorical in λ, λ^+ and $1 \leq \dot{I}(\lambda^+, K)$, then $K_{\lambda+n} \neq \emptyset$ (and there are $s_\ell (\ell < n)$ as in (γ) of 9.1).

2) We can omit the assumption “not $\lambda^{+\ell+1}$-saturated”.

Proof. 1) By 3.7 and 9.1(1).

2) See by 3.7 and 9.1(2), i.e. using the full version of [Sh 838].

Next we fulfill an aim of Chapter I.

9.3 Theorem. 1) Assume $2^{\aleph\ell} < 2^{\aleph(\ell+1)}$ for $\ell = 0, \ldots, n-1$ and $\lambda \geq 2$ and $\text{WDmId}(\lambda^\ell)$ is not $\lambda^{+\ell+1}$-saturated for $\ell = 1, \ldots, n-1$.

If \mathcal{K} is an abstract elementary class which is PC_{\aleph_0} and $1 \leq \dot{I}(\aleph_0, \mathcal{K}) < \mu_{\text{unif}}(\aleph_0, 2^{\aleph_0})$, for $\ell = 2, \ldots, n$, then \mathcal{K} has a model of cardinality \aleph_{n+1} (and there are $s_\ell (\ell < n)$ as in 9.2).

2) We can omit the assumption “not $\lambda^{+\ell+1}$-saturated”.

Remark. Compared with Theorem 9.2 our gains are no assumption on $\dot{I}(\lambda, K)$ and weaker assumption on $\dot{I}(\lambda^+, K)$, i.e., $< 2^{\aleph_1}$ (and ≥ 1) rather than $= 1$. The price is $\lambda = \aleph_0^+$ and being PC_{\aleph_0}.

Proof. 1) By 3.4 and 9.1(1).

2) See by 3.4 and 9.1(2), i.e. using the full version of [Sh 838].

Lastly, we fulfill an aim of [Sh 48].

9.4 Theorem. 1) Assume $2^{\aleph\ell} < 2^{\aleph(\ell+1)}$ for $\ell = 0, \ldots, n-1$ and $\lambda \geq 2$ and $\text{WDmId}(\lambda^\ell)$ is not $\lambda^{+\ell+1}$-saturated for $\ell = 1, \ldots, n-1$, $\psi \in L_{\omega_1, \omega}(Q)$, $\dot{I}(\aleph_1, \psi) \geq 1$ and $\dot{I}(\aleph_\ell, \psi) < \mu_{\text{unif}}(\aleph_\ell, 2^{\aleph_{\ell-1}})$, for $\ell = 1, \ldots, n$. Then ψ has a model in \aleph_{n+1} and there are s_1, \ldots, s_{n-1} as in 9.3 with $K_{s_\ell} \subseteq \text{Mod}_{s_\ell}$ and appropriate $\leq_{\mathcal{K}}$.

2) We can omit the assumption “not $\lambda^{+\ell+1}$-saturated”.

Proof. 1) By 3.5 mainly clauses (c)-(d) and 9.1(1). Note that this time in 9.1 we use the $\dot{I}(\lambda^{+\ell}, \aleph_0, \mathcal{K}(\lambda^{+\ell})$-saturated)) $< \mu_{\text{unif}}(\aleph_\ell, 2^{\aleph_{\ell-1}})$.

2) As in part (1) using 9.1(2).
REFERENCES.

[Sh:F888] Saharon Shelah. Categoricity in λ and a superlimit in λ^+.

