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2 SAHARON SHELAH

§0 Introduction

Juhasz has asked on the spectrums c − sp(X) = {|Y | : Y an infinite closed
subspace of X} and w − sp(X) = {w(Y ) : Y a closed subspace of X}. He proved
[Ju93] that if X is a compact Hausdorff space, then |X | > κ ⇒ c − sp(X) ∩

[κ,
∑

λ<κ

22
λ

] 6= ∅ and w(X) > κ ⇒ w − sp(X) ∩ [κ, 2<κ] 6= ∅. So under GCH the

cardinality spectrum of a compact Hausdorff space does not omit two successive
regular cardinals, and omit no inaccessible. Of course, the space β(ω)\ω, the space
of nonprincipal ultrafilters on ω, satisfies c − sp(X) = {i2}. Now Juhasz Shelah
[JuSh 612] shows that we can omit many singular cardinals, e.g. under GCH for
every regular λ > κ, there is a compact Hausdorff space X with c− sp(X) = {µ :
µ ≤ λ, cf(µ) ≥ κ}; see more there and in [Sh 652]. In fact [JuSh 612] constructs a
Boolean Algebra, so relevant to the parallel problems of Monk [M]. Here we deal
with the noncompact case and get a strong existence theorem. Note that trivially
for a Hausdorff space X, |X | ≥ κ ⇒ c − sp(X) ∩ [κ, 22

κ

] 6= ∅, using the closure of
any set with κ points, so our result is in this respect best possible.

We prove

0.1 Theorem. For every infinite cardinal λ there is a T3 topological space X, even

with clopen basis, with 22
λ

points such that every closed subset with ≥ λ points has

|X | points.

In §1 we prove a somewhat weaker theorem but with the main points of the proof
present, in §2 we complete the proof of the full theorem.
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ON T3-TOPOLOGICAL SPACE OMITTING MANY CARDINALS 3

§1

1.1 Theorem. Assume λ = cf(λ) > ℵ0. Let µ = 2λ, κ = Min{κ : 2κ > µ}. There

is a Hausdorff space X with a clopen basis with |X | = 2κ such that: if for Y ⊆ λ is

closed and |Y | < |X | then |Y | < λ.

Proof. Let S ⊆ {δ < κ : δ limit} be stationary. Let Tα = αµ for α ≤ κ and let

T =
⋃

α≤κ

Tα. Let ζα = ∪{µδ + µ : δ ∈ S ∩ (α + 1)} and let ζ<α = ∪{ζβ : β < α}.

Stage A: We shall choose sets uζ ⊆ Tκ (for ζ < µ × κ). Those will be clopen sets
generating the topology. For each ζ we choose (Iζ , Jζ) such that: Iζ is a ⊳-antichain
of (κ>µ, ⊳) such that for every ρ ∈ Tκ, (∃!α)(ρ ↾ α ∈ Iζ) and Jζ ⊆ Iζ and we shall let

uζ =
⋃

ν∈Jζ

(Tκ)[ν] where (Tκ)[ν] = {ρ ∈ Tκ : ν ⊳ρ}. Let Iα,ζ = Tα∩ Iζ , Jα,ζ = Tα∩Jζ

but we shall have α /∈ S ⇒ Iα,ζ = ∅ = Jα,ζ .

Stage B: Let Cd : µ → λ+>(T<κ) be onto such that for every x ∈ Rang(Cd) we
have otp{α < µ : Cd(α) = x} = µ.
We say α codes x (by Cd) if Cd(α) = x.

Stage C:Definition: For δ ≤ κ we call η̄ a δ-candidate if

(a) η̄ = 〈ηi : i ≤ λ〉

(b) ηi ∈ Tδ

(c) (∃γ < δ)(
∧

i<j<λ

ηi ↾ γ 6= ηj ↾ γ)

(d) for every odd β < δ, we have
Cd(ηλ(β)) = 〈ηi ↾ β : i ≤ λ〉

(e) ηλ(0) codes 〈ηi ↾ γ : i < λ〉, where γ = γ(η ↾ λ) = Min{γ < δ : i < j <
λ ⇒ ηi ↾ γ 6= ηj ↾ γ}, it is well defined by clause (c) and

(f) ηλ(0) > sup{ηi(0) : i < λ}.

Stage D:Choice: Choose Aξ,ε ⊆ λ for ξ < µ× κ, ε < λ such that:

ξ < µ× κ & ε1 < ε2 < λ ⇒ |Aξ,ε1 ∩ Aξ,ε2 | < λ and even = ∅
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4 SAHARON SHELAH

and

ξ1 < . . . < ξn < µ× κ, ε1 . . . εn1
< λ ⇒

n
⋂

ℓ=1

Aξℓ,εℓ is a stationary subset of λ.

Let Ξ =
{

{(ξ1, ε1), . . . , (ξn, εn)} : ξ1, . . . , ξn < µ × κ is with no repetitions and

ε1, . . . , εn < λ
}

and for x ∈ Ξ let Ax =
n
⋂

ℓ=1

Aξℓ,εℓ . Let D0 be a maximal filter on λ

extending the club filter such that x ∈ Ξ ⇒ Ax 6= ∅ mod D0.

For A ⊆ λ let

B
+(A) = {x ∈ Ξ : A ∩ Ax = ∅ mod D0 but y $ x ⇒ A ∩Ay 6= ∅ mod D0}

B(A) =: B
+(A) ∪ B

+(λ\A).

Fact: B(A) =: B+(A) ∪ B+(λ\A) is predense in Ξ i.e.

(∀x ⊆ Ξ)(∃y ∈ B(A))(x ∪ y ∈ Ξ).

Proof. If x ∈ Ξ contradict it then we can add to D0 the set λ\(Ax ∩ A) getting
D′

0. Now D′
0 thus properly extends D0 otherwise Ax ∩ A = ∅ mod D0 hence, let

x′ ⊆ x be minimal with this property so x′ ∈ B+(A) and x by assumption satisfies:
¬(∃y ∈ Ξ)(x ∪ y ∈ B(A)) so try y = x. For every z ∈ Ξ we have Az 6= ∅ mod D0.

Fact: |B(A)| ≤ λ for A ⊆ λ.

Proof. Let B0 be the Boolean Algebra freely generated by {xξ,ε : ξ < µ×κ, ε < λ},
by ∆-system argument, except xξ,ε1 ∩ xξ,ε2 = 0 if ε1 6= ε2; clearly B0 satisfies
λ+-c.c.

Let B
∗ be the completion of B0. Let f∗ be a homomorphism from P(λ) into B

∗

such that C ∈ D0 ⇒ f∗(C) = 1B∗ and

f(Aξ,ε) = xξ,ε.

[Why exists? Look at the Boolean Algebra P(λ) let Iλ = {A ⊆ λ : λ\A ∈ D0}
and A0 = Iλ ∪ {λ\A : A ∈ Iλ} is a subalgebra of P(λ), and let Iλ ∪ {Aξ,ε : ξ ≤
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ON T3-TOPOLOGICAL SPACE OMITTING MANY CARDINALS 5

µ × κ, ε = λ} generate a subalgebra A of P(λ); it extends A0. Let f∗
0 : A0 → B0

be the homomorphism with kernel Iλ. Let f∗
1 be the homomorphism from A into

B0 extending f0 such that f∗
1 (Aξ,ε) = xξ,ε, clearly exists and is onto. Now as B

∗

is a complete Boolean Algebra, f∗
1 can be extended to a homomorphism f∗

2 from
P(λ) into B

∗. Clearly Ker(f∗
2 ) = Ker(f∗

2 ) = Ker(f∗
0 ) = Iλ so f∗

1 induces an
isomorphism from P(λ)/D0 onto Rang(f∗

1 ) ⊆ B
∗, so the problem translates to

B
∗. So B0 satisfies the λ+-c.c and is a dense subalgebra of B∗ hence of range(f∗

2 ),
so this range is a λ+-c.c. Boolean Algebra hence P(λ)/D0 satisfies the fact.]
Let B

∗
γ be the complete Boolean subalgebra of B∗ generated (as a complete sub-

algebra) by {xξ,ε : ξ < γ, ε < λ}. Clearly B
∗ =

⋃

γ<κ

B
∗
γ and B

∗
γ is increasing with

γ.

Stage E: We choose by induction on δ ∈ S the following

(A) wδ,ζ ⊆ Tδ (for ζ < µδ + µ) and Jδ,ζ ⊆ Iδ,ζ ⊆ wδ,ζ

(B) for each δ-candidate η̄ = 〈ηi : i ≤ λ〉, a uniform filter Dη̄ on λ extending
the filter D0

(C) for each ν1 6= ν2 in Tδ for some ζ < µ× δ + µ we have {ν1, ν2} ⊆ wδ,ζ and:
(∃δ′ ∈ S ∩ (δ + 1))(ν1 ∈ Jδ′,ζ) ≡ (∃δ′ ∈ S ∩ (δ + 1))(ν2 ∈ Jδ′,ζ)

(D) if n < ω, µ × δ + µ ≤ ξ1 < . . . < ξn < µ × κ and ε1, . . . , εn < λ then
n
⋂

ℓ=1

Aξℓ,εℓ 6= ∅ mod Dη̄

(E) if δ1 ∈ S∩δ, η̄ is a δ-candidate and η̄ ↿ δ1 = 〈ηi ↾ δ1 : i ≤ λ〉 is a δ1-candidate
then Dη̄↾δ1 ⊆ Dη̄

(F )1 η ∈ wδ,ζ iff (∃δ′)(δ′ ∈ S ∩ (δ + 1) & η ↾ δ ∈ Iδ′,ζ)

(F )2 if η̄ = 〈ηi : i ≤ λ〉 is a δ-candidate and ηλ ∈ wδ,ζ then {i < λ : ηi ∈ wδ,ζ} ∈
Dη̄ and
〈(∃δ′ ∈ S ∩ (δ + 1))(ηλ ↾ δ′ ∈ Jδ′,ζ)〉 =
LIMDη̄

〈(∃δ′ ∈ S ∩ (δ + 1))(ηi ↾ δ
′ ∈ Jδ′,ζ) : i < λ〉

(F )3 wδ,ζ satisfies the following

(a) it is empty if ζ < ζ<δ

(b) has ≤ λ members if ζ ∈ [ζ<δ, ζδ)

(c) otherwise wδ,ζ is the disjoint union w0
δ,ζ ∪ w1

δ,ζ ∪ w2
δ,ζ where

w0
δ,ζ =

{

η ∈ Tδ : (∃δ′ ∈ S ∩ δ)(η ↿ δ′ ∈ wδ′,ζ)}

w1
δ,ζ = {η ∈ Tδ : η /∈ w0

δ,ζ and for no κ-candidate η̄ is η ⊳ ηλ}

w2
δ,ζ = {η ∈ Tδ : η /∈ w0

δ,ζ ∪ w1
δ,ζ and for some δ-candidate

η̄, ηλ = η and (∀i < λ)(∃δ′ ∈ S ∩ δ)(ηi ↾ δ
′ ∈ wδ′,ζ)
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6 SAHARON SHELAH

and the set {i < λ : (∃δ′ ∈ S ∩ δ)(ηi ↾ δ
′ ∈ Jδ,ζ)}

or its compliment belongs to Dη̄↾δ∗ for some δ∗ < δ
}

(F )4 Iδ,ζ = w2
δ,ζ ∪ w1

δ,ζ

(G) if η̄ is a δ-candidate and B ⊆ λ, f∗(B) ∈ B
∗
µ×(δ+1), then B ∈ Dη̄ ∨ (λ\B) ∈

Dη̄.

We can ask more explicitly: there is an ultrafilter D′
η̄ on the Boolean Algebra

B
∗
µ×(δ+1) such that Dη̄ = {B ⊆ λ : f∗(B) ∈ D′

η̄}.

The rest of the proof is split into carrying the construction and proving it is enough.

Stage F:This is Enough: First for every κ-candidate η̄ lets Dη̄ = ∪{Dν̄,δ : δ ∈ S, ν̄
is a δ-candidate and i ≤ λ ⇒ νi ⊳ηi}. Easily Dη̄ is a uniform ultrafilter on λ. Let us
define the space. The set of points of the space is Tκ = κµ and a subbase of clopen
sets will be uζ : for ζ < µ× κ where uζ is defined as uζ =: ∪{(Tκ)[ν] : ν ∈ Jζ} and

Jζ =:
⋃

δ∈S

Jδ,ζ . Now note that

(α) Iζ = ∪{Iδ,ζ : δ ∈ S} is an antichain and ∀ρ ∈ Tκ∃!δ(ρ ↾ δ ∈ Iδ,ζ)
[Why? We prove this by induction on ρ(0) and is straight. In details, it is
an antichain by the choice Iδ,ζ = w2

δ,ζ , w
2
δ,ζ ⊆ Tδ\w

0
δ,ζ . As for the second

phrase by the first there is at most one such δ; let ρ ∈ Tκ and assume we
have proved it for every ρ′ ∈ Tκ such that ρ′(0) < ρ(0). By the definition
of κ-candidate, if there is no κ-candidate η̄ with ηλ = ρ, then for every
large enough δ ∈ S, there is no δ-candidate η̄ with ηλ = ρ ↾ δ, hence
for any such δ, ρ ↾ δ belongs to w0

δ,ζ or to w1
δ,ζ , in the first case for some

δ′ ∈ δ ∩ S we have (ρ ↾ δ) ↾ δ′ ∈ Iδ′,ζ so ρ ↾ δ′ ∈ Iδ′,ζ and we are done,
in the second case ρ ↾ δ ∈ w1

δ,ζ ⊆ Iδ,ζ and we are done. So assume that
there is a κ-candidate η̄ with ηλ = ρ, by the definition of a candidate it is
unique and i < λ ⇒ ηi(0) < ρ(0), so for each i < λ there is δi ∈ S such
that ηi ↾ δi ∈ Iδi,ζ and let γ = Min{γ < µ : 〈ηi ↾ γ : i < λ〉 is with no
repetition}. Let A = {i < λ : ηi ↾ δi ∈ Jδ,ζ} so for some β < µ we have
f∗
2 (A) ∈ B

∗
β . For δ ∈ S, which is > sup[{γ, δi : i < λ}] we get ρ ↾ δ ∈ wδ,ζ

and we can finish as before.]

(β) X is a T3 space
[why? as we use a clopen basis we really need just to separate points which
holds by clause (C), i.e. if ν1 6= ν2 ∈ X then for some δ ∈ S we have
ν1 ↾ δ 6= ν2 ↾ δ and apply clause (C) to ν1 ↾ δ, ν2 ↾ δ]

(γ) |X | = µκ = 2κ

[why? as Tκ is the set of points of X ]



(
6
0
6
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
0
-
0
4
-
1
4
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
0
3
-
0
7
 
 

ON T3-TOPOLOGICAL SPACE OMITTING MANY CARDINALS 7

(δ) suppose Y = {ηi : i < λ} ⊆ X = Tκ and
∧

i<j

ηi 6= ηj . We need to show that

|cℓ(Y )| large, i.e. has cardinality 2κ.

Choose γ such that 〈ηi ↾ γ : i < λ〉 is with no repetitions.

Let

Wη̄ = {<>} ∪
{

ρ :for some α ≤ κ, ρ ∈ Tα, ρ(0) code 〈ηi ↾ γ : i < λ〉,

ρ(0) > sup{ηi(0) : i < λ} and

(∀β < ℓg(ρ))(β odd ⇒ ρ(β) code 〈ηi ↾ β : i < λ〉ˆ〈ρ ↾ β〉)
}

.

So clearly:

(i) Wη̄ ∩ T1 6= ∅

(ii) Wη̄ is a subtree of (
⋃

α≤κ

Tα, ⊳) (i.e. closed under initial segments, closed

under limits),

(iii) every ρ ∈ Wη̄ ∩ Tα where α < κ has a successor and if α is even has µ
successors.

So |Wη̄ ∩ Tκ| = µκ.

So enough to prove

(∗) if ρ ∈ Wη̄ ∩ Tκ then ρ ∈ cℓ{ηi : i < λ}.

Let η̄ = 〈ηi : i < λ〉, ηλ = ρ, η̄′ = η̄ˆ〈ρ〉 and the filter Dη̄′ = ∪{D〈η̄′
i↿δ:i≤λ〉 : δ ∈

S and δ ≥ γ} is a filter by clause (E) and even ultrafilter by clause (G).

Now for every ζ, by clause (F)2 for δ large enough

Truth Value(ρ ∈ uζ) = limD〈η̄′
i
↿δ:i≤δ〉

〈Truth Value(ηi ∈ uζ) : i < λ〉.

As {uζ : ζ < µ× κ} is a clopen basis of the topology, we are done.

Stage G: The construction:
We arrive to stage δ ∈ S. So for every δ-candidate η̄ = 〈ηi : i ≤ λ〉, let

D′
η̄ = ∪{D〈ηi↿δ1:i≤λ〉 : δ1 ∈ δ ∩ S and 〈ηi ↿ δ1 : i ≤ λ〉 a δ1-candidate} ∪D0.
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8 SAHARON SHELAH

Note: |Tδ| = µ by the choice of κ.
Let <∗

δ be a well ordering of Tδ such that: ν1(0) < ν2(0) ⇒ ν1 <∗
δ ν2.

Hence

(∗) 〈ηi : i ≤ λ〉 a δ-candidate ⇒
∧

i<λ

ηi <
∗
δ ηλ.

So let {〈ν1,ζ , ν2,ζ〉 : ζ<δ ≤ ζ < ζδ} list {(ν1, ν2) : ν1 <∗
δ ν2}; such a list exists as

ζδ ≥ ζ<δ + µ and |Tδ| = µ. Now we choose by induction on ζ < ζδ the following

(α) Dζ
η̄ for η̄ a δ-candidate when ζ ≥ ζ<δ

(β) w∗
δ,ζ , Iδ,ζ , Jδ,ζ

(γ) D
ζ<δ

η̄ is D′
η̄ which was defined above

such that

(δ) Dζ
η̄ for ζ in [ζ<δ, ζδ] is increasing continuous

(ε) if n < ω, ζ<δ ≤ ζ ≤ ξ1 < ξ2 < . . . < ξn < µ × κ and ε1, . . . , εn < λ+ then
n
⋂

ℓ=1

Aξℓ,εℓ 6= ∅ mod Dζ
η̄

(ζ) Dζ+1
η̄ , Iδ,ζ , Jδ,ζ satisfies the requirement (F)2

(η) ν1,ζ ∈ Jδ,ζ ⇔ ν2,ζ /∈ Jδ,ζ or ν1,ζ , ν2,ζ ∈ w0
δ,ζ

(θ) Dζ
η̄ is D′

η̄ + {Aζ1,εη̄(ζ0) : ζ1 < ζ} for some function εη̄ : [ζ<δ, ζ) ⇒ λ.

Note: For ζ = 0, condition (ε) holds by the induction hypothesis (i.e. clause (D))
and choice of D′

η (and choice of the Aξ,ε’s if for no δ1, η̄ ↾ δ1 is a δ1-candidate).

(ι) if ζ < ζ<δ then:

wδ,ζ = w0
δ,ζ ∪ w1

δ,ζ ∪ w2
δ,ζ are defined as in (F )2

Iζδ,ζ = w1
δ,ζ ∪ w2

δ,ζ

Jζ
δ,ζ = {η ∈ Tδ :δ ∈ w2

δ,ζ and for some δ-candidate η̄ we have ηλ = η

hence (∀i < λ)(∃δ′ ∈ S ∩ δ)[ηi ↾ δ
′ ∈ wδ′,ζ ]

and {i < λ : (∃δ′ ∈ S ∩ δ)[ηi ↾ δ
′ ∈ Jδ′,ζ ]} belongs to D′

η̄}.
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ON T3-TOPOLOGICAL SPACE OMITTING MANY CARDINALS 9

[Note in the context above, by the induction hypothesis (∃δ′ ∈ S∩δ)[ηi ↾ δ
′ ∈ wδ′,ζ ]

is equivalent to (∃δ′ ∈ S ∩ δ)[ηi ↾ δ
′ ∈ Iδ′,ζ ] and thus δ′ is unique. Of course, they

have to satisfy the relevant requirements from (A)-(G)].

The cases ζ ≤ ζ<δ, ζ limit are easy.

The crucial point is: we have 〈Dζ
η̄ : η̄ a δ-candidate〉 and ζ ∈ [ζ<δ, ζδ) and we should

define wδ,ζ , Iδ,ζ and Dζ+1
η̄ to which the last stage is dedicated.

Stage H: Define by induction on n < ω,

wζ
0 = {ν1,ζ , ν2,ζ}

wζ
n+1 = {ηρi : i < λ, ρ ∈ wn and η̄ρ is a δ-candidate with ηρλ = ρ}.

Note that ηρi <∗
δ ρ.

Let w = wδ,ζ = Iδ,ζ =
⋃

n<ω

wζ
n, so |wδ,ζ | ≤ λ (note that this is the first “time” we

deal with ζ).

We need: to choose Jα,ζ ∩ wδ,ζ so that the cases of condition (ζ) (i.e. (F)2) for
η̄ρ, ρ ∈ w hold and condition (η) (i.e. (C) for ν1,ζ , ν2,ζ) holds.

Let w′
δ,ζ = {ρ ∈ wδ,ζ : η̄ρ is well defined}, (so w′

δ,ζ ⊆ wδ,ζ). Let w′
δ,ζ = {ρ[ζ, ε] : ε <

ε∗ ≤ λ}. Now we define Dζ+1
η̄ρ[ζ,ε] as Dζ

ηρ[ζ,ε] + Aζ,ε, clearly “legal”.

Let A′
ζ,ε = {i < λ : i ∈ Aζ,ε and i > ε and η

ρ[ζ,ε]
i /∈ {η

ρ[ζ,ε1]
i1

: ε1 < i and i1 < i}

and η
ρ[ζ,ε]
i 6= ν1,ζ , ν2,ζ}.

Observe

(∗)1 Aζ,ε\A
′
ε is not stationary by Fodor’s lemma as 〈η

ρ[ε]
i : i < λ〉 is with no

repetition.

Now we shall prove that

(∗)2 the sets {η
ρ[ε]
i : i ∈ A′

ε} for ε > ε∗ are pairwise disjoint.

So toward contradiction suppose i1 ∈ A′
ε1
, i2 ∈ A′

ε2
, ε1 < ε2 < ε∗ and ηρ

[ζ,ε1]

i1
=

ηρ
[ζ,ε2]

i2
and try to get a contradiction.

Case 1: i2 > i1.
As i1 ∈ A′

ε1
we have i1 > ε1 similarly i2 > ε2 but ε1 < ε2 so i2 > ε2 > ε1, and

by the assumption i2 > i1. So ηρ
[ζ,ε1]

i1
belongs to the set {ηρ

[ζ,ε]

i : ε < i2 & i < i2}

so η
ρ[ζ,ε2]
i2

6= η
ρ[ζ,ε1]
i1

as η
ρ[ζ,ε2]
i2

does not belong to this set as i2 ∈ A′
ε2

.
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10 SAHARON SHELAH

Case 2: i2 < i1.

As i2 ∈ A′
ζ,ε2

necessarily ε2 < i2. So ε2 < i2 < i1 so ηρ
[ζ,ε2]

i2
∈ {ηρ

[ε]

i : ε <

i1 & ℓi < i1} but ηρ
[ζ,ε1]

i2
does not belong to this set as i1 ∈ A′

ε1
hence η

[ζ,ε1]
i1

, η
[ζ,ε2]
i2

cannot be equal.

Case 3: i1 = i2.
As i1 ∈ A′

ε1
we have i1 ∈ Aζ,ε1 similarly i2 ∈ Aζ,ε2 but those sets are disjoint; a

contradiction.
So (∗)2 holds.

Now define wζ,ℓ
n for ℓ = 1, 2, n < ω by induction on

n : wζ,ℓ
0 = {νℓ,ζ}

wζ,ℓ
n+1 = {ηρ

[ζ,ε]

i : ρ[ζ, ε] ∈ wζ,ℓ
n and i ∈ A′

ε and ε < ε∗}.

Let wζ,ℓ =
⋃

n<ω

wζ,ℓ
n , now by (∗)2, wζ,1 ∩ wζ,2 = ∅ (note the clause ηρ

[ζ,ε]

i 6= ν1,ζ in

the definition of A′
ε).

So we define

Jδ,ζ = wζ,2.

Now it is easy to check clause (F), i.e. (ζ) and we have finished the induction on

ζ < ζδ. Now choose Dη̄ to satisfy clause (G) and to extend
⋃

ζ<ζδ

Dζ
η̄, so we are done.

�1.1

∗ ∗ ∗
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ON T3-TOPOLOGICAL SPACE OMITTING MANY CARDINALS 11

§2 The singular case and the full result

2.1 Theorem. Assume λ > cf(λ). Let µ = 2λ, κ = Min{κ : 2κ > µ}. There is a

Hausdorff space X with a clopen basis with |X | = 2κ such that for Y ⊆ λ closed

|Y | < |X | ⇒ |Y | < λ.

Proof. For λ singular we should replace the filter D0 on λ. So let λ =
∑

j<cf(λ)

λj , λj

strictly increasing λ̄ = 〈λj : j < cf(λ)〉. Let D∗
λ̄

= {A ⊆ λ : for every j <

cf(λ) large enough, the set A ∩ λ+
j contains a club of λ+

j }.

We can find a partition 〈Aj
α : α < λ+

j 〉 of λ+
j \λj to stationary sets; let us stipulate

Aj
α = ∅ when λ+

j ≤ α < λ and let Ā∗ = 〈Aα =
⋃

j< cf(λ)

Aj
α : α < λ〉 (so Aα 6=

∅ mod D∗
λ and α < β < λ ⇒ Aα ∩ Aλ = ∅). Let {fξ : ξ < µ × κ} be a family of

functions from λ to λ such that if n < ω, ξ1 < . . . < ξn < µ× κ and ε1, . . . , εn < λ
then {α < λ : fεℓ(α) = εℓ for ℓ = 1, . . . , n} is not empty (exists by [EK]). Now
for ξ < µ × κ and ε < λ we let Aξ,ε = ∪{Aα : fξ(α) = ε}. Clearly ξ < µ × κ &
ε1 < ε2 < λ ⇒ Aξ,ε1 ∩ Aξ,ε2 = ∅, and also: if n < ω, ξ1 < . . . < ξn < µ × κ

and ε1, . . . , εn < λ then
n
⋂

ℓ=1

Aξℓ,εℓ 6= ∅ mod D∗
λ. Let D0 be a maximal filter on

λ extending D∗
λ and still satisfying

n
⋂

ℓ=1

Aξℓ,εℓ 6= ∅ mod D0 for n, ξℓ, εℓ(ℓ < n) as

above.

Now the proof proceeds as before. All is the same except in stage H where we use
λ regular, D0 contains all clubs of λ.

The point is that we define A′
ε as before, the main question is: why A′

ε = Aε mod
D∗

λ̄
.

Choose j∗ < cf(λ) such that:

ε < λj∗ .

So it is enough to show

(∗) if j∗ ≤ j < cf(λ) then
A′

ε ∩ [λj , λ
+
j ) = Aε ∩ [λj, λ

+
j ) mod Dλ+

j
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12 SAHARON SHELAH

(where Dλ+
j

-the club filter on λ+
j ).

Looking at the definition of A′
ζ,ε,

A′
ζ,ε ∩ [λj , λ

+
j ) =

{

i ∈ [λj , λ
+
j ) :i ∈ Aζ,ε ∩ [λj , λ

+
j )

and η
ρ[ζ,ε]
i1

/∈ {η
ρ[ζ,ε1]
i1

: ε1 < i and

i1 < i} and η
ρ[ε]
i 6= ν1,ζ

}

as 〈ηρ
[ζ,ε]

i : λj ≤ i < λ+
j 〉 is with no repetition and Fodor’s theorem holds (can

formulate the demand on D). Just check that the use of A′
ζ,ε in §1 still works.

2.2 Conclusion: If λ ≥ ℵ0, κ = Min{κ : 2κ > 2λ}, then there is a T3-space λ, |X | =
2κ with no closed subspace of cardinality ∈ [λ, 2κ). �2.1

∗ ∗ ∗

We still would like to replace 2κ by 22
λ

.

2.3 Theorem. For λ ≥ ℵ0 there is a T3 space X with clopen basis such that: no

closed subspace has cardinality in [λ, 22
λ

].

Proof. For λ = ℵ0 it is known so let λ > ℵ0. Like the proof of 1.1 with κ = 2µ.

The only problem is that Tδ = δµ may have cardinality > 2µ so we have to redefine
a δ-candidate (as there are too many ηi ↾ γ to code) and in the crucial Stages
G and H we have the list {(νδ1,ε, ν

δ
2,ε) : ε < |Tδ|} but possibly |Tδ| > 2µ. Still

|Tδ| ≤ µ|δ| ≤ 2µ; so instead dedicating one ζ ∈ [ζ<δ, ζδ) to deal with any such pair
we just do it for each “kind” of pairs such that the number of kinds is ≤ µ, (but
we can deal with all of them at once).

Stage B′:
Let Cd : µ → H<λ+(µ) be such that for every x ∈ H<λ+(µ) for µ ordinals α < µ

we have Cd(α) = x.

Stage C′:
For limit δ ≤ κ we call η̄ a δ-candidate if:

(a) η̄ = 〈ηi : i ≤ λ〉
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ON T3-TOPOLOGICAL SPACE OMITTING MANY CARDINALS 13

(b) ηi ∈ Tδ

(c) for some γ, 〈ηi ↾ γ : i < λ〉 is with no repetition

(d) for odd β < δ we have
Cd(ηλ(β)) = 〈(ηi(β − 1), ηi(β)) : i < λ〉

(e) Cd(ηλ(0)) = {(i, j, γ, ηi(γ), ηj(γ)) : i < j < λ and for some i1 < j1 <
λ, γ minimal such that ηi1(γ) 6= ηj1(γ)}

(f) ηλ(0) > sup{ηi(0) : i < λ}.

So

(∗)1 if 〈ηi : i ≤ λ〉 is a δ1-candidate, δ0 < δ1 limit and (∃γ < δ0)(〈ηi ↾ γ : i ≤ λ〉
with no repetitions then 〈ηi ↾ δ0 : i ≤ λ〉 is a δ0-candidate

(∗)2 if ηi ∈ Tκ for i < κ are pairwise distinct then for 2µ sequences ηλ ∈ Tκ we
have 〈ηi : i ≤ λ〉 is a κ-candidate.

Stage H’:
For each ε < |Tδ| we can choose vδ,ε = ∪{vδ,ε,n : n < ω} where we define vδ,ε,n

by induction on n as follows:

vδ,ε,0 = {νδ1,ε, ν
δ
2,ε}, vδ,ε,n+1 = vδ,ε,n ∪ {ηρi : ρ ∈ vδ,ε,n and η̄ρ is a δ-candidate such

that ηρλ = ρ}. We choose uε = uδ,ε ∈ [δ]≤λ such that: if η̄ is a δ-candidate satisfying
ηλ ∈ vδ,ε (so ηi ∈ vδ,ε for i < λ) then 0 ∈ uε & i < j < λ ⇒ Min{γ : ηi(γ) 6=
ηjγ)} ∈ uε.

As |Tδ| ≤ 2µ and µλ = µ by Engelking Karlowic [EK] there are functions Hδ
Υ :

Tδ → H<λ+(µ) for Υ ∈ [ζ<δ, ζδ) such that for every w ∈ [Tδ]λ and h : w →
H<λ+(µ) there is Υ ∈ [ζ<δ, ζδ) such that h ⊆ Hδ.

As µ = µλ = |H<λ+(µ)|, without loss of generality |Rang(Hδ
Υ)| ≤ λ (divide Hδ

Υ to
≤ 2λ = µ functions).

For each ε < |Tδ| let hε
δ : vδ,ε → H<λ+(µ) be hε

δ(η) = (hε,0
δ (η), hε,1

δ (η), hε,2
δ (η))

where

hε,0
δ (η) = otp({ν ∈ wε

δ : ν <∗
δ η}, <∗

δ)

hε,1
δ (η) = {〈γ, η(γ)〉 : γ ∈ uδ,ε}

hε,2
δ (η) = truth value of η ∈ vδ,ε,0

(the function hε
δ belongs to H<λ+(µ) as |vδ,ε| ≤ λ); let
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14 SAHARON SHELAH

Υε = Min{Υ ∈ [ζ<δ, ζδ) : hε
δ ⊆ Hδ

Υ}

(well defined). Let γδ
Υ =: sup{γ < λ+ : γ is the first cardinal in some sequence

λ̄ from (Rang(Hδ
Υ)}, let gδΥ be a one-to-one function from γδ

Υ into λ.

Next we can define the DΥ
η̄ for η̄ a δ-candidate; for Υ < µ:

DΥ+1
η̄ = DΥ

η̄ + AΥ,γδ
Υ
.

In Stage Υ ∈ [ζ<δ, ζδ) we deal with all ε < |Tδ| such that Υε = Υ. Now we treat
the choice of Iδ,ζ , Jδ,ζ , wδ,ζ . We can finish as before (but dealing with many cases
at once). �2.3
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