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FORCING MANY POSITIVE

POLARIZED PARTITION RELATIONS

BETWEEN A CARDINAL AND ITS POWERSET

Saharon Shelah and Lee J. Stanley

Abstract. A fairly quotable special, but still representative, case of our

main result is that for 2 ≤ n < ω, there is a natural numberm(n) such that,
the following holds. Assume GCH: If λ < µ are regular, there is a cofinality

preserving forcing extension in which 2λ = µ and, for all σ < λ ≤ κ < η

such that η(+m(n)−1) ≤ µ,

((η(+m(n)−1))σ)→ ((κ)σ)
(1)n
η .

This generalizes results of [3], Section 1, and the forcing is a “many

cardinals” version of the forcing there.

§0. INTRODUCTION.
In [3], the first author proved (with, in what follows, µ in the place of

our λ, and λ in the place of our η) the consistency of:

λ < κ < η are all regular, 2λ = η, η → (η, [κ;κ])

The forcing can be thought of as a “filtering through” κ of adding η many
Cohen subsets of λ. Then, {λ, κ, η} can be thought of as a three element
set K of regular cardinals used for defining the forcing; the elements of K
are taken, in the ground model, to be sufficiently far apart. An important
technical notion, related to the idea of “filtering through” is the possibility
of viewing p ≤ q as split up, in various ways, into “pure” and “apure”
extensions. Schematically, but fairly accurately, the pure extensions have
completeness properties, while the apure extensions have chain condition
properties: see (1.7) for the former and (1.8), (1.9) for the latter.
It is natural to attempt to allow the set K of regular cardinals to be

larger, and to simultaneously obtain many such, and stronger, partition
relations, for example, by increasing the “dimension” (from 2 to n) and the
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2 SAHARON SHELAH AND LEE J. STANLEY

number of blocks (from 2 to σ). These will all be aspects of our treatment
here, see (B), below, and (c) of our main Theorem.

More specifically, we start, in V , from

(A) cf λ = λ = λ<λ < µ = µλ = cf µ.

and we fix:

(B) K ⊆ [λ, µ], a set of regular cardinals, with λ, µ ∈ K.

In §1, we define a forcing Q = QK which generalizes the forcing of
[3], §1, and we prove its important properties, culminating in (1.11) and
(1.12), whose statements are incorporated into our main Theorem, below
(everything except item (c)).

In order to prove that Q preserves cofinalities we need to assume that
for all cardinals, θ ∈ [λ, µ], 2θ = θ+, so the reader who is so inclined may
simply assume GCH holds (in V ) and make the typical GCH simplifications.
Very frequently, this involves direct substitutions, such as substituting θκ
for (2<θκ). However, as is usually the case, the assumption of GCH is
mainly for notational convenience and to be able to state results in a simple
compact form. The technical lemmas of §§1, 2 are stated in a form which
makes no assumptions about cardinal exponentiation, and which indicates
how the statement of the Theorem could be modified so as not to appeal
to GCH at the price of allowing cardinal collapse between certain cardinals
and their weak powers.

The definition of Q and the proofs of its properties do not require any
further assumptions on K, but the proof that the polarized partition re-
lations hold in the extension does require that we take the elements of K
to be sufficiently far apart. In particular, for each 2 ≤ n < ω, there will
be a natural number m(n) such that (among other things), if κ1 < κ2 are

successive elements of K, then κ2 ≥ κ
(+m(n)−1)
1 . Thus, for given n, the

“densest” possible set K consists of every (m(n)− 1)− th regular cardinal,
starting from λ, and, once again, the reader who is so inclined is invited
to think only about this specific K. The statement of the result in the
Abstract, above, adopts this convention on K, but the main Theorem will
be stated in somewhat more general terms.

The reason for this requirement on K is that, combined with our hy-
potheses on cardinal exponentiation, it will guarantee that if κ1 < κ2 are
successive elements of K, σ < λ,, then we can find χ, τ with κ1 ≤ χ < τ ≤

κ2 such that whenever κ < κ1, τ → (κ)
m(n)
χ . Indeed, this will hold if we

take κ1 = χ and τ = κ2, and the statement of the result in the Abstract
reflects these choices of χ and τ . See (c) of the main Theorem, below, where
these ideas are precisely formulated, in somewhat more general form.
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FORCING POSITIVE POLARIZED PARTITION RELATIONS 3

Before stating the main theorem, it remains to define the partition sym-
bol which figures therein. Assume that τ is a cardinal, and that (Xi :
i < σ) is a pairwise disjoint family of sets each of cardinality (at least)
τ . Let X =

⋃

{Xi : i < σ}, and let D be the set of n − element sub-
sets of X which meet each Xi in at most one element. For a ∈ D, let
a′ = {i < σ : a ∩Xi 6= ∅}. Then,

((τ)σ)→ ((κ)σ)
((1)n)
χ

holds iff for all such (Xi : i < σ), whenever F is a function from D to
χ, for i < σ, there is Yi ⊆ Xi, of cardinality (at least) κ such that, letting
Y =

⋃

{Yi : i < σ}, if a, b ∈ D∩ [Y ]n, and a′ = b′, then F (a) = F (b) (i.e.,
(Yi : i < σ) is canonical for F ).
In addition to the above considerations, the dependence of m(n) on n

is related to the results of [5]. The precise formulation of these results is
deferred until (2.1), where we begin to apply them. For now, we merely
formulate:

(C) Given 2 ≤ n < ω, there is m = m(n) < ω, sufficiently large that

there is a system as in (2.1), below.

Theorem. If, in V, λ, µ, K are as in (A), (B), above, then there is
Q = QK = (Q, ≤) such that the empty condition of Q ° 2λ ≥ µ and
forcing with Q adds no sequences of length < λ. Further, assuming that
in V, 2θ = θ+ for all cardinals θ ∈ [λ, µ]:

(a) card Q = µ.
(b) Forcing with Q preserves cofinalities, and therefore cardinals.
(c) Suppose that the cardinals σ, κ, κ1, χ, τ, κ2 satisfy the following:

κ1, κ2 are successive elements of K, and σ < λ, κ < κ1 ≤ χ =
χσ < τ ≤ κ2. Let 2 ≤ n < ω and let m = m(n) be as in (C), above.

If, in V, τ → (κ)mχ , then, in V
Q, ((τ)σ)→ ((κ)σ)

((1)n)
χ .

Remarks.

(1) Regarding κ, clearly the most interesting case is when κ = κ1; un-
fortunately at this point, it is unclear whether our methods, or a
small variant thereof will suffice to handle this case. We are con-
tinuing to investigate this question and also the question of whether
we can allow σ = λ, at least under the additional assumption that
λ is not strongly inaccessible.

(2) In order to handle all n < ω simultaneously, it is natural to use
measurable cardinals and and the obvious attempt to do so works
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4 SAHARON SHELAH AND LEE J. STANLEY

in a straightforward way. Some significant use of large cardinals is
necessary.

(3) We treat only the extremely dispersed case, where, in the n-tuples
in the domain, each coordinate comes from a different one of the
σ many blocks (the superscript ((1)n)). It would be very desirable
to allow pairs, or more, from the same block. This paper does not
address this question, but for one pair, see [1], [2], [3], §2, [4], [6]
and [7].

(4) We began work on this paper in 1986, using essentially the same
approach as presented here; this work has been subject to various
interruptions which has made us decide to finally present it in its
present form rather than attempt to polish off various of the small
questions indicated above and to optimize the results.

(5) When forcing, we take p ≤ q to mean that q gives more informa-
tion. Therefore, strictly, we should speak of cofinal sets instead of
dense sets, but we will stick to the more usual terminology, modulo
a reversal of the partial ordering. In particular, a predense set is
one whose upward closure is a final segment of the partial ordering.

§1. THE FORCING.
We present the forcing Q and develop its basic properties. As mentioned

above, Q is a “many cardinals” generalization of the forcing of [3], §1.

(1.1) Context and Preliminaries.

Let λ = λ<λ, µ = µλ, λ, µ both be regular. Let K ⊆ [λ, µ] be a set of
regular cardinals with λ, µ ∈ K. For the remainder of this paper, λ, µ, K
are fixed.
For κ ∈ K, let Eκ be the equivalence relation on µ defined by i Eκ j iff

i + κ = j + κ. For λ ≤ κ ≤ µ, define E<κ as idµ ∪
⋃

{Eθ : θ ∈ K ∩ κ}.
For such κ, if κ 6∈ K, let Eκ = E<κ. For i < µ, λ ≤ κ ≤ µ, let [i]κ = the
Eκ−equivalence class of i, and for A ⊆ µ, let A/Eκ = {[i]κ : i ∈ A}. For
such i, A, [i]κ is represented in A iff A ∩ [i]κ 6= ∅. If A ⊆ B ⊆ µ, the
[i]κ grows from A to B iff ∅ 6= A ∩ [i]κ 6= B ∩ [i]κ

(1.2) Remarks.

(1) If θ < κ, both in K, then Eθ refines Eκ and, in fact, each Eκ class
is the union of κ many Eθ classes.

(2) For all i, j < µ, i Eµ j. Thus, the following definition makes sense:

if i < j < µ, κ(i, j) = the least κ ∈ K such that i Eκ j.
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FORCING POSITIVE POLARIZED PARTITION RELATIONS 5

(1.3) Definition and Remark.
Suppose κ ∈ K. We define θκ to be the least regular cardinal which is

≥
⋃

[(K ∩ κ) ∪ {λ}]. Thus, in particular, θλ = λ, if θ < κ are successive
elements of K then θκ = θ, if

⋃

(K∩κ) is singular, then θκ = (
⋃

(K∩κ))+,
while if

⋃

(K ∩ κ) is inaccessible, then θκ =
⋃

(K ∩ κ).

(1.4) Definition. q ∈ Q = QK iff q : dom q → {0, 1}, dom q ⊆ µ and:

(a) for i < µ, κ ∈ K, card([i]κ ∩ dom q) < θκ (note: taking κ = µ, we
have card dom q < θµ).

If p, q ∈ Q, we set p ≤ q iff

(b) p ⊆ q,
(c) For all κ ∈ K, {A ∈ µ/Eκ : A grows from dom p to dom q} has
power < θκ.

Q = (Q, ≤).

(1.5) Definition. For κ ∈ K and p, q ∈ Q, let: p ≤prκ q iff p ≤ q and:

(d) no Eκ−class represented in dom p grows from dom p to dom q,

and let: p ≤aprκ q iff p ≤ q and:

(e) (dom q)/Eκ = (dom p)/Eκ.

(1.6) Proposition.

(a) For all κ ∈ K, ≤prκ , ≤
apr
κ are partial orderings of Q.

(b) If p1, p2 ∈ Q and they are compatible as functions, then p1∪p2 ∈ Q;
further, letting q = p1 ∪ p2, if (c) of (1.4) holds between pi and q,
for i = 1, 2, then q is the join, in Q, of p1 and p2.

(c) If p ≤ q, κ ∈ K, then there are r, s ∈ Q such that:
(1) p ≤prκ r ≤aprκ q,
(2) p ≤aprκ s ≤prκ q and
(3) q = r ∪ s.

(d) ≤=≤aprµ (except that if ∅ 6= q ∈ Q, then ∅ ≤ q, but ∅ 6≤aprκ q for any
κ ∈ K).

(e) If κ0 ≤ κ1 ≤ κ2, all ∈ K, then:
≤prκ1

⊆≤prκ0
, ≤aprκ1

⊆≤aprκ2
.

(f) If (κ ∈ K & s ≤aprκ t & s ≤prκ v), then t ∪ v ∈ Q and:
s ≤ (t ∪ v), t ≤prκ (t ∪ v), v ≤aprκ (t ∪ v).

(g) If κ ∈ K, p ≤∗κ qi (i = 1, 2), where ∗ ∈ {pr, apr} and q1, q2 are
compatible in Q, then p ≤∗κ (q1 ∪ q2).

(h) If p ≤aprκ q1, q2 and if

(*) if (i ∈ dom q1\dom p & j ∈ dom q2\dom p) then ([i]<κ 6= [j]<κ or [i]<κ∩dom q1 = [j]<κ∩dom q2))

then also qk ≤∗κ q1 ∪ q2, k = 1, 2.
(i) If p ≤aprκ qi ≤ r for i = 1, 2, then, for such i, qi ≤aprκ q1 ∪ q2.
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6 SAHARON SHELAH AND LEE J. STANLEY

Proof. (a) and (b) are clear. For (c), let r = q|x, where ξ ∈ x iff ξ ∈ dom q
and (ξ ∈ dom p or [ξ]κ ∩ dom p = ∅). Also, let s = q|y, where ξ ∈ y iff
ξ ∈ dom q and [ξ]κ ∩ dom p 6= ∅. Clearly p ≤prκ r, p ≤aprκ s; clearly
q = r ∪ s. We verify that r ≤aprκ q and s ≤prκ q. For the first, suppose
that ξ ∈ dom q \ x. Then, ξ 6∈ dom p and [ξ]κ ∩ dom p 6= ∅. Then certainly
[ξ]κ ∩ x 6= ∅, i.e. ξ ∈

⋃

dom r/Eκ. For the second, suppose ξ ∈ dom q \ y,
but [ξ]κ ∩ y 6= ∅. Then, ξ ∈ x \ dom p, so [ξ]κ ∩ dom p = ∅. If ζ ∈ [ξ]κ ∩ y,
then [ζ]κ ∩ dom p 6= ∅, but [ζ]κ = [ξ]κ, contradiction.

For (d), recall that µ = [i]µ, for all i < µ. For (e), if p ≤prκ1
q and x is

an Eκ0
−class represented in p, let x∗ be the Eκ1

−class such that x ⊆ x∗.
Then, x∗ is represented in p and since x∗ does not grow from dom p to
dom q, neither can x. Similarly, if p ≤aprκ1

r and ξ ∈ dom r, there is ζ Eκ1
ξ

such that ζ ∈ dom p. But then, ζ Eκ2
ξ, so ξ ∈ [ζ]κ2

.

For (f), we first show that (dom t\dom s)∩(dom v\dom s) = ∅; then, by
(b), t∪v ∈ Q. It will then be clear that s ≤ (t∪v). So, if ξ ∈ dom v\dom s,
then [ξ]κ ∩ dom s = ∅, so ξ 6∈

⋃

dom s/Eκ and dom t ⊆
⋃

dom s/Eκ.

Next, we show that t, v ≤ t ∪ v; by (b), it will suffice to show that (c)
of (1.4) holds between t and t ∪ v and between v and t ∪ v. We prove the
former first. So, suppose that τ ∈ K and first suppose that ∅ 6= dom t∩ [i]τ
and j ∈ (dom v ∩ [i]τ ) \ dom t. Then, certainly j 6∈ dom s, so since s ≤prκ v,
we clearly must have that τ > κ. Now, let l ∈ [i]τ ∩ dom t. Since s ≤aprκ t,
there is a ∈ dom s such that a Eκ l. But then, since τ > κ (actually, ≥
would suffice here), a Eτ i, so ∅ 6= dom s ∩ [i]τ 6= dom s ∩ [i]τ . And, since
s ≤ v, there are fewer than θτ many such [i]τ , and we have proved that (c)
of (1.4) holds between t and t ∪ v.

To show that (c) of (1.4) holds between v and t∪v, let τ be as above, and,
this time, suppose that ∅ 6= dom v∩ [i]τ and that j ∈ (dom t∩ [i]τ )\dom v.
Then, certainly j 6∈ dom s, and so, since s ≤aprκ , [j]κ ∩ dom s 6= ∅. Thus,
[j]κ grows from dom s to dom t, and, since s ≤ t, there are at most θκ
many such [j]κ. We consider separately the cases τ ≥ κ and τ < κ. In the
first case, θκ ≤ θτ and we have found one of at most θκ many [j]κ inside
every [i]τ which grows from dom v to dom t ∪ v, so clearly there are at
most θτ many such [i]τ , as required. Thus, without loss of generality, we
may assume that τ < κ. In this case, we shall argue that ∅ 6= dom s ∩ [i]τ .
Clearly this will suffice since then [i]τ grows from dom s to dom t, and
again, since s ≤ t, there are at most θτ such [i]τ , as required.

So, suppose, towards a contradiction, that ∅ = dom s∩[i]τ . Let ξ ∈ [i]τ ∩
dom v, so [ξ]κ = [i]κ. But j ∈ [i]τ∩dom t, so j ∈ [i]κ∩dom t. Since s ≤aprκ t,
this means that ∅ 6= [i]κ∩dom s. But then ξ ∈ [i]κ∩ (dom v \dom s). This,
however, is impossible, since s ≤prκ v, which completes the proof.

We proceed, now to show that t ≤prκ t ∪ v and that v ≤aprκ t ∪ v. For
the former, suppose that ξ ∈ dom v \ dom t. Then, ξ ∈ dom v \ dom s, so
[ξ]κ∩dom s = ∅. We claim that [ξ]κ∩dom t = ∅. If not, and ζ ∈ [ξ]κ∩dom t,
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FORCING POSITIVE POLARIZED PARTITION RELATIONS 7

then [ζ]κ ∩ dom s 6= ∅, but, once again, [ζ]κ = [ξ]κ, contradiction. Thus,
t ≤prκ (t ∪ v).
To see that v ≤aprκ t ∪ v, suppose that ξ ∈ dom t \ dom v. We need

to show that [ξ]κ ∩ dom v 6= ∅. This, however, is clear, because, since
ξ ∈ dom t, [ξ]κ ∩ dom s 6= ∅, so certainly [ξ]κ ∩ dom v 6= ∅, and we have
finished proving (f).

For (g), first note that if qi ≤ r for i = 1, 2, then, letting s = q1 ∪ q2,
for such i, qi ≤ s ≤ r. This is clear, because if τ ∈ K and [j]τ grows from
dom qi to dom s, then certainly [j]τ grows from dom qi to dom r, and there
are at most θτ such [j]τ , since qi ≤ s. Further, if [j]τ grows from dom s
to dom r, then either [j]τ grows from dom q1 to dom r or [j]τ grows from
dom q2 to dom r, and again, since q1, q2 ≤ r, there are at most θτ such
[j]τ for each case.

Now suppose that ∗ is apr. Thus, if ξ ∈ dom s, then, for an i ∈
{1, 2}, ξ ∈ dom qi, so [ξ]κ ∩ dom p 6= ∅. It is then clear that p ≤∗κ s,
as required.

If ∗ is pr and ξ ∈ dom s \ dom p, then, letting i ∈ {1, 2} be such that
ξ ∈ dom qi \ dom p, then, since p ≤prκ qi, clearly [ξ]κ ∩ dom p = ∅, as
required.

We prove (i), before proving (h). As in (g), let s = q1 ∪ q2. For i = 1, 2,
we must show that qi ≤

apr
κ s. We already know, from the proof of (g), that

for such i, qi ≤ s. So, let j = 1+(2−i), and suppose that α ∈ dom s\dom qi.
We need to show that ∅ 6= [α]κ ∩ dom qi. But α ∈ dom qj \ dom qi, so
α ∈ dom qj \ dom p, so ∅ 6= [α]κ ∩ dom p, and the conclusion is clear.

We conclude by proving (h). For this, let s = q1∪q2. If we prove that q1
and q2 are compatible in Q, then, by (g) and (i), we are finished. In fact,
we will show directly that q1, q2 ≤ s. By symmetry, it will suffice to prove
that q1 ≤ s, and clearly, only (c) of (1.4) is at issue. So, let τ ∈ K. First
note that, without loss of generality, we may assume that τ < κ. This is
because, since dom q1 \ dom p and dom q2 \ dom p both have cardinality
less than θκ, therefore so do dom q1 \ dom q2 and dom q2 \ dom q1. Then,
if τ ≥ κ, in particular, fewer than θκ many Eτ classes grow from dom q1 to
dom s.

So, suppose τ > κ. By hypothesis, if [i]τ grows from dom q1 to dom s,
then [i]τ ∩ dom q1 = [i]τ ∩ dom p 6= ∅, and so [i]τ grows from dom p to
dom q2. However, since p ≤ q2, there are fewer than θτ such [i]τ . This
concludes the proof of (h) and of the Proposition.

(1.7) Proposition.

(a) For all κ ∈ K, (Q, ≤prκ ) is κ-complete.
(b) Q is λ-complete.

Proof. The proof is routine and left to the reader.
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8 SAHARON SHELAH AND LEE J. STANLEY

In Proposition (1.8), which follows, we will have κ ∈ K and p ∈ Q, and
we introduce Qapr

κ, p = (Q
apr
κ, p, ≤

apr
κ ), and Qapr

κ, p = {q : p ≤
apr
κ q}.

(1.8) Proposition. If κ ∈ K, p ∈ Q, then Qapr
κ, p has the (2

<θκ)+ − c.c..

Proof. We should note, here, immediately, that in virtue of (1.6), (i), for
q1, q2 ≥ p, compatibility in Qapr

κ, p is the same as compatibility in Q, so it is
the latter that we shall establish, when our statement calls for the former.
Suppose, now, that qi ∈ Qapr

κ, p, for i < (2<θκ)+. We show there is

I ⊆ (2<θκ)+ with card Y = (2<θκ)+, such that for i, j ∈ I, qi and qj are
compatible in Q. In virtue of the preceding paragraph, clearly this suffices.
For i < (2<θκ)+, let di = dom qi \ dom p. We first show that card di <

θκ. Note that by (e) of (1.5), if α ∈ di, then [α]κ grows from dom p to
dom q, and so di/Eκ ⊆ {A ∈ µ(κ) : A grows from dom p to dom q}.
By (1.4), (c), this last set has power < θκ. Finally, by (1.4), (a), for all
A ∈ di/Eκ, card (A∩dom qi) < θκ. Then, since θκ is regular, the conclusion
that card di < θκ is clear.
Now, taking Yi := di/E<κ. Since each Yi has power < θκ, it is quite

straightforward to conclude, combining typical ∆-system arguments with
appeals to (1.6) (b) and (h).

We need a slightly more refined version of this.

(1.9) Proposition. Suppose κ ∈ K, (2<θκ)+ ≤ κ, (si : i < i∗) is a
≤prκ −increasing sequence from Q, and suppose that for i < i∗, si ≤aprκ ti,
and that for j < i < i∗, tj , ti are incompatible in Q. Then, i

∗ < (2<θκ)+.

Proof. If i∗ < κ, we can take s =
⋃

{si : i < i∗}. Noting that for j <
i∗, s ≤aprκ (s ∪ tj), we can then apply (1.8). Even if κ ≤ i∗, we can
essentially argue in this fashion, by redoing the proof of (1.8). So, let
i∗ = (2<θκ)+ ≤ κ. Let di = dom ti \

⋃

{dom si : i < i∗}. We obtain
a contradiction. Then, di ⊆ dom ti \ dom si, and, arguing as in (1.8),
card di ⊆ card (dom ti \ dom si) < θκ.
As in (1.8), for i < i∗, let Yi = di(< κ). Once again, we can find

I ⊆ i∗, Y, d, and f such that card I = i∗ and for i, j ∈ I, Yi ∩ Yj =
Y, di ∩

⋃

Y = d and ti ¹ d = f . The conclusion is then as in (1.8) that
for i, j ∈ I, ti and tj are compatible in Q and therefore in Qapr

κ, p. This
contradiction completes the proof of the Proposition.

(1.10) Lemma. If κ ∈ K, 2<θκ < κ, p ∈ Q and p | `Q “α̇ is an ordinal”,
THEN, there are q and (ri : i < i∗), all from Q, such that:

(a) i∗ < (2<θκ)+,
(b) p ≤prκ q,
(c) q ≤aprκ ri, for all i < i∗,
(d) for some αi, ri | `Q “α̇ = αi”,
(e) {ri : i < i∗} is predense above q.
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FORCING POSITIVE POLARIZED PARTITION RELATIONS 9

Proof. We shall obtain q as qi∗ =
⋃

{qi : i < i∗}, where (qi : i < i∗) is
≤prκ −increasing, with q0 = p. We work by recursion on i. Having obtained
(qj : j ≤ i) and (r′j : j < i) such that (qj : j ≤ i) is ≤prκ −increasing, the
(r′j : j < i) are pairwise incompatible in Q, qj ≤aprκ r′j and there is αj
such that r′j| `Q “α̇ = αj”, note that we have the following properties:

(1) for all j < i, qi ≤aprκ (qi ∪ r′j) (this is by (f) of (1.6) with s =
qi, t = r′j , v = qi),

(2) so, letting r′′j = qi ∪ r′j , {r
′′
j : j < i} ⊆ Qapr

κ, qi
.

If {r′′j : j < i} is predense in Qapr
κ, qi

, then we take i∗ = i, q = qi, rj = r′′j ,

for j < i, and we stop. Otherwise, there is q′ ∈ Qapr
κ, qi

such that q′ is
imcompatible with each r′′j . Note that, in this case, we must have that q

′

is incompatible in Q with each r′j , by (g) of (1.6). In this case, we shall
have i < i∗, and we continue, so fix such q′ and let q′ ≤ r′ be such that for
some α, r′| `Q “α̇ = α”. Applying (c) of (1.6), we get qi ≤prκ q∗ ≤aprκ r′.
We let qi+1 = q∗, r′i = r′. By (g) of (1.6), the r′j (j ≤ i) are pairwise
incompatible in Q.

If i is a limit ordinal, i < κ and the (qj : j < i), (r′j : j < i) are
definied satisfying the induction hypotheses, we let qi =

⋃

{qj : j < i} (so,
by (1.7), qi ∈ Q and is the ≤prκ −lub of the qj). We must now see that
the process terminates at some i∗ < (2<θκ)+. If not, and if (2<θκ)+ < κ,
let q =

⋃

{qj : j < (2<θκ)+}, and (using the above observations), for
j < (2<θκ)+, let rj = r′j ∪ q. Then, the rj are a pairwise incompatible

family in Qapr
κ, q, contradicting (1.8). If (2

<θκ)+ ≤ κ, it is straigtforward

to see that we must have i∗ < (2<θκ)+, contradiction. This means, in
particular, that i∗ < κ and then we conclude by defining q and the rj as in
the case where (2<θκ)+ < κ, but everywhere replacing (2<θκ)+ by i∗. This
completes the proof of the Lemma.

(1.11) Proposition. The empty condition of Q forces 2λ ≥ µ.

Proof. For i < µ, let ri be the following Q-name: {((γ, k), p) : γ < λ, k <
2, p ∈ Q & p(λi+γ) = k}. Since θλ = λ, and for i < µ, [λi, λi+λ) = [λi]λ,
we clearly have that for p ∈ Q, if i0 < i1 < µ, card Aj < λ, for j = 0, 1,
where, for such j, Aj = {γ < λ : λij + γ ∈ dom p}. So, for such p, i0, i1,
choosing γ ∈ λ \ (A0 ∪ A1), and letting q = p ∪ {(λij + γ, j) : j < 2},
we have p ≤ q and q ° ri0 6= ri1 , and the conclusion is then clear. This
completes the proof of the Proposition.

(1.12) Proposition. (Assuming that for cardinals θ, with λ ≤ θ ≤ µ, 2θ =
θ+):

(a) card Q = µ.
(b) Forcing with Q adds no sequences of length < λ.
(c) Forcing with Q preserves cofinalities, and therefore cardinals.
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10 SAHARON SHELAH AND LEE J. STANLEY

Proof. (a) is clear, and (b) follows easily, from (1.7), (b). For (c), assume,
towards a contradiction, that τ < σ, where both are regular, but that for
some q ∈ Q, q ° cf σ = τ . By (b), we may assume that τ ≥ λ. Note
that by (1.6), (d) and (1.8), with p = ∅, Q has the (2<θµ)+-c.c. Further,
under our additional hypotheses on cardinal exponentiation, (2<θµ) ≤ µ,
so, clearly we cannot have σ > µ. But then there must be κ ∈ K such
that θκ ≤ τ < κ. Suppose, now, that the Q-name f is such that q ° f is
monotone-increasing, maps τ to σ and has range cofinal in σ. By (1.7), (a)
and (1.10), applying (1.10) repeatedly to each of the names f(α), for α < τ ,
we reach a contradiction, also using that (2<θκ) ≤ τ . This completes the
proof of the Proposition.

§2. THE PARTITION RELATIONS.

In this section, we address item (c) of the main theorem of the Introduc-
tion. We work, first, under the simplifying assumption that τ < κ2. For
the convenience of the reader, we will recall the context, and restate (c) as
a Lemma, with this additional assumption. After the proof of the Lemma
is given, we will briefly indicate the small changes necessary to accomodate
the case τ = κ2.
So, let κ1, κ2 be successive members of K, let κ < κ1 ≤ χ = χσ <

τ < κ2, let σ < λ. Assume that 2<κ1 ≤ τ (in the context of (c) of the
main Theorem, this will follow from the Theorem’s hypotheses on cardinal
exponentiation). As stated in (C) of the Introduction, for all 2 ≤ n < ω,
by examination of the methods of [5], there is sufficiently large m(n) < ω

such that, assuming that, in V, τ → (κ1)
m(n)
χ , then, also in V , there is a

system as in (2.1) below.

Lemma. For 2 ≤ n < ω, if, in V, τ → (κ)
m(n)
χ , then, in V Q, ((τ)σ) →

((κ)σ)
((1)n)
χ .

Proof. Let (Ai : i < σ) be a sequence of sets of ordinals, each of order-type
τ , such that for i < j < σ, Ai < Aj . Let A :=

⋃

{Ai : i < σ}. Let
D := {a ∈ [A]n : card(a ∩ Ai) ≤ 1, for all i < σ}. We often view the
elements of D as n-tuples, enumerated in their increasing order. Let c be
a Q-name for a function from D to χ.
Let p ∈ Q. Using the methods of §1, we can find a ≤prκ2

-increasing

sequence from Q,
⇀
p = (pj : j < η), with the following properties:

(1) η ≤ τ , and p0 = p,

(2) for each
⇀
α = (α1, · · · , αn) ∈ D, there is j = j⇀

α
such that in

Qapr
κ2, pj+1

, there is a predense set, I⇀
α
of conditions deciding c(

⇀
α).
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FORCING POSITIVE POLARIZED PARTITION RELATIONS 11

(2.1) The system of [5].

Now, let ν∗ be a sufficiently large regular cardinal. Fix <∗, a well-
ordering of Hν∗ . For sequences (Xt : t ∈ I), let u ∈ J(Xt : t ∈ I) iff
u ⊆

⋃

{Xt : t ∈ I}, card u ≤ n and for all t ∈ I, card (Xt ∩ u) ≤ 1.
If u, v ∈ J(Xt : t ∈ I), we set u ∼ v iff for all t ∈ I, card (Xt ∩ u) =
card (Xt ∩ v). By [5] (and our choice of m(n)), we have the following.

Proposition. There are Bi ∈ [Ai]
κ (i < σ), Nu (u ∈ J(Bi : i < σ), and

hu, v (u, v ∈ J(Bi : i < σ), u ∼ v) satisfying:

(3) each Nu ≺ (Hν∗, ∈, <∗, c,
⇀
p , χ, κ1, κ2, K, Q, (I⇀

α
: α ∈

D), · · · ),
(4) letting Nu = |Nu|, Nu ∩ (

⋃

{Bi : i < σ}) = u, χ ⊆ Nu, card Nu =
χ, N<χ

u ⊆ Nu,
(5) Nu ∩Nv ⊆ Nu∩v (large cardinals are required for = in place of ⊆),
(6) (hu, v : u, v ∈ J(Bi : i < σ), u ∼ v) is a commutative system of

isomorphisms, hu, v : Nu →Nv,
(7) If uk ∼ vk, for k = 1, 2, then hu1, v1 and hu2, v2 are compatible

functions, when both are defined.

(2.2) Completing the Proof.
In this subsection, we complete the proof of the Lemma. Note that our

hypothesis that τ < κ2 guarantees that η < κ2. This is the only use we
make of the hypothesis that τ < κ2.
So, let p∗ =

⋃

{pj : j < η}. Then, since here, we have that η < κ2, p
∗ ∈

Q, and is the ≤prκ2
least upper bound of the pj , by (1.7), (a). Also, let

γi = min Bi (i < σ), and let J := J({γi} : i < σ), J̃ := J(Bi : i < σ).

Claim 1. If q ∈ Qapr
κ2, p∗

, u ∈ J , and q ∈ Nu, then (dom q) \ (dom p∗) ⊆
Nu.

Proof of Claim 1. (dom q) \ (dom p∗) ∈ Nu and it has power < θκ2
= κ1 ≤

χ ⊆ Nu, so the conclusion is clear.

Claim 2. There is r ∈ Q, p∗ ≤aprκ2
r such that:

(1) dom r \ dom p∗ ⊆
⋃

{Nu : u ∈ J}
(2) for all u ∈ J, p∗ ∪ (r|Nu) ∈ Nu; if further, card u = n, then

p∗ ∪ r ¹ Nu decides the value of c(u).

Proof of Claim 2. Note that for the first part of (2), it suffices to have
r ¹ Nu ∈ Nu, since p

∗ ∈ N∅. Note, also, that J has power σ, and so we
enumerate J as (uj : j < σ). We shall define by recursion on j ≤ σ a
sequence (rj : j ≤ σ) with r0 := p∗, and all rj ∈ Qapr

κ2, p∗
. We shall have

r := rσ. The following induction hypotheses will be in vigor, for j ≤ σ.
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12 SAHARON SHELAH AND LEE J. STANLEY

The parallel with items (1) and (2) in the statement of the Claim should
be clear.

(a) if k + 1 ≤ j then dom rk+1 \ dom rk ⊆ Nuk ,
(b) for all u ∈ J and all k ≤ j, rk ¹ Nu ∈ Nu; if, further, k+ 1 ≤ j and

card uk = n, then p∗ ∪ (rk+1 ¹ Nuk) decides the value of c(uk)
(c) (rk : k ≤ j) is ≤aprκ2

increasing.

Clearly (a) - (c) hold for j = 0 with r0 = p∗. At limit ordinals, δ ≤ σ,
we shall take rδ : =

⋃

{rj : j < δ}. If δ < σ, then δ < λ ≤ κ1 = θκ2
.

Thus, if δ < σ, by (1.7), (b), rδ ∈ Q and is the ≤ least upper bound of the
rj . Then, clearly also it is the ≤aprκ2

least upper bound of the rj .
If δ = σ, then, since we are assuming σ < λ, we also have δ < λ, and so,

the same arguments yield the same conclusions, in this case as well.
Clearly this preserves (a), (c) and the second part of (b). We argue that

it also preserves the first part of (b). So, let u ∈ J . We must see that
rδ ¹ Nu ∈ Nu. But rδ ¹ Nu =

⋃

{rk ¹ Nu : k < δ}, and for all k < δ, by
(the first part of) (b) for (k), rk ¹ Nu ∈ Nu. Finally, δ < σ, and Nσ

u ⊆ Nu

and so the conclusion is clear.
So, suppose we have defined (rk : k ≤ j) satisfying (a) - (c). We define

rj+1 and show that (a) - (c) are preserved. Since (b) clearly corresponds to
(2), and since we take r = rσ, this will complete the proof, once we show
how (1) follows from (a). This, however, is easy, since (dom r)\ (dom p∗) =
⋃

{(dom rk+1) \ (dom rk) : k < σ}, and by (a), this last is indeed included
in

⋃

{Nu : u ∈ J}.
For (c) it will suffice to have rj ≤

apr
κ2

rj+1, which will be clear from
construction, as will the second part of (b). Thus, we must show that there
is q satisfying:

(α) rj ≤aprκ2
q,

(β) (dom q) \ (dom rj) ⊆ Nuj ,
(γ) if card uj = n, then q decides the value of c(uj),
(δ) for all u ∈ J, q ¹ Nu ∈ Nu.

We first argue that it will suffice to find q satisfying (α) - (γ), since
any such q will automatically satisfy (δ). For this, note that if q satisfies
(α), then (dom q) \ (dom rj) has power < θκ2

= κ1 ≤ χ. Thus, for u ∈
J, (q \ rj) ¹ Nu is a subset of Nu of power < χ and therefore, (q \ rj) ∈ Nu.
But q ¹ Nu = (q \ rj) ¹ Nu ∪ rj ¹ Nu, and by induction hypothesis, (b), for
j, rj ¹ Nu ∈ Nu. The conclusion is then clear.
To find q satisfying (α) - (γ) is trivial if card uj < n, so assume card uj =

n. Applying induction hypothesis (b), with k = j and u = uj , we have
rj ¹ Nuj ∈ Nuj . Since the maximal antichain in Q

apr
κ2, p∗

deciding c(uj) is
a member of Nuj , and since p

∗ ∈ Nuj , we easily find q
′ ∈ Nuj such that

p∗∪rj ¹ Nuj ≤
apr
κ2

q′ and such that q′ decides the value of c(uj). Note that,
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FORCING POSITIVE POLARIZED PARTITION RELATIONS 13

again, since (dom q′)\(p∗∪(dom rj ¹ Nuj )) has small cardinality, compared
to the closure of Nuj , we will also have (dom q′) \ (dom p∗) ⊆ Nuj . But
this makes it clear that if we take q := q′ ∪ rj, then q is as required. This
completes the proof of Claim 2.

Now, let:

r∗ := p∗ ∪
⋃

{hu, v((r \ p
∗) ¹ Nu) : u ∈ J, v ∈ J̃ , u ∼ v}.

We will show that r∗ ∈ Q and that whenever u ∈ J, v ∈ J̃ and u ∼
v, p∗ ∪ hu, v(r ¹ Nu) ≤ r∗. We first note that this suffices for the proof of
the Lemma in our special case, since then clearly r∗ forces that (Bi : i < σ)
is as required.
The following is the heart of the matter, and is an easy consequence of

(7) of (2.1), and the arguments for the first part of (2) of Claim 2, above.

Proposition. Suppose that for k = 1, 2, uk ∈ J, vk ∈ J̃ and uk ∼ vk. Let
Nk := Nuk , N := N1∩N2 and let Ñ = Nu1∩u2

(so that, by (5) of (2.1),

N ⊆ Ñ). Let hk := huk, vk . Then, (r \ p
∗) ¹ N ∈ N & h1((r \ p

∗) ¹ N) =
h2((r \ p∗) ¹ N).

Proof. To see that (r \ p∗) ¹ N ∈ Nk, we argue as in the proof of Claim 2:
(r \ p∗) ¹ N is a subset of Nk of small cardinality compared to the closure
of Nk. But then, since h1 and h2 are compatible functions, by (7) of (2.1),
the conclusion is clear.

Corollary. r∗ ∈ Q and whenever u ∈ J, v ∈ J̃ and u ∼ v, p∗ ∪ hu, v(r ¹

Nu) ≤ r∗.

Proof. It is immediate from the Proposition, that the p∗ ∪ hu, v((r \ p∗))
are pairwise compatible as functions. To complete the proof that r∗ ∈ Q,
we must verify (a) of (1.4). So, suppose i < µ, ν ∈ K.
We consider separately the cases ν > κ2, ν < κ2, and the hardest case,

ν = κ2. If ν > κ2, then κ2 ≤ θν and we taking the union of fewer than θν
conditions, so there is no problem. If ν < κ2, then θν < κ1 ≤ χ, so for all
v ∈ J̃ , either [i]ν ⊆ Nv or [i]ν ∩ Nv = ∅, and then the conclusion is also
easy. So, suppose that ν = κ2, i.e., θν = κ1. It is here that we use that
κ < κ1; this permits us to argue as in the case where ν > κ2: we are taking
the union of fewer than θν conditions, and there is no problem.
To complete the proof of the Corollary, we must see that (c) of (1.4)

holds (since (b) is clear). So, once again, assume ν ∈ K. We must see

that for all u ∈ J, v ∈ J̃ such that u ∼ v, there are fewer than θν many
A ∈ µ/Eν such that A grows from dom(p∗ ∪ hu, v(r ¹ Nu)) to dom r∗.
Once again, is the proof that (1.4) (a), we consider separately the cases
ν > κ2, ν < κ2 and ν = κ2. Once again, the hypothesis that κ < κ1 allows
us to assimilate the case ν = κ2 to the case ν > κ2, since what is really
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14 SAHARON SHELAH AND LEE J. STANLEY

at issue is that we are taking the union of fewer than θν conditions, and
as before, when ν = κ2, θν = κ1. In the remaining case, where ν < κ2,
once again we have that for all i < µ and all w ∈ J̃ , either [i]ν ⊆ Nw or
[i]ν ∩Nw = ∅, with the former holding if [i]ν ∈ Nw.
So, suppose that ν < κ2 and fix such u, v, suppose i < µ and [i]ν grows

from dom(p∗ ∪ hu, v(r ¹ Nu)) to dom r∗. But then there are t ∈ J, w ∈ J̃
such that t ∼ w and [i]ν ∩ dom(p∗ ∪ ht, w(r ¹ Nt)) 6⊆ dom(p∗ ∪ hu, v(r ¹

Nu)). Then, [i]ν ∈ Nv ∩ Nw. But then [i]⊆Nv ∩ Nw. Therefore, letting
b ∈ Nu, c ∈ Nt be such that [i]ν = hu, v(b) = ht, w(c), we clearly have b = c
and b ⊆ Nu∩Nt. But then, letting x := (dom r\dom p∗)∩b, x ∈ Nu∩Nt,
since, once again, x is a subset of each, small in cardinality compared to
the closure of each. So hu, v(x) = ht, w(x), but this is a contradiction,
since then, [i]ν ∩ dom(p∗ ∪ hu, v(r ¹ Nu)) = (([i]ν ∩ dom p∗) ∪ hu, v(x)) =
(([i]ν ∩dom p∗)∪ht, w(x)) = [i]ν ∩dom(p

∗ ∪ht, w(r ¹ Nt)). This completes
the proof of the Corollary, and therefore of the Lemma.

To handle the case τ = κ2, we take B :=
⋃

{Bi : i < σ}, we replace
D, above, by D′ := {a ∈ [B]n : card(a ∩ Bi) ≤ 1, for all i < σ}, and we

take our ≤prκ2
-increasing sequence from Q,

⇀
p = (pj : j < η), to satisfy:

(1*) η ≤ κ, and p0 = p,

(2*) for each
⇀
α = (α1, · · · , αn) ∈ D′, there is j = j⇀

α
such that in

Qapr
κ2, pj+1

, there is a predense set, I⇀
α
of conditions deciding c(

⇀
α).

Now η ≤ κ ≤ κ1 < τ , and then the rest of the proof goes through easily,
as above.
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