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Compactness of Loeb Spaces1

Renling Jin2 & Saharon Shelah3

Abstract
In this paper we show that the compactness of a Loeb space depends on
its cardinality, the nonstandard universe it belongs to and the underlying
model of set theory we live in. In §1 we prove that Loeb spaces are compact
under various assumptions, and in §2 we prove that Loeb spaces are not
compact under various other assumptions. The results in §1 and §2 give a
quite complete answer to a question of D. Ross in [R1], [R2] and [R3].

0. Introduction

In [R1] and [R2] D. Ross asked: Are (bounded) Loeb measure spaces compact? J.

Aldaz then, in [A], constructed a counterexample. But Aldaz’s example is atomic,

while most of Loeb measure spaces people are interested are atomless. So Ross re-

asked his question in [R3]: Are atomless Loeb measure spaces compact? In this paper

we answer the question. Let’s assume that all measure spaces mentioned throughout

this paper are atomless probability spaces.

Given a probability space (Ω,Σ, P ). A subfamily C ⊆ Σ is called compact if for

any D ⊆ C, D has f.i.p. i.e. finite intersection property, implies
⋂

D 6= ∅. We call a

compact family C inner-regular on Ω if for any A ∈ Σ

P (A) = sup{P (C) : C ⊆ A ∧ C ∈ C}.

A probability space (Ω,Σ, P ) is called compact if Σ contains an inner-regular com-

pact subfamily. Clearly, the definition of compactness is a generalization of Radon

spaces with no topology involved. In fact, Ross proved in [R2] that a compact prob-

ability space is essentially Radon, i.e. one can topologize the space so that every

measurable set A contains a compact subset of measure at least half of the measure

of A.

Loeb measure spaces are important tools in nonstandard analysis (see, for example,

[AFHL] and [SB]). Ross proved in [R2] that every compact probability space is the
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2

image, under a measure preserving transformation, of a Loeb measure space. This

shows, by a word of Ross, some evidence that Loeb spaces themselves may be compact.

In this paper we show that the compactness of a Loeb space depends on its cardi-

nality, the nonstandard universe it belongs to, and even the underlying world of set

theory we live in (suppose we live in a transitive model of ZFC).

Throughout this paper we always denote M for our underlying transitive model

of set theory ZFC. We sometimes use N for another transitive model of ZFC. If we

make a statement without mentioning a particular model, this statement is always

assumed to be relative toM. Let N be the set of all standard natural numbers. Using

N as a set of urelements, we construct the standard universe (V,∈) by letting

V0 = N, Vn+1 = Vn ∪ P(Vn) and V =
⋃

n∈ω

Vn.

A nonstandard universe (∗V, ∗ ∈) is the truncation, at ∗ ∈-rank ω, of an elemen-

tary extension of the standard universe such that ∗N r N 6= ∅. We always assume

the nonstandard universe ∗V we work within is at least ω1-saturated. In fact, ω1-

saturation is needed in Loeb measure construction. For any set S we use |S| for its

set theoretic cardinality. If S is an internal set (in ∗V ), then ∗|S| means the internal

cardinality of S. For any object S in the standard universe we always denote ∗S

for its nonstandard version in ∗V . For example, if Ω is an internal set, then ∗P(Ω)

denote the set of all internal subsets of Ω. Let Σ0 ⊆ ∗P(Ω) be an internal algebra

and let P : Σ0 7→ ∗[0, 1] be an internal finitely additive probability measure. We

call (Ω,Σ0, P ) an internal probability space. Let st : ∗[0, 1] 7→ [0, 1] be the standard

part map. Then (Ω,Σ0, st◦P ) is a standard finitely additive probability space. Then

one can use Σ0 to generate uniquely an st◦P -complete σ-algebra Σ and extend st◦P

uniquely to a standard complete countably additive probability measure LP . The

space (Ω,Σ, LP ) is called a Loeb space generated by (Ω,Σ0, P ). Let H be a hyper-

finite integer, i.e. H ∈ ∗N r N. Let Ω = {1, 2, . . . , H}, let Σ0 = ∗P(Ω) and let

P (A) = ∗|A|/H for each A ∈ Σ0. We call (Ω,Σ0, P ) a hyperfinite internal space.

The space (Ω,Σ, LP ) generated by (Ω,Σ0, P ) as above is called a hyperfinite Loeb

space. Hyperfinite Loeb spaces are most useful among other Loeb spaces in non-

standard analysis. For notational simplicity we prove the results only for hyperfinite

Loeb spaces in this paper. From now on we denote the symbol (Ω,Σ, LP ) or just Ω

without confusion, exclusively for a hyperfinite Loeb space. Most of the results for



6
1
3
 
 
r
e
v
i
s
i
o
n
:
1
9
9
7
-
0
1
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
2
-
0
7
-
1
6
 
 

3

hyperfinite Loeb spaces in this paper can be easily generalized to Loeb spaces in the

general sense (see Fact 3 at the beginning of §1 and the comments after that).

In §1 we show when a hyperfinite Loeb space is compact. We prove the following

results.

Corollary 3: Suppose CH (Continuum Hypothesis) holds. Suppose |∗N| = ω1.

Then every hyperfinite Loeb space in ∗V is compact.

Corollary 4: Suppose MA (Martin’s Axiom) holds. Suppose ∗V is 2ω-saturated and

|∗N| = 2ω. Then every hyperfinite Loeb space in ∗V is compact.

Corollary 5: Suppose M is obtained by adding κ Cohen reals to a ZFC model N

for some κ > (2ω)N with κω = κ in N . Suppose |∗N| = 2ω (in M now). Then every

hyperfinite Loeb space in ∗V is compact.

Corollary 7: Suppose M is same as in Corollary 5. In M suppose λ is a strong

limit cardinal with cf(λ) 6 κ. Suppose |∗N| = λ and ∗V satisfies the ℵ0-special model

axiom (see [R5] or [J] for the definition). Then every hyperfinite Loeb space in ∗V is

compact.

Theorem 8: Suppose κ is a strong limit cardinal with cf(κ) = ω and λ = κ+ = 2κ.

Suppose ∗V is λ-saturated and has cardinality λ. Then every hyperfinite Loeb space

in ∗V is compact.

In §2 we show when a hyperfinite Loeb space is not compact. We prove the following

results.

Theorem 9: Suppose λ is a regular cardinal such that κω < λ for any κ < λ.

Suppose |Ω| = λ. Then Ω is not compact.

Theorem 10: Suppose λ is a strong limit cardinal, κ = cf(λ) and µω < κ for any

µ < κ. Suppose |Ω| = λ. Then Ω is not compact.

Theorem 11: Suppose M is obtained by adding κ random reals to a ZFC model

N for some regular κ > (2ω)N with κω = κ. Suppose |Ω| = 2ω (note 2ω = κ in M).

Then Ω is not compact.

Theorem 12: Suppose M is obtained by adding κ random reals to a ZFC model

N for some regular κ > ω. Suppose λ is a strong limit cardinal such that cf(λ) 6 κ.

Suppose |Ω| = λ (hence cf(λ) > ω). Then Ω is not compact.

Theorem 13: Let λ > |V | and λω = λ. Then there exists a ∗V such that |Ω| = λ

and Ω is not compact for every Ω in ∗V .
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4

In this paper we write λ, κ, µ, . . . for cardinals, α, β, γ, . . . for ordinals and k,m, n, . . .

for natural numbers. We write λκ (λ<κ) for cardinal exponents and κλ (<κλ) for sets

of functions. For any set S we write [S]λ for the set of all subsets of S with cardi-

nality λ. For any set S we write (S2,Σ(S2), νS) for the complete probability space

generated by all Baire sets of S2 such that for any finite S0 ⊆ S and any τ ∈ S02,

νS([τ ]) = 2−|S0|, where [τ ] = {f ∈S 2 : f ¹S = τ}.

The reader is assumed to know basics of nonstandard analysis and be familiar with

nonstandard universes and Loeb space construction. We suggest the reader consult

[L] and [SB] for information on those subjects. The reader is also assumed to have

basic knowledge on set theory and forcing. The reader is recommended to consult

[K1] for that.

1. Towards Compactness

We would like to list three facts about hyperfinite Loeb spaces (Ω,Σ, LP ), which

will be used frequently throughout this paper.

Fact 1: For any S ∈ Σ and any ε > 0 there exists an A ∈ ∗P(Ω) such that A ⊆ S

and LP (S r A) < ε.

Fact 2: For any internal sets An ⊆ Ω there exists an internal set B ⊆
⋂

n∈ω An

such that LP (
⋂

n∈ω An) = LP (B).

A λ-sequence 〈Aα : α ∈ λ〉 of measurable subsets of Ω is called independent if for

any finite I0 ⊆ λ

LP (
⋂

α∈I0

Aα) =
∏

α∈I0

LP (Aα).

Fact 3: Suppose |Ω| = λ. Then there exists an independent λ-sequence of internal

sets of measure 1
2
on Ω.

Fact 1 and Fact 2 are direct consequences of ω1-saturation and Loeb measure

construction. Fact 3 can be proved by finite combinatorics and the overspill principle

in nonstandard analysis. Call a sequence 〈Ai : i < m〉 of subsets of a finite probability

space of size n with normalized counting measure µ a (k, c)-independent sequence for

some k ∈ N and c ∈ (0, 1) iff for any i1 < i2 < . . . < ik′ with k′ < k and any h ∈ k′2

one has

µ(

k′
⋂

j=1

A
h(j)
ij

) >
c

2k′
.
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Note that given any k ∈ N and any c ∈ (0, 1), there is a (k, c)-independent sequence

of length n in an n-elements probability space for large enough n ∈ N. Let H be

an infinite integer. Applying overspill principle one can find an infinite integer K

and a nonstandard real C with st(C) = 1 such that there is a (K,C)-independent

sequence of internal sets of length H in Ω = {1, 2, . . . , H}. It is easy to check that the

sequence obtained is, in standard sense, an independent sequence of the hyperfinite

Loeb probability space Ω.

For a Loeb space in the general sense Fact 1 and Fact 2 are also true. But Fact

3 may not hold. So whether or not a result about hyperfinite Loeb space can be

generalized to a general Loeb space may depend on the truth of Fact 3.

A set t ⊆ <ω2 is called a tree if for any s, s′ ∈ <ω2, s ⊆ s′ and s′ ∈ t imply s ∈ t.

We use capital letter T ⊆ <ω2 exclusively for a tree with no maximal node. So every

branch of T is infinite. For a tree T we write [T ] for the set of all its branches. In

fact, every closed subset of ω2 could be written as [T ] for some tree T .

Definition 1. A sequence of trees 〈Tα,n : α ∈ λ ∧ n ∈ ω〉 is called a (κ, λ)-witness if

(1) νω([Tα,n]) > n
n+1

,

(2) (∀f ∈ ω2)(|{α ∈ λ : ∃n(f ∈ [Tα,n])}| < κ).

Theorem 2. Suppose there exists a (κ, λ)-witness 〈Tα,n : α ∈ λ ∧ n ∈ ω〉 for some

uncountable cardinals κ and λ. Suppose ∗V is κ-saturated and |∗P(Ω)| = λ. Then Ω

is compact.

Proof: Choose 〈An : n ∈ ω〉, an independent ω-sequence of internal subsets with

measure 1
2
on Ω. We write A0

n = An and A1
n = Ω r An. Then for any finite s ⊆ ω

and any h ∈ s2 we have

LP (
⋂

n∈s

Ah(n)
n ) = 2−|s|.

For any tree T define

AT =
⋂

n∈ω

⋃

η∈ n2∩T

n−1
⋂

i=0

A
η(i)
i .

It is easy to see that LP (AT ) = νω([T ]). Note that AT is a countable intersection

of internal sets. We now want to construct an inner-regular compact family C of

internal subsets on Ω. Let ∗P(Ω) = {aα : α ∈ λ}. For each α ∈ λ and n ∈ ω let

bα,n ⊆ aα ∩ ATα,n be internal such that

LP (bα,n) = LP (aα ∩ ATα,n).
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6

Then let

C = {Al
n : n ∈ ω ∧ l = 0, 1} ∪ {bα,n : α ∈ λ ∧ n ∈ ω}.

Claim 2.1: C is an inner-regular compact family on Ω.

Proof of Claim 2.1: The inner-regularity is clear. We need to prove the compact-

ness. Let D ⊆ C be such that D has f.i.p. We want to show that
⋂

D 6= ∅. Without

loss of generality we assume that D is maximal. So for each n ∈ ω either A0
n ∈ D or

A1
n ∈ D but not both. Let h ∈ ω2 be such that for each n ∈ ω we have A

h(n)
n ∈ D.

Given any bα,n ∈ D, we want to show that h ∈ [Tα,n]. Let k ∈ ω. Then

(
k−1
⋂

i=0

A
h(i)
i ) ∩ bα,n 6= ∅.

So we have

(

k−1
⋂

i=0

A
h(i)
i ) ∩ (

⋂

m∈ω

⋃

η∈ m2∩Tα,n

m−1
⋂

i=0

A
η(i)
i ) 6= ∅.

This implies that there exists an η ∈ Tα,n ∩ k2 such that

(

k−1
⋂

i=0

A
h(i)
i ) ∩ (

k−1
⋂

i=0

A
η(i)
i ) 6= ∅.

Hence we have h¹k = η ¹k ∈ Tα,n. This is true for any k ∈ ω. So h ∈ [Tα,n]. But we

assumed that

|{α : ∃n(h ∈ [Tα,n])}| < κ.

So |D| < κ. Now using κ-saturation, we get
⋂

D 6= ∅. 2

Remark: From the definition of the compactness we do not have to choose C as a

family of internal sets. We do that because internal sets are more interesting. In this

paper if we construct a compact family we always construct a family of internal sets.

Corollary 3. Suppose CH holds and |∗N| = ω1. Then every hyperfinite Loeb space

in ∗V is compact.

Proof: It suffices to construct an (ω1, ω1)-witness. Let ω2 = {fα : α ∈ ω1}. For

each n ∈ ω and α ∈ ω1, choose Tα,n such that

νω([Tα,n]) >
n

n+ 1

and

[Tα,n] ∩ {fβ : β ∈ α} = ∅.

It is clear that 〈Tα,n : α ∈ ω1 ∧ n ∈ ω〉 is an (ω1, ω1)-witness. 2
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Remarks: (1) The condition |∗N| = ω1 implies CH by ω1-saturation of ∗V .

(2) If ∗V is an ω-ultrapower of the standard universe, then |∗N| = ω1, provided CH

holds.

Corollary 4. Suppose for any S ⊆ ω2, |S| < 2ω implies νω(S) = 0. Suppose ∗V is

2ω-saturated and |∗N| = 2ω. Then every hyperfinite Loeb space in ∗V is compact.

Proof: By same construction as in Corollary 3 with length 2ω we can find a (2ω, 2ω)-

witness. Now the corollary follows from 2ω-saturation of ∗V and Theorem 2. 2

Remark: Obviously, Corollary 3 is a special case of Corollary 4. In the case of

¬CH, one has that MA implies νω(S) = 0 for any set S ⊆ ω2 with |S| < 2ω and MA

implies also 2κ = 2ω for any κ < 2ω, which guarantees the existence of 2ω-saturated

nonstandard universes.

Corollary 5. SupposeM is obtained by adding λ Cohen reals to a ZFC model N for

some λ > (2ω)N with λω = λ in N . Suppose |∗N| = λ (2ω = λ in M). Then every

hyperfinite Loeb space in ∗V is compact.

Proof: It suffices to construct an (ω1, λ)-witness. Work in N . For each n ∈ ω let

Tn = {t ⊆ <ω2 : (∃T ⊆ <ω2)(νω([T ]) >
n+ 1

n+ 2
∧ ∃m(t = T ¹m))}

be a forcing notion ordered by the reverse of end-extension of trees (we assume smaller

conditions are stronger). It is clear that Tn is countable and separative. So forcing

with Tn is same as adding a Cohen real. Let T α
n = Tn, let Pα =

∏

n∈ω T
α
n with finite

supports for each α ∈ λ and let P =
∏

α∈λ Pα with finite supports. Without loss of

generality we assume that M = N [G], where G ⊆ P is an N -generic filter. For each

α ∈ λ and n ∈ ω let

Tα,n =
⋃

(G ∩ T α
n ).

We want to show that the sequence 〈Tα,n : α ∈ λ ∧ n ∈ ω〉 is an (ω1, λ)-witness.

Given any f ∈ ω2 in M, there exists a countable set S ⊆ λ in N such that

f ∈ N [GS], where GS = G ∩ (
∏

α∈S Pα). For any α ∈ λ r S and any n ∈ ω,

G ∩ T α
n ⊆ T

α
n is a N [GS]-generic filter. Define

Df = {t ∈ T α
n : ∃m (t has height m ∧ f ¹m 6∈ t)}.

Claim 5.1 Df is dense in T α
n .
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Proof of Claim 5.1: Let t ∈ T α
n . We want to find a t′ ∈ T α

n ∩Df such that t′ is an

end-extension of t. Let m′ be the height of t. Without loss of generality we assume

that f ¹m′ ∈ t. Let

T = {η ∈ <ω2 : η ∈ t ∨ η ¹m′ ∈ t}.

It is clear that νω([T ]) > n+1
n+2

. Let

ε = νω([T ])−
n + 1

n + 2

and let n′ > m′ be large enough so that 2−n
′

< ε. Let

T ′ = {η ∈ T : |η| 6 n′ ∨ η ¹(n′ + 1) 6= f ¹(n′ + 1)}.

Now

νω([T
′]) > νω([T ])− ε =

n+ 1

n+ 2
.

Let m = n′ + 1. Then we have

t′ = T ′ ¹m ∈ T α
n ∩Df

and that t′ is an end-extension of t. 2 (Claim 5.1)

Since Df is dense in T α
n , then G ∩ T α

n ∩Df 6= ∅. This implies f 6∈ [Tα,n]. So

{α ∈ λ : ∃n(f ∈ [Tα,n])} ⊆ S.

This shows that 〈Tα,n : α ∈ λ ∧ n ∈ ω〉 is an (ω1, λ)-witness. 2

Remarks: (1) We don’t have requirements for ∗V because ∗V is always ω1-saturated.

(2) Above three corollaries can be easily generalized to general Loeb spaces as long

as their cardinalities are 2ω. For example, above three corollaries are also true if we

replace a hyperfinite Loeb space by a Loeb space generated by a nonstandard version

of Lebesgue measure on unit interval. From now on we will not make similar remarks

like this. The reader should be able to do so by himself.

Next we will mention a property of nonstandard universes called the ℵ0-special

model axiom (see [R5] or [J] for details). The special model axiom is in fact an

axiomatization of special nonstandard universes as models (see [CK] for the definition

of a special model). In the proof we need only some simple consequences of the

property. Let’s list all the consequences we need. If ∗V satisfies the ℵ0-special model

axiom, then

(1) all infinite internal sets have same cardinality, say λ,
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(2) for every hyperfinite internal space (Ω, ∗P(Ω), P ) there exists a sequence

〈(Ωα,Σα) : α ∈ cf(λ)〉, called a specializing sequence, such that

(a) Ω =
⋃

α∈cf(λ)Ωα,

(b) ∗P(Ω) =
⋃

α∈cf(λ) Σα,

(c) if {An : n ∈ ω} ⊆ Σα, then there exists a B ∈ Σα+1 such that B ⊆
⋂

n∈ω An

and LP (B) = LP (
⋂

n∈ω An),

(d) if D ⊆ Σα and D has f.i.p., then (
⋂

D) ∩ Ωα+1 6= ∅.

Theorem 6. Suppose there exists an increasing sequence 〈Zα ⊆ ω2 : α ∈ κ〉 for some

regular cardinal κ > ω such that νω(Zα) = 0 for every α ∈ κ and ω2 =
⋃

α∈κ Zα (so

κ 6 2ω). Suppose λ is a strong limit cardinal with cf(λ) = κ. Suppose ∗V satisfies

the ℵ0-special model axiom and |∗N| = λ. Then every hyperfinite Loeb space in ∗V is

compact.

Proof: Given a hyperfinite Loeb space Ω, let 〈(Ωβ ,Σβ) : β ∈ κ〉 be a specializing

sequence of Ω. For each β ∈ κ let Tβ,n ⊆ <ω2 be such that

νω([Tβ,n]) >
n

n+ 1
and [Tβ,n] ∩ Zβ = ∅.

Without loss of generality we can pick an independent sequence 〈An : n ∈ ω〉 of

internal sets with measure 1
2
in Σ0. Let

∗P(Ω) = {aα : α ∈ λ}. For each α ∈ λ let

g(α) = min{β ∈ κ : aα ∈ Σβ}.

We now construct an inner-regular compact family C on Ω. For each α ∈ λ and each

n ∈ ω let bα,n ∈ Σg(α)+1 be such that

bα,n ⊆ aα ∩ ATg(α),n

and

LP (bα,n) = LP (aα ∩ ATg(α),n)

(check Theorem 2 for the definition of AT ). Define now

C = {bα,n : α ∈ λ ∧ n ∈ ω} ∪ {Al
n : n ∈ ω ∧ l = 0, 1}

(recall A0 = A and A1 = Ω r A).

Claim 6.1 C is an inner-regular compact family on Ω.

Proof of Claim 6.1: Again the inner-regularity is clear. Let D ⊆ C be such that

D has f.i.p. We want to show
⋂

D 6= ∅. Again we assume D is maximal. Let

δ =
⋃

{g(α) : ∃n(bα,n ∈ D)}.



6
1
3
 
 
r
e
v
i
s
i
o
n
:
1
9
9
7
-
0
1
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
2
-
0
7
-
1
6
 
 

10

Case 1: δ < κ. Then D ⊆ Σδ+1. By the special model axiom we have
⋂

D 6= ∅.

Case 2: δ = κ. Let h ∈ ω2 be such that A
h(n)
n ∈ D. Same as the proof of Claim

2.1 we have that h ∈ [Tg(α),n] if bα,n ∈ D. But there is a β0 ∈ κ such that h ∈ Zβ0. So

we have h 6∈ [Tg(α),n] for any g(α) > β0. This contradicts δ = κ. 2

Remarks: (1) The nonstandard universes satisfying the ℵ0-special model axiom

and having cardinality λ exist. In fact, those universes are frequently used by Ross

(see [R4] and [R5]).

(2) This theorem guarantees the existence of arbitrarily large compact hyperfinite

Loeb spaces.

(3) The set theoretical assumption besides ZFC for M in this theorem is rather

weak. The model M satisfies the assumption if M is a model of e.g. CH or MA, or

is obtained by adding enough Cohen reals.

Corollary 7. Suppose M is same as in Corollary 5. In M suppose λ is a strong

limit cardinal with cf(λ) 6 κ. Suppose |∗N| = λ and ∗V satisfies the ℵ0-special model

axiom. Then every hyperfinite Loeb space in ∗V is compact.

Proof: First we arrange the Cohen forcing such that M is a forcing extension of

some model of ZFC by adding cf(λ) Cohen reals. Then by [K2, Theorem 3.20] we

know that ω2 is a union of an increasing cf(λ)-sequence of measure zero sets. 2

Remark: There is another proof by a method similar to the proof of Corollary 5.

Theorem 8. Suppose κ is a strong limit cardinal with cf(κ) = ω and suppose λ =

κ+ = 2κ. Suppose ∗V is λ-saturated and |∗N| = λ. Then every hyperfinite Loeb space

in ∗V is compact.

Proof: Given a hyperfinite Loeb space Ω in ∗V , we want to show that Ω is compact.

Let κ =
⋃

n∈ω κn be such that κ0 > ω and κn+1 > 2κn for each n ∈ ω. Choose an

independent κ-sequence

〈Aα ∈
∗P(Ω) : α ∈ κ〉

of internal sets with measure 1
2
. For any n,m let

Bn = B({Aα : α ∈ κn+1})

be the Boolean algebra generated by Aα’s for all α ∈ κn+1 and let

Posn,m = {X ∈ Bn : LP (X) >
m

m + 1
}.



6
1
3
 
 
r
e
v
i
s
i
o
n
:
1
9
9
7
-
0
1
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
2
-
0
7
-
1
6
 
 

11

Note that every X ∈ Posn,m is internal with measure > m
m+1

because it is a finite

Boolean combination of internal sets. For each n,m ∈ ω let

In,m = {E ⊆ Posn,m : E has f.i.p.}.

For each m ∈ ω let

Pos<ω,m = {X̄ : ∃n(X̄ = 〈X0, X1, . . . , Xn−1〉 ∧ (∀i < n)(Xi ∈ Posn,m))}.

and let

Fm = {F : F is a function from Pos<ω,m to
⋃

n∈ω

In,m such that

(∀X̄ = 〈X0, . . . , Xn−1〉 ∈ Pos<ω,m)(F (X̄) ∈ In,m)}.

It is clear that |Fm| 6 κκ = λ. Let Fm = {Fα,m : α ∈ λ} be a fixed enumeration. For

each α ∈ λ let’s fix an increasing sequence 〈Bα,n ⊆ α : n ∈ ω〉 such that |Bα,n| 6 κn

for each n ∈ ω and α =
⋃

n∈ω Bα,n. We define a function fα,m from ω to
⋃

n∈ω Posn,m

for each α ∈ λ by induction on n such that for each n ∈ ω

(1) fα,m(n) ∈ Posn,m,

(2) fα,m(n + 1) ⊆ fα,m(n),

(3) fα,m(n) 6∈
⋃

{Fβ,m(fα,m ¹n) : β ∈ Bα,n}.

Suppose we have defined fα,m ¹n.

Claim 8.1 There is an X = fα,m(n) such that (1), (2) and (3) hold.

Proof of Claim 8.1: For each β ∈ Bα,n let Dβ be an ultrafilter on Bn such that

Dβ ⊇ Fβ,m(fα,m ¹n)

(note that Fβ,m(fα,m ¹n) has f.i.p.). Let fα,m(n − 1) = C at stage n > 0 (replace C

by Ω at stage n = 0). For each γ ∈ [κn, κn+1) let

Jγ = {β ∈ Bα,n : C ∩ Aγ ∈ Dβ}.

Since |Bα,n| 6 κn and 2κn < κn+1 = |[κn, κn+1)|, then there exists an E ⊆ [κn, κn+1)

with |E| = κn+1 such that for any two different γ, γ ′ ∈ E we have Jγ = Jγ′. Let

γ0 < γ′
0 < γ1 < γ′

1 < . . . be in E and let

Cn = (Aγn ∩ C)∆(Aγ′n
∩ C) = (Aγn∆Aγ′n

) ∩ C,

where ∆ means symmetric difference. It is easy to see that for any n ∈ ω and any

β ∈ Bα,n we have Cn 6∈ Dβ. It is also clear that

LP (Cn) = LP (C)LP (Aγn∆Aγ′n
) =

1

2
LP (C).
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Since LP (C) > m
m+1

, there exists a big enough N ∈ ω such that

(1− (
1

2
)N)LP (C) >

m

m+ 1
.

Now let fα,m(n) =
⋃N−1
i=0 Ci. It is easy to see that (2) and (3) hold. For (1) we have

LP (fα,m(n)) = LP (C ∩ (

N−1
⋃

i=0

(Aγi∆Aγ′i
)))

= LP (C)LP (
N−1
⋃

i=0

(Aγi∆Aγ′i
))

= (1− (
1

2
)N)LP (C) >

m

m+ 1
.

2 (Claim 8.1)

We now define an inner-regular compact family C on Ω. Let ∗P(Ω) = {aα : α ∈ λ}

be an enumeration. For each α ∈ λ and m ∈ ω, let

bα,m ⊆ aα ∩ (
⋂

n∈ω

fα,m(n))

be internal such that

LP (bα,m) = LP (aα ∩ (
⋂

n∈ω

fα,m(n))).

Now let

C = {bα,m : α ∈ λ ∧m ∈ ω}.

Claim 8.2 C is an inner-regular compact family on Ω.

Proof of Claim 8.2: The inner-regularity of C is obvious. Let D ⊆ C be such that

D has f.i.p. If |D| < λ, then
⋂

D 6= ∅ by λ-saturation. So let’s assume |D| = λ.

Hence there exists an m0 ∈ ω such that

Z = {α : bα,m0 ∈ D}

has cardinality λ. Let’s prove next claim first.

Claim 8.3 There exists an X̄ = 〈X0, X1, . . . , Xn−1〉 for some n ∈ ω such that

{fα,m0(n) : α ∈ Z ∧ fα,m0 ¹n = X̄} 6∈ In,m0.

Proof of Claim 8.3: Suppose not. Then we can define a function

F : Pos<ω,m0 7→
⋃

n∈ω

In,m0
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such that for each X̄ = 〈X0, . . . , Xn−1〉

F (X̄) = {fα,m0(n) : α ∈ Z ∧ fα,m0 ¹n = X̄}.

It is clear that F ∈ Fm0. So there is an β ∈ λ such that F = Fβ,m0 . Since |Z| = λ

there is an α ∈ Z such that α > β. Now choose large enough n ∈ ω such that

β ∈ Bα,n. Then

fα,m0(n) 6∈ Fβ,m0(fα,m0 ¹n)

by the construction of fα,m0 . But this contradicts the definition of F = Fβ,m0 . 2

(Claim 8.3)

We continue the proof of Claim 8.2. By Claim 8.3 there exists an

X̄ = 〈X0, . . . , Xn−1〉 such that

{fα,m0(n) : α ∈ Z ∧ fα,m0 ¹n = X̄}

does not have f.i.p. Hence {bα,m0 : α ∈ Z} does not have f.i.p. because

bα,m0 ⊆ fα,m0(n). This contradicts that D has f.i.p. 2

Remarks: (1) λ-saturated nonstandard universes of cardinality λ exist because

λ<λ = λ.

(2) Under certain assumptions for M, e.g. Singular Cardinal Hypothesis, this

theorem guarantees the existence of arbitrarily large compact hyperfinite Loeb spaces

with regular cardinality.

(3) The proof of this theorem is implicitly included in [Sh575].

(4) D. Fremlin recently found an easier proof of the theorem based on a generaliza-

tion of the proof of Corollary 3, and the fact that any subset S of κ2 with |S| 6 κ has

νκ(S) = 0. Now we have an independent sequence 〈Aα : α < κ〉 of length κ instead

of length ω. For any closed subset [T ] ⊆ κ2 one has a correspondent set AT with

LP (AT ) = νκ([T ]). Let
κ2 = {fα : α < λ} and let Ω = {aα : α < λ}. Choose [Tα,n] so

that [Tα,n] ∩ {fβ : β < α} = ∅ and νκ([Tα,n]) > n
n+1

. It is not hard to see that the set

C = {aα ∩ATα,n : α < λ, n ∈ ω}∪ {Aj
α : α < κ, j = 0, 1} is an inner-regular compact

family.

2. Towards non-compactness

Remember that our nonstandard universes are at least ω1-saturated. For a measure

space (X,Σ, P ) we write B̄(X) for the measure algebra of X, i.e. the Boolean algebra
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of measurable sets modulo the ideal of measure zero sets. If D ⊆ Σ, we write B̄(D)

for the complete subalgebra of B̄(X) generated by D.

Theorem 9. Suppose λ is a regular cardinal such that κω < λ for every κ < λ.

Suppose |Ω| = λ. Then Ω is not compact.

Proof: Suppose not. Let C be an inner-regular compact family on Ω. Let

〈Aα : α ∈ λ〉 be an independent λ-sequence of internal subsets of Ω of Loeb measure
1
2
. Pick X l

α,n ∈ C for every α ∈ λ, n ∈ ω and l = 0, 1 such that X l
α,n ⊆ Al

α and

LP (
⋃

n∈ω

X l
α,n) =

1

2
.

Note that A0
α = Aα and A1

α = Ω r Aα, but generally X1
α,n will not be Ω r X0

α,n.

Claim 9.1 There exists an E ∈ [λ]λ and there exists an n(α, l) for each α ∈ E

and l = 0, 1 such that for any m ∈ ω, any distinct {α0, . . . , αm−1} ⊆ E and any

h ∈ m2 we have

LP (

m−1
⋂

i=0

X
h(i)
αi,n(αi,h(i))

) > 0.

The theorem follows from the claim. Since |Ω| = λ < 2λ, we can find f ∈ E2 such

that
⋂

α∈E

X
f(α)
α,n(α,f(α)) = ∅.

But {Xf(α)
α,n(α,f(α)) : α ∈ E} ⊆ C has f.i.p.

Proof of Claim 9.1: For each measurable set A ⊆ Ω let Ā denote the element in

the measure algebra, represented by A. For each α ∈ λ let

B̄α = B̄({Aβ : β < α} ∪ {X l
β,n : β < α ∧ n ∈ ω ∧ l = 0, 1}).

Recall that B̄(X) for some family X of measurable sets is a complete subalgebra

of measure algebra on Ω generated by X. By c.c.c. of measure algebra it is easy

to see that |B̄α| 6 |α|ω. Notice that the sequence 〈B̄α : α ∈ λ〉 is increasing and

B̄α =
⋃

β<α B̄β when cf(α) > ω. Let B be a complete Boolean algebra. Given a ∈ B

and a subalgebra B′ ⊆ B, define a function

g(a,B′) = inf{b ∈ B′ : b > a}.

g(a,B′) exists since B is complete. Let

D = {α ∈ λ : cf(α) > ω}.



6
1
3
 
 
r
e
v
i
s
i
o
n
:
1
9
9
7
-
0
1
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
2
-
0
7
-
1
6
 
 

15

Then D is stationary in λ. For each α ∈ D let

d(α) = min{β : g(Ā0
α, B̄α) ∈ B̄β ∧ g(Ā1

α, B̄α) ∈ B̄β}.

Then d(α) < α for every α ∈ D. By Pressing-Down Lemma we can find a stationary

subset E ⊆ D and an α0 ∈ λ such that d(α) = α0 for every α ∈ E. Since

|B̄α0 | 6 |α0|
ω < λ,

we can assume that there are b0, b1 ∈ B̄α0 such that for all α ∈ E we have

g(Ā0
α, B̄α) = b0 and g(Ā1

α, B̄α) = b1.

By thinning E further we can assume that Āα 6∈ B̄α0 for each α ∈ E. Hence Āα 6∈ B̄α

for each α ∈ E. It is easy to see that b0 ∧ b1 6= 0 because otherwise we have, for any

α ∈ E,

Ā0
α 6 b0 6 −b1 6 −Ā1

α = Ā0
α

and this implies Ā0
α = b0 ∈ B̄α0 .

Claim 9.2 For any α ∈ E there exist n(α, 0) and n(α, 1) such that

g(X̄0
α,n(α,0), B̄α) ∧ g(X̄1

α,n(α,1), B̄α) 6= 0.

Proof of Claim 9.2: Suppose not. Then for any n,m ∈ ω we have

X̄0
α,n 6 g(X̄0

α,n, B̄α) 6 −g(X̄1
α,m, B̄α) 6 −X̄1

α,m.

So then

Ā0
α =

∨

n∈ω

X̄0
α,n 6

∨

n∈ω

g(X̄0
α,n, B̄α) 6

∧

m∈ω

(−g(X̄1
α,m, B̄α))

6
∧

m∈ω

(−X̄1
α,m) = −

∨

m∈ω

X̄1
α,m = −Ā1

α = Ā0
α.

This implies

Āα = Ā0
α =

∨

n∈ω

g(X̄0
α,n, B̄α) ∈ B̄α,

a contradiction. 2 (Claim 9.2)

We continue to prove Claim 9.1. By thinning E even further we can assume that

there exist d0, d1 ∈ B̄α0 such that for every α ∈ E,

g(X̄0
α,n(α,0), B̄α) = d0 and g(X̄1

α,n(α,1), B̄α) = d1.

It follows from Claim 9.2 that d = d0 ∧ d1 6= 0.
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We now prove, by induction on m, that for any m ∈ ω, for any distinct

{α0, . . . , αm−1} ⊆ E and for any h ∈ m2,

d ∧ (

m−1
∧

i=0

X̄
h(i)
αi,n(αi,h(i))

) 6= 0.

Suppose the above is true for m, but not true for m + 1. Pick some distinct

{α0, . . . , αm} ⊆ E and h ∈ m+12 such that αi < αm for each i < m and

d ∧ (

m
∧

i=0

X̄
h(i)
αi,n(αi,h(i))

) = 0.

Without loss of generality let h(m) = 0. Then

(d ∧ (
m−1
∧

i=0

X̄
h(i)
αi,n(αi,h(i))

)) ∧ X̄0
αm,n(αm,0) = 0.

Then

X̄0
αm,n(αm,0) 6 −(d ∧ (

m−1
∧

i=0

X̄
h(i)
αi,n(αi,h(i))

)).

So

g(X̄0
αm,n(αm,0), B̄αm) = d0 6 −(d ∧ (

m−1
∧

i=0

X̄
h(i)
αi,n(αi,h(i))

)).

This implies

d0 ∧ (d ∧ (
m−1
∧

i=0

X̄
h(i)
αi,n(αi,h(i))

)) = d ∧ (
m−1
∧

i=0

X̄
h(i)
αi,n(αi,h(i))

) = 0.

This contradicts the inductive hypothesis. 2

Remarks: (1) Not like other results so far, Theorem 9 is a consequence of ZFC.

(2) When λ = (ηθ)+ for some infinite cardinals η and θ, we have κω < λ for any

κ < λ. So ZFC implies the existence of arbitrarily large non-compact hyperfinite

Loeb spaces in some nonstandard universes.

(3) The proof of this theorem is implicitly included in [Sh92].

(4) The proof works also for general Loeb spaces if they have an independent λ-

sequence of measure 1
2
.

(5) The reader could find a shorter proof by using Maharam theorem and a similar

idea in the proof of Theorem 11.

Theorem 10. Suppose λ is a strong limit cardinal, κ = cf(λ) and µω < κ for any

µ < κ. Suppose |Ω| = λ. Then Ω is not compact.
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Proof: Suppose Ω is compact and let C be an inner-regular compact family on Ω.

Let 〈λα : α ∈ κ〉 be an increasing sequence such that 2λα < λα+1 for each α ∈ κ and

λ =
⋃

α∈κ λα. Let Ω = {aβ : β ∈ λ} be an enumeration and let Ωα = {aβ : β < λα}

for each α ∈ κ. Choose an independent λ-sequence of internal sets of measure 1
2
, say

〈Aβ : β ∈ λ〉, on Ω.

Claim 10.1 There exist two different ordinals γα, γ
′
α ∈ [λα, λα+1) such that

Aγα∆Aγ′α
∩ Ωα = ∅ for each α ∈ κ.

Proof of Claim 10.1: Since 2λα < λα+1, then there exist two different γα and γ′
α

in [λα, λα+1) such that

Aγα ∩ Ωα = Aγ′α
∩ Ωα.

Hence we have Aγα∆Aγ′α
∩ Ωα = ∅. 2 (Claim 10.1)

For any α ∈ κ let Bα = Aγα∆Aγ′α
. It is easy to see that 〈Bα : α ∈ κ〉 is an

independent sequence of measure 1
2
. By inner-regularity of C we can find Xα,n ∈ C

for each α and each n ∈ ω such that Xα,n ⊆ Bα and

LP (
⋃

n∈ω

Xα,n) =
1

2
.

By a similar method as in the proof of Claim 9.1 we can find an E ∈ [κ]κ and an

n(α) ∈ ω for each α ∈ E such that for any m ∈ ω and any distinct {α0, . . . , αm1} ⊆ E

we have
m−1
⋂

i=0

Xαi,n(αi) 6= ∅.

So {Xα,n(α) : α ∈ E} ⊆ C has f.i.p., but
⋂

α∈E

Xα,n(α) ⊆
⋂

α∈E

Bα = ∅.

2

Remark: Theorem 10 is also a consequence of ZFC. So ZFC implies the existence

of non-compact hyperfinite Loeb spaces of arbitrarily large singular cardinalities.

We need Maharam Theorem for next two theorems. Given a complete Boolean

algebra B. For any X ⊆ B recall that B̄(X) is the complete subalgebra generated by

X. Let

τ(B) = min{|X| : X ⊆ B ∧ B = B̄(X)}.

For any a ∈ B r {0} let B ¹ a be the Boolean algebra {b ∧ a : b ∈ B} with a being

the largest element 1 in B ¹a. A complete Boolean algebra B is called homogeneous
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if τ(B) = τ(B ¹ a) for every a ∈ B r {0}. The following is a version of Maharam

Theorem (see [F, pp.911 Theorem 3.5]).

Maharam Theorem Let B be a homogeneous measure algebra of a

probability space with τ(B) = λ. Then there is a measure preserving

isomorphism Φ from B to B(λ2).

Let µ be a cardinal. For next two theorems we always denote, for each α ∈ µ,

Bα = {f ∈ µ2 : f(α) = 0}.

For any set X ⊆ µ2 let supt(X) denote the support of X, i.e. the smallest w ⊆ µ

such that for any f, f ′ ∈ µ2 we have f ¹ w = f ′ ¹ w implies f ∈ X iff f ′ ∈ X.

Clearly supt(X) is at most countable if X is a Baire set. For any measurable set

X in a measure space we denote again X̄ for the element in the measure algebra,

represented by X.

Theorem 11. Suppose M is obtained by adding λ random reals to a ZFC model N

for some regular λ > (2ω)N with λω = λ. Suppose |Ω| = λ (λ = 2ω in M). Then Ω

is not compact.

Proof: Let Ω be a hyperfinite Loeb space in ∗V with |Ω| = λ. Without loss of

generality we assume that B(Ω) is homogeneous and τ(B(Ω)) = µ for some µ > λ.

The reason for that is the following. It is easy to see that for any internal subset a

of Ω with positive Loeb measure there exists an |a|-independent sequence of measure
1
2
LP (a) on B(Ω) ¹ ā. Since |a| = λ, then τ(B(Ω) ¹ ā) > λ. Suppose B(Ω) is not

homogeneous. Then we can choose an internal subset a ⊆ Ω such that LP (a) > 0

and µ = τ(B(Ω)¹ ā) is the smallest. Hence µ > λ and B(Ω)¹ ā is homogeneous. Then

we could replace Ω by a.

By Maharam Theorem let Φ : B(Ω) ∼= B(µ2) be the measure preserving isomor-

phism. For each α ∈ λ ⊆ µ let Aα ⊆ Ω be measurable such that

Φ(Āα) = B̄α.

Suppose Ω is compact and let C be the inner-regular compact family on Ω. Again let

A0
α = Aα, A1

α = Ω r Aα, B0
α = Bα and B1

α = µ2 r Bα. Then there exist X l
α,n ∈ C

such that X l
α,n ⊆ Al

α and

LP (
⋃

n∈ω

X l
α,n) =

1

2
,
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where X1
α,n may not be Ω r X0

α,n. For each α ∈ λ, n ∈ ω and l = 0, 1 let Y l
α,n ⊆ Bl

α

be a Baire set such that

Φ(X̄ l
α,n) = Ȳ l

α,n.

We want to find an E ∈ [λ]λ and an n(α, l) for each α ∈ E and l = 0, 1 such that for

any m ∈ ω, any distinct {α0, . . . , αm−1} ⊆ E and any h ∈ m2

m−1
∧

i=0

Ȳ
h(i)
αi,n(αi,h(i))

6= 0.

This is enough to prove the theorem because by Maharam’s isomorphism we have a

family

Ff = {Xf(α)
α,n(α,f(α)) : α ∈ E}

with f.i.p. for every f ∈ E2. But |Ω| = λ. So there must be a family Ff for some

f ∈ E2 with empty intersection, which contradicts that C is a compact family.

Let P = B(λ2) be the forcing in N for adding λ random reals. Since P has c.c.c.,

then for each α ∈ λ there exists a countable set vα ⊆ λ in N such that

{Y l
α,n : n ∈ ω ∧ l = 0, 1} ⊆ N B(vα2).

Work in N . Let u̇α be a P-name for
⋃

n∈ω,l=0,1

supt(Y l
α,n).

Again since P has c.c.c. there exists a countable wα ⊆ µ such that

°P u̇α ⊆ wα.

Note that α ∈ wα for every α ∈ λ ⊆ µ. Since λ > 2ω > ω1, we can find a v̄ ⊆ µ with

|v̄| < λ and an E ∈ [λ]λ such that for any two different α, β ∈ E

wα ∩ wβ ⊆ v̄.

So in M for any two different α, β ∈ E we have

supt(Y l
α,n) ∩ supt(Y l′

β,m) ⊆ v̄.

Without loss of generality we assume that v̄ < λ is an ordinal, v̄ ∩ E = ∅ and

|λ r
⋃

α∈E

vα| = λ.

For any X ⊆ µ2 and η ∈ v̄2 let

X(η) = {ξ ∈ µrv̄2 : η ξ̂ ∈ X}.
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Now we work in M. For each α ∈ E, n ∈ ω and l = 0, 1 let

C l
α,n = {η ∈ v̄2 : νµrv̄(Y

l
α,n(η)) > 0}.

Claim 11.1 νv̄(
⋃

n∈ω C l
α,n) = 1 for each α ∈ E and l = 0, 1.

Proof of Claim 11.1: For any η ∈ v̄2 we have

νµrv̄(
⋃

n∈ω

Y l
α,n(η)) = νµrv̄((

⋃

n∈ω

Y l
α,n)(η)) 6

1

2

because (
⋃

n∈ω Y l
α,n)(η) ⊆ Bl

α(η) and νµrv̄(B
l
α(η)) = 1

2
. So by Fubini Theorem we

have
1

2
= νµ(

⋃

n∈ω

Y l
α,n)

=

∫

v̄2

νµrv̄(
⋃

n∈ω

Y l
α,n(η))dνv̄(η)

6
1

2
νv̄({η : νµrv̄(

⋃

n∈ω

Y l
α,n(η)) > 0}).

This implies

νv̄({η : νµrv̄(
⋃

n∈ω

Y l
α,n(η)) > 0}) = 1.

But
⋃

n∈ω

C l
α,n = {η : νµrv̄(

⋃

n∈ω

Y l
α,n(η)) > 0}.

2 (Claim 11.1)

We now divide the proof of the theorem into two cases.

Case 1: v̄ = k for a finite k ∈ ω.

Fix an η0 ∈ v̄2. For any α ∈ E and l = 0, 1 the fact νv̄(
⋃

n∈ω C l
α,n) = 1 implies

that there exists an n(α, l) such that η0 ∈ C l
α,n(α,l). So for any m ∈ ω, any distinct

{α0, . . . , αm−1} ⊆ E and any h ∈ m2 we have, by Fubini Theorem and independence,

νµ(
m−1
⋂

i=0

Y
h(i)
αi,n(αi,h(i))

)

=

∫

v̄2

νµrv̄(

m−1
⋂

i=0

Y
h(i)
αi,n(αi,h(i))

(η))dνv̄(η)

=

∫

v̄2

m−1
∏

i=0

νµrv̄(Y
h(i)
αi,n(αi,h(i))

(η))dνv̄(η)
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> (2−k)(

m−1
∏

i=0

νµrv̄(Y
h(i)
αi,n(αi,h(i))

(η0))) > 0.

Case 2: v̄ > ω. Let

S ⊆ λ r ((
⋃

α∈E

vα) ∪ v̄)

be such that |S| = v̄. We can factor the forcing P to P1 ∗ Ṗ2 such that

N P = N P1∗Ṗ2 ,

where P1 = B(λrS2) and P2 = (B( S2))N
P1 (see [K2, Theorem 3.13]). Let r ∈ S2

be a random function over N P1. Since |S| = |v̄| we can assume that r is a random

function from v̄ to 2. Since C l
α,n ∈ N

P1 for any α ∈ E, n ∈ ω and l = 0, 1, and

νv̄(
⋃

n∈ω C l
α,n) = 1, then there exists an n(α, l) for any α ∈ E and l = 0, 1 such that

r ∈ C l
α,n(α,l).

Now for any m ∈ ω, any distinct {α0, . . . , αm−1} ⊆ E and any h ∈ m2 we have

r ∈ C, where

C =
m−1
⋂

i=0

C
h(i)
αi,n(αi,h(i))

.

This implies νv̄(C) > 0. Hence

νµ(
m−1
⋂

i=0

Y
h(i)
αi,n(αi,h(i))

)

>

∫

C

νµrv̄(
m−1
⋂

i=0

Y
h(i)
αi,n(αi,h(i))

(η))dνv̄(η)

=

∫

C

(

m−1
∏

i=0

νµrv̄(Y
h(i)
αi,n(αi,h(i))

(η)))dνv̄(η) > 0.

2

Remark: Theorem 11 is complementary to Theorem 2 and its corollaries. Com-

bining those results we conclude that the compactness of a hyperfinite Loeb space of

size 2ω is undecidable under ZFC.

Theorem 12. Suppose M is obtained by adding κ random reals to a ZFC model N

for some regular κ > ω. Suppose λ is a strong limit cardinal such that cf(λ) 6 κ.

Suppose |Ω| = λ. Then Ω is not compact.
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Proof: Let 〈λα : α ∈ cf(λ)〉 be an increasing sequence such that λ =
⋃

α∈cf(λ) λα

and 2λα < λα+1 for each α ∈ cf(λ). By similar arguments in the proof of theorem 11

we can assume that B(Ω) is homogeneous and τ(B(Ω)) = λ. Note that the cardinality

of any positive measure internal subset of Ω is λ.

By Maharam Theorem there is a measure preserving isomorphism Φ from B(Ω) to

B(λ2). Using the same notation as in Theorem 11 let Aγ ⊆ Ω be measurable such

that Φ(Āγ) = B̄γ for each γ ∈ λ. By the same argument as in Claim 10.1 we can find

a cf(λ)-independent sequence

〈Cα ⊆ Ω : α ∈ cf(λ)〉

of measure 1
2
such that for any Z ∈ [cf(λ)]cf(λ) we have

⋂

α∈Z Cα = ∅, where Cα =

Aγα∆Aγ′α
for some different γα, γ

′
α ∈ [λα, λα+1). Suppose Ω is compact and assume C

is an inner-regular compact family on Ω. Let Xα,n ⊆ Cα be such that

LP (
⋃

n∈ω

Xα,n) =
1

2

and let Yα,n ⊆ λ2 be Baire sets such that Φ(X̄α,n) = Ȳα,n. It suffices now to find an

E ∈ [cf(λ)]cf(λ) and an n(α) for each α ∈ E such that for any m ∈ ω and for any

distinct {α0, . . . , αm−1} ⊆ E we have

m−1
∧

i=0

Ȳαi,n(αi) 6= 0.

This is enough to prove the theorem because we have a family

{Xα,n(α) : α ∈ E}

with f.i.p. but
⋂

{Xα,n(α) : α ∈ E} ⊆
⋂

α∈E

Cα = ∅.

For any α ∈ cf(λ) there exists a countable set vα ⊆ κ in N such that

{Yα,n : n ∈ ω} ⊆ N B(vα2).

Choose a D ∈ [cf(λ)]cf(λ) such that

|κ r
⋃

α∈D

vα| = κ.

Let S ⊆ κr
⋃

α∈D vα be such that |S| = cf(λ). Again we factor the forcing P = B(κ2)

to P1 ∗ Ṗ2 such that P1 = B(κrS2) and P2 = (B(S2))N
P1 . Note that Yα,n ∈ N

P1 for
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any α ∈ D and n ∈ ω. Let

R =
⋃

α∈D,n∈ω

supt(Yα,n).

Then R ⊆ λ and |R| = cf(λ). It is clear that R is unbounded in λ. Recall that

Bγ = {f ∈ λ2 : f(γ) = 0}

for each γ ∈ λ and
∨

n∈ω

Ȳα,n = B̄γα∆B̄γ′α

for each α ∈ D. Notice also that γα, γ
′
α ∈ R for all α ∈ D. Let G ⊆ P2 be a N P1

generic filter. Without loss of generality we assume that P2 = B(R2) since |S| = |R|.

Now we define a dense subset Dα ⊆ P2 in N P1 for each α ∈ D. For any Z ⊆ R2 let

Z+ = {f ∈ λ2 : f ¹R ∈ Z}

and for any Z ⊆ λ2 let

Z− = {f ∈ R2 : f = g ¹R for some g ∈ Z}.

Define

Dα = {Z̄ : νR(Z) > 0 ∧ (∃β ∈ [α, cf(λ)) ∩D)(Z̄+ 6 B̄γβ∆B̄γ′
β
)}.

Claim 12.1 In N P1, the set Dα is dense in P2.

Proof of Claim 12.1: Given any X̄ ∈ P2 for some Baire set X ⊆ R2 with

νR(X) > 0. Since supt(X) is at most countable, there exists a β ∈ [α, cf(λ)) ∩ D

such that γβ, γ
′
β ∈ R r supt(X). Let Y = X+ ∩ Bγβ∆Bγ′

β
. Then

νR(Y
−) = νR(X)νR((Bγβ∆Bγ′

β
)−) > 0

and Ȳ 6 B̄γβ∆B̄γ′
β
. 2 (Claim 12.1)

Let

E = {α ∈ D : B̄−
γα
∆B̄−

γ′α
∈ G}.

By Claim 12.1 we have |E| = cf(λ). For each α ∈ E since
∨

n∈ω

Ȳ −
α,n = B̄−

γα
∆B̄−

γ′α
,

then there exists an n(α) ∈ ω such that Ȳ −
α,n(α) ∈ G. We are done because G is a

filter and supt(Yα,n(α)) ⊆ R. 2

Remarks: (1) Theorem 12 is complementary to Theorem 6 and Corollary 7.

(2) In this theorem we didn’t require κ > 2ω in N .
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Theorem 13. Suppose λ > |V |, where V is the standard universe, and λω = λ. Then

there exists a ∗V , in which every hyperfinite Loeb space Ω has cardinality λ and is not

compact.

Proof: Note that |V | = iω > 2ω. Construct a continuous elementary chain of

nonstandard universes

〈∗Vα : α 6 (2ω)+〉

such that for every α ∈ (2ω)+,

(1) every hyperfinite Loeb space in ∗Vα has cardinality λ,

(2) ∗Vα is ω1-saturated when α is a successor ordinal.

(3) for any hyperfinite Loeb space Ω in ∗V(2ω)+ if Ω ∈ ∗Vα, then Ω ∩ ∗Vα has Loeb

measure zero in ∗Vα+1.

The elementary chain of nonstandard universes satisfying (1), (2) and (3) exists

because at each step one need only to realize 6 λω types. We want to show that

nonstandard universe ∗V = ∗V(2ω)+ is the one we want.

Obviously, ∗V(2ω)+ is ω1-saturated. Suppose there is a compact hyperfinite Loeb

space Ω in ∗V . Let C be an inner-regular compact family on Ω. For every α ∈ (2ω)+

such that Ω ∈ ∗Vα there is an internal set Zα ∈ ∗Vα+1 such that

LP (Zα) >
1

2

and

Z ∩ (Ω ∩ ∗Vα) = ∅.

Now we can find Xα,n ∈ C such that Xα,n ⊆ Zα and

LP (
⋃

n∈ω

Xα,n) = LP (Zα).

Again using the same method as in the proof of Claim 9.1 we can find an E ⊆ (2ω)+

with |E| = (2ω)+ and an n(α) ∈ ω for each α ∈ E such that {Xα,n(α) : α ∈ E} has

f.i.p. But
⋂

α∈E

Xα,n(α) ⊆
⋂

α∈E

Zα = ∅.

2

We would like to end this section by making a conjecture.

Conjecture: It is consistent with ZFC that there are no compact hyperfinite Loeb

spaces in any nonstandard universes.
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The reader might notice that all results in §1 are not proved by ZFC. But Theorem

8 assumes only ZFC plus a consequence of Singular Cardinal Hypothesis. So the

non-existence of any compact hyperfinite Loeb spaces would have to violate Singular

Cardinal Hypothesis, which implies the existence of pretty large cardinals.
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