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TORSION MODULES, LATTICES AND P-POINTS

PAUL C. EKLOF, BIRGE HUISGEN-ZIMMERMANN, AND SAHARON SHELAH

Abstract. Answering a long-standing question in the theory of torsion
modules, we show that weakly productively bounded domains are nec-
essarily productively bounded. (See the introduction for definitions.)
Moreover, we prove a twin result for the ideal lattice L of a domain
equating weak and strong global intersection conditions for families
(Xi)i∈I of subsets of L with the property that

⋂

i∈I Ai 6= 0 whenever
Ai ∈ Xi. Finally, we show that, for domains with Krull dimension (and
countably generated extensions thereof), these lattice-theoretic condi-
tions are equivalent to productive boundedness.

0. Introduction

This paper continues a series of articles (see [3], [1],[2],[8]) dealing with
the following problem about torsion modules:

For which (right) Ore domains R is it true that, given any
family (Mi)i∈I of torsion (right) R-modules, the intersection
of annihilators,

⋂

i∈J ann(Mi), is nonzero for some cofinite
subset J ⊆ I provided that the direct product

∏

i∈I Mi is
torsion?

In other words, over which Ore domains is the obvious sufficient condition
for a direct product of torsion modules to be torsion also necessary? We call
such Ore domains (right) productively bounded. The fact that Dedekind do-
mains are productively bounded plays a pivotal role in the theory of direct-
sum decompositions of direct products of modules over such domains [7],
which triggered interest in the property for more general rings. The known
classes of productively bounded domains include all Ore domains of count-
able Krull dimension [3] and all commutative noetherian domains [1].

As a consequence of our main results, these classes of positive examples
can be enlarged: namely each commutative domain which is a countably
generated extension of a productively bounded domain inherits this property
(Section 4).

Already in the first investigation of the topic ([3]), it turned out that the
following weakened condition on R, accordingly labeled (right) weak pro-
ductive boundedness, is far more accessible in concrete situations: whenever
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ported by German-Israeli Foundation for Scientific Research & Development Grant No.
G-294.081.06/93. Pub. No. 617.
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2 PAUL C. EKLOF, BIRGE HUISGEN-ZIMMERMANN, AND SAHARON SHELAH

(Mi)i∈I is a family of R-modules such that
∏

i∈I Mi is torsion, the annihi-
lators annR(Mi) are nonzero for all but finitely many i ∈ I. This naturally
raised the question whether weak productive boundedness implies the full
boundedness condition in general. Our main theorem answers this ques-
tion affirmatively (Section 1). The proof rests on the notion of a p-point, a
certain type of ultrafilter on ω (defined below).

There is an immediately neighboring pair of properties for the dual ideal
lattice of R which, at least on the face of it, is somewhat stronger than the
two boundedness conditions for R discussed so far. Consider any lattice L
which is complete and finitely join-irreducible, the latter meaning that its
largest element 1 is not the join of two strictly smaller elements. (Observe
that the dual ideal lattice of an Ore domain satisfies these conditions.) If
(Xi)i∈I is a family of nonempty subsets of L, an element x = (xi)i∈I of
∏

i∈I Xi is referred to as a transversal of (Xi)i∈I and such a transversal
is said to be bounded if

∨

{xi : i ∈ I} < 1. We say that L is uniformly
transversally bounded if for each family (Xi)i∈I of nonempty subsets of L all
of whose transversals are bounded, there is a cofinite subset J of I such that
∨

(
⋃

i∈J Xi) < 1; moreover, we call L tranversally bounded if for each family
(Xi)i∈I of nonempty subsets of L, all of whose transversals are bounded,
∨

Xi < 1 for all but finitely many i ∈ I.
Given a domain R, we denote by LR the dual of its right ideal lattice. It

is easy to see that transversal boundedness of LR (resp. uniform transversal
boundedness of LR) entails weak productive boundedness (resp. productive
boundedness) of R. It remains open whether the reverse implications hold
in general. However, we show in Section 3 that for domains with Krull
dimension in the sense of Gordon and Robson [4] all of these boundedness
conditions are equivalent. This completes a round-trip from torsion modules
to ultrafilters through lattices which began with the papers we listed at the
outset.

For the dual ideal lattices of arbitrary domains we prove transversal
boundedness to be equivalent to uniform transversal boundedness (Section
2). Interestingly, this equivalence distinguishes dual ideal lattices of domains
from abstract lattices. In fact, the second author showed that the contin-
uum hypothesis guarantees the existence of lattices which are transversally
bounded, but not uniformly so (see [8]). In Section 2 of the present pa-
per, we observe that this conclusion is actually independent of ZFC, even
independent of ZFC plus the negation of the continuum hypothesis.

Throughout, we shall assume that R is a commutative integral domain.
However, all of our results in Sections 1–3 actually carry over to arbitrary
Ore domains in a quite obvious manner (for module read “right module” and
for ideal read “right ideal”). This is not true for the theorems of Section 4,
where we warn the reader about this point.

That R is productively bounded (resp. weakly productively bounded)
will be abbreviated by ‘R is PB’ (resp. ‘R is wPB’). Moreover, transversal
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TORSION MODULES, LATTICES AND P-POINTS 3

boundedness and uniform transversal boundedness will be denoted by ‘TB’
and ‘UTB’, respectively, for short.

We recall the definitions of some special kinds of ultrafilters on ω (see [5,
pp 257-9], for example). An ultrafilter U on ω is called a p-point (resp. a
Ramsey ultrafilter) if, whenever ω is expressed as a disjoint union

∐

k∈ω Nk

of subsets Nk, none of which belongs to U , there is a set Y ∈ U such that
Y ∩Nk is finite (resp. |Y ∩ Nk| ≤ 1) for all k ∈ ω. It is known that either
of CH or (MA + ¬ CH) implies the existence of Ramsey ultrafilters. On
the other hand, by a result due to the third author [6], the non-existence of
p-points is consistent with ZFC + ¬ CH.

1. Products of torsion modules

Our first aim is to prove that every weakly productively bounded domain
is actually productively bounded. We start by recording a lemma from [3]
to which we will refer repeatedly.

Lemma 1. (see [3, Lemma 1.1]) If R is weakly productively bounded then, for
every uncountable family A of ideals such that ∩A = 0, there is a countable
subfamily A′ of A such that ∩A′ = 0. 2

Next we list some consequences of the assumption that there is a coun-
terexample to our claim. Call a domain R ultrafiltral if there is a non-
principal ultrafilter U on ω, together with a family (An)n∈ω of ideals of R
such that, for every subset Y of ω, the intersection

⋂

n∈Y An is zero if and
only if Y ∈ U . It is essentially proved in [3] and [2] that R is ultrafiltral in
case R is weakly productively bounded without being productively bounded;
we will sketch the proof and strengthen the conclusion.

Lemma 2. Suppose that R is weakly productively bounded but not produc-
tively bounded. Then there is a p-point U , together with a family (An)n∈ω

of ideals of R such that, for every subset Y of ω, the intersection
⋂

n∈Y An

is zero if and only if Y ∈ U .

proof. It follows from the assumptions on R and Lemma 1 that there is
a countable family (Mi)i∈I of torsion modules such that

∏

i∈I Mi is torsion
and

⋂

i∈I ann(Mi) = 0. Let Ai = ann(Mi). As in [3, Thm 6.1, proof of Step
II], there is a subset L of I such that

⋂

i∈L Ai = 0 and for any pair of disjoint
subsets J and K of L either

⋂

i∈J Ai 6= 0 or
⋂

i∈K Ai 6= 0. Without loss of
generality we can assume that I = L = ω. If U is defined to be {Y ⊆ ω :
⋂

i∈Y Ai = 0}, U is a non-principal ultrafilter on ω. We claim that U is a
p-point.

Suppose that ω =
∐

k∈ω Nk such that Nk /∈ U for every k ∈ ω. For each
m ∈ ω, let

Tm =
⊕

{Mn : n ∈
⋃

k≥m

Nk}. (1)
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4 PAUL C. EKLOF, BIRGE HUISGEN-ZIMMERMANN, AND SAHARON SHELAH

Then, for all m, the annihilator ann(Tm) =
⋂

{An : n ∈
⋃

k≥m Nk} is zero

since
⋃

k≥m Nk ∈ U (note that the finite union
⋃

k<m Nk does not belong

to U). Consequently, since R is wPB, the product
∏

m∈ω Tm is not torsion.
Let y = (y(m))m∈ω be an element of

∏

m∈ω Tm which is not of finite order,
i.e.,

⋂

m∈ω ann(y(m)) = 0. Moreover, let Y be the union of the supports of
the y(m); more precisely

Y = {n ∈ ω : ∃m s.t. y(m) has a non-zero projection on Mn}.

(Here we refer to the canonical projections associated with the definition of
Tm in (1).) Then Y belongs to U since

⋂

n∈Y An ⊆ ann(y) = 0. On the other
hand, for all k ∈ ω, the intersection Y ∩Nk is clearly finite by construction.
2

The contradiction we seek now follows from the following observation.

Lemma 3. Suppose that there is a p-point U , together with a family (An)n∈ω

of ideals of R such that, for every subset Y of ω, the intersection
⋂

n∈Y An is
zero if and only if Y belongs to U . Then there is an uncountable family B of
ideals of R such that

⋂

B = 0, while
⋂

B′ 6= 0 for every countable subfamily
B′ of B.

proof. Let Ū = {S ⊆ ω : S is infinite and S /∈ U}. For each S ∈ Ū and
m ∈ ω we moreover define

BS,m =
⋂

{An : n ∈ S \ {0, 1, ...,m}}.

Note that the BS,m form an ascending chain of ideals each of which is non-
zero because S (and hence S \ {0, 1, ...,m}) does not belong to U .

Let BS =
⋃

m∈ω BS,m, and set B = {BS : S ∈ Ū}. First we claim that
⋂

B = 0. Suppose, to the contrary, that
⋂

B contains a nonzero element
r. If X = {n ∈ ω : r ∈ An}, then clearly X does not belong to U since
r ∈

⋂

n∈X An. Therefore ω \ X ∈ U , and in particular, ω \ X is infinite.
Whenever we write ω \X as the disjoint union of two infinite subsets, these
cannot both belong to U . Hence there is a subset S1 ⊆ ω \X which belongs
to Ū . But then r ∈ BS1

and consequently r ∈ BS1,m for some m. This
means that S1 \ {0, 1, ...,m} is contained in X, a contradiction to the choice
of S1.

It remains to be proved that
⋂

B′ 6= 0 for every countable subset B′

of B. Observe that so far we have only used the ultrafilter properties of
U . Now we will use the fact that U is a p-point to show that, whenever
{Sn : n ∈ ω} ⊆ Ū , there exists S ∈ Ū such that BS ⊆

⋂

{BSn : n ∈ ω}. This
will clearly imply our claim concerning countable subfamilies of B.

If
⋃

n∈ω Sn ∈ Ū , we can take S =
⋃

n∈ω Sn. So assume
⋃

n∈ω Sn ∈ U . Let
N0 = ω \

⋃

n∈ω Sn, N1 = S0, and for k > 1, let Nk = Sk−1 \
⋃

n<k−1 Sn.
Then Nk /∈ U for all k ∈ ω, and ω is the disjoint union of the Nk. Hence,
there exists Y ∈ U such that, for all k ∈ ω, the intersection Y ∩Nk is finite.
Let S = ω \ Y . Clearly S is infinite, since Y ∩ S0 is finite, and so S ∈ Ū .
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TORSION MODULES, LATTICES AND P-POINTS 5

To verify the claimed inclusion, we need to show that BS,m ⊆ BSn for all

m,n ∈ ω. Our construction permits us to write Sn = S̃n ∪ Fn for n ∈ ω,
where S̃n ⊆ S and Fn ⊆ Y ∩

⋃

k≤n+1Nk is finite. This clearly implies

S̃n \ {0, 1, ...,m} ⊆ S \ {0, 1, ...,m} for all m ∈ ω. Therefore
⋂

{A` : ` ∈ S \ {0, 1, ...,m}} ⊆
⋂

{A` : ` ∈ S̃n \ {0, 1, ...,m}}
=
⋂

{A` : ` ∈ Sn \ (Fn ∪ {0, 1, ...,m})} ⊆ BSn ,

which completes the proof of the Lemma. 2

Theorem 4. Every weakly productively bounded domain is productively bounded.

proof. Suppose to the contrary that R is wPB but not PB. By Lemma
2 the hypothesis of Lemma 3 is satisfied. But then R is not wPB by Lemma
1, a contradiction. 2

2. Lattices

Primarily, this section is devoted to proving that, for every domain R,
transversal boundedness of the dual ideal lattice LR entails uniform transver-
sal boundedness of that lattice. This does not follow from Theorem 4, be-
cause it is unresolved whether every productively bounded domain R gives
rise to a uniformly transversally bounded lattice LR; but it does follow from
Lemma 3 and previous results of the second author.

As we mentioned earlier, this implication cannot be extended to general
lattices in the presence of the continuum hypothesis. We will subsequently
explore what happens when the continuum hypothesis fails.

Theorem 5. For every domain R, transversal boundedness of LR is equiv-
alent to uniform transversal boundedness of LR.

We need to review some of the terminology and results of [8] before being
able to apply the insights of the previous section. Given any ultrafilter U on
ω, we consider an associated complete lattice L(U) = {A ⊆ ω : A /∈ U}∪{ω},
ordered by inclusion, in which meets coincide with set-theoretic intersections
and joins are given by

∨

{Ai : i ∈ I} =

{
⋃

i∈I Ai if
⋃

i∈I Ai /∈ U
ω otherwise

The following lemma combines two results of [8].

Lemma 6. Let L be a complete, finitely join-irreducible lattice which is
transversally bounded, but not uniformly so. Then there exists a p-point U ,
together with a complete upper subsemilattice L′ of L which (as a complete
upper semilattice) is isomorphic to L(U).
In case L = LR for a domain R, there is a family (Xn)n∈ω of subsets of L

such that a semilattice L′ as above and an isomorphism φ : L(U)→ L′ can
be constructed as follows: if An =

⋂

Xn, then L
′ consists of all intersections

of subfamilies of the family (An)n∈ω, and φ({n}) = An.



6
1
7
 
 
r
e
v
i
s
i
o
n
:
1
9
9
7
-
0
3
-
2
3
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
1
9
9
7
-
0
3
-
2
3
 
 

6 PAUL C. EKLOF, BIRGE HUISGEN-ZIMMERMANN, AND SAHARON SHELAH

proof. By Corollary C of [8], there exists a complete upper subsemilat-
tice L′ of L which is isomorphic to an upper semilattice of the form L(U)
for some ultrafilter U on ω. The lattice L′, being closed under suprema in
L, clearly inherits the property of being TB, and hence L(U) is TB. But,
by Theorem E(I) of [8], this guarantees that U is a p-point.

The claim concerning a realization of L′ in case L is the dual ideal lattice
of a domain, is an immediate consequence of part (c) of Corollary C of [8].
2

proof of Theorem 5. Suppose, to the contrary, that LR is TB without
being UTB, and let U , L′, (Xn)n∈ω and An be as in Lemma 6. In particular,
U is a p-point. Moreover, the definition of L(U) immediately yields the
following string of equivalences for any Y ⊆ ω: Y ∈ U if and only if
∨

Y = ω in L(U) if and only if φ(
∨

Y ) = 0. But φ(
∨

Y ) =
⋂

n∈Y An,
and so the p-point U and the family (An)n∈ω of ideals satisfy the hypothesis
of Lemma 3. The conclusion of Lemma 3, when combined with Lemma 1,
shows that R fails to be wPB. On the other hand, transversal boundedness
of LR clearly forces R to be wPB. This contradiction completes the proof.
2

The second author has shown that CH implies the existence of a complete
finitely join-irreducible lattice which is transversally bounded without hav-
ing the uniform boundedness property ([8, p. 204]). Here we observe that
this conclusion is independent of ¬CH.

Theorem 7. It is undecidable in ZFC + ¬CH whether there is a complete
finitely join-irreducible lattice which is transversally bounded, but not uni-
formly so.

proof. The axioms MA + ¬CH imply that there is a Ramsey ultrafilter
(see for example [5, p.259]). Hence, by Example J and Theorem G of [8],
any model of ZFC + MA + ¬CH admits a complete finitely join-irreducible
lattice which is TB but not UTB.

On the other hand, in a model of ZFC + ¬CH without p-points, there is
no such lattice by Lemma 6. 2

3. Domains with Krull dimension

For domains with Krull dimension we can show the equivalence of the
ring-theoretic and the lattice-theoretic properties considered in the previous
sections. Moreover, in this case, all of these boundedness conditions follow
from the (on the face of it comparatively weak) condition on uncountable
families of ideals which arises as a consequence of weak productive bound-
edness in Lemma 1. More precisely, we have:

Theorem 8. Suppose R is a domain with Krull dimension and LR its dual
ideal lattice. Then the following statements are equivalent:
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TORSION MODULES, LATTICES AND P-POINTS 7

(1) R is weakly productively bounded;
(2) R is productively bounded;
(3) LR is transversally bounded;
(4) LR is uniformly transversally bounded;
(5) for every uncountable family A of ideals of R such that ∩A = 0, there

is a countable subfamily A′ of A such that ∩A′ = 0.

Remark. Our argument for the crucial implication ‘(5) =⇒ (4)’ was inspired
by the proof of Theorem 8 in [1]. We recall the pivotal definition introduced
there. Given a complete lattice L, we start by fixing a family (Xi)i∈I of
subsets of L. An element y ∈ L is said to be tame relative to an element
x ∈ L if there exists an infinite subset K ⊆ I, together with a family of
elements xk ∈ Xk for k ∈ K, such that x ∨

∨

k∈S xk ≥ y for every infinite
subset S of K. For the convenience of the reader, we include Lemma 7 of
[1].

Lemma 9. Let L and (Xi)i∈I be as above and suppose that L does not
contain a complete upper subsemilattice isomorphic to 2ω. Then there exists
a finite subset F ⊆ I, together with a family (xi)i∈F of elements xi ∈ Xi,
such that every element of

⋃

i∈I\F Xi is tame relative to
∨

i∈F xi. 2

proof of Theorem 8. The implications ‘(4) =⇒ (2)’ and ‘(3) =⇒ (1)’
are known, and ‘(2) =⇒ (1)’, as well as ‘(4) =⇒ (3)’ are trivial. Moreover,
‘(1) =⇒ (5)’ follows from Lemma 1. Hence it suffices to prove ‘(5) =⇒ (4)’.
We assume (5) and let (Xi)i∈I be a family of nonempty subsets of the dual
ideal lattice LR such that, for each cofinite subset J ⊆ I, the intersection
of the ideals in

⋃

i∈J Xi is zero. We wish to apply Lemma 9 to construct a
transversal of (Xi)i∈I which is unbounded in LR. Clearly, it is harmless to
assume that none of the sets Xi contains the zero ideal.

Since R has Krull dimension, LR does not contain any subsets order-
isomorphic to 2ω, and consequently LR satisfies the hypothesis of Lemma
9. We infer the existence of a finite subset F ⊆ I and a family of ideals
(Ai)i∈F ∈

∏

i∈F Xi such that each ideal A ∈
⋃

i∈I\F Xi is tame relative to

the intersection B =
⋂

i∈I Ai, inside the dual ideal lattice of R.
Our initial assumption about the Xi forces the intersection of the ideals in

⋃

i∈I\F Xi to be zero, and hence Condition (5) provides us with a countable

family (An)n∈ω of ideals in
⋃

i∈I\F Xi such that
⋂

n∈ω An = 0. Since each

An is tame relative to B, we can moreover find infinite subsets Kn ⊆ I and
transversals (Ak,n)k∈Kn ∈

∏

k∈Kn
Xk such that

B ∩
⋂

k∈Sn

Ak,n ⊆ An

for each infinite subset Sn ⊆ Kn. A standard diagonal technique then yields
a family (Sn)n∈ω of pairwise disjoint infinite sets Sn ⊆ I such that Sn is
contained in Kn for n ∈ ω. Moreover, we define S−1 = I \

⋃

n∈ω Sn and, for
each i ∈ S−1, we pick an arbitrary ideal Ai,−1 ∈ Xi. We will check that the



6
1
7
 
 
r
e
v
i
s
i
o
n
:
1
9
9
7
-
0
3
-
2
3
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
1
9
9
7
-
0
3
-
2
3
 
 

8 PAUL C. EKLOF, BIRGE HUISGEN-ZIMMERMANN, AND SAHARON SHELAH

transversal (Ak,n)k∈Sn,n≥−1 of
∏

i∈I Xi is unbounded in LR. Indeed, our
construction entails that

B ∩
⋂

k∈Sn,n≥−1

Ak,n ⊆ B ∩
⋂

k∈Sn,n≥0

Ak,n ⊆
⋂

n∈ω

An = 0.

But since B, being a finite intersection of nonzero ideals, is nonzero, this
implies that

⋂

k∈Sn,n≥−1Ak,n = 0 as desired. Thus LR is UTB, that is,

condition (4) is satisfied. 2

4. Countable extensions of domains

Our aim is to prove the following, which generalizes (for the commutative
case) Theorems 4.2 and 6.1 of [3].

Theorem 10. Suppose that D ⊆ R is an extension of commutative domains
such that R is countably generated over D. If D is productively bounded then
so is R.

Remark. The referee has pointed out that the implication of this theorem
remains valid if D is a right Ore domain and the extension R is generated
over D by countably many elements which are central in R.

proof. LetD be PB. By Theorem 4, it is enough to prove that R is wPB,
i.e., to show that if (Mi)i∈I is a family of R-modules with annR(Mi) = 0 for
all i ∈ I, then

∏

i∈I Mi is not torsion. Clearly, without loss of generality, we
may assume that our family is countable, so I may be taken to be ω.

We first observe that we can reduce the situation to the case where R is
finitely generated over D as a ring, as follows. If R = D[xn : n ∈ ω], let
Rk = D[xn : n < k]. Moreover, we write ω =

∐

k∈ω Nk, where the Nk are
pairwise disjoint infinite sets. Assuming the result for the finitely generated
case, we obtain, for each k, an element (mn)n∈Nk

in
∏

n∈Nk
Mn which is not

torsion over Rk. Clearly the transversal (mn)n∈ω ∈
∏

n∈ω Mn then fails to
be a torsion element over R. (Note that the proof shows that the union of a
countable chain of productively bounded domains is productively bounded.)

By induction the finitely generated case can obviously be reduced to the
following: ifD is PB and R = D[x], then R is PB. So suppose that R = D[x].
We say that an element of R has degree ≤ k iff it can be written in the form
∑k

i=0 dix
i for some di ∈ D. Once more, we decompose ω into infinitely

many disjoint infinite subsets Nk. It clearly suffices to prove that, for every
k ∈ ω, there is an element (mn)n∈Nk

in
∏

n∈Nk
Mn such that

⋂

{annR(mn) :

n ∈
⋃

`≤k N`} does not contain any non-zero elements of degree ≤ k. We

construct such transversals (mn)n∈Nk
by induction on k. For k = 0, we

obtain (mn)n∈N0
as required from the fact that D is wPB; indeed, the latter

implies that
∏

n∈N0
Mn is not torsion as a D-module.

Suppose now that elements (mn)n∈N`
with the desired properties have

been defined for ` ≤ k. Set Ak =
⋂

{annR(mn) : n ∈
⋃

`≤k N`}. In partic-
ular, Ak then does not contain any nonzero elements of degree ≤ k. If Ak
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TORSION MODULES, LATTICES AND P-POINTS 9

does not contain any elements of degree ≤ k+1, let (mn)n∈Nk+1
be the zero

element. Otherwise, pick an element

rk+1 = dk+1x
k+1 + tk

inAk, where dk+1 ∈ D\{0} and tk ∈ R has degree≤ k. Since annD(rk+1Mn) =
0 for all n ∈ Nk+1 and D is wPB, there is an element (rk+1mn)n∈Nk+1

∈
∏

n∈Nk+1
Mn which is not D-torsion. Hence

Drk+1 ∩
⋂

{annR(mn) : n ∈ Nk+1} = 0. (2)

It follows that
⋂

{annR(mn) : n ∈
⋃

`≤k+1N`} = Ak ∩
⋂

{annR(mn) : n ∈

Nk+1} does not contain any elements of degree ≤ k + 1. Indeed, if r =
dxk+1 + t were such an element in the intersection (where d ∈ D and t has
degree ≤ k), then dk+1r = ddk+1x

k+1 + dtk because there is at most one
element of the form ddk+1x

k+1+ t′ in Ak with t′ of degree ≤ k; keep in mind
that Ak contains no non-zero elements of degree ≤ k. Thus dk+1r ∈ Drk+1,
which contradicts (2).

This completes the inductive step, and hence the proof. 2

Combining Theorem 10 with a result of Bergman and Galvin, we obtain

Corollary 11. Every commutative domain which is countably generated
over a noetherian subring is productively bounded.

proof. By Theorem 10 above and Corollary 11 of [1]. 2

In a similar manner one can prove:

Theorem 12. Suppose D ⊆ R is an extension of commutative domains such
that RD is countably generated. If the dual ideal lattice of D is uniformly
transversally bounded, then the same is true for the dual ideal lattice of R.
2

As a consequence of Theorems 8 and 12, we have:

Corollary 13. Suppose D ⊆ R are commutative domains such that R is
countably generated over D and D has Krull dimension. Then weak produc-
tive boundedness of D implies uniform transversal boundedness of the lattice
LR. 2
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