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ABSTRACT. The original theme of the paper is the existence proof of “there is 7 =
(Na : @ < A) which is a (), J)-sequence for [ = (I; : i < &), a sequence of ideals”.
This can be thought of as a generalization to Luzin sets and to Sierpinski sets, but
for the product [] Dom([;), the existence proofs are related to pcf.
1<d

The second theme is when does a Boolean algebra B have a free caliber A (i.e.
if X € B and |X| = A, then for some Y C X with |Y| = X and Y is independent).
We consider it for B being a Maharam measure algebra, or B a (small) product of
free Boolean algebras, and k-cc Boolean algebras. A central case is A = (Jy,)T or
more generally, A\ = ut for u strong limit singular of “small” cofinality. Second case
is p = pu<" < A < 2"; the main case is )\ regular but we also have things to say on
the singular case. Lastly, we deal with ultraproducts of Boolean algebras in relation
to irr(-) and s(-) etc.
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2 SAHARON SHELAH
Annotated Content

§0 INTRODUCTION

§1. The framework and an illustration

We define when “fj = (1, : « < A) is a (A, I, J)-sequence for I = (I; : i < 6)7,

which means (I = J? for simplicity) that each 7, belongs to [] Dom(I;) and that
<0
for any A = (A; : i < §) € [] I; for every large enough a < A, the sequence 7, “run
<6

away” from A i.e. for the J-majority of i < § we have 1,(i) ¢ A;. We give the easy
existence if I; is k;-complete and (k; : ¢ < ) are strictly increasing converging to
a strong limit (singular) p which satisfies u* = 2# = X (1.9). We define normality,
explain how by the existence of such 7, colouring properties can be lifted (1.6). As
an illustration we prove (the well known result) that, e.g., if A = 23w = 37, then
3} is not a free caliber of the Maharam measure algebra (i.e., some set X of A
elements, is non-independent, in fact in a more specific way). For this we use ideals
related to the Erdos-Rado Theorem.

§2. There are large free subsets

Why does the application in §1 involve A “near” a strong limit singular g of
cofinality Ro? We show that this was necessary: if N0 < A < 2* and cf()) is large
enough (> Jy is OK, > 2% is almost OK, but involves more pcf considerations),
then A\ is a free caliber of the Maharam measure algebra. We use: if A > 2%, f, €
# Ord for a < A\, a # 8 = fo/J + fz/J, then (almost always) for some ideal I on
kappa extending J and X € [A]}, (fo/I : a < \) are pairwise #;.

§3. Strong independence in Maharam measure algebras

We define when “7j is a super (), I, .J)-sequence for I”. The strengthening is
that we now can deal with n-tuples (any n < w) and prove the easy existence
(see 3.1, 3.2). We define for a set of A intervals in a Boolean algebra variants
of independence and strong negation of it (3.4) and apply it to prove existence
of strongly A-anti-independent set in Maharam Measure algebra (3.7), which (by
3.8) suffices for having a subalgebra of dimension A with no independent set of
cardinality A. This completes the consistency part of the solution of a problem,
which was to characterize all cardinals A\ which can have this property.

We prove here, e.g., if A = J,,1 = 37, then there is a Hausdorff compact
zero dimensional topological space with measure on the family of the Borel subsets
such that it has dimension A, so as a measure space is isomorphic to the Maharam
measure space Z(A), but there is no homomorphism from X onto #2 (see 3.9). We
finish by some easy examples.

84. The interesting ideals and the direct pcf application
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We return to our original aim: existence of A-sequences for I. In 4.1 we consider

some ideals (J}gd, [T Je, J<b>\ilé<n> = HJ}\’S, each A\, regular, in the cases \y <
{<n J4

M1, Ao > App1, A > 22+1). We point out (4.9) that for I = (J'jid Dio< 0),
if X\ = tef(J] A\i/JPd) we get existence directly from the pcf theory. We then
<9
turn to the case I; = [] J}\’_d , give a sufficient pcf condition for the existence
£<ni 7,L
when (A\; ¢ : ¢ < n) is increasing (4.11) and then prove that this condition occurs

not rarely (in 4.14), so if A = [ A\i/J29, \; increasing, we can “group together”
1<6

intervals of \;; and the existence of such (\; : i < §) is an important theme of pcf

theory.

5. A-sequences for decreasing \' by pcf
We consider cases with I; = J<b>i‘,£3£ <ni) (Aie¢ : £ < m;) a decreasing sequence
of regulars. We prove the existence by using twice cases of true cofinalities, and
show that if the pcf structure is not so simple then there are such cases (e.g.
Jui1 > 35¥). We concentrate on the case i < § = n; = n, and then indicate the

changes needed in the general case.

§6. Products of Boolean Algebras

Monk asks about the free caliber of products of B; = FBA(x;) = the free algebra
with y; generators, for i < §. In fact he asks whether A = J% is a free caliber of
the product of the FBA(J,,) for n < w. But we think that the intention was to ask
if A = cf(\) > 2%l is a free caliber of [] B;. Note that this product satisfies the

1<6

(2/°))F-c.c. In fact it has cellularity 2/°/, so “tends to have free calibers”. We show
that if there is a normal super (), J)-sequence 7 for appropriate I = (I,, : n < w),
then A is not a free caliber of [[ FBA(|Dom I,|) (see 6.4, 6.5), so a negative

n<w
answer is possible. Now being “near a strong limit singular of cofinality Ry” is

necessary as a result parallel to that of §2 holds (see 6.6).
Though the choice of J, was probably just natural as the first case to con-

sider, actually the product of uncountably many F'BA(y;)’s behave differently e.g.

[I FBA(3;) has free caliber (3,,)"! (see 6.7). The proof involves pcf considera-
1<wi
tions dealt with in §7. We turn to another problem of Monk ([M2, Problem 34]), this
time giving unambivalent solution. If k is weakly inaccessible with (2* : u < k) not
eventually constant, then there is a k-c.c. Boolean algebra of cardinality 2<% and
no independent subsets of cardinality x* (see 6.10, using the existence of suitable
trees). We note that results similar to countable products hold for the completion
of FBA(x).

We end by deducing from Gitik Shelah [GiSh 597] complementary consistency
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results (so e.g. the first question is not answerable in ZFC) and phrasing the prin-
ciples involved, so slightly sharpening the previous results. (See 6.14 - 6.17). So
together with the earlier part of the section we have answered [M2, Problems 35,36]
and [M2, Problems 32,33] in the case we are near a strongly limit singular cardinal.

§7. A nice subfamily of function exists

For completeness we deal with the following: f, € ?Ord for a < A are given,
20 < X = cf(\) and we would like to get approximation to “for some X C ),
|1 X| = A, (fa:a€ X)is a A-system”, continuing [Sh 430, Claim 6.6D]. We phrase
a special case (7.3) and deal with some variants.

§8. Consistency of “Z(w;) has a free caliber” and discussion of pcf

We deal with another of Monk’s problems, [M2, Problem 37], proving the con-
sistency of “there is no complete Boolean algebra B of cardinality 2% with empty
free caliber” (in fact N, 11 = 28! is always a free caliber of B). The universe is
obtained by adding N, 1 Cohens to a model of ZFC + GCH, and the proof uses
§7. We finish by discussing some pcf problems: pcf preserves being even; and we
state a consequence of {u : p strong limit, cf(u) = Ng, u™ = 2"} being unbounded
(here?).

89. Having a A-sequence for a sequence of non-stationary ideals

We return to the original theme, for a more restricted case. We assume A = cf(2#)
where p is strong limit singular, and in this section A\ = 2¥ i.e. 2 is regular
(for the singular case see §10). We get quite strong results: (fix n(x) < w for

simplicity) for some ideal J on cf(u) (usually Jff?u)’ always close to it) we can find

(N ri < cf(p)), i < 7 = max(\Y) <min(V), X = (N € < n(x)), Njop1 > 20
(Aie regular of course, p1 = Sup,q¢(,,) Ai,0), such that there is a (A, J)-sequence for

I = (ind : i < cf(p)). This is nice (compare with §5) but we get much more:

Jnst,a

I is a sequence of nonstationary ideals and even { [] N, i < cf(u)) where

£<n(x)
Jest7 = {A: An{é < x : cf(0) = o} is not stationary} and o = cf(0) € ( cf(u), p).
We then work more and get versions with club guessing ideals. We deal further
with the version we get for the case cf(u) = Ng. (So it is less clear which ideals J
can be used.)

§10. The power of a strong limit singular is itself singular: existence
We do the parallel of the first theorem of §9 in the case 2* is singular.

§11. Preliminaries to the construction of ccc Boolean algebras with no
large independent sets

Here the problem is whether every s-c.c. Boolean algebra has free caliber \; the
case of being “near a strong limit singular p of cofinality < x” was considered in
[Sh 575], we deal with the case p = u<" < X\ < 2. Here we make the set theoretic
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preparation for a proof of the consistency of a negative answer with strong violation
of GCH. We use Boolean algebras generated by z,’s freely except for z,NzgNz, =0
for {a, 8,7} € W for some set W of triples with intersection having at most one
element. The point is that the properties of “fj is a A-sequence for I” with such
ideals I (unlike the ones associated with the Erdés-Rado theorem) are preserved
by adding many Cohens to p (where p < |Dom(I;)| etc.).

§12. Constructing ccc Boolean algebras with no large independent sets

We complete the consistency results for which the ground was prepared in §11.
We construct the relevant Boolean algebra using a (), J)-sequence for I, I as there,
using, as building blocks, Boolean algebras generated e.g. from the triple system. So
we will give sufficient conditions for the k-c.c. and other properties of the Boolean
algebra.

§13. The singular case
We continue §11, §12 by dealing here with the case A is singular but (Va < A)
(la]<" < A), note that the forcing from §12 essentially creates only such cases.

§14. Getting free caliber for regular cardinals

We continue dealing with x-c.c. Boolean algebras, giving a sufficient condition
for A being a free caliber, hence a consistency follows (complementing §11 and §12;
together this solves [M2, Problems 32,33] in the case we are not near a strong limit
singular cardinal; thus together with §6 this gives a solution).

§15. On irr: The invariant of the ultraproduct, greater than the ultra-
product of invariants
We prove the consistency of irr( [ B,/2) > [] irr(B,)/Z where 2 is a

n<w n<w
nonprincipal ultrafilter on w and irr(B) = irr,,(B) and irr,(B) =sup{|X|: X C B
and if zg, x1, ..., x,, are distinct members of X, m < n then zo ¢ (x1,... ,2,)B}.

The way is to build B,, with irr,(B,) = A", irro,1(B,) = A\, A = A%, Our
earlier tries as the approximation to B,, did not work. So the point is a version of
n-graded independence phrased as (Fy : ¢ < n), then solve [M2, Problem 26]. We
then deal with s(—), hL(—), hd(—) and Length(—), using the construction of §12
in ZFC, and solving [M2, Problems 22,46,51,55].
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60 INTRODUCTION

Our original aim was to construct special subsets of H i, concentrating partic-
<0
ularly on the case when \; converge to a strong limit si;gular.

This continues [Sh 575] (so [Sh:g], [Sh 462], Rostanowski and Shelah [RoSh 534]),
but as these are essentially notes from the author’s lectures in Madison, they are self
contained. (§1, §4 just represent old material, adding an illustration for Maharam
algebras).

Some sections improve the general existence theorems. The main new point is
the case when we use

I, = H J}fi with the A\, ;’s are regular decreasing
£<n7;

(as well as the case of the nonstationary ideal). We shall discuss this below and
give the definition after we first fix some notation.

0.1 Notation. 1) I denotes an ideal on a set Dom([/), which means that I is a subset
of Z(Dom(I)) closed under (finite) unions and subsets, Dom(I) & I, and usually
for simplicity, all singletons are assumed to belong to I.

I is k-complete if it is closed under unions of < k elements.
2) I, J denote ideals.
3)IT={AC Dom(I): A¢I}.

4) If A is a set of ordinals with no last member we let

J4 = {B C A: B abounded subset of A}.

5) The completeness of the ideal I, comp([) is the maximal x such that I is
k-complete (it is necessarily a well-defined regular cardinal).
6) [A]" ={a C A: |a| =k}, [A]~" ={a C A:|a| < Kk} etc.
7) cov(A, p,0,0) = Min{|2|: P C [A\]<H, and for every a € [\]<? there are a < &
and a; € & for i < a such that a C |J,_,, ai}.
8) For sets u,v of ordinals let OP,, be the function from w into v such that:
= OPy,(a) acu & fev & otp(una)= otp(vNpf).
9) Terms are 7.

% sk ok ok ok ok ko

0.2 Definition. We say 77 = (1, : a < ) is a (\, I, J)-sequence for I = (I; : i < §)
if
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(a) I is an ideal on X (if not mentioned, we assume I = J?9), I; is an ideal on
Dom(1;),

(b) J is an ideal on § (if not mentioned, we assume J = JP4),
(©) 1o € [1 Dom(Iy),

1<d
(d) If X € I't then

{i<d:{na(i):ae X} el;} e

By [Sh 575],if I; is ri-complete, r; > > ., Kj, 1 = 32,5 ki strong limit, [Dom(Z;)| <
pand 2# = pt = X, then there is such a sequence. We recall this in §1.

As an example of the application of such 77, we presented the following (presented
in 1.16): Suppose that % is a Maharam measure algebra of dimension > pu, cf(u) =
Ng. Then we can find a, € £ for a < A such that Leb(a,) > 0 and

(VX € AMEn)(Vag < -+ < an € X) [ @a, = 0.

i<n

A “neighborhood” of u being strong limit of cofinality Ny is necessary.

Our usual case, which we call normal is: &; > [] |Dom(Z;)| (this was not used in
J<i
the measure algebra application, but it is still good to have).

Main point: The main new point of this paper is to build a (A, I, J)-sequence
7 for certain I without using 2# = u. We describe the cases of I which we can
handle.

Case 1: The easiest case of I; : [; = Ji,d, A= cf( 11 )\i/J>.
<6
We only need to translate from the known pcf results.

Case 2:
bd
I; = H JAe,i’
L<n;

where Ay ; are regular increasing with ¢ and ¢, and J is an ideal on {(4,£) : i < 0,¢ <
n;} such that

(VX € )BT (N (4,0 € X),

E<n7;

and where for ideals J,,, (m < n)
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H Im = {X C X<, Dom(J™) : —|E|‘]0+m05|‘]1+m1 = -EIJI—lxn_l((mo, ey Tpo1) € X)}

m<n

Starting from reasonable pcf assumptions and working a little, we can handle this
case as well.

Main Case 3:

L<n;

Ae,i regular decreasing with £.

We prove: If \;n;, = n, and \y = th( IT )\gﬂ;/J') for ¢ < n, then we can find

<0
Ma : @€ ] Ae) with n5(i) € T[ Aeyiyi < 6 such that
<n I<n
+ +
it X e ([T = (WBen)
l<n

then {2 <o:{na(i):ae X} e (J?Ad“:kn))} eJ.
Interesting instances: )\, ; decreasing with £ and ¢ < j = Ag; < Ay ;.

Case 4: Like Case 3, but using the nonstationary ideal, or nonstationary ideal
restricted so some “large subset” of A\, ; instead of J'jfi.

Case 5: Like Case 3 but using a suitable club guessing ideal id* (U“)).

On history, background etc. and on Boolean algebras, see Monk [M1], [M2].
This works continues [Sh 575] and it evolved as follows. Getting the thesis of
Carrieres, which was based on [Sh:92], we started thinking again on “free calibers”,
this time on measure algebras. We noted that [Sh 575] gives the answer if, e.g.
A= (3,)" = 3,41, and started to think of what is called here “there is a (X, J)-
sequence for I 7. We started to lecture on it (§1, §4, then §5,§9,§10; in Madison,
Fall 1996). Meanwhile Mirna Dzamonja asked me doesn’t this solve a problem
from her thesis. This was not actually the case, but it became so in §3. Then
she similarly brought me p. 256 of Monk [M2] and this influenced the most of the
rest of the paper, while later T also looked at pages 255, 257 of [M2], but not so
carefully. Lastly, §15 is looking back at the problems from [RoSh 534]. Some of
the sections are (revisions of) notes from my lectures. So I would like to thank
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Christian Carrieres, Donald Monk and the participants of the seminar in Madison
for their influence, and mainly Mirna Dzamonja for god-mothering this paper in
many ways and to David Fremlin who lately informed me that 1.16 was well known
and 3.8, 3.15 have already appeared in Plebanek [P11], [P12].

Concerning §3, the question was asked for A = RN; by Haydon and appeared in
Fremlin’s book [Fre]. Haydon [Hal], [Ha2] and Kunen [Ku81] independently proved
it to be consistent for A = Xy assuming CH. The question from [Hal] and [Fre] was
what happens with N; under M A. Recently, Plebanck [Pl1], [P12] proved that
under M A all regular cardinals > N, fail the property, and finally Fremlin [Fre]
gave the negative answer to the original question of Haydon by showing that under
M A the property fails for X;. Dzamonja and Kunen [DK1], [DK2| considered the
general case (any A) and topological variants.
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§1 THE FRAMEWORK AND AN ILLUSTRATION

We are considering a sequence (I; : i < §) of ideals, and we would like to find

a sequence 77 = (1, : @ < A) of members of [[ Dom(/;) which “runs away” from
1<6
A= (A; i< d) when A; € I; (see definition 1.1 below).
When I; is k;-complete, x; > [] |Dom(l;)|, # = > k; strong limit singular,
j<i i<s
A = pt = 2% this is easy. We present this (all from [Sh 575]) and, for illustration,
an example.
1.1 Definition. 1) We say that 4 is a (), I, J)-sequence for I if:
(a) J is an ideal on § and I is an ideal on A,
(b) I =(I; :i<§), where I; is an ideal on Dom(I;),
(¢) 7= (Na:a <) where n, € [[ Dom(;),
1<6
(d) if X € I'" then

{i<do:{na(i):aeX}el;} €J

2) We say 7 is a weakly (A, I, J)-sequence for I if we weaken clause (d) to
(d~) if X € I'* then
{i<d:{na(i):aeX}tell} et
3) We may omit J if J = Jb4 we may omit I if I = de, and then we may say “n

is a A-sequence for I.
We can replace A by another index set.

1.2 Definition. 1) We say 7 is normally a (X, I, J)-sequence for I (or in short, “7
is normal”, when I, I, J are clear) if:

(x) for every i < 9,

comp(l;) > [{na [i:a < A}.
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2) We say I = (I; : i < \) is normal if

comp([;) > H |Dom(Z;)].

i<t

1.3 Observation. If T = (I; : i < §) is normal and 7 is a (A, I, J)-sequence for I
then 7 is a normal (i.e., normally a (A, I, J)-sequence for I).

Proof. As for each 1 < 9

{na Ti:a < A} < | [[Pom(L)| = [] IDom(Z;)| < comp(Z,).

j<i j<i

1.4 Discussion. Why is normality (and sequences 77 in general) of interest? Think
for example, of having for each i < §, a colouring c;, say a function with domain
[Dom(I;)])? (or even [Dom(I;)]<¥°), call its range the set of colours. These colourings
are assumed to satisfy “for every X € I,L-+ we can find some Y C X with Y € I,
such that ¢; | [Y]? (or ¢; | [Y]<N0) is of some constant pattern”. Now using 7 we
can define a colouring ¢ on [A]? (or [\]<®¢) “induced by the (c; : i < J)”, e.g.,

c({a, B}) = ci(a,) ({nali(e, B)), ns(i(a, 8))})
where i(c, 8) = Min{i : 14(¢) # np(7)}.

Now, normality (or weak normality) is a natural assumption, because of the follow-
ing:

1.5 Claim. If7 is a normally (\, I, J)-sequence for I, (or weakly so) and X € I,
then the following set is = §mod J (or # mod J ):

Y = {i < 4§ :for some v € H Dom(I;) and X; € IF
j<i
we have : (Vz € X;)(3a € X)[v =14 [i & x=n,(i)]}.

Proof. Let X; = {na(i) : & € X}, by the definitions it is enough to prove

(%) if X; € I theni € Y.
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Let Z; = {na [ 1 : a < A}, so Z; C HDom(Ij) and |Z;| < comp(I;) by the
j<i
normality of 7. Now for each v € Z; let us define

X ={na(i):a€ X and 5, |i=v}
Clearly X; = | J{X? : v € Z;}, and [; is | Z;|T-complete (as |Z;| < comp(I;)). As

X; € IZ-+, necessarily for some v € Z we have X? € IZ-+. This exemplifies that ¢ € Y,
as required. Uis

1.6 Conclusion. Assume

(a) 7 is a normal weak (X, I, J)-sequence for I

(b) c; is a function from “> (Dom([;)) to a set C of colours (or from [Dom(I;)]<%0)
(¢) d is a function from “>&(x) (or from [e(*)]<N0) to C

(d) c; exemplifies I; - (d) which means

(%) for every X € I;" we can find distinct z; € X for ( < (%) such that:
if n <wand (o << (o1 <e(*) then

ci({zgy: - m¢, 1)) =d({Co, -+ 1 Cn1))
(or ci(fzgy, -+ v, i }) = d({Co, - Cn1}))
(¢) We define the colouring ¢ such that for all n < w
c((ao, .- s an-1)) = €i((1ag (1), - - 1 Na,,_, (1))
(or c({ao, ..., an—1}) = €i({nay (), - - 10, (0)}),

(<m<n=i=Min{j<0:9,j)#na, ()}

Then ¢ exemplifies I - (d).

Proof. Why? If X € I'", let Y be the set as in Claim 1.5, hence Y € J*. Pick an
i €Y, so there is X; € I;” and v exemplifying that i € Y. Let {z¢ : ¢ < e(x)}
exemplify that I; - (d). For ( < e(x), let a¢ € X be such that 7, [ i = v and
Nac (1) = z¢. Hence for all n <w and (o < ...(,—1 < €(*) we have

c((agys -+ ¢ 1)) = Cil{Zgos -+ 2¢, 1)) = A((Cos - -+ Cn1))-
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Uis

1.7 Comments: 1) Of course in 1.6 we can restrict ourselves to colouring of pairs.
Note that the conclusion works for all d’s simultaneously. Also, additional proper-
ties of the c¢;’s are automatically inherited by c, see 1.8 below.

2) We can also be interested in colours of n-tuples, n > 3, where i < § as in clause
(e) of 1.6 does not exist.

3) What is the gain in the conclusion?

A reasonable gain is “catching” more cardinals, i.e. if I; = J;’id,l = de, then
in addition to having an example for \; we have one for A\. A better gain is when
I is simpler than the I;’s. The best situation is when we essentially can get [ =
JPd J = Jbd for all normal I with (|Dom(I;)| : i < &) increasing with limit p.
Assuming a case of G.C.H. this is trivially true.

X kX
Normally we can find many tuples for which there is ¢ < ¢ as in clause (e) of 1.6.

1.8 Fact. In 1.6 if § = (219", or at least § = cf(9) & (Vo < 0)(]a|l®l < ) then:

(¥) for every X € [\, we can find Y € [X]? and i < § and a 1-to-1 function h
from Y into Dom(/;) such that

C(<O_/0, . ,Oén_1>> = Ci(<h((l/0), . ,h((l/n_1>>>

for ag,...,an—1 € Y (actually h(a) = 1,(i), where for all & we have
No | © = v for some v € HDom(Ij)).
Jj<i

Proof. By the A-system lemma applied to {{n, [i:7 < d}:a € X}. More elabo-

rately, let x be large enough, and let M < (J(x), €, <}) be such that {6, X, I, J, I,q} C

M and °M C M, while | M| = 6 and M N @ is an ordinal < #. If we choose
a € X\ M, then we can choose i < § such that n,, [ 1 € M, n, [ (i+1) & M (exists
as "M C M). Now notice that for some such a and i the set Z =: {nz(i) : B €
X,ng [ i =1mq [ i} has cardinality 6; this holds by clause (d) of Definition 1.1. Let
h:Z — X be such that v € Z = np(y) [ i = 1o [ 7 and 7y,(4)(i) = 7. Lastly let
Y = Rang(h). Ois

1.9 Lemma. Assume

(a) I; is a k;-complete ideal on \; for i <6, and § is a limit ordinal,

(0) ki = cf(ki) > D05 Kjs
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(€) b= sup;cs ki = Sup; <5 Ai,
(d) cf(I;,C) < pt (usually in applications it is < p as usually 2N < u; the
cofinality is that of a partially ordered set),

(e) A= pt = puldl (so X = \0l; note that p!®l > pt) > pt always).

Then some 7] is a ut-sequence for (I; : i < J).

1.10 Remark. 1) We shall focus on the case p as strong limit singular, § = cf(u).
(2) We can weaken the requirement A = p*, but not now and here.

Proof of 1.9. Let %; C I; be cofinal,

%] < A
So | [T %| < APl = ), and we can list [] %; as <<A§:i< J): (< )\>, where
1<é 1<d
AS e %

For ¢ < A, let (B(C,e) : € < ) list {B: B < max{u, C}} (or {8: B < ().

Now by induction on ( < A, we choose a function n: € [[ A;. Let n¢ (i) be any
<0
member of

A\ U{Af(c’g) re < Z Kj}.

Jj<i

[Why can we choose such 7, (i)? Because Af(c’g) € I; and I; is k;-complete and
Ki > D5 kgl

We claim that 7 =: (¢ : ( < A) is as required. Let X be unbounded C A, we
need to show Y is co-bounded in 9§, where

Y = {i:{n.(i):a€ X} €I}

Let Af = {na(i) : « € X} for every i € Y. Let Af =: 0 fori € Y. Let A; € %,
A; O Af. Let ¢ < A be such that (4; : i < J) = <Af 14 < J). So for every
a € X\(C+1), for every i < ¢ large enough n,(7) &€ A;.
[Large enough means: Just that letting ¢ = e,,¢ < p be such that { = f(a,¢)
and letting i = i}, . be such that >, .. r; > ¢, then i € [i*,0) = 14(i) ¢ A;].
Ui

1.11 Example: A = p* = 2#, p strong limit of cofinality Ng. Let u = Y ncw Hn-
Without loss of generality pi,+1 > Jni7(pn). Let Dy = [Dis(pn) ]
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I, =: {X C D, :there is h : X — 2#» such that for no infinite subset
A of (Jnys(un))t is b | (X N[A]™) constant}.

1.12 Fact. 1,, is an ideal.

1.13 Fact. The ideal I,, is not trivial (so D,, ¢ I,,).
[Why? By the Erdés-Rado Theorem, see 1.17 - 1.18 for a detailed explanation.]

1.1} Fact. I, is pu}-complete.
[Why? If h; : D,, — 2M (i < up), then there is h : D,, — 2#» such that h(z) =

h(y) = /\ hi(z) = hi(y)].

1.15 Conclusion. So, By Lemma 1.9, there is 7 = (n; : i < p* = \) which is a
A-sequence for (I, : n < w).

We apply Conclusion 1.15 to measure algebras getting a well known result: 1.16 Application
Assume A = pT and p is a strong limit singular of cofinality Rg (i.e., as in 1.11).

If % is a measure algebra (Maharam) of dimension > u, we can find a, € £ for

a < X\ with Leb(a,) > 0 for each «, such that for every X € [A\]* we can find

n* <w, ai,...,ap € X satisfying

*

P E ﬁaw:o.

(=1

Proof. Let i and I,, be as in conclusion 1.15 (all in the context of Example 1.11).
Let (Tpq :n < w,a < Jyy3(p,)™) be independent in the sense of measure, all
elements of Z and of measure 1/2.

For any n € [[ Dy, let

n<w

Ypn =Unmy =1—= [] znp— [) (lz—znp).
Ben(n) Ben(n)

Note that () x5 3 has measure 27" (by the choice of the =, o’s). So Leb(y, ) =
pen(n)
1 —2-27" (hence Leb(y,n)) > 0if n > 2). Let
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Yn = ﬂ Yn.n € B.

n>5

So Leb(y,) >1—-2-% .27"=1-2-27%=1-273>1/2. We let a, =y, for
a < X. We check that {a, : @ < \) is as required. Suppose X € [A]*. So, as [ is

normal, for some n > 5 and v € [[ D, we have
£<n

Y, = {na(n):a € X,n, | n=v}el.

(Note that v is not really needed for the rest of the proof.)
So there is {7, : ¢ < w} C J,,13(p,) " increasing such that

{ve:l<w}]” CY,.

We use just (v, : ¢ < 2n —1).
For u € [{7¢: ¢ <2n — 1}]" let a(u) € X be such that

Na(u) (’I’L) = u.

It is enough to show that in %
ﬂyna(u) < ﬂaa(u) =0.

So suppose that there is z € # with Leb(z) > 0 and such that = <{\y,,,,. Then

without loss of generality

C<2n—1=2<2p, Vz<1—1o,,,.

Case 1: [{{: 2z <xy~,}| >n. Let u e [{y :¢<2n—1}]" be such that

/\ (2 < Tn ).

YeEU

So zle () @pn,. But 2z < Yna < 1z — (M Zn,~, & contradiction.

YeEU YEU

Case 2: Not Case 1. So necessarily [{{ : 2 < 1 — 2, ~,}| > n and continue as
above using 1@ — Ty, ~,- 416

Let us elaborate on the ideals used above.
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1.17 Definition. For n, A, ¢ let

ERJ}® = J{"® = {A C [A]" : there is no w C X satisfying otp(w) = € and [w]" C A}

ERIY, = I3, = {A C [N]" : there are A; € J{"" for i < i(x) < p
such that A = U A}

1<i(*)

1.18 Fact. 1) I\ is a cf(pu)-complete ideal on [A]", not necessarily proper (see (2));

)

note that Jy"° is not necessarily an ideal.
2) Iy} is a proper ideal, i.e., [\]" ¢ I} iff

X< p= A= (e)y

3) I, = I;"i?(u V+ (20m)+ (where I,, and (u, : n < w) are from 1.11).
4) In the proof of 1.16 we could have used less, for example

I . ’I’L,27’L+1
n :n+1(un)+au;’L_

as Tny1(pn)t = () forn > 1.

Proof. (3) First direction.
Let A € I,,, so there is h : A — 2#» witnessing it. Let A; = h™1(i) for i < 2Hn
Now X C A\, | X| >Ry = [X]™ Z A;, by the choice of A. Hence

A’L E J:;L+7(//Ln)+.
Hence
A€ IS iyt (2im )t
Second direction: Let A € 13:17(%)*,(2””)’“’ so there are A; (for i < i(x) < (2Hn)T)

such that A; € J3** cand A= | A

n+7(tn) i<i(x)

Renaming, without loss of generality i(x) < 2#» and let



nodi fi ed: 2015- 06- 04

revi sion: 2015-06-02

(620)

18 SAHARON SHELAH

' 0 otherwise, i.e., if i € [i(x),2*).
So (A} : i < i(x)) is a partition of A. As A; € Jg;‘iﬂun)*’ we know that —(3X C

Jni7(pn) T infinite) ([X]™ C A;). Hence, letting k= 3,4 7(pn) ™

—(3X C k infinite) ([X]|" C A,).
Define h : A — 2 by
h(a)=1i iffae A,
so h witnesses A € I,,. 01 18
1.19 Definition. 1) A set W C [A\]<%¢ is called a ccc base if:
(%) foru #vin W, [unv| < |ul|/2.
2) For W C [A]<%0 let

LW]={ACX: WN[A<N =@},

Ix[W]={ACX: Ais the union of < x members of I[W]}.

3) For a Boolean algebra B we define I ,, by letting : X € Ig , iff X C B\{1} is
the union of < k ideals of B.

1.20 Claim. 1) Assume

(a) 7 is a (N, J)-sequence for I = (I; : i < 6), and cf(\) > 6
(b) fori <4, the function h; : Dom(I;) — A\; satisfies

a < A = {z € Dom(l;): h(z) < a} € I,.

Let h = (h; 1 i < &) and let fo = hon, =: (hi(na(i)) :i <) (€ H ;).
M <6
(&) (vf € [TA Xy <N(f <5 1)
1<6
(d) for some club E of A\, we have
(g ifa<e<B<Xande € E then fo < f3.
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(So if X € [\*, (V6§ € E) | XN (§,min(E\(§+1))]] <1 then (fo : a € X) is
< g-increasing cofinal in ] A;.)

1<6
2) If f = (fa:a <), E satisfies (d)g (and of course sup; s A\; < A) and p < X
then without loss of generality for X as in (d)g the sequence f | X is pu-free (see
Definition 1.21(1) below), moreover f is (u, E)-free (see below clause (1) of 1.21),
provided that (%) or just the weaker (x)" or just (x)"” below holds where:

X for A > p and X = (\; : i < 8) we consider the conditions
(x) A=xT,x = cf(x) > p=1lm )\ :i <) for some x,
(x)" p=lmy X and {0 < A:cf(f(0)) < pu} € I[N,
(%) thereis f' = (f’ : o < \) which is < j-increasing cofinal in (] \i, <)
<9
and s -free.

1.21 Definition. Let J be an ideal and f = (f, : @ < a*) a sequence of functions
from Dom(.J) into the ordinals.

1) fis p-free if for X € [a*]<* we can find § = (s, : a € X), s, € J such that

a<f & aeX & feX & i€ J\sa\sg] = fali) < f5(i).

2) fis (u, E)-free for J if for X € [a*]<* we can find 5 = (s : @ € X), 54 € J
such that

a<éi<p & aceX &0IeFE & peX & icd\sa\sg] = fali) < fa(i).

Proof of 1.20. 1) Clause (c): Let f € H)‘i’ so As; =: {xz € Dom([y) : hi(z) <

f(a)} € I; hence by clause (a) which we are assuming, for some v* < A we have
vy e [y A) = {i <6 fy,(i) ¢ Afi} € J. By the definition of f, this means
ye R, A)={i<d:~(f(@) < fy(9)} € J, so we are done.

Clause (d): By Clause (c) for each § < A there is y3 < A such that v € [y3, \) =
fs < fy. Let E = {§ < A: 4 is a limit ordinal such that (V5 < §)(ys < J). Now
FE is as required.

2) As in [Shg, II,§1,I] Dl_go

1.22 Remark. This applies to the construction in §4, §5, etc., (e.g., construction

from A = ] \;/J29).
1<d
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§2 THERE ARE LARGE FREE SUBSETS

The reader may wonder if really something like A = cf(\) € (u, 2#] for u strong
limit singular, is necessary for 1.16. As in [Sh 575], the answer is yes, though not
for the same reason.

Of course, in what follows, Maharam measure algebra can be replaced by any
measure algebra. The interesting case is (Ix)(x < A < x™).

2.1 Fact. Let % be a Maharam measure algebra. If Jo < g = p™0 < cf(\) < X < 2#

and a, € BT, (so Leb(a,) > 0) for a < X are pairwise distinct, then for some
X € [A]* we have:

(%) any nontrivial Boolean combination of finitely many members of {a, : @ €
X} has positive measure.

Proof. Let {z; : i < i(x)} be a basis of the Maharam measure algebra (so each
x; has measure 1/2 and z;’s are measure-theoretically independent). So for each
a < A we can find ordinals i(c,n) < i(x) for n < w, and a Boolean term 7, such
that aq = 7o (Ti(a,0); Ti(a,1),--- ). Note that this equality is only modulo the ideal
of null sets. Remember

(¥)o we can replace (x4 : @ < A) by (z, : a € X) for any X € [\]*.
Without loss of generality, each 7, is a countable intersection of a countable union

of finite Boolean combinations of the z;’s. Again without loss of generality, (i(a,n) :
n < w) is with no repetition. Note that without loss of generality

i(x) ={i(a,n) : . < X and n < w}.

Hence without loss of generality i(x) < A, hence without loss of generality i(x) = A.
By Engelking Karlowicz Theorem [EK], clearly we can divide A to p sets (X¢ : ¢ <
w) such that

(%)1 the sets A¢, =: {i(a,n) : @ € X} for each ¢ satisfy: (A¢, :n < w) are
pairwise disjoint.

As the number of possible terms 7, is < 2% < 4 by ()¢ without loss of generality

(¥)2 if a, B € X¢ then 7, = 75, call it 7¢.
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Note also

()3 if Y C X, then

ind(Y) =: {aeY:fornom<wandﬁo,...,Bm_lEYﬂadowehave:

ao € the complete subalgebra generated by
{7ig,m) € <m,n < w}}
satisfies |ind(Y)| + 2% > |Y.

[Why? We can prove by induction on o ¢ ind(Y') that for some m < w and
Bos By .-+ s Pm—1 € ind(Y)Na we have a, € the complete subalgebra of % generated
by {Zig,n) : £ < m,n < w}, using the transitive character of this property. Now
for each m < w and fy, ..., Bm-1 € ind(Y), the number of a,, such that a, € (the
subalgebra generated by {z;(g,n) : £ < m,n < w}) is at most continuum.]

As cf(X) > p, for at least one ¢ < p, | X¢| = A, hence by ()3 we have |ind(X¢)| =
A. So, without loss of generality

(%)a(a) the sets A, = {i(a,n): a < A} are pairwise disjoint,
(b) To =7 for a < A,

(c) for no m < w and fy < -+ < B, < A do we have ag,, € the complete
subalgebra generated by {z;(g,n) : £ < m,n < w}.

Now for each @ < A we define an ideal I/, on w (thought apriori I, = £ (w) is
allowed): it is the ideal generated by the sets

Zap={n<w:i(f,n) =i(a,n)} for < a.

and (where chy(n)islifne€ Aand 0ifn ¢ A for any A C w)

J =: {Agw:T(mo,xg,... s Loy v )

= 7_("170—|—Ch14(0)7 Ta4cha(l)s -+ s L2n4cha(n)s - - - )}

As {z; : i < i(x)} is free (in the measure theoretic sense),

(*)5 if
(a) for A € J, and {a;, : n < w} and {B, : n < w} such that a,, < i(x)
are with no repetition and §,, < i(*) with no repetition, and
() (Vm,n <w)lay =Bm on=m & n¢ A
then 7(xqg,...) = 7(zg,,...) in A, of course.
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(Just apply the definition of J to (Ta,, 2y, Tays---)). By transitivity of equality
(i.e., using (v, :n <w) such thatn ¢ A=, =a, =By, andn € A=, ¢ {an :
m<wtU{Bm :m < whU{ym:m¢&n}) we get

(x)g if (a) of (x)5 then

(Vn<w)in¢€ A = ap, =0, = 7(Tag,---)=7(x5,-..)

Hence J is closed under subsets and (finite) unions, that is J is an ideal on w. Let
I,, be the ideal on w generated by I’ U .J. By clause (c) of (x)4 and (x)g we know
that w ¢ I ; recall that I/, is an ideal on w though it is possible that singletons are
not in I, (a violation of a convention in §0). [In fact we could have eliminated this
violation, but there is no reason to put extra work for it.] Also J C I,.

Now, the number of possible ideals on w is at most Jy < 1 < ¢f(X), so it suffices
to prove

()7 if Y C X\ a€Y = I, C I, where [ is an ideal on w (so w ¢ I but
singletons may or may not belong to I) extending J, then any finite Boolean
combination of {a, : @ € Y} has positive measure.

Proof of (x)7. Let By < -+ < Bm—1 be from Y. Let

A={n<w: for some ¢ < k < m we have i(5;,n) = i(B,n)}.

By the definition of Z, g, clearly A € I. For Z C i(x) let #*[Z] be the complete
subalgebra of # generated by {zg : B € Z}. We let B* =: B*[Z.] where Z, =
{i(Be,n) : £ <m,n € A}. Let B; =: B*[{i(fe,n): n € A}].
As %} is complete, for each £ < m we can find b, , b} € %, such that
() ¥ <as, <B,
(i) if c € B then ¢ < ag, = ¢ < b, and ¢ > ag, :>czbj.

By the definition of #* and the assumptions on (x; : i < i(x)) and on (a, : @ < A)
clearly

(x)g if {i(Be,n) :n € A} C Z and {i(Be,n) : n € W\A}NZ = ( and Z C i(x)
then

(11)z if c € B*[Z], then c<ag, = c¢<b, and c > ag, = czbj.
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Obviously, for some Boolean terms 7, , 7‘2_ we have

E_ = Té_(‘ . ,xi(ﬁe’n), e )neA
bz_ = TZ_( - Ti(By,m)s - -)n€A~
Now, as 7, = 7 for a € Y, clearly 7,/ = 7~ and 7'; = 71 for some fixed 7= and

7+, Also b, < b/ as otherwise w\A € J. Let b, = b — b, so Leb(b,) > 0, and for

some term 7%, by = 7(... ,T3(8,,n), - - Jnca, and let b= [ by € B*.
<m
Clearly

(¥)o Leb(b) > 0 = any Boolean combination of the ag,(¢ < m) has positive
measure.
[Why? prove it on {ag, : £ < m'} by induction on m’ < m using (*)s.]
For proving Leb( N bg) > 0, we define an equivalence relation E on w:

<m

n1 Ens iff for every £ < k < m we have

i(Be,n1) = i(Br,n1) & i(Be, n2) = i(Br, n2).

Clearly E has finitely many equivalence classes, say Ag, A1, ..., Apx)—1. For kp <
k() and £ = (€3 : k1 < k < k(%)) satisfying £ < m let

Z i = {T*( s Ti(yn o)y - -+ ) ¢ for every k < k(x), for some £ < m we have
(Y :n € Ag) = (i(Bn, £) : n € Apg),
but if £ > ki then ¢ = Zk}.

We prove by induction on k; < k(%) that for any appropriate £
¢y = Leb([{b: b€ Z;, ;}) > 0.

(In fact the measure does not depend on £.)
For k1 = k(x) we have {b; : £ <m} C Z, ( so this gives the desired conclusion.

The case k1 = 0:

It is trivial: Zj 7 is a singleton {7*(... ,%i(y, n),---)}, Where v, € A, so obvi-
ously it has positive measure.

The case k1 + 1:
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Solet £ = ({1 : k1 +1 < k < k(x)), and we know that for each n < w the element
di = c(ny-7 is > 0. For t <m let f; be a function from YV = {i(By,¢) : £ < w such
that if £ € Ay then k € [k1 + 1L, k(%)) = n={,and k=k =n=0and k < k1 =
n < m} into A, fy is one to one, f; is the identity on Y* = {i(8,,0) € Y : £ ¢ Ay}
and (Rang(f: [ (Y\Y™)) : t < m) are pairwise disjoint and

ve Ay, = £i(i(Bo, £)) = i(By, 0).

Now we can imitate the beginning of the proof of ()5 and get (1, _,, dn > 0. Let
Y; = Rang(f;), and note that fy is the identity and Yy = Y. Clearly f; induces an
isomorphism from Z[Yp] onto A[Y;]. Call it f, and easily d; =: f;(do). So we can
imitate the beginning of the proof of (x)5 and get () d,, > 0. But

n<m

C; = ﬂ C<n>Al7: ﬂ dn>0

n<m nm

as required. s 4

2.2 Discussion. 1) The proof of 2.1 gives more, almost a division to < p subfamilies

of independent elements (in the Boolean algebra sense), see 7 below.
scite{2.16} undefined

2) We may wonder if “4 > 35” is necessary. Actually it almost is not (see 2.5
below) but cf(\) > 2%0 is essential (see 3.11 below).
We shall see below (in 2.5) what we can get from the proof of 2.1.

2.3 Definition. For a Boolean algebra B we say ({aq, by) : a < o) is an explicitly
independent sequence of intervals in B if:

(a) BF aq < ba,

(b) if up,u1 C o are finite and disjoint then

BE () ban () (~aa)>0.

acug acuy

2.4 Claim. Assume

(%)y[X](a) |X| = x and B(X) is a Maharam measure algebra with free basis {x; : i €

X}. For Z C X we let B(Z) be the complete subalgebra of B(X) generated
by {z; i€ 2}

(b)y aq € BT (ie., Leblag) > 0) fora € Y and B < a = ag # aa, while
Y| =\Y a set of ordinals for simplicity.
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1) If X = cf(A\) > Ny then for some Y' € [Y]*, Z € [X]<* and a_, < a} from B(Z)
we have:

(1) force B(Z) we have c < aq = c<a, anda, <c = af <c,
(i) ifu € [Y']<No, n € “2 and

ﬂ{a;r:aEu,n(a) zl}ﬂﬂ{l—a; ca€u,n(a) =0} #0,

then ﬂ a([f(o‘)] 7& 0, where c[o] = —c¢, C[l] = c.

acu

2) Assume inf{Leb(aqAb) : b € (ag: f <)}z >0 fora €Y. Then in part (1)
we can demand a;, < al. Hence

(%) there is Y € [Y']* such that (aq : o € Y") is independent iff there is
Y” € [Y']* such that {(a;,a}) : a € Y") is explicitly independent. (See
Definition 2.3 above.)

S)IfIY =X > |X| =x and x1 < x,0 = cov(x,Xx],N1,2) < A then Y can be
represented as the union of < o subsets Y' such that for each there is Z € [x]<X1
satisfying {aqo : a €Y'} C B(Z).

4) If the clause («) below holds then we can represent Y as the union of < p subsets
Y’ each satisfying (c) below (and (b)y),

)y aa = T(.-.  Titan)s -+ Jn<w,  #F m = i(a,n) # i(a,m) and the sets
A, (Y") ={i(a,n) : n < w} are pairwise disjoint, where
(a)(i) 2% < p =R and 2# > X or at least
(ii) 2% < and the density of the (< Ry )-base product “x is < p.

5) If Y’ is as in (4), i.e., satisfies clause (c), then any finite intersection of ay’s
(for a € Y') is not zero.

6) If Y' is as in (4), i.e., satisfies clause (c) then Y’ is the union of < 3o subsets
Y, such that

(x)yr there is an algebra M with universe Y" and < 3y functions (with finite

arity, of course) such that: if u CY", o € u = a ¢ cly{una}/, then
(aq : o € u) is independent.

Proof. Straight and/or included in the proof of 2.1. Lo 4



nodi fi ed: 2015- 06- 04

revi sion: 2015-06-02

(620)

26 SAHARON SHELAH

2.5 Claim. In 2.1 we can weaken “u > Jy” to “u > 2807 or even “f()\) > 280~
except possibly when X is singular but X below fails:

X for any countable set a of regulars, |pcf(a)] < Ng or (x) from 2.6.
Proof. Without loss of generality we assume (x)4 from the proof of 2.1 (as the proof
of 2.1 up to that point works here too). Let J be as there, so J is an ideal on w, so
(+) J is an ideal on w and (i(a,n) : n < w)/J for a < A are pairwise distinct;

by the following observation 2.6 for some ideal I on w extending J and X € [A]*,
we have

aceX & feX & a#pf= {n:i(a,n)=1i(B,n)} € I.

This is enough for continuing with the old proof of 2.1. o5

2.6 Fact. 1) If J is an ideal on &, (f,/J : @ < A) are pairwise distinct functions in
£Ord and 6 = cf(\) > 2% then for some ideal I on x extending J and X € [\]* we
have:

aeX & feX & a#B= fo# s
except possibly when

() A is singular and =X, where

X, for any set a of regular cardinals > x we have |a| <k = |pcf(a)| < k.

2) We can replace (x) by

(%)" X is singular and —@:’/\ or =X ", where
&:’/\ for no set a of regular cardinals > k, do we have |a] < k and A\ =
sup(A N pef(a))
X, there are no x, cf(\) = 6 < x < A and increasing sequences A = <)\f :

i < k) of regular cardinals € (2", x) such that (max pcf{)\f D < K}
¢ < ) is increasing with limit A but for every ultrafilter Z on k we
have

sup {tcf(HAg/.@) (< 9} <A

1<K
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Proof. 1) Follows by (2).
2) The proof is split to cases.

Case 1: A is regular. We apply 7.5 here which is [Sh 430, 6.6D] (or in more details
[Sh 513, 6.2]).

Case 2: A singular. First note Subfact: —@;\rﬁ =X .

[Why? Let a exemplify —@;\F’K, let 0. € pcf(a) \ {A} be increasing for ¢ < 6 with
limit A. Let b. C a be such that . = max pcf(b.) and let (A : ¢ < k) list a and let
A¢ ber A¢if A¢ € b and (2%)T if A\¢ € b.. Now A\ = (XZ : ¢ < k) exemplifies =Xy .
First max pef {A¢ : ¢ <k} =0 < X and . is increasing with limit sup(AN pcf(a)).

Secondly, for every ultrafilter  on k for each ¢ we have tcf ( [T A¢/ .@) is (2F)*
(<K

or is tcf( CH )\C/.@). (Simplify the first case if {¢ < k : A\¢ ¢ b.} € Z and the
<K

second case if {( < kK : A¢ € b.} € Z.) So now if tcf( IT )\C/.@) > A implies
(<K

tcf( I1 )\E/.@) = (2%)* as the later is < 6. < A, so really there is no ultrafilter 2
(<K

on k for which sup{tcf( IT )\E/.@) re < 9} < A, so the second demand in X
(<K
holds. Do
scite{2.6A} undefined

Continuation of the proof of 2.6. Now we assume X, . For every regular o € (2", \)
we apply 7.5 to (fa : @ < o), so we can find A, C k and (7, : # < k) such that

(x)o for every sequence (f3; : i € A,) satisfying 5; < 7., there are o ordinals
a < o for which

i€A; = Bi < fali) <75t € K\As = fo(i) = Yo,i,

(xx) BeJ = o€ pct{cf(v,i):i<k, i€A,, i¢ B}.

Let J, = {B C &k : max pcf{cf(1,:) : ¢ € kK\Ay; and i € B} < o}, so clearly
o= tcf( IT cf(fyg,i)/Jg) and J C J,. Let A be such that A, C A,, and o =
1<K

max pcf{cf(v,,) : i € AL}, Also, as § = cf(\) > 2%, for some A" C « (infinite)
the set © = {0 : 2" < 0 = cf(0) < 6; and A/ = A’} is unbounded in A. Let
(0. : € < 0) be an increasing unbounded sequence of members of ©, such that its
limit is A\. Apply 7.5 (see Case 1) to (g. [ A" : € < 0), where g-(i) = 7v,. i, and get
(BF :i € A’) and B’ C A’ such that
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(x) if (B; : i € A’) satisfies i € A’ = [; < B} then for unboundedly many
ordinals € < 6
i€B' = Bi <Yo.i < B,

i€ A\B = Yoo,i =B

(2

Can B’ = (0?7 This would mean that for some unbounded X C 6 we have

eeX = (Vie A)Yo.i=p]

(2

hence {o. : ¢ € X} C pcf{cf(BF) : i € A}, so {cf(B) : i € A’} has pcf of
cardinality > 6 > 2" whereas |A’| < k, contradiction, so really B’ # ().
As we are assuming —l |, there is an ultrafilter 7 on A’ such that

A <sup {tcf(ig/ vga,i/.@) e < 9}.
Clearly
tcf(ig/ vgg,i/.@) <o <A

(by the choice of A, = A’). Without loss of generality o. > 6 for each ¢ < 6. So

we can choose, for each ¢, a function h. € [][ 7., such that
i€ A’

(*) if ( <0 and ¢ # ¢, while (v, ;:1 € A") <g (Vo.,i 11 € A’) then
(Yoei i1 €AY <g he.

(Note that (v, :i € A’) #9 (Vo.,i : 1 € A’) because of the cofinalities of
the respective ultraproducts.) So, considering 2 as an ultrafilter on &:

X, = {a < 0c the <9 fa <2 (Vo.i 1 < K), but

B<a = (fa<o f8<9 (Yo.i: i<K))}

has cardinality o.. So X = |J X; is as required.

e<o

a6

We may wonder whether we can remove or at least weaken the assumption (x); the
answer is:
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2.7 Claim. 1) If K < A and 0 = cf(A) < A, and B, (from 2.6) then for some
fa € "X (for ao < X\) the conclusion of 2.6(1) fails.

Proof. 1) Let y, )\f (i < k,(<0)Dbeasin > -

Let a; =: {)\f : i < k}, and o = max pcf(ac). Without loss of generality
(¢ : ¢ < 0) is increasing with limit A\. By [\Sh:g<II , §3] for each { < 6 we can
find (f$ : a < o¢) be such that:

b Cac= |{fSb:a< max pcf(ac)}| = max pcf(b).

Define (fo : o < A) by: fo(i) = g(a)()\,f) where ((«) = min{¢ : ¢ > a}. Now
check. Lo 7

2.8 Discussion. 1) So if 2% < A\, @ = cf(\) then 2.7 shows that 2.6 is the best
possible. (Of course, we still do not know if X _is possible). See more in 3.13.
2) Note: If cf(M\) > 2%, and
(Va)(a € Reg & |a] < k <min(a) = |pcf(a)| < |al),
then [,  cannot occur as without loss of generality

Je ={A C k:max pef{AS 1 i e A} < max pef{XS 1 i < K}}

does not depend on (.
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§3 STRONG INDEPENDENCE IN MAHARAM MEASURE ALGEBRAS

3.1 Claim. Assume

(a) I; is a k;-complete ideal on \; fori <4,
(0) ki > ik

(c) p= Sup2<5 K; 18 strong limit singular,
(d) Ai

(e) A

e

7

+_2u

Then there is 77 a super A-sequence for (I; : i < §), where

3.2 Definition. We say 7 is a super (A, J)-sequence for (I; : i < ) if, in addition
(to the demands in 1.9)

(%) for every n <w and fa ¢ < A (for a < A, £ < n) increasing with ¢, pairwise
distinct (i.e. Bay,e = Bas,ts = 1 = a2 & {1 = {3) we have

{i<5:{<n5a,z(i):€<n>:a<)\}€HIZ}EJ.

<n

Moreover

(%) if B < w, Baye < A (for a« < A\, £ < n), Bay < Bae+1, and the [y are
pairwise distinct then for some A € J we have:
ifm<w,iyg<ip <--+ipm_1 belong to §\ A, then

{<<775a,e(it) :€<n) :t<m>;a < )\} c (H (HIit>>+

t<m A<n

Proof. Like the proof of 1.9. ES

3.3 Example: /\:H+:2“7H:Zi<ﬁ)\iai<j = 0 =K<\ <Aj <pand each

A; is measurable with a (Ng + > < )\j)+_complete normal (or just Ramsey for n;)
ultrafilter Z; on A;.
Let n = (n; :i < k), i <n; <w, (if K = Vg, n; =i we may omit it)

I; ={A C[\]™: for some B € 9; we have [B]" N A = 0}.
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Then

(x)1 Claim 3.1 applies,

(x)2 for every m < w and X € ][] I; we can find A € ; such that:
£<m

{§:5=(sp:l<m),sp€[A]", 81 <sp11}NX=0.

3.4 Definition. 1) For a Boolean algebra B we say ((aq, bs) : a < o) is a strongly
independent sequence of intervals if

(a) BE aq < ba,

(b) if B’ is a Boolean algebra extending B and n < w, ag < a3 < -+ < ap_1 <
a* and B’ F “a,, < x¢p < b,,” for ¢ < n, then any non-trivial Boolean
combination of (xy : £ < n) is non-zero (in B’).

2) We say, for a Boolean algebra B that ((aq, bs) : @ < a*) is a A-anti independent
sequence of intervals if:

(a) BE aq < bg,

(b) if B is a Boolean algebra extending B and X € [a*]* and B’ F “a, < 1, <
b,” for a € X, then there are n < w and ag < a1 < -+- < ap_1 from X
such that some non-trivial Boolean combination of (x,, : £ < n) is zero.

3) We say ((aq,bs) : a < a*) is an independent sequence of intervals in the Boolean
algebra B if letting B’, 2, be as in 3.5 below, we have (z,, : o < o*) is independent
(in B).

4) We say ((aq,bq) : @ < a*) is a strongly A-anti-independent sequence of intervals
for the Boolean algebra B if:

(a) BE aq < bg,

(b) if B, X, z,(cx € X) are as in 3.4(2)(b) above, then the Boolean subalgebra
of B’ generated by {x, : @ € X} contains no free subset of cardinality A.

5) We say ((aq,bq) : a < a*) is mediumly A-anti independent (sequence of intervals
of the Boolean algebra B) if

(a) BE aq < b,

(b) if B’ is the free extension of B for ((aq,bs) : @ < a*) (see 3.5 below), then
the Boolean subalgebra of B’ generated by {z, : @ < a*} contains no free
subalgebra of cardinality .
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3.5 Definition. We say that B’ = B'(B, ((aq,bs) : @ < a*)), or B’ is the free
extension of B for ((as,bs) : o < o*), if:

(x) B’ is the algebra freely generated by B U {z, : @ < a*} except for the
equations:

(a) the equations which B satisfies,
() aa < xo < by, for a < a*.

3.6 Observation. 1) In 3.4(3), if B C #A(ay), ag +w + a* < a3 then we can embed
B’ into #(a1) over B.

2) There are obvious implications among the notion from Definition 3.4 and some
equivalences: independent (3.4(3)) with explicitly independent; and stronger inde-
pendent with “(a) of 3.4(1) and if aq, ..., a9, B1,...,Bn < a® with no repetition,

T
=1 /=1

3.7 Lemma. Assume p is strong limit singular of countable cofinality and A =
+ _ou

put =2,

Then in B(n), (the Maharam measure algebra of dimension p) we can find a se-

quence ((aq,ba) @ a < py such that:

(a) B(p) E aq < ba,
() ((aq,ba) : oo < A) is strongly A-anti independent.

Remark. What is the difference with 1.16 Note that 3.4(ii)(b) speaks on “no free
subset of the Boolean algebra”, not just of the set.

Proof. 1) Let pp =Y, _ A2, (we may demand J,45(A\}) < A2 ; < p) and let I,

n<w N
be ERIZ;’;(}\%)Jﬁ(/\%yr (see Definition 1.17, they were used in the proof of 1.13).
Let 7 = (N : @ < A) be as guaranteed by 3.1 (so 1g(n,) = w, Na(n) € [A,]™, where
A =30 1(A2)T. So 1,11 is [Dom(1,,)|"-complete, (we could also have (I, : n < w)
is normal). Renaming, let )} (for n < w, o < A,) be the free generators of the
Maharam algebra.
Define for « < A and n < w

0 = (@ : B appears in no(m)}
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b, = U{(l — 1z B appears in n,(m)}.

We define by induction on n, the elements aq r, ba,n as follows: for n < 5let aq,, =

0, bo,n, = 1. Forn > 5 we let an,n, = Gon— 1U( ﬂba ) and b n = ba 1N (G, U

aa’n) We can prove by induction on n < w that Aan-1 < Gan < ban < ban—1-

We can compute the measure, e.g., let (bon — Gan) = [[{1—2"¢"Y 5 <0 <n}.
Let ag = | aan € B(1), ba = [) ban € B(1).

nw nw

So clearly A(u) F ao < by, and by the measure computations above, #(u) F
(o < bo. S0 ((an,ba) : @ < A) is a sequence of intervals. Suppose B, ¢, (for
a < A), is a counterexample to the conclusion so there is an independent subset
{do : @ < A} of (cq : @ < AN) € B. Thus, for each v < A for some k, < w and
a Boolean term 7 = 74(x0, ..., 2k, —1) and some Fo0 < Ba1 < -+ < Bajk,—1 W
have do = Ta (0.0, Chans -+ » Charn 1)

As we can replace {d, : @ < A} by any subset of the same cardinality without
loss of generality 7, = 7, so let ko, = k(x).

Similarly, by the A-system argument without loss of generality for some k < k(x)
we have

0 <k= Bos=prand a(l) < a(2) = Ba(1),k(x)—1 < Ba(2),k-

Let X, = {(ng, ,(n) 1 k <€ < k(x):a <A} C EEH=B([A,]"). So we know that
k(x)—1
B={n<w:n>k(x)—kand X,, € ( [[ I,)"} €J". Let n € B. We can find
=

a function h : X,, — X such that

teX, & M) =a=1t=(ns,,(n): k<l<k(x)).

Let m(x) < w be large enough, a power of 2 for simplicity.
k(x)—1
As X, € ( T] I.)", we can find (S; : £ € [k,k(x)]) and (us : § € Sy) for

=k
¢ € [k, k(%)) such that

(a) Sk =A{{ )},

(b) us € Aa]™™),

(c) the us’s are pairwise disjoint,

(d) Sepa = {57 (w) : 5 € Sp,w € [us]"},
(e) Sk € Xn.
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k(x)—1
(We just do it by induction on ¢ using the definition of ][] I, and the definition
t=k
of I;.) So it suffices to show that (dji) : £ € Sk(x)) is not independent. For this
just note:

® for every e € R>? if n is large enough compared to k(x),1/e, and m(x) is

large enough compared to n then for every ultrafilter 2 on %(u) we can by

downward induction on ¢ = k,... k(%) — 1 find u; € [ug]m(*)/Qk(*)ie and

ns € o kG119 for 5 € Sy such that: 5 <t € Sy, and £ < 1 < k(x) and
a€u; =[x} € D =ns(l1) =1].

Now let n* = 7y (i.e., ns for the unique 5 € Sp) and for m < k() letting S;, =

{5 € Sy if £ < m then 5(¢) € [Ug_re]n}7 we have § € S}, = dpi) € Z or

So to prove that (d, : o < A) is not independent it suffices to find S C Sj s

such that

®s Ndan (] da=0,

aesS aeSk(*)\S
or equivalently

®'s for no ultrafilter 2 on #(u) do we have

(XESk(*)i[dQE.@EOAES].

By the argument above it will suffice to have
@4 if (uy 5 € U{S) : £ < k(x)) satisfies: S, = Sp, S; C Sy,

_ 2k(x)—2£
5€8) = u; € [ug)™/?

and
Sty ={5"(w) :5€ Spand w € [ug]"} then SN S, ¢ {0,5}.

Now, not only that this is trivial by the probabilistic existence proof & la Erdos but
the proof gives much more than enough. Us.7

3.8 Claim. : Assume

(%) X is regular > Rg and ((aa,ba) : @ < A) is a strongly (or just mediumly)
A-anti-independent sequence of pairs from B(N) satisfying aq < by .
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Then:

a) There is B, such that:
(a)
(o) B is a subalgebra of B(N),
(8) B’ has cardinality A and even dimension A,

(v) there is no subset of B’ of cardinality A\ which is independent.

(b) Let B, xo(ax < \) be as in 3.5, then the Boolean algebra in clause (a) can
be chosen isomorphic to (o 1 < \)mr.

Proof. Straight. Clause (a) follows from clause (b). For clause (b) apply Definition
3.4(5) and 3.6. (Note: we can use &' C A(A + A)). It has already been done by
Plebanek [P11]. Os s

3.9 Conclusion. For X as in 3.7 (i.e., A = ut = 2*, u strong limit > cf(u) = Rg)
or just as in (x) of 3.8, we have

(*) there is a topological space X which is Hausdorff, compact zero dimensional,
with a measure Leb on the Borel sets such that it has dimension A, so as a
measure space is isomorphic to Z(A) but there is no homomorphism from
X onto *2.

Proof. By 3.7(1) (*) of 3.8 holds so we can restrict ourselves to this case. So by 3.8
we know that clause (a) of 3.8 holds. Now it follows that (x) holds, more specifically,
that the Cech—Stone compactification of B’ (i.e., the set of ultrafilters of B’ with
the natural topology) and the measure of B’ (which is just the restriction of the
one on B(\)) satisfies (%) of 3.9. Os.g

3.10 Example: Assume # is a Maharam measure algebra of dimension p and free
basis (zq 1 < p), p> A > cf(X) =Rg. Then (x)2, 5 below holds, where

(¥)2,n there are positive pairwise distinct members a, of #(u) for a < p, such
that for every X € [A\]* for some a # 3 from X, a, Nag = 0.

Proof. Trivial: let A\ = Ay An < Apy1 and for a € ( U )\g,)\n) we let
<n
Ao = T+ N (wn - U xm) DB.IO

m<n

nw

3.11 Fact. Suppose Ry < cf(A) < X\ and there are positive b, € Z(cf(\)) for a <
cf(A\) such that for every X € [cf(A)]*/()\) for some m < w and By, ..., Bm € X we
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have Leb( N b5,5> =0 and p > A. Then we can find pairwise distinct a, € A(A)

<m
for a < A such that for every X € [A]* for some m < w, fBo,...,Bm € X we have
Leb(ﬂKm age) =0, ie, BNE ) ag =0.
- <m

Proof. Like the proof of 3.10 replacing z, — J,,,<, Tm (for n < w) by b, (for
a < cf(M)). (Just say that if cf()\) is a precaliber of % then so is A.)

3.12 Remark. 1) By 2.1 we have in 3.11 that necessarily cf(A\) < Jj is normally
cf(A) < 3.
2) Note that 3.13 elaborates 2.7 above and 3.15 is complementary to §2.

3.13 Example: Assume Ng <o <60 = cf(\) <27 <pu< A,

A = sup { maxpcf(a) :a € Reg N p\27, |a] =0, [a]%7 C Jemax pet(a)al,
and sup(pcf(a)\{max pcf(a)}) < p}

and there is 7 C [0]? such that |</| > 6 and

A#B & Ace & Bed = |ANB|<o.

Or just for no uniform ultrafilter 2 on o do we have |2 N.</| > o.
Then we can find ordinals i(a, €) for « < A\, e < o such that

(a) for a # B, {e 1 i(ev,€) # i(B, )} is infinite. Moreover

(a)™ for any M < X for some ultrafilter 2 on o, {{(i(a,¢e) : e < 0)/P : a < A}
has cardinality > )/,

(b) for no ultrafilter 2 on ¢ do we have {(i(a,¢) : € < 0)/Z : @ < A} have
cardinality .

[Why? Let

A= Z/\<’ Ae <A, A¢ =max pcf(a),
<0

lacl =0, [ac]™7 € Janlacl, = sup(pef(ac)\{Ac}).

Let f$ € [Ja¢ for ¢ < 0, a < A¢ be such that (f$:a < A¢) is <J<Xc[ac]fincreasing
cofinal and b € Jox (ac) = p > [{fS 1b:a <A} Let o = {A¢: ¢ < 0}, let
ac = {18 :e € Ac}. Lastly i(a,€) is
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f5e)if (JAe<a<A & e€ A,
£<¢

Cif [JAde<a<i & e¢ A
£<¢
Now check.

3.1/ Remark. There are easy sufficient conditions: if 2° < u! < p, cf(ut) = o,
pp(p') > A, (Yx < p')(cf(x) < 0 = pp(x) < p') and A < p' or at least
A=sup{x:p<x= cf(x) <Aand ~(Ja)(a C RegnNx\p & Ja] <o & x €
pcf(a))}.

3.15 Example: Assume

(@) Ng < 0= cf(\) <28 < <A,
(b) there is a #—Luzin subset of “2.

Then

(a) there are pairwise disjoint a, € %(u) for a < A such that for no X € [A\]*
is (aq 1 @ € X) free

(8) moreover, for X € [A\* for some n < w and By < f1 < -+ < 3, from X we
have Z(\) E () ag, = 0.

<n

Proof. (Has already appeared in Plebanek [PI1].) By 3.11 it suffices to prove
its assumption. Let for n < w, (cp¢ : £ < (n+ 1)) be a sequence of pairwise
disjoint members of %(w) with union 1, each with each with measure 1/n?. For
ne [T (n+1)*let by = () (1 —c¢, ) Now suppose

nw nw

(¥) X C¥2,|X| =0, and if Y € [X]? then for some n < w and v € [] (£+ 1)?
£<n
we have

{t:t<(n+1)*y={n(n):nin=p ney}

So {b, : n € X} is as required. Lastly from clause (c) of the assumption there is X
as required in (x) so, we are done. O3 15

3.16 Remark. 1) So we can weaken clause (c) of the assumption to () from the
proof, or variants of it.

2) Note that strong negation of (c) of 3.15 which is consistent, implies the inverse
situation.
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§4 THE INTERESTING IDEALS AND THE DIRECT PCF APPLICATION

Our problem, the existence of (\,I,.J)-sequences for I, depends much on the
ideals I; we use. Under strong set theoretic assumptions, there are A-sequences
7 by 1.9 (and 3.1); but we would like to prove their existence (i.e., in ZFC). For
some ideals, by [Sh:g] we will have many cases of existence, e.g., when I; is Jf\f, A
regular. But we are more interested in the existence for more complicated ideals.
The first step up are Jgd with A a (finite) strictly increasing sequence of cardinals.
The proof for them is not much harder than with the Jf\d’s. We then consider the
central ideal here: Jgd for X a (strictly) decreasing sequence of regular cardinals,
and explain why the existence of 7 for these ideals is more useful. We also consider
their strong relative which comes from the nonstationary ideal. We would of course
love to have even stronger ideals but there are indications that for those which
we considered and failed, the failure is not completely due to incompetence, i.e.,
there are related independence results (see later). We commence this section by
reviewing some general definitions, some of them used earlier in the paper.

4.1 Definition. 1) For a set A of ordinals with no last element (mainly A =\ =
cf(N))

J4={B:BC A is bounded}.

2) If A C Ord is such that cf otp(A)) > Ny and A stationary in sup(A), we let

J4'={B C A: B is not a stationary subset of sup(A4)}.

3) If AC Ord, 6 = cf(d) < cf(otp(A)) and

{6 <sup(A):0 € A, cf(d) =06}
is a stationary subset of sup(A), then let

JE —IBC A:{6e B: cf(§) =0} is a nonstationary subset of sup(4)}.

4.2 Definition. 1) For an ideal J let (E|J+m)cp(:v) mean that

{x € Dom(J):¢(z)} € J".

2) For an ideal J let (V/z)¢(z) mean

{z € Dom(J): ~p(z)} € J.
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4.3 Definition. 1) J = [] J; is the following ideal on [] Dom(Jy):
£<n I<n
for X C [ Dom(Jy) we have
£<n

X e JTiff (3 2) (3 21) - (3120 1) [(z0s . . ., Tn_1) € X].
2) If A = (\¢: £ < n) we let:

(@) J34 =TT J3¢

£<n
(b) if cf(Ag) > Vg for £ < n then we let

Jnst H Jnst ‘

<n

(c) if cf(Ag) > 0 = cf(0) for £ < n then we let

J?St ,0 H Jnst ,0

<n

(d) if 0 = (0, : £ < n) and cf(N\y) > 0, = cf(6,) for £ < n then we let

JPSt 0 H Jnst Ny .

<n

4.4 Claim. If X = (\;: £ < n) is a strictly increasing sequence of regular cardinals
then the following conditions (a)-(d) on X C T] Ay Dom(JR9) are equivalent:

<n
(a) X € (JyH)*;

(b) forno a€ [ Ae do we have
£<n

(VB € X)(=(a < B)), wherep <a=: /\ Be < auy;
t<n

(¢) we can find (o, :me |J I Ae) such that:
m<n f<m
(i) ay < Aig(n)»
(@) gy < =gy for i <j < Ngm)+1,

(i) ne I] A= <Oznrg:€§n> € X;
<n
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(d) Like (c), adding

(v) oy =a,=n=r.

Proof. Straight. For (b) = (c) use induction on n = £g(\), see the proof at the end
of the proof of 4.11, of (x) there. 0y 4

4.5 Discussion. From 4.4, we see that for for X € (J/—\bd)+ there are patterns

which necessarily occur as subsets of X. These are essentially like the branches (=

maximal nodes) of a tree with n levels, with a linear order on each level and with

no dependencies between the different levels. These patterns were explored in [Sh

462], [RoSh 534], [Sh 575]. The patterns considered there can be represented as a

set A C [[ By, Be € Ord such that n(i) = v(i) = n[i=wv |1 (ie., treeness).
£<n

Now look at Jgd, where the gain is that A does not have a tree, that is, we have

any A C [] By, Be € Ord, so that n,v € A can have {{ < n : n(¢) = v({)}
£<n
being arbitrary (rather than being an initial segment), of course this depends on

the ideal.

4.6 Claim. Assume J = (Jo: £ < n) and Jy is a kg-complete ideal on \y. We also
demand kg > N\, when £ > k. Let J = [] J,.

l<n
1) The following conditions on X C [] A¢ are equivalent:
<n
(a) X € Jt;

(b) formo A= (Ay:¢<n), Ay € Jy do we have

BeX=\/B €Ay
l

c) we can find (c, :n € A¢) such that o,y < A\ig(n) and
n 2 s n g

(%) for each v € ] A\¢ we have
l<n

<a,/r(g_|_1) < n) e X.
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2)If[AC N & Al < N| = A€ Jy then we can add

(d) like (c), but adding

(111) v~y < a5y if i <5< Ng()41-

Proof. Similar to 4.4.

4.7 Claim. Let A = (\;: £ < n) be a decreasing sequence of reqular cardinals.

(1) If Ap > 22+ for £ < n, then:

() for every A € (J2N)*F, there are Ay € (JR)T such that T] A, C A.
£<n

(2) If J = [ Je and J; is a (27+1) T —complete ideal on Ay, then () holds, with
£<n
J in place of J;d and Jy in place of Jl?gd.

(3) For every A € (J2N)T and k < w we can find By € [Ag)* such that [] B C
£<n
A.

(4) In (3), instead of k and J‘;f (for £ < n) we can use any r and ((Aey1)®)"-
complete ideal Jy on \p for £ < n.

Proof. E.g., (3). We prove it by induction on n.

n = 1. Trivial, as singletons are in the ideal.
n—1 n—1

n+1l Let Xo={a<X:{ae [] M:{a)"aecA}e (][] 5Ot}
=1 (=1

Clearly, Xy € (J3)T.
By the induction hypothesis, for each o € Xy, there is (By : £ =1,...,n —1),
such that

n—1 n—1
By € [\JF and H By C{ace H Mo (a) ae A}y =: B~
(=1 (=1

n—1 _ _ _

So Xy is the union of [] Af = A\; sets Xo[B] = {a € X, : B® = B}, so for some
(=1

B, |Xo[B]| > k and let By = first k members of X, 5. 07
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4.8 Definition. For a partial order P let tcf(P) = X iff there is an increasing
cofinal sequence of length A in P (tcf — stands for true cofinality); so e.g.,

(w, <) X (w1, <) has no true cofinality, but tcf] [(N,,, <)/Z is well defined if Z is an
ultrafilter on w.

4.9 Fact. 1) If J D JPdis anideal, \; = cf(\;) > 6, fori < §and A = tcf([] \i/J),
1<6

then there is a (X, J)-sequence 7] = (1o : a < A) for (J34:i < 6).

2) If \; is increasing in i then (J}? : 4 < 6) is normal (hence 7 is normal) provided

that 0 = w or at least

(¥)1 A> [ Aj fori <6.

J<t
3) If we just ask 7 to be normal it suffices to demand

(¥)2 Ay > max pcf{); : j < i} for i < 4.

Proof. In [] \;/J, there is a cofinal increasing sequence (f, : a < A). It is as

<9
required, as we now show. Let X € [A\]}, let X; = {f,(i) : « € X} for i < §. Define
f € H )\Z
1<6

. sup(X;) + 1 if sup(X;) <\
f@@) = )
0 otherwise.

But (f, : a < )) is cofinal, so for some ag < A, f <J fa,- Now X € [A]*, so for
some aq, we have ag < a1 € X. As (fo : @ < A) is increasing, fo, <J fa,, hence
[ <y fay- So A={i: f(i) > fo, (i)} € J. But f,,(i) € Xi, s0i € 0\A = \; =
sup(X,).
2) Easy.
3) By [Sh:g, I1,3.5]. Do

4.10 Comment: 1) This is good e.g. to lift a colouring of the A;’s to one of A\. But
we would like to have an upgrade as well.
2) The kind of assumptions of 4.9 is the central interest in [Sh:g].

4.11 Claim. Assume \' = (X\; ¢ : £ < n;) is an increasing sequence of requlars > &
fori < 6. Also assume that J is an ideal on {(i,¢) : i < 6,¢ < n;} and

A= tef(J]Xie/ ),
il
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and for some ideal J' on §, we have J' 2 J34 and J is generated by
{{Giin) :n<n;ic Ab: Ae J'}.

Then there is a (A, J')-sequence 7 for (ind 11 < 6).
2) (JR& i < 8) is normal (hence i} above is normal) if

(*)1 0 =w and i <7< o= /\i,ni—l < >\j,0 or
(*)2 H{)\@ﬁ < j,g < nj} < >\j,0'

3) If we ask just 77 to be normal it suffices to demand

(¥)3 max pcf{X; ¢4 < j, € <n;} < Ajo.

Proof. Again, let f = (f, : @ < A) be <j-increasing cofinal. Let 1, (i) = (fa(i,) :

(< ,”Z'> € 1_1} Let X € [\ Let X; = {na(i) : @ € X}. If X; € Jp{5,, then there
is a’ € [[A*= ][ i such that

L<n;
(%) BeX;= \/ B <aj

£<n7;

(We return to this at the end of the proof.)
So let f € [\ be given by f(i,f) = ). So, as before, for some a € X,
il

f <y fa- So
a={ix N\ £(G.0) = fali D)} € T

L<n;

Now for i € 0\ A we have X; ¢ Jllif/—\i.

[Why (%)? Prove the existence of a*, for notational convenience denoted here by B,
by induction on n;. Here we use “increasing A\*”.

n; = 1. Clear

n; =k+1. For a < \; o define

Xi,a - {B f [an) : B € Xl}

So we know that for some vy < A o
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bd
€ ['707 )\i,O] = Xi?“ < JH?:_f Xie”

_ n
So for each such o we have % € [] \; ¢ as given by the induction hypothesis. Let
=1

5_{70+1 if0=1,
o U{ﬁ? ta € [0, )\i,O)} otherwise.

Why is the latter < A; 7 As \j o < cf(Aie).] 0411

4.12 Question: Are there many cases fitting the framework of 4.117

4.13 Answer: Not so few. E.g., for any s, for many A\ = cf(\) we have that
A= tcf( I /\i/JEd> for some sequence (\; : i < k). E.g., if Rg < cf(§) = k and

1<K
k< p=23d5s <A= cf(\) < Jsyqorjust g < k = cf(p) < A = cf(\) < pf
and (Vx < p)[x" < p| then there is an increasing sequence of regulars (\; : i < k)
with limit Js or p respectively as above. [Why? see [Sh:g, VIII,§1,2.6].] Even if
k = Vg this holds for many \’s, e.g., if u < A < p™1 or just [{x: pu < x < \; and
X = Ry }| < p see [Sh:g, IX] and use 4.14 below.
Note that by the pcf-theorem (see [Sh:g, VIII,2.6])

4.14 Claim. Assume I to be an ideal on §, and A\, y = cf(\; ¢) > || fori <6 and
¢ <n; and 0 < n; <w. Then the following are equivalent

(a) for every (k; :i < d) € [ n; we have
1<6

A= tcf(g Ai,ki/l)

(b) Letting

I'= {A - U{z} x n; : for someB € [ we haveA C U{z} X ni},
i<é i€B

we have [ Ain/I' has true cofinality X.

Proof. Let A*, B* be a partition of |J{i} x n such that
<0

A =max pcf{\;, : (i,n) € A*} and A ¢ pcf{\;, :(i,n) € B*}
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(exists by the pcf theorem). Now:

a) = (b

If [T N\in/I" does not have true cofinality A, then for some A € (I')* we have
that [T Ain/I’ has true cofinality A # A (here we use the pcf theorem) and

(i,n)EA

without loss of generality A C A* vV A C B*, hence A ¢ pcf{\;, : (i,n) € A}.
Let B = {i < ¢ : (In < ny)[(i,n) € A]}, so by the definition of I’ we know
B e It. So, for i € B we can choose k; € {0,...,n; — 1} such that (i, k;) € A. So
{(i,k;) : i € B} C A hence pcf{\; i, : i € B} C pcf{\; : (i, k) € A}, but X does
not belong to the later, hence not to the former, contradicting (a).

—(a) = —(b)

So there is (k; : @ < &) € [] n; such that —[tcf(J[[ i, /L) = A] hence by the
<9

pcf theorem, for some A € (I)*, we have max pef{\;, : i € A} < A Let

B = {(i,k;) : i € A}, so clearly max pcf{\; r, : (i,k;) € B} < A. But by the

definition of I’, we have B € (I')" so we get contradiction to (b). 0414

4.15 Remark. See more on related topics in [Sh 589].
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65 A-SEQUENCES FOR DECREASING A’ BY PCF

5.1 Discussion. Our aim here is to get “decreasing A” from “increasing A" (for de),
in some sense, to “make gold from lead”. We do this by using pcf assumptions,
then proving that these assumptions are very reasonable.

(Note: when we cannot materialize the pcf assumptions the situation is close to

SCH, and then we have other avenues for construction of A-sequences for some I,
e.g., (1.9, 3.1).)

X kX

In the following claim the interesting case is when )\, are increasing, A’ = (Aeyi

¢ < n) decreasing sequence of regular cardinals, A\;; > [[ A, ;, or at least A\, ; >
Jj<i
m<n

max pcf{\,, ; :m <n,j <i}.

5.2 Claim. Assume

(@) A=A\l <n), X=X\ : L <n) fori<yd,
(b) I is an ideal on 9,
(c) \e = tcf( I /\&,L'/I) for £ < n,
<9
(d) ff= (fr.o: a0 < No) is <g—increasing and cofinal in [ Ao,
<0
(6) o< )\g’i = Cf()\g’i),

(f) forae ] A\ let fa be defined by fa(i) = (fo,a, (i) : £ <mn) € ] e
£<n l<n

Then for any X € (JR9)* we have

{i:{fa(i):aeX}te !} el

Proof. Let X; = {fa(i):a € X} and let B={i <§: X; € J2}.
Assume B € I and we shall get a contradiction. For each i € B, m < n and

a € H /\gﬂ', let
<m
n—1
xXi={Be [ riia Bexi)
l=m
and let
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g:(@) = min {fy < Am,i: if B €[y, A\p,) then Xé“(ﬁ) e Jhd }

n—1
Hz=m+1 Aei

This definition just unravels the definition of J}?{i; note

(%) if XL € JF[C; 1g<a))‘€7i then g;(a@) < Aig(@).

Now we choose by induction on m < n ordinals a,,, < A, such that for m < n we
have

—. J; .Yt bd —
() Bm =:{i € B: X{y, | (iy0amy € T, = B mod I

. . bd

So, stipulating JHQTL A
B = B,.

If (%), is true, clearly

L= {0}, the ideal on {( )}, we have that (*)g holds with

(9i((fe.a, () : £ <m)) 20 € Bin)

is in [] M- But By, € I and (fim,a @ @ < Ap) is <;—increasing cofinal in
<8

[T Am.i- So for some ayy,

<9

B! ={i€ B :g:({fe,u(i): £ <m)) > ap}el.
Defining B,,,+1 using this «,,, we easily obtain
Bmi1 2 By \B), so we see that (*),,41 holds.
So

@Z(O&g:€<n>€H)\g
{<n

is well defined.

In the inductive definition of «,,, any larger o/, would serve in place of a,
(of course it would influence the future choices). So, in addition to (x),,, we can
demand
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n—1

(%% ) {B c H N:lag:b<m)"B¢c X} c (J;?[m’n))+.

l=m

So from (xx), we get (ay : £ < n) € X hence for all i we have () € X

(ferap (D<)
by the definition. But

Bu={i€B: X5, pen € Iy, 2.0 = Bmod I,

e : i bd _ i _
so B, # (), and if i € B,, this means X(fz,ag(i):kn) € J pon Ao = {0} so X<fi,a£(i)5€<> =
(), contradicting the previous sentence. Us.2

In fact, more generally,

5.3 Claim. . Assume

(a) 7t = (0, : a < A\) in an (I,J, \)-sequence for (I; o : i < J) for each £ < n,
() L = 11 i,

<n

(¢) 1= (na:a<A), where n,, € [[ Dom(I;) and
1<6

Na(i) = (116(1) : € < ).
Then 1 is an (I, J, \)-sequence for (I; : i < 9).

Proof. Like the proof of 5.2. Us.s
5.4 Claim. . Assume

(a) A= tcf( IT Qg’i/(]> for £ <n and 0y; are increasing with ¢;
<9
(b) 6p; = tcf( I1 Tg}i}E/Ji> and 7y - are reqular decreasing with £, i.e., Ty ; o >

e<g;
Tet1,ie (the interesting case is > ).

Let
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J* = {A:Ag{(ﬁ,i,a) 0 < n,i<d,e<e;} and,

AT D)) ¢ Al

and let

Then
A= tcf( H Toie /J*)

and we can find Mo € [[Lie for o < X such (No : o« < A) is a (A, J*)-sequence for

1,€
<I7;’5 . i, 8) .

Proof. Straight. (Using 5.3 and [Sh:g, 1,2.10]). Os.4
5.5 Example: Assume
(%) (A\; : i < §) is a strictly increasing sequence of regulars, 6 < Ag, A =
tet( TT Mo/ J2).
1<0
5.6 Discussion. This may seem a strong assumption, but getting such representa-
tions is central in [Sh:g]. If p is strong limit singular

® Ny < k= cf(p) <p< A= cf(N) <2

then there is such (\; : 7 < cf(p)), A\i < g =sup(A;). So without loss of generality
2N < \iyq (see 4.13).
Now fix n for simplicity. Let

>\£,i - >\n><i—|—n—Z-
So

A= (Mg : £ < n) is strictly decreasing.

In 4.14 an example is given for 5.2.

For 5.4 we have e.g.
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5.7 Claim. Assume

(a) w is strong limit,

(b) Ro = cf(n) < p,

(c) 2# > ptetl = X\ [also pt@st@*l = X is OK, or just A\ = p™0+t < ppt(u)
and cf (u0) < p).

Then:
1) We can find Agi, ke such that (¢ <i < w):

(A) 1,4 < H = Zm . m,j»
(B) 2M+1i < Ny and 2200 < 2Ni+vit1
(@) tcf( I1 /\h/de) = putke,
<w
(D)
(E)

D
E

2) For every n < w, we can find J, )\2’2- (¢ <mn,i<w) such that:

(i) there is 7 a A-sequence for ( F)\d

(i

(vi

[ l<ny | i <w),

)
) >\4+1,7, < )\éw

) 2 2% < A1t
)

(iv) (VA € J)(3%4) [n x {i} N A =0].

5.8 Remark. 1) This Claim can be used with no further reference to pcf: just for
any 4 as in (a)—(c), we have 7 for which we can construct colourings, objects, etc.
2) There are theorems with n increasing, they are somewhat cumbersome.

Of course, we can use

Ny +1

H J)\e it E<nm

T=Nm

3) Note: 2# > p“*lis a strong negation of 2# = p* which was very useful here.
(Our general theme is: =SCH is a good hypothesis) and we shall deal with closing
the gap.

4) Note: if 2# = pt™() we can prove nice things with I = J?;?v“"(*)—’f,kn(*))‘
5) If Xg < cf(pu) < p the parallel claim is even easier, and p being a strong limit is
necessary only for (B).
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Proof of 5.7. 1) We will just give a series of quotations.
First cf(u ) = N, so by [Sh:g, I1,1.6], there is an increasing sequence (0; : i < w)
of regulars with limit p*“ such that

A= ptett = tcf( H Gi/JfJ’d),

1<w
so for ¢ large enough 6; > u. So without loss of generality A 6; > p.

So let §; = u**, k; € (0,w) strictly increasing. By [Sh:g, 5.9,p.408], we have
pp(p) > pt*. (We would like to have pp(p) = 2#, but only “almost proved”.)
This means by the no hole theorem [Sh:g, 2.3] that for some countable set a, of
regulars < p, u = sup(as) and u% € pef(ag). So by the pef theorem, without loss
of generality pt* = max pecf(ap) and pt, ..., ut*e=1 ¢ pef(ay) (alternatively use
[Sh:g, VIIL§1]).

So necessarily

phe = tef ([ ] ae/70%).

Let g =, .o tns fn < finy1 < p. We start choosing Ag; by induction on i, for
all 7 by downward induction on ¢, so that

)\E,i > i, )\E,i € a;,

and (B) holds. So, as A\¢; € a; and )\ ; is increasing with 4, with limit p, we have
th( H )\g’i/JBd) = M‘HW

2) Let h : w — w be such that (Vm)(3%0i) (h(i) = m). Choose by induction on i,
Avi € {An(i),m : m < w} such that (b) + (c) of (2) hold. For each i we do this by
downward induction on ¢. Then apply the last theorem. I

We may deal with all n’s at once, at some price. The simplest case is:

5.9 Claim. . Assume

(a) (Ap:{l < w) is a sequence of pairwise disjoint sets,

(0) A= tef( ] 6n/J59),

nw

(c) 0, = th( I ng/JBd), Tn,e Tegular > N,

L<w
(d) h:w— w is such that \h ({n})\ =R, J={ACwxw: (V‘]b n) (vjﬁdm)
(h(n) =0 =An{m} x (n))}-
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Then there is a (X, J)-sequence for (ije t(n, ) € wxw).

Proof. Straight.

5.10 Remark. 1) We can replace (0, : n < w) by (6; : i < 9).

2) Another way to get an example for 5.4 is to have (u; : i < k) increasing contin-
uous, k = cf(k) > Vo, k < pio, = pe = Y5, i, (i) < 10], ppys) (i) < i1,
Xi = |Reg N [u;, pp?[;l(,ui))|, S C k stationary such that for every S’ C S stationary

we have [] xi > Xx-

1€S8’
3) In all the cases here we can get normality as in §4.
4) See 1.19, 1.20.
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56 PRODUCTS OF BOOLEAN ALGEBRAS

Monk asks [M2, Problem 35,p.15]:

6.1 Monk’s Problem. Does [][ FBA(3,) have free caliber J} 7

n<w
Here:

6.2 Notation. FBA(p) is the Boolean algebra freely generated by (z, : a < 3).

6.3 Definition. 1) We say that the cardinal A is a free caliber of the Boolean
algebra B if for every X € [B]* there is Y € [B]* such that Y is independent in B,
so if cf(A) > ||B|| this holds trivially.

2) FreeCal(B) = {\ < |B| : X is a free caliber of B}.

We show that, e.g., if 3 = 2= then the answer is NO.

6.4 Claim. Assume:

(a) there is a normal' super (X, J)-sequence 7 for I = (I; : i < 6),
(b) I = ERE,, =: {X C[\i]?: for some h: X — k;, [Rang(h) < k;, and for
no u € [N;]%0 do we have (h | [u]? constant) & [u]® C X},
(c) 0 <wy.
Then X is not a free caliber of [ FBA(M\;).

<6

6.5 Remark. By 3.1, if A\ = pu* = 21,y strong limit > 8o = cf(u), then we can
find such x;, A; < p and 7 for 6 = w.

Proof. By renaming without loss of generality

()1 Nali) =D ;.

Jj<i

Let 0 (i) = {f2(i), f2(0)}, f2>i) < fL(3) (< A\;). First we deal with the case § = w,
as its notation is simpler. Let B,, = FBA(\,) be freely generated by {z : v < A\, }.
We define g} € [[ B, for a < A by

nw

Lif T is normal, i.e. k;4+1 > A;, the normality of 77 follows.
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NOESR ($§3<k>"$§;u»>-

k<t

Note:

®1 for @ < g < A, we have g7, gj are distinct elements of I] B,,

n<w

@y if f(8) = fi(a) and m > n then By, F g (m) N gz(m) = 0.

(Why? As 27y — 27 (o) I8 disjoint to 23 5) — 27 4) ]

®3 if n < w and for i = 1,2 we have oy, 3; < A and f2(8;) = f}(c;) and

N (@) = fl(az) and A fL(B1) = fi(B2)

k<n k<n

then

H Bm = gzl mga :g;‘;z mggz‘

n<w

[Why? Check each coordinate in the product, for m > n use ®, to show that both
sides are zero, and if m < n use the last two assumptions.]

Now if X € [A]* then there are such ay, as, 81, B2 (using the choice of 77 and its
normality).
What if § > w is a limit ordinal of cofinality w? Let § = U{i, : n < w},0 =i <
iyin < i, < 0 and for ¢ < §,n[i] is the unique n < w such that i, < i < 9,41 and
let 6 = U Up, U, C Upt1, Uy finite for n < h. We let g7 € HBZ' for a < 9, be the

n<w 1<
function

9a(8) = {0 () — 215y 15 € wnfy}-

6.6 Claim. Assume:

(¥)(a) p=p? <= cf(\) <2*, and (x; : i < 0) a sequence of cardinals, or

(b) 29 < X = cf(N\) and in the (< 6% )-base product topology on S"PX)2 the
density is < A, or at least in the box product topology on [](Xi2) (where
1<0
each Xi2 has Tychonov topology) has density < A.
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Then [[ FBA(x:) has free caliber \.
<6

Proof. As in §2. U4

Probably the choice of the product of ( FBA(J,,) : n < w) in the original question
was chosen just as the simplest case, as is often done. But in this case the products
of uncountably many free Boolean algebras behave differently.

6.7 Claim. Assume A = cf(\) > 29 cf(0) > Ry and (Va < X)(|a| < ) and each

Xi is a cardinal. Then [[ FBA(x;) has free caliber \.
<0

Proof. First assume a stronger assumption
(¥) A=puT, cf(p) =0 > Vg and (Va < p)(Jal? < p),
or alternatively
(¥)7 A= cf()\) and pu > 2% are as in 7.5 below and we assume i < 6 = y; < pu.

(This was our first proof. It possibly covers all cases under some reasonable pcf
hypothesis, and illuminates the method).

Let g € J] FBA(x;) for a < A be pairwise distinct, and we should find X € [A]*
<0
such that (¢’ : a € X) is independent. Let

g:;(Z) = Ta,i(xﬁa,i,mxﬁa,i,w cee 7x6a,i,m(a,i)—1)7

where 7,,; is a Boolean term. Without loss of generality no xg, ,, is redundant,

Ba,i,m increasing with m. As 20 < X\ = cf(\) without loss of generality Ta,i = Ti

and so m(«, i) = m(i) for every a < A\, i < 6. Let f, be the function with domain 6,

Fald) = (Baie : £ <m(i)). Let fi(i) = Bai, so Dom(fi) = {i < 0: ¢ < m(i)}.
If (%) holds then by 7.3(2) and 7.4(2) (see later) we have

® there are u*, m*, v, 8*, X such that
(@) uw*€[0)? and X € [\,
(b) ieu* = m(i) =m*,

(¢) v Cm*but v#m*,

(d) B*:(ﬁzi:€<m*,i€u*),

()

e) Lev= (féf] [ u*:a € X) is < va-increasing and cofinal in [ 87,

eu*
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(f) Ltem™\v = fg] [u* = (87, i €u"),
(9) forevery ¥ € [] 87, for A ordinals a € X we have,

lev
ieu*

ieut & lev = v, < fg](i) < B
(h) ifle€v, a€ X, i€ u* then fo[f](i) > sup {B}hil : By, 4, < Bi; where
{1 <m* and i1 < 9} and a < § € X implies: for every ¢ € u* large

enough we have fg](i) > max{fc[fl](il)  Bi i, = Biyand £y < m”
and 1 < 9} (the interesting case is i1 = 7).

Now for any n < w, and o < -+ < ay,—1 from X, we have

® for every ¢ € u* large enough

(fao (1)sfar (1) s fa,_i(2)) =
<<5a0,i,ﬂ < m*), <5a1,i,€ < m*), ey <Ban,1,i,f < m*)>

is as in a A—system, in fact

Bawy it (1) = By o2y = (k(1),£(1)) = (k(2),£(2)) V (£(1) = £(2) € v).

Asv #{0,1,...,m* — 1} and in 7 no variable is redundant clearly
®" for every i € u* large enough, (7(zg, .05+ ), T(Tga, i0s-)s---) is inde-
pendent.

This implies that (g, : £ < n) is independent (in [[ FBA(x;)) as required.
<0
If we do not have (%) or (*)~7, by (Va < A)(|a|¥ < A) and 2¢ < X\ = cf())
without loss of generality for some 7 = 7(z1,...,2,-1) and infinite u C 6, and
some X € [A\]* we have: (f, [ u:a € X) is with no repetition, 7,,; = 7 for a € X,
1 € u. So without loss of generality © = . Then we can find an ultrafilter & on 6
as in 7.7 below and then the proof above works. Us.7

6.8 Comment. Before we use 7.7, we wonder if “y; < u” is necessary in (x)~ of 6.7.
This is quite straight. We can omit it if
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a C Reg NA\u,|a| <0 = max pcf(a) < A.

6.9 Problem. 1) Which of the following statements is consistent with ZFC:

(a) p is strong limit, cf(u) = g, and for every A € Reg N (u, 2#] and cardinals
Xn such that p = > xp, A is a free caliber of [[ FBA(x»).

n<w n<w

(What about “some such A”? See 6.14 below.)
(b) the same for all such p.

2) Can you prove in ZFC that for some strong limit u, # = cf(u) < p and for
some set (a; : i < o) where 0 = 07 or 0 = (2%)F, pairwise disjoint there is
A€ (u, 2N N pef(ay).

<o
Now we turn to another of Monk’s problems.

6.10 Claim. Assume
(%) k> Vg is weakly inaccessible and (2" : . < k) is not eventually constant.
Then

(a) there is a k-c.c. Boolean algebra of cardinality 2<", with no independent
subset of cardinality k™.

Proof. There are sequences ((&;, Z;) 1 i < k), ((ki, Ai) 1 © < k) such that ¢#; is a
dense linear order of cardinality A\; and .%; C _#; a dense subset of _#; of cardinality
ki, (ki + 1 < k) increasing with limit x, and A; > 37, ;2% (> 32, . Ai), by [Sh 430,
26,3.4].

Let B, be Intalg(_#;), the Boolean algebra of closed-open intervals of _#;. Let
B be the free product of {B; : i < k}, so B extends each B; and each element of

B is a Boolean combination of finitely many elements of (J B;. It is straight to
1<K
check B is as required:

(*)1 ‘B| - Z’L’<K, |BZ‘ + Vo = Zi<l-€ Ai = Zi<;<, A 2<K'7
(x)2 B satisfies the k—c.c.

[Why? Let a; € B\{0} for i < &, so let a; = 7i(bio,...,bin,—1) for i < &,
bie € B% ,- As we can replace a; by any a}, 0 < a} < a; without loss of generality

a; = [\ bie, big € Ba, ,\{0}. So without loss of generality ;o < a1 < -+ <
<n;
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Qinm,- As K > Ry is regular and as we can replace (a; : i < k) by (a; : i € X)

whenever X € [k]®, without loss of generality for some m, A «;r, = oy and
£<m
i<j & {l,k} C[m,n] = e <ok Let a; = () by, so clearly
£<m
a;Na; #0&a;Na; #0 /\ bieNbje#0.
L<m

But B; satisfies the k-Knaster condition (as k = cf(x) > density(_#;)), so can we
finish.|

()3 B has no independent subset of cardinality ™.

[Why? Let a; € Bfori < x™,let a; = 7i(bi0,-.. ,bin,—1) andlet b; o € B.,,\10,1}.
We can replace (a; : i < k) by (a; : i € X) for X € [k¥]*", so without loss of

generality 7, = 7, n;, = n and o,y = ay. Let by = U [iek, Tiek+1) wWhere
k€u; ¢

4 = (20 + k < k; ) is an increasing sequence of elements of {—oo} U _#; U{oo},

Tigo = —O0, Tigk,, = 00, Uiy < k;jp. We can find y; ¢ € # such that

Tiok < Yiok < Tiekt1- Without loss of generality ki ¢ = ke, yiex = Yok, Uie = Up.

Without loss of generality y; ¢ = ye . For a finite A C B let at (A) = at(A4,B)
be the number of atoms in the Boolean subalgebra of B which A generates (all this
was mainly for clarity). Now for any finite u C x™

at({a; :i € u}, B)
< at({bie:icul<n},B) <[] at({bie:i€u},Bag,,)

<n

< T at(wien i € uk < ke}.Ba,,}) < [] ( 3 (lul + 1)) <K x [ul"

<n l<n k<ky

for k* = max{k, + 1 : £ < n}. So if u is large enough this is < 2!/, showing non
independence. .10

6.11 Claim. Let B be the completion of FBA(x)

(1) X is not a free caliber of B if
(x) A=put =2, u<x, p strong limit singular of cofinality RNy,

(2) A is a free caliber of B if
(x) p=pl <X=cf(\) <24, x >\, or at least
() x> ppu < A= cf(\) < 2% u strong limit singular of cofinality R
and the (< Ny )-box product topology on Xw has density < A.
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Proof. 1) By 6.4, 6.5’s proofs.
2) If (%) use 6.7, if (%)’ the proof is similar. O6.11

6.12 Remark. We can deal with singular cardinals similarly as in the earlier proofs.
6.13 Claim. In the earlier claims if

(x)1 A=pu'T, or at least if
()2 p <A, and [a < A= cf([a)?,C) < A], x = sup,; ¢ Xi

then “in the (< 6%)-box product topology, X0 has density < X" can be replaced by
“in the (< 07)-box product topology, *6 has density < \”.

6.14 Conclusion. 1) Let £ € {1,2} for simplicity. The following questions cannot
be answered in ZFC (assuming the consistency of large cardinals).
Assume 33 < 2,1

(a); Does [] FBA(3,,) have free caliber J}¢?

n<w

(b)¢ Does the completion of FBA(J,) have free caliber J}*?
(¢)¢ Does the completion of FBA(J}*) have free caliber 377

2) Moreover we can add

for © € {a,b,c} even (x); + (x)2, and —(x)1 + —(x)a.

Proof. 1) Let ¢ = 2. By Gitik and Shelah [GiSh 597] it is consistent with ZFC that
with the (< N;)-box product topology, (3«)w has density < 37, so we can use 6.4,
6.6(i) (using 6.14 of course). For the other direction by Gitik and Shelah [GiSh 597]
the necessary assumptions for 6.3, 6.11(i) are consistent.

For ¢ = 1, if JF = 27« then the answer is NO by 6.3, 6.11.

To get consistency for A\ = JF we need dual: in Hw, for every u™ open sets there
is a point belonging to ut of them (this is phrased in 6.15 below). This too is
proved consistent in [GiSh 597].

2) Similarly. Og .14
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6.15 Definition. Prg, (A, ;) means:

if f, is a partial function from p to 0 such that [Dom(f,)| < o for a < A,
then some f € #6 extends A of the functions f,,.

If 0 = 6 we may omit it.

6.16 Claim. In Claim 6.14 the assumption on the density of box products can be
replaced by cases of Definition 6.15:

(a) 2.1 Assume B = %(x) is a Maharam measure algebra of dimension x, cf(\) >
2% gnd cf(A) > o VA = cf(\) V X\ n,- If Preo (A x) then B has A as a

free caliber

(b) 6.6 Assume 2° < X\ = cf()\), x = sup; Xi- If Pro(\, x) then T] FBA(x;)
<6
has free caliber .

Proof. Straight. Us.16

In fact cases of Pr are essentially necessary and sufficient conditions.

6.17 Claim. 1) Assume A = cf(\) > 2%, and x,, are cardinal. The following
conditions are equivalent

(a) [] FBA(xn) has free caliber X;

n<w

(b) if for a < A, i < w, (u$,v$) is a pair of disjoint finite subsets of x; then

177

for some X € [\* we have

i<w = Uu?ﬂUv?:@,

aceX aceX

i.e., if f& is a finite function from x; to {0,1} fori < w, a < A, then for
some (f; 11 < w)

(Fra < N)(Vi <w)ff C fi

Proof. Straight. Us.17

6.18 Discussion. For measure, the parallel seems cumbersome. We still may like
to be more concrete on the dependencies appearing. Note
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®1 in 3.7, we can have T = (x, : a < \) satisfies

(¥)Bz for every X € (A}, m < w, and B(a, k) < A for a < A\, k < 2m
pairwise distinct, for every n large enough there are pairwise distinct

Qag, ... ,0a,_1 € X such that
0= ( U (mﬁwwwmﬁ(auﬂ,m)>’
<n k<m

®q if (*)B,z holds then the Boolean algebra B’ = (2, : @ < A\)p has no inde-
pendent subset of cardinality A. Moreover, if 2/, € B’ for a < A are distinct,

then (*)B’,(m&:a<)\>~
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§7 A NICE SUBFAMILY OF FUNCTIONS EXISTS

We expand and continue on [Sh 430, 6.6D], [Sh 513, 6.1].
7.1 Claim. Assume
(A)
B) 2 is a u- complete ﬁlter on A
) J
)

(
(C :k — Ord for a < A,
(D .@ contains the co-bounded subsets of A.

Then

0) We can find w C k and B* = (8] :i < k) such that: i € K\ w = cf(B}) > 2"

7

and for every B € T[] B for A ordinals o < X (even a set in %t ) we have B <
i€r\w

fo I (K\w) < B* T (K\w), folw=p5"w, and sup{f3; : B < B;} < fa(z') < Br.
1) We can find a partition (w; : £ < 2) of k, X € 2T and (A; 1 i < k), (N 11 < K),
(hi 1 <K), (n; i < k) such that:

(CL) AZ - OI'd,
(B) Ni = Nig:l<mg) and 2% < Ny < Xipr1 < A and 28 < cf(Nig),
(¢) h; is an order preserving function from [] Ai¢ onto A; son, =0 &
<n;
|A;| = 1. (The order on [[ A being lexicographic, <is),
£<n7;

(d) i<k & a€X = foli) € Ay, and we let f2(i,0) = [ (fa(3))](€), s0

fae I Xie

1<K
£<n;

(e) icwi<mn, =0 (so|4;]|=1),
(f) ifi € wy then |A;| <A, hence | | Ai| <A,
iewy
(9) ifge Il Nigthen{a€ X :g< fi} € 27 and letting 87 = sup Rang(h;),

1<K
£<ny

part (0) holds where w§ plays the roll of w and w of kK\w

(h) if D is (Ja|®) T -complete for any o < py then py < sup{ ;¢ :i € w}; and £ <
n;} <\ when wi # 0 (so, e.g., if p =\ and assuming GCH

sup{cf(A;¢) 17 € wi and £ < n;} = A).

2in parts (0), (1), p = (2%)T is O.K.
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2) In part (1) we can add ()1 to the conclusion if (E) below holds,

(%)1 if Nig € [, A) then A ¢ is regular.
(E) For any set a of < k singular cardinals from the interval (u, ), we have
max pcf{cf(x) : x € a} < A.
3) Assume in part (1) that (F) below holds. Then we can demand (%)s.

(x)2 XY > pq fori € wy, £ <n;.
(F) cf(p1) > K and « < py = 2 is [|a| <] T -complete.

4) If in part (1) in addition (G) below holds, then we can add

(%)3 A € Py complete{ Al & € wi; and £ < ng} if wi # 0, moreover
(¥)4 if €; <ny fori e w} then X € pcf,_completetcf(A],) @ € wi}.
(G)(i) Va < AN)(Ja|<7 < A) and o = cf(o) > Ny,
(ii) 2 is A\-complete
)

(i17) fo # f8 for a # B (or just o # B € X for some X € DT).
5) If in part (1) in addition (H) below holds then we can add

(¥)5 if m <m*, A€ Jy andl; <n; forie k\A (sowy C A) then X € pef{\] :
ier\ A}
(H)(i) m* <w and J,, an Xi-complete ideal on k for m < m*,

(ii) 2 is A\-complete.
6) If in part (1) in addition (I) holds then we can® add:
(*)6 if a < B are from X then fy <j f3

() (@) ™, cfip) <28
(i) J={S:5CS,={@,f):i<k,L<n;} and
max pcf{iie: (i,€) € S} < p
(iii) 2 is the filter of co-bounded subsets of .

3Clearly the demand (I)(iii) can be weakened. Also instead of (I)(i) we can use (E) from part

(2).
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Remark. 1) If A, ; is singular we can replace it with a sequence (7; ¢, : ¢ < cf(Air)),
and the index set ((a) : v < A;¢) by ((¢,7) : ¢ < cf(Nie) and v < i r,), and 7, ¢,
are replaced by sequences of regular cardinals. Not clear if all this helps.

2) The reader may concentrate on the case (F) + (G)(ii) holds.

Proof. 0) By part (1).
1) Let x be regular large enough. Choose N such that

(1) N < (H(x), €),
+1C N and |N| =27,

) N
i) 2
(13i) K, pu, A\, 2 and (fo : @ < A) belong to N,
v) N* C N.

Next choose d(%) < A which belongs to B* = (\[{B € ¥ : B € N}, which is the
intersection of < 2% < p members of . Necessarily B* € 2 so such §(x) exists.
For each 7 < K let

Y; =:{A € N : A aset of ordinals and f5(,(i) € A},

clearly Y; # 0 as |J (fy(i) + 1) € N, hence there is a set A; € Y; of minimal order
Y<A

type. As N® C N clearly A =: (A4; : i € k) belongs to N.
Let us define:
wo = {i <k |Ail =1}

Hence the order type of A; for ¢ € w] is necessarily a limit ordinal.
Now note

(¥)1 A; # 0 and (wg, wy) is a partition of k.

[Why? Recall A; € Y; hence fs5(,)(i) € A; so A; # () indeed. Also (wg, wi) is a
partition of k by their choice.]

(%)2 |As] = 1HF Ay = {fs50) (1)} iff f500)(2) € N (iff i € wf).
[Why? Think.]

(x)3 Without loss of generality A; C {fo(i) : @ < A}.
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[Why? As {fo(i) : @« < A} € YV; and A; N {fa(i) : @ < A} € Y; has order type
< otp(4;)]
Hence

(%)4 If i € k\w§ then |A4;] < A.

Let for i € wy

Ki:{(X,B)EN:forsome n, A= {\:£<n) €N, and
B={(By:ne HAOGNandﬁne{fQ(i):a</\}and

L<n

fsn (i) €{By:n€ H A} C A; and
<n

for any n <y, v from H A¢ then 3, < ﬁ,,}.
l<n

Note that we really mean just 3, < f,, so necessarily (Vij € II\)(Jv € TIN) (1 <¢x
vA By < 511)_- i
Clearly (A,5) € N = otp{B, : n € [[ A} < Aegm—1 X Aeg(m—2 X -~ X Ao
y4

Cartesian product.
We define a partial order <* on U K;.

(AL, BY) <* (A2, B?) iff: (a) + Z(T)’; holds where
(@) {8y eIl A} € {87 e T, AT}

(b) one of the following clauses holds
(@)  otp(TTA}, <ew) < otp(ITAZ, <4z)
¢ ‘

(5) otp(];[ )\%, <tz) = otp(];[ A2, <pp) and Lg(A) < Lg()?)

() <ﬁ1%¥14A},§ex)==;ﬁ¢KIIgA?7Sex%€gg§1)==59(X2)%?d
Vo Ay g <Aooy cand A XA o o =0 0
k<o) tg(Z)—1—k tg(Z2)—1—k PARMZICOREY. Lg(Z2)—1—¢

(x)5 (K;, <*) C N is a partial order which is a well quasi order (i.e., no strictly
decreasing w—chains).

[Why? Reflect.]

(%) otp(A;) < |A;|™ for some n < w.
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[Why? By Dushnik-Milner [DM], we can find A, ,, C A; for n < w such that A; =
U Ain and otp(A4;,) < |Ai|". Soas A; € N there is such sequence (4;, : n < w)
n<w
in N so A;,, € N hence for some n we have f5,(i) € 4;, € N, so by the choice
of A; clearly otp(A;) < |A;|™.]
(¥)7 For each i < k, there is (X, ) € K; such that A A < |A;].
L<lg(X)

Why? As said above «; := otp(4;) is a limit ordinal, now let A\g = cf(q;), let n
be as in (x)g and let \; = ... = A, be |4;], so X is a sequence of cardinals < |A/|
of length n + 1. Choose 7 = (7. : € < A) be an increasing continuous sequence of
ordinals with limit a; such that vo = 0.

For each € < A\g and v € [y, 7e+1] there is a unique 7 € [] A¢ such that:
<n

(@)yy n(0) =€
(b)~,, the order type of the following set is v — 7.
{re™ v <@ d),...,n(n))}, <ew).

In this case we let n = n, and 3,, = ~; clearly
o if e < \p and p. := (g)"((0),) then Boe = Ye-

For ne (I] Ae)\{ng : B < a;} let B1 = B1(n) be the minimal ordinal $; € A; such

{<n
that n <y np,, (it is well defined because {p. : € < Ao} is cofinal in ({n, : v <
a;}, <¢z)) and let 3, = B1(n).
Now check.
So we can find a <*-minimal (A%, 3%) € K; in {(\, ) € K; : £ < lg(\) = A\ <
|A;|} and let n; = lg(\). Note:

(x)s we can above in the choice of A; demand A; = {6727 :ne T[] A},
L<n;

(¥)9 Ap < Ab,y < Afor £ < my.

[Why? The second inequality by ()4 and the choice of (A, 57), the first inequality
as otherwise by renaming we can omit \} 41 and contradict the <*-minimality of
(A%, 6] | ,

Let (n; i < k) be such that 8,. = f5.) (i) and 0 € [[ A}

L<n;

(x)10 AL > 2%; moreover cf(\)) > 2~.
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[Why? Trivial or see (x)12]. )
Let Y = {oz < X : for every i < Kk we have f,(i) € Ai}, as f € N and
(A;:i < k) € N necessarily Y € N. Also Y € 27 because §(*) € Y and the choice

of §(x). So for a € Y we let (nf* : i < k) be such that ni* € [] A} and fo (i) = B}a
E<n7; !
and 7§ is <g-minimal under those restrictions (so it is uniquely determined).

We now define f € [[ A, for a < X by fx(i,¢) = n(¢).
<K
£<mn;

Note:

(¥)11 (N i< k), (B:i<k)and f, hence ((n%:i < k) :a <A\ and f* = (f*:
a €Y) belong to N.

(12 10 (0) = f3,)(0,0) € [sup(N N ML), X)) and a € Y = fx(i, £) < Ay

[(Why? fx(i, ) < X, as n®* € H A: and if for some f5(@:4) < sup(N' N o) as if
nn;

for some * € NN AL, * > f5 (@ 0) then f5 (i) € Aj={y € Ai:y < B} €N,

easily we get contradiction to the choice of (A\?, 3%) as otp(A}) < otp(4;).]

(¥)13 for every g € J] A} and X € [Y]* N N such that §(x) € X there is a € X
1<K
£<mn;

such that

g< frie i<k & L <n; = g(i,l) < fi(i,0).

[Why? If not, there is such g, so as (A}, 3%) : i < k), f = (fa : @ < A) and X,
Y belong to N also f* = (f* : a € X) belongs to N, so all the requirements on g
are first order with parameters from N, so without loss of generality g € N. Now
d(x) € X cannot satisfy the requirement hence there are i < k, £ < n; such that
g(i,0) > fg(*)(i,é) contradicting (*)12.]

Let

Z;i={ne H)\}}:ifl/e HA}andu<g$n; thenﬁi<5f7},

1<n; Z<7’Li

Zr={nlk:n€Z; and k < n;}.

As (A, B%) € N clearly also Z;, Z;" € N.

()14 If i < K, k < n; then X, = otp{n(k): (nf 1 k)<n € Z;}.
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(Why? Let Z/ ={ne€ Z;: \i, > otp{lv € Z;:nk<veEZ}} Sonf€Z €N,
by renaming
neZ =\ >sup{v(k)i:nlk<ve Z},

and we get a contradiction to ()s as in the proof of (x)g if A\{ | = Al and as in
(*)12 if )\;C_l < )\;{:]

Hence
(*)15 without loss of generality (8; :n € [] Aj) is increasing (with <z not just
<) e<n;
[Why? Use (x)14 for every v € Z,,,_1 and rename.]
()16 p < max pcf{\, : i € wi and £ < n;}.
[Why? Otherwise let p1 > o = max pef{\} : i € wi and £ < n;}, and so B* =: {3} :

i < r,m € [ A} has cardinality uo so there is & € N, | 2| < A\, & C [uo]="
<n;

and 2 is cofinal in ([140]=", C). (Why? By assumption (D)). Note that if for some
X e€(2+Y)", f] X is constant we are done. Otherwise

a€ P ={a<\: Rang(fy) Ca} =0 mod 2
but & is p-complete hence
X*={a €Y :(Jae P)| Rang(fo) Ca]} =0 mod 2

and X* € N and §(x) € X*, contradicting the choice of X*.]
()17 max pef{A} i € w; and £ <n;} <A

[Why? By (*)13.]
(x)18 A has cofinality > 2~.

[Why? Otherwise by ()12 we get a contradiction.

The conclusion can now be checked easily.

2) Let a = {cf(\)) : A\ is singular and p < A; < A} and use (E).

3) Easy.

[Clearly 2 is uj-complete where s = uf = Z{|a|® : @ < u1}, so choose N as
above of cardinality ps.]

4) Without loss of generality in clause (iii) of (G) we have o < 8 < A = f, # f3
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(otherwise replace 2 by Z + X and change f, for « € A\ X in quite an arbitrary
way).

Assume that the desired conclusion fails. For this we choose not just one model N
but an (w + 1)-tree of models. More precisely, we choose by induction on i < w a
sequence (N, : n € T;) such that

(a) T; C N,

b) j<i & neli=nljeT;,

(¢) [Ti] <A,

(d) N, < ((x), €) satisfies (i)—(iv) from the proof of part (1),
(e) fornET we have n € N, and (N, : v € |J T;) € N,, and

Jj<i
van= N, <N, & N, € N,

(f) ifi=0, then T; = {()},
(9) ifiis w, then T; = {n € ’'X: (Vj <i)(n j €Ty),
(h) ifi=j+1,n€ T and (a,.: € <&, < A) list [sup(N,, N A)]<7, then

{veT:navi={n"(a): a<e,},

and Qne € Nnﬁ<€>,

(1) T= U T

1 <w

There is no problem to carry out the definition (note that e, < A by assumption
(G)(i) and |T),41] < A as in addition A is regular, and |T,,| < A by assumption
(G)(i) as 0 > Ng). Now

:ﬂ{BE@: for some n € T we have B € N, }

being the intersection of < |T|+2" < A sets in Z, belongs to ¥ (using assumption
(G)(ii)), so choose d(x) € B*. Now we choose by induction on k < w, n € Ty
and wf, wf, (A\oF, B%%) : i < k) € N,, as in the proof of (1) for N,,, such that
wk C wht nr anpr and (Vi € wh)[(ABFHE gEEEL) < (XBF 35R)] The last
assertion can be satisfied in the choice of the k£ 4 1 step by the assumption toward
Contradiction and basic pcf.

If U wf =k, then f5. € NU%, hence 0(*) € Ny, , contradiction. If i €
k<w k
k\ U wf, then (A\"k BF) . k < w) is strictly decreasing in K; by <* (more
k<w
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exactly in |J K;[N,,]), contradicting a parallel of (x)q;.
k<w

(5) We choose by induction on t € w the objects Ny, &;, A* = (A} : i < &),
(AL BY) 1i < k), (ht:i < k), K! such that

(a) for each t, they are as required in the proof of part (1),
(b) N € Nipy, K C K™ and (3, 1) < (X, BY) in KU,

(c) for each t for some m; < m* we have

{i<k: (Xﬁ“,ﬁf“) <* (Xf,Bf)} =k mod Jy,,.

No problem to carry it out by assumption toward contradiction. So for some m,
{t : my = m} is infinite, contradicting “J,, is Nj—complete, and for each i < k,
U K} well ordered by <*”.

i

6) Clearly (II{X\; ¢ : (i,£) € Si},<y) has true cofinality A so let (go : @ < A) be
< j-increasing cofinal in it. We choose a., . < a by induction on € < A such that:

(x) (a) @ is minimal such that { < e, fgc <J Ya.

(b) B € X is minimal such that go. < f3, .

Now X' = {f. : € < A} is as required. U7.1

See section 9 for actually some consequences.
7.2 Notation.. If f is a function from, say, 6 to the ordinals, and g is a sequence of

length 6 of functions from the ordinals to the ordinals, then f* = f9 is a function
from the ordinals to the ordinals defined by f*(i) = ¢;(f(7)).

We spell out a special case of 7.1

7.3 Fact. Assume

(*) 2" < p, cf(p) =60 and (Va < p)(jal’ < p),

and A = pt.
Then:

(1) For every sequence f = ( fa 1 a < A) of functions from 6 to the ordinals,
we can find u* € [0]? and 8* = (BF : i € u*) such that one of the following
cases occurs:

(x); for some X € [A]}, fo [ u* = B* for a € X,
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(%)2(cr) if 6 > Ny then £/ is a limit ordinal (for every i € u*), and (cf(8}) : i €
u*) is strictly increasing with limit g and A = tcf( 11 Cf(ﬁf)/(]fjff)
1Eu*
and for every 4 € [] B for A ordinals o < X\ we have

1EU*
(Vi € u")(vi < fa(i) < B]),

(%)2(B) if @ = Ry then for some strictly increasing sequence A = (\; : i € u*)
of regular cardinals with limit g, A = tef( [ \;/J%¢) and for some

1EU*
g={g;:1<80),g;:0rd — \;, we have: for every ¥ € [ A; for A
1EU*
ordinals a < A we have

*

icut = < fI0) <\,

()3 Bf is a limit ordinal of cofinality A for i € u* and for some X € [A\]*
we have: ¢ € u* = (fo(i) : @« € X) is strictly increasing with limit
pF and for o € X, the interval [f,(7), 3}) is disjoint to

(3

{fs(j) : BeX; and j e u"\{i} & B; #B; or f <aand j € u™}.

2) Assume 6 > Rg. For every sequence f = (f, : @ < M) of pairwise distinct
functions from 6 to “~Ord such that [{fo(i) : @ < A} < A for i < 0, we can find
u* € [0]? and n(x) € [1,w) and v C n(*) non-empty and 3* = (Bri € <n(x),ic€
u*) such that for each i

(a) for £ € v we have that 37, is a limit ordinal, (cf(8;;) : i € u*) is strictly
increasing with limit p and A = tef( ] cf(ﬁzi)/JSi‘{), and also for ¢ < j in

eu*

u*, and £, k € v we have cf(5;;) < cf(5} ;).

(b) for every ¥ € [[,, B, for A ordinals a < A we have

(Vi <u®)(Ve € v)[ye: < (fa(i))(0) < Bl and

(Vi € u™)(V0 € n(x)\v)[fa(i))(£) = 5]
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3) In part (2) if = cf(6) > Ng, we can replace u* € [0]? by u € JT for any normal
ideal J on 6. Moreover if {§ < 6 : (Vo < cf(9))(|a]<7 < cf(|d])} is stationary then
Rang(f,) C 7~ Ord is fine. If we omit the assumption |{f, (i) : @ < A}| < A, instead
of v we have a partition (vq,ve,v3) of {¢ : £ < n*} such that clause (a) holds for
¢ € 2, clause (b) holds with ¢ € vo Uwvs, £ € vy instead of £ € v, £ € n* \ v, and the
parallel of (x)3 holds for ¢ € vs.

Proof. 1) By 7.1(0),(1),(2) we know that

® there is (B} : i < @) and w* C 0 such that letting u* = 6\w* we have:
(a) for every ¥ € [ Bf for A ordinals @ < A we have

teEu*

iew = foli) =5

79

ieut =y < foli) < B,

and moreover (wg,w;), (A\f i€ wi < n), X, (ff:a<A),h=(h; i<
6) are as there (so wi = u* and w§ = w*); clearly A\; ; < A.

Case 1. |w*| = 6.
So for some X € [A\]* we have (f, | w* : o € X) is constant. Easily (); holds.

Case 2. For some unbounded subset u' of § and (m; : i € u'), m; < n; we have
1eu = >\¢7mi =\

Clearly ()3 holds and we get X by “thinning”: choose by induction on v < A
the y-th member o, < A of X, fixing (h; ' (fu(i)) [ mi : 4 € o).

Case 3. For some unbounded u’ C @ we have ju, =: sup{\! :i € v’ and ¢ < n;} is
< u.

So {f* 1 {(i,0) :i € v/,¢ < n;} : a € X} has cardinality < u? < u < X so for
some unbounded X’ C X we have (f, [ v : a € X’) is constant so (x); holds.

Case 4. Neither case 1 nor case 2 nor case 3.
Let = >, g i, i < p increasing with 7. Choose j; € u* such that j; is the
minimal j > J j¢ satisfying A > )\}“_1 > + Z<<i Ajo, and let mj, < mnj, be the
¢<i
minimal m such that 7" > p; + >, Aje..
Assume 6 > N, replacing (u; : @ < 6), without loss of generality pt;, = p1; and by
Fodor lemma, replacing (j; : i < 0) by a subsequence, without loss of generality p* =:
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sup{A]! 1 i < 0,m < my,} < p, and without loss of generality (h;l(fa(jl)) 'mj, :
i < 0) = x is the same for all o € X.

Choose u™ = {j; : i <0}, \; = AT", which is regular by 7.1(2) as then assumption
(E) is trivial. Now, (\; : j € u*) is a strictly increasing sequence of regular cardinals
with limit p, and hence [] A;/J% is p-directed and hence A-directed. But,

JjeEu”

by 7.1, {(h;l(fa(z))(ml) : 1 € u*) : @ € X} is unbounded in it (or use “max
pef{ie i i < 0,0 <ni} < XN). So A= tef( [T Xi/J4). Let g; be defined by

JjEu*
gi(v) = (hj_l(’y))(mj), and we are done. We leave the case § = X to the reader.
2) First without loss of generality ¢g(f.(i)) = n*, i.e., does not depend on «,
secondly, e.g., by successive applications of part (1).
3) Similar. 073

7.4 Conclusion. For
1) In 7.3(1), (*)2 and (x)3 implies

(x)5 there are u*, f* = (B} : i € u*) and X such that
(a) u*€[0),
(b) X €[\,
() (falu":ae€X)is < jpa-increasing if 0 > Vg, and (f9 | u*: a € X)
is < b —increasing if # = X (for appropriate g),

(d)(a) if @ > Xy then for every 7 € [[ 5; there are A ordinals o € X such
1EU*
that

ieut = < fali) < B,

(d)(B) if0 =Ny, \; = Rang(g;) then for every 4 € [] A; there are A ordinals
ieu*

o € X such that

icut = oy < fI6) <\,

(e) if ()3 then:
(1) a<pfromX = f,lu"</fglu"
(1) if i #j are in v* and Bf < 87 then a € X = fo(j) > b7,
(¢ii) if 4,5 € u*, B = Bj and o < B are from X then f, (i) < f5(J)-
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2) Similarly for 7.3(2), getting ® from the proof of 6.7. [Saharon copied!]

©® there are u*, m*, v, 8*, X such that
(@) u*€[0)? and X € [\,
) ieut = m(i) =m",
(¢) v Cm*but v#m*,
(d) B*=(B;,;: € <m* icur)
(e) Ltev= (féf] [ u*: o € X) is <jva-increasing and cofinal in [] S,
“ icu*
(f) Ltem™\v = fg] [u* = (87, i €u"),
(9) forevery ¥ € [] B;,; for A ordinals o € X we have,

Lev
Pi€u*

icu & Lev = vy, < f6) < B

(h) ifle€v,a€ X, i€ u" then fc[f](i) > sup {@1,11 : By, 4, < By where
{1 <m* and i1 < 9} and a < § € X implies: for every ¢ € u* large
enough we have fg](i) > max{fc[fl](il) By = B

; and £p < m*

and i1 < 0} (the interesting case is i1 = 7).

Proof. Straight. Choose the y—th member of X for v < A, by induction on ~.
Ll7.4

Similarly we can prove
7.5 Claim. Assume
(A) X =cf(\) > 2,
(B) p=min{u: p? > A}, cf(u) = 0 > R,
(C) if a C RegNp\ 2% |a] <0, X € pefycomplote(®), then for some b C a,

A = tef([Tb/[6]<9).
Then the conclusions of 7.3, 7.4 hold.

7.6 Remark. Concerning clause (C) of 7.5.
(Note: this holds if

D CReg\2/ & 0| < 0= |pcf(d)| < 0.



nodi fi ed: 2015- 06- 04

revi sion: 2015-06-02

(620)

SPECIAL SUBSETS 75

Why? Now (bg[a] : 6 € pcf(a)) is well defined and A € pcfy .omplete(@) so letting
pcf(a) VA be (0¢ : ¢ < 0), choose pu¢ € byla] \ | by, [a], and let b = {p¢ : ¢ < 0}).
£<¢

Proof. Similar [Fill?]. U7s

7.7 Fact. 1) Assume

(A) )\ = cf(\) > 2% and n < w,

(B) f£ €%0rd for £ <mn, a <\,

(€) a%ﬂ#(ff t<n)#(fs:t<n),

(D) (Va < A)(|a|¥ < N).
Then we can find an ultrafilter 2 on 6 (possibly a principal one) and X € [\]*,
v Cnand f; € °Ord for ¢ < n such that

(a) for £ € n\v and a € X we have /2 = f,/9,

(b) for a < B from X and ¢, m € v such that f,/Z = f,,/Z (e.g., £ = m) we
have f£/9 < f8'192,

) if £,m < nand fi/P < fm/2 and «, B are from X then f/9 < fé/.@.

) A= cf(A\) > 2% and (Va < \)(|a|<7 < A) and Ry + |e(¥)|t < o = cf(o) and
b) f£€90rd for e < e(x) and o < A,
(c) I is a o-complete ideal on 6,
(d) 2

(c

2) Assume
(a
(

is a A-complete filter on A\ to which all cobounded subsets of A belong.

Then we can find X, v, f. (for ¢ < e(x)) and w, J such that

(@) X €[\,
(B) f- €90rd for € < e(*),
(v) J is a o-complete ideal on 6 extending I,
(6) W= (ws:e<e(x)), w: C4,
() if « € X and € < (%) then f5 | w. = fe | we,
(¢) if « < B are from X then e <e(x) = f5 < f5 mod (J + w.), moreover
{i < 0 :for some ¢, < e(x) we have i ¢ we, i ¢ we and
fe(i) < fe(i) ut f5() > f5()} € J,

(n) if a € X and i <0, , & < (%), fe(i) < fe(d) then fe(i) < f5(9),
(0) if 2 < o then e < e(¥) = w.€J V 0\ w. € J.
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3) We can combine 7.1(1) with part (2) (having (Af, : £ < £5)).
Remark. We can prove also the parallel of 7.1(5).

Proof. 1) Like the proof of 7.1(4) or by part (2) for 0 = ¥.
2) We repeat the proof of 7.1(4) except that T'C |J ‘\. After defining B* € 2 and
1<o
choosing 0(x), for n € T, e < e(x) and ¢ < 6 we let f; ; , = min[N, N Ord \fg(*)(z)]
and wen = {i < 0: f5,) (i) € Ny}
So clearly

(N naveT = (Ve < e(#)(¥i < 0)(Beiy > Beiw & wery Cwe)

and

(¥)2 @ ¢ wey = cf(Bein) > 29,

Let J,, is the o-ideal on 6 generated by

I'U{w C 6§ :for some € < e(x) we have w C 0\ w,, and
A > max pef{cf(Be ;) i <w}}.

If for some 7, § ¢ J,, then we are done.

Letting w. := we ,J := J,, and choosing the a-th member of X’ by induction
on a, to satisfy Ve < e'Va < f: f§ < f5 mod (J +we).

For all € < e(x), use 7.3(1) when w, here stands for w there, 6 here for x there
and f¢ here stands for f, there Vo < A.

Letting f. : @ — Ord be f.(i) = 8 and choose X C X'’ such that Vo € XVi <
OV, € < e(x): if fo(i) < fe(i) then fe(i) < f$(i) and {i < 0 : fe(i) = fe(i) for some
G,&Hed.

In addition, if f¢(¢) < fe(4) then fe(i) < fg(z) < f5(i) < fe(i), a contradiction
so the rest of 7.10(2))(¢) holds.

So assume that n € T' = 6 € J,. We now choose by induction on { < o, a
sequence 7)¢ € T such that { <( = ne =n¢ [ j and

C=&+1={i<0:(3e<e(*))(Bein > Beine)} =0 mod I.
For some ¢ < e(*) and infinite Y C 0 we have:

EeY = Zg = {2 <0: 55,1‘,5 > 55,1',54_1} =6 mod I.
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But for £ < ( we have ¢ ;¢e41 > Beic by (x)1. Without loss of generality otp(Y) =
w. As I is o—complete and o > Ry, thereisani € (\{Z¢ : £ € Y}, and (Be ¢ : € € Z)
is strictly decreasing, a contradiction.

Now for ¢ = 0, ¢ limit there are no “serious” demands and for { successor ordinal
we use 0 € J,,.
3) Left to the reader (and not used). Or.7

7.7.4A Fact. Assume

(A) N=pt, 1 >29 0= cf(u) > Ry,
B) |e(*)|T +Ro < 6,
C) f£ €90rd for € < e(x), a < A,

)

(
(
(D) (Vo < p)(lal® < p).

Then we can find a stationary S C {§ < 0 : cf(6) > |e(*)|T + No} and unbounded
subset X’ of A and S, C S and f. € SOrd for € < &(%)

(a) for e <e(x) wehave ae€ X = f5[S.=/f.]8S.,
(b) for e; < e(x) and a < 8 from X if Sc ¢ ={i €S : f-(i) < fe(i)}\ S\ Se is

unbounded in 6 then f§ [ S ¢ < fg mod JngCa

(c) if ¢, e <e(x), fe(i) < f:(i), and @ € X then f¢(i) < f5(4),
(d) if 215 < @ then e < e(x) = S. € {0, S}.

Proof. Let f€ = (fS:a < M), let x be large enough and (). : &€ < 6) be increasing
continuous with limit p, and choose by induction on { < 6, an elementary submodel
N¢ of (H(x), €, <¢) of cardinality (A¢)? such that (A¢)? € N¢, (N¢) € Ne, {f¢:
e< 8(*)} S N(, and <N€ €< C> S N(.

Choose 6(x) € A\ |J Ne, possible as | |J N¢| =|Y._y(Ac)?] = 1 < A. For each

¢<o ¢<o

(<0,e<e(x)and i <0 let B7; - =min(Ne N Ord )\ f5,(4)).

For each limit i < 6 of cofinality > [e(x)| look at (87, . : ¢ < i), it is a non-
increasing sequence of ordinals, hence it is constant on some end segment, i.e., for
some j.; < 1 we have

*

j€,i S C < 2 = /B:’Z’C = /Bgaiaji,i.

As cf(i) > |e(x)|, necessarily j; = sup{je; : € < e(*)} is < ¢, hence for some j(*) < 0
the set

S ={i<0: cf(i) > |e(x)|,7 a limit ordinal}
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is stationary. The rest should be clear. Oo
—> scite{7.7.4A} undefined

Remark. We can demand S C S* in 7.7 if S* C {§ < 0 : cf(d) > |e(*)|" + No} is
stationary.

* %k ok ok ok ok ok

7.8 Discussion. We may wonder what occurs for ultraproducts of free Boolean

algebras [] FBA(x;)/Z (or even reduced products, recall FBA(y;) is the free
<0
Boolean algebra generated, say, by {z, : @ < x;} freely). Now

(x)1 if Z is Ny—complete, the situation is as in the § > Wy case for products;
() if
G40, A, ) N\ Ane 7 & () An=0),

nw nw

the situation is as in the 8 = N case.

7.9 Claim. Assume

(A) A=ptt, p>2%
(B) fo:0— Ord for a < A\.

Then we can find u* = (uf, u},us), B*, X such that

(a)

(b) B=(B;:i<0),

() X € [N\ (we can use an appropriate ideal J on A and demand X € J*),

(d) ae X = folul=(8:i€uf),

(e) if i € uj then (fa() :a € X) is strictly increasing with limit B} (so
cf(BF) = A),

(f) i € u =2 < cf(50) < s,

(g) for everyy € [] BF for A ordinals a € X we have

N *
1EUS

(upy, uy, us) is a partition of 0,

icuy = 7 <fali) <B7,
(h) there are (Njg:i <0, £ <mn;), (A;i:1<8), (h; :i<6) asin 7.1 satisfying
(a) i€us<e n; =0,
(B) icuje (n;>0 & Nog=X) & (n; >0 & (VO)(Aie=N),

(v) iful # 0, then A = max pcf{\; ¢ : 1 <6, <n;} and
pt ¢ max pef{h; o :i <6, £ <n;}.
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Proof. Let C = (C, : o < p*) be such that otp(C,) < 0%, [3 € C, = Cp =
Co, N p], Cy a set of successor ordinals and the set

S* ={0 < AT : cf(§) =0T and o = sup(Cy)}

is stationary (exists by [Sh 420, §1]). )
Let f = (fo : @ < A) be given. Let x be strong limit such that f € (x). We
choose M, by induction on a < u™* such that
()1 (@) Mo < (H(x), € <)),
(B)  ||Mu|| =2% and 2 +1 C M, and Z(M,) C M,,
(7) A, f,C and a belong to M,,
(6) (Mp: B < a) belongs to M, and € Cy = Mg < M,,.

Now for every 8 € A\, <+ Ma we define a function g2 €% (M,n Ord) for a < p™
and a function Fj from pt to u™, as follows

(*)2 ga(i) = min(Ma N x\f5(9)).

[Why is it well defined? As f € M, also U{f,(i) +1:7 <A} € M, N AT < x and
f5(4) is smaller than that ordinal.]

For B < A\, < u™ we let

(*)3 (a) ubg={i<0: fs(i) € Mo},
(b) ul ={i<0:fs3(i) € My and cf(g2(i)) = A},
(€) ub,={i<0:cf(gl(i)) <pu* and f5(i) ¢ Ma}.

)

Note. fs(i) ¢ M, = X > cf(gp(i)) > 2°.
[Why? If i € 0\u§’0 and A < cf(¢g?(i)), then

UAG) v < A and £,() < g6}

belongs to M,, and contradicts the choice of g (i). If i € 9\u§70 and cf(gf(i)) < 2°
then g (i) = sup(Ma N g4 (4)).]
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Similarly choose <A§7Z- 11 < 0), <h§1 1< 6), </\§,i,f <0, 0 < n§1>, (fal v e

X)asin 7.1(1). Let U? = {(i,£) : i < 6,£ < n;}; this is Dom( *’g) for v € X2, Let

J=Jso={uCU’: "> max pcf{cf()\g’iyg) : (i,0) € u}}.

By the pcf theorem ([Sh:g, VIII,2.6]) there is W2 C U’ such that:
i pef{ef(Ag i)+ (0, 0) € US\ W,

pt > max pCf{Cf(/\g’il) - (i,0) € WPY.

WS ¢ Jlet hgo = (hap~:v<pt)e M, be <jpwe-increasing and cofinal in
I1 Ag,u- Then for some v = y(a, 8) < pt,
(L. eWS

f5 < hap(a,p) mod J.

In fact any v € [y(a, 8), ) will do, and now we let F(a) = v(a, B). U WE € J54
we let Fg(a) = a+ 1.

So the set Ez = {6 < p* : ¢ a limit ordinal such that (Vo < §)Fgz(a) < 6}
is a club of pu*. Hence there is § = dg € S* N acc(Ep) (i.e., § = sup(Eg N J)
and 6 € S*). Now for each (i,£) € UP the sequence (g5(i,?) : o € Cs,) is non-
increasing as (M, : a € Cj,) is increasing. Hence it is eventually constant, and
similarly (Xgﬂ., hgﬂ-), Ag’i as in 7.1(2) (any freedom left — choose the <} first), so
casily (N’ . 17 ) :a e Cs,) is eventually constant; say for a € Cs,\a*(3,7). But

a,? Ya,t

otp(Cs,) < 07 so o (B) = sup{a*(B3,i) : i < 0} is < dg, and reflection shows that
a€Cs, \ (a*(B)+1) =W, € Jsa.

Choose such o . So for some a®, 6%, (A, hy) : i < 6) we have

X:{5<)\:5¢ U M, and a%:oz@, 65 = 0%,

a<pt

Ny =i bl = hifori <6}
belongs to [A]*. Now we continue as in 7.1. 077

7.10 Claim. 1) In 7.9 we can replace A\ = p*+, by A = 77, 7 = cf([7]=#, C) using
[Sh 420, §2].

2) Also if X\ is weakly inaccessible > 3, (Va < \) [A > cf([o]=*,C)] we can get
7.9.
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§8 CONSISTENCY OF “Z(w;1) HAS A FREE CALIBER” AND DISCUSSION OF PCF

This solves [M2, Problem 37].

8.1 Claim. Assume for simplicity GCH and P is adding X, Cohen reals. In V*
we have 2% =N, , 2% =R, 1 and

(%) there is no complete Boolean algebra B of cardinality 2%t such that FreeCal(B) =
0. In fact for any complete Boolean algebra B of cardinality 2% we have
Ny, +1 € FreeCal(B).

Proof. Clearly (as if the Boolean algebra B has cardinality 2% = X, |1 and satisfies
the ccc then () holds, i.e., 8, 11 € FreeCal(B), because VF F (R, )% =R, , and
otherwise we can reduce to the case B = ?(w;)) it is enough to show

(x)1 VEER, 11 € FreeCal(Z(w)).
So let p* € P

p*lFp “(aq : o < Ny, 11) is a sequence of distinct elements of &2 (wq)”.

Note: P = {f : f is finite function from R, to {0,1}}. So P4 = {f € P :
Dom(f) C A} < P for any A C N, .

For each oo < N, 11 and i < w; there is a maximal antichain (f, ;, : 7 < w) of
[P and sequence of truth values (tq ;, : n < w) such that

“s : »
fa,i,n H_IP’ (AS Qo ﬁ ta,i,n .

Let A, = |J Dom(fain)U Dom(p*), so A, € R, |58, Let Ay = {ya :
1<wi,n<w
J < Jats Va,; strictly increasing with j.
As V E 2% <N, |, without loss of generality

(¥)2(a) ja =J"
(b) the truth value of “y,,; € Dom(fq,i )" and the value of f, ; n(7a,;) do not
depend on a.

Let a be the Mostowski collapse of the name, i.e., a = OPj- 4, (aq) for each a

(without loss of generality it does not depend on «). [Remember OP 4 5(5) = « iff
a € A, B € B,otp(fNB) = otp(anA).] Weapply 7.1(1),(6) to f, : j* — N, where
fo is defined by fo(j) = Yo, with (Ry, 41, (2%)T,Ry) here standing for (A, i, k)
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there; and get (w; : £ < 2), X € [N, +1] witl and (Aj, : j < j*, ¢ < nj), and
h = (h;j:j < j*) and J as there. In particular, now each \; ¢ is regular € (281, R, )
(which is not really nec). For i < wy let w; = {j < j* :j € wg or A\j,,—1 < N}
Clearly J = {w C {(i,¢) : £ <n;,i <Ny} :w C{(j,¢):1 € w;} for some i.

We call (g9, g1,&) i < wq) a witness above f* if

X (4

1 f, gz,gZEIP’andp < f*,
(1) f* < gy,
(i3 f*<gl,

(v <Dom(gz) UDom(g})\Dom(f*) : i < wi) are pairwise disjoint,
(vi) g2 IF “¢ € a”,

Vg,
(viit) & <wy and & # € for i # j, recalling 7.3(6) or repeating its proof.

)
)
)
(iv) Dom(gf) C j*,
)
) 9
) 9

(vii

Shrinking X (still unbounded in X, +1) we get:

Xy if a < B are from X then there is ¢ < wy such that
JETNWi ANy 1 >N = (h (ya,))(m) < (b (p,5))(m),

and
JETN\Nwi Aj1 <J" = Yau # V8.5

Let

Ua,i = OPy4, j~(Dom(gy) UDom(g;)\Dom(f*))

and

gﬁéﬂ/ = gf o OP]aAa

8.2 Fact. There are f* and a witness ((¢?,g},&) : i < wi) above f* and X C Ny, 11
unbounded and an ideal J 2 JBf on wi such that:

@ if a # [ are in X then

{i : the functions ggyi,gé’i are compatible} € J.
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We show how to finish the proof assuming the fact, and then we shall prove the
fact. For some unbounded X C R, 11 we have a € X = f** = OP4_ ;-(f*) i.e,

does not depend on o € X. [Why? As there are < |P| = R, < X, 1 possibilities.]
We shall prove

7 IFp “{aq : a € X) is independent (as a family of subsets of

wi), even modulo J247.

This is more than enough.
If not then for some n < w and pairwise distinct aq, ... ,as, € X, we have:

n 2n
=(f* Ikp ﬂ Ao, N ﬂ (w1\@aq,) is unbounded in w;”)
=1 f=n+1

So for some f!, f** < fl € P, and ¢ < w; we have
n n
X3 ke (N ao N [ (@i\ea,) S
/=1 {=n-+1
Now letting

1 1 ]
9a,i = 9; © OP;j- 4,
we have

Dom(gy, ;) UDom(g, ;) € {Ya,; : J < j*}-
Let
B::{i<w1 I§i<<},
Bg’m = {2 Uy i N Ua,, i 7& @} for ¢ 7£ m,

By =: {i : Dom(f") N (Dom(gy, ;) UDom(g}, ;) # Dom(f*)}.

Now
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®; BelJ.
[Why? By clause (viii) of X; above and the choice of J.]

®2 By € Jfor 0 #£#me{l,...,2n}.
[Why? By the Fact 8.2 which we are assuming.]

®3 BpeJforle{l,....2n}
[by clause (v) of X; above (in fact is finite).]

So we can find i € w1\ U Be,m\ U Br\B (because the set of inappropriate i’s is in
t#m ]
J).

n 2n

So f2 = f! UEU 99, Ue U 94, €P forces that the intersection from X is not
=1 =n+41

C ¢, contradicting the choice of f!. ]

Proof of the Fact 8.2. We divide the proof into two cases, depending on the answer
to:

Question: Is there ¢ < w; such that: for no g%, g* € P;« above p* and £ € [¢,w1)
do we have

90 rwc — gl rwc7 90 = “§ c @”791 = “§ g_f @”?

Case A: The answer is YES.
Let ¢ < wy exemplify the yes. As GCH holds in V, clearly for some unbounded
X TNy, 41 and (77" : j € we) we have

jeEwe & aeX = .=

So a is actually a P{W;*:jewd—name. So for a € X, a,, depends only on {f € Gp :

Dom(f) € {Ya,i:t € we}}. So p* Ikp “aq = ap for a, f € X, a contradiction.

Case B: The answer is NO.

So for every ( < wi, we have (fz,gg,gé) giving the counterexample for (,
without loss of generality Dom(g?) = Dom(g}). As (w¢ : ¢ < wi) is increasing
continuous, by Fodor’s lemma we can find S C w; stationary and (* < w; and n*
such that

(esS= (Dom(gg) Nwe) U (Dom(gé) Nwe) C we-,
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and (Dom(gl) U Dom(g¢) : ¢ € S) forms a A-system with heart v, and g¢ |
v = gé I v (being included in w¢) does not depend on ¢, and we call it f*. Also
Dom(gé \ w¢+) has n* elements and (1 < (€S = £ <.

Let (e(i) : i < wy) be a (strictly) increasing sequence listing S, and §; = -
For { < n*, a € X' and i < w; we let f(i) be the /-th member of {y,; : j €
Dom(gg(i)) \ w¢-} . Shrinking X without loss of generality (v4,; : j € we+) does
not depend on o € X (by Xs); J = Ju}id and X are as required. Us.2,8.1

8.3 Discussion. 1) Clearly we can replace Ny, X, 11 by any 0, \ as in 7.7.
2) Normally if p is strong limit singular of cofinality 6, (at least large enough), we
can find long intervals a; of the Reg Ny for i < 6, i < j = sup(a;) < min(a;) such
that (VA € [[; ;) [max pcf (Rang(X)) = A*] for some A* € [u, 2#], usually cf(2").
This is a strong indication that <[le( a;),min(a;) - i < 0) will have a A-sequence,
so for example there is a (2%)*-c.c. Boolean algebra of cardinality A having no
independent subset of cardinality A, for which even A-Knaster property fails.

To make this happen for no i, we need a very special pcf structure in the universe.
But we do not know even if the following simple case is consistent.

8.4 Question: Is it consistent that

() for every set a of odd (or even) regular cardinals with |a| < Min(a) we
have max pcf(a) is odd (or even respectively) (we may moreover ask (Vo)
QNO‘ = NOH—Q)?

Essentially by [Sh 430, §5]:

8.5 Lemma. Assume p > 0 = cf(p), p strong limit, =, pi, pi < pu strong
limit, cf(u;) = oy and 2% = pf, p; = D<o Higs Mie <w, A= tef (TT w'/J%),

JhC e :
Let I; ¢ = ERIT:LI:,C(M,O*’MT@ and
J=> g
T
Then

(a) there is a (J, \)-sequence 1 for
<[i’< 1< Q,C < Ui>~

(b) ifi <0 = 0, =0 then we can find ((i) < 6 for i < 6 such that there is a
A-sequence 1) for (I; ¢y 11 < 0).
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8.6 Remark. So if S = {u : p strong limit , cf(u) = Ng,2* = p*} is unbounded,
then for a class of cardinals p which is closed unbounded

(¥)(a) p strong limit and p = sup(S N w)

(b) if cf(pn) = Vo then we can find A\ € (p,2#*] N Reg and p,, < pp =Y fin,

tn < pnt+1 and there is a A-sequence 7 for <I§n(un)+,ui) n < w).
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§9 HAVING A A\-SEQUENCE FOR A SEQUENCE OF NON-STATIONARY IDEALS

9.1 Lemma. Assume

(a) w is a strong limit singular of cofinality 0,

(b) A =21 = cf(N),

(c) \; regular increasing for i < & with limit p, 6 < p (usually 6 =0),
(d) J is an ideal on § extending JH9,

(e) A= tcf(J] N\i/J),

1<6
(f) (A¢ : ¢ < ((x)) is a partition of & (so As pairwise disjoint) each A¢ in J*
(otherwise not interesting),
(9) 0] < o= cf(o) < Ao
Then there is a sequence 7 = (N : v < A), na € [[ Ai, cf(na(2)) = o, satisfying
1<d

(¥) For any sequence (F¢ ; : ¢ < ((x),i < 0) of functions, for every large enough
a < A we have

(k) if ¢ < C(*), Fei(ma [ U Ae) is a club of A; fori <& (really i € Ac),
then
{i € Ac:mali) & Foa(na I | A0} € .
£<¢

Moreover

()T if ¢ < C(*), n < w and Bo,...,0Bn—1 < @, and for each i € A we have:
FC,i(UﬁmﬁO cee 777ﬁn7175n1777a TU5<< AE) is a club Of )\i; then

{i € Ac :1a (i) & Fei(nge, Bo - Mguss Bn1:7a | | Ae)} € J.
£<¢

9.2 Discussion. For a given p as in (a), clause (b) may fail, but then we will have
another lemma. What about (e)?

If @ > Ny there are such (\; : i < 6) even for J = JP4 (see [Sh:g, VIIL§1]. If
0 = Ny we do not know, but we know that the failures are “rare”. E.g.,

{6 < wy : Js fails (e) ie. =[s11 =" pp(Ts)]}
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is not stationary. About pp e e.g. if l[a] <Ry = [pcf(a)] < Ng we then can get it,

see [Sh:g, XI1,85].

9.3 Remark. 1) This can be rephrased as having a (A, J)-sequence for (]] J;ftf :

i < 0) with \; ,, decreasing.

So compared to earlier theorems, the A, \; for which the Lemma applies are
fewer, but the result is stronger: nonstationary ideal and we get also the “super”

version see (xx).

2) Of course another variant is to start with I; = J3°"7 and get J = J™.
3) Considering functions with finitely many ng’s, 8 < a as parameters (i.e., (s%)T);

thinning (f, : @ < A) the conclusion follows.
4) In (+*)* instead n < w we can ask n < o if (Va < A)(|a|<7 < \)

Proof of 9.1. For simplicity we concentrate on (*x) (in 10.1 we concentrate on the
parallel of (xx)™"). List the possible (F¢; : i < 6,( < (%)), i.e., sequence with each
F¢ ; having the “right” domain and range, which are clear from the statement, as

<<FC51 11 < 8,( <((*)): B<A). Let us define 1 € [TA; by induction on .

For a given a we choose 7, [ A¢ by induction on ¢ < ((*).
Define for i € A¢, B < «

8 ng(na | U A¢)  if this set is a club of Ay,
¢ = £<¢

(2

A otherwise.

So we need

Fact. There isp € [] A; such that
iEAC

NficAcin()¢ClyeJieAc= cf(n(i)) =o.

B<a

Proof of the Fact. We shall choose by induction on € < ¢ a function g. €

such that €1 < € = ¢., < g (in all coordinates) and
(98 < a)(vi € A)(9:(0), go11 (1)) N CF £ 0]

Why is this enough?
Let v =1 | A¢ be defined by

[T A

’iGAC
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v(i) = | 9-00).

e<o

Now v(i) < A\; as ¢g-(i) < A\; and 0 < \; = cf();). (We can also say something for
o > p, but not now.) Also (g-(i) : € < o) is strictly increasing, so cf(v(i)) = o.
Now let § < « and define

By ={icAc:v(i) ¢ C]}.

We would like to have Bj € J. For each i € Bj, the sequence (g:(2) : i < o) is a

strictly increasing sequence of ordinals with limit not in C’f .
So for some €5,; < o

CP N1 (g, (3), v(1)) = 0.
So

/\ (ge(i)ags—kl(i)) N 05’7; = 0.

€2€p,i

Let eg = supeg ;.
<9
Now eg,; <o & o= cf(o) > |0] > |A¢], s0 eg < 0. So

N (925(), gepin () N CY =10,

1€Bj

and hence Bj; € J as required, i.e., v is the required 7.
Why is the choice of the g. possible?

Construction.
¢ = 0. Trivial.
e limit. g-(1) = U g5,(0) < X\ (ase <o < \; = cf(\)).
e1<e
e+ 1. For < o define hg. € [[ A by
’iGAC

hg (i) = min{y < ; : (g=(i),7) N C} # 0}.
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So {hge : B < a} is a subset of [] A; of cardinality < A, but [[ A\;/J hence
1€A¢ <6

[T Xi/(J | A¢) has true cofinality A (as if A¢ € J there is nothing to prove). So

1€A¢

there is g. € ] A; which is a <j;a.-upper bound of {hg. : 8 < a}.
ZGAC

Let g-4+1(7) = max{g.(i), g-(i) + 1}, clearly it is as required. Oy .1
9.4 Claim. 1) Assume

(@) 1 = (o : @ < A), where n, €  [[ Dom(l;) and J is an ideal on o
1€ Dom(J)

extending J , each I; and ideal and I an ideal on \ extending J}\’d
(b) (A¢ : ¢ < (%)) is a partition of Dom(J), Ac ¢ J,

(a) for every F = (F; : i € Dom(J)), for the I-majority of a < A, for every

C< () if Fs(na | U Ae) € I; fori e A, then
£<¢

(Vi€ A)[(na(i) & Fi(na I | Ae)]
£<¢
(d) I = gl_[ | Lije) for j < 0%, where i(j,£) < ¢

(e) J*={ACé: f0r50meBC5/\(BﬂAc)€J and A\ 'V i(j,¢) € B}
i€CAL<n;
1s an ideal on 6",

(f) nk is defined by

Na(J) = (1a(i(5,£) - € < ny).

Then* (nf :a < A) is a (A, J*, I)-sequence for (I7 1§ <9).

2) If we strengthen clause (c) to the parallel of (xx)* in 9.1, then (nf : a < \) is
a super (X, JJ*, I)-sequence for (I} : i < 9).

Proof. Straightforward. Lo 4

9.5 Conclusion. Assume (a)—(g) of 9.1 (see 9.2) and (a), (e) of 9.4. Then there is
a super (A, J*)-sequence for (I7 : j < 6).

9.6 Conclusion. Assume p > cf(p) = Ng is a strong limit, and

450 we have dealt here with the case of J}\’d, X decreasing
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A= 2= of(2) = tef( [T an/ab?),

nw

A regular < p. Let (k, : n < w) be such that
(Vk)(3%n) (kn = k),

and, e.g., § = (2%0)*,
For n < w and k < k,, let £(n, k) => {km : m <n}+k and let

o nst,0
In = H JAZ(n,k)
k<kn

J={ACw:supk, <w}.
neA

Then there is a (A, J)-sequence for (I, : n < w) (even a super one).

Proof. By Lemma 9.1 and Claim 9.4, we choose in 9.4 the parameters § = w,
((*) = w and let

Ac={> km—C:kn >}

m<n

U6

We may wonder on the “tcf” assumption; at the expense of using “some J” this
can be overcome:

9.7 Claim. Assume p > cf(p) = R strong limit singular,

A =2l = cf(2") € pct{\, :n < w},

An = cf(A\p) <

and (k, : n < w) is as in 9.6. Then we can find i(n,l) < w, < ky, with no
repetitions,

i(n,0) >i(n—1,kp1—1)>--->i(n—1,0),

and letting
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o nst,0
In = H JAi(n,Z),

L<kn

we have: for some ideal J O JPY on w, there is a (X, J)-sequence for (I, : n < w).

Proof. Let

pefyea({An 1 n <w}) = {x cf(x) = x = tef( H An/J50)
neA
for some infinite A C w}.

By a pcf claim:

9.8 Fact. We can find increasing (x. : € < (%)), e(*) < w1, a limit ordinal, J* an

ideal O Jf(‘i), such that

Xe € pefpa({An i n <w}),

say

Xe = tcf( H /\n/J%Ci),

neB.

(B: : € < e(x)) is a partition of w, and

A::td( II.&/fﬂ.

e<e(x)

Continuation of the proof of 9.7. Let (k, : n < w) be as before. Choose
(i(n,0) : £ < ky)for each n

such that

(a) i(n,£) > i(n, L+ 1),i(n,¢1) < i(n+1,¢3), and

(b) for every k and €g, ... ,€k_1, for infinitely many n we have

kn =k, i(n,?) € Be,.
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Let
Ap =A{i(n,0) :n < w, k, >}

So

(Ay : £ < w) is a sequence of pairwise disjoint subsets of w such that
‘Ag N Bge‘ = Np.

We apply 9.1 for

(Ap n<w), (Ap:n<w), A pu.

Ug.7

9.9 Remark. If > cf(p) > Ng, 2 regular, the parallel to 9.6 always occurs.
Lo 7

If we use A = (Ag), Ag =6 in 9.1:
9.10 Conclusion. In 9.1 we get:
there is a (A, J)-sequence for (I; : i < ), even a super one.
9.11 Remark. By the proofs in [Sh 420, §1] we can replace (S;7 : i < §), Sp = {6 <

\i 1 cf(d) = 0} by some large enough S = (S; : i < §), where S; € I[\;], see below.
Also if (f, : @ < A) is <j-increasing cofinal in [[ A\;/J, continuous when it can

<0
be, then for some club E of A\ we have (fs : 6 € E, cf(§) = 6, f | 6 has an exact
least upper bound lub) is OK. Probably more interesting is to strengthen I;jt’e b

club guessing, as follows.

9.12 Definition. For C' = (Cs5 : § € S), S C ), stationary

id*(C) = {A C X :for some club E of X the set
{6 € S: Cs C E} is not stationary

(so as we can shrink F, equivalently, empty)}.
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9.13 Lemma. Assume

(a) w is a strong limit singular 6,
(b) A =2t = cf(N),
(¢) A; reqular increasing for i < § with limit p, 0 < p (usually § = cf(p)),
(d) J is an ideal on § extending JP9,
(e) A= tef(I] \i/J),
)
)

<9

(f) (A¢: (< C(*)) is a partition of § (so pairwise disjoint),
(9) 0= cf(o) < p, moreover o < Ao and satisfies

®3’5 we have o > ¢ (or at least if A. € J for e < o then

{i < §:i€ A. for every large enough e < o} € J).

Then
(1) For § € Regn (o, \g) we can find (S; :i < 6), (C*:i<d), [ =(I;:i<0),

N = (Na:a<A) such that

() S; € I[N\;] is stationary, and § € S; = cf(d) = o,

(B) C'=(Ci:6€S,), Ck a club of 6,

(v) I = id*(C?) = {A C \; : for some clubE of \; we have:s € SN A,

implies sup(Ci\E) < 6},
(0)(x) For any sequence (F¢; : ¢ < ((*),i < &) of functions, for every large
enough o < A we have
(k%) if ¢ < (%), Fri(na | U A¢) a member of id*(C?) fori < & (really

£€<¢
i€ Ac), then

{i€Acina(i) € Feulna I | A0} € J

£<¢
Moreover
(x)T if ¢ < (%), n < w and Bo,...,Bn-1 < « and for each i € A¢ we have:
Fei(Mge>Bo--- 3Mn_1+Bn—1-Ma | U A¢) in a member of id*(C*) then
£<¢
{2 S AC : na(z) S FC,i(nﬁ()?ﬁO? cee 777ﬁn7175n—1777a f U AE)} € J.

£<¢
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Remark. 1) Included in the proof are imitations of proofs from [Sh 420, §1] and of
9.1.

2) We have a bit of flexibility in the proof.

3) In (%)%, we can replace n < w by n < 7 when (Va < \) (|a]<™ < \).

Proof. Let 6 = 2°. By [Sh 420, §1] we can find &' such that:

(Z) for i < 4, et = <€7é¥ T € SrL), S; € [[)\],
(i1) €?, a club of a of order type o such that a € S; = cf(a) = o,
(7i7) for x large enough, z € 7 (x), we can find (N; : i < o) such that x € N, <

(H(x), €,<3); (N¢ : ¢ <€) € Neyq, N. increasing continuous, || Ne|| = 0,
0+ 1C N, and

1<0 = sup eéup(NUmi) € S;.

For d € U{ [Jei: e aclub ofa} let &hd = (eé;‘i o €85y, e'é;‘i = (B € ¢ :
<9
otp(e! NB) € d;). For each such d we repeat the proof of 9.1, so we choose 1, = n¢ by

induction on a < A, and for each «, choose 7, | ( U AE) by induction on ¢ < {(x).
e<( _ _
If we succeed fine, so assume we fail. So for some a = a[d], { = ¢[d] the situation

is: <ng . < a)and n? | ( UC A.) are defined, but we cannot define n¢ | A¢ and
e<

as there we can compute a family E = Eﬁz of cardinality < A whose members has
the form B = (B; : i < §), B; € id*(é"?) and let E}; be a club of \; exemplifying
B; € id*(e""); let b = {(E}, :i<6): B=(B;:i<0) € E}. Let (N; :i < o) be
as in ®(iii) for z = {((EL, d):d; Co aclub for i <), A, (e":i<d)}.

As in the proof of 9.1 quite easily:

e<o & B=(Bi:i<d)e| By ={i<é:sup(N.nX\)¢Ep}e€
d

Let d; = {otp(e;up(Nm/\i) Nsup(N: N Ap)) : € < o and sup(N: N \;) € eéup(NUmi)}.
Clearly d; is a club of o and let d = (d; : i < §). Now (sup(N, N \;) 1 i € Acra s
as required. Lo 13

* % ok
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9.14 Conclusion. 1) In 9.13 we get:
for some function ¢ : [\]2 — o, for every X,Y € [A\]* and ¢ < o, for

some a € X, f €Y we have a > 8 and c({«c, 5}) = (.
2) In 9.13 we can add:

if e.g. x = (27, for every X C 2 for every a < A large enough, for
¢ < ((x), there is a sequence (N, : ¢ < o) as in the proof of 9.13 such
that

(X) {i € A¢ : o (i) #sup(Ns N A1)} € J.

9.15 Remark. In 9.14(1) we get even Pri(\ A, o,0).

Proof. 1) We relay on part 2).
2) For a < g let c({e, B}) = C if

{i € Ao: f5(i) > fali) or fs(i) < fa(i) & C# otp(ef, ;yNB)} € J

and zero if there is no such (.

Let X,Y € [A]*. take a € X large enough, so that we can find (N, : ¢ < o) as
there, with (X) for part (2). We can find 8 € N¢yq NY such that (sup(Ne N A;) -
i < 8) <ynp (as Y N N¢qq is unbounded in AN Neyy1). Now a > 3 are as required.
Ug.14

9.16 Claim. In 9.1

(1) Instead of “u > 60 = cf(0) > |9|” we can assume only
®1 p> 0= cf(f) and if (uc : ¢ < 0) is a sequence of members of J then

{i<o:0=sup{C:i¢uc}} =204 modJ.

(2) Weakening the conclusion of 9.1 to “weak (J, \)-sequence”, we can replace
‘9= cf(0) > [6]” by
®o 0 = cf(0) and if (uc : { < 0) is a sequence of members of J then

{i<éd:0=sup{C:iduct}eJt.

(3) In part (1) and (2), if 0 > Ro, then we can find C* = (Ck : § € Sp*) with
C% a club of § such that: we can replace [;jt,e by id§ (C%), see 9.13. above.
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§10 THE POWER OF A STRONG LIMIT
SINGULAR. IS ITSELF SINGULAR: EXISTENCE

10.1 Lemma. Assume

(a) w strong limit singular,

(b) 2* is singular, X = cf(2") (so 2" > X > ),
(¢) p>o=cf(o) > cf(p),

(d) 2" = pp(p) (see discussion in §9).

Then

a) we can find J, J*, 0° = (0L : ¢ < cf(n)) for i < X and X\ such that
¢
(i) 6" is an increasing sequence of reqular cardinals < p with limit p for

1< A,

(ii)) A= (Aa : @ <)) is an increasing sequence of regqulars € (u + A, 2M)
with limat 2#,

(1i1) J C J* are ideals on cf(pu), cf(u)-complete,

(iv) Ao = tcf(]}@?/J),

(v) (0% :a < \) is <j--increasing, i.e. « < 3 — {¢ < cf(u) : 0¢ > 9?} €
J*, with <« -exact upper bound (07 : ¢ < cf(un)) and (0F is a cardinal
< p, normally singular) p=1m(07 : ¢ < cf(u)) and

/\ 0 <éc.

a<<
¢<cf(p)

(vi) if J # J('?fc(lu), then cf(p) = No and pp joa (1) < 2" and J as in 9.7 so
cfp
for most such p we have the conclusion of (1), see [Sh:E12] and §4.

(B) If J, 0%(a < N), X are as in clause (a) then we can find 7 = (Mo : @@ < )
such that
(@) T=Mata<A),na€ [[ 0;C F(u)u. Moreover, n, € ] 0¢
< cf(p) ¢<cf(p)
and o = cf(ny(i)) for a < A, i < cf(p)
(i) If C = (C¢: ¢ < cf(p)), 0¢ N Ce a club of 6 for a < A, ¢ < cf(p),

then for some a* = a, we have

a € la®,\) = (V¢ < cf(w)[na(C) € Ccl.
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(v) Assume (Ac : e < €*) is a partition of cf(u) to sets not in J. Then we can
add

(i)™ For any sequence of functions
F=(F: ¢ < cf(),

Jor some o* = a, for every a € [a*, \) we have

(x) ife<e’, n<w, B <a forl<n then

¢ < Cf(ﬂ) F(:( 76@777,357"' sNa | UA()H@?

E<e
is a club of 6¢ but

77a(<> g_ﬁ F((ﬂfvnﬁw"' Mo | U A€> mQ?

E<e

belongs to J. (If we use constant F' this reduces to (ii)).

Proof of clause ().
First choose (A2 : @ < \) as demanded in clause (ii) (but we will manipulate it
later, possible by clause (e)). Now as in 9.6, for each « there are

Jo, 0% = (02 : ¢ < cf(n))

as there, so satisfying (i), (iii), (iv), (vi).

As A = cf(\) > p > 20 we can replace A by a subsequence, so without loss
of generality J C J*, so J* is cf(u)-complete and 0 is < j-increasing, see 7.1. So
(% : a < \) has < j«-exact upper bound #*, without loss of generality

/\ 0 <67
a,(
So clause (v) holds.

Note: If cf() > Ng we have J = J54.

Proof of (8) + (): (Here cf(u) can be replaced by any § < p such that cf(d) =
ct(1s).)

List all relevant F_: (F¢ : ¢ < §) with values subsets of ;. So there are < 2# of
them, list them as (F" : i < 2*) with
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F’i:(Fé:C<5>.
We choose 1, €[] 0¢ by induction on a.

¢< cf(p)
For a given a < \ we choose 7, [ A. by induction on € < *. We will choose

Na | A such that

(x) if n <w, Bo, B1,-..,Bn—1 <aand i <sup{Ag: S < a} (necessarily < \,),

(e A, :Fé(...ﬁg,’ﬂge,... JNa | UA&)Q@?
E<e

is a club of 67 but 7,(¢) does not belong to it € J.

But in 9.1’s proof we have shown that this is possible. 101

k) 3k ok ok ok ok ok ok ok

We have conclusions variants similar to the case 2# is regular.
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§11 PRELIMINARIES TO THE CONSTRUCTION OF CCC
BOOLEAN ALGEBRAS WITH NO LARGE INDEPENDENT SETS

Monk [M2] asks:

Problem 33. Assume cf(u) < kv < p < A < pfW. Is it possible in ZFC that
there is a Boolean algebra of cardinality A, satisfying the x-cc with no independent
subset of cardinality A7

This is closely related to the problem of “is A a free caliber of such Boolean algebra”
(see also in Monk [M2]).

Why in ZFC? Because of earlier results under “u strong limit, 2# = p*”, I think.

The real problem seems to me is for A regular, and we shall prove that “almost
always” there is such a Boolean algebra, so we prove the consistency of failure.

We shall use <J<b>‘\li o) i < 0) with regular X\; o > \; 1, but we use Boolean
algebras whose existence is only consistent.

So we shall use 77 a (A, J)-sequence for <J?>C\lm,>\¢1> c i < 0), if 6 = w the
Boolean algebra B will have a dense subalgebra B* which will be the free product
of {B, :n <w}, x; ) € B, for t € Dom(I,) and B = (B*, %, : a < \) where

Yo € completion of B* is defined from <x;a(n),x;“a(n) :n < w). We need special

properties of B,,, z; , #;7 (t € Dom([l,)). The construction continues [RoSh 534,
§3]. Concerning the parallel to 6.16 see later.

For the case u strong limit we can use instead subalgebras of the measure algebra.
See §2. Now we have consistency (and independence) for A, p < A < 2¥, p strong
limit singular, hence we concentrate on the other case where the behavior is different
i.e. when for some x we have cf(p) < k < x = x<* < p < A < pf) < 2x. The
proof here uses ideals which are “easier” and can be generalized to get “non-n-
independent subset of B of cardinality A for some specific n”. For this we need to
start with “there is a Aj,-complete uniform filter 2,, on \};"”.

11.1 Definition. We say (B1,z",z) witness (I, .7) if

(a) 7 is a set of Boolean terms written as 7 = 7(x1,..., 2z, )
(b) I is an ideal

(c) B is a Boolean algebra

(d) 2t = (z] : t € Dom(I)),z;f € B

() 2~ =(x; :t€ Dom(])),z, € B

(f) zp <z

(9) f X € It and B C B’ and

f
g

B'Fz, <y <afforteX
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then for some 7(x1,...,x,) € Z and pairwise distinct t,...,t, € X we
have

B/ ':T(yt17yt27"' ,ytn) =0.

11.2 Explanation. We think of having 7 a (A, J)-sequence for (I; : i < §), and
having (B, Z;, T; ) witnessing (I;, 7) for i < § and using the sequence of intervals
((x;na(i),x:%(i)) 1 < ) as a sequence of approximations for an element x,, of the
desired Boolean algebra B of cardinality A.

But we may think not only of “{z, : @ < A} has no independent subset of cardi-
nality A\” but of other subsets of B. So sometimes we use
11.3 Definition. 1) We say that (B,z~,Z") strongly witnesses (I,.7) if: (a)-(f)
as before, and
(9)" fBC B,
B Faz; <y <azfforte Dom(I),

(be : £ < m) is a sequence of pairwise disjoint non-zero members of B/,

m < w and
TN+
X e (HI) ,
=1
and v C [1,m], then we can find n, 7(x1,...,2,) € 7 and distinct
th,...,t" e X,s0t" = () : £ =1,...,m), such that 7(c1,...,cpm) =0
where

cc=bU |J @enu)u |J Or—w,.)
¢€[1,m) £€[1,m)]
leu Ldu

2) We say that (B,z",z7) witness (I, ) m-strongly if we restrict ourselves to
this m. Similarly [my, mo]-strongly.

Next we need our specific (B,z~,z", I). The following is essentially from [Sh 126,
p.244-246].

11.4 Claim. 1) If p = 2* = X*, (or just p - [u)%) and 2 = p*, then we can
find F = (F, : a < u") such that:

(*)z(a) Fu: (1] — a X p is one to one

(b) IfA e (J<b;j+7u>>+’ then for some («, i), (o, 1), (B,12) € A we have Fy({ig,i1}) =

(ﬁviQ)'
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We write this also as
F({a7 2.0}7 {Oé, 21}) = (57 22)

We can add that for every  we have Rang(F,) N ({8} x n)| <1 for a> p. We do
not strictly distinguish F from F.

2) The property () is preserved by forcing notions which have the (3, J?£+7u>)+—
c.c. (see 11.6 below).

3) Let B = By be the Boolean algebra freely generated by

x;r’i = xa 0 Tai =T Z.)( for (a,i) € u™ x p)

—+

oLt

except that x_ , < x . and

+ + + _
Tlai) V0 VTR, ) = 0

Then

(i) (B,z",z7) witness (Jf’fww {zxo Nz Nag =0})
(ii) B satisfies the c.c.c.

11.5 Remark. On more general Boolean algebras generated by such equations see
Hajnal, Juhasz, Szemintklossy [HaJuSz].

11.6 Definition. For an ideal J and forcing notion P, we say that P satisfies the
(n,J)-c.c. if for (p; : t € A), A € Jt, there is B C A, B € J" such that any n
conditions in {p; : t € B} have a common upper bound.

11.7 Fact. 1f P is the forcing notion P, 4 of adding x Cohens for § and A<¢ = A
then P satisfies (n, J)-c.c. for n <w, J = Jx++ a4y

Proof of 11.4. 1) Let {A, : o < ™} list all subsets A of u* x p of cardinality
such that for every 8 < p* we have |AN ({8} x u)| < 1. For every a such that
p < a < pt choose H, : [u]> — « such that (VX € [u]*) [HZ([X]?) = «]. For
each «, choose Fy (i, ) € {B{; j;} x p by induction on <%, where {i,j} <® {i,j'}
iff max{7,j} < max{¢,j'} V (max{i,j} = max{i’,j’} & min{i,j} < min{’,j'}),
with 57, with no repetition so that

Fo(iy§) € ax pm \NUL{B7 5} x e {d',j"} <® {i, g},
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and if possible
Fa(%]) € AHa({ZJ})’

which occurs if Ay (g 1) € a X p.

2) Trivial. Let P be the forcing notion. Let p* I “A € (J?,il+ )

a contradiction to (¥)%2”. Let A =: {(a, i) : p* ¥ (i) ¢ A}. So A C pt x p and,

)t and it exemplifies

p* - “AQA,AE(de )—|—77,

()
hence

Ae (L )T

(ut,p
For (a, ) € A there is p(4,;) > p* such that

D(a,i) I+ “(Of,i) c A”.

Apply the (3, JF;JF u>)_CC to (P(a,i) : (@, i) € A), and obtain B as in Definition 11.6.

As B € <J?j+,u>)+’ by () we can find (a,io), (c, 1), (8,i2) € B such that
Fa({i()v Zl}) = (6722)
But by the choice of B there is ¢ € P such that
q 2 D(aio)s Pla,ir)s P(B,iz)

(hence ¢ > p*). So
gk ‘(e i0), (o, i1), (B,i2) € A and F,({i0,i1}) = (B,12)”.

But this contradicts the assumption on p*, A.
3) For clause (i), read the definition. For clause (ii): Call & C u™ x p closed if
F(tl,tg) =13 & ‘{tl,tg,tg} N f&ﬂ >1= {tl,tg,tg} C Z. Now

() if F(t;,s;) = r; for i = 0,1 then {to,so,70} N {t1,s1,71} has < 1 or 3
elements.
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[Why? As each F, is one to one and
F=|J Fal({a}xu?)
a<pt

and
{a} x [u)? o < pu*) are pairwise disjoint]

(xx) if & C pt x p, and By is defined naturally: it is freely generated by
{xf, 2, :t € 2} except the equations explicitly demanded on those vari-
ables, then Bg C B (even if 2 is not closed).

[Why? If f: {z;,z :t € 2} — {0,1} preserves the equations, and we define

frofey 2l ctep x pt—{0,1}

by

then f* preserves the equations.]
(x % *x) BF ccc.

[Why? Let (a¢ : ¢ < w1) be a sequence of non-zero elements. We can find finite
Z; such that a¢ € Bz,. Let f¢ : Bz — {0,1} be a homomorphism such that
fc(ac) = 1. Let

P = 2 UU{t, to, 3}« F(ty, ta) = t3, and {t1,ta, 13} N 2z > 1}.

Without loss of generality (ffg' 1 ¢ < wiy) is a A-system with heart Z°+.

Without loss of generality f¢ | {x} .t € 27T} is constant.
Without loss of generality 2% N 2°" is constant.
So

(x)g HCH#E<w
F(t1,t2) =t3 and {t1,t2,t3} C ¢ U 2,

then
{ti,ta,ts} © Z¢ or {t1,ta,t3} C Z¢.
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[Why? Without loss of generality
|{t17t27t3} N <§PC| Z 2.

So

{t1,ta,t3} C 2"
Now if ¢; € ffg’\‘@%, then t; ¢ Z¢ (otherwise t; € Q?’ N ff;’, hence t; € 2T, but
Z:NZ™" is constant). So {t1,t2,t3} C 2¢.]

Now f¢ U fe preserves the equations on Z: U Z; and by the homomorphism it

induces, a¢ N ag is mapped to 1, so Bz uz, F “ac Nag # 0”7 hence by (+*) we have

BFE “acNag #07 ] iEW!

11.8 Fact. Assume

(a) (B,z7,z") is a witness for (I,.7)

(b) 4 =~y = —w; fort € Dom(L;),§~ = (y; : t € Dom(1)), j* =
(y :t € Dom(I))
(¢) T ={-7(-z0,...,—xp-1) : 7(z0y... ,Tn-1) € T}.

Then (B,3~,y") is a witness for (I, 7’) (and is called the dual of (B,z~,z7")).

We may consider

11.9 Definition. 1) Let (x) mean

L

F.H

(a) F=(F,:a<u"), F,is a partial function from [u]? into a x p

(b) H= (H, :a < u*), H, is a partial function from [u]? into {0,1}

(c) if A € (JFIEJF’M))*' and ¢ < 2 then for some («,ip), (a,i1) € A we have
Fa<i0,i1) € A and Ha<i0,i1) =/

(d) the Boolean algebra Bp g defined below satisfies the c.c.c. We may write
F = Ua<u+ F,, H=: Ua<u+ H,, instead of F, H respectively.

2) Bp g is the Boolean algebra generated freely by {z; oy ot € ptox p} except
that z; < zf and zf Nzl Nz = 0 when F(to,t1) = t2, H(to,t1) = 0 and
(—x;)) N (—xt_l) N (—xt;) = 0 when F(tg,t1) = to, H(to,t1) = 1.

11.10 Remark. Of course, By g is defined from two sets of triples, which are disjoint
and no distinct two have > 1 element in common.
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11.11 Claim. . Assume (x)f, of 11.4(1) and e.g., p = AT, A<0 =\,
1) For some (0<%)*"-c.c., -complete, forcing notion P of cardinality < ut we have

IFp “(+)'p g for some F, H”.

2) If ()% ., and Q is a forcing notion satisfying the (3, J°%,. )-c.c. then in V@ we
F.H )

have (*)FH If V = Vg, P as above it is enough that PxQ satisfies the (3, J(;ﬁ u>)

C.C.

Proof. 1) Let

P = ,h) for some u = u(sp) C p x p of cardinality < 6 we have :
(fih) = B X[
f, h are partial functions, Dom(f) = Dom (h) C (Dom F) N [u]?,
[ C Fy and Rang(h) C {0,1} and By, satisfies the c.c.c.}

where By, is defined as in 11.9(2) (and see 11.10).

The order (f1,h1) < (fo, ho) iff
(Uu%hﬂCWhM%

(i) f | [ nn)?

(1i1) hy = hg [U(fl hl)]

(iv) B(f,,n1) € B(f,,h,) moreover By, 1,y < B, n,)-

The reader can check U111
11.12 Claim. Assume 22" = AT for £ < n and let Ay = \v—+1

(1) We can find W such that
(@ we [T

<n
(b) if uy # ug belongs to W then |uq Nug| <1

(c) if Aec (JP <)\ weny) T then [A]" W £ 0

(d) (Ae: €< n)is a decreasing sequence of requlars



nodi fi ed: 2015- 06- 04

revi sion: 2015-06-02

(620)

SPECIAL SUBSETS 107

(2) there is a forcing notion Q of cardinality \*™, AT -complete satisfying the
AT-c.c. and even the (n, J&d p<my)C-C. and adding W satisfying (a), (b),
(c) of part 1 and

(e) W is locally finite: if A C [[ A\¢ is finite, then for some finite B,
£<n
ACBC [ MMandweW &|lwNB|>2= wCB
£<n
(3) if P is adding x many 0-Cohen reals, A\ = \? and in V, W satisfies (a), (b),
(c), (d) and (e), then in VE still clause (c) holds (and trivially the other
demands on W ). (See [Sh 126].)

Proof. 1) We prove by induction on n that for any such A satisfying ¢/ < n =

22" = AT+ we can find (W, F) such that (a), (b), (c) of 11.11(1) hold for W,
(AT . ¢ < ) and

(f) F: W — \T satisfies: if A € (Jadﬂeﬂ) £<n>> , then Rang(F | [A]") = \™.

The induction step is as in the previous proof.
2) Similar to the proof of 11.11
3) Because P satisfies the (n, J<>\ £<n)) Li112

11.13 Claim. Assume
(A) W, (A¢: € < n) satisfy (a), (b), (c), (d) and (e) of Claim 11.12(1)
(B) 3<m<n/2,n>6

(C) B is the Boolean algebra generated by {x; ,x} :t € [] Ao} freely except:
l<n

(O ap <af
(%)2 if w=/A{to,...,th—1} € W, where t; is increasing in the lexicographic
order, and w C n, |u| > m and n — |u| > m, then

ﬂxte N n —xte

yaam {<n bZu

(D) T = T = w70 N Mocpga —70) 15 € nom < Ju] <0 —m}.

Then

(i) BE“z, <af & 27 £ fort#sin [ A
£<n

(i1) (B,z7,x") is a witness for (Jkﬁ r: )

L<n

(7i1) B satisfies the cce.
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Proof. Clearly B F z; < x;" by the equation in (%); and B F “x; # " because
the function fy given by,

1 =t
fox7) =0, fo(zd) = { 0 Z;ét

preserves all the required equations (as 2 < m). Taken together, B F z; < .
Also BE z; £ 2] when t # s using fi defined by

1 ifr=t

heh = ={ 4]

So clause (i) of the conclusion holds. Clause (ii) holds easily by the equation in
(*)2 and assumption (A) i.e. (c) of 11.12(1).
We are left with verifying clause (iii), i.e., the c.c.c. Solet a; € B\{0} for { < ws.

For every ¢ we can find a finite set Z; C [] A¢ such that a¢ € (z; , 2 : t € Z¢).
£<n
By 11.12, i.e., by clause (A), without loss of generality

(¥) fweW & [wNZ>2=wC Z.

Let f7 : {xy 2 :t € Z¢} — {0,1} be such that it preserves all the equations (from
(*)1 + (*)2) on these variables and so the homomorphism it induces from Bz, to
{0,1}, fg‘ maps a¢ to 1. Without loss of generality (Z; : ¢ < wy) is a A-system with
heart Z and f7 | {x; ,z] :t € Z} is constant.

Let ¢(1) < ¢(2) < w; and define f,

( fg(n(xt_) ifte ZC(l)
fa(xy ) = fg(z)(xt_) ift e ZC(Q)
L 0 otherwise.
( f&n(xj) ifte Ze
Paaf) = q flo(@d)  ifte Zy

L 0 otherwise.

Clearly it is well defined and with the right domain. Does fy; preserve all the
equations?
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Case 1. z, <ux, ift € Z¢1)U Z¢ (o) trivial (both get value zero), and if t € Z¢ ()
then trivial (as f&"(@ preserves this equation).
Case 2. (e, @ N ﬂﬁ;n (—x;,) =0.

If ¢ € {1,2} and {to,...,tn—1} © Z¢(1) this holds as ff,y preserves this equa-

tion. So assume this fails for £ = 1,2 so [{to,... ,tn—1} N Z¢| < 1 hence
2> [{to,. - tao1} N (Zey U Ze(2))| 0 {€:tg & Ze1y U Ze ()} necessarily includes
members of u, hence the equation holds. (11,13

11.14 Comment. 1) If in addition we have k-complete maximal ideals I, , on
An,e extending JP¢ and (A, : £ < n) as above for 7] a (X, J)-sequence, e.g., for
(LY :n < w) where I = H‘]()\n,z:kn)’ we are in a powerful situation as it can
be applied to n-tuples rather than each one separately. But above we prepare the
proof for not using it by having strong equations.

2) We can waive the “locally finite” demand proving as in the proof of (x * %) in
the proof of 11.4.
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§12 CONSTRUCTING C.C.C. BOOLEAN
ALGEBRAS WITH NO LARGE INDEPENDENT SETS

On such constructions see Rostanowski Shelah [RoSh 534, §3].
12.1 Construction’s Hypothesis. We assume

(a) 7 is a normal (A, J)-sequence for (I; : i < 6)
(b) (Bs,Z; ,z]) is a witness for (I;, Z), |Bil| = | Dom(I;)]
(¢) A= cf(N), > | Dom(;)| < A

1<6

12.2 Remark. Actually Z; do not influence the construction, only the properties
of the Boolean algebra constructed. Similarly, the normality and the fact that
|Bi|| = |Dom(Z;)|, as well as clause (c).

We define a Boolean algebra B and y, € B (o < \) as follows:
12.3 The construction.
Case 1. ) = w.
Let B, be the free product of {B; : i < §} (so B,, = *;«,,B;, B® C B"™1 C B,,
so B, = (| J Bu)B.).

n<w

Let B$ be the completion of B,.
For each i < ¢ and n € {no [ i:a <A} € [[ Dom (I;) we define y,” < ;5 in
j<i
B¢. This is done by induction on i.
1=0.y, =0,9y; =
t=g4 Loy =y YU Wy N 20) Y = Yy Y gy N
So easily

_|_
i,n(j))'

C — - + 0
IV = Yneti S Ynati < Ynati S Ynatj-

Now let yo be lub{y, |, : i < 6}. (Note: If B; £ “0 < z;, < af, < 1”7 for
t € Dom(1;), then also y, = maximal lower bound of {y;?"a 1+ 4 < d}. This will not
be used.)
[Otherwise, the difference contains some member of B, hence of some B? (i < d),
but there is none.|

Lastly B = Bﬁ,f,((Bi,i;,ij_):i<5> is the subalgebra of B¢ generated by B, U {y, :
a < A} (by the finitary operations, so it is not complete).
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Case 2. § > w.
We find by induction on i < 8, B, {(y,,4,") : 1 € {na [ i:a < A}} such that

(i) B? increasing (by C, even <)
(i) B Fy, <yy (when \/,n=1a [ i)
j<i=BEy, <y, <y <y
(ii7) BO is the trivial Boolean algebra
(iv) if i = j + 1 then B* = BY « B; (free product) and for y € {n, [ i:a < A}

- —_ _|_ —
Yn = Ynyj U (ynfj N xjm(j))

)

+ - +
Yn = Ynrs Y W 02500

(v) For i limit, B? is generated freely by
UB U{y, .y ine{naliza<)}
j<t

except: the equations in B and

Ynti S Yy < y;r < y;rj for j < 1,n as above.

Lastly, B C completion ( U Bi> is defined as in case 1 using yo =: y,,_ -
<9

12.4 The construction. A variant

zE=(f, el ((+1):a<A})

SO We Uuse Tj n, 1(i+1) instead of x; ., (i)

12.5 The construction. A variant. It is like 12.4 but we are given (B, (z;.4 : o <
\;)) and we define by induction on i, B (increasing with 4), and follows:

Case 1: i = 0: B' is the trivial Boolean algebra, Ynoti = 0, y;'a =1

Case 2: i = j + 1: B is generated by B/ U {x;a o x;’a o< A} freely except the
equations in B’ and
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-~ + _
(.. T i T i Ne<n =0
. — + — 0
whenever B; E 7(... T () ey () e<n = 0; lastly defines

— o — J’_ —
Yiati = Ynari Y (yna i 1 xjma(j))

+ + -
Ynati = Ynati Y (yna i1 xj,na(j))

Case 3: i limit
B’ is generated by |J i< B/ U {yn_a " y:]; i 0« < A} freely except the equations
in B’ for j < i and Ynti S Unopi < y;'ari < y;'arj for a < .

12.6 Comment. Clearly 12.4 includes 12.5 as a special case, but mostly there is no
real difference in the uses. The reader may concentration on 12.5.

12.7 Discussion. Usually the conclusions are of the form: among any A elements of
B, something occurs. The first need is |B|| = A, a trivial thing.

12.8 Fact. (x)3 = (*)2 = (*)1, where
(o)1 (Bl = A
()2 for every o < 5 < A
{i:BiF =)z, o) SYS T 0 ATy SYS T )} A0

1.e.
R — + - +
{i:BiFa, <z, Vo Lz, o }#0

()3 if t # s are in Dom([;) for some ¢ < §, then

B, Fa, £xfva, £af.

Proof. Easy. Uia7

12.9 Remark. If not said otherwise, all examples satisfy ().
We will also be interested in stronger properties. In section 15 we will be inter-

ested in the case (B,z~,z%) the pairs (z, ,x,"), (z,,2,}) were independent.
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12.10 Claim. Assume
(%) an € B for a <\,

Then we can find in B a sequence (by : £ < m) a B-partition of 1 (i.e., a sequence
of disjoint non-zero elements with union 1), m > 0, and X € [A]* and ¢ < b
in B and n, and Boolean terms m, for { = 1,... ,m with n variables and ordinals
Yok € X fora € X, k <n and ~y, for k € [n,n*), where n* > n and i* <4, vy, for
k < n* such that

(1) n=04f m=0iff (aq : @« € X) constant
(1) Ya,0 < Ya,1 < " < Yayn—1 0d Y < Ynt1 < < Ynr—1 < Ya,0
(tii) if o < B are in X then Yo n—1 < V8,0
) if @« € X then aq < Upc,, bi,aaNby = c and [0 € [1,m] = aqaNb =
T0(Yre.0 Yya1s - - - ,y%’n_l_)], and [0 € [I,m] = 0 < anNby < byl (so 7
non-trivial)

(iv

(V) Ny, "= fork<n
(vi) {bg: € <m} C (B;U{yy, 1k €[n,n*)}) and n,, | i* =vy fork € [n,n*)
(vit) (Vi : k < n*) is with no repetition.

Proof. By the A-system lemma and Boolean algebra manipulation. 1210
12.11 Claim. . A sufficient condition to

®o B has no independent subset of cardinality X\ is

®1 if aa, X, n, m, To, Yok, be(v € X, k <n, £ <n) are as above in 12.10,
and cog = 0, m = 1, then {a, : @ € X} is not independent, which follows
from:

®2 if ar, X, n, m, 7, Yar (@ € X,k < n) are as above in 12.10, ¢y = 0,
m =1, then

for every A,B" and y;, if A€ ((I;)")",B; CB', B |z, <y <
x fort € Dom(L;), then (T1(Ytys--- Yt 1) : {toy--- ,tn1) €
A) is not strongly independent

12.12 Remark. If we ask more on 7, we can weaken ®o, like:

if n < w, (Vax : k < n) increasing o < B = Yan—1 < 7Ya,0, then letting n), =
((Myar (@) : B < mn) :i <), gives that 7' = (], : a < A) is a (A, J)-sequence for
((I;)™ i < &) as well as some weaker versions.
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Proof of 12.11. ®1 = ®y.
We choose by induction on £ < m a sequence (7,75 ¢; - - - ,yi’m(z)_l) o< A)
such that

(1) 70 = Te(Tss ... , Tp(p)—1) is a Boolean term

(i) 7a0<7a1< <7§m(@ 1 <A

(1il) a < B < A= ’ya m—1 < ’yﬁ o When they are well defined
)

(iv) 7e(a, Loyt am(z) ) NUp, <be, = 0.

For ¢ = 0: Let 14(zg,x1) = o — 1, SO m({) = 2

7270 = 2a, 75;71 =2a+1.

For £+ 1. For each a(x) < A, apply ®1 with 1 — by11,bey1, <af¥(*)+a ta < A,
where af, =: 7 (awz yee syt ()_1) here standing for by, b1, (an : @ < A) there,
and get a Boolean term Tézrl)(xo, ey T (041,a(x))—1), and ordinals B(’i*(*m <. <

5a(*) m(6+1,a(+)—1> all in the interval [a(x), A), such that

Z—!—l Z ¢ V4
,a e, @ =0.
O‘( )( a( .0 ﬂiu),ﬂ ’ 554(*),771(24»1,04(*)71)

Let X € [A\]* be such that

a) a € X =7t =1 ml,a) = m(L, *

y4

b) X is thin enough, i.e. if @ < 8 are in X then % ,,..., 3" < p.
a,0 a,m(£,x)

Now if € is the (-th element of X we let

uctt = {3 s m <m(€) and B € (B, B sy -1}
So |u£+1| =m(l) x m(£,*) let m(£ + 1) = m(f) x m(¢, x) let ’yf%l < 'yfﬁl - <
41 ., list u“l, and it should be clear what is 7p41. For £ = m we have
¢m(£+1)—1 ¢ +

finished.

Ro = K. Stralght U211

12.13 Fact. 1) In 12.10 we can add (so in ®, of 12.11 we can assume) that

(viti) T (zoy ... ,Tn-1) € {xk, —xk : k <n} if

() for a set of i < & from J* we have (z7, — 27, : t € Dom(l;)) is a

sequence of pairwise disjoint (nonzero) elements of B;.
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2) Assume

(x)T for every i < § we have <x;rt —x;,:t € Dom(l;)) is a sequence of pairwise
disjoint (non zero) elements of B;.

Then

(a) in 12.10 above we can add:
bo, .. bm = | B".
1<6
(b) Under 12.5 we can add: for k € [1,m), if i is large enough, if ag, ... ,an_1 €
X letting bf; be the projection of b, in B (i.e. any element b satisfying
(Ve € B (2 < by, — b < bg, x> b, — b > by)

(there is a minimal and maximal such b% and they are in (B*U {p p=fal

(z 4 1) for some i, (v <1p)})), fa, i = fao i, (fa,(i) : £ < s) is with no
repetitions and 7(xg,...,2s_1) is a Boolean term then

B rbk':’r(bkmyaov'” 7bkmyas—1):0:>
B E 7B N Yy -+ 505 NYa._,) =0

(we can even be more explicit).

Proof. Straightforward. L1213

We can now phrase sufficient conditions for having free caliber A (for .77) and
for having no .7 -free subset of B of cardinality .

12.14 Claim. 1) Sufficient conditions for ‘B satisfies the k-c.c.” are (k is reqular
uncountable and):

(%)1 0 =w and each B; satisfies the k-Knaster condition
(¥)2 each By satisfies the k-Knaster condition and (Vo < ) (Ja|l®l < k)

()3 each B; satisfies the k-Knaster condition, k > § and for every A € [)\]",
and limit ordinal §' < & for some B € [A]" and i < § we have

a€B,feB, g[8 #np |0 =LlgnaNng) =i

(follows from “7j is k™t -free”, see 1.20 and Definition 1.21).
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12.15 Claim. Assume

(A) 7 is a normal (A, J)-sequence for (I; 1 i < 9)
(B) (B, z;,Z;) is a witness for (I;, {zo N a1 N 22 = 0})
(C) B is as constructed in 12.1, 12.3.

Then

() A is not a free caliber of B
(8) B has cardinality A and satisfies the k-c.c. if k is as in 12.14.

Proof. Straightforward. U215

12.16 Conclusion. Assume for simplicity that V E GCH, 0 = 0<% < x = x<X and
P is the forcing notion of adding y #-Cohen subsets of 6, i.e.

P ={f :f is a partial function from x to {0, 1}
with domain of cardinality < 6}.

Then (cardinal arithmetic on V¥ is well known) and

(%) if cf(u) < 6 < p < x then there is a (2W)*-c.c. Boolean algebra B of
cardinality A = ™ such that ) is not a free caliber of B (and even satisfying
the k-c.c. if K is as in 12.14).

Proof. Use 12.15 and §11. U216

The problem of “B with no independent subset of cardinality A\” is somewhat
harder.

12.17 Claim. Assume

(A) 7 is a normal (A, J)-sequence for (I; 1 i < 9)

(B) (By,7; ,Z}) is a witness for (I, T, m;) (on Tn,.m, see 11.13 clause (D))
(C) 3<m; <n;/2

(D) for every k <w, {i:km; <n;} € J*

(E) B is as in construction 12.1, 12.3.
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Then

(i) B does not have a free subset of cardinality

(ii) B has cardinality A and satisfies the k-c.c. k is as in 12.14.

Proof. Straightforward (using the criterion in 12.11). 1217

12.18 Conclusion. Assume for simplicity V E GCH, and # = 0<% < y = y<X is the
forcing notion of adding x 6-Cohen reals. Then cardinal arithmetic in V¥ is well
known and

(%) if cf(u) < 0 < p < x then there is a (2°7"))*-c.c. Boolean algebra B of
cardinality A\ = u™ without an independent subset of cardinality A

(xx) we can demand that B satisfies the cf(pu)™-c.c. if

VEYS<put:cf(8) = cf(u)} € I[N

1%

For (xx) see 1.20(2). L1218

Proof. By 12.17, where (B;,Z; ,Z;") is provided by 11.13 (and W for it by 11.12).

* % ok

We would also like sufficient condition for inequalities, for simplicity n = 2.

12.19 Claim. 1) Assume 12.1, 12.8 and (x) of 12.18 and n < w and 7° =
7%(z0,... ,Zn_1) a Boolean term and % = 71 (—xg,... , —x,_1). Then (*)1 = (¥)2,
where

(x)1 if £ < 2 for a set of i < & from J we have: if X € Ij' then for some
to,...,th_1 € X, patrwise distinct, we have

Bi ': Tz(xi’to, e 73;1',75”_1) = 0,
(¥)2 if aq € B for oo < X then for some k < w and aym < A for £ <k, m <n

we have ago < o1 < ... < Qm—1 < Quy10 (for £ < k) and for some
i(€) € {0,1} for £ < k we have

Bi ': m Ti(e)(ag’o, e ,ag7m_1) = 0
<k
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2) Assume 12.1, 12.3 (using 12.5) and (x) of 12.10 and for simplicity I; = JQ¢

and assume further n < w, t a function from {0,...,n — 1} to {+1,—1} and
™ = 7%x0,... ,2n_1) a Boolean term, increasing in z, if t(¢) = +1, decreasing
with xy if t(0) = —1. Let 74 (zo,... ,2pn_1) = 7°(=20,... ,—Ty_1). Assume also
To(—20, ... s, —Zp—1) =0 if g € {0,1} and \J(ze =1=t({) =1) or \yze =1=

t(¢) = —1. Then (x)3 = (*)4, where

(x)3 for a set of i < & which belongs to J* the following holds: if ya,e < \i and

[ < B <A = max vy, < miny,
{<n l<n

then for some a(0) < --- < a(n — 1) we have, for every ¢ < n:

0/..t(0) t(0) t(¢) _
T (x’va(o),e’ x’mu),e’ to ,w’)/a(nfl),é) =0
1/ .—t(6) .—t(0) —t(0) _
T (x’Ya(O),Z7 Ye(1),67 """ ’x’Ya(n—l),Z) =0
(x)4 ifas € B fora < X then for some ag < -+ < a1 we have 7%(angs - - 5 e,y _y) =
0.
Proof. Easy.

X 3k ok ok ok ok ok ok ok Xk

12.20 Comments. 1) This concludes the proof of the consistency of the existence,
answering a part of Monk’s problem 33.
2) We can get “B E (cf(u))T-c.c.” when 12.14 provides one.
3) We may still like to get “no k-independent set” for some specific k as done in
12.19. Probably also 11.14 will help but we have not really looked into it.

Clearly it is supposed to have, for a JT-set of 7’s:

(x); for some function F, if m < w, and X C (Dom I;)™ is F-large (i.e., if
E<w, ..., t* 1€ Xand F(#°,...,t*71) € I then for some £ € X, Rang
tNE®EY, ... 1) =0).

Then for some distinct £°,... ,#"~! € X, we have

C<m= Tt t},...,t77 ") =0.

See more in 13.12, 13.13.
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THE SINGULAR CASE

We continue to deal with problem 33 of Monk [M2]. This time we concentrate
on the case A is singular. Though a priori this looked to be the side issue, we can
get quite a coherent picture.

Note: If kK > cf(\) there is such a Boolean algebras (the disjoint sum of cf(\)
Boolean algebras each of cardinality < \). Moreover

12.21 Claim. Assume
(%) A > cf(A) =0 and (Vo < A) (Jo|<" < A) and A > k = cf(k) > Ro.
1) The following conditions are equivalent:

(A) there are B and a¢ such that
(a) B is a k-c.c. Boolean algebra
(b) ac € B\{0} for (<6

(c) if (we : ¢ < ) is a sequence of pairwise disjoint finite subsets of 6
then for some finite u C 6 we have

(B) there is a Boolean algebra B of cardinality A with no independent subset of
cardinality .

2) The following conditions are equivalent

(A) there are B, a¢ such that
(a) B is a k-c.c. Boolean algebra
(b) ac € B\{0} for (<6
(c) for any X € [0]° for some finite w C X we have ﬂ ac =0
Cew

(B)' there is a Boolean algebra B of cardinality > \ which does not have X\ as a
free caliber.

Proof. 1) (A) = (B). The case 6 = X is easier, so we leave it to the reader.
Without loss of generality B has cardinality 6. Let A = x + 6 + ZC <o A¢ where

A> A >kK+0+ Z§<C A¢. Let B* be the Boolean algebra freely generated by

BU{zcn:(<b0,a< )\zf} except for the equations in B and
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oo <ac(for ( <0,a< )\2')

Clearly B C B* and assume that {b, : v < A} C B* is independent. Then for each
7 there are n(y) < w and Boolean terms 7, and (, < 0, a0 < A¢ , for £ < n¢
and ¢y € B for £ < m(y) such that b, = 7,(2¢ g.a,.05-- s T ()12 17
Cy,05 -+ 5 Cym(y)—1)- As cf(A) = 0 > Vo, without loss of generality 7, = 7, n(y) =
n(x) and m(y) = m(x). Also for each £ < 0 there is X, € [Aj]kj such that
(*) v € Xc implies ¢y ¢ = o o(x) < 0,cy0=c, €B.

Without loss of generality, (C. ¢ : £ < n(x)) is nondecreasing. We can find Y € [6]°
such that (((.¢(%) : £ <n) :e €Y)is a A-system. In fact for some n/(x) < n(x)
we have

(k)1 e €Y & £<n'() = Cop(x) = Co(%)

(*)2 e1€Y & e0€Y & 61 <9 = Csl,n(*)—l(*) < C527n/(*)(*).
By renaming, without loss of generality X, = [\, \]] fore € Y. Let w. = {{ ¢(%) :

n/(x) < € < n(x)}, so let u be as required in clause (A)(c), so u C 6 is finite.
Let for € € u, 7.1 < 7V¢,2 be members of X..

Clearly
b’YE,lAb’YEQ S U aCE,Z
Leln’ (x),n(x)
hence
N (br.n2by.) < ) ( U %,Z) —UJ N a=10
EEU eeu  Len’(x),n(x)) e€uU ECw,

so (by 1y < A) is not independent.

-(A) = ~(B).
Like [Sh:92] (in short: Let A =3 5 A¢c, (Va < A) (la]=" < A¢), A¢ = cf(A¢) >
K404+ ¢ Ae. Let S¢ = {6 < A¢:cf(d) > }. Remember that by [Sh:92]:

X, [B] Let B be a s-c.c. Boolean algebra. Then:
(%) for any T = (zo @ o < A¢) pairwise distinct z, € B, there are
a” < a’ in B\{0}, such that: if (B, : @ < A¢) is an increasing
continuous sequence of subalgebras of B of cardinality < ¢ satisfying
To € Bat1,{a",a"} C Bg, we have a= < z5 < a™ and(Vy)[0 < y <
at—a” & yeEBs— (ws—a" )Ny #0 & (a™ —x5) Ny # 0
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is stationary.

So fix T = (x4 : v < A), sequence of distinct elements of B, for each ¢ < 6 let
ac — ag' be as in

(¥) (for z [ A¢), and let a¢ = azr —a; € Bt.

Let B¢, be the subalgebra generated by {x, : v < max{a, U AettU{ae : £ < 6}

£<¢
for @ < A¢ and for each ¢ < 0 let S¢ be as above.

As —(A), necessarily there is a sequence of pairwise disjoint finite subsets of 6,
say 4 = (ue : € < 0) with any finite intersection of members ( U a¢ : € <) is not

CEue

Zero.

Now we can manipulate, choosing by induction on ¢ < 6, =* € [] S¢ and

CEue
defining
o= ((ac - U ﬁ“/’t?“)-
CEue geue\(C+1)

2) Similarly. [i2.21

12.22 Discussion. 1) Note: if 0 < k, clearly (A)g & (A)j.

2) Note if (Va < 0)(|a|<" < ), then =(A)g & —(A)j.

3) Note that if x = x<X < x(*) = x(¥)<X(*) then for some xt-c.c. (< x)-complete
forcing notion of cardinality x(*) in VF we have —(A4)s & —(A)j, when 6 = cf(f) €

(6 x (%))
4) It is natural to get CON(k < x = x~X < 0 = cf(0) < 2X + (A)g & —(A4))).
This is well connected to our problems but we have not looked at it.

12.23 Claim. In 11.3 the condition
(x) (Va < AN)(Ja|<" < A)
can be replaced by the weaker one

(%)= for arbitrarily large regular X' < X\ we have Ry (A for any k-c.c. Boolean
Algebra (see 12.21°s proof ).
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GETTING FREE CALIBER FOR REGULAR CARDINALS

Remember that A is a free caliber of a Boolean algebra B if for any X € [B]*
there is an independent Y € [X]?; of course, we can replace a Boolean algebra by
a locally compact topological space (which is a slightly more general case, but the
proof is not really affected).

Monk asks whether there is a k-cc Boolean algebra B of cardinality > A with no
independent subset of cardinality A, and p such that

p<A<pt,  (Va<p)(al® <A).

Here we deal with the case of A\ regular and give a sufficient set-theoretic condition
on k such that any x-cc Boolean algebra of cardinality > A has A as a free caliber,
so the consistency of a negative answer follows, but we do not directly force. So
this section is complementary to sections 12 and 11.

12.24 Hypothesis.

(a) A= cf(\) > 2", but for simplicity we assume

A=ut, p= Z Xis N = A5 of(p) < k.
1< cf(p)

We shall use it to shorten proofs when helpful, and, later, will show what
can be done without it

(b) B* is a k-cc. Boolean algebra, a, € B for a < A are pairwise distinct.

Let @ =: {aq : @ < A). We would like to find X € [A\]* such that {a, : o € X} is
independent.

12.25 Definition. For B C B*,z € B* let

Proj’(z,B) = {y e B:y < 2}

Proj'(z,B) =: {y € B:y Nz = 0}
Proj*(z,B) = {y € B:y=0o0r (V2)(0<z2<y & z€ B=0<zNx < 2)}.

12.26 Fact. Let B C B*, x € B*
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(1) If y, € Proj‘(x,B) for £ < 3, then (y, : £ < 3) are pairwise disjoint
(2) U Proj‘(x, B) is dense in B
£<3
(3) Proj‘(x,B) is an ideal on B
(4) Proj*(x,B) is complete inside B* i.e., if in B* we have x is < lub of {7, : a <
a*} and {2, : a < a*} C Proj’(z,B) and € B then x € Proj‘(z, B).
12.27 Definition.

X =Xa = Min{|[B[|: B C B, |[Wg| = A},

where
W = Wga = {a :Proj*(aa, (BU{as : B < a})p~) = {0}
and Proj*(a, B) is dense in
Proj*(aq, (BU {ag : B < a})g-) for £ =0,1}
12.28 Remark.

(1) Proj?(aqa, B) = {0} is close to saying, a, = the lub in B* of Proj’(a, B),
but not the same (holds if B < B*).
Could have worked with a variant as indicated.

(2) Trivially x < A, use B = (a4 : a < A\)B~.

12.29 Fact. If x = A, then for some X € [A\]*, (a, : @ € X) is independent.

Proof. Let B, =: (ag : f < a)B-, so B, are increasing continuous in «, ||By| <
Ng + |a| < A. Let

S =:{a < \: Proj*(as,B,) = {0}}

S = {a€S: cfla) > k}.
Now

(%) S’ is not stationary.
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[Why? For 6§ € S, £ < 2 let Z5, C Proj‘(as,Bs)\{0} be an antichain, maximal
under the conditions defining Proj*. So |.%s5 4| < , as B* F k-cc. Hence for some
f(9) < 0 we have

Is0U Is1 C Bysy-

So if S’ is stationary, by Fodor lemma, for some o* < X\, S* = {5 € " : f(J) = a*}
is stationary.
We would like to show:

(+%) § € S* = Proj?(as, Ba-) = {0}.

If so, we have gotten that B+, S* exemplify x < ||By+||, contradiction. For proving
(%%), let 6 € S*, assume b € Proj?(as, Bo+)\{0}.

So, by 12.26, (for B4+, as) we have (Vo € F50U F51) Nb=0.

Now, b ¢ Proj?(as, Bs), as the latter is {0}. So, there is ¢ such that Bs F “0 <
c<band cNas =0Vc<as, that is ¢ € Proj’(as, Bs) U Proj!(as, Bs), but as
¢ < b we have

(Vo e F50UIs51)(xNec=0).

So ¢ contradicts the maximality of %5 (if ¢ € Proj’(as,Bs)) or of S5 (if ¢ €
Projt(as, Bs)).
The contradiction proves (xk) and (x).]

So A\ S is stationary. For § € A\S choose bs € Proj*(as, Bs)\{0}. So by Fodor’s

*
lemma, for some b* € J, ., Bo we have

S*™ =:{0:90 € A\S,bs = b"} is stationary.
Now we know that (as : 6 € S*) is independent. 1229

12.30 Remark. In the characteristic case, B* is the completion of a Boolean algebra
of smaller cardinality B’, so x < ||B/||.

12.31 Claim. Now, without loss of generality

X B* = (BU{a,:a € Wg}) for some B C B*,
1Bl =x, WB = A.
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Proof. B C B* exemplifies the value of y, let B¢ be the completion of B, and we
can let for a« € Wy

al, = lub in B¢ of Proj’(ag, B).

Now if Y € [Wg]*, (a/, : a € Y) is independent in B¢ then {a} : a € y} is

«

independent in B*. Alternatively use (BU {a; : o € Wg})g~.

(Remember: B is not necessarily a complete subalgebra of B*.)

12.32 Definition. Let

K={B:B=(B;:i<Y)
is an increasing continuous sequence of subalgebras of a
B*,|B;|| < No +[i|" and Wg_ € [\*,B, 2 B
(of X of 12.31)}.

(so Wg, is cobounded in A, in fact if B, € (BU {ag : f < a})p- then |[Wp_ 2D

(a; A)].)

12.83 Fact. 1) cf(y) < k.
2) cov(x, X, K, 2) > A, meaning:

A< min{| 2] : 2 C [\|X & (VA€ [x]<")(3B € 2)(AC B).

Proof. 1) By (2).

2) Assume not. Remember B C B*, |Wg| = A, |B| = x.

For each o € Wg choose ., C Proj‘(aq, B) for £ < 2 as in the proof of 12.29.
Let & C [B]<X, | 2] < X and

(VA€ [x]*")3EB € 2)(A < B).

So for each o € Wg, there is A, € & such that ., oU %, 1 € A,. So for some
A e P

W = {Oé c WB : ja,O U ja,l Q A*} € [)\]A

(exists as we divide Wg into |Z?] sets, so at least one has size A, as |Z| < A =
cf(A)). Now x < |(A*)B|, contradiction, as in the proof of 12.29 (to the definition
of x.

L1233
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12.34 Definition. For B € K and « € Wg, let

u(o, B) =: {i < x : for some £ < 2, Proj*(as, B;) is not a predense
subset of Proje(aa, Bii1)}.

12.85 Discussion. We may consider B = (B’ : i < x) € x when
B, = (B; U X), X fixed countable C B*.
Possibly
u(a, B) # u(a, B)

or just for some i, Proj*(a., B;) is not dense in Proj‘(a., B}). We think of the set
of such a as bad, and put them all in one A-complete ideal. But maybe A belongs
to it. So we will try to find some B for which this does not occur.

This will help in that we eventually try to choose o € Wy for ¢ < A by induction
on A such that (aqs, : ( < A) is independent.

So in stage ¢ we consider all

X € [{ag : € < ¢},

The existence of B requires some properties of A\ which certainly hold in the main
case (with A = ™ ...).
So to ease the proof instead of every ¢ < x, we use “every i < x large enough”.

12.36 Definition. 1) We define a partial order on K : B! < B? if for every i large
enough

i<x=B; CB.
2) We say B? is finitely generated over B! if for some finite X
B? = (B} U X)p- for i < x large enough.

In this case we let B[ X] = (B}[X]:i < x) be B2
3) For B! < B2 let
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Bad(B',B?) = {a :if « € Wg1 N Wps,
then for arbitrarily large ¢ < x, for some ¢ < 2,
Proj’(aq, BL) is not dense in Proj‘(aq, B?)}.

4) Jg1 is the A-complete ideal on A generated by all Bad(B', B?), where B! < B2
and B? is finitely generated over B!.
What do we need to carry a proof?

12.37 Lemma. There is B® € K such that A € Jge.

12.38 Remark. We may like to have J O Jze normal extending I;St’o (and A\ & J),
then we need more work.

Proof in the case A = x*. (Enough, see 12.24(a)). Assume there is no such B = B®.
We choose by induction on ¢ < x, B¢ € K, such that B¢ is increasing with ¢ and:
for each ¢, as A € Jgc we can find (X¢ : € < €¢) witnessing it, i.e. X¢ € [B*]<No,
ec < A (so without loss of generality e, < x)

A= Bad(B¢,B¢[X(.])

e<e¢

where
BS[Xc ] = (BS UX¢ o)p-
Now easily (K, <) is x*-directed, so we demand

/\ B¢ <B¢[X,]<B

e<e€c

Alsoi € [(,\) & §<§§X:>B§QB§. Let 6* < A be such that

/\ ch C(BU{an:a<d"})B-.

So for each ( < x we have
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0* € | Bad(B¢,BS[X¢.]),

e<ec
hence there is £(¢) < e¢ such that
0" € Bad(BS, B¢ [X¢g(0)-
For each ¢ < x, there is i(¢) < x such that X¢ ¢¢) C Bf;g)l, hence
(Vi)[i(Q) < i < x = Bi[Xcc)) € B
because

¢+1 ¢+1
Xeeo © Bi((j) cB; .

We restrict ourselves to £ < k. So without loss of generality

A/ BYCBE,

C1<C2<k a€[rt,x]

and if ¢ is a limit and o € [kT, ], then BS, = Ue<c BS. As cf(x) < k, there is

i(x) < x such that Z = {{ < Kk :i(¢) < i(*)} is unbounded (we can demand more).
Now the set u(6*, B¥) has cardinality < x because B* satisfies the c.c.c.
Remember,

u(d*,B%) ={i<x: |J Proj(as,Bf)
£=0,1
is not predense in U Proje(ag*,BfH)}.
£=0,1

Choose for i € u(6*, B®)U{xT} and £ = 0, 1 a predense subset f,f;’z of Proj‘(as-, B, ;)
of cardinality < k.
Now, for i € u(6*,B") U {k"}\k" the sequence <B§Jrl : ¢ < k) is increasing
continuous. So for some (; < Kk
5*70 6*71 Cz
fm,i U fm,i g Bi—|—1'
Let
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((6") =tsup (; < K.

So clearly
(x) if i € [k, x], £ < 2, then
Proj’ (as-, B ) = Proj’(ag., BF) N B
is a predense subset of Proj‘(as-, BY).
[Why? By induction on i. If i = kTt directly. If i is a limit - trivial. If i = j+1 Z_/{JF,
J & u(d*,B"), then by transitivity of being predense in. If i = j 4+ 1, j € u(d*, B¥),

using fj‘s* ‘]
Now, clearly

€(6*),k)= N\ /\ (Proj(as-,B;) is predense in Proj‘(as-, B ™).
<2 i€lkt )

This follows from (x). Choose ¢ € Z\((6*) so we contradict the choice of B¢*1.

L2537
12.39 Convention.. We fix B® € K such that A € Jge.
12.40 Fact. {oa < X : u(a, B®) bounded in x} is bounded in \.
Proof. By the choice of x as minimal. (9,40

12.41 Convention.. Let f, be an increasing function from otp(u(c, B®)) onto
u(a, B®).

12.42 Fact. For some j* < K
Yo = {a < X:Dom(f,) =35} € (Jge)T.

So without loss of generality (Vo )[Dom(f,) = j*].
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12.43 Claim. We can find (v; :j < j*), w* C j* such that:
()1 ify ="y 3 <3 <75,
V= e ew,
then the set of a € Yy satisfying the following, is in (Jge )™ :

jew” :>fa(j) :'7;

jej\w" =5 < falj) <j-
Also
(¥)2 j €7 \w* = cf(y}) > 2" and
A = max pcf{cf(fy;‘) g€ 7\w*}.
(x)3 Moreover if we fix p = p=* < X\ we can demand
J€j\w" = cf(vy) > p.

(%)g if 7° = sup(J*\w™*), and E is the equivalence relation on j*\w defined by
nEn <5, =73, (so the equivalence classes are convex) then J is an ideal
on j* such that J]b*d CJ,w*eldJ,

AeJ=|Ji/E:je A} e,
and
() II ~v;/J has true cofinality A, so possibly shrinking Yo, for o < 3 in

J<j*
YO; fa <J f,@

Proof. By 7.1(0) (or [Sh 430, 6.6D] or [Sh 513, 6.1]), as j* < &, so 271 < \.
[12.43

12.44 Observation. (7}“ : j < j*) is non-decreasing, with limit y, and v; < x and,
of course, cf(j*) = cf(x).

Proof. As Rang(fa) C X, and the fact, v7 < x if j € w*, vj < x if j & w™, but then

cf(v;) > 27 >k > cf(x).

Ui2.44
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12.45 Comment on the Claim. 1) For it, possibly Ao fo = [*, so then we get
w* = j*. Also possibly fo(j) < a, so w* =0 and J = {¢}.

2) If the ideal Jge is normal enough, for some X € (Jgo)T, (fa :a € X) is <;-
mereasing.

3) If (Yo < N)(|ali"l < X), then necessarily

jej\w cf(vf) = A
(like the /\-system lemma). BUT for the interesting case, and in particular by our

assumptions, this is not the case: as v; < x < A, hence J 2 [*]<Ro.

12.46 Hypothesis. Each BY is the union of u filters (% 5 : 8 < ), p = u<" (we
can use somewhat less), this of course is only a consistent assumption.

12.47 Claim. For some
i=0:j<jelp
we can restrict ourselves to

jew = fuo(j) =775,
JE€J\w* =i < fald) <7f and

Yi,a< A=
/\ (Proj?(aa, BE.) N Ze- ., # {0})
j<j*
where
o v; if J € w*
;o { Uy o <) otherwise,

in particular Y1 € Jpe .

Proof. As p=" < A, Jge A-complete and j € j*\w* = cf(7) > p. Oio.47

12.48 Claim. For some X € [X]*, the sequence {a, : a € X) is independent.

Proof.
Case 1. w* is unbounded in j*: We choose by induction on 5 < A,

Na < (A1), €. <lorye)
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increasing continuous, |Ng|| < A, Ng N A € A\, (Ng,.5,<5) € Ngy1 and B® B*,
a € Np. Let ag = a(f) be the first @ < A such that a € Y7, a &€ U(Jge N Np)

(so /\ fa(d) :7;)'

Clearly ag € AN Ng41\Ng, (ap, : f1 < B) € Ng41. Let n < w, 1 <--- < 3, and
we will prove that (aqg,) : £ =1,...,n) is independent.

Now
Jj €w* = thereis b; € ﬂ Pr0j2(aa5£,]_3%)\{0}.
=1
[Why? As ag,,...,as, €Y1, so Dz N Pron(aaW,B%) # (). Choose b; ¢ there,
s0 bj = (y_y bj ¢ is OK|]
Consider

Bad(B®, B [{aa(s,):- - - + Ga(s)}]) € Jpe.
it belongs to Ng,,,. So
045“_1 ¢ Bad(B®, B®[{aa(51), . ,aa(ﬁe)}]).

So for each ¢ for some iy < x,k <2 & 1 € [ig, x) = Projk(a%pr1 , BY?) is predense
in Projk(aaﬁeH, (B? U {aags,)s - ag, 1))

Soif j € w*, ;> sup,_; i (exists) and n € 1712, we prove by induction on
¢ that

J4
b5 =b; N () (@, )"*
k=1

For ¢ = 0 trivial.
For ¢ > 0, bﬁ-_l € (Bf% U{aag, ;- - ’aaﬁe_1}> is > 0, is in

Proj*(aay, (BS: U{aa(s); ---Ga(s,_, })

as it is below b; and b; € PrOjQ(aa(ge),B%’,r) by its choice and j is > iy, so b; €
— J
PrOjQ(aaﬁz, (B® U {aag, - s Gag, | ).
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We use implicitly
12.49 Fact. For a < A large enough,

i < x = Proj*(as, BY) # {0}.

Proof. By x’s minimality. L1249

Case 2. Not 1, i.e., w* bounded in j* or just j* = sup(J*\w). Similarly using
()2 of 14.17 find j € j* \ w* such that if j, € j/E for £ =1,... ,n then f,, (f1) <
fap, (J2) <+ < fag, (n)- L1248

) 3k %k

12.50 Conclusion. If = p<* < 6 = 0<% then for some p-complete T -c.c. forcing
notion of cardinality 0, in V¥

If B is a k-c.c. Boolean algebra of cardinality > A\, p = pu<", A = cf(\) € (u, 0]
then A is a free caliber of B.

Proof. By 12.24 - 12.49 above and [Sh 80]. Ui2.50

12.51 Claim. The following implications hold: (x)1 = (x)a = (%)3 = (*)4 where

(¥)i(a) p? 7 =p<A=cf())
(b) if a Boolean algebra B satisfies the (2<%)T-c.c. and |B| < X\, then B is the
union of i filters
(%)2(a) K < A= cf(N)
(b) if a Boolean algebra B satisfies the k-c.c., for i < A\, F; C B\{0} is a set
of < k members closed under intersection then we can find < X\ filters 9,
(a < a* < A) of B such that (Vi < \) (F; C P,)
(%)3(a) Kk < A= cf(N)
(b) if a Boolean algebra B satisfies the k-c.c., 2 a A\-complete uniform filter on
A, 0 = cf(0) < k and for i < X, F; is a decreasing sequence of elements
of B\{0} of length 0 then for some X € 2%, U,cx Fi belongs to some
ultrafilter on B
(%)a(a) K < A= cf(N)
(b) if B is a k-c.c. Boolean algebra of cardinality > X\ then X\ is a free caliber
of B.

<K

Proof. Should be clear from the proof in §14. 01251
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§15 ON IRR: THE INVARIANT OF THE ULTRAPRODUCT
BIGGER THAN THE ULTRAPRODUCT OF INVARIANTS

We solve here some of the questions of Monk [M2] on the possibility that

inv(H B:/2) > H inv(B¢)/2.

(<K (<K
In 13.1 - 13.11 we deal with the irredundance number irr (getting consistency of
the above and solving [MS, Problem 26]). We then prove the existence of such
examples in ZFC (improving Rostanowski Shelah [RoSh 534]) for inv = s, hd, hL,
Length solving [M2, Problems 46, 51, 55, 22], respectively. See more in [Sh 641].
13.1 Hypothesis. A = A<*, n(*) < w.

13.2 Definition. P = ]P);L(*) is the set of p = (u, B,.%) = (uP, B, .#?) such that

(a) uwe [AT]<A

(b) B is a Boolean algebra generated by {z, : a € u}

(c) acu=zo & {zpg:fcunal)s

(d) in B, {x, : @ € u} is n(x)-independent, i.e., any nontrivial Boolean combi-

nation of < n(x) members of {x, : @ € u} is not zero (in B)
() F = (Fy: 0 <n(x))and Fp 1 C Fy

(f) Z¢is a non-empty family of functions from {z,, : « € u} to {0, 1} respecting
the equations holding in B. Call the homomorphism (from B to {0, 1}) such
that f induces, f

g) if f € %yi1,0 <n(x) and « € u then for some f' € .%, we have
+

frilenu)=f1(anu), f'(e) # fla).

(h) if f:u — {0,1} and (Vv € [u]<®)(f | u € %) then f € .F
(1) if a € B\{0} then for some f € Fy, we have f(a) = 1.

The order is: p < ¢ iff

(@) uP Cul
(8) BP is a subalgebra of B
() FL={f 1w f € Ff}.
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Let B = the direct limit of {B” : p € Gp}.

Note. We can ignore B? at it is reconstructible from .#J. Also clause (d) follows
from the rest.

13.3 Notation. We let p [ a = (WP Na, (g : f € vP Na)B, (Fe [ a: € < n(x)))
where for u C AT welet F [u={fu:fe€ F}and fu=f](un Dom(f)).

13.4 Fact. (p | o) < p for p € P.

18.5 Fact. In P, every increasing sequence of length < A\ has a lub: essentially the
union.

Proof. Trivial (use compactness and clause (h) of Definition 13.2). U35
13.6 Fact. For o < A\, {p € P : o € uP} is dense open.

Proof. If p € P let us define ¢ = (u9,BY, #9), u? = uP U {a}, B? is BP if a € uP,
and is the free extension of B by z, otherwise, .#] = {f € uwio L fluP e F,}.
Uis.6

13.7 Fact. 1) If p e P, p | @« < g and u? C « then p, ¢ are compatible.

2) P satisfies the A*-c.c. and even in AT-Knaster.

3) Moreover, if p, € P for a < A" then for some club E of A\™ and regressive
function h on E we have o« € EAS € EANh(a) = h(B) A cf(a) =X = (B) = pa,ps
are compatible.

Proof. 1) Let us define r = (u",B",.Z#") by:
"t =uP Uu, Fy ={Ff:fe¥2and f|uf € FP, flul € F[}.
Now
(x)1 F] =F] [ uP.
(Why? If f € Z#, then f |a=f| (aNu) Eﬁfra but p | o < q. Hence by the

definition on the order of P there is g € %/ such that f [ a C g, s0 fUg € Z#/,
(fUq) [wP = f,s0.%) C .#] | uP. The other direction holds by the choice of .% .

()2 F] =F] | ub.
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[Why? Similarly using 13.4.]
()3 Fia C T

[Why? As ﬁ’fﬂ C .7/, ﬁgqﬂ C 71]

(x)4 if f € F], , and B € u" then for some g € .F] wehave f [ 3C g & f(B) #
9(B).

[Why? The proof splits into two cases:

Case 1. g € uf.
So flac Z/, | abutqc P sothereis go € ./ such that (f [ ) [ 8 C go,

(f T @)(B) # go(B) hence gy € F = .FF | a therefore gy | (uP Na) € FL' hence
there is g; such that

go | (WPNa)C g €F).

So go U g1 € #; is as required.

Case 2. g & uf.
So 8 € uP\a.. Now f [ uP € .F] | hence there is f' € .7 such that

frrwrng)=frwrng), f(B)#r08)

Now f | a € #}, | hence by clause (e), we have f | o € %/ hence

{41
(f @)U f’ € F/is as required.

By .#; we can define B” and is as required.|

2), 3) Follows from (1). Ois.7

13.8 Claim. Assume that k > 2n(x) + 1, (§; : £ < k) is increasing, §y < A; we
stipulate 8, = \T, for £ < k, pp € P, pp | 00 = p*, uP* C Spy1 and for £,m < k,
OPypm ype : uPt — uP™ maps py to pn, (the natural meaning otp(uP*) = otp(uf™)
and

FP={fo OPyr¢ yom : f € FEm}

50 OPyre yrm induces an isomorphism OP,, , ~ from BP¢ onto BP™ ). Then there
15 q¢ € P such that

(@ N pm<gq

m<k
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b) if b€ BP then BIE “b = OP, .. (b)),
Pm,P

uC(0,k) meu
[u|>n(*)

Proof. Let us define ¢: put u? = U uP™ and
m<k

FL={fe®2m(x)— 0> |{m e (0,k): Ba € uP\uP")
[f(OPupm wro () # f(a)]}|

and f [ uP™ € F[™ for m < k}.

Now note
(*)1 yépm = ygq r'U/pm.

(Why? If f € %] then f | uPm € F#)™ by the definition of #/. If f € .Z#[™ then
for m; <k we let f,,,, = fo OPyrmi ypm, SO U fm, € #; and we are done.]

mi<k

(¥)2 if f € F] |, a € u? then for some g € .F]
gla=fla, gla)# f(a)

[Why? If a € wP° we have f | uP € Z77, and there is go € #;°, such that

go T a=fTa, go(@)# f(a). Let gm = OPururm 0 go. Then g = | J g is as
m<k
required.

If not, a € upm\up* for some m > 0, so a > §,, and f | uPm € ﬁffl so there

isge Fingla=fla ga)#fl@) Nowg =guU(f () uwm)isas
mi1<k
ml;im

required.] So

(*)3 qepandpm Sq

So (a) of the conclusion of the claim holds. By clause (i) of Definition 13.2 and the
choice of ¢ also clause (b) holds. Oiss

15.9 Conclusion. lrpn) “B is a Boolean algebra generated by {20 1 a0 < AT},
which is n(*)-free hence irr,,)(B) > A™ but irrg, )11 (B) = \”.
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Proof. Putting together the claims. Uis.9

13.10 Conclusion. If X = A<* > Xy and the forcing notion P is P = HIP’K (where

P? is from Definition 13.2) then

(x) P is a A-complete A*-c.c. forcing notion, and in V¥ for some Boolean
algebras B,,(n < w) we have

(a) irr,(By,) = AT, irre,1(By) = A

(b) for 2 anonprincipal ultrafilter on w, AT < irr( H B,/2, H (irr(B,,))/2

XD =\ e e
(¢) So irr(H B./%) > H irr(B,,)/2

Proof. The A*-c.c. follows from 13.7(3) as A = A¥. The B,, are from 13.2. The
proof that IFp “irr,,(B,) = AT but irrg, 2(B) = X is like the proof of 13.9.

Concerning irr(( H B,/2) =M usez =" :n<w)/P e H B,./2. [isio

nw n<w

13.11 Comment. 1) Surely in 13.9 we can fix exactly the n such that irr,(B) =
AT, irr,.1(B) = X\ (the assertion outline in [Sh 620] is wrong. We first note an
approximation

® ifpePand ap < oy < ... < agys)—1 arein u?, then there are f/, f” € #Y
satisfying f' [ (u? Nag) = " [ (uP Nag) and f'(ag) # f"(a0) but f' |
{041, ) Oézn(*)—1} =f"1 {041, ) Oézn(*)—z}-

[Why? By clause (g) of Definition 13.2 (as %,y # 0 by clause (f) of Definition
13.2) there are fr’b(*)_1 € L%L(*)_l,fr'{(*) € Fp(+) such that fr’b(*)_1 [ (uP Nag) =
g(*)_l(up N ag) and fé(*)—l(o‘()) #+ fg(*)_l(ozo). Now we choose by downward
induction on £ < n(*) — 1, a member f; of .7, such that f; [ {a1,...,anu)—1-¢} =
7’1’(*)_1 [ {a1, ... apey—1—¢} and [ [ (uP Nay) = f' [ (uP Nay), clearly possible:
for £ = n(x) — 1, the function fT’L(*)_1 has already been chosen, for ¢ — 1 use
clause (g) of Definition 13.2. Next we choose by downward induction on ¢ < n(x)
a member f; of .Z] such that f' | (aney NuP) = f" | (ape) NuP) and f |

{Oén(*), an(*)—|—1, ) an(*)+n(*)_£_1} - f(l)
Now f{, f/ are as required.]
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Solkp “inzy :a < AT} C B, z, ;@ {zpg:Beuual)ifue [/\—l—]SQn(*)—l and

a € AT\u”.
We now note that

X Ikp “irr, (B = At iff n < 2n(x)".

First note that IFp “Y C AT has cardinaltiy A™” where Y = {a < AT: for some
(equivalently every) p € Gp satisfying @ € u? we have: {0,1} = {f(zo) : f €
n( )} Now like ®

®1 IFp 2o : @ € Y} exemplifies irrg,,)(B = A",

We can change slightly the definition of P = ]P’n(*) demanding that f € 7, ) = f
is constantly zero, then we get I+ irr,(B) = /\+ 1ff n < 2n(x) — 1.

13.12 Claim. Assume

(A) X = tef(JT N/ T)

<9

S

(B) A= ()\; 11 < 6) is a sequence of reqular cardinals > |6|

(C) X\i > max pef{)\; : j < i}, so necessarily JP4 C J

(D) (A¢: ¢ < k) is a sequence of pairwise disjoint members of J+
(B)

2 s a uniform ultrafilter on k.

Then, we can find a Boolean algebra B¢ for ( < k such that for inv € {s, hd, hL}
(see Monk [M2])

(a) invt(Be) < X so A = xt = inv(B¢) < x (moreover invg (B3) < \; see
[RoSh 534])

) inv+(H B:/2) =\ (soif \=xT then mv(H B:/2) > )\)

(<K (<K

Proof. Let 7 = (n, : a < A) be a < j-increasing cofinal sequence of members of
[T Ai such that
1<0

C<nm=A> [{m 1 Cia <Y

(such 7 exists by [Sh:g, I1,3.5]). We define (BC e ) for ( < Kk, i < 0 as follows.

Let I; = J9, and Tei =it <), xC ;= <x<ma o< ).
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Case 1. i ¢ U{A. : e € [(,K)}.

Let B¢, be the Boolean algebra generated by {ﬂfg_,i,a@&,a o < A} freely
except that =, , < xzfﬂ.’a, and (xzfla —Z¢ )N (xz.rlﬁ —%¢,5) =0when o < 8 <
)\i-

Case 2. i e U{A. :e € [(,K)}.

Let B¢, be the Boolean algebra generated by {xai’a,xzija o < A} freely

except that

- + - +
< B0 ST 0 ST ST

(e'g' BC,i C ‘QZ()V% x(?,i,a = [0,404 + 1)7 xg_,i,a = [0,404 + 2))
Let B¢ be constructed as in 12.1, 12.3 from A, (I; : i < §), (Bc,hfg_,i?fé—,i) for
i < 8, and let y$, yg be as there.
Now inv+(H BC/.@) > X is exemplified by (y* : a < ) where y = (y5 :
(<K
¢ < K)/Z, because for a« < A\, u C X\ {a} finite, for some (* < k, we have

peu = LlgnaNng) €0\ U A, hence
e€[¢,rk)

¢ €[Caps k) = BeFys — ﬂ yg > 0.
Beu

Hence {¢ < k : B¢ F 1§ ﬂyg = 0} D [Ca,p: k) € Z and therefore [[ B¢/Z F

(<
“y; o ﬂ yg > 0.
BEu
Lastly, invz;)(BC) < A follows by 12.19(2) for 7(xg, x1,x2) = (1 — 2o Uxs) with
the variables permuted according to the particular inv. (3,19

13.13 Claim. Claim 13.12 holds for Length too.

Proof. We repeat the proof of 13.12, but in the definition of B¢ ; just interchange
the two cases.

Case 1. i ¢ U{A. : ¢ € [(, K]}
Let B¢ ; be as B¢ ; in case 2 in the proof of 13.12.
Case 2. ic U{A. e €[(,K)}.

As in Case 1 in the proof of 13.12 or just let B; ¢ be generated by {z,,z} : a <
Ait {wai,a’xz—,i,a ta < A} freely except ., , < xé’za
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Now for ao < 8 < A, letting i(cr, ) = Min{i : 1o (7) # ns(i)} and (o, = Min{( :
i(a,B) ¢ U{A; 1€ € [(,k)} we have

C € [Carp, k) = Bei F Y <y or g <yl
hence

H B¢ F “y, <y orys <yl
(<K

where y* = (v, : ¢ < K)/ 2.
As for Length™ (B¢) < A, it is by 12.9(1). O13.13

13.14 Conclusion. 1) If & is a uniform ultrafilter on x, then for a class of cardinals
X = X" and Boolean algebras B; for i < k such that, for inv € {s, hL, hd} we have:

(a) inv(B;) < x hence H inv(B;) < x
(b) inv(][Bi/2) = x".

1<K

2) Similarly with inv = Length.

Proof. Let x be any strong limit singular cardinal of cofinality > . So by [Sh:g,

I1,§1] we can find (\; : ¢ < cf(x)), strictly increasing sequence of regular cardinals

< x with tef( H i/ ch(lx)) = xT. Without loss of generality ];[j Ai < Aj and let
i<cf(x) !

fori <k, A; ={ar+i:a < cf(x)}. So we can apply 13.12 (for part (1)) or 13.13

(for part (2)). L1314

Remark. For cellularity similar results hold (in ZFC), i.e., ¢(B,,) < A, ¢( H B,) >

n<w

A, see on it in Monk [M2, p.61-62]; by [Sh:g, 111,4.11,p.181,4.12] so this applies
to A = pt for A > Ny by [Sh:g, I[,4.1], [Sh 572], to A inaccessible not Mahlo by
[Sh:g, 111,4.8](2),p.177 and for many Mahlo cardinals (see [Sh:g, I1I,4.10A,p.178].
For incomparability number (Inc) similar results are proved “almost in ZFC”, see

[Sh 462].
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