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2 SAHARON SHELAH

§0 Introduction

We deal with the problem of the existence of a universal member in Kλ for K a
class of abelian groups, where Kλ is the class of G ∈ K of cardinality λ; universal
means that every other member can be embedded into it. We are concerned mainly
with the class of reduced torsion free groups. Generally, on the history of the exis-
tence of universal members see Kojman-Shelah [KjSh 409]. From previous works,
a natural division of the possible cardinals for such problems is:

Case 0: λ = ℵ0.

Case 1: λ = λℵ0 .

Case 2: ℵ0 < λ < 2ℵ0

Case 3: 2ℵ0 + µ+ < λ = cf(λ) < µℵ0 .

Case 4: 2ℵ0 + µ+ + cf(λ) < λ < µℵ0 .

Case 5: λ = µ+, cf(µ) = ℵ0, (∀χ < µ)(χℵ0 < µ).
Case 6: cf(λ) = ℵ0, (∀χ < λ)(χℵ0 < λ).

Subcase 6a: λ is strong limit.

Subcase 6b: Case 6 but not 6a.

Our main interest was in Case 3, originally for K = K
rtf, the class of torsion free

reduced abelian groups. Note that if we omit the “reduced” then divisible torsion
free abelian groups of cardinality λ are universal. A second class is Krs(p), the class
of reduced separable p-groups (see Definition 2.3(4), more in Fuchs [Fu]) but we are
interested in having methods and in the class of ℵ1-free abelian groups. Kojman-
Shelah [KjSh 455] show that for K = K

rtf,Krs(p) in Case 3 there is no universal
member if we restrict the possible embeddings to pure embeddings. This stresses
that universality depends not only on the class of structures but also on the kind of
embeddings. In [Sh 456] we allow any embeddings, but restrict the class of abelian
groups to (< λ)-stable ones. In [Sh 552, §1,§5] we allow any embedding and all
G ∈ Kλ but there is a further restriction on λ related to the pcf theory (see [Sh:g]).
This restriction is weak in the following sense: it is not clear if there is any cardinal
(in any possible universe of set theory) not satisfying it. We here prove the full
theorem for λ > iω with no further restrictions:

(∗) for λ > iω in Case 3, K = K
rtf,Krs(p) there is no universal member in Kλ

(where we define inductively i0 = ℵ0,in+1 = 2in ,iω =
∑

n<ω

2in and generally

iα = ℵ0 +
∑

β<α

2iβ ).
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NON-EXISTENCE OF UNIVERSAL MEMBERS 3

§1 deals with K
rtf using mainly type theory. In §2, we apply combinatorial ideals

whose definition has some built-in algebra and purely combinatorial ones to get
results on K

rs(p); there is more interaction between algebra and combinatorics than
in [Sh 552]. Similarly in §3 we work on the class of ℵ1-free abelian groups.

What about the other cases? Case 4 (which is like case 3 but λ singular) for K
rtf
λ

and pure embedding, was solved showing non-existence of universals in [KjSh 455]
provided that some weak pcf assumption holds and in [Sh 552] this was done for
embeddings under slightly stronger pcf assumptions. For both assumptions, it is not
clear if they may fail. Note that the results on consistency of existence of universals
in this case cannot be attacked as long as more basic pcf problems remain open.

Concerning Case 5 - if we try to prove the consistency of the existence of universals,
it is natural first to prove the existence of the relevant club guessing; here we expect
consistency results. (Of course, consistently there is club guessing
(by C̄ = 〈Cδ : δ ∈ S〉, S ⊆ λ, otp(Cδ) = µ) and then there is no universal.) Also we
were first of all interested in the existence of universal reduced torsion free groups
under embeddings, but later we also looked into some of the other cases here. See
more in [Sh:F319].

Case 1 (λ = λℵ0). By subsequent work there is a universal member of Krtf
λ , and

(see Fuchs [Fu]) in K
rs(p)
λ there is a universal member, but in K

ℵ1-free
λ there is no

universal member (see forthcoming work).

Case 0 (λ = ℵ0). In K
rtf
λ there is no universal member (see above or 3.17) and in

K
rs(p)
λ there is a universal member (see Fuchs [Fu]).

Case 2 (ℵ0 < λ < 2ℵ0). For K
rtf
λ we prove here that there is no universal member

(by 1.2), whereas for K
rs(p)
λ this is consistent with and independent of ZFC (see [Sh

550, §4]).
We also deal with Case 6 ((∀χ < λ)χℵ0 < λ, λ > cf(λ) = ℵ0). There is a universal

member for Ktrf
λ and also for K

rs(p)
λ . See [Sh:F319].

We thank two referees and Mirna Dzamonja and Noam Greenberg for many cor-
rections.

Notation: The cardinality of a set A is |A|, the cardinality of a structure G is ‖G‖.
H (λ+) is the set of sets whose transitive closure has cardinality ≤ λ and <∗

λ+

denotes a fixed well order of H (λ+).
For an ideal I, we use I+ to denote the family of subsets of Dom(I) which are

not in I.
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4 SAHARON SHELAH

§1 Non-Existence of Universals Among

Reduced Torsion Free Abelian Groups

The first result (1.2) deals with λ satisfying ℵ0 < λ < 2ℵ0 and show the non-
existence of universal members in K

trf
λ which improves [Sh 552]. The proof is

straightforward by analyzing subgroups and comparing Bauer’s types.
Then we deal with 2ℵ0 + µ+ < λ = cf(λ) < µℵ0 . We add witnesses to bar the

way against “undesirable” extensions (see [Sh:F319] on classes of modules) which
is a critical new point compared to [Sh 552].

1.1 Definition. Let K
rtf denote the class of torsion free reduced abelian groups

G where torsion free means that nx = 0, n ∈ Z, x ∈ G ⇒ n = 0 ∨ x = 0 and
reduced means that (Q,+) cannot be embedded into G. The subclass of G ∈ K

rtf

of cardinality λ is denoted by K
rtf
λ . Moreover, Ktf is the class of torsion free abelian

groups.

1.2 Claim. 1) If ℵ0 < λ < 2ℵ0 then K
rtf
λ has no universal member.

2) Moreover, there is no member of Krtf
λ universal for K

rtf
ℵ1
.

Proof. Let P∗ be the set of all primes and let {Qi : i < 2ℵ0} be a family of infinite
subsets of P∗, pairwise with finite intersection. Let ρα ∈ ω2 for α < ω1 be pairwise
distinct. Let H∗ be the divisible torsion free abelian group with {xα : α < ω1} a
maximal independent subset. For i < 2ℵ0 let H∗

i be the subgroup of H∗ generated
by

{xα : α < ω1} ∪ {p−nxα : p ∈ P∗\Qi, α < ω1 and n < ω}

∪ {p−n(xα − xβ) : α, β < ω1 and p ∈ P∗ and

ρα ↾ p = ρβ ↾ p and n < ω}.

Clearly H∗
i ∈ K

rtf and ‖H∗
i ‖ = ℵ1 ≤ λ. Let G ∈ K

rtf
λ , and we shall prove that at

most λ of the groups H∗
i are embeddable into G.

So assume Y ⊆ 2ℵ0 , |Y | > λ and for i ∈ Y we have hi, an embedding ofH∗
i into G

and we shall derive that G is not reduced; a contradiction. We choose by induction
on n a set Γn ⊆ nλ and pure abelian subgroups Gη of G for η ∈ Γn, as follows.
For n = 0 we let Γ0 = {<>} and let G<> = G. For n + 1, for η ∈ Γn such that
‖Gη‖ > ℵ0 we let Γn,η = {ηˆ〈ζ〉 : ζ < ‖Gη‖}, and let Ḡη = 〈Gηˆ〈ζ〉 : ζ < ‖Gη‖〉 be
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NON-EXISTENCE OF UNIVERSAL MEMBERS 5

an increasing continuous sequence of subgroups of Gη of cardinality < ‖Gη‖ with
union Gη such that:

(∗) for ζ < ‖Gη‖ we have
Gηˆ〈ζ〉 = Gη ∩ (the Skolem Hull of Gηˆ〈ζ〉 in (H (λ+),∈, <∗

λ+ , Gη)).

Let Γn+1 = {ηˆ〈ζ〉 : η ∈ Γn, ‖Gη‖ > ℵ0 with ζ < ‖Gη‖} and Γ =
⋃

n<ω

Γn.

For each i ∈ Y , let η = ηi ∈ Γ be such that:

(a) {α < ω1 : hi(xα) ∈ Gηi
} is uncountable

(b) under (a), the cardinality of Gηi
is minimal.

Clearly ηi is well defined as (a) holds for η = 〈〉 and clearly Gηi
is uncountable.

It is also clear that the cardinality ‖Gηi
‖ has cofinality ℵ1. Let Xi = {α < ω1 :

hi(xα) ∈ Gηi
}, and let βi < ω1 be minimal such that

{ρα : α ∈ βi ∩ Xi} is a dense subset of {ρα : α ∈ Xi}. Let ζi < ‖Gηi
‖ be the

minimal ζ such that {hi(xα) : α ∈ βi ∩ Xi} ⊆ Gηˆ〈ζ〉 (exists as cf(‖Gηi
‖) = ℵ1).

Now by clause (b) the set X ′
i = {α < ω1 : hi(xα) ∈ Gηiˆ〈ζi〉} is countable, and

hence we can find αi ∈ Xi\X
′
i.

Now the number of possible sequences 〈ηi, βi, ζi, αi, hi(xαi
)〉 is at most |ω>λ| ×

ℵ1 × λ × ℵ1 × λ (as Γ ⊆ ω>λ). So for some 〈η, β, ζ, α, y〉 and i0 < i1 from Y we
have (for ℓ = 0, 1)

ηiℓ = η, βiℓ = β, ζiℓ = ζ, αiℓ = α, hiℓ(xαℓ
) = y.

Now as hiℓ embeds H∗
iℓ

into G and hiℓ(xα) = y, necessarily

(∗∗) if p ∈ P∗\Qiℓ and n < ω then in G, p−n divides y.

So this holds for every p ∈ (P∗\Qi0) ∪ (P∗\Qi1) = P∗\(Qi0 ∩Qi1).
Now Qi0 ∩Qi1 is finite so let p∗ ∈ P∗ be above its supremum. As {ργ : γ ∈ X ′

i0
}

is a dense subset of {ρα : α ∈ Xi0}, there is γ ∈ X ′
i0

such that ργ ↾ p∗ = ρα ↾ p∗(=
ραi0

↾ p∗). Let hi0(xγ) = y∗, it is in Gηˆ〈ζ〉.

So in (H (λ+),∈, <∗
λ+ , Gη), the following formula is satisfied (recall that Gη is

a pure subgroup of G)

ϕ(y, y∗) = “in Gη, y is divisible by pn when p ∈ P∗ & p ≥ p∗ & n < ω

and y − y∗ is divisible by pn when

p ∈ P∗ & p < p∗ & n < ω”.
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6 SAHARON SHELAH

Hence by (∗), i.e. by the choice of 〈Gηˆ〈ξ〉 : ξ < ‖Gη‖〉, necessarily for some
y′ ∈ Gηˆ〈ζ〉 we have ϕ(y′, y∗). Now y 6= y′ as y′ ∈ Gηˆ〈ζ〉, y /∈ Gηˆ〈ζ〉. Also y − y′ is
divisible by pn for p ∈ P∗, n < ω.
[Why? If p ≥ p∗ because both y and y′ are divisible by pn and if p < p∗ because
y − y′ = (y − y∗)− (y′ − y∗) and both y − y∗ and y′ − y∗ are divisible by pn.]
As G is torsion free, the pure closure in G of 〈{y − y′}〉G is isomorphic to Q, a
contradiction to “G is reduced”. �1.2

1.3 Definition. 1) Let P∗ be the set of primes.
2) For G ∈ K

rtf and x ∈ G\{0} let

(a) P(x,G) = {p ∈ P∗ : x ∈
⋂

n<ω

pnG,

equivalently x is divisible by pn

in G for every n < ω}

(b) P−(x,G) = {p : p ∈ P∗, but p /∈ P(x,G)
and there is y ∈ G\{0} such that
P∗\{p} ⊆ P(y,G) and p ∈ P(x− y,G)}.

3) G ∈ K
rtf is called full if: for every x ∈ G\{0} we have P∗ = P(x,G)∪P−(x,G).

4) The class of full G ∈ K
rtf is called K

stf and K
stf
λ = K

stf ∩ K
rtf
λ , (why s? as the

successor of r in the alphabet).

1.4 Fact. 1) If G ∈ K
rtf, then for any x ∈ G the sets P(x,G) and P−(x,G) are

disjoint subsets of P∗.
2) If G2 is an extension of G1, both in K

rtf and x ∈ G1\{0} then

(a) P(x,G1) ⊆ P(x,G2), with equality if G1 is a pure subgroup of G2

(b) P−(x,G1) ⊆ P−(x,G2).

3) For every G ∈ K
rtf there is a G′ such that

(a) G′ is full, G′ ∈ K
rtf

(b) G is a pure subgroup of G′ and ‖G′‖ = ‖G‖.

Proof. 1),2) Trivial.
3) It suffices to show

(∗) ifG ∈ K
rtf and x ∈ G\{0}, and p ∈ P∗\P(x,G) then for some pure extension

G′ of G with rk(G/G′) = 1 we have: p ∈ P−(x,G′).
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NON-EXISTENCE OF UNIVERSAL MEMBERS 7

For proving (∗) for a given G, x let Ĝ be the divisible hull of G and let

G0 = {y ∈ Ĝ : for some n > 0, pny ∈ G},

G1 = {y ∈ Ĝ : for some b ∈ Z, b > 0 not divisible by p we have by ∈ G}. Clearly

G = G0 ∩G1. We define the following subsets of Ĝ×Q:

H0 = {(y, 0) : y ∈ G} (so G is isomorphic to H0)

H1 = {(pnbx, pnb) : b, n ∈ Z}

H2 = {(0, c1/c2) : c1, c2 ∈ Z and c2 not divisible by p}.

Easily all three are additive subgroups of Ĝ × Q and H2
∼= Z(p). Let G′ = H0 +

H1 +H2, a subgroup of Ĝ×Q.
We claim that G′ ∩ (Ĝ × {0}) = H0. The inclusion ⊇ should be clear. For the

other direction let z ∈ G′ ∩ (Ĝ × {0}); as z ∈ G′ there are (y, 0) ∈ H0, (so
y ∈ G), (pnbx, pnb) ∈ H1 (so b ∈ Z, n ∈ Z and x ∈ G is the constant from
(∗)) and (0, c1/c2) ∈ H2 (so c1, c2 ∈ Z and p does not divide c2) and integers
a0, a1, a2 such that z = a0(y, 0) + a1(p

nbx, pnb) + a2(0, c1/c2) which means z =
(a0y + a1p

nbx, a1p
nb+ a2c1/c2).

As z ∈ Ĝ× {0} clearly a1p
nb+ a2c1/c2 = 0, so as p does not divide c2, necessarily

a1p
nb is an integer, hence a1p

nbx ∈ G, hence as y ∈ G clearly a0y + a1p
nbx ∈ G

and hence z ∈ G× {0} = H0 as required.
It is easy to check now that H0 is a pure subgroup of G′.
Also letting y∗ = (0,−1) clearly (x, 0) − y∗ is divisible by pk for every k < ω (as
(pkx, pk) ∈ H1 ⊆ G′ for every k ∈ Z) and y∗ is divisible by any integer b when b is
not divisible by p (as 1

b
y∗ = (0,−1/b) ∈ H2 ⊆ G′).

Identifying y ∈ G with (y, 0) ∈ G we are done: G′ is as required in (∗), with y∗

witnessing “p ∈ P−(x,G′)”. �1.4

1.5 Claim. If G1 ∈ K
rtf is full and G2 ∈ K

rtf and h is an embedding of G1 into
G2 then:

for x ∈ G1\{0},P(x,G1) = P(h(x), G2).

Proof. Without loss of generality h is the identity, now reflect using 1.4(1), 1.4(2)
and the definition of full. �1.5
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8 SAHARON SHELAH

1.6 Conclusion. Assume

(∗) 2ℵ0 < µ+ < λ = cf(λ) < µℵ0 .

Then there is no universal member in K
rtf
λ .

Proof. Let S ⊆ {δ < λ : cf(δ) = ℵ0 and ω2 divides δ} be stationary and η̄ =
〈ηδ : δ ∈ S〉 where each ηδ is an increasing ω-sequence of ordinals < δ with limit δ
such that ηδ(n) − n is well defined and divisible by ω; so δ1 6= δ2 ⇒ Rang(ηδ1) ∩
Rang(ηδ2) is finite. Let {p∗n : n < ω} list the primes in the increasing order. Let
G0

η̄ be the abelian group generated by {xα : α < λ} ∪ {yδ : δ ∈ S} ∪ {zδ,n,ℓ : n, ℓ <
ω} ∪ {xα,m,ℓ : α < λ,m < ω, α 6= m mod ω} freely except for the equations

p∗nzδ,n,ℓ+1 = zδ,n,ℓ yδ − xηδ(n) = zδ,n,0.

p∗mxα,m,ℓ+1 = xα,m,ℓ, xα,m,0 = xα, if α 6= m mod ω

We can check thatG0
η̄ ∈ K

rtf
λ andP−(yδ, G

0
η̄) is the set of all primes and P(xα, G

0
η̄) =

the set of primes 6= p∗n if α = n mod ω.

Let Gη̄ ∈ K
rtf
λ be a pure extension of G0

η̄ which is full (one exists by 1.4(3)). So

(∗) if h embeds Gη̄ into G ∈ K
rtf
λ then

x ∈ Gη̄\{0} ⇒ P(x,Gη̄) = P(h(x), G).

Hence the proof in [KjSh 455] works. �1.6

1.7 Remark. 1) Similarly the results on λ singular (i.e. Case 4) in [KjSh 455], hold
for embedding (rather than pure embedding).
2) What about Case 5? If there is a family P ⊆ {C ⊆ µ+ : otp(C) = µ} which
guesses clubs (i.e. every club E of µ+ contains one of them), the result holds.
3) On ℵ0 ≤ λ < 2ℵ0 see also in 3.17.
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NON-EXISTENCE OF UNIVERSAL MEMBERS 9

§2 The existence of universals for

separable reduced abelian p-groups

We here eliminate the very weak pcf assumption from the theorem of “no uni-

versal in K
rs(p)
λ ” when λ > iω. Note that Krs(p) is defined in 2.3(4).

In the first section we have eliminated the very weak pcf assumptions for the
theorem concerning K

rtf
λ (though the λ = cf(λ) > µ+ remains, i.e. we assume we

are in Case 3). This was done using the “infinitely many primes”, so in the language
of e.g. [KjSh 455] the invariant refers to one element x. This cannot be generalized

to K
rs(p)
λ . However, in [Sh 552, §5] we use an invariant on e.g. suitable groups

and related stronger “combinatorial” ideals. We continue this, using combinatorial
ideals closer to the algebraic ones to show that the algebraic is non-trivial.

We rely on the “GCH right version” provable from ZFC, see [Sh 460] hence the
condition “λ > iω” is used.

2.1 Definition. 1) For λ̄ = 〈λℓ : ℓ < ω〉 and t̄ = 〈tℓ : ℓ < ω〉 (with 1 < tℓ < ω) we
define J4

t̄,λ̄
.

It is the family of subsets A of
∏

ℓ<ω

[λℓ]
tℓ such that:

(∗)A for every large enough ℓ < ω, for every B ∈ [λℓ]
ℵ0 for some k ∈ (ℓ, ω) we

cannot find

〈νη : η ∈
∏

i∈[ℓ,k)

[ω]ti〉

such that

(a) νη ∈ A

(b) if η1, η2 ∈
∏

i∈[ℓ,k)

[ω]ti , ℓ ≤ m ≤ k and η1 ↾ [ℓ,m) = η2 ↾ [ℓ,m) then

νη1
↾ m = νη2

↾ m; hence

νη1
↾ ℓ = νη2

↾ ℓ for η1, η2 ∈
∏

i∈[ℓ,k)

[ω]ti

(c) if η0 ∈
∏

i∈[ℓ,k)

[ω]ti and ℓ ≤ m < k then for some E ∈ [λm]ℵ0 we have

[E]tm = {νη(m) : η ∈
∏

i∈[ℓ,k)

[ω]ti and η ↾ m = η0 ↾ m}

and m = ℓ ⇒ E = B.



(
6
2
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
0
-
0
8
-
2
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
0
5
-
0
1
 
 

10 SAHARON SHELAH

2) Let

J4
t̄,λ̄,<θ

=
{

A ⊆
∏

ℓ<ω

[λℓ]
tℓ : for some α < θ and Aβ ∈ J4

t̄,λ̄
for β < α

we have A ⊆
⋃

β<α

Aβ

}

.

When θ = κ+, we may write κ instead of < θ.

2.2 Fact. 1) J4
t̄,λ̄,θ

is a θ+-complete ideal.

2) If ℓ < ω ⇒ λℓ > itℓ−1(θ) then the ideal J4
t̄,λ̄,θ

is proper (where i0(θ) =

θ,in+1(θ) = 2in(θ), and for general α we have iα(θ) = θ +
∑

β<α

2iβ(θ)).

Proof. 1) Trivial.
2) Let for ℓ < ω

ERItℓλℓ
=

{

A ⊆ [λℓ]
tℓ : for some F : [λℓ]

tℓ → θ there is no B ∈ [λℓ]
ℵ0

such that F ↾ [B]tℓ is constant and [B]tℓ ⊆ A
}

.

So this is a θ+-complete ideal. It is non-trivial by Erdös-Rado theorem (we use
it similarly in [Sh 620, §1]). Now we shall prove that the ideal J4

t̄,λ̄,θ
is proper.

So assume
∏

ℓ<ω

[λℓ]
tℓ =

⋃

i<θ

Xi and Xi ∈ J4
t̄,λ̄

for each i < θ and we shall get a

contradiction. Let

X+
i =

{

η ∈
∏

ℓ<ω

[λℓ]
tℓ : for every ℓ < ω for some η′ ∈ Xi we have η ↾ ℓ = η′ ↾ ℓ

}

.

(i.e. the closure of Xi). So X+
i ⊆

∏

ℓ<ω

[λℓ]
tℓ =

∏

ℓ<ω

Dom(ERItℓλℓ
) is closed, and those

ideals are θ+-complete and
∏

ℓ<ω

Dom(ERItℓλi
) =

⋃

i<θ

X+
i . Hence (see Rubin-Shelah

[RuSh 117], [Sh:f, Ch.XI,3.5(2)] with Hα = X+
i ) we can find T such that:



(
6
2
2
)
 
 
r
e
v
i
s
i
o
n
:
2
0
0
0
-
0
8
-
2
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
0
5
-
0
1
 
 

NON-EXISTENCE OF UNIVERSAL MEMBERS 11

(a) T ⊆
⋃

m<ω

∏

ℓ<m

[λℓ]
tℓ

(b) T is closed under initial segments

(c) <>∈ T

(d) if ν ∈ T and ℓg(ν) = ℓ then
{u ∈ [λℓ]

tℓ : νˆ〈u〉 ∈ T} ∈ (ERItℓλℓ
)+

(e) for some i < θ, lim(T ) ⊆ X+
i .

(Here, lim(T ) = {ν ∈
∏

ℓ<ω

[λℓ]
tℓ : (∀m < ω)ν ↾ m ∈ T}).

Fix i from clause (e). We would like to prove ¬(∗)X+
i
. By the definition of the

ideal ERItℓλℓ
we get more than required (for every k in place of “some k” in (∗) of

Definition 2.1). �2.2

Remark. So we could have used the stronger ideal defined implicitly in 2.2, i.e.

J5
t̄,λ̄,θ

= {X ⊆
∏

ℓ<ω

λℓ : we can find α < θ and Xi ⊆ X for i < α such that X =

⋃

i<α

Xi and for each i and T satisfying clauses (a)− (d) from the proof of 2.2 there

is T ′ ⊆ T satisfying clauses (a) − (d) such that lim(T ) is disjoint to the closure of
Xi}. Of course, we can also replace ERItℓλℓ

by various variants.

We recall from [Sh 552, 5.1]

2.3 Definition. ([Sh 552, 5.1]) 1) For µ̄ = 〈µn : n < ω〉 let Bµ̄ be the following
direct sum of cyclic p-groups. Let Kn

α be a cyclic group of order pn+1 generated
by xn

α and let Bn
µn

= ⊕α<µn
Kn

α and Bµ̄ = ⊕n<ωB
n
µn

, i.e. Bµ̄ is the abelian group

generated by {xn
α : n < ω, α < µn} freely except that pn+1 xn

α = 0.

Moreover, let Bµ̄↾n = ⊕{Km
α : α < µm, m < n} ⊆ Bµ̄

(these groups are in K
rs(p)
≤
∑

n

µn
).

Let B̂µ̄ be the p-torsion completion of Bµ̄ (i.e. completion under the norm
‖x‖ = min{2−n : pn divides x} but putting only the torsion elements, see Fuchs

[Fu]. Note that B̂µ̄ is the torsion part of the p-adic completion of Bµ̄).

2) Let I1µ̄,<θ = I1µ̄,<θ[p] be the ideal on B̂µ̄ (depending on the choice of 〈Kn
α : α <

µn, n < ω〉 or actually 〈Bµ̄↾n : n < ω〉) consisting of unions of < θ members of I0µ̄,
where

I0µ̄ = I0µ̄[p] =
{

A ⊆ B̂µ̄ : for every large enough n, we have cℓB̂µ̄
(〈A〉B̂µ̄

)∩Bµ̄ ⊆ Bµ̄↾n

}
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12 SAHARON SHELAH

(cℓB̂µ̄
is defined in part 3) below).

When θ = κ+ instead of < θ we may write κ. If µn = µ, we may write µ instead of
µ̄.
3) For X ⊆ B̂µ̄, recall 〈X〉B̂µ̄

is the subgroup of B̂µ̄ which X generates and

cℓB̂µ̄
(X) =

{

x : (∀n)(∃y ∈ X)(x− y ∈ pnB̂µ̄)
}

.

4) Let Krs(p) be the family of pure subgroups of some B̂µ̄.

5) If p is not clear from the context, we may write Bµ̄[p], B̂µ̄[p], etc.

2.4 Claim. Assume µ̄ = 〈µn : n < ω〉, t̄ = 〈tℓ : ℓ < ω〉, tℓ = p and the ideal J4
t̄,µ̄,θ

is proper (so µn ≥ ip−1(θ)
+ is enough by 2.2(2)). Then the ideal I1µ̄,θ is proper

(and I1µ̄,θ is a θ+-complete ideal).

Proof. We define a function h from
∏

ℓ<ω

[λℓ]
tℓ into B̂µ̄. We let

h(η) = Σ{pn xn
β : β ∈ η(n) and n < ω} ∈ B̂µ̄[p].

Clearly h is one to one and it suffices to prove

(∗) if X ∈ (J4
t̄,µ̄,θ)

+ then h′′(X) belongs to (I1µ̄,θ)
+.

So assume X ∈ (J4
t̄,λ̄,θ

)+ is given and suppose toward contradiction that h′′(X) ∈

I1µ̄,θ. So we can find 〈Yi : i < θ〉 such that for such i < θ we have Yi ∈ I0µ̄ and

h(X) ⊆
⋃

i<θ

Yi. Let Xi = h−1(Yi). So h(Xi) ⊆ Yi ∈ I0µ̄ and hence h(Xi) ∈ I0µ̄, but as

J4
t̄,λ̄,θ

is θ+-complete and X ∈ (J4
t̄,λ̄,θ

)+ necessarily for some i < θ,Xi ∈ (J4
t̄,λ̄,θ

)+,

so without loss of generality h′′(X) ∈ I0µ̄. By the definition of I0µ̄, for some n(∗) < ω
we have

(∗) Bµ̄ ∩ cℓB̂µ̄
(〈h′′(X)〉B̂µ̄

) ⊆ Bµ̄↾n(∗).

On the other hand, as X ∈ (J4
t̄,µ̄,θ

)+, it is /∈ J4
t̄,µ̄

so from definition 2.1(1) of J4
t̄,µ̄

we can find 〈Bn : n ∈ Γ〉 such that:

(a) Γ ∈ [ω]ℵ0 and Bn ∈ [λn]
ℵ0

(b) for n ∈ Γ, for every k ∈ (n, ω) we can find

〈νn,kη : η ∈
∏

ℓ∈[n,k)

[ω]tℓ〉 as in (a)-(c) of Definition 2.1(1) with n,Bn, k here

standing for ℓ, B, k there.
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NON-EXISTENCE OF UNIVERSAL MEMBERS 13

For m ∈ (n, k] and η ∈
∏

ℓ∈[n,m)

[ω]tℓ we let νn,kη be νn,kη1
↾ m whenever

η ⊳ η1 ∈
∏

ℓ∈[n,k)

[ω]tℓ (by clause (b) in (∗) of 2.1 it is well defined). Fix n ∈ Γ and

k ∈ [n, ω) for awhile. Let Aη = An,k
η ∈ [λm]ℵ0 be such that {νn,k

ηˆ〈u〉(m) : u ∈

[ω]tm} = [Aη]
tm and without loss of generality (otp stands for “the order type”)

(∗) otp(Aη) = ω and νn,k
ηˆ〈u〉(m) = OPAη,ω(u)

(where OPAη,ω(i) = α iff i = otp(Aη ∩ α)).

Now for m ∈ (n, k] and η ∈
∏

ℓ∈[n,m)

[ω]tℓ we define

yη = yn,kη =
∑

{

h(νn,kρ ) : η E ρ ∈
∏

ℓ∈[n,k)

[ω]tℓ and (∀ℓ)[ℓg(η) ≤ ℓ < k → ρ(ℓ) ⊆ [0, tℓ]
}

where E denotes being an initial segment. So yη ∈ B̂µ̄ and we shall prove by

downward induction on m ∈ (n, k] that for every η ∈
∏

ℓ∈[n,m)

[ω]tℓ we have (
∑

ℓ<m

means
∑

ℓ∈[n,m)

)

⊠m yη =
(

k−1
∏

ℓ=m

(tℓ + 1)
)

×
(

∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α

)

mod pk B̂µ̄.

Case 1: m = k.

In this case the product

k−1
∏

ℓ=m

(tℓ + 1) is just 1, so the equation says

yη =
∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α mod pk B̂µ̄.

Now the expression for yη is

∑

{h(νn,kρ ) :η E ρ ∈
∏

ℓ∈[n,k)

[ω]tℓ and (∀ℓ)[m ≤ ℓ < k ⇒ ρ(ℓ) ⊆ [0, tℓ]]}

= h(νn,kη ) =
∑

ℓ<ω

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α

=
∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α + pk(

∑

ℓ∈[k,ω)

∑

α∈ν
n,k
η (ℓ)

pℓ−kxℓ
α)
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14 SAHARON SHELAH

so the equality is trivial.

Case 2: n < m < k.

Here (with equalities in the equation being in B̂µ̄, modulo pk B̂µ̄), we have:

yη =

[by the definition of yη, yηˆ〈u〉]

=
∑

{yηˆ〈u〉 : u ∈ [{0, . . . , tm}]tm} =

[by the induction hypothesis]

=
∑

{(

k−1
∏

ℓ=m+1

(tℓ + 1))(
∑

ℓ<m+1

∑

α∈ν
n,k

ηˆ〈u〉
(ℓ)

pℓ xℓ
α) : u ∈ [{0, . . . , tm}]tm}

[by dividing the sum
∑

ℓ<m+1

into
∑

ℓ<m

and
∑

ℓ=m

and noting what νn,k
ηˆ〈u〉(m) is]

=
∑

{

(

k−1
∏

ℓ=m+1

(tℓ + 1)
)(

∑

ℓ<m

∑

α∈ν
n,k

ηˆ〈u〉
(ℓ)

pℓ xℓ
α

)

: u ∈ [{0, . . . , tm}]tm
}

+
∑

{

(

k−1
∏

ℓ=m+1

(tℓ + 1)
)

∑

α∈OPω,Aη (u)

pm xm
α : u ∈ [{0, . . . , tm}]tm

}

=

[in the second sum, we collect together the terms with xm
α ]

=
∑

{

(

k−1
∏

ℓ=m+1

(tℓ + 1)
)(

∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α

)

: u ∈ [{0, . . . , tm}]tm
}

+
∑

{

(

k−1
∏

ℓ=m+1

(tℓ + 1)
)

(pm xm
α )|{u : u ∈ [{0, . . . , tm}]tm and |α ∩Aη| ∈ u}| :

α is a member of Aη, moreover |α ∩Aη| ≤ tm

}

=
(

k−1
∏

ℓ=m+1

(tℓ + 1)
)(

∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α

)

× |{u : u ∈ [{0, . . . , tm}]tm}|
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NON-EXISTENCE OF UNIVERSAL MEMBERS 15

+
∑

{

(

k−1
∏

ℓ=m+1

(tℓ + 1)
)

(pm xm
α ) · ((tm + 1)− 1) : α ∈ Aη, |α ∩Aη| ≤ tm

}

=

[remember tm = p and pm+1 xm
α = 0]

= (tm + 1)
(

k−1
∏

ℓ=m+1

(tℓ + 1)
)

∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α + 0

=
(

k
∏

ℓ=m

(tℓ + 1)
)(

∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓ xℓ
α

)

.

Hence we have finished the proof of ⊠m.
Now as tℓ + 1 = p+ 1 and ppℓxℓ

α = 0 in B̂µ̄ we get

⊠′
m yη =

∑

ℓ<m

∑

α∈ν
n,k
η (ℓ)

pℓxℓ
α mod pkB̂µ̄.

Note that for m = n + 1, the sum
∑

ℓ<m

is just
∑

ℓ=n

. So, as for n ∈ Γ, Bn serves

for every k ∈ (n, ω), if u1, u2 ∈ [Bn]
tn are distinct then, for k ∈ (n, ω) we have

y〈u1〉 − y〈u2〉 =
∑

ℓ<m

∑

α∈ν
n,k

〈u1〉
(ℓ)

pℓxℓ
α −

∑

ℓ<m

∑

α∈ν
n,k

〈u2〉
(ℓ)

pℓxℓ
α mod pkB̂µ̄. As this holds

for every k ∈ (n, ω) we get equality. By the demands on νn,kη (see clause (b)
above so Definition 2.1(1)) we have y<u1>− y<u2> /∈ Bµ̄↾n but by the last sentence
y<u1> − y<u2> ∈ Bµ̄↾(n+1) contradicting (∗). �2.4

Recall

2.5 Definition. 1) Let I be an ideal on κ (or just I ⊆ P(κ) closed downward,
I+ = P(κ)\I), then we let:

UI(λ) = Min
{

|P| :P ⊆ [λ]≤κ and for every f ∈ κλ

for some a ∈ P we have {i < κ : f(i) ∈ a} ∈ I+
}

.

2) For σ ≤ θ ≤ µ ≤ λ let cov(λ, µ, θ, σ) = Min{λ+|P| : P is a family of subsets of λ
each of cardinality < µ such that any X ⊆ λ of cardinality < θ is included in the
union of < σ members of P}.
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16 SAHARON SHELAH

2.6 Claim. 1) For every λ ≥ iω, for some θ < iω for every µ ∈ (ip−1(θ),iω) we
have (letting µn = µ) UI1

µ,θ
(λ) = λ (hence UI0

µ̄
(λ) = λ).

2) If cf(λ) > ℵ0, then for some θ < iω, for every µ ∈ (ip−1(θ),iω) and λ′ < λ we
have UI1

µ,θ
(λ′) < λ.

Proof. By 2.4, Iµ,θ is a θ-complete proper ideal on a set of cardinality µℵ0 , for any
µ, θ as in the assumptions. By [Sh 460] for each λ′ ≤ λ for some θ = θ[λ′] < iω

for every µ ∈ (θ,iω) we have cov(λ′, µ+, µ+, θ) = λ′, i.e. there is Pµ ⊆ [λ′]µ of
cardinality ≤ λ′ such that: if Y ∈ [λ′]≤µ then Y is included in the union of < θ
members of Pµ. As I1µ,θ is a θ+-complete ideal on a set of cardinality µ it follows

that UI1
µ,θ

(λ′) ≤ λ′ × |Pµ| = λ′ (and trivially UI1
µ̄,θ

(λ) ≥ λ). This proves part (1).

For part (2) we are assuming cf(λ) > ℵ0 so for some θ < iω, for arbitrarily large
λ′ < λ, θ[λ′] ≤ θ; clearly we are done. �2.6

2.7 Conclusion. If iω ≤ µ+ < λ = cf(λ) < µℵ0 , then in K
rs(p)
λ there is no universal

member.

Proof. By 2.6 and [Sh 552, 5.9].

Moreover

2.8 Claim. Assume

(a)
∏

ℓ<ω

κℓ < µ < λ = cf(λ) ≤ λ′ < µℵ0

(b) µ+ < λ or at least for some P we have

(∗)P |P| = λ & (∀a ∈ P)(a ⊆ λ & otp(a) = µ)
& (∀E)(E a club of λ → (∃a ∈ P)(a ⊆ E))

(c) λ′ = UI0
κ̄
(λ) < µℵ0 where κ̄ = 〈κℓ : ℓ < ω〉 and note that I0κ̄ depends on the

prime p.

Then we can find reduced separable abelian p-groups, Gα ∈ K
rs(p)
λ for α < µℵ0 such

that for every reduced separable abelian p-group G of cardinality λ′ we have:

some Gα is not embeddable into G; also the number of ordinals α < µℵ0

such that Gα is embeddable into G is ≤ λ′
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NON-EXISTENCE OF UNIVERSAL MEMBERS 17

Moreover, each Gα is slender, i.e. there is no homomorphism from Zω into Gα

with range of infinite rank.

Proof. Same proof as that of [Sh 552, 5.9], [Sh 552, 7.5].
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18 SAHARON SHELAH

§3 Non-existence of universals for ℵ1-free abelian groups

The first section dealt with K
rtf
λ improving [Sh 552]. But the groups used there

are “almost divisible”. So what occurs if we replace Krtf by a variant avoiding this?
We suggest to consider the ℵ1-free abelian groups where type arguments like those
in §1 break down. So the proof of [Sh 552] becomes relevant and it is natural to
improve it as in §2 (which deals with K

rs(p)), for diversity we use a stronger ideal.
We have not looked at the problem for ℵ1-free abelian groups of cardinality λ when
ℵ0 < λ < 2ℵ0”.
So we concentrate here on torsion free (abelian) groups.

3.1 Definition. 1) Let t̄ = 〈tℓ : ℓ < ω〉, 2 ≤ tℓ < ω. For abelian group H, the
t̄-valuation is

‖x‖t̄ = Inf{2−m :
∏

ℓ<m

tℓ divide x (in G)}.

This is a semi-norm. Remember dt̄(x, y) = ‖x − y‖t̄. This semi-norm induces a
topology which is called the t̄-adic topology.

If tℓ = p for ℓ < ω we may write p instead of t̄.
2) Let cℓt̄(A,H) be the closure of A in H under the t̄-adic topology.
Let PCH(X) be the pure closure of X in H that is {x ∈ H : for some n > 0, nx
belongs to 〈x〉H}. Moreover PCp

H(X) is the p-adic closure in H of the subgroup of
H which X generates.
3) Let Krtf[t̄] be the class of t̄-reduced torsion free abelian groups, i.e. the G ∈ K

rtf

such that
⋂

n<ω

(

∏

i<n

ti
)

G = {0} hence ‖ − ‖t̄ induces a Hausdorff topology.

(Inversely if G is torsion free with the t̄-adic topology Hausdorff then G ∈ K
rtf[t̄].)

4) If the t̄-adic topology is Hausdorff, then G[t̄] is the completion of G by ‖ − ‖t̄.
If tℓ = 2 + ℓ, this is the Z-adic completion.

The following continues the analysis in [Sh 552, 1.1] (which deals with K
rs(p)) and

[Sh 552, 1.5] (which deals with K
rtf).

3.2 Definition. We say G has t̄-density µ if it has a pure subgroup of cardinality
≤ µ which is t̄-dense, i.e. dense in the t̄-adic topology, but has no such subgroup
of cardinality < µ.
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NON-EXISTENCE OF UNIVERSAL MEMBERS 19

3.3 Proposition. Suppose that

(α) µ ≤ λ ≤ µℵ0

(β) G is an ℵ1-free abelian group, |G| = λ

(γ) t̄ is as in 3.1 such that (∀ℓ)(∃m > ℓ) (tℓ divides tm).

Then there is an ℵ1-free group H such that G ⊆ H, |H| = λ and H has t̄-density µ.

Proof. Choose λn < µ for n < ω such that
∏

n<ω

λn ≥ λ, µ ≥
∑

n<ω

λn, 2λn <

λn+1 (so λn > 0 may be finite). Let {xi : i < λ} list the elements of G. Let

λ′
n+1 = λn+1, λ

′
0 = µ. Let ηi ∈

∏

n<ω

λn for i < λ be pairwise distinct such that

ηi(n + 1) ≥ λn and i 6= j ⇒ (∃m)(∀n)[m ≤ n ⇒ ηi(n) 6= ηj(n)]. Without loss
of generality µ = {ηi(n) : i < λ, n < ω}. Let H be generated by G, xm

i (for i <
λ′
m, m < ω), yni (for i < λ, n < ω) freely except for

(a) the equations of G

(b) y0i = xi (∈ G)

(c) tny
n+1
i + xn

ηi(n)
= yni .

Fact A: H extends G and is torsion free.

Proof. H can be embedded into the divisible hull of G×F , where F is the abelian
group generated freely by {xm

α : m < ω and α < λ′
m}.

Fact B: H is ℵ1-free and moreover H/G is ℵ1-free.

Proof. Let K be a countable pure subgroup of H. Now as we can increase K
without loss of generality K is generated by

(i) K1 = {xi : i ∈ I} is a pure subgroup of G, where I is some countably
infinite subset of λ, and so G ⊇ K1,

(ii) ymi , xn
j for i ∈ I,m < ω and (n, j) ∈ J , where J ⊆ ω × λ is countable and

i ∈ I, n < ω ⇒ (n, ηi(n)) ∈ J

(n, j) ∈ J ⇒ j ∈ I.
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20 SAHARON SHELAH

Moreover, the equations holding among those elements are deducible from the equa-
tions of the form

(a)− equations of K1

(b)− y0i = xi for i ∈ I

(c)− tny
n+1
i + xn

ηi(n)
= yni for i ∈ I, n < ω.

We can find 〈ki : i < ω〉 such that [i 6= j & i ∈ I & j ∈ I & n ≥ ki & n ≥
kj & i 6= j ⇒ ηi(n) 6= ηj(n)].

Now we know that K1 is free (being a countable subgroup of G), and it suffices
to prove that K/K1 is free. But K/K1 is freely generated by
{yni : i ∈ I and n > ki} ∪ {xn

α : (n, α) ∈ J but for no i ∈ I do we have
n > ki, ηi(n) = α}. So K is free.

Fact C: H0 = 〈xn
i : n < ω, i < λ′

n〉H satisfies:

(a) i < λ ⇒ dt̄(xi, H0) = inf{dt̄(xi, z) : z ∈ H0} = 0

(b) x ∈ G ⇒ dt̄(x,H0) = 0

(c) x ∈ H ⇒ dt̄(x,H0) = 0.

Proof. First note that

(∗)1 Y = {x ∈ H : dt̄(x,H0) = 0} is a subgroup of H.

Also for every i < λ and n

(∗)2 yni = xn
ηi(n)

+ tny
n+1
i = xn

ηi(n)
+ tnx

n+1
ηi(n+1) + tntn+1y

n+2
i

=

m
∑

k=n

(

k−1
∏

ℓ=n

tℓ
)

xk
ηi(k)

+
(

k
∏

ℓ=n

tℓ
)

yk+1
i

(prove by induction on m ≥ n), and note that as (∀ℓ)(∃m > ℓ)(ti divides tm)

necessarily (∀ℓ)(∃∞m)(tℓ divides tm) hence (∀k)(∃∞m)(
∏

i≤ℓ

tℓ divides
m
∏

i=k

ti). Now

(∗)2 implies

(∗)3 yni ∈ Y .
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But xi = y0i and hence clause (a) holds, so as {xi : i < λ} is dense in G also clause
(b) holds. So G ⊆ Y (by clause (b)), and xn

α ∈ Y (as H0 ⊆ Y and the choice of
H0) and yni ∈ Y (by (∗)3).
By (∗)1 clearly Y = H, as required in clause (c).

Fact D: |H| = λ.

Fact E: The t̄-density of H is µ.

Proof. It is ≤ µ as H0 has cardinality µ and is t̄-dense in H, it is ≥ µ, as we now
show.

Define a function h with domain the generators of H listed above, into H. Let
h(x) = 0 if x ∈ G; h(xm

α ) = 0 if m > 0 ∨ α < λ0; h(x
m
α ) = xm

α if m = 0&λ0 ≤ α <
λ′
0(= µ); h(ymi ) = 0 if m < ω, i < λ.

This function preserves the equations defining H and hence induces a homomor-

phism ĥ from H onto 〈Rang(h)〉H = 〈{x0
α : α < λ′

0, α ≥ λ0}〉H . Clearly ĥ(h(x)) =

ĥ(x) for the generators hence ĥ ◦ ĥ = ĥ. Hence 〈{xn
α : α < λ′

0, α ≥ λ0}〉H is a
direct summand of H and hence the dt̄-density of H is at least the dt̄-density of
〈{xn

α : α ∈ [λ′
0, λ0)}〉H which is λ′

0 = µ. �3.3

We define variants of Definition 2.1.

3.4 Definition. For λ̄ = 〈λℓ : ℓ < ω〉, t̄ = 〈tℓ : ℓ < ω〉, 2 ≤ tℓ < ω, we let

J5
t̄,λ̄

=

{

X ⊆
∏

ℓ<ω

[λℓ]
tℓ : we cannot find m(∗) < ω, Ȳ = 〈Ym : m < ω and m ≥ m(∗)〉,

Ām = 〈Aη : η ∈ Ym〉 such that:

(a) Ym ⊆
∏

ℓ<m

[λℓ]
tℓ

(b) Ym(∗) ⊆
∏

ℓ<m(∗)

[λℓ]
tℓ is a singleton

(c) 〈Aη : η ∈ Ym〉 is a sequence of pairwise disjoint

subsets of λm each of order type ω

(d) Ym+1 = {ηˆ〈u〉 : η ∈ Ym and u ∈ [Aη]
tm}

(e) Ym ⊆ {ν ↾ m : ν ∈ X}

}

,
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22 SAHARON SHELAH

J6
t̄,λ̄

is defined similarly but m(∗) = 0,

Jℓ
t̄,λ̄,<θ

=

{

X : for some α < θ and Xβ ∈ Jℓ
t̄,λ̄

for β < α we have X ⊆
⋃

β<α

Xβ

}

.

Also let Jℓ
t̄,λ̄,θ

= Jℓ
t̄,λ̄,<θ+ .

3.5 Claim. 1) J
i(1)

t̄,λ̄,<θ1
⊆ J

i(2)

t̄,λ̄,<θ2
when θ1 ≤ θ2 and i(1) ≤ i(2) are among 4,5,6.

2) J i
t̄,λ̄,θ

is a θ+-complete ideal for i = 4, 5, 6.

3) If λℓ ≥ itℓ−1(θ) then the ideal J i
t̄,λ̄,θ

is proper for i = 4, 5, 6.

Proof. 1), 2) Easy.
3) As in 2.4. �3.5

3.6 Definition. Let λ̄ = 〈λℓ : ℓ < ω〉, t̄ = 〈tℓ : ℓ < ω〉 such that 2 ≤ tℓ < ω and
(∀n)(∃m > n)(tn|tm) we define

(A) Brtf
t̄,λ̄

is the free (abelian) group generated by {xm
α : m < ω, α < λm}.

(B) Let Brtf
t̄,λ̄,n

be the subgroup of Brtf
t̄,λ̄

generated by {xm
α : m < n and α < λm}

(C) Grtf
t̄,λ̄

is the pure closure in (Brtf
t̄,λ̄

)[t̄] of the subgroup of (Brtf
t̄,λ̄

)[t̄] generated by

Brtf
t̄,λ̄

∪
{

∑

m<ω

(

∏

ℓ<m

tℓ
)

(xm
(η(ℓ))(1) − xm

(η(ℓ))(0)) : η ∈
∏

ℓ<ω

[λℓ]
2
}

(here we use the notation that if e.g. η(ℓ) = {α, β}, α < β then (η(ℓ))(1) =
β, (η(ℓ))(0) = α).

(D) Let B̄rtf
t̄,λ̄

= 〈Brtf
t̄,λ̄,n

: n < ω〉.

To cover also the case ¬(∀n)(∃m > n)(tn|tm) we can use

3.7 Definition. Let ℵ0 ≤ λℓ ≤ λℓ+1 for ℓ < ω.
Let λ̄ = 〈λℓ : ℓ < ω〉, t̄ = 〈tℓ : ℓ < ω〉, 2 ≤ tℓ < ω,ℵ0 ≤ λℓ ≤ λℓ+1,¬(∀n)(∃m >

n)(tn|tm). Let clauses (A), (B), (D) be as in Definition 3.6 but clause (C) is replaced
by
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(C)′ we choose Ȳ ∗ = 〈Y ∗
m : m < ω〉 such that Y ∗

m ⊆
∏

ℓ<m

[λℓ]
2, Y ∗

0 = {<>} and

for each m there is a sequence 〈A∗
η : η ∈ Y ∗

m〉 of pairwise disjoint subsets

of λm each of cardinality λm such that Y ∗
m+1 = ∪{[AY

η ]
2 : η ∈ Y ∗

m}. Let

Y ∗
ω = {η ∈

∏

ℓ<ω

[λℓ]
2: for every m < ω we have η ↾ m ∈ Y ∗

m}. Let Grtf

t̄,λ̄
be

the abelian group generated by

Brtf

t̄,λ̄
∪ {xη, yη,ℓ : η ∈ Y ∗

ω , ℓ < ω}

freely except the equations which hold in Brtf

t̄,λ̄
and yη,0 = xη and

tℓyη,ℓ+1 − yη,ℓ = xℓ
(η(ℓ))(1) − xℓ

(η(ℓ))(0).

3.8 Definition. Assume

⊠t̄
H,H̄

H̄ = 〈Hn : n < ω〉 is an increasing sequence of abelian subgroups of H,

such that
⋃

n<ω

Hn is dense in H by the t̄-adic topology.

Then we let

I4,t̄
H,H̄

=
{

X ⊆ H : for some n < ω, the intersection of the t̄-adic closure of PCH(X) in H,

cℓt̄(PCH(X), H) with
⋃

ℓ<ω

Hℓ is a subset of Hn

}

I4,t̄
H,H̄,<θ

=
{

X ⊆ H : for some α < θ and Xβ ∈ I4,t̄
H,H̄

for β < α we have X ⊆
⋃

β<α

Xβ

}

I4,t̄
H,H̄,θ

= I t̄
H,H̄,<θ+ .

3.9 Definition. Assume t̄ = 〈tℓ : ℓ < ω〉, 2 ≤ tℓ < ω, and

⊠t̄
H,H̄

H is Hausdorff in the t̄ ↾ [k, ω)-topology for each k < ω where t ↾ [k, ω) =

〈tk+ℓ : ℓ < ω〉. Further H̄ = 〈Hn : n < ω〉 is an increasing sequence of

abelian groups,
⋃

n<ω

Hn ⊆ H is dense in the t̄ ↾ [k, ω)-adic topology for each

k < ω.
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24 SAHARON SHELAH

Then we let

I5,t̄
H,H̄

=
{

X ⊆ H : for some n(∗) < ω, for every n ∈ (n(∗), ω) there is no

1)

y ∈ Hn+1 such that: dt̄↾[n,ω)(y, PC(〈X〉H)) = 0 but dt̄↾[n,ω)(y,Hn) > 0
}

I5,t̄
H,H̄,<θ

=
{

X : there are α < θ and Xβ ∈ I5,t̄
H,H̄

for β < α such that X ⊆
⋃

β<α

Xβ

}

.

Moreover I5,t̄
H,H̄,θ

= I5,t
H,H̄,<θ+ .

2) I6,t̄
H,H̄

(and I6,t̄
H,H̄,<θ

, I6,t̄
H,H̄,θ

) are defined similarly except that we demand n(∗) = 0.

3) Ii,rtf
t̄,λ̄

means Ii,t̄
Grtf

t̄,λ̄
,B̄rtf

t̄,λ̄

where B̄rtf
t̄,λ̄

= 〈Brtf
t̄,λ̄,n

: n < ω〉.

3.10 Claim. For λ̄, t̄ as in 3.4

(a) we have ⊠t̄
Grtf

t̄,λ̄
,B̄rtf

t̄,λ̄

(from 3.9)

(b) Grtf
t̄,λ̄

is ℵ1-free; moreover Grtf
t̄,λ̄

/Brtf
t̄,λ̄,n

is ℵ1-free for each n < ω

(c) Ii,rtf
t̄,λ̄,θ

are θ+-complete ideals for i = 4, 5, 6

(d) if ⊠t̄
H,H̄

(from 3.9) and i ∈ {4, 5, 6} then Ii,t̄
H,H̄,θ

is a θ+-complete ideal.

Proof. Straightforward (for (6), use an argument similar to that of 3.3). �3.10

The following lemma connects the combinatorial ideals defined above and the more
algebraic ideals defined in 3.8.

3.11 Claim. 1) Assume

⊠1 t̄ = 〈tℓ : ℓ < ω〉, 2 ≤ tℓ < ω

⊠2 λ̄ = 〈λℓ : ℓ < ω〉, and λℓ > i1(θ) for ℓ < ω.

Then the ideal Ii,rtf
t̄,λ̄,θ

is proper for i = 4, 5, 6.

2) Assume ⊠1 and

⊠′
2 λ̄ = 〈λℓ : ℓ < ω〉, λℓ = ℵ0, θ = ℵ0.
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Then the ideal Ii,rtf
t̄,λ̄,θ

is proper.

Proof. 1) If not, we can find Xα ⊆ L =: Grtf
t̄,λ̄

for α < θ such that Grtf
t̄,λ̄

=
⋃

α<θ

Xα

and Xα ∈ Ii,rtf
t̄,λ̄

. For α ≤ ω and η ∈
∏

ℓ<α

[λℓ]
2 we let

xη =
∑

m<α

(

∏

ℓ<m

tℓ
)

(xm
(η(n))(1) − xm

(η(n))(0)).

As in the proof of 2.4, we can apply a partition theorem on trees (see [Sh:f,
Ch.XI,3.5]) for the ideal Jℓ = ERI2θ (λℓ) (this ideal is, of course, θ+-complete and
non-trivial as λℓ > 2θ).

So we can find 〈Ym : m < ω〉, 〈Aη : η ∈ Ym〉 and α(∗) < θ such that

(a) Ym ⊆
∏

ℓ<m

[λℓ]
2

(b) Y0 is a singleton

(c) Aη ∈ (Jℓg(η))
+ for η ∈ Ym (so Aη ⊆ [λℓg(η)]

2)

(d) Ym+1 = {ηˆ〈u〉 : u ∈ Aη, η ∈ Ym}

(e) if η ∈ Ym then η ∈ {ν ↾ m : xν ∈ Xα(∗)}.

We now prove by induction on k < ω that

(∗)k for any m < ω, if η ∈ Ym and A ⊆ Aη is from (Jm)+ then for some infinite
A′ ⊆ λm for any α < β from A′ we have

⊗k
α,β (

∏

ℓ<m

tℓ)(x
m
β − xm

α ) ∈ cℓt̄(〈Xα(∗)〉, L) + (
∏

ℓ<m+k

tℓ)L.

For k = 0 this is trivial: the element (
∏

ℓ<m

tℓ)(x
m
β − xm

α ) belongs to (
∏

ℓ<m+k

tℓ)L.

For k+1, to prove (∗)k+1 we are givenm < ω, η ∈ Ym and A′ ⊆ Aη, A
′ ∈ (Jη)

+, and

have to find {α, β} ∈ A′ such that ⊗k+1
α,β holds. For ℓ ∈ [m,ω), as Jℓ is an ideal we

can find A′′
ν ∈ (Jℓ)

+ for ν ∈ Yℓ such that A′′
ν ⊆ Aν and the statement ⊗k

α,β holds for

every {α, β} ∈ A′′
ν or for no {α, β} ∈ A′′

ν and ν = η ⇒ A′′
ν ⊆ A′

ν . As we are assuming
(∗)k necessarily {α, β} ∈ A′′

ν ⇒ ⊗k
α,β . By renaming without loss of generalityA′′

ν =

Aν . As Aη ∈ (Jm)+, by the choice of Jm we can let γ0 < γ1 < γ2 < . . . be in
Aη. So for each j < ω, let ηj ∈ Ym+k+1, (yes, not ηj ∈ Ym+1!) be such that
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26 SAHARON SHELAH

ηj ↾ m = η, ηj(m) = {γj , γj+1}. By clause (e) above we know that there are νj

such that ηj ⊳ νj ∈
∏

ℓ<ω

[λℓ]
2 and

(i) xνj
∈ Xα(∗).

Now by the definitions of xηj
, xνj

(ii) xηj
= xνj

mod(
∏

ℓ<m+k+1

tℓ)L

(iii) if ℓ ∈ [m+ 1, m+ k + 1) and j < ω then

xηj↾(ℓ+1)−xηj↾ℓ ∈ cℓt̄(〈Xα(∗)〉, L)+(
∏

i<ℓ+k

ti)L ⊆ cℓt̄(〈Xα(∗)〉, L)+(
∏

i<m+k+1

ti)L

[why? the first inclusion, by the induction hypothesis as the difference

is (
∏

i<m+ℓ

ti)(x
ℓ
(ηj(ℓ))(1)

− xℓ
(ηj(ℓ))(0)

), the second inclusion as m+ 1 ≤ ℓ]

(iv) xηj
− xηj↾(m+1) ∈ cℓt̄(〈Xα(∗)〉, L) + (

∏

i<m+k+1

ti)L

[why? use (iii) for ℓ = m+ 1, . . . , m+ k, noting that ℓg(ηj) = m+ k + 1.]

(v) xηj↾(m+1) ∈ cℓt̄(〈Xα(∗)〉, L) + (
∏

i<m+k+1

ti)L

[why? by (i) + (ii) + (iv)]

(vi)
∑

{

xηj↾(m+1) : j <
∏

i<m+k+1

ti
}

∈ cℓt̄(〈Xα(∗)〉, L) + (
∏

i<m+k+1

ti)L

[why? by (v)]

(vii) xm
γj(∗)

− xm
γ0

∈ cℓt̄(〈Xα(∗)〉, L) + (
∏

i<m+k+1

ti))L for j(∗) =
∏

i<m+k+1

ti

[why? by (vi) because

∑

{

xηj↾(m+1) : j <
∏

i<m+k+1

ti
}

=
∑

{

xηj↾m + (
∏

i<m

ti)(x
m
γj+1

− xm
γj
) : j <

∏

i<m+k+1

ti
}

=
∑

{

xηj↾m : j <
∏

i<m+k+1

ti
}

+(
∏

i<m

ti)
∑

{

(xm
γj+1

− xm
γj
) : j <

∏

i<m+k+1

ti
}

[as ηj ↾ m does not depend on j and obvious arithmetic]

= (
∏

i<m+k+1

ti) · xηj(∗)↾m + (
∏

i<m

ti)(x
m
γj(∗)

− xm
γ0
) ∈
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(
∏

i<m

ti)(x
m
γj(∗)

− xm
γ0
) + (

∏

i<m+k+1

ti)L]

(viii) if ρ ∈ Ym and α < β are in Aη then

(
∏

i<m+1

ti)(x
m
β − xm

α ) ∈ cℓt̄(〈Xα(∗)〉, L) + (
∏

i<m+k+1

ti)L

[why? by (vii) and the choice of the Ym, Aη(η ∈ Ym, m < ω).]

So we have carried the induction on k.
2) Easier. �3.11

3.12 Claim. Assume

⊠1 t̄ = 〈tℓ : ℓ < ω〉 and 2 ≤ tℓ < ω

⊠2 λℓ > i1(θ)

⊠3 cov(λ,
(

∏

ℓ<ω

λℓ

)+
,
(

∏

ℓ<ω

λℓ

)+
, θ+) ≤ λ.

Then UJ6
t̄,λ̄,θ

(λ) = λ and UI6
t̄,λ̄,θ

(λ) = λ.

Proof. By the previous claims 3.10, 3.11 (and the relevant definitions 3.6 - 3.9.

3.13 Conclusion. For every λ ≥ iω for some θ < iω, for every κ ∈ (i1(θ),iω) for
every λn ∈ [iω(θ), κ] we have

UI6
t̄,λ̄,θ

(λ) = λ = UJ6
t̄,λ̄,θ

(λ).

Proof. By the previous claim and [Sh 460] (similar to 2.6). �3.13

3.14 Claim. Assume

(a)
∏

ℓ<ω

λℓ < µ < λ = cf(λ) ≤ λ′ ≤ λ′′ < µℵ0

(b) µ+ < λ or at least for some P,

(∗)P |P| = λ and (∀a ∈ P)(a ⊆ λ & otp(a) = µ)
and (∀E)(E a club of λ → (∃a ∈ P)(a ⊆ E))
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(c) λ′′ = UI6
t̄,λ̄

(λ′) < µℵ0 where tm =
∏

ℓ<m

ℓ! or at least λ′′ = UJ6
λ̄,t̄

(λ′)

(d) cov(λ′′, λ+, λ+, λ) < µℵ0 or at least Uida(P)(λ
′′) < µℵ0 where P satisfies

the demand (∗)P.

Then we can find ℵ1-free abelian groups Gα of cardinality λ for α < µℵ0 such that
for every ℵ1-free abelian group G of cardinality λ or just G ∈ K

rtf
λ we have:

some Gα is not embeddable into G; also the number of ordinals α < µℵ0

for which Gα is embeddable into G is at most cov(λ′′, λ+, λ+, λ) (or ≤
Uida(P)(λ

′′) at least)

Proof. Like 2.8, note that “ℵ1-free” implies ‖ − ‖t̄ is a norm.

3.15 Conclusion. If iω ≤ µ+ < λ = cf(λ) < µℵ0 then in K
rtf
λ there is no member

universal even just for Kℵ1-free
λ .

Proof. Straightforward.

3.16 Remark. In §2 we can use the parallel of 3.11.

3.17 Remark. If λ = ℵ0 there is no universal member in K
rtf
λ . In fact for any

Q ⊂ P∗ let GQ be the subgroup of Qx⊕
⊕

p

{Qxp : p ∈ P∗\Q} generated by

{p−nx : p ∈ Q} ∪ {q−nxp : p ∈ P∗\Q and n < ω, and q ∈ P∗\{p}}

∪ {p−n(x− xp) : n < ω and p ∈ Q}.

So GQ ∈ K
rtf
ℵ0
, and (see Definition 1.3) P(x,GQ) = Q and P−(x,GQ) = P∗\Q

hence (see 1.4) if h embeds GQ into G ∈ Ktrf then P(h(x), G) = Q. As the number
of possible Q’s is 2ℵ0 we are easily done. This proof gives an alternative proof to
1.2, but the proof there looks more promising for generalization.
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