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REGULAR SUBALGEBRAS OF COMPLETE

BOOLEAN ALGEBRAS

Aleksander BÃlaszczyk and Saharon Shelah 1

Abstract. It is proved that the following conditions are equiva-
lent:

(a) there exists a complete, atomless, σ–centered Boolean
algebra, which does not contain any regular, atomless,
countable subalgebra,

(b) there exists a nowhere dense ultrafilter on ω.

Therefore the existence of such algebras is undecidable in ZFC.
In ”forcing language” condition (a) says that there exists a non–
trivial σ–centered forcing not adding Cohen reals

A subalgebra B of a Boolean algebra A is called regular whenever
for every X ⊆ B, supB X = 1 implies supA X = 1; see e.g. Heindorf
and Shapiro [6]. Clearly, every dense subalgebra is regular. Although
every complete Boolean algebra contains a free Boolean algebra of the
same size (see the Balcar-Franek Theorem; [2]), not always such an
embedding is regular. For instance, if B is a measure algebra, then
it contains a free subalgebra of the same cardinality as B, but B can-
not contain any infinite free Boolean algebra as a regular subalgebra.
Indeed, measure algebras are weakly σ-distributive but free Boolean
algebras are not, and a regular subalgebra of a weakly σ-distributive
one is again σ-distributive. Thus B does not contain any free Boolean
algebra. On the other hand, measure algebras are not σ-centered. So,
a natural question arises whether there exists a σ-centered, complete,
atomless Boolean algebra B without regular free subalgebras. Since
countable atomless Boolean algebras are free and every free Boolean
algebra contains a countable regular free subalgebra, it is enough to
ask whether B contains a countable regular subalgebra. In the paper
we prove that such an algebra exists iff there exists a nowhere dense
ultrafilter.

1The research of the second author was partially supported by the Basic Research
Foundation of the Israel Academy of Sciences and Humanities. This publication
has Number 640 in S. Shelah’s list.
February 28, 1998
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Definition 1 (Baumgartner [3]). A filter D on ω is called nowhere
dense if for every function f from ω to the Cantor set ω2 there exists
a set A ∈ D such that f(A) is nowhere dense in ω2.

In the sequel we will rather interested in nowhere dense ultrafilters.
Observe that every P -ultrafilter (i.e. every P -point in ω∗) is a nowhere
dense ultrafilter.

Theorem 1. There exists an atomless, complete, σ-centered Boolean
algebra without any countable atomless regular subalgebras iff there ex-
ists a nowhere dense ultrafilter.

By a recent result of Saharon Shelah [7] there exists a model of ZFC
in which there are no nowhere dense ultrafilters. So it is consistent
with ZFC that there are no atomless, complete, σ-centered Boolean
algebras without any countable regular subalgebras.
In the first part of the paper, forcing methods are used to show

that nowhere dense ultrafilters exist whenever there exists a σ-centered
forcing P such that above every element of P there are two incompatible
ones and P does not add any Cohen real. The forcing constructed
here uses some ideas from Gitik and Shelah [5]. They have shown
that if P is a σ-centered forcing notion, {An : n < ω} are subsets of P
witnessing this, and both P and An’s are Borel, then P adds a Cohen
real. On the other hand it is known that a forcing P adds a Cohen
real iff the complete Boolean algebra B = RO(P) contains an element
u such that the reduced Boolean algebra B|u has a regular infinite free
Boolean subalgebra. Thus, to prove the Theorem 1 we need to show
in particular the following:

Theorem 2. If there exists a σ-centered forcing P such that above
every element of P there are two incompatible ones and P does not add
any Cohen real then there exists a nowhere dense ultrafilter on ω.

We shall proceed with the proof by some definitions and a lemma.

Definition 2. (a) A forcing P is called σ-centered if P =
⋃

{An : n <
ω} where each An is directed, i. e., for every p, q ∈ An there exists
r ∈ An such that p 6 r and q 6 r.
(b) A forcing P adds a Cohen real if there exists a P–name r ∈ω 2

such that for every open dense set D ⊂ ω2 we have °P “r ∈ D∗”, where
D∗ denotes the encoding of D in the Boolean universe.

Remarks .

(a) The order of forcing in this notation is inverse of the one in the
Boolean algebra.
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(b) We can just assume that there is a member p of P such that if q
is above p then there are r1 and r2 above q which are incompatible in
P.

Definition 3. A set X ⊆ ω>2 is somewhere dense if there exists an
η ∈ ω>2 such that for every ν ∈ ω>2 there is % ∈ X with η_ν£%, where
η_ν stands for the concatenation of η and ν and the relation £ means
that % is an extension of the sequence η_ν.

Lemma . A filter D on ω is not nowhere dense iff it is a so-called well
behaved filter, i.e., there is a function f : ω → ω>2 such that for every
B ∈ D the range of f restricted to B is somewhere-dense.

Proof. Suppose f : ω → ω2 be such that for every B ∈ D the image
of B is not nowhere dense. Without loss of generality we can assume
that the range of f is dense in itself. Since every closed and dense in
itself subset of the Cantor cube ω2 is homeomorphic to the whole ω2
we can assume also that the range of f is dense in ω2. Moreover, since
it is countable it can be identified with a subset of the set ω>2 of all
rational points of the Cantor set. Thus without loss of generality we
can assume that f maps ω into ω>2. On the other hand a set X ⊆ ω>2
is nowhere dense whenever for every η ∈ ω>2 there exists some ν ∈ ω>2
such that the set of all sequences extending η_ν is disjoint from X.
Therefore, since the image of B under f is not nowhere dense in ω>2,
it can be identified with a somewhere dense subset of ω>2. This in fact
completes the proof of the lemma. ¤

Remark . If D is a filter on ω and P(ω)/D is infinite then D is not
nowhere dense. Indeed, if 〈An : n < ω〉 is a partition of ω such that
ω \An /∈ D for all n < ω and 〈en : n < ω〉 list the set ω>2 then the map
f : ω → ω>2 defined by the formula

f(e) = en iff e ∈ An

witnes “D is well behaved”.

Proof. [of Theorem 2] Assume that there are no nowhere dense ultra-
filters. Further assume that P is a forcing in which above each element
there are two incompatible ones and P =

⋃

{An : n < ω} where each
An is directed. We start with the following known fact which we prove
here for the sake of completeness: ¤

Fact (0). Every forcing Q with Knaster condition such that above
every element of Q there are two incompatible ones, adds a real.
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In fact, by assumption, forcing with Q adds a new subset to Q, hence
a new subset to some ordinal. In the set

K = {(α, p, τ
∼
) : p ∈ Q, α an ordinal and τ

∼

a Q− name of a subset of α such that p ° “τ
∼

/∈ V ”}

we choose (α, p, τ
∼
) with α being minimal. So necessarily α is a cardinal

and

p ° “the tree (α>2,£) has a new α-branch in V Q”

So, as Q satisfies the Knaster condition (which follows from σ-centered),
necessarily cf(α) = ℵ0 and letting α =

⋃

n<ω αn, where αn < αn+1 for
some countable w ⊆ α>2 we get

p ° “(∀n < ω)(τ
∼
¹ αn ∈ w)”,

so p ° “we add a new subset to w, |w| = ℵ0”.
We have shown that I = {p ∈ Q : p ° “r ∈ ω2 is new ” for some Q−

name r} is a dense subset of Q. So let {pi : i < ω} ⊆ I be a maximal
antichain and let r

i
be such that pi ° “r

i
is new ”. By density of I we

can define the Q-name r as follows: r = r
i
if pi ∈ GQ. This completes

the proof of Fact (0).
Now we fix a P-name of a new real r ∈ ω2 added by P. For every

p ∈ P we set

Tp = {η ∈
ω>2: ¬(p ° ¬(“η E r”))},

i.e., η ∈ Tp iff there exists q ∈ P such that p 6 q and q ° “η = r ¹ lgη”,
where lg η denotes the length of the sequence η.

Fact (1). For every p ∈ P, Tp is a subtree of ω>2, i.e η£ν and ν ∈ Tp

implies η ∈ Tp and 〈〉 ∈ Tp , where 〈〉 denotes the empty sequence.

Indeed, if η £ ν and ν = r ¹ lg ν, then η = r ¹ lg η.

Fact (2). The tree Tp has no maximal elements.

To prove the Fact (2) we fix η ∈ Tp. Then there is q ∈ P such that
p 6 q and

q ° “r ¹ lg η = η”.

Let k = lg(η), so I = {r ∈ P : r forces a value to r ¹ (k+1)} is a dense
and open subset of P, hence there is q′ ∈ P such that q 6 q′ and q′

forces a value to r ¹ (k + 1), say ϑ. So q ′ also forces r ¹ k = ϑ ¹ k, but
q 6 q′ and q ° “r ¹ k = η hence ϑ ¹ k = η”. As q ′ witnesses ϑ ∈ Tp

and ϑ ∈ k+12 and η ∈ k2, η £ ϑ, this completes the proof of Fact (2).
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Fact (3). The set limTp of all ω-branches through Tp is closed, i.e., if
η ∈ ω2 \ limTp then there exists ν ∈ ω>2 such that ν £ η and the set of
all ω-branches extending ν is disjoint from lim Tp.

Indeed, if η ∈ ω2\limTp then there exists n ∈ ω such that n 6 m < ω
implies η ¹ m /∈ Tp. By Fact 1 it is clear that every ω-branch extending
ν = η ¹ n does not belong to Tp, which proves the Fact 3.
Now let us observe that the family

{Tp : p ∈ An}

is directed under inclusion, i.e. if p, q ∈ An and r ∈ P is such that
p 6 r and q 6 r then

Tr ⊆ Tp ∩ Tq.

Indeed, if η ∈ ω>2 and there exists s > r such that s ° “η = r ¹ lg η”
then of course s > p and s > q and thus η belongs to Tp and Tq.
So by compactness of ω2 and Facts 1-3 we get the following:

Fact (4). The set

Tn =
⋂

{Tp : p ∈ An}

is a subtree of ω>2 and the set of ω-branches of Tn is non-empty.

Now we make a choice:

η∗n is an ω - branch of Tn. (1)

Subsequently for every n < ω and every p ∈ An we define

Bn
p = {k < ω : (∃q ∈ P)(p 6 q∧q ° “r ¹ k = η∗n ¹ k & r(k) 6= η∗n(k)”)}

We have the following:

Fact (5). For every n < ω and every p ∈ An the set Bn
p is infinite.

Indeed, since p ∈ An and Tn is a subtree of Tp, η
∗
n is an ω-branch of

Tp. Let us fix m < ω. Then, by the definition of Tp, there exists r ∈ P
such that r > p and

r ° “η∗n ¹ m = r ¹ m”.

On the other hand
°P “r 6= η∗n”,

because r is a new real. Thus for some q ∈ P, q > r and k < ω we get

q ° “r ¹ k 6= η∗n ¹ k”.

We can assume that k is minimal with such a property. Since r 6 q,
it must be k > m. But q > p and thus, by minimality of k, we have
k − 1 ∈ Bn

p , which proves the Fact 5.
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Now we establish for every n < ω the following definition:

D0
n = {B ⊆ ω : (∃p ∈ An)(|B

n
p \B| < ω)}.

Fact (6). For every n < ω, D0
n is a filter.

Indeed, let B1, B2 ∈ D
0
n. Then there exist p1, p2 ∈ An such that both

Bn
p1
\ B1 and Bn

p2
\ B2 are finite. Since An is directed we can choose

r ∈ An such that p1 6 r and p2 6 r. On the other hand, from the
definition of Bn

p it easily follows that

p 6 q implies Bn
q ⊆ Bn

p .

Thus Bn
r ⊆ Bn

p1
∩ Bn

p2
and therefore

Bn
r \ (B1 ∩ B2) ⊆ (Bn

p1
\B1) ∪ (Bn

p2
\B2)

is finite. Clearly, every superset of an element of D0
n also belongs to D

0
n

and, by the Fact 5, D0
n does not contain the empty set, which completes

the proof of Fact 6.
Now by Fact 5 and Fact 6, we can make the following choice: for

n < ω

Dn is a non-principal ultrafilter containing D
0
n (2)

By our hypothesis the ultrafilters Dn are not nowhere dense and so
by Lemma for every n < ω we can choose a function fn : ω →

ω>2 such
that

(∀B ∈ Dn)(∃u ∈
ω>2)(∀ν ∈ ω>2)(∃k ∈ B)(u_ν £ fn(k)). (3)

Without loss of generality we may assume that the empty sequence
does not belong to the range of fn.
Now we have to come back to the sequence {η∗n : n < ω} of ω-

branches of the trees Tn. Since it can happen that the sequence is
not one-to-one we consider the set

Y = {n < ω : η∗n /∈ {η∗m : m < n}}.

Then for n,m ∈ Y we have η∗n 6= η∗m whenever n 6= m.
In the sequel we shall need the following:

Claim . If 〈ηn : n < ω〉 ⊆ ω2 is a sequence of distinct ω-branches of a
tree T ⊆ ω>2 there exists an increasing sequence 〈en : n < ω〉 ⊆ ω such
that for all n < m < ω we have

{ηn ¹ l : en < l < ω} ∩ {ηm ¹ l : em < l < ω} = ∅. (∗)
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To prove the claim observe that ηn ¹ l 6= ηm ¹ l and k > l implies
ηn ¹ k 6= ηm ¹ k. Now assume that e0, . . . , en are defined so that the
condition (∗) holds true. Since ηn+1 /∈ {η0, . . . , ηn} there exists k < ω
such that η0 ¹ k, . . . , ηn ¹ k, ηn+1 ¹ k are pairwise different. We can
assume that k > en and en+1 to be the first such k. This completes the
proof of the claim.
Now using the claim we can choose an increasing sequence 〈en : n <

ω〉 ⊆ ω in such a way that, letting

Cn = {η
∗
n ¹ l : en 6 l < ω},

the sequence 〈Cn : n ∈ Y 〉 consists of pairwise disjoint sets, and so that
we have

η∗n = η∗m ⇔ en = em ⇔ Cn = Cm.

Finally, for η ∈ ω2 we define

u(η) = {n ∈ Y : (∃l < ω)(η ¹ l = η∗n ¹ l ∧ (∀m < n)(η ¹ l 6= η∗m ¹ l))},

nk(η) = the k–th member of u(η),

mk(η) = min{m < ω : enk(η) < m ∧ η ¹ (m+ 1) 6£η∗nk(η)},

i.e. mk(η) is the smallest m > enk(η) such that

η ¹ (m+ 1) 6= η∗nk(η) ¹ (m+ 1).

By definition of mk(η), we have

enk(η) < mk(η).

Clearly we also have
(i) u(η) is well-defined,
(ii) nk(η) is well–defined if k < |u(η)|,
(iii) mk(η) is well–defined if k < |u(η)| and η 6= η∗nk

.

Now we can define a function τ : ω2 \ {η∗n : n < ω} → ω≥2 by the
formula:

τ(η) = fn0(η)(m0(η))_fn1(η)(m1(η))_· · · ,

where, for n < ω, fn is the function from the condition (3). From
the formula it follows easily that τ(η) ∈ ω≥2 and it is well defined if
η 6∈ {η∗n : n < ω} and moreover τ(η) is infinite whenever u(η) is infinite,
as 〈〉 6∈ Range (fn).
To complete the proof of the theorem it remains to show:

Fact (7). °P ”τ(r) is Cohen over V ”.
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To prove this fact we fix an open dense set I ⊆ ω>2 and a p ∈ P and
we show that there is a q ∈ P with p ≤ q such that q °P ”τ(r) ∈ [I]”,
where [I] is the name of {η ∈ ω2 : t£ η for some t ∈ I} in the generic
extension. Let n < ω be such that p ∈ An and let n⊗ = min{m < ω :
η∗m = η∗n}. Clearly n⊗ ≤ n and n⊗ ∈ Y . Then u(η∗n) is well defined and
n⊗ ∈ u(η∗n); in fact n⊗ is the last member of u(η∗n). Let k = |u(η∗n)|−1,
so nk(η

∗
n) = n⊗. Also mi(η

∗
n) is well defined and finite for i < k. Then

we set
ν⊗ = fn0(η∗n)(m0(η

∗
n))

_· · ·_fnk−1(η∗n)(mk−1(η
∗
n)),

so if k = 0, i.e., if u(η∗n) is a singleton, then ν⊗ is the empty sequence.
Clearly ν⊗ ∈ ω>2. Also we have

p 6°P ”r ¹ (en + 1) /£ η∗n”.

Hence
p 6°P ”¬ϕ”,

where ϕ is the formula asserting u(η∗n) is an initial segment of u(r).
Note that ϕ implies (∀i < k)(ni(r) = ni(η

∗
n)) ∧mi(r) = mi(η

∗
n). Since

p °P ”r 6= η∗n⊗”, it follows that

p °P ”ϕ→ mk(r) is well–defined”.

Let
Z = {% ∈ ω>2 : p 6°P ”¬(ϕ ∧ fnk(r)(mk(r)) = %)”}.

It is enough to show that Z is a somewhere dense subset of ω>2. [Sup-
pose that Z is a somewhere dense subset of ω>2. Then there is %0 ∈

ω>2
such that for any ν ∈ ω>2 there is % ∈ Z with %0

_ν£%. Let %̃0 = ν⊗_%0

and let ν ∈ ω>2 be such that %̃0
_ν ∈ I. Then there is % ∈ Z such

that %̃0
_ν £ %. Let q ≥ p be such that q °P ”ϕ ∧ fnk

(r) = %”. Then
q °P ”%̃0

_ν£τ(r)”. And hence we can conclude that q °P ”τ(r) ∈ [I]”.]
Now, we have

p 6°P ”¬(nk(r) = n⊗ ∨ ¬ϕ)”.

Hence
Z = {% ∈ ω>2 : p 6°P ”¬(fn⊗(mk(r)) = % ∧ ϕ)”}.

Thus, by the choice of fn⊗ , it is enough to prove:

B0 = {m < ω : p 6°P ”mk(r) 6= m ∨ ¬ϕ”} ∈ Dn⊗.

[Suppose that B0 ∈ Dn⊗. Then, by (3), there is % ∈ ω>2 such that
(∀ν ∈ ω>2)(∃k ∈ B0)(%_ν £ fn⊗(k)).]
We have Dn⊗ = Dn. Hence it is enough to show B0 ∈ Dn. By

definition of mk(r) and since ϕ→ nk(r) = n⊗, this is equivalent to:

{m < ω : p 6°P ”r ¹ m 6= η∗n⊗ ¹ m∨r(m+1) = η∗n⊗(m+1)∨¬ϕ”} ∈ Dn.
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But η∗
n⊗

= η∗n and p ∈ An. Hence, by definition of D0
n, the set above

does belong to D0
n ⊆ Dn. 2

Finally we prove that the converse to Theorem 2 is also true, i. e.,
we shall show that whenever there exists a nowhere dense ultrafilter
there exists a σ-centered forcing P with the property that above each
element there are two incompatible ones and moreover P does not add
a Cohen real. To prove this fact we shall use some topological methods,
but we can also write it using forcing.
Recall, a subalgebra B of a Boolean algebra A is regular whenever

supA X = 1 for every X ⊆ B such that supB X = 1. The subalgebra
B is regular iff the corresponding map of the Stone spaces is semi-
open, i. e., the image of every non-empty clopen set has non-empty
interior. Using nowhere dense ultrafilters we construct a dense in itself,
separable, extremally disconnected compact space (= Stone space of an
atomless, σ-centered, complete Boolean algebra) which has no semi-
open continuous maps onto the Cantor set.
We use a topology on the set ω>ω =

⋃

{nω : n < ω}. If s ∈ ω>ω is
a sequence of length n and k ∈ ω, then s_k denotes the sequence of
length n+1 extending s in such a way that the n-th term is k. For a set
A ⊆ ω we set s_A = {s_k : k ∈ A}. For a given ultrafilter p ⊆ P(ω)
we consider a topology Tp on ω>ω given by the formula:

U ∈ Tp iff for every s ∈ U there exists A ∈ p such that s_A ⊆ U.

The set ω>ω equipped with the topology Tp we denote Gp. The space Gp

is known to be Hausdorff and extremally disconnected; see e. g. Dow,
Gubbi and Szymanski, ([4]). Hence the Čech-Stone extension βGp is
extremally disconnected, compact, separable, and dense in itself.
Under a much stronger assumption that there exists a P–point the

next theorem was proved by A. Blass [1].

Theorem 3. If there exists a nowhere dense ultrafilter then there exists
a σ-centered forcing P such that above every element of P there are two
incompatible ones and P does not add any Cohen real.

Proof. By virtue of a theorem of Silver, it is enough to show that there
exists a σ-centered, complete, atomless Boolean algebra B such that
B does not contain any regular free subalgebra. For this goal we shall
use the topological space Gp described above. It remains to show that
whenever p is a nowhere dense ultrafilter and f : βGp →

ω{0, 1} is
continuous, then there exists a non-empty clopen set H ⊆ βGp such
that int f(H) = ∅.
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First of all we notice that since p is a nowhere dense ultrafilter, for
every s ∈ ω>ω there exists As ∈ p such that

int cl f(s_As) = ∅. (4)

In the sequel Ln will denote the set of all sequences of length n, i. e., Ln

is the n-th level of the tree ω>ω. In particular, L0 = {s0} is the empty
sequence. By induction we define a sequence of sets {Un : n < ω} such
that Un ⊆ Ln for every n < ω and, moreover

int cl f(Un) = ∅, (5)

for every s ∈ Un there exists A ∈ p such that s_A ⊆ Un+1.
(6)

We set U0 = {s0} and U1 = s0
_ As0 . Assume Un is defined, say

Un = {sk : k < ω}. Then by continuity of f and the condition (4) we
can choose Ak ∈ p in such a way that int cl f(sk_Ak) = ∅ and moreover,
the diameter of cl f(sk _Ak) is not greater than

1
k
. Clearly, sk is an

accumulation point of sk _Ak, because Ak ∈ p. Hence, for every k < ω
we get

cl f(sk _Ak) ∩ cl f(Un) 6= ∅.

Therefore, since diameters of the sets cl f(sk _Ak) tend to zero, the set
of accumulation points of the set

⋃

{cl f(sk _Ak) : k < ω} is contained
in cl f(Un). Indeed, every ε-neighbourhood of the set cl f(Un) has to
contain all but finitely many sets of the form cl f(sk _Ak). So the set
cl f(Un) ∪

⋃

{cl f(sk _Ak) : k < ω} is closed. It is also nowhere dense
as it is a countable union of nowhere dense sets and is closed. Now we
set

Un+1 =
⋃

{sk _Ak : k < ω}

and observe that

cl f(Un+1) ⊆ cl f(Un) ∪
⋃

{cl f(sk _Ak) : k < ω}.

Thus the set f(Un+1) is nowhere dense, which completes the construc-
tion of Un’s.
By the condition (5) , there exists a dense set

{xn : n < ω} ⊆ ω{0, 1} \
⋃

{cl f(Un) : n < ω}.

In particular, for every n, k < ω we have

f−1({xn}) ∩ clUk = ∅,

where “cl” denotes here the closure in βGp. Now, for every n < ω we
choose a clopen set Vn ⊆ βGp such that

f−1({xn}) ⊆ Vn ⊆ βGp \ (clU0 ∪ · · · ∪ Un). (7)
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By induction we construct a sequence {Wn : n < ω} such that the
following conditions hold:

Wn ⊆ Un for n < ω and W0 = U0 (8)

for every s ∈ Wn there exists Bs ∈ p such that

s _Bs ⊆ U \ (V0 ∪ · · · ∪ Vn), (9)

Wn+1 =
⋃

{s _Bs : s ∈ Wn}. (10)

Assume the sets W0, . . . ,Wn are defined in such a way that (8), (9)
and (10) are satisfied. Then we have in particular

Wn ⊆ Un \ (V0 ∪ · · · ∪ Vn−1);

by the condition (7) we also have

Un ⊆ βGp \ Vn.

Hence we get Wn ⊆ Un \(V0∪· · ·∪Vn). Since the set Un \(V0∪· · ·∪Vn)
is open, for every s ∈ Wn we can choose Bs ∈ p such that s _Bs ⊆
Un\(V0∪· · ·∪Vn). Then it is enough to set Wn+1 =

⋃

{s_Bs : s ∈ Wn}.
Clearly the set W =

⋃

{Wn : n < ω} is open in Gp and W ∩ Vn = ∅
for every n < ω. Indeed, if m > n, then Wm∩Vn = ∅ by the conditions
(9) and (10), whereas for m 6 n, Wm ∩ Vn = ∅ because Wm ⊆ Um and
Um ∩ Vn = ∅ by the condition (7). Since Vn is a clopen set in βGp we
also have

clW ∩ Vn = ∅

for every n < ω. Since βGp is extremally disconnected, clW is clopen
subset of βGp and, by the last equality and condition (7) we get

f(clW ) ∩ {xn : n < ω} = ∅.

Therefore f(clW ) is nowhere dense, because {xn : n < ω} is dense in
ω{0, 1}, which completes the proof. ¤
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