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ITERATION OF λ-COMPLETE FORCING NOTIONS NOT

COLLAPSING λ+.

ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Abstract. We look for a parallel to the notion of “proper forcing”
among λ-complete forcing notions not collapsing λ

+. We suggest such
a definition and prove that it is preserved by suitable iterations.

0. Introduction

This work follows [Sh 587] and [Sh 667] (and see history there), but we
do not rely on those papers. Our goal in this and the previous papers is to
develop a theory parallel to “properness in CS iterations” for iterations with
larger supports. In [Sh 587], [Sh 667] we have presented parallels to [Sh 64]
and [Sh:98], whereas here we try to have parallels to [Sh 100], [Sh:b, Ch.III],
[Sh:b, Ch.V,§5-§7] and hopefully [Sh:f, Ch.VI], [Sh:f, Ch.XVIII].

It seems too much to hope for a notion fully parallel to “proper” among
λ-complete forcing notions as even for “λ+-c.c. λ-complete” there are prob-
lems. We should also remember about ZFC limitations for possible iteration
theorems. For example, if in the definition of the forcing notion Q∗ in Sec-
tion 3 we demand hp ↾ eδ ⊆ hδ, then the proof fails. This may seem a
drawback, but one should look at [Sh:f, AP, p.985, 3.6(2) and p.990, 3.9].

By it, if S∗ = Sλ+

λ , and (Aδ , hδ are as in 3.4 and) we ask a success on a club,

then for some 〈hδ : δ ∈ Sλ+

λ 〉 we fail. Now, if we allow only hδ : Aδ −→ 2
and we ask for “success of the uniformization” on an end segment of Aδ (for

all such 〈Aδ : δ ∈ Sλ+

λ 〉), then we also fail as we may code colourings with
values in λ.

In the first section we formulate our definitions (including properness over
λ, see 1.3). We believe that our main Definition 1.3 is quite reasonable
and applicable. One may also define a version of it where the diamond is
“spread out”. The second section is devoted to the proof of the preservation
theorem, and the next one gives three (relatively easy) examples of forcing
notions fitting our scheme. We conclude the paper with the discussion of
applications and variants.

Key words and phrases. Forcing, iterations, not collapsing cardinals, proper.
Both authors would like to thank the United States-Israel Binational Science Founda-

tion for partial support. This publication has number 655 in Shelah’s list.
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2 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Notation 0.1. Our notation is rather standard and compatible with that of
classical textbooks (like Jech [J]). In forcing we keep the older (Cohen’s)
convention that a stronger condition is the larger one.

(1) For a filter D on λ, the family of all D–positive subsets of λ is called
D+. (So A ∈ D+ if and only if A ⊆ λ and A∩B 6= ∅ for all B ∈ D.)

(2) Every forcing notion P under considerations is assumed to have the
weakest condition ∅P, i.e., (∀p ∈ P)(∅P ≤P p). Also we assume ∗ /∈ P

is a fixed object belonging to all the N ’s we consider.
(3) A tilde indicates that we are dealing with a name for an object in a

forcing extension (like x
˜

). The canonical P–name for the P–generic
filter over V is denoted by G

˜
P. In iterations, if Q̄ = 〈Pζ ,Q

˜
ζ : ζ <

ζ∗〉 and p ∈ lim(Q̄), then we keep convention that p(α) = ∅
˜
Q
˜

α for

α ∈ ζ∗ \ Dom(p).
(4) Ordinal numbers will be denoted be the lower case initial letters of

the Greek alphabet (α, β, γ . . .) and also by i, j (with possible sub-
and superscripts).

(5) A bar above a letter denotes that the object considered is a sequence;
usually X̄ will be 〈Xi : i < ζ)〉, where ζ denotes the length of X̄.
Often our sequences will be indexed by a set of ordinals, say S ⊆ λ,
and then X̄ will typically be 〈Xδ : δ ∈ S〉. Semi–diamond sequences
will be called F̄ (with possible superscripts).

In our definitions (and proofs) we will use somewhat special diamond–like
sequences (see 1.1(2)). The difference between them and classical diamonds
is quite minor, so let us remind the following.

Definition 0.2. (1) Let D be a filter on λ. We say that F̄ = 〈Fδ : δ ∈
S〉 is a D–diamond sequence if S ∈ D+, Fδ ∈

δδ for δ ∈ S, and

(∀f ∈ λλ)({δ ∈ S : Fδ ⊆ f} ∈ D+).

We may also call such F̄ a (D,S)–diamond sequence.
(2) We say that (D,S) has diamonds if there is a (D,S)–diamond. We

say that D has diamonds if D is a normal filter on λ and for every
S ∈ D+ there is a (D,S)–diamond.

Definition 0.3. A forcing notion P is λ–complete if every ≤P–increasing
chain of length less than λ has an upper bound in P. It is λ–lub–complete if
every ≤P–increasing chain of length less than λ has a least upper bound in
P.

Proposition 0.4. (1) If D is a filter on λ, then the family of all diago-
nal intersections of members of D constitutes a normal filter (but in
general not necessarily proper). We call this family the normal filter
generated by D.

(2) If P is a λ–complete forcing notion and D is a normal filter on
λ, then in VP the filter D generates a proper normal filter on λ.
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ITERATION OF λ-COMPLETE FORCING NOTIONS 3

[Abusing notation, we will denote this filter also by D or, if we want

to stress that we work in the forcing extension, by DV[GP].]
Moreover, by the λ–completeness of P, if X ∈ D+ ∩V, then P X ∈

D+, and if X ∈ V, p P X ∈ DV
P

then X ∈ D.
(3) If P is a λ–complete forcing notion and F̄ = 〈Fδ : δ ∈ S〉 is a

D–diamond sequence, then

P “ F̄ is a D–diamond sequence ”.

Definition 0.5 and Proposition 0.6 below are not central for us, but they
may be used to get somewhat stronger results, see [Sh:F509].

Definition 0.5. Let pr be a definable pairing function on λ, for example
pr(α, β) = ωα+β + β, and let F̄ = 〈Fδ : δ ∈ S〉 be a D–diamond sequence.

For an ordinal α < λ we let F̄ [α] = 〈F
[α]
δ : δ ∈ S〉, where each F

[α]
δ is a

function with domain δ and such that

F
[α]
δ (β) =

{

Fδ(pr(α, β)) if well defined,
0 otherwise.

Proposition 0.6. If F̄ is a D–diamond sequence, then for every α < λ,
F̄ [α] is also a D–diamond sequence.

Throughout the paper we will assume the following:

Context 0.7. (a) λ is an uncountable cardinal, λ = λ<λ, and
(b) D is a normal filter on λ (usually D is the club filter Dλ on λ),
(c) S ∈ D+ contains all successor ordinals below λ, 0 /∈ S, and S ′ = λ\S

is unbounded in λ,
(d) there is a (D,S)–diamond sequence.

1. The definitions

In this section we define a special genericity game, properness over (D,S)–
semi diamonds and the class of forcing notions we are interested in.

Definition 1.1. Let P be a forcing notion and let N ≺ (H(χ),∈, <∗
χ) be

such that ‖N‖ = λ, N<λ ⊆ N and {λ,P,D,S} ∈ N . Let h : λ −→ N be
such that the range Rang(h) of the function h includes P ∩N .

(1) We say that F̄ = 〈Fδ : δ ∈ S〉 is a (D,S)–semi diamond sequence if
Fδ ∈

δδ for δ ∈ S and
(∗) for every ≤P–increasing sequence p̄ = 〈pα : α < λ〉 ⊆ P ∩N we

have

{δ ∈ S : (∀α < δ)(h ◦ Fδ(α) = pα)} ∈ D+.

(2) Let F̄ be a (D,S)–semi diamond. A sequence q̄ = 〈qδ : δ ∈ S〉 ⊆ N∩
P is called an (N,h,P)–candidate over F̄ (or: (N,h,P, F̄ )–candidate)
whenever
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4 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(α) for every open dense subset I ∈ N of P

{δ ∈ S : qδ ∈ I} = S mod D,

and
(β) if δ ∈ S is a limit ordinal and 〈h ◦ Fδ(α) : α < δ〉 is a ≤P–

increasing sequence of members of P ∩N ,
then qδ is its upper bound in P.

(3) Let q̄ be an (N,h,P, F̄ )–candidate and r ∈ P. We define a game
a(r,N, h,P, F̄ , q̄) of two players, the generic player and the anti-
generic player, as follows. A play lasts λ moves, in the ith move
conditions r−i , ri ∈ P and a set Ci ∈ D are chosen such that

• r−i ∈ N , r−i ≤ ri, r ≤ ri,

• (∀j < i)(rj ≤ ri & r−j ≤ r−i ), and

• the generic player chooses r−i , ri, Ci if i ∈ S, and the anti-generic

player chooses r−i , ri, Ci if i ∈ S ′.
If at some moment during the play there is no legal move for one of
the players, then the anti-generic player wins. If the play lasted λ
moves, then the generic player wins the play whenever
(⊛) if δ ∈ S ∩

⋂

i<δ

Ci is a limit ordinal, and 〈h ◦ Fδ(α) : α < δ〉 =

〈r−α : α < δ〉, then qδ ≤ rδ.
(4) Let q̄ be an (N,h,P, F̄ )–candidate, F̄ a (D,S)–semi diamond. A

condition r ∈ P is (N,h,P)–generic for q̄ over F̄ if the generic player
has a winning strategy in the game a(r,N, h,P, F̄ , q̄).

Observation 1.2. (1) In the game a(r,N, h,P, F̄ , q̄), for each of the play-
ers, if it increases conditions r−i , ri, its choice can only improve its
situation. Making sets Ci (for i ∈ S) smaller can only help the
generic player.

(2) If forcing with P does not add new subsets to λ, then the game in
Definition 1.1(5) degenerates as without loss of generality r forces
a value to G

˜
P ∩ N ; the condition does not degenerate, in fact this

condition (which implies adding no new λ–sequences) is preserved
by (< λ+)–support iterations (see [Sh 587]).

(3) Also if S1 ⊆ S mod D, S1 ∈ D+, then in Definition 1.1 we can
replace S by S1. (Again, the generic player can guarantee Ci ∩S1 ⊆
S.)

(4) If P is λ–complete and r is (N,P)–generic (in the usual sense, i.e.,
r P “N [G

˜
P]∩V = N ”), then both players have always legal moves

in the game a(r,N, h,P, F̄ , q̄).
Also if the forcing notion P is λ–lub–complete, then both players
have always legal moves in the game a(r,N, h,P, F̄ , q̄) (for any r).

Definition 1.3. (1) Let S ∈ D+. We say that a forcing notion P

is proper over (D,S)–semi diamonds whenever (there is a (D,S)–
diamond and):
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ITERATION OF λ-COMPLETE FORCING NOTIONS 5

(a) P is λ–complete, and
(b) if χ is large enough, p ∈ P and N ≺ (H(χ),∈, <∗

χ), ‖N‖ = λ,

N<λ ⊆ N and {λ, p,P,D,S, . . .} ∈ N , and h : λ −→ N satisfies
P∩N ⊆ Rang(h), and F̄ is a (D,S)–semi diamond for (N,h,P),
and q̄ = 〈qδ : δ ∈ S〉 is an (N,h,P, F̄ )–candidate,
then there is r ∈ P stronger than p and such that r is (N,h,P)–
generic for q̄ over F̄ .

(2) P is said to be proper over D–semi diamonds if it is proper over
(D,S)–semi diamonds for every S ∈ D+ (so D has diamonds). The
family of forcing notions proper over D–semi diamonds is denoted
K1

D.
(3) A forcing notion P is proper over λ if it is proper over D–semi dia-

monds for every normal filter D on λ which has diamonds.

Remark 1.4. Does D matter? Yes, as we may use some “large D” and be
interested in preserving its largeness properties.

Proposition 1.5. If P is a λ+–complete forcing notion, then P is proper
over λ.

Proof. Straightforward. �

Proposition 1.6. (1) If N,P, h are as in 1.1, P is λ-complete, and F̄
is a (D,S)–semi diamond, then there is an (N,h,P, F̄ )–candidate.
In fact we can even demand:
(+) if I ∈ N is an open dense subset of P, then qδ ∈ I for every

large enough δ.
(2) Let r be (N,h,P)–generic over F̄ for some (N,h,P, F̄ )–candidate q̄.

Then
(a) if 〈r−i , ri, Ci : i < λ〉 is a result of a play of a(r,N, h,P, F̄ , q̄) in

which the generic player uses its winning strategy, then

G′ = {p ∈ P ∩N : (∃i < λ)(p ≤ ri)}

is a subset of P ∩N generic over N , and
(b) r is (N,P)–generic (in the usual sense).

(3) If P is proper over (D,S)–semi diamonds, µ ≥ λ, Y ⊆ [µ]≤λ, Y ∈ V,
then:
(a) forcing with P does not collapse λ+,
(b) forcing with P preserves the following two properties:

(i) Y is a cofinal subset of [µ]≤λ (under inclusion),
(ii) for every large enough χ and x ∈ H(χ), there is N ≺

(H(χ),∈) such that ‖N‖ = λ, N ∩ λ+ ∈ λ+, N<λ ⊆ N ,
N ∩ µ ∈ Y (i.e., the stationarity of Y under the relevant
filter).

Proof. 1) Immediate (by the λ–completeness of P).

2) Clause (a) should be clear (remember 1.1(2)(α)). For clause (b) note
that 0 ∈ S ′, so in the game a(r,N, h,P, F̄ , q̄) the condition r0 is chosen by
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6 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

the anti-generic player. So if the conclusion fails, then for some P–name
α
˜
∈ N for an ordinal we have r 6 “ α

˜
∈ N ”. Thus the anti-generic player

can choose r0 so that r0  “ α
˜

= α0 ” for some ordinal α0 /∈ N , what
guarantees it to win the play.

3) Straightforward from 2). �

Very often checking properness over D–semi diamonds (for particular ex-
amples of forcing notions) we get somewhat stronger properties, which mo-
tivate the following definition.

Definition 1.7. We say that a condition r ∈ P is N–generic for D–semi
diamonds if it is (N,h,P)–generic for q̄ over F̄ whenever h, q̄, F̄ are as in
1.1. Omitting D we mean “for every normal filter D with diamonds”.

The following notion is not of main interest in this paper, but surely it is
interesting from the point of view of general theory.

Definition 1.8. Let 0 < α < λ+.

(1) Let S ∈ D+. We say that a forcing notion P is α–proper over (D,S)–
semi diamonds whenever
(a) P is λ–complete, and
(b) if χ is large enough, p ∈ P and

• N̄ = 〈Nβ : β < α〉 is an increasing sequence of elementary

submodels of (H(χ),∈) such that ‖Nβ‖ = λ, N<λ
β ⊆ Nβ,

{λ, p,P, N̄ ↾ β} ∈ Nβ , and

• F̄ β = 〈F β
δ : δ ∈ S〉, F β

δ ∈ δδ (for β < α),
• hβ : λ −→ Nβ, P∩Nβ ⊆ Rang(hβ) and 〈hγ , F̄

γ : γ < β〉 ∈
Nβ, and

• F̄ β is a (D,S)–semi diamond sequence for (Nβ , hβ ,P),
and

• q̄β = 〈qβδ : δ ∈ S〉 is an (Nβ , hβ ,P)–candidate over F̄ β,
and 〈q̄γ : γ < β〉 ∈ Nβ ,

then there is r ∈ P above p which is (Nβ , hβ ,P)–generic for q̄β

over F̄ β for each β < α.
(2) We define “P is α–proper over D–semi diamonds” (and Kα

D) and “P
is α–proper over λ” in a way parallel to 1.3(2,3).

Remark 1.9. Note that for α = 1 (in Definition 1.8) we get the same notions
as in Definition 1.3.

2. The preservation theorem

In 2.7 below we prove a preservation theorem for our forcing notions. It
immediately gives the consistency of the suitable Forcing Axiom, see 4.1.
Also the proof actually specifies which semi-diamond sequences F̄ are used.

First, recall that
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ITERATION OF λ-COMPLETE FORCING NOTIONS 7

Proposition 2.1. Suppose that 〈Pα,Q
˜
α : α < ζ∗〉 is a (< λ+)–support

iteration such that for each α < ζ∗

Pα “ Q
˜
α is λ–complete. ”

Then the forcing Pζ∗ is λ–complete.

Before we engage in the proof of the preservation theorem, let us prove
some facts of more general nature than the one of our main context. If, e.g.,
all iterands are λ–lub–complete, then Proposition 2.3 below is obvious.

Temporary Context 2.2. Let Q̄ = 〈Pα,Q
˜
α : α < ζ∗〉 be a (< λ+)–support

iteration of λ–complete forcing notions. We also suppose that N is a model
as in 1.1, Q̄, . . . ∈ N .

Proposition 2.3. Suppose that ζ ∈ (ζ∗+1)∩N is a limit ordinal of cofinality
cf(ζ) < λ and r ∈ Pζ is such that

(∀ε ∈ ζ ∩N)
(

r ↾ ε is (N,Pε)–generic.
)

Assume that conditions sβ ∈ N ∩ Pζ (for β < δ, δ < λ) are such that

(∀β′ < β < δ)(sβ′ ≤ sβ ≤ r).

Then there are conditions s ∈ N ∩Pζ and r+ ∈ Pζ such that s ≤ r+, r ≤ r+

and (∀β < δ)(sβ ≤ s).

Proof. Let 〈iγ : γ < cf(ζ)〉 ⊆ N ∩ ζ be a strictly increasing continuous
sequence cofinal in ζ. By induction on γ choose r−γ , rγ such that

(α) r−γ ∈ Piγ ∩N is above (in Piγ ) of all sβ ↾ iγ for β < δ,

(β) rγ ∈ Piγ , r−γ ≤Piγ
rγ , and r ↾ iγ ≤ rγ ,

(γ) if γ < ε < cf(ζ) then r−γ ≤ r−ε and rγ ≤ rε.

(The choice is clearly possible as r ↾ iγ is (N,Piγ )–generic.)
Let r+ ∈ Pζ be an upper bound of 〈rγ : γ < cf(ζ)〉 (remember clause (γ)

above); then also r ≤ r+. Now we are going to define a condition s ∈ Pζ∩N .

We let Dom(s) =
⋃

{Dom(r−γ+1)∩[iγ , iγ+1) : γ < cf(ζ)}, and for ξ ∈ Dom(s),

iγ ≤ ξ < iγ+1, we let s(ξ) be a Pξ–name for the following object in V[GPξ
]

(for a generic filter GPξ
⊆ Pξ over V):

(i) If r−γ+1(ξ)[GPξ
] is an upper bound of {sβ(ξ)[GPξ

] : β < δ} in Q
˜
ξ[GPξ

],

then s(ξ)[GPξ
] = r−γ+1(ξ)[GPξ

].

(ii) If not (i), but {sβ(ξ)[GPξ
] : β < δ} has an upper bound in Q

˜
ξ[GPξ

],
then s(ξ)[GPξ

] is the <∗
χ–first such upper bound.

(iii) If neither (i) nor (ii), then s(ξ)[GPξ
] = s0(ξ)[GPξ

].

It should be clear that s ∈ Pζ ∩N . Now,

• s ≤ r+.

Why? By induction on ξ ∈ ζ∩N we show that s ↾ ξ ≤ r+ ↾ ξ. Steps “ξ = 0”
and “ξ limit” are clear, so suppose that we have proved s ↾ ξ ≤ r+ ↾ ξ,
iγ ≤ ξ < iγ+1 (and we are interested in the restrictions to ξ + 1). Assume
that GPξ

⊆ Pξ is a generic filter over V such that r+ ↾ ξ ∈ GPξ
. Since
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8 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

sβ ↾ iγ+1 ≤ r−γ+1 ≤ rγ+1 ≤ r+, we also have {sβ ↾ ξ : β < δ} ⊆ GPξ
and

r−γ+1 ↾ ξ ∈ GPξ
. Hence r−γ+1(ξ)[GPξ

] is an upper bound of {sβ(ξ)[GPξ
] : β <

δ}. Therefore, s(ξ)[GPξ
] = r−γ+1(ξ)[GPξ

] ≤ rγ+1(ξ)[GPξ
] ≤ r+(ξ)[GPξ

] (see

(i) above) and we are done.
The proof of the proposition will be finished once we show

• (∀β < δ)(sβ ≤ s).

Why does this hold? By induction on ξ ∈ ζ ∩N we show that sβ ↾ ξ ≤ s ↾ ξ
for all β < δ. Steps “ξ = 0” and “ξ limit” are as usual clear, so suppose
that we have proved sβ ↾ ξ ≤ s ↾ ξ (for β < δ), iγ ≤ ξ < iγ+1 (and we are
interested in the restrictions to ξ + 1). Assume that GPξ

⊆ Pξ is a generic
filter over V such that s ↾ ξ ∈ GPξ

. Then also (by the inductive hypothesis)
{sβ ↾ ξ : β < δ} ⊆ GPξ

and therefore 〈sβ(ξ)[GPξ
] : β < δ〉 is an increasing

sequence of conditions from the (λ–complete) forcing Q
˜
ξ[GPξ

]. Thus this
sequence has an upper bound, and s(ξ)[GPξ

] is such an upper bound (see (i)
and (ii) above), as required. �

In the proof of the preservation theorem we will (like in the proof of the
preservation of properness [Sh:f, Ch.III, §3.3]) have to deal with names for
conditions in the iteration. This motivates the following definition (which
is in the spirit of [Sh:f, Ch.X], so this is why “RS”).

Definition 2.4. (1) An RS–condition in Pζ∗ is a pair (p,w) such that

w ∈ [(ζ∗+1)]<λ is a closed set, 0, ζ∗ ∈ w, p is a function with domain
Dom(p) ⊆ ζ∗, and

(⊗)1 for every two successive members ε′ < ε′′ of the set w, p ↾ [ε′, ε′′)
is a Pε′–name of an element of Pε′′ whose domain is included in
the interval [ε′, ε′′).

The family of all RS–conditions in Pζ∗ is denoted by PRS
ζ∗ .

(2) If (p,w) ∈ PRS
ζ∗ and GPζ∗

⊆ Pζ∗ is a generic filter over V, then we

write (p,w) ∈′ GPζ∗
whenever

(⊗)2 for every two successive members ε′ < ε′′ of the set w,

(p ↾ [ε′, ε′′))[GPζ∗
∩ Pε′ ] ∈ GPζ∗

∩ Pε′′ .

(3) If (p1, w1), (p2, w2) ∈ PRS
ζ∗ , then we write (p1, w1) ≤′ (p2, w2) when-

ever
(⊗)3 for every generic GPζ∗

⊆ Pζ∗ over V, if (p2, w2) ∈′ GPζ∗
then

(p1, w1) ∈′ GPζ∗
and for each two successive members ε′ < ε′′ of

the set w1 ∪w2 we have

(p1 ↾ [ε′, ε′′))[GPζ∗
∩ Pε′] ≤Pε′′

(p2 ↾ [ε′, ε′′))[GPζ∗
∩ Pε′ ].

Remark 2.5. If (p,w) ∈ PRS
ζ∗ , ε′ ≤ ξ < ε′′, ε′, ε′′ are successive members of

w, then p(ξ) is a Pε′–name for a Pξ–name of a member of Q
˜
ξ. One may look

at this name as a Pξ–name. However note that if we apply this approach to
each ξ, we may not end up with a condition in Pζ∗ because of the support!
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ITERATION OF λ-COMPLETE FORCING NOTIONS 9

Proposition 2.6. (1) For each (p,w) ∈ PRS
ζ∗ there is q ∈ Pζ∗ such that

(p,w) ≤′ (q, {0, ζ∗}).
(2) If (p,w) ∈ Pζ∗ and q ∈ Pζ∗, then there is q∗ ∈ Pζ∗ stronger than q

and such that for each successive members ε′ < ε′′ of w the condition
q∗ ↾ ε′ decides p ↾ [ε′, ε′′) (i.e., q ↾ ε′ “ p ↾ [ε′, ε′′) = pε′,ε′′ ” for
some pε′,ε′′ ∈ Pζ∗).

(3) Let (pi, wi) ∈ PRS
ζ∗ ∩N (for i < δ < λ), and s ∈ Pζ∗ ∩N , r ∈ Pζ∗ be

such that

s ≤ r and (∀j < i < δ)((pj , wj) ≤
′ (pi, wi) ≤

′ (r, {0, ζ∗}).

Assume that either r is (N,Pζ∗)–generic, or ζ∗ is a limit ordinal of
cofinality cf(ζ∗) < λ and for every ζ < ζ∗ the condition r ↾ ζ is
(N,Pζ)–generic.
Then there are conditions s′ ∈ N ∩ Pζ∗ and r′ ∈ Pζ∗ such that
s ≤ s′ ≤ r′, r ≤ r′ and (∀i < δ)((pi, wi) ≤

′ (s′, {0, ζ∗})).

Proof. (1), (2) Straightforward (use the λ–completeness of Pζ∗).

(3) If r is (N,Pζ∗)–generic, then our assertion is clear (remember clause
(2)). So suppose that we are in the second case (so ℵ0 ≤ cf(ζ∗) < λ). Let
〈iγ : γ < cf(ζ∗)〉 ⊆ N ∩ ζ be a strictly increasing continuous sequence cofinal
in ζ∗. For γ < cf(ζ∗) and i < δ let pγi = pi ↾ iγ , wγ

i = (wi∩ iγ)∪{iγ} (clearly

(pγi , w
γ
i ) ∈ PRS

iγ
). Since r ↾ iγ is (N,Piγ )–generic, we may inductively pick

conditions sγ , rγ (for γ < cf(ζ∗)) such that

• s ↾ iγ ≤ sγ ∈ Piγ ∩N , r ≤ rγ ∈ Pζ∗,
• (∀i < δ)((pγi , w

γ
i ) ≤′ (sγ , {0, iγ})), sγ ≤ rγ ↾ iγ ,

• if β < γ < cf(ζ∗) then s ↾ iβ ≤ sβ ≤ sγ and rβ ≤ rγ .

Let r∗ ∈ Pζ∗ be stronger than all rγ ’s. Now apply 2.3. �

Now we may state and prove our main result.

Theorem 2.7. Let D,S,S ′ be as in 0.7. Assume that Q̄ = 〈Pα,Q
˜
α : α < ζ∗〉

is a (< λ+)–support iteration such that for each α < ζ∗

Pα “ Q
˜
α is proper for D–semi diamonds ”.

Then Pζ∗ = lim(Q̄) is proper for D–semi diamonds.

Proof. By 2.1, the forcing notion Pζ∗ is λ–complete, so we have to concen-
trate on showing clause 1.3(1)(b) for it.

So suppose that χ is large enough, p ∈ Pζ∗ and N ≺ (H(χ),∈, <∗
χ),

‖N‖ = λ, N<λ ⊆ N and {λ, p, Q̄,Pζ∗ ,D,S, . . .} ∈ N , and h : λ −→ N
satisfies Pζ∗ ∩N ⊆ Rang(h). Furthermore, suppose that F̄ = 〈Fδ : δ ∈ S〉 is
a (D,S)–semi diamond and q̄ = 〈qδ : δ ∈ S〉 is an (N,h,Pζ∗ , F̄ )–candidate.
We may assume that for each δ ∈ S

(⊙) if 〈h ◦ Fδ(α) : α < δ〉 is not a ≤Pζ∗
–increasing sequence of members

of Pζ∗ ∩N ,
then h ◦ Fδ(α) = ∗ for all α < δ.
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10 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

[Just suitably modify Fδ whenever the assumption of (⊙) holds – note that
the modification does not change the notion of a candidate, the game from
1.1(3), etc.]

Before we define a generic condition r ∈ Pζ∗ for q̄ over F̄ , let us introduce
notation used later and give two important facts.

Let i ∈ N ∩ (ζ∗ + 1) and let GPi
⊆ Pi be generic over V. We define:

• h〈i〉[GPi
] : λ −→ N [GPi

] is such that
if h(γ) is a function, i ∈ Dom(h(γ)) and (h(γ))(i) is a Pi–name, then

(h〈i〉[GPi
])(γ) = (h(γ))(i)[GPi

], otherwise it is ∗;

• h[i] : λ −→ N is defined by
h[i](γ) = (h(γ)) ↾ i provided h(γ) is a function, and ∗ otherwise;

• S〈i〉[GPi
] = {δ ∈ S : if δ is limit, then qδ ↾ i ∈ GPi

};

• q̄〈i〉[GPi
] is 〈qδ(i)[GPi

] : δ ∈ S〈i〉[GPi
]〉;

• q̄[i] = 〈qδ ↾ i : δ ∈ S〉;
• F̄ 〈i〉[GPi

] is 〈Fδ : δ ∈ S〈i〉[GPi
]〉.

Observe that h[i] : λ −→ N is such that Pi ∩N ⊆ Rang(h[i]) and h〈i〉[GPi
] is

such that N [GPi
] ∩Q

˜
i[GPi

] ⊆ Rang(h〈i〉[GPi
]).

Plainly, by (⊙),

Claim 2.7.1. Assume i ∈ N ∩ (ζ∗ + 1). Then F̄ is a (D,S)–semi diamond

sequence for (N,h[i],Pi) and q̄[i] is an (N,h[i],Pi, F̄ )–candidate.

Claim 2.7.2. Assume that i ∈ N∩(ζ∗+1) and r ∈ Pi is (N,h[i],Pi)–generic

for q[i] over F̄ . Let GPi
⊆ Pi be a generic filter over V, r ∈ GPi

. Then in
V[GPi

]:

(1) S〈i〉[GPi
] ∈ D+,

(2) F̄ 〈i〉[GPi
] is a (D,S〈i〉[GPi

])–semi diamond for

(N [GPi
], h〈i〉[GPi

],Q
˜
i[GPi

]), and

(3) q̄〈i〉[GPi
] is an (N [GPi

], h〈i〉[GPi
],Q

˜
i[GPi

], F̄ 〈i〉[GPi
])–candidate.

Proof of the Claim. (1) Will follow from (2).

(2) Assume that this fails. Then we can find a condition r∗ ∈ Pi, a Pi–
name q̄

˜

′ = 〈q
˜

′
α : α < λ〉 ⊆ N for an increasing sequence of conditions from

Q
˜
i, and Pi–names A

˜
ξ for members of D ∩V such that r ≤Pi

r∗ ∈ GPi
and

r∗ Pi
“ (∀δ ∈ S〈i〉 ∩ △

ξ<λ

A
˜
ξ)(〈h

〈i〉 ◦ Fδ(α) : α < δ〉 6= q̄
˜

′ ↾ δ) ”.

Consider a play 〈r−j , rj , Cj : i < λ〉 ⊆ Pi of the game a(r,N, h[i],Pi, F̄ , q̄[i])
in which the generic player uses its winning strategy and the anti-generic
player plays as follows. In addition to keeping the rules of the game, it
makes sure that at stage j ∈ S ′:

• rj ≥ r∗ (so r0 ≥ r∗; remember the anti-generic player plays at 0),
• rj decides the values of all A

˜
ξ for ξ < j.
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ITERATION OF λ-COMPLETE FORCING NOTIONS 11

Let Aξ ∈ D ∩V be such that rj  “ A
˜
ξ = Aξ ” for sufficiently large j ∈ S ′.

Note that the sequence 〈r−j
⌢
〈q
˜

′
j〉 : j < δ〉 is ≤Pi+1

–increasing. So, as

D is normal and Aξ, Cj ∈ D and F̄ is a semi diamond for (N,h[i+1],Pi+1)
(by 2.7.1), we may find a limit ordinal δ ∈ S ∩ △

ξ<λ

Aξ ∩ △
j<λ

Cj such that

〈h[i+1] ◦Fδ(j) : j < δ〉 = 〈r−j
⌢
〈q
˜

′
j〉 : j < δ〉. Then also 〈h[i] ◦Fδ(j) : j < δ〉 =

〈r−j : j < δ〉, and since the play is won by the generic player, we conclude

qδ ↾ i ≤ rδ. But then taking sufficiently large j ∈ S ′ we have

rj  “ δ ∈ S〈i〉 ∩ △
ξ<λ

A
˜
ξ & 〈h〈i〉 ◦ Fδ(α) : α < δ〉 = q̄

˜

′ ↾ δ ”,

a contradiction.

(3) Should be clear. �

Fix a bijection Υ : ζ∗ ∩ N −→ γ∗ ≤ λ. Also let 〈(τ
˜
i, ζi) : i < λ〉 list all

pairs (τ
˜
, ζ) ∈ N such that ζ ≤ ζ∗, cf(ζ) ≥ λ and τ

˜
is a Pζ–name for an

ordinal.
Next, by induction, we choose a sequence 〈(pi, wi) : i < λ〉 ⊆ PRS

ζ∗ ∩ N
such that

(i) (p, {0, ζ∗}) ≤′ (pi, wi) ≤
′ (pj , wj) for i < j < λ,

(ii) if i < j < λ and Υ(ε) ≤ i, then ε ∈ Dom(pi) and pi(ε) = pj(ε),
(iii) if i < λ is a limit ordinal, then wi is the closure of

⋃

j<i

wj, and

if, additionally, ε ∈ Dom(qi) is such that Υ(ε) ≥ i (and i ∈ S, of
course), then ε ∈ Dom(pi) and pi(ε) is such that
(⊗) for every generic GPζ∗

⊆ Pζ∗ over V such that (pi, wi) ∈
′ GPζ∗

,

and two successive members ε′, ε′′ of the set wi such that ε′ ≤
ε < ε′′ we have:
if {pj(ε)[GPζ∗

∩ Pε′ ][GPζ∗
∩ Pε] : j < i} ∪ {qi(ε)[GPζ∗

∩ Pε]} has

an upper bound in Q
˜
ε[GPζ∗

∩ Pε],

then pi(ε)[GPζ∗
∩ Pε′ ][GPζ∗

∩ Pε] is such an upper bound,

(iv) for each i < λ, for some ξ ∈ N ∩ ζi and a Pξ–name τ
˜
∈ N we have:

sup
(

{ε < ζi : Υ(ε) ≤ i} ∪ (wi ∩ ζi)
)

< ξ, wi+1 = wi ∪ {ξ}, pi+1 ↾ ξ =
pi ↾ ξ and
if GPζ∗

⊆ Pζ∗ is generic over V and (pi+1, wi+1) ∈′ GPζ∗
,

then τ
˜
i[GPζ∗

∩ Pζi ] = τ
˜

[GPζ∗
∩ Pξ]

(It should be clear that there are no problems in the induction and it is
possible to pick (pi, wi) as above.) From now on we will treat each pi(ξ) as
a Pξ–name for a member of Q

˜
ξ.

Now we are going to define an (N,h,Pζ∗)–generic condition r ∈ P for q̄
over F̄ in the most natural way. Its domain is Dom(r) = ζ∗ ∩ N and for
each i ∈ ζ∗ ∩N

r ↾ i  “ r(i) ≥ pΥ(i)(i) is (N [G
˜

Pi
], h〈i〉,Q

˜
i)–generic for q̄〈i〉 over F̄ 〈i〉 ”.
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12 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Main Claim 2.7.3. For every ζ ∈ (ζ∗ + 1) ∩N , the generic player has a

winning strategy in the game a(r ↾ ζ,N, h[ζ],Pζ , F̄ , q̄[ζ]).

Proof of the Claim. We will prove the claim by induction on ζ ∈ (ζ∗+1)∩N .
For ζ ∈ ζ∗ ∩ N this implies that r(ζ) is well-defined (remember 2.7.2). Of
course for ζ = ζ∗ we finish the proof of the theorem.

Suppose that ζ ∈ (ζ∗ + 1) ∩N and we know that r ↾ ζ ′ is (N,h[ζ′],Pζ′)–

generic for q̄[ζ′] over F̄ for all ζ ′ ∈ N ∩ ζ. We are going to describe a winning
strategy for the generic player in the game a(r ↾ ζ,N, h[ζ],Pζ , F̄ , q̄[ζ]). The
inductive hypothesis is not used in the full strength in the definition of
the strategy, but we need it in several places, e.g., to know that r is well
defined as well as that we have the st

˜
i’s below. Also note that it implies

that (pζi , w
ζ
i ) ≤′ (r ↾ ζ, {0, ζ}) for all i < λ, where pζi = pi ↾ ζ and wζ

i =
(wi∩ζ)∪{ζ}. Moreover, during the play, both players will always have legal
moves. Why? By the inductive hypothesis we know that r ↾ ζ ′ is (N,Pζ′)–
generic for all ζ ′ ∈ ζ ∩ N . Therefore, if ζ is a successor or a limit ordinal
of cofinality ≥ λ, then we immediately get that r ↾ ζ is (N,Pζ)–generic
(remember clause (iv) of the choice of the pi’s!), and thus 1.2(4) applies. If
ζ is a limit ordinal of cofinality cf(ζ) < λ, then we may use 2.3.

Let st
˜
i be a Pi–name for the winning strategy of the generic player in

a(r(i), N [G
˜

Pi
], h〈i〉,Q

˜
i, F̄

〈i〉, q̄〈i〉), and let

E0
def
= {δ < λ : δ is a limit of points from S ′ }.

Plainly, E0 is a club of λ.
Let the generic player play as follows. Aside it will construct sequences

〈r
˜
⊖
j′(ε), r˜

⊕
j′(ε) : j′ < λ, ε ∈ ζ ∩N〉 and 〈C

˜

ξ
j′(ε) : j′, ξ < λ, ε ∈ ζ ∩N〉 so that

• r
˜
⊖
j′(ε) is a Pε–name for a member of Q

˜
ε∩N [G

˜
Pε ], r

˜
⊕
j′(ε) is a Pε–name

for a member of Q
˜
ε, C

˜

ξ
j′(ε) is a Pε–name for a member of D ∩ V,

and
• if j ∈ S, j′ ≤ j, and Υ(ε) ≤ j, then after the jth move (which is a

move of the generic player) the terms 〈C
˜

ξ
j′(ε) : ξ < λ〉, r

˜
⊖
j′(ε), and

r
˜
⊕
j′(ε) are defined.

So suppose that j∗ ∈ S and 〈r−j , rj , Cj : j < j∗〉 is the result of the play
so far. To clearly describe the answer of the generic player we will consider
two (only slightly different) cases in the order in which they appear in the
game. (Remember (r0, C0) is chosen by the anti-generic player and that all
successor moves are done by the generic player.)

Case 1: j0 < j′ < min(S ′ \ (j0 + 1)) = j1, j0 ∈ S ′.
First the generic player picks conditions s−, s ∈ Pζ , s− ∈ N such that

r−j0 ≤ s− ≤ s, rj0 ≤ s and for each ξ ∈ ζ ∩N we have

s− ↾ ξ  “ (∀i < j0)(pi(ξ) ≤ s−(ξ)) ”.
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ITERATION OF λ-COMPLETE FORCING NOTIONS 13

[Why possible? By 2.6(3).]
Now the generic player looks at εγ < ζ such that Υ(εγ) = γ < j1. It picks

Pεγ–names r
˜
⊖
j′(εγ), r

˜
⊕
j′(εγ), C

˜

ξ
j′(εγ) so that s ↾ εγ forces that

〈r
˜
⊖
j′(εγ), r

˜
⊕
j′(εγ), △

ξ<λ

C
˜

ξ
j′(εγ) : j′ < j1〉

is a play according to st
˜
εγ in which the moves of the anti-generic player are

determined as follows. First, it keeps the convention that if j′ ∈ S \ S〈εγ〉,

then (r
˜
⊖
j′(εγ), r

˜
⊕
j′(εγ), △

ξ<λ

C
˜

ξ
j′(εγ)) is (a name for) the <∗

χ–first legal answer

to the play so far. Now, if γ < j0, then we have already the play up to j0 (it
easily follows from the inductive construction that s ↾ εγ indeed forces that

it is a “legal” play). The jth
0 move of the anti-generic player is stipulated as

r
˜
⊖
j0

(εγ) = s−(εγ), r
˜
⊕
j0

(εγ) = s(εγ), C
˜

ξ
j0

(εγ) =
⋂

j≤j0

Cj, and next we continue

up to j1 keeping our convention. If j0 ≤ γ < j1, then the generic player lets

r
˜
⊖
0 (εγ) = s−(εγ), r

˜
⊕
0 (εγ) = s(εγ), C

˜

ξ
0(εγ) =

⋂

j≤j0

Cj and then it “plays” the

game according to st
˜
εγ up to j1 keeping our convention for all j′ /∈ S〈εγ〉.

Next, the generic player picks a condition r∗ ∈ Pζ and Pεγ–names τ
˜
j′(εγ) ∈

N (for γ < j1, εγ < ζ, j0 < j′ < j1) such that

• r∗ ≥ s, and for every γ, j′ < j1, and

r∗ ↾ εγ Pεγ
“ r

˜
⊕
j′(εγ) ≤ r∗(εγ) & r

˜
⊖
j′(εγ) = τ

˜
j′(εγ) ”,

• for every j, ξ < j1 and γ < j1 with εγ < ζ, the condition r∗ ↾ εγ
decides the value of C

˜

ξ
j′(εγ), and

r∗ ↾ εγ  “ C
˜

ξ
j′(εγ) \ (ξ + 1) = Cξ

j′(εγ) ”,

where Cξ
j′(εγ) ∈ D ∩V.

Then it lets r−j′ ∈ N ∩ Pζ (for j′ ∈ (j0, j1)) be conditions such that

Dom(r−j′ ) = Dom(s−) ∪ {εγ : γ < j1 & εγ < ζ},

and for ξ ∈ Dom(r−j′ )

r−j′ ↾ ξ  “ if Υ(ξ) < j1 and 〈τ
˜
j(ξ) : j0 < j < j1〉 is an increasing

sequence of conditions stronger than s−(ξ),
then r−j′ (ξ) = τ

˜
j′(ξ), otherwise r−j′(ξ) = s−(ξ) ”.

Finally, for j′ ∈ (j0, j1) it plays r−j′ , r
∗,
⋂

{Cξ
j′(εγ) : j′, γ, ξ < j1, εγ < ζ}.

Case 2: sup{i ∈ S ′ : i < j′} = j0 ≤ j′ < min(S ′ \ j0) = j1, j0 ∈ S.
The generic player proceeds as above, the difference is that now j0 “belongs
to” the generic player, and that it is a limit of moves of the anti-generic
player. Again, we look at εγ < ζ such that Υ(εγ) = γ < j1.
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14 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

If γ < j0, then every condition in Pεγ stronger than all rj ↾ εγ (for j < j0)
forces that

〈r
˜
⊖
j′(εγ), r

˜
⊕
j′(εγ), △

ξ<λ

C
˜

ξ
j′(εγ) : j′ < j0〉

is a legal play in which the generic player uses st
˜
εγ . The generic player

determines r
˜
⊖
j′(εγ), r

˜
⊕
j′(εγ), and C

˜

ξ
j′(εγ) for j′ ∈ [j0, j1) “playing the game”

as earlier (with the same convention that if j′ ∈ S \ S〈εγ〉, then the j′–th
move of the anti-generic player is stipulated as the <∗

χ–first legal move).
If j0 ≤ γ < j1, then (any condition stronger than all rj ↾ εγ for j < j0

forces that) 〈r−j (ε) : j < j0〉, 〈rj(ε) : j < j0〉 are increasing, and r−j (εγ) ≤
rj(εγ) and r(εγ) is (N [G

˜
Pεγ

],Q
˜
εγ )–generic. So, by 1.2(4), the generic player

may let (r⊖0 (εγ), r⊕0 (εγ)) be the <∗
χ–first such that for all j < j0 we have

r−j (ε) ≤ r⊖0 (εγ) ∈ N [G
˜

Pεγ
], rj(εγ) ≤ r⊕0 (εγ). It also lets Cξ

0(εγ) =
⋂

j<j0

Cj.

Then the generic player chooses r
˜
⊖
j′(εγ), r

˜
⊕
j′(εγ), and C

˜

ξ
j′(εγ) for 0 < j′ < j1

“playing the game” with the strategy st
˜
εγ (and keeping the old convention

for j′ /∈ S〈εγ〉).
Next the generic player picks a condition r∗ ∈ Pζ (stronger than all rj for

j < j0), Pεγ–names τ
˜
j′(εγ) ∈ N and sets Cξ

j′(εγ) ∈ D ∩V (for j′, γ, ξ < j1)

as in the previous case. Then it chooses conditions s− ∈ N ∩Pζ and r+ ∈ Pζ

such that r∗ ≤ r+ and (∀j < j0)(r−j ≤ s− ≤ r+). [Why possible? If ζ is limit

of cofinality cf(ξ) < λ, use 2.3; otherwise we know that r is (N,Pζ)–generic.]

Next it defines conditions r−j′ ∈ N ∩ Pζ (for j0 ≤ j′ < j1) so that

Dom(r−j′ ) = Dom(s−) ∪ {εγ : γ < j1 & εγ < ζ},

and for ξ ∈ Dom(r−j′ )

r−j′ ↾ ξ  “ if Υ(ξ) < j1 and 〈τ
˜
j(ξ) : j0 ≤ j < j1〉 is an increasing

sequence of conditions above all r−j (ξ) for j < j0,

then r−j′ (ξ) = τ
˜
j′(ξ), otherwise r−j′(ξ) = s−(ξ) ”.

Finally, for j0 ≤ j′ < j1 it plays r−j′ , r
+,

⋂

{Cξ
j′(εγ) : j′, γ, ξ < j1, εγ < ζ}.

Why does the strategy described above work? Suppose that 〈rj , Cj : j <

λ〉 is a play of the game a(r ↾ ζ,N, h[ζ],Pζ , F̄ , q̄[ζ]) in which the generic player

used this strategy and let 〈r
˜
′
j′(ε) : j′ < λ, ε ∈ ζ ∩ N〉 and 〈C

˜

ξ
j′(ε) : j′, ξ <

λ, ε ∈ ζ ∩ N〉 be the sequences it constructed aside. (As we said earlier,
the game surely lasted λ steps and thus the sequences described above have
length λ.)

Let us argue that condition 1.1(3)(⊛) holds.

Assume that a limit ordinal δ ∈ S ∩
⋂

j<δ

Cj (so in particular δ ∈ E0) is

such that

(∗)δ 〈h[ζ] ◦ Fδ(α) : α < δ〉 = 〈r−α : α < δ〉.
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ITERATION OF λ-COMPLETE FORCING NOTIONS 15

We are going to show that qδ ≤ rδ and for this we prove by induction on
ε ∈ (ζ + 1) ∩N that qδ ↾ ε ≤ rδ ↾ ε. For ε = ζ this is the desired conclusion.

For ε = 0 this is trivial, and for a limit ε it follows from the definition of
the order (and the inductive hypothesis).

So assume that we have proved qδ ↾ ε ≤ rδ ↾ ε, ε < ζ, and let us consider
the restrictions to ε + 1. If Υ(ε) ≥ δ then by the choice of conditions s, s−

in Case 1, we know that

rδ ↾ ε  “ (∀i < δ)(∃j′ < δ)(pi(ε) ≤ r−j′ (ε)) ”.

Now look at the clause (iii) of the choice of the pδ at the beginning: what
we have just stated (and (∗)δ) implies that

rδ ↾ ε  “ pδ(ε) is an upper bound to {qδ(ε)} ∪ {pi(ε) : i < δ} ”.

thus, rδ ↾ ε  “ qδ(ε) ≤ pδ(ε) ≤ rδ(ε) ”, so we are done. Suppose now that
Υ(ε) < δ and let j1 = min(S ′ \ δ). Look at what the generic player has

written aside: rδ ↾ ε forces that 〈r⊖j′ (ε), r
⊕
j′ (ε), △

ξ<λ

C
˜

ξ
j(ε) : j < j1〉 is a play

according to st
˜
ε and δ ∈

⋂

j,ξ<δ

C
˜

ξ
j(ε)∩S〈δ〉, so we are clearly done in this case

too (remember the choice of r∗). �

�

Remark 2.8. Note that if the iterands Q
˜
ξ are (forced to be) λ–lub–closed,

then the proof of 2.7 substantially simplifies.

3. Examples

Our first example of a proper over λ forcing notion is a relative of the
forcing introduced by Baumgartner for adding a club to ℵ1. Its variants
were also studied in Abraham and Shelah [AbSh 146]; see also [Sh:f, Ch.III].

The forcing notion P∗ is defined as follows:

a condition in P∗ is a function p such that

(a) Dom(p) ⊆ λ+, Rang(p) ⊆ λ+, |Dom(p)| < λ, and
(b) if α1 < α2 are both from Dom(p), then p(α1) < α2;

the order ≤ of P∗ is the inclusion ⊆.

Clearly,

Proposition 3.1. P∗ is λ–lub–complete and |P∗| = λ+.

But also,

Proposition 3.2. P∗ is proper over λ.

Proof. Assume N ≺ (H(χ),∈, <∗
χ) is as in 1.1, and p ∈ P∗ ∩N .

Put j∗ = N ∩ λ+ and r = p ∪ {〈j∗, j∗〉}.

Claim 3.2.1. (1) If r′ ∈ P, r ≤ r′, then r′ ↾ j∗ ∈ N∩P∗ and r′ ↾ j∗ ≤ r′.
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16 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(2) If r′ ∈ P, r ≤ r′, and r′ ↾ j∗ ≤ r′′ ∈ N ∩ P∗, then r′ ∪ r′′ ∈ P∗ is
stronger than both r′ and r′′.

(3) If p̄ = 〈pξ : ξ < ζ∗〉 ⊆ P∗ is ≤–increasing and ζ∗ < λ, then p̄ has
a least upper bound q ∈ P∗, and q ↾ j∗ is a least upper bound of
〈pξ ↾ j

∗ : ξ < ζ∗〉.

Proof of the Claim. (1) By the definition of P∗,

α ∈ Dom(r′) ∩ j∗ ⇒ r′(α) < j∗ ⇒ r′(α) ∈ N.

(2), (3) Should be clear. �

Claim 3.2.2. r is N–generic for semi–diamonds (see 1.7).

Proof of the Claim. Suppose that D is a normal filter on λ, S ∈ D+. Let
h : λ −→ N be such that N ∩ P∗ ⊆ Rang(h), F̄ = 〈Fδ : δ ∈ S〉 be a (D,S)–
semi diamond, and let q̄ = 〈qδ : δ ∈ S〉 be an (N,h,P∗, F̄ )–candidate.

We have to show that the condition r is (N,h,P∗)–generic for q̄ over F̄ ,
and for this we have to show that the generic player has a winning strategy
in the game a(r,N, h,P∗, F̄ , q̄). Note that the set

E0
def
= {δ < λ : δ is a limit of members of S }

is a club of λ (so E0 ∈ D). Now, the strategy that works for the generic
player is the following one:

At stage δ ∈ S of the play, when a sequence 〈r−i , ri, Ci : i < δ〉 has been
already constructed, the generic player lets Cδ = E0 \ (δ + 1) and it asks:

(∗) Is there a common upper bound to {ri : i < δ} ∪ {qδ} ?

If the answer to (∗) is “yes”, then the generic player puts Y = {ri : i <
δ} ∪ {qδ}; otherwise it lets Y = {ri : i < δ}. Now it chooses rδ to be the
<∗

χ–first element of P∗ stronger than all members of Y and r−δ = rδ ↾ j
∗ ∈ N .

Why the strategy described above is the winning one? Let 〈r−i , ri, Ci :
i < λ〉 be a play according to this strategy. Suppose that δ ∈ S ∩ △

i<λ

Ci is a

limit ordinal such that 〈h ◦ Fδ(α) : α < δ〉 = 〈r−α : α < δ〉. So, qδ is stronger
than all r−α (for α < δ), and for cofinally many α < δ we have r−α = rα ↾ j∗.
Therefore, qδ ≥ r−α ↾ j∗ and (by 3.2.1) {rα : α < δ} ∪ {qδ} has an upper
bound. Now look at the choice of rδ. �

The proposition follows immediately from 3.2.2. �

Proposition 3.3. (1) P∗ is α–proper over λ if and only if α < λ.
(2) If D is a normal filter on λ, S ∈ D+, and F̄ is a (D,S)–diamond,

0 < α < λ+, then P∗ ∈ Kα,s
D [F̄ ] if and only if α < λ.

Proof. (1) Follows from (2).

(2) Assume α < λ.
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ITERATION OF λ-COMPLETE FORCING NOTIONS 17

Let N̄ = 〈Nβ : β < α〉, hβ : λ −→ Nβ and q̄β be as in 1.8(1b), p ∈ P∗∩N0.
Let j∗β = Nβ ∩ λ+ (for β < α) and put r = p ∪ {(j∗β , j

∗
β) : β < α}. Clearly

r ∈ P∗ and r ↾ j∗β ∈ Nβ for each β < α (remember N̄ ↾ β ∈ Nβ). By the

proof of 3.2, the condition r ↾ j∗β+1 is (Nβ , hβ ,P
∗)–generic for q̄β over F̄

To show that P∗ /∈ Kα,s
D [F̄ ] for α ≥ λ, it is enough to do this for α = λ.

So, pick any N̄ = 〈Nβ : β < λ〉, hβ : λ −→ Nβ and q̄β as in 1.8(1b), and let
Nλ =

⋃

α<λ

Nα.

Let ϕ
˜

be a P∗–name for the generic partial function from λ+ to λ+, that
is, P∗ ϕ

˜
=

⋃

G
˜
P∗ . We claim that

(⊛) P∗ “ (∃β < λ)(∃i ∈ Dom(ϕ
˜

) ∩Nβ)(ϕ
˜

(i) /∈ Nβ) ”.

Why? Let p ∈ P∗. Take β0 < λ such that Dom(p) ∩Nλ ⊆ Nβ0
(remember

|p| < λ). If for some i ∈ Dom(p) ∩Nβ0
we have p(i) /∈ Nβ0

, then

p  “ (∃i ∈ Dom(ϕ
˜

) ∩Nβ0
)(ϕ

˜
(i) /∈ Nβ0

) ”.

Otherwise, we let δ∗ = Nβ0
∩ λ+ and δ∗∗ = Nβ0+1 ∩ λ+, and we put q =

p ∪ {(δ∗, δ∗∗)}. Then clearly q ∈ P∗ is a condition stronger than p and

q  “ (∃i ∈ Dom(ϕ
˜

) ∩Nβ0+1)(ϕ
˜

(i) /∈ Nβ0+1).

It should be clear that (⊛) implies that there is no condition r ∈ P∗ which
is (Nβ , hβ ,P

∗)–generic for q̄β for all β < α (remember 1.6(2)). �

For the second example we assume the following.

Context 3.4. (a) λ,D,S,S ′ are as in 0.7,

(b) S∗ ⊆ Sλ+

λ

def
= {δ < λ+ : cf(δ) = λ},

(c) 〈Aδ , hδ : δ ∈ S∗〉 is such that for each δ ∈ S∗:
(d) Aδ ⊆ δ, otp(Aδ) = λ and Aδ is a club of δ, and
(e) hδ : Aδ −→ λ.

The forcing notion Q∗ is defined as follows:

a condition in Q∗ is a tuple p = (up, vp, ēp, hp) such that

(a) up ∈ [λ+]<λ, vp ∈ [S∗]<λ,
(b) ēp = 〈epδ : δ ∈ vp〉, where each epδ is a closed bounded subset of Aδ,

and epδ ⊆ up, and
(c) if δ1 < δ2 are from vp, then

sup(eδ2) > δ1 and sup(eδ1) > sup(Aδ2 ∩ δ1),

(d) hp : up −→ λ is such that for each δ ∈ vp we have

hp ↾ {α ∈ eδ : otp(α ∩ eδ) ∈ S ′} ⊆ hδ ;

the order ≤ of Q∗ is such that p ≤ q if and only if up ⊆ uq, hp ⊆ hq,
vp ⊆ vq, and for each δ ∈ vp the set eqδ is an end-extension of epδ .

A tuple p = (up, vp, ēp, hp) satisfying clauses (a), (b) and (d) above will
be called a pre-condition. Note that every pre-condition can be extended to
a condition in Q∗.
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18 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Plainly:

Proposition 3.5. The forcing notion Q∗ is λ–lub–complete. Also Q∗ sat-
isfies the λ+–chain condition.

Proposition 3.6. Q∗ is proper over λ.

Proof. Assume N ≺ (H(χ),∈, <∗
χ) is as in 1.1, 〈Aδ, hδ : δ ∈ S∗〉 ∈ N and

p ∈ Q∗ ∩ N . We are going to show that the condition p is N–generic for
semi-diamonds.

So suppose that h, q̄ and F̄ are as in 1.1. For r ∈ Q∗, let r ↾ N be such
that ur↾N = u ∩N , vr↾N = v ∩N , ēr↾N = ēr ↾ N , hr↾N = hr ↾ N . Note that
r ↾ N ∈ N . Let us describe the winning strategy of the generic player in the
game a(p,N, h,P∗, F̄ , q̄). For this we first fix a list {ji : i < λ} of N ∩ S∗,
and we let E0 = {δ < λ : δ is a limit of members of S }.

Suppose that we arrive to a stage δ ∈ S and 〈r−i , ri, Ci : i < δ〉 is the
sequence played so far. The generic player first picks a condition r′δ stronger
than all ri’s played so far and, if possible, stronger than qδ. Then it plays a
condition rδ above r′δ such that

• if γ ∈ vrδ , then otp(erδγ ) > δ, and
• {ji : i < δ} ⊆ vrδ ,

and r−δ = rδ ↾ N . The set Cδ played a this stage is [α, λ)∩E0, where α is the
first ordinal such that vrδ∩N ⊆ {ji : i < α} and otp(Aγ∩(max(erδγ )+1)) < α
for all γ ∈ vrδ .

Why is this a winning strategy? Let 〈r−i , ri, Ci : i < λ〉 be a play according
to this strategy, and suppose that δ ∈ S ∩ △

i<λ

Ci is a limit ordinal such that

〈h ◦ Fδ(α) : α < δ〉 = 〈r−α : α < δ〉.

Note that then

(i) if γ ∈
⋃

i<δ

vri then
⋃

i<δ

eriγ is an unbounded subset of {ε ∈ Aγ : otp(ε∩

Aγ) < δ}, and
(ii)

⋃

i<δ

vri ∩N = {ji : i < δ}.

We want to show that there there is a common upper bound to {ri : i <
δ} ∪ {qδ} (which, by the definition of our strategy, will finish the proof).
First we choose a pre-condition r = (ur, vr, ēr, hr) such that:

• vr = vqδ ∪
⋃

i<δ

vri ,

• if γ ∈ vqδ , then we let erγ = eqδγ , if γ ∈
⋃

i<δ

vri \ vqδ , then

erγ =
⋃

{eriγ : i < δ, γ ∈ vri} ∪ { the δth member of Aγ },

• ur = uqδ ∪
⋃

i<δ

uri ∪ {the δth member of Aγ : γ ∈ vr \ vqδ},

• hr ⊇ hqδ ∪
⋃

i<δ

hri .
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ITERATION OF λ-COMPLETE FORCING NOTIONS 19

Why is the choice possible? As δ /∈ S ′ ! Now we may extend r to a condition
in Q∗ picking for each γ ∈ vr large enough βγ ∈ Aγ and adding βγ to erγ
(and extending ur, hr suitably). �

Our last example is a natural generalization of the forcing notion Dω from
Newelski and Ros lanowski [NeRo93]. Let us work in the context of 0.7.

Definition 3.7. (1) A set T ⊆ <λλ is a complete λ–tree if
(a) (∀η ∈ T )(∃ν ∈ T )(η ⊳ ν), and T has the ⊳–smallest element

called root(T ),
(b) (∀η, ν ∈ <λλ)(root(T ) E η ⊳ ν ∈ T ⇒ η ∈ T ),
(c) if 〈ηi : i < δ〉 ⊆ T is a ⊳–increasing chain, δ < λ, then there is

η ∈ T such that ηi ⊳ η for all i < δ.
Let T ⊆ <λλ be a complete λ–tree.

(2) For η ∈ T we let succT (η) = {α < λ : η⌢〈α〉 ∈ T}.
(3) We let split(T ) = {η ∈ T : |succT (η)| > 1}.
(4) A sequence ρ ∈ λλ is a λ–branch through T if

(∀α < λ)(lh(root(T )) ≤ α ⇒ ρ ↾ α ∈ T ).

The set of all λ–branches through T is called limλ(T ).
(5) A subset F of the λ–tree T is a front in T if no two distinct members

of F are ⊳–comparable and

(∀η ∈ limλ(T ))(∃α < λ)(η ↾ α ∈ F).

(6) For η ∈ T we let (T )[η] = {ν ∈ T : η ⊳ ν}.

Now we define a forcing notion Dλ:
A condition in Dλ is a complete λ–tree T such that

(a) root(T ) ∈ split(T ) and (∀η ∈ split(T ))(succT (η) = λ),
(b) (∀η ∈ T )(∃ν ∈ T )(η ⊳ ν ∈ split(T )),
(c) if δ < λ is limit and a sequence 〈ηi : i < δ〉 ⊆ split(T ) is ⊳–increasing,

then η =
⋃

i<δ

ηi ∈ split(T ).

The order of Dλ is the reverse inclusion.

Proposition 3.8. Dλ is proper over λ.

Proof. First let us argue that Dλ is λ–lub–complete. So suppose that Tα ∈

Dλ are such that (∀α < β < δ)(Tβ ⊆ Tα), δ < λ. We claim that T
def
=

⋂

α<δ

Tα

is a condition in Dλ. Clearly T is a tree, and root(T ) =
⋃

α<δ

root(Tα). By

clause (c) (for Tα’s) we see that succT (root(T )) = λ, and in a similar way
we justify that T satisfies other demands as well.

Now suppose that D,S, N, h, F̄ and q̄ are as in 1.1, T ∈ Dλ ∩N . Choose
inductively complete λ–trees Tα ∈ Dλ ∩N and fronts Fα ⊆ Tα (of Tα) such
that

(i) root(Tα) = root(T ),
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20 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(ii) if α ≤ β < λ, then Tβ ⊆ Tα ⊆ T and Fα ⊆ split(Tβ), and
(iii) if η ∈ Fα then otp({i < lh(η) : η ↾ i ∈ split(Tα)}) = α,
(iv) if δ is limit, then Tδ =

⋂

α<δ

Tα,

(v) if δ ∈ S is limit and 〈h ◦ Fδ(α) : α < δ〉 is an increasing sequence of
conditions from Dλ∩N and

⋂

α<δ

h◦Fδ(α) ⊆ Tδ, and η =
⋃

α<δ

root(h◦

Fδ(α)) ∈ Fδ, then for some ν ∈ Tδ we have

η ⊳ ν ∈ Fδ+1 and qδ ≤ (Tδ+1)[ν].

Now we let r =
⋂

α<λ

Tα. It should be clear that r ∈ Dλ.

Claim 3.8.1. r is (N,h,Dλ)–generic for q̄ over F̄ .

Proof of the Claim. We have to describe a winning strategy of the generic
player in the game a(r,N, h,Dλ, F̄ , q̄). Let E0 be the club of limits of mem-
bers of S ′. Let the generic player play as follows.

Assume we have arrived to stage i ∈ S of the play when 〈r−j , rj , Cj : j < i〉

has been already constructed. If i /∈ E0 then the generic player chooses
r−i , ri ∈ Dλ such that

(A) ri ⊆
⋂

j<i

rj , r
−
i ⊆

⋂

j<i

r−j ∩
⋂

j<i

Tj, and r−i ∈ N , r−i ≤ ri,

(B) root(r−i ) = root(ri) ∈ Fα(i) for some α(i) > i,

and lets Ci = E0 \ (α(i) + 1). If i ∈ E0 then the generic player picks ri, r
−
i

satisfying (A) + (B) and such that

(C) if possible, then qδ ≤ r−i
and it takes Ci as earlier.

Why is this a winning strategy? First, as Dλ is λ–lub–complete, the play
really lasts λ moves. Suppose that δ ∈ S ∩

⋂

i<δ

Ci is such that

〈h ◦ Fδ(α) : α < δ〉 = 〈r−α : α < δ〉.

Let η =
⋃

α<δ

root(r−α ). Note that (as δ ∈ E0 and by (B)) we have η ∈ Fδ

and (by (A))
⋂

α<δ

r−α is included in Tδ. Therefore, by clause (v) of the choice

of the Tδ, for some ν ∈ Tδ we have η ⊳ ν ∈ Fδ+1 and qδ ≤ (Tδ+1)[ν]. But
this immediately implies that it was possible to choose r−i stronger than qδ
in (C) (remember r =

⋂

α<δ

Tα). �

�

4. Discussion

4.1. The Axiom. We can derive Forcing Axiom as usual, see [Sh:f, Ch.
VII, VIII]. E.g., if κ is a supercompact cardinal larger than λ, then we can
find a κ–cc λ–complete, proper over D–semi diamonds forcing notion P of
cardinality κ such that
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ITERATION OF λ-COMPLETE FORCING NOTIONS 21

• P 2λ = κ
• P collapses every µ ∈ (λ+, κ), no other cardinal is collapsed,
• in VP:

if Q is a forcing notion proper over D–semi diamonds, Iα are open
dense subsets of Q for α < λ+,
then there is a directed set G ⊆ Q intersecting every Iα (for α < λ+).

If we restrict ourselves to |Q| = κ, it is enough that κ is indiscrebable enough.
In ZFC, we have to be more careful concerning Q.

4.2. Future applications. Real applications of the technology developed
here will be given in a forthcoming paper Ros lanowski and Shelah [RoSh 777],
where we will present more examples of proper for λ forcing notions (concen-
trating on the case of inaccessible λ). We start there developing a theory par-
allel to that of Ros lanowski and Shelah [RoSh 470], [RoSh 628], [RoSh 672]
aiming at generalizing many of the cardinal characteristics of the continuum
to larger cardinals.

4.3. Why our definitions? The main reason why our definitions are (per-
haps) somewhat complicated is that, in addition to ZFC limitations, we
wanted to cover some examples with “large creatures” (to be presented in
[RoSh 777]). We also wanted to have a real preservation theorem: the (limit
of the) iteration is of the same type as the iterands (though for many appli-
cations the existence of (N,Pζ)–generic conditions could be enough).

Why do we have the sets Ci in the game, and not just say that “the set of
good δ’s is in D”? It is caused by the fact that already if we want to deal with
the composition of two forcing notions (the successor step), the respective
set from D would have appeared only after the play, and there would be
simply too many possible sets to consider. With the current definition the
generic player discovers during the play which δ ∈ S are active.

Why semi–diamonds (and not just diamonds)? As we want that q̄〈i〉, F̄ 〈i〉

are as claimed in 2.7.2 (for the respective parameters).

4.4. Strategic completeness. We may replace “λ–complete” by (a variant
of) “strategically λ–complete”. This requires some changes in our definitions
(and proofs) and it will be treated in [Sh:F509].

4.5. Relation to [Sh 587]. There is a drawback in the approach presented

in this paper: we do not include the one from [Sh 587], say when S ⊆ Sλ+

λ

is stationary and Sλ+

λ \ S is also stationary.
One of possible modification of the present definitions for the case of

inaccessible λ, can be sketched as follows. We have 〈λδ : δ ∈ S〉, λδ = (λδ)
|δ|;

q̄ = 〈qδ : δ ∈ S〉 is replaced by q̄ = 〈qδ,t : δ ∈ S, t ∈ Parδ∗,δ〉 (where
δ∗ = N ∩ λ+), and P̄ar = 〈Parδ∗,δ : δ ∈ S〉 ∈ V is constant for the iteration
(like D).

In the forcing P: for p̄ = 〈pj : j < δ〉, δ ∈ S, t ∈ Parδ∗,δ, there is an upper
bound q[p̄, t] of p̄ (this is a part of P).
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22 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

For each δ, each Parδ∗,Nδ∩γ ,
∏

i∈Nδ

Parδ∗,δ has cardinality λδ = (λδ)
|δ| (Nδ is

of cardinality |δ|; γ is the length of the iteration). Having 〈pj : j < δ〉 ⊆ Nδ

we can find 〈qδt : t ∈ Parδ,Nδ∩γ〉 as in [Sh 587].
Several (more complex) variants of properness over semi–diamonds will

be presented in [Sh:F509] and Ros lanowski and Shelah [RoSh 777].
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