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ABSTRACT: We introduce a large cardinal property which is consistent with L
and show that for every superatomic Boolean algebra B and every cardinal A
with the large cardinal property, if tightness™(B) > AT then depth(B) > X. This

improves a theorem of Dow and Monk.

In [DM, Theorem C], Dow and Monk have shown that if A is a Ramsey cardinal (see
[J, p-328]) then every superatomic Boolean algebra with tightness at least A* has depth at
least A. Recall that a Boolean algebra B is superatomic iff every homomorphic image of B
is atomic. The depth of B is the supremum of all cardinals A such that there is a sequence
(ba : @ < A) in B with bg < b, for all a < 8 < X (a well-ordered chain of length \). Then
depth™ of B is the first cardinal X such that there is no well-ordered chain of length X in
B. The tightness of B is the supremum of all cardinals A\ such that B has a free sequence
of length A\, where a sequence (b, : @ < A) is called free provided that if I" and A are finite
subsets of A such that o < 3 for all & € I" and § € A, then

() —ban () bs #0.

acl BeA

By tightness™ (B) we denote the first cardinal A for which there is no free sequence of
length X\ in B.
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For b € B we sometimes write b° for —b and b! for b.

We improve Theorem C from [DM] in two directions. We introduce a large cardinal
property which is much weaker than Ramseyness and even consistent with L (the con-
structible universe) and show that in Theorem C from [DM] it suffices to assume that A
has this property. Moreover we show that it suffices to assume tightness™(B) > AT instead
of tightness(B) > A" to conclude that depth(B) > A. In particular we get:

Theorem 1. Suppose that 0% exists. Let B be a superatomic Boolean algebra in the
constructible universe L, and let A be an uncountable cardinal in V. Then in L it is true

that tightnesst(B) > AT implies that deptht (B) > .

For the theory of 0¢ see [J, §30]. Note that A as in Theorem 1 is a limit cardinal in
L, hence it suffices to show that in L, depth(B) > & for all cardinals k < A\. As was the
case with the proof of Theorem C of [DM], we can’t show that under the assumptions of

Theorem 1, depth(B) = A is attained, i.e. that there is a well-ordered chain of length .
For the proof we consider the following large cardinal property:

Definition 2. Let A, x, € be infinite cardinals, and let v be an ordinal. The relation
R, (A, k,0) is defined as follows:

For every ¢ : [\]<% — 6 there exists A C X of order-type =, such that for every

u € [A]<¥ there exists B C X of order-type & such that Vw € [B]/*l  c(w) = c(u).

Lemma 3. Assume R (), k,0), where 7 is a limit ordinal. For every ¢ : [A\]<¥ — 0
there exists A C X as in the definition of R (A, k, 8) such that additionally c[[A]™ is constant

for every n < w.

Proof: Define ¢’ on [A]<“ by

NHBoy-- s Bn1} ={(v,ce{B; i €v}) v Cn}.

As 6 is infinite we can easily code the values of ¢’ as ordinals in € and therefore apply
R, (A k,0) to it. We get A C X of order-type . We shall prove that c[[A]™ is constant,

n

for every n < w. Fix wy,wy € [A]™. Since ~ is a limit, without loss of generality we

may assume that max(w;) < min(ws). Let w = w; U ws. By Definition 2 there exists
B C )\, 0.t.B = k, such that ¢/[[B]?" is constant with value ¢/(w). Let (8, : v < k) be the

increasing enumeration of B. We have

cl{ﬁ()? cee 76271—1} - cl{ﬂn, ceey ﬁBn—l}-
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By the definition of ¢’ we get

{Bos -, Bn-1t =c{Bn,- .-, Ban—1} =t co.

This information is coded in ¢'{fy, ..., Bon_1}, i-€.

({0,...,n—1},¢0), ({n,...,2n —1},¢0) € ¢{Bo,-- -, Po2n_1}

As {fo, ..., Pan—1} = ¢ (w) we conclude c(w;) = c(wz) = co. O

Theorem 4. Assume R, (A, k,w), where vy is a limit ordinal. If B is a Boolean algebra
and (a, : v < A) is a sequence in B, then one of the following holds:
(a) there exists A C A\, 0.t.(A) =, such that (a, : v € A) is independent;

(b) there exist n < w and strictly increasing sequence (B, : v < k) in X such that, letting

b,/ - U n a5n2u+nk+l’ (*)

k<nl<n

we have that (b, : v < K) is constant;

(c) there exists a strictly decreasing sequence in B of length k.

Corollary 5. Assume R, (A, k,w), where v is a limit ordinal. If B is a superatomic

Boolean algebra, then tightness™ (B) > X\ implies Depth™ (B) > k.

Proof of Corollary 5: Let (a, : v < A) be a free sequence in B. As a superatomic
Boolean algebra does not have an infinite independent subset, (a) is impossible. Suppose

(b) were true. Define b, as in (x). Clearly we have

—b, > n a and
V= B'n2u+nk+l ’
k,l<n

by Z ﬂ a6n2u+nk+l'
k,l<n

Hence if v < p and b, = b, we obtain

b= ) af N -
0 b, N bu = aﬁn2u+nk+l n ABr2 it mt
k,l<n k,l<n

This contradicts freeness of (a, : v < k). We conclude that (¢) must hold. O
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Proof of Theorem /: Define ¢ : [\]<¥ — [<¥2]<“ by

ABo < ...<Bnoat={nem2: n agf_l) = 0}.
i<n
Note that ¢{fy < ... < Bn-1} = c{ap < ... < a,—1} implies that {ag,,...,ap, ,}
and {aq,,-..,0q, ,} have the same quantifier-free diagram, i.e. for every quantifier-free

formula ¢(zo,...,x,—1) in the language of Boolean algebra,

B = ¢lag,, ..., a8, ,] © B E ¢lanys-- -, 0a,_,]-

Let A C X be as guaranteed for ¢ by R, (), k,w). By Lemma 3 we may assume that c[[A]"
is constant, for every n < w.
If (aq : @ € A) is independent, we are done. Therefore we may assume that this is

false. For m < w define

Fp={ne™2:Hbp<...<Pma} CA ﬂaggi)zo}.

<m

By assumption, in the definition of I',, the existential quantifier can be replace by a

universal one to give the same set. There exists m < w such that T, # (). Define

I ={neT,, : noproper subsequence of n belongs to U Iy}
k<m

By Kruscal’s Theorem [K]|, we have that I/, is finite. Let n* be minimal such that

m<w - m

Um<w Fn = Upm<ns I'm- Then clearly we have that for every m < w and n € I',, 7 has a

subsequence in (J, _,,. I';. Let m* = (n*)?, and let

T($0,~-~,33m*—1)= U ﬂ Tn*l4+k-

l<n* k<n*

Claim 1. Ifn €™ 2, t € {0,1}, and in the Boolean algebra {0,1}, 7[n(0), ..., n(m* —
1)] =t, then [{i <m* :n(i) =t} > n*. O

Let (8, : v < ) be the strictly increasing enumeration of A, and define

bV = T[a/Bm*V7a/8m*V+17 R a‘/Bm*V%»m*fl]’
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for every v < 7, where the evaluation of 7 takes place in B, of course. It is easy to see that
the sequence (b, : v < 7) inherites from (ag, : ¥ < 7y) the property, that any two finite

subsequences of same length have the same quantifier-free diagram.

Claim 2. Ifn € T, then (;_, b7 = 0.
Proof of Claim 2: Otherwise there exists an ultrafilter D on B such that ), _,, b?( D
D. Define ¢ € " 2 by ((i) = 1 iff ag, € D. Then \;_,,,,- a%” € D, and hence ¢ & -

Let h: B— B/D = {0,1} be the canonical homomorphism induced by D. We calculate
b= 1 ) = N B0 = N 78,0 ) b5, )]

= ﬂi<n T[C(m*0),....¢(m* i+ k),...,¢(m*(i+1) — 1)]’7(i).
We conclude that 7[¢(m*i),...,{(m* i+ k),...,{(m*(i+1)—1)] =n(
and hence by Claim 1 we can choose j; € [m*i,m*(i 4+ 1)) such that {(j;) = n(i). Clearly

)
), for all i < n,
i0 < t1 implies that j;, < j;,. But this implies ¢ € I';,,,+, a contradiction. OClaim 2

Claim 3. Ift<w,neTl,, 0=Fky <k <...<k=n, and n|lk;, kix1) is constant
foralli <t, and if p € *2 is defined by p(i) = n(k;), then (,_, bf(z) =0.

Proof of Claim 3: Wlog we may assume that n € I') for some n < n*. Indeed,
otherwise we can find m < n*, n € I/, and some increasing h : m — n such that
n'(i) = n(h(i)), for all i < m. Then {h™1[k;, kir1) : @ < t} equals {[l;,l;11) : i < s}
for some lp = 0 < Iy < ... <ls_1 = m. Note that n'[[l;,1;11) is constant, and letting

p' € 52 be defined by p'(i) = 1/'(l;), we have p'(i) = p(h(i)). Hence (),_, b " @ = implies

ﬂz<t bf(l) = 0.

Therefore we assume 1 € I, for some n < n*. Suppose we had ()._, b} @ < 0.

<t

v*). Let h : B — B/D be the canonical

Let D be an ultrafilter on B containing (1, b

homomorphism. Define ¢ € ¥ 2 such that ((i) = 1 iff a; € D. Hence ¢ & T'yyp-. We get

R 079 = () 7l¢(im™), ... ¢((i + 1m* — 1))/ =1.

1<t 1<t

Hence by Claim 1,
Vi < t3a; € [{im*, ..., i+ )m* —1}]"Vieca; (@) =p(i).

Define p € ™2 by pu(j) = p(i) iff j € [in*, (i + 1)n*). Then u is a subsequence of ¢ and

therefore u & I'y,«. But also 7 is a subsequence of i, and hence n € I',,, a contradiction.
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Ociaim 3

v’ = 0. Let ¢ € ™2 be defined such that

Claim 4. Suppose p € '2 and Mi<: s

C(m*i) = p(i) and ([[m*i,m*(i 4+ 1)) is constant for every i < t. Then ¢ € T'pyy.

Proof of Claim 4: Otherwise, () a*) > 0. Let D be an ultrafilter containing

i<m*t %
N as’. Let h: B— B /D be the canonical homomorphism. We have

<m*t 1

MHMMWZﬂfmmmw~£@f@+n_mwm:rpmmw“m@M“:L

i<t i<t i<t
This is a contradiction. OClaim 4
Since we assume that (a, : @ € A) is not independent, by Claim 2 we can find £* < w
minimal such that for some p* € ¥ 2, (i< i bf*(i) = 0. Note that p*(i+1) # p*(i) for every
i < k* — 1. Indeed, otherwise let ¢ € ™ *"2 be defined as in Claim 4. So ¢ € T'p-p+. By

Claim 3 we can find p’ of shorter length than p* such that

| bf/(i) = 0, contradicting

i<|p’
the minimal choice of k*.

Suppose first that £* = 1. We conclude that (b, : v < 7y) either is constantly 1 or 0.
The main part of the definition of R, (), k,w) then gives a sequence of length  as desired

in (b) of Theorem 4.
Secondly suppose £* > 1. If (), .. 5 bf*(i) N2 MYy =0 and (), 4«5 bf*(i) N

i<k*—2 "1

a0

bg*—Q mbk*_l == 0, then m i<k*—2Yi

of the main part of the definition of R (), k,w) gives a sequence as desired in (b).

Otherwise, if p*(k* —2) =1 and p*(k* — 1) = 0, then

Nbg-_1, and an application

ﬂ bf*(i) Mg —2 < ﬂ bf*(i) N bk —1
i<k*—2 i<k*—2
, and applying the definition gives (c). Similarly if p*(k* —2) =0 and p*(k* —1)=1. O
Theorem 6. Assume the following:
(1) 0% exists,
(2) V = X is an uncountable cardinal,

(3) k,0 <X, and L |= K is a regular cardinal.
Then L = R,(\ k,0).

Proof: Let ¢ : [\|<% — 6, ¢ € L, be arbitrary.
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Let Y be the set of all w € [A]<% such that for every n < |w| and u € [w]™ there exists
B C X of order-type £ in L such that Vv € [B]™ c¢(u) = ¢(v). Clearly Y € L.

Claim 1. If in V there exists A € [A\]* with [A]<* C Y, then L = R,(\ k,0).

Proof of Claim 1: Let T be the set of all one-to-one sequences p € <“\ withran(p) € Y,
ordered by extension. Then T' is a tree and by assumption, 7" has an w-branch in V.
By absoluteness, 7" has an w-branch b in L. Then ran(b) (or some subset) witnesses
LE R,(\k,0). OClaim 1

Let (i, : v < A1) be the increasing enumeration of the club of indiscernibles of L+ .
Then (i, : v < A) is the club of indiscernibles of Ly. As ¢ € Ly+ there exist ordinals
Co<...<&-1 <A< <...<&-—1<AT and a Skolem term ¢. such that

LA+ ): C = tc[igo, cee 7i£q—1]'

By indiscernibility and remarkability (see [J, p.345]) it easily follows that if o* = max{¢,_1, 6}+

1, then ¢[[{i, : a* < v < A}|™ is constant for every n < w, say with value ¢,. Let n < w
be arbitrary. Let 09 = Ga* 4y 01 = tar+rtls---s0n—1 = la*trtn_1-

Claim 2. For every a < g there exists a limit 6, a < & < dg, such that for all
Bo < ...< PBn_o < 9§ the following hold:
(%)o ¢{0,01,...,0n—1} =c{00,...,0n_1}(=cn),
(%)1 ¢{Bo,0,02,...,0n-1} = c{B0,01,--+,0n-1},
(*)2 c{Bo, B1,0,03, .-, 0n—1} = c{Bo, B1,02, -+, 0n—1},

*

*

(*)n—l 6{607 ey ﬁn—27 6} - C{/BO, v 7671—27 671—1}-

Proof of Claim 2: Let a < dg be arbitrary. Choose v < k such that v is a limit and
lar4~y > o, and let 0 = iy

Then clearly (x)o holds.

In order to prove (x)1, let § < & be arbitrary. There exist ordinals vy < ... < vg_1 <
o + v and a Skolem term ¢z such that

t fivgs - sy, ] = B

Moreover there exist ordinals pg < ... < -1 < o and a Skolem term ¢ such that

Lot = tlipgs v ] = telicor - -rie, [ {talives- - ive_ s 00 0na ke (4)
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Note that all indices of occurring indiscernibles, except for d1,...,0d,_1, either are at least
A or else below a* 4+ v. We conclude that in (4), d; can be replaced by §. The resulting

statement is

6{57517 .. '7571—1} - 0{5757 527 .. '75n—1}7

as desired.

The proof of (x)o—(*),,—1 is similar. Oclaim 2

It is clear that the statement of Claim 2 is absolute. Hence it is also true in L. Using
this we shall prove that [{i, : * < v < A}]<¥ C Y. By Claim 1, this will suffice. We
only have to prove that for every n < w there exists B C \ of order-type k such that
B e L and Vv € [B]" ¢(v) = ¢,. Fix n < w. Working in L, we construct B inductively
as {7, 1 v < K}

Fix g < 61 < ... < d,_2 < X as above. Apply Claim 2 in L with o = 0 and obtain
Yo € (0,d0). Suppose we have gotten (7, : v < p) for some p < k. Let v* =sup, ., 7, + 1.
Since cf®(6g) > k and (7, : v < u) € L, we have that v* < dy. Apply Claim 2 with a = v*
and get v, € (v*, o).

We claim that (v, : v < k) is as desired. Indeed, let {v,, < 7, < ... < v,_,} be
arbitrary. We have

C{%/o’ s 77”7171} =(*)n-1 c{'VVm sy Yon_as 671—1}

:(*)n—Z C{”yyo, vy Yumgs 671—27 671—1}

= C{’YUO7 517 ey 571—1}

=)o Cn- UTheorem 6
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