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ABSTRACT: We introduce a large cardinal property which is consistent with L

and show that for every superatomic Boolean algebra B and every cardinal λ

with the large cardinal property, if tightness+(B) ≥ λ+ then depth(B) ≥ λ. This

improves a theorem of Dow and Monk.

In [DM, Theorem C], Dow and Monk have shown that if λ is a Ramsey cardinal (see

[J, p.328]) then every superatomic Boolean algebra with tightness at least λ+ has depth at

least λ. Recall that a Boolean algebra B is superatomic iff every homomorphic image of B

is atomic. The depth of B is the supremum of all cardinals λ such that there is a sequence

(bα : α < λ) in B with bβ < bα for all α < β < λ (a well-ordered chain of length λ). Then

depth+ of B is the first cardinal λ such that there is no well-ordered chain of length λ in

B. The tightness of B is the supremum of all cardinals λ such that B has a free sequence

of length λ, where a sequence (bα : α < λ) is called free provided that if Γ and ∆ are finite

subsets of λ such that α < β for all α ∈ Γ and β ∈ ∆, then

⋂

α∈Γ

−bα ∩
⋂

β∈∆

bβ 6= 0.

By tightness+(B) we denote the first cardinal λ for which there is no free sequence of

length λ in B.

1 Supported by the Basic Research Foundation of the Israel Academy of Sciences; pub-

lication 663.
2 Partially supported by the Alexander von Humboldt Foundation and grant 2124-

045702.95/1 of the Swiss National Science Foundation.
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For b ∈ B we sometimes write b0 for −b and b1 for b.

We improve Theorem C from [DM] in two directions. We introduce a large cardinal

property which is much weaker than Ramseyness and even consistent with L (the con-

structible universe) and show that in Theorem C from [DM] it suffices to assume that λ

has this property. Moreover we show that it suffices to assume tightness+(B) ≥ λ+ instead

of tightness(B) ≥ λ+ to conclude that depth(B) ≥ λ. In particular we get:

Theorem 1. Suppose that 0] exists. Let B be a superatomic Boolean algebra in the

constructible universe L, and let λ be an uncountable cardinal in V . Then in L it is true

that tightness+(B) ≥ λ+ implies that depth+(B) ≥ λ.

For the theory of 0] see [J, §30]. Note that λ as in Theorem 1 is a limit cardinal in

L, hence it suffices to show that in L, depth(B) ≥ κ for all cardinals κ < λ. As was the

case with the proof of Theorem C of [DM], we can’t show that under the assumptions of

Theorem 1, depth(B) = λ is attained, i.e. that there is a well-ordered chain of length λ.

For the proof we consider the following large cardinal property:

Definition 2. Let λ, κ, θ be infinite cardinals, and let γ be an ordinal. The relation

Rγ(λ, κ, θ) is defined as follows:

For every c : [λ]<ω → θ there exists A ⊆ λ of order-type γ, such that for every

u ∈ [A]<ω there exists B ⊆ λ of order-type κ such that ∀w ∈ [B]|u| c(w) = c(u).

Lemma 3. Assume Rγ(λ, κ, θ), where γ is a limit ordinal. For every c : [λ]<ω → θ

there exists A ⊆ λ as in the definition of Rγ(λ, κ, θ) such that additionally c¹[A]
n is constant

for every n < ω.

Proof: Define c′ on [λ]<ω by

c′{β0, . . . , βn−1} = {(v, c{βi : i ∈ v}) : v ⊆ n}.

As θ is infinite we can easily code the values of c′ as ordinals in θ and therefore apply

Rγ(λ, κ, θ) to it. We get A ⊆ λ of order-type γ. We shall prove that c¹[A]n is constant,

for every n < ω. Fix w1, w2 ∈ [A]n. Since γ is a limit, without loss of generality we

may assume that max(w1) < min(w2). Let w = w1 ∪ w2. By Definition 2 there exists

B ⊆ λ, o.t.B = κ, such that c′¹[B]2n is constant with value c′(w). Let (βν : ν < κ) be the

increasing enumeration of B. We have

c′{β0, . . . , β2n−1} = c′{βn, . . . , β3n−1}.
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By the definition of c′ we get

c{β0, . . . , βn−1} = c{βn, . . . , β2n−1} =: c0.

This information is coded in c′{β0, . . . , β2n−1}, i.e.

({0, . . . , n− 1}, c0), ({n, . . . , 2n− 1}, c0) ∈ c′{β0, . . . , β2n−1}.

As c′{β0, . . . , β2n−1} = c′(w) we conclude c(w1) = c(w2) = c0.

Theorem 4. Assume Rγ(λ, κ, ω), where γ is a limit ordinal. If B is a Boolean algebra

and (aν : ν < λ) is a sequence in B, then one of the following holds:

(a) there exists A ⊆ λ, o.t.(A) = γ, such that (aν : ν ∈ A) is independent;

(b) there exist n < ω and strictly increasing sequence (βν : ν < κ) in λ such that, letting

bν =
⋃

k<n

⋂

l<n

aβn2ν+nk+l
, (∗)

we have that (bν : ν < κ) is constant;

(c) there exists a strictly decreasing sequence in B of length κ.

Corollary 5. Assume Rγ(λ, κ, ω), where γ is a limit ordinal. If B is a superatomic

Boolean algebra, then tightness+(B) > λ implies Depth+(B) > κ.

Proof of Corollary 5: Let (aν : ν < λ) be a free sequence in B. As a superatomic

Boolean algebra does not have an infinite independent subset, (a) is impossible. Suppose

(b) were true. Define bν as in (∗). Clearly we have

−bν ≥
⋂

k,l<n

a0βn2ν+nk+l
, and

bν ≥
⋂

k,l<n

aβn2ν+nk+l
.

Hence if ν < µ and bν = bµ we obtain

0 = −bν ∩ bµ ≥
⋂

k,l<n

a0βn2ν+nk+l
∩

⋂

k,l<n

aβn2µ+nk+l
.

This contradicts freeness of (aν : ν < κ). We conclude that (c) must hold.
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Proof of Theorem 4: Define c : [λ]<ω → [<ω2]<ω by

c{β0 < . . . < βn−1} = {η ∈
n2 :

⋂

i<n

a
η(i)
βi

= 0}.

Note that c{β0 < . . . < βn−1} = c{α0 < . . . < αn−1} implies that {aβ0
, . . . , aβn−1

}

and {aα0
, . . . , aαn−1

} have the same quantifier-free diagram, i.e. for every quantifier-free

formula φ(x0, . . . , xn−1) in the language of Boolean algebra,

B |= φ[aβ0
, . . . , aβn−1

]⇔ B |= φ[aα0
, . . . , aαn−1

].

Let A ⊆ λ be as guaranteed for c by Rγ(λ, κ, ω). By Lemma 3 we may assume that c¹[A]n

is constant, for every n < ω.

If (aα : α ∈ A) is independent, we are done. Therefore we may assume that this is

false. For m < ω define

Γm = {η ∈ m2 : ∃{β0 < . . . < βm−1} ⊆ A
⋂

i<m

a
η(i)
βi

= 0}.

By assumption, in the definition of Γm the existential quantifier can be replace by a

universal one to give the same set. There exists m < ω such that Γm 6= ∅. Define

Γ′m = {η ∈ Γm : no proper subsequence of η belongs to
⋃

k<m

Γk}.

By Kruscal’s Theorem [K], we have that
⋃

m<ω Γ′m is finite. Let n∗ be minimal such that
⋃

m<ω Γ′m =
⋃

m<n∗ Γ
′
m. Then clearly we have that for every m < ω and η ∈ Γm, η has a

subsequence in
⋃

k<n∗ Γ
′
k. Let m

∗ = (n∗)2, and let

τ(x0, . . . , xm∗−1) =
⋃

l<n∗

⋂

k<n∗

xn∗l+k.

Claim 1. If η ∈ m∗

2, t ∈ {0, 1}, and in the Boolean algebra {0, 1}, τ [η(0), . . . , η(m∗−

1)] = t, then |{i < m∗ : η(i) = t}| ≥ n∗.

Let (βν : ν < γ) be the strictly increasing enumeration of A, and define

bν = τ [aβm∗ν
, aβm∗ν+1

, . . . , aβm∗ν+m∗
−1
],
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for every ν < γ, where the evaluation of τ takes place in B, of course. It is easy to see that

the sequence (bν : ν < γ) inherites from (aβν : ν < γ) the property, that any two finite

subsequences of same length have the same quantifier-free diagram.

Claim 2. If η ∈ Γn, then
⋂

i<n b
η(i)
i = 0.

Proof of Claim 2: Otherwise there exists an ultrafilter D on B such that
⋂

i<n b
η(i)
i ∈

D. Define ζ ∈ nm∗

2 by ζ(i) = 1 iff aβi ∈ D. Then
⋂

i<nm∗ a
ζ(i)
βi

∈ D, and hence ζ 6∈ Γnm∗ .

Let h : B → B/D = {0, 1} be the canonical homomorphism induced by D. We calculate

1 = h(
⋂

i<n b
η(i)
i ) =

⋂

i<n h(bi)
η(i) =

⋂

i<n τ [h(aβm∗i
), . . . , h(aβm∗(i+1)−1

)]η(i)

=
⋂

i<n τ [ζ(m
∗i), . . . , ζ(m∗i+ k), . . . , ζ(m∗(i+ 1)− 1)]η(i).

We conclude that τ [ζ(m∗i), . . . , ζ(m∗i+ k), . . . , ζ(m∗(i+1)− 1)] = η(i), for all i < n,

and hence by Claim 1 we can choose ji ∈ [m∗i,m∗(i+ 1)) such that ζ(ji) = η(i). Clearly

i0 < i1 implies that ji0 < ji1 . But this implies ζ ∈ Γnm∗ , a contradiction. Claim 2

Claim 3. If t < ω, η ∈ Γn, 0 = k0 < k1 < . . . < kt = n, and η¹[ki, ki+1) is constant

for all i < t, and if ρ ∈ t2 is defined by ρ(i) = η(ki), then
⋂

i<t b
ρ(i)
i = 0.

Proof of Claim 3: Wlog we may assume that η ∈ Γ′n for some n < n∗. Indeed,

otherwise we can find m < n∗, η′ ∈ Γ′m and some increasing h : m → n such that

η′(i) = η(h(i)), for all i < m. Then {h−1[ki, ki+1) : i < t} equals {[li, li+1) : i < s}

for some l0 = 0 < l1 < . . . < ls−1 = m. Note that η′¹[li, li+1) is constant, and letting

ρ′ ∈ s2 be defined by ρ′(i) = η′(li), we have ρ′(i) = ρ(h(i)). Hence
⋂

i<s b
ρ′(i)
i = 0 implies

⋂

i<t b
ρ(i)
i = 0.

Therefore we assume η ∈ Γ′n, for some n < n∗. Suppose we had
⋂

i<t b
ρ(i)
i > 0.

Let D be an ultrafilter on B containing
⋂

i<t b
ρ(i)
i . Let h : B → B/D be the canonical

homomorphism. Define ζ ∈ tm∗

2 such that ζ(i) = 1 iff ai ∈ D. Hence ζ 6∈ Γtm∗ . We get

h(
⋂

i<t

b
ρ(i)
i ) =

⋂

i<t

τ [ζ(im∗), . . . , ζ((i+ 1)m∗ − 1)]ρ(i) = 1.

Hence by Claim 1,

∀i < t∃ai ∈ [{im∗, . . . , (i+ 1)m∗ − 1}]n
∗

∀j ∈ ai ζ(j) = ρ(i).

Define µ ∈ tn∗2 by µ(j) = ρ(i) iff j ∈ [in∗, (i + 1)n∗). Then µ is a subsequence of ζ and

therefore µ 6∈ Γtn∗ . But also η is a subsequence of µ, and hence η 6∈ Γn, a contradiction.
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Claim 3

Claim 4. Suppose ρ ∈ t2 and
⋂

i<t b
ρ(i)
i = 0. Let ζ ∈ m∗t2 be defined such that

ζ(m∗i) = ρ(i) and ζ¹[m∗i,m∗(i+ 1)) is constant for every i < t. Then ζ ∈ Γm∗t.

Proof of Claim 4: Otherwise,
⋂

i<m∗t a
ζ(i)
i > 0. Let D be an ultrafilter containing

⋂

i<m∗t a
ζ(i)
i . Let h : B → B/D be the canonical homomorphism. We have

h(
⋂

i<t

b
ρ(i)
i ) =

⋂

i<t

τ [ζ(m∗i), . . . , ζ(m∗(i+ 1)− 1)]ρ(i) =
⋂

i<t

τ [ρ(i), . . . , ρ(i)]ρ(i) = 1.

This is a contradiction. Claim 4

Since we assume that (aα : α ∈ A) is not independent, by Claim 2 we can find k∗ < ω

minimal such that for some ρ∗ ∈ k∗2,
⋂

i<k∗ b
ρ∗(i)
i = 0. Note that ρ∗(i+1) 6= ρ∗(i) for every

i < k∗ − 1. Indeed, otherwise let ζ ∈ m∗k∗2 be defined as in Claim 4. So ζ ∈ Γm∗k∗ . By

Claim 3 we can find ρ′ of shorter length than ρ∗ such that
⋂

i<|ρ′| b
ρ′(i)
i = 0, contradicting

the minimal choice of k∗.

Suppose first that k∗ = 1. We conclude that (bν : ν < γ) either is constantly 1 or 0.

The main part of the definition of Rγ(λ, κ, ω) then gives a sequence of length κ as desired

in (b) of Theorem 4.

Secondly suppose k∗ > 1. If
⋂

i<k∗−2 b
ρ∗(i)
i ∩ bk∗−2 ∩ b

0
k∗−1 = 0 and

⋂

i<k∗−2 b
ρ∗(i)
i ∩

b0k∗−2 ∩ bk∗−1 = 0, then
⋂

i<k∗−2 b
ρ∗(i)
i ∩ bk∗−2 =

⋂

i<k∗−2 b
ρ∗(i)
i ∩ bk∗−1, and an application

of the main part of the definition of Rγ(λ, κ, ω) gives a sequence as desired in (b).

Otherwise, if ρ∗(k∗ − 2) = 1 and ρ∗(k∗ − 1) = 0, then

⋂

i<k∗−2

b
ρ∗(i)
i ∩ bk∗−2 <

⋂

i<k∗−2

b
ρ∗(i)
i ∩ bk∗−1

, and applying the definition gives (c). Similarly if ρ∗(k∗ − 2) = 0 and ρ∗(k∗ − 1) = 1.

Theorem 6. Assume the following:

(1) 0] exists,

(2) V |= λ is an uncountable cardinal,

(3) κ, θ < λ, and L |= κ is a regular cardinal.

Then L |= Rω(λ, κ, θ).

Proof: Let c : [λ]<ω → θ, c ∈ L, be arbitrary.

6
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Let Y be the set of all w ∈ [λ]<ω such that for every n ≤ |w| and u ∈ [w]n there exists

B ⊆ λ of order-type κ in L such that ∀v ∈ [B]n c(u) = c(v). Clearly Y ∈ L.

Claim 1. If in V there exists A ∈ [λ]ω with [A]<ω ⊆ Y , then L |= Rω(λ, κ, θ).

Proof of Claim 1: Let T be the set of all one-to-one sequences ρ ∈ <ωλ with ran(ρ) ∈ Y ,

ordered by extension. Then T is a tree and by assumption, T has an ω-branch in V .

By absoluteness, T has an ω-branch b in L. Then ran(b) (or some subset) witnesses

L |= Rω(λ, κ, θ). Claim 1

Let (iν : ν < λ+) be the increasing enumeration of the club of indiscernibles of Lλ+ .

Then (iν : ν < λ) is the club of indiscernibles of Lλ. As c ∈ Lλ+ there exist ordinals

ξ0 < . . . < ξp−1 < λ ≤ ξp < . . . < ξq−1 < λ+ and a Skolem term tc such that

Lλ+ |= c = tc[iξ0 , . . . , iξq−1
].

By indiscernibility and remarkability (see [J, p.345]) it easily follows that if α∗ = max{ξp−1, θ}+

1, then c¹[{iν : α∗ ≤ ν < λ}]n is constant for every n < ω, say with value cn. Let n < ω

be arbitrary. Let δ0 = iα∗+κ, δ1 = iα∗+κ+1, . . . , δn−1 = iα∗+κ+n−1.

Claim 2. For every α < δ0 there exists a limit δ, α < δ < δ0, such that for all

β0 < . . . < βn−2 < δ the following hold:

(∗)0 c{δ, δ1, . . . , δn−1} = c{δ0, . . . , δn−1}(= cn),

(∗)1 c{β0, δ, δ2, . . . , δn−1} = c{β0, δ1, . . . , δn−1},

(∗)2 c{β0, β1, δ, δ3, . . . , δn−1} = c{β0, β1, δ2, . . . , δn−1},

. . .

(∗)n−1 c{β0, . . . , βn−2, δ} = c{β0, . . . , βn−2, δn−1}.

Proof of Claim 2: Let α < δ0 be arbitrary. Choose γ < κ such that γ is a limit and

iα∗+γ > α, and let δ = iα∗+γ .

Then clearly (∗)0 holds.

In order to prove (∗)1, let β < δ be arbitrary. There exist ordinals ν0 < . . . < νk−1 <

α∗ + γ and a Skolem term tβ such that

tLλ

β [iν0
, . . . , iνk−1

] = β.

Moreover there exist ordinals µ0 < . . . < µl−1 < α∗ and a Skolem term t such that

Lλ+ |= t[iµ0
, . . . , iµl−1

] = tc[iξ0 , . . . , iξq−1
]{tβ[iν0

, . . . , iνk−1
], δ1, . . . , δn−1}. (+)
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Note that all indices of occurring indiscernibles, except for δ1, . . . , δn−1, either are at least

λ or else below α∗ + γ. We conclude that in (+), δ1 can be replaced by δ. The resulting

statement is

c{β, δ1, . . . , δn−1} = c{β, δ, δ2, . . . , δn−1},

as desired.

The proof of (∗)2—(∗)n−1 is similar. Claim 2

It is clear that the statement of Claim 2 is absolute. Hence it is also true in L. Using

this we shall prove that [{iν : α∗ ≤ ν < λ}]<ω ⊆ Y . By Claim 1, this will suffice. We

only have to prove that for every n < ω there exists B ⊆ λ of order-type κ such that

B ∈ L and ∀v ∈ [B]n c(v) = cn. Fix n < ω. Working in L, we construct B inductively

as {γν : ν < κ}.

Fix δ0 < δ1 < . . . < δn−2 < λ as above. Apply Claim 2 in L with α = 0 and obtain

γ0 ∈ (0, δ0). Suppose we have gotten (γν : ν < µ) for some µ < κ. Let γ∗ = supν<µ γν +1.

Since cfL(δ0) ≥ κ and (γν : ν < µ) ∈ L, we have that γ∗ < δ0. Apply Claim 2 with α = γ∗

and get γµ ∈ (γ∗, δ0).

We claim that (γν : ν < κ) is as desired. Indeed, let {γν0
< γν1

< . . . < γνn−1
} be

arbitrary. We have

c{γν0
, . . . , γνn−1

} =(∗)n−1 c{γν0
, . . . , γνn−2

, δn−1}

=(∗)n−2 c{γν0
, . . . , γνn−3

, δn−2, δn−1}

= . . .

=(∗)1 c{γν0
, δ1, . . . , δn−1}

=(∗)0 cn. Theorem 6
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