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Abstract. We continue developing the general theory of forcing notions built
with the use of norms on possibilities, this time concentrating on ccc forcing
notions and classifying them.
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SWEET & SOUR 1

0. Introduction

The present paper has three themes. First, we continue the research started
started in Judah, Ros lanowski and Shelah [8] and Ros lanowski and Shelah [16],
[15], and we investigate the method of norms on possibilities in the context of ccc
forcing notions, getting a number of constructions of nicely definable ccc forcings.
Most of them belong to the class of nep–forcing notions of Shelah [25], [27], [26]
(giving yet more examples to which the general theory developed there can be
applied).

The second theme of the paper is a part of the general program “how special
are random and Cohen forcing notions (or: the respective ideals)”. Kunen (see
[11, Question 1.2]) suspected that the null ideal and the meager ideal on 2ω can be
somehow characterized by their combinatorial properties, but in [15] we constructed
σ–ideals (or rather forcing notions) that have nice properties, however are different
from the two. (But see also Kechris and Solecki [10] and Solecki [28] for results in
the opposite direction.) Shelah [21] shows that the two forcing notions may occupy
special positions in the realm of nicely definable forcing notions. In this realm
we may classify forcing notions using the methods of [25], [26] and, for example,
declare that very Souslin (or generally ω–nw–nep) ccc forcing notions (see 1.3.1)
are really nice. Both the Cohen forcing notion and the random forcing notion and
their FS iterations (and nice subforcings) are all ccc ω–nw–nep, and [24, Problem
4.24] asked if we have more examples. It occurs that our method relatively easily
results in very Souslin ccc forcing notions (see 1.3.4(3), 1.5.8(2), 1.5.11, 1.5.15(3)).

The third theme is sweet & sour and it is related to one of the most striking
differences between the random and the Cohen forcing notions which appears when
we consider the respective regularity properties of projective set. In [19], Shelah
proved that the Lebesgue measurability of Σ1

3 sets implies ω1 is inaccessible in L,
while one can construct (in ZFC) a forcing notion P such that VP |= “projective
subsets of R have the Baire property”. The latter construction involved a strong
version of ccc, so called “sweetness” (see 4.1.2). The heart of the former result is
that the composition of two Amoeba for measure forcing notions is sour (see 4.3.2)
over random. Also from a sequence of ω1 reals we can define a non-measurable set,
but not one without the Baire Property.

It seems that sweet–sour properties of forcing notions could be used to classify
them as either close to Cohen or as more random–like. Again, our methods result
in examples for both cases. Surprisingly, there are sour examples which may appear
to be not so much different from the sweet ones - see 4.4.3.

Let us postpone the discussion of the general context of this paper till Epilogue,
when we can easier refer to the definitions and notions discussed in the paper. (But
the curious reader may start reading this paper from the last section.)

We try to make this work self contained, citing the most important definitions
and results from [16], [15] whenever needed. However, at least superficial familiarity
with those papers could be of some help in reading this paper.

0.1. The content of the paper. Like in [16], the basic intention of this paper is to
present “the general theory” rather than particular examples. Therefore, we extract
those properties of an example we want to construct which are responsible for the
fact that it works and we separate “the general theory” from its applications. But
to make the paper more readable, in most cases, we sacrifice generality for clarity.
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2 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

In the first section we uniformize and generalize the constructions of [8] and [15].
We investigate the complexity of the resulting forcing notions as well as properties
like “adding unbounded reals”, “preserving unbounded families”, etc.

The next section introduces more ways in which creatures (or tree–creatures) can
be used to build ccc forcing notions. We discuss mixtures with randoms, some rela-
tives of the Universal Meager forcing notion, as well as as “artificial” modifications
of previously introduced forcings.

The third part formalizes definitions of σ–ideals corresponding to our forcing
notions.

The following section discusses sweet–sour properties of our forcing notions. We
recall the notions of sweetness and introduce yet another sweet property, and we
show that very often our constructions are (somewhat) sweet. However, there are
exceptions to this rule. So we define some strong negations of sweetness (sourness)
and we show how our schema may end up with very sour results.

Finally, the last section is (in some sense) a continuation of the introduction.
We discuss the results of the paper and formulate some problems.

0.2. Notation. Most of our notation is standard and compatible with that of clas-
sical textbooks on Set Theory (like Bartoszyński and Judah [1]). However in forcing
we keep the convention that a stronger condition is the larger one.

Basic Notation: In this paper H will stand for a function with domain ω and
such that (∀m ∈ ω)(|H(m)| ≥ 2). We usually assume that 0 ∈ H(m) (for all
m ∈ ω); if it is not the case then we fix an element of H(m) and we use it when-
ever appropriate notions refer to 0. Moreover we demand H ∈ H(ω1) (i.e., H is
hereditarily countable.

More Notation:

(1) R≥0 stands for the set of non-negative reals. The integer part of a real
r ∈ R≥0 is denoted by ⌊r⌋.

(2) For two sequences η, ν we write ν ⊳ η whenever ν is a proper initial segment
of η, and ν E η when either ν ⊳ η or ν = η. The length of a sequence η is
denoted by lh(η).

(3) A tree is a family T of finite sequences such that for some root(T ) ∈ T we
have

(∀ν ∈ T )(root(T ) E ν) and root(T ) E ν E η ∈ T ⇒ ν ∈ T.

For a tree T , the family of all ω–branches through T is denoted by [T ], and
we let

max(T )
def
= {ν ∈ T : there is no ρ ∈ T such that ν ⊳ ρ}.

If η is a node in the tree T then

succT (η) = {ν ∈ T : η ⊳ ν & lh(ν) = lh(η) + 1} and

T [η] = {ν ∈ T : η E ν}.

(4) The quantifiers (∀∞n) and (∃∞n) are abbreviations for

(∃m ∈ ω)(∀n > m) and (∀m ∈ ω)(∃n > m),

respectively.
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SWEET & SOUR 3

(5) For a set X , [X ]≤ω , [X ]<ω and P(X) will stand for families of countable,
finite and all, respectively, subsets of the set X . The family of k-element

subsets of X will be denoted by [X ]k. The set of all finite sequences with

values in X is called X<ω (so domains of elements of X<ω are integers).
The collection of all finite partial functions from ω to X is Xω

⌣.
(6) For a relation R (a set of ordered pairs), dom(R) stands for the domain of

R and rng(R) denotes the range of R.
(7) The Cantor space 2ω and the Baire space ωω are the spaces of all functions

from ω to 2, ω, respectively, equipped with the natural (Polish) topology.
(8) For f, g ∈ ωω we write f <∗ g (f ≤∗ g, respectively) whenever (∀∞n ∈

ω)(f(n) < g(n)) ((∀∞n ∈ ω)(f(n) ≤ g(n)), respectively).
(9) For a forcing notion P, ΓP stands for the canonical P–name for the generic

filter in P. With this one exception, all P–names for objects in the extension
via P will be denoted with a dot above (e.g. τ̇ , Ẋ). The weakest element of
P will be denoted by ∅P (and we will always assume that there is one, and
that there is no other condition equivalent to it).

0.3. Some classical examples of ccc forcing notions. Many classical ccc forc-
ing notions for the reals are covered by the general methods introduced in this
paper. Let us recall some of those forcing notions and point to which cases of our
method they belong.

Often, a forcing notion for the Reals fits the following pattern. A condition
determines an initial segment of the generic real Ẇ and it puts some restrictions
on possible further extensions of the initial segment. When we pass to a stronger
condition we extend the determined part of the generic real and we put more
restrictions on possible extensions. To guarantee that the forcing notion satisfies
the ccc we require that the set of allowed values for Ẇ (n) is “large” (and “large”
sets are supposed to behave somewhat like a filter). Let us look at two most
popular examples: the Hechler forcing notion D and Miller’s Eventually Different
Real forcing notion E.

A condition in D is a pair (s, f) where s ∈ ω<ω and f ∈ ωω are such that s ⊆ f ;
the order of D is defined by

(s, f) ≤D (s′, f ′) if and only if s ⊆ s′ and (∀n < ω)(f(n) ≤ f ′(n)).

A condition in E is a pair (s, F ) where s ∈ ω<ω and ∅ 6= F ∈ [ωω ]<ω ; the order
of E is defined by

(s, F ) ≤E (s′, F ′) if and only if s ⊆ s′, F ⊆ F ′ and
(∀n ∈ [lh(s), lh(s′)))(∀f ∈ F )(s′(n) 6= f(n)).

In both examples the part of the generic real decided by a condition is the first
coordinate s. Let us look at the restrictions on possible extensions: in D, a condition
(s, f) says that (basically) the generic real ẆD ∈ ωω extends s so that it never gets

below f , i.e., ẆD(n) ≥ f(n) for all n. Thus, the possible values of ẆD(n) (from
point of view of (s, f) ∈ D) are elements of the set {m ∈ ω : m ≥ f(n)}. Similarly,
in the case of E, a condition (s, F ) in this forcing decides that the generic real

ẆE ∈ ωω extends s and satisfies ẆE(n) /∈ {f(n) : f ∈ F}.
Both D and E could be represented as follows. A condition is a sequence

(s, A0, A1, A2, . . .), where s ∈ ω<ω and ∅ 6= An ⊆ ω, and the sets An are “large”
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4 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

in appropriate sense (see later). The order is such that

(s, A0, A1, A2, . . .) ≤ (s′, A′
0, A

′
1, A

′
2, . . .) if and only if

s ⊆ s′, (∀n ∈ [lh(s), lh(s′))(s′(n) ∈ An−lh(s)) and
(∀n < ω)(A′

n ⊆ Ak+n), where k = lh(s′) − lh(s).

The difference between D and E comes from deciding the meaning of “large”: for
the former forcing we just demand that all sets An are co-finite, in the case of E we
demand that the sets ω \An are finite and their sizes have a common upper bound.
Thus the two forcing notions fit the scheme of subsection 1.1 for local creating pairs
(so no Σ⊥; in relation with E see Example 1.5.9).

In a similar way we may look at the Mathias forcing with an ultrafilter. Let D
be an ultrafilter on ω. A condition in the forcing notion MD is a pair (u,B) such

that u ∈ [ω]<ω , B ∈ D and max(u) < min(B). The order of MD is such that

(u,B) ≤ (u′, B′) if and only if u ⊆ u′, B′ ⊆ B, and u′ \ u ⊆ B.

We may think of this forcing notion as adding a real ẆMD
∈ 2ω and then treat

conditions in the forcing as sequences (s, A0, A1, A2, . . .), where s ∈ 2<ω, An ∈
{{0}, 2} and “large” means “equal to 2”, but here we demand also that An’s are
large on a set from the ultrafilter. This type of constructions is considered in the
first part of subsection 2.2.

But we have also ccc forcing notions with conditions of a different nature: forcing
with trees. Let us recall the “Laver with an ultrafilter” forcing notion. Suppose
that D is an ultrafilter on ω. A condition in LD is a tree T ⊆ ω<ω with root
root(T ) and such that if ν ∈ T then the set {n : ν⌢〈n〉} is in D. Thus again,
we may think that a condition T ∈ LD gives us a finite part of the generic real
ẆLD

(it is root(T )) and then it gives some possibilities for the successive values

of ẆLD
(n), but this time the possibilities for ẆLD

(n) depend on ẆLD
↾n. Still, if

ν ∈ T (so it may be the initial segment of ẆLD
), then the set of all possible values

for ẆLD
(lh(ν)) is “large” - it belongs to the ultrafilter D. Note also that conditions

T ∈ LD may be thought of as systems 〈Aν : ν ∈ T 〉 where Aν = succT (ν) (and our
demand is that each Aν belongs to D). This is exactly the setting of subsection
1.2. (The particular case of LD is also covered by the construction of subsection
2.1.)

Yet another type of classical ccc forcing notions is represented by the Universal
Meager forcing UM. A condition in UM is a pair (N, T ) where N < ω and T ⊆ 2<ω

is a tree such that [T ] is a nowhere dense subset of 2ω. The extension relation is
defined by

(N, T ) ≤UM (N ′, T ′) if and only if N ≤ N ′, T ⊆ T ′, and T ′∩2≤N = T ∩2≤N.

The generic object here is a nowhere dense subtree of 2<ω, and to really reflect all
the properties of this type of forcing notions, in subsection 2.3 we introduce another
variation of our method: tree forcings determined by universality parameters. (For
the representation of UM as one of those forcing notions see Example 2.4.7.)

1. Building Souslin ccc forcing notions

In this section we will review methods for building ccc forcing notions announced
or present in some form in [8], [16], and [15].
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SWEET & SOUR 5

1.1. Glue and cut — the method of [RoSh:628]. Here we re-present the
method of building ccc forcing notions with use of (semi–) creating triples from
[15]. We will slightly modify the definitions loosing some generality. However, we
will gain more direct connection to the method of [16] and (hopefully) a better
clarity of arguments. Note that the main difference is that here we do not worry
about “the permutation invariance” of our forcing notions, so the creatures get back
their mt

dn,m
t
up (and they are like those of [16]).

Definition 1.1.1. Let H : ω −→ H(ω1).

(1) (See [16, Def. 1.1.1, 1.2.1]) A creature for H is a triple

t = (nor,val,dis) = (nor[t],val[t],dis[t])

such that nor ∈ R≥0, dis ∈ H(ω1), and for some integers mt
dn < mt

up < ω

∅ 6= val ⊆ {〈u, v〉 ∈
∏

i<mt
dn

H(i) ×
∏

i<mt
up

H(i) : u ⊳ v}.

The set of all creatures for H will be denoted by CR[H], and for m0 <
m1 < ω we let CRm0,m1 [H] = {t ∈ CR[H] : mt

dn = m0 & mt
up = m1}.

(2) (See [16, Def. 1.1.4, 1.2.2, 1.2.5]) Let K ⊆ CR[H]. We say that a func-

tion Σ : [K]<ω −→ P(K) is a composition operation on K whenever the
following conditions are satisfied.
(a) If S ∈ [K]<ω and Σ(S) 6= ∅, then for some enumeration S = {t0, . . . , tk}

we have mti
up = m

ti+1

dn for all i < k [from now on, whenever we write

Σ(t0, . . . , tk), we mean the enumeration in which mti
up = m

ti+1

dn ], and

(b) if s ∈ Σ(t0, . . . , tk), then ms
dn = mt0

dn and ms
up = mtk

up, and
(c) t ∈ Σ(t) for each t ∈ K, Σ(∅) = ∅, and
(d) [transitivity] if si ∈ Σ(ti0, . . . , t

i
ki

) (for i ≤ n), then

Σ(s0, . . . , sn) ⊆ Σ(tij : i ≤ n & j ≤ ki),

(e) [niceness & smoothness ] if s ∈ Σ(t0, . . . , tk), mti
up = m

ti+1

dn (for i < k),
then dom(val[t0]) = dom(val[s]) and

(∀〈u, v〉 ∈ val[s])(∀i ≤ k)(〈v↾mti
dn, v↾m

ti
up〉 ∈ val[ti]).

(3) (See [15, Def. 1.1]) A function Σ⊥ : K −→ [K]<ω \ {∅} is called a decom-
position operation on K if for each t ∈ K:

(a)⊥ if S ∈ Σ⊥(t), then for some enumeration S = {s0, . . . , sk} we have
msi

up = m
si+1

dn (for i < k) [from now on, if we write {s0, . . . , sk} ∈ Σ⊥(t),

we mean the enumeration in which msi
up = m

si+1

dn ], and

(b)⊥ if {s0, . . . , sk} ∈ Σ⊥(t) then ms0
dn = mt

dn, msk
up = mt

up,

(c)⊥ {t} ∈ Σ⊥(t),
(d)⊥ [transitivity] if S = {s0, . . . , sk} ∈ Σ⊥(t) and Si ∈ Σ⊥(si) (for i ≤ k),

then S0 ∪ . . . ∪ Sk ∈ Σ⊥(t),
(e)⊥ if {s0, . . . , sk} ∈ Σ⊥(t), msi

up = m
si+1

dn (for i < k), then

dom(val[t]) = dom(val[s0]) and (∀i < k)
(

rng(val[si]) ⊆ dom(val[si+1])
)

,

and

{〈u, v〉 : u ∈ dom(val[s0]) & u ⊳ v & (∀i ≤ k)(〈v↾msi
dn, v↾m

si
up〉 ∈ val[si])} ⊆ val[t].
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6 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(4) If K ⊆ CR[H] and Σ is a composition operation on K, then (K,Σ) is called
a creating pair for H. If, additionally, Σ⊥ is a decomposition operation on
K, then (K,Σ,Σ⊥) is called a ⊗–creating triple for H.

(5) If t0, . . . , tn ∈ K are such thatmti
up = m

ti+1

dn (for i < n) and w ∈ dom(val[t0]),
then we let

pos(w, t0, . . . , tn)
def
= {v∈

∏

j<mtn
up

H(j) : w ⊳ v & (∀i ≤ n)(〈v↾mti
dn, v↾m

ti
up〉 ∈ val[ti])}.

Definition 1.1.2. Let (K,Σ,Σ⊥) be a ⊗–creating triple for H. We say that

(1) Σ⊥ is trivial if Σ⊥(t) =
{

{t}
}

for each t ∈ K;

(2) (K,Σ) is simple if Σ(S) is non-empty for singletons only; if additionally Σ⊥

is trivial, then we say that (K,Σ,Σ⊥) is simple;
(3) K (or (K,Σ) or (K,Σ,Σ⊥)) is local if mt

up = mt
dn + 1 for each creature

t ∈ K (so then necessarily (K,Σ,Σ⊥) is simple);
(4) K is forgetful if for every creature t ∈ K we have

[〈u, v〉 ∈ val[t] & w ∈
∏

i<mt
dn

H(i)] ⇒ 〈w,w⌢v↾[mt
dn,m

t
up)〉 ∈ val[t];

(5) K is full if dom(val[t]) =
∏

i<mt
dn

H(i) for each t ∈ K.

Definition 1.1.3. [See [16, Def. 1.1.7, 1.2.6], [15, Def. 1.3]] Let (K,Σ,Σ⊥) be a
⊗–creating triple for H and let C(nor) be a property of ω–sequences of creatures
from K (so C(nor) can be thought of as a subset of Kω). We define a forcing
notion Q∗

C(nor)(K,Σ,Σ
⊥) as follows.

A condition in Q∗
C(nor)(K,Σ,Σ

⊥) is a sequence p = (wp, tp0, t
p
1, t

p
2, . . .) such that

(a) tpi ∈ K and m
tpi
up = m

tpi+1

dn (for i < ω),
(b) w ∈ dom(val[tp0]) and 〈tp0, t

p
1, t

p
2, . . .〉 ∈ C(nor),

(c) pos(wp, tp0, . . . , t
p
i ) ⊆ dom(val[tpi+1]) for each i < ω.

Q∗
∅(K,Σ,Σ⊥) is defined similarly, but we skip the demand “〈tp0, t

p
1, . . .〉 ∈ C(nor)”

in clause (b) above (or we just let C(nor) = Kω; it is perhaps unfortunate to use
∅ in this context, but that notation was established in [16]).
The relation ≤ on Q∗

C(nor)(K,Σ,Σ
⊥) is given by: p ≤ q if and only if

(wq, tq0, t
q
1, t

q
2, . . .) can be obtained from (wp, tp0, t

p
1, t

p
2, . . .) by applying finitely many

times the following operations (describing the operations, we say what are the re-
sults of applying the operation to a condition (w, t0, t1, t2, . . .) ∈ Q∗

C(nor)(K,Σ,Σ
⊥)).

Deciding the value for (w, t0, t1, t2, . . .):
a result of this operation is a condition (w∗, tn, tn+1, tn+2, . . .) ∈ Q∗

C(nor)(K,Σ,Σ
⊥)

such that w∗ ∈ pos(w, t0, . . . , tn−1) for some n < ω.

Applying Σ to (w, t0, t1, t2, . . .):
a result of this operation is a condition (w, t∗0, t

∗
1, t

∗
2, . . .) ∈ Q∗

C(nor)(K,Σ,Σ
⊥) such

that for some increasing sequence 0 = n0 < n1 < n2 < . . . < ω, for each i < ω, we
have t∗i ∈ Σ(tni

, . . . , tni+1−1).

Applying Σ⊥ to (w, t0, t1, t2, . . .):
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SWEET & SOUR 7

a result of this operation is a condition (w, t∗0, t
∗
1, t

∗
2, . . .) ∈ Q∗

C(nor)(K,Σ,Σ
⊥) such

that for some increasing sequence 0 = n0 < n1 < n2 < . . . < ω, for each i < ω, we
have {t∗ni

, . . . , t∗ni+1−1} ∈ Σ⊥(ti).

Remark 1.1.4. In the definition of the relation ≤ on Q∗
C(nor)(K,Σ,Σ

⊥) we do require

that the intermediate steps satisfy the norm condition C(nor). However, one may
consider a variant when the intermediate stages are just from Q∗

∅(K,Σ,Σ⊥). Many
properties of the resulting forcing notion will remain unchanged.

If Σ⊥ is trivial we may omit it; note that then we are exactly in the setting of
[16, §1.2].

Definition 1.1.5. We will consider the following norm conditions C(nor):

• A sequence 〈ti : i < ω〉 satisfies C∞(nor) if lim
i→∞

nor[ti] = ∞

[the respective forcing notion is called Q∗
∞(K,Σ,Σ⊥)].

• Let F ⊆ ωω; a sequence 〈ti : i < ω〉 satisfies CF(nor) if

(∃f ∈ F)(∀∞i ∈ ω)(nor[ti] ≥ f(mti
dn))

[the respective forcing notion is denoted Q∗
F(K,Σ,Σ⊥)].

• Let f : ω × ω −→ ω; a sequence 〈ti : i < ω〉 satisfies Cf (nor) if

(∀n ∈ ω)(∀∞i ∈ ω)(nor[ti] ≥ f(n,mti
dn))

[the respective forcing notion is denoted Q∗
f (K,Σ,Σ⊥)].

We will consider the norm conditions CF (nor), Cf (nor) only for h–closed families
F and fast functions f , see 1.1.6 below. Later we will introduce more methods for
building ccc forcing notions, including more norm conditions.

Definition 1.1.6. (1) A function f : ω × ω −→ ω is fast if

(∀k, ℓ ∈ ω)(f(k, ℓ) ≤ f(k, ℓ+ 1) & 2 · f(k, ℓ) < f(k + 1, ℓ)).

(2) A function h : ω × ω −→ ω is regressive if

(∀m ∈ ω)
(

(∀k > 1)(1 ≤ h(m, k) < k) & (∀k < ℓ < ω)(h(m, k) ≤ h(m, ℓ))
)

.

(3) Let h : ω × ω −→ ω. We say that a family F ⊆ ωω is h–closed if for every
f ∈ F there is f∗ ∈ F such that (∀∞n ∈ ω)(f∗(n) ≤ h(n, f(n))).

(4) A family F ⊆ ωω is ≥∗–directed if

(∀f0, f1 ∈ F)(∃f∗ ∈ F)(∀∞n ∈ ω)(f∗(n) ≤ min{f0(n), f1(n)}).

Similarly we define ≤∗–directed families (just reversing the inequality).

Remark 1.1.7. Let f(n,m) = 22n (for n,m ∈ ω). Then the function f is fast and
the norm conditions Cf(nor) and C∞(nor) agree (and thus Q∗

f(K,Σ) = Q∗
∞(K,Σ)

for a local creating pair (K,Σ)). In practical applications, when we consider the
norm condition Cf (nor), the function f is such that f(n,m) < f(n,m+ 1) (for all
n,m ∈ ω) and thus the norm condition Cf(nor) is stronger than C∞(nor).

Proposition 1.1.8. If (K,Σ,Σ⊥) is a ⊗–creating triple for H, C(nor) ⊆ Kω, then
Q∗

C(nor)(K,Σ,Σ
⊥) is a forcing notion (i.e., the relation ≤ of Q∗

C(nor)(K,Σ,Σ
⊥) is

transitive).
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8 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Definition 1.1.9. [See [16, Def. 1.2.4]] Let (K,Σ,Σ⊥) be a ⊗–creating triple for
H. We define finite candidates (FC) and pure finite candidates (PFC) with respect
to (K,Σ,Σ⊥):

FC(K,Σ,Σ⊥) = {(w, t0, . . . , tn) : w ∈ dom(val[t0]) and for each i ≤ n :

ti ∈ K,mti
up = m

ti+1

dn and pos(w, t0, . . . , ti) ⊆ dom(val[ti+1])},

PFC(K,Σ,Σ⊥) = {(t0, . . . , tn) : (∃w∈dom(val[t0]))((w, t0, . . . , tn) ∈ FC(K,Σ,Σ⊥))}.

We have a natural relation ≤ on FC(K,Σ,Σ⊥) (defined like in 1.1.3). [Note that
Σ,Σ⊥ have no influence on FC(K,Σ,Σ⊥), that is they are not present in the defini-
tion of finite candidates, and we could have written FC(K,Σ) or FC(K). However,
they come to the game when the relation ≤ on FC(K,Σ,Σ⊥) is considered.]

A sequence 〈t0, t1, t2, . . .〉 of creatures from K is a pure candidate with respect
to (K,Σ,Σ⊥) if

(∀i < ω)(mti
up = m

ti+1

dn ) and

(∃w ∈ dom(val[t0]))(∀i < ω)(pos(w, t0, . . . , ti) ⊆ dom(val[ti+1])).

The set of pure candidates with respect to (K,Σ) is denoted by PC(K,Σ,Σ⊥). The
relation ≤ on PC(K,Σ,Σ⊥) is defined naturally.

For a norm condition C(nor) the family of C(nor)–normed pure candidates is

PCC(nor)(K,Σ,Σ
⊥) = {〈t0, t1, . . .〉 ∈ PC(K,Σ,Σ⊥) : 〈t0, t1, . . . , 〉 satisfies C(nor)}.

Definition 1.1.10. Let (K,Σ,Σ⊥) be a ⊗–creating triple for H.

(1) For a condition p ∈ Q∗
∅(K,Σ,Σ⊥) we let

POS(p)
def
= {u ∈

⋃

n<ω

∏

i<n

H(i) : (∃ℓ < ω)(∃v ∈ pos(wp, tp0, . . . , t
p
ℓ ))(u E v)}.

(2) For a finite candidate c = (w, t0, . . . , tk) ∈ FC(K,Σ,Σ⊥) we define

POS(c)
def
= {u ∈

⋃

n≤m
tk
up

∏

i<n

H(i) : (∃v ∈ pos(w, t0, . . . , tk))(u E v)}.

Proposition 1.1.11. Suppose (K,Σ,Σ⊥) is a ⊗–creating triple for H.

(1) If p, q ∈ Q∗
∅(K,Σ,Σ⊥), p ≤ q then POS(p) ⊆ POS(q), and if lh(wq) = m

tp
ℓ

up

for some ℓ < ω, then wq ∈ pos(wp, tp0, . . . , t
p
ℓ ).

(2) The same holds if one replaces conditions from Q∗
∅(K,Σ,Σ⊥) by finite can-

didates from FC(K,Σ,Σ⊥).

Proof. Note that each of the three operations described in 1.1.3 shrinks POS (re-
member 1.1.1(2e) and 1.1.1(3e⊥)). �

Definition 1.1.12. [See [15, Def. 2.1], [16, Def. 2.1.7]] Assume that (K,Σ,Σ⊥) is
a ⊗–creating triple for H.

(1) We say that (K,Σ) (or (K,Σ,Σ⊥)) is linked if for each t0, t1 ∈ K such that
nor[t0],nor[t1] > 1 and mt0

dn = mt1
dn, mt0

up = mt1
up, there is s ∈ Σ(t0)∩Σ(t1)

with

nor[s] ≥ min{nor[t0],nor[t1]} − 1.

Let h : ω×ω −→ ω. The pair (K,Σ) is said to be h–linked if for each k > 1,
and creatures t0, t1 ∈ K such that nor[t0],nor[t1] ≥ k and mt0

dn = mt1
dn,

mt0
up = mt1

up, there is s ∈ Σ(t0) ∩ Σ(t1) with nor[s] ≥ h(mt0
dn, k).
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SWEET & SOUR 9

(2) We say that (K,Σ) (or (K,Σ,Σ⊥)) is gluing if it is full and for each k < ω
there is n0 = n0(k) < ω such that for every n ≥ n0 and (t0, . . . , tn) ∈
PFC(K,Σ), there is s ∈ Σ(t0, . . . , tn) such that

nor[s] ≥ min{k,nor[t0], . . . ,nor[tn]}.

We say that (K,Σ) is straightforward gluing if for every (t0, . . . , tn) ∈
PFC(K,Σ) there is s ∈ Σ(t0, . . . , tn) such that

nor[s] ≥ min{nor[t0], . . . ,nor[tn]}.

(3) We say that (K,Σ⊥) (or (K,Σ,Σ⊥)) has the cutting property if for every
t ∈ K with nor[t] > 1 and an integer m ∈ (mt

dn,m
t
up), there are s0, s1 ∈ K

such that
(α) ms0

dn = mt
dn, ms0

up = m = ms1
dn, ms1

up = mt
up,

(β) nor[sℓ] ≥ min{nor[t] − 1,mt
dn} (for ℓ = 0, 1),

(γ) {s0, s1} ∈ Σ⊥(K).

Definition 1.1.13. A forcing notion Q is σ-n–linked if there is a partition 〈Ai :
i < ω〉 of Q such that

if q0, . . . , qn−1 ∈ Ai, i ∈ ω then (∃q ∈ Q)(q0 ≤ q & . . . & qn−1 ≤ q).

We say that Q is σ-∗–linked if it is σ-n–linked for every n ∈ ω.

Proposition 1.1.14. Let H : ω −→ H(ω1) and let (K,Σ,Σ⊥) be a ⊗–creating
triple for H.

(1) If (K,Σ,Σ⊥) is linked, gluing and has the cutting property, then the forcing
notion Q∗

∞(K,Σ,Σ⊥) is σ-∗–linked.
(2) If f : ω×ω −→ ω is fast and (K,Σ,Σ⊥) is local and linked, then the forcing

notions Q∗
∞(K,Σ,Σ⊥) and Q∗

f (K,Σ,Σ⊥) are σ-∗–linked.

(3) Assume that h : ω × ω −→ ω is regressive and F ⊆ (ω \ 2)ω is an h–closed
family which is either countable, or ≥∗–directed. Suppose (K,Σ,Σ⊥) is
local and h–linked. Then the forcing notion Q∗

F(K,Σ,Σ⊥) is σ-∗–linked.

Proof. Straightforward (and the proof of the first part is essentially the same as
that of [15, Thm 2.4]; compare the proof of 1.3.4.1). �

1.2. Tree–like conditions. Here we recall the setting of [16, §1.3] and [8]. Since
in getting the ccc we will have to require that the tree–creating pair under consid-
erations is local, we will restrict our attention to that case only. So our definitions
here are much simpler than those in the general case, but we still try to keep the
notation and flavour of the tree case of [16].

Definition 1.2.1. Let H : ω −→ H(ω1).

(1) A local tree–creature for H is a triple

t = (nor,val,dis) = (nor[t],val[t],dis[t])

such that nor ∈ R≥0, dis ∈ H(ω1), and for some sequence η ∈
∏

i<n

H(i),

n < ω, we have

∅ 6= val ⊆ {〈η, ν〉 : η ⊳ ν ∈
∏

i≤n

H(i)}.

For a tree–creature t we let pos(t)
def
= rng(val[t]).
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10 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

The set of all local tree–creatures for H will be denoted by LTCR[H], and
for η ∈

⋃

n<ω

∏

i<n

H(i) we let LTCRη[H] = {t ∈ LTCR[H] : dom(val[t]) =

{η}}.
(2) Let K ⊆ LTCR[H]. We say that a function Σ : K −→ P(K) is a local tree

composition on K whenever the following conditions are satisfied.
(a) If t ∈ LTCRη[H], η ∈

∏

i<n

H(i), n < ω, then Σ(t) ⊆ LTCRη[H].

(b) If s ∈ Σ(t) then val[s] ⊆ val[t].
(c) [transitivity] If s ∈ Σ(t) then Σ(s) ⊆ Σ(t).

(3) If K ⊆ LTCR[H] and Σ is a local tree composition operation on K then
(K,Σ) is called a local tree–creating pair for H. We may forget the adjective
local as other cases will not be considered in the present paper.

Definition 1.2.2. Let (K,Σ) be a (local) tree–creating pair for H.

(1) We define the forcing notion Qtree
1 (K,Σ) as follows.

A condition is a system p = 〈tη : η ∈ T 〉 such that
(a) T ⊆

⋃

n∈ω

∏

i<n

H(i) is a non-empty tree with max(T ) = ∅,

(b) tη ∈ LTCRη[H] ∩K and pos(tη) = succT (η) (for η ∈ T ),
(c)1 for every η ∈ [T ] we have:

the sequence 〈nor[tη↾k] : lh(root(T )) ≤ k < ω〉 diverges to infinity.

The order is given by:
〈t1η : η ∈ T 1〉 ≤ 〈t2η : η ∈ T 2〉 if and only if

T 2 ⊆ T 1 and t2η ∈ Σ(t1η) for each η ∈ T 2.

If p = 〈tη : η ∈ T 〉, then we write root(p) = root(T ), T p = T , tpη = tη etc.

(2) Similarly, we define forcing notions Qtree
F (K,Σ) for a family F ⊆ ωω and

Qtree
f (K,Σ) for a function f : ω × ω −→ ω, replacing the condition (c)1 by

(c)F , (c)f , respectively, where:
(c)F (∃f ∈ F)(∃N < ω)(∀η ∈ T )(lh(η) ≥ N ⇒ nor[tη] ≥ f(lh(η))),
(c)f (∀n ∈ ω)(∃N < ω)(∀η ∈ T )(lh(η) ≥ N ⇒ nor[tη] ≥ f(n, lh(η))).

(3) If p ∈ Qtree
x (K,Σ) then, for η ∈ T p, we let p[η] = 〈tpν : ν ∈ (T p)[η]〉.

Definition 1.2.3. Assume that (K,Σ) is a tree–creating pair for H.

(1) We say that (K,Σ) is linked if for each η ∈
⋃

n<ω

∏

i<n

H(i) and tree–creatures

t0, t1 ∈ K ∩ LTCRη[H] with nor[t0],nor[t1] > 1, there is s ∈ Σ(t0) ∩ Σ(t1)
such that nor[s] ≥ min{nor[t0],nor[t1]} − 1.

(2) Let h : ω × ω −→ ω. The pair (K,Σ) is h–linked if for each t0, t1 ∈ K ∩
LTCRη[H] such that nor[t0],nor[t1] ≥ k, k > 1, there is s ∈ Σ(t0) ∩ Σ(t1)
with nor[s] ≥ h(lh(η), k).

Proposition 1.2.4. Let H : ω −→ H(ω1) and let (K,Σ) be a local tree–creating
pair for H.

(1) If f : ω × ω −→ ω is fast and (K,Σ) is linked, then the forcing notions
Qtree

1 (K,Σ) and Qtree
f (K,Σ) are σ-∗–linked.

(2) Assume that h : ω × ω −→ ω is regressive and a family F ⊆ (ω \ 2)ω is
h–closed and either countable, or ≥∗–directed. Suppose (K,Σ) is h–linked.
Then the forcing notion Qtree

F (K,Σ) is σ-∗–linked.
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SWEET & SOUR 11

Proof. Straightforward. �

1.3. The complexity of our forcing notions.

Definition 1.3.1. (1) A forcing notion (P,≤P) is Souslin (Borel, respectively)
if P, ≤P and the incompatibility relation ⊥P are Σ1

1 (Borel, respectively)
subsets of R and R× R.

(2) A forcing notion (P,≤P) is very Souslin ccc (very Borel ccc, respectively),
if it is Souslin (Borel, resp.), satisfies the ccc and the notion

“ 〈rn : n < ω〉 is a maximal antichain ”

is Σ1
1 (Borel, resp.)

On Souslin forcing notions and their applications see Judah and Shelah [5] and
Goldstern and Judah [3] (the results of these two and many other papers on the
topic are presented in Bartoszyński and Judah [1]). A systematic treatment of
definable forcing notions is presented in [25], [27] (note that very Souslin ccc forcing
notions are ω–nw–nep). Here we are going to show that the forcing notions built
according to the schemes presented above typically are Borel ccc and (sometimes)
even very Borel ccc. Thus we have tools for constructing new ccc ω–nw–nep forcing
notions (the only examples known before were those coming from random forcing,
the Cohen forcing and their FS iterations; see [24, §4] for a discussion of this topic).
Note that, by Shelah [26], ccc ω–nw–nep forcing notions cannot add dominating
reals. Thus the forcing notions that are covered by 1.4.4 cannot be represented as
very Souslin ccc forcing notions.

Definition 1.3.2. A ⊗–creating triple (K,Σ,Σ⊥) for H is regular if the following
condition is satisfied.

(⊡) Assume (w, t0, . . . , tn), (u, s0, . . . , sm) ∈ FC(K,Σ,Σ⊥) are such that
• mtℓ

dn < ms0
dn < mtℓ

up ≤ ms0
up for some ℓ ≤ n,

• nor[tℓ] ≥ 3 (for the ℓ as above), and
• (w, t0, . . . , tn) ≤ (u, s0, . . . , sm), msm

up ≤ mtn
up, and nor[s0] ≥ 3.

Then there are t′, t′′ such that {t′, t′′} ∈ Σ⊥(tℓ), m
t′

up = ms0
dn = mt′′

dn,
nor[t′′] ≥ 2 and u ∈ pos(w, t0, . . . , tℓ−1, t

′).

Definition 1.3.3. Let H : ω −→ H(ω1) and let (K,Σ) be either a creating pair
for H or a (local) tree–creating pair for H. We say that (K,Σ) is really finitary if
the following conditions are satisfied:

(a) H(n) is finite for all n < ω (so val[t] is finite for all t ∈ K), and
(b) for each n ∈ ω, the set {t ∈ K : rng(val[t]) ⊆

∏

i<n

H(i)} is finite.

Theorem 1.3.4. Let H : ω −→ H(ω1).

(1) Let (K,Σ,Σ⊥) be a ⊗–creating triple for H such that K is countable.
(a) If (K,Σ,Σ⊥) is regular, linked, gluing and has the cutting property,

then the forcing notion Q∗
∞(K,Σ,Σ⊥) is Souslin ccc.

(b) If f : ω × ω −→ ω is fast and (K,Σ,Σ⊥) is local and linked then
Q∗

∞(K,Σ,Σ⊥) and Q∗
f(K,Σ,Σ⊥) are Borel ccc.

(c) Assume that h : ω×ω −→ ω is a regressive function and F ⊆ (ω \ 2)ω

is a countable h–closed family which is ≥∗–directed. If (K,Σ,Σ⊥) is
local and h–linked, then Q∗

F (K,Σ,Σ⊥) is Borel ccc.



6
7
2
 
 
r
e
v
i
s
i
o
n
:
2
0
0
3
-
1
0
-
0
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
1
0
-
0
1
 
 

12 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(2) Assume that (K,Σ) is a local tree–creating pair for H and K is countable.
(a) If f : ω × ω −→ ω is fast and (K,Σ) is linked, then Qtree

f (K,Σ) is
Borel ccc.

(b) Suppose that h : ω × ω −→ ω is regressive and F ⊆ (ω \ 2)ω is a
countable h–closed family which is ≥∗–directed. If (K,Σ) is h–linked,
then Qtree

F (K,Σ) is Borel ccc.
(3) If in 1(c) and 2(b) above the pair (K,Σ) is really finitary, then the respective

forcing notions are very Borel ccc.

Proof. 1(a) Let X = (
⋃

n<ω

∏

i<n

H(i))×Kω be equipped with the product topology

(of countably many countable discrete spaces). So X is a Polish space and it
should be clear that Q∗

∅(K,Σ,Σ⊥), Q∗
∞(K,Σ,Σ⊥) are its Borel subsets. To express

“p ≤ q” we have to say that there is a sequence p = p0, . . . , pn = q of elements of
Q∗

∅(K,Σ,Σ⊥) such that pi+1 is obtained from pi by one of the operations described
in 1.1.3. Each of these operations corresponds to a Borel subset of X ×X , so easily
≤Q∗

∅
(K,Σ,Σ⊥), ≤Q∗

∞(K,Σ,Σ⊥) are Σ1
1 subsets of X ×X . The main difficulty is to show

that the incompatibility relation ⊥Q∗
∞(K,Σ,Σ⊥) is a Σ1

1 subset of X × X . But this

follows from the following observation (note that this is the place where we use the
assumption that (K,Σ,Σ⊥) is regular).

Claim 1.3.4.1. Conditions p, q ∈ Q∗
∞(K,Σ,Σ⊥) are compatible if and only if

there are N, ℓ,m < ω, t′0, t
′
1, t

′′
0 , t

′′
1 ∈ K and u such that

• m
tp
ℓ

dn ≤ N < m
tp
ℓ

up, m
tqm
dn ≤ N < m

tqm
up ,

• {t′0, t
′
1} ∈ Σ⊥(tpℓ ), {t′′0 , t

′′
1} ∈ Σ⊥(tqm), m

t′1
dn = m

t′′1
dn = N ,

• nor[t′1] ≥ 2, nor[t′′1 ] ≥ 2,
• u ∈ pos(wp, tp0, . . . , t

p
ℓ−1, t

′
0) ∩ pos(wq , tq0, . . . , t

q
m−1, t

′′
0),

• (∀n > ℓ)(nor[tpn] ≥ 2) and (∀n > m)(nor[tqn] ≥ 2).

(If N = m
tp
ℓ

dn then t′0 is not present; similarly on the q side.)

Proof of the claim. First assume that conditions p, q ∈ Q∗
∞(K,Σ,Σ⊥) are compati-

ble and let r ∈ Q∗
∞(K,Σ,Σ⊥) be stronger than both p and q. Passing to a stronger

condition we may demand that if ℓ,m are such that

m
tp
ℓ

dn ≤ m
tr0
dn < m

tp
ℓ

up, m
tqm
dn ≤ m

tr0
dn < m

tqm
up

then m
tp
ℓ

up ≤ m
tr0
up, m

tqm
up ≤ m

tr0
up and that nor[tr0] ≥ 5 and

m
tpn
up ≥ lh(wr) ⇒ nor[tpn] ≥ 5, and m

tqn
up ≥ lh(wr) ⇒ nor[tqn] ≥ 5.

Now we may apply the regularity of (K,Σ,Σ⊥) (see 1.3.2) to get t′0, t
′
1, t

′′
0 , t

′′
1 ∈ K

such that

{t′0, t
′
1} ∈ Σ⊥(tpℓ ), {t′′0 , t

′′
1} ∈ Σ⊥(tqm), nor[t′1] ≥ 2, nor[t′′1 ] ≥ 2 and

u = wr ∈ pos(wp, tp0, . . . , t
p
ℓ−1, t

′
0) ∩ pos(wq , tq0, . . . , t

q
m−1, t

′′
0).

Put N = lh(wr) and check that all demands are satisfied.
For the other implication suppose that N, ℓ,m, t′0, t

′
1, t

′′
0 , t

′′
1 and u are as in the

second statement. Just for simplicity, let us also assume that (K,Σ) is straightfor-
ward gluing (see the second half of 1.1.12(2); the case of “gluing” requires a small
change in the choice of n̄, k̄ below). Choose increasing sequences n̄ = 〈ni : i < ω〉
and k̄ = 〈ki : i < ω〉 such that n0 > ℓ+ 5, k0 > m+ 5 and
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• (∀n ≥ ni)(nor[t
p
n] ≥ i+ 5) and (∀n ≥ ki)(nor[tqn] ≥ i+ 5), and

• m
tq
ki

dn ≤ m
tpni

dn < m
tq
ki

up , m
tq
ki+1

up < m
tpni+1

dn .

Apply the cutting property to choose (for each i < ω) s′i, s
′′
i ∈ K such that

{s′i, s
′′
i } ∈ Σ⊥(tqki

), m
s′i
dn = m

tq
ki

dn , m
s′′i
dn = m

tpni

dn , and nor[s′i],nor[s
′′
i ] ≥ i+ 4.

(If m
tpni

dn = m
tq
ki

dn then the s′i is not present.) Next use gluing to choose ri, si so that

r0 ∈ Σ(t′1, t
p
ℓ+1, . . . , t

p
n0−1), s0 ∈ Σ(t′′1 , t

q
m+1, . . . , t

q
k0−1, s

′
0)

ri+1 ∈ Σ(tpni
, . . . , tpni+1−1), si+1 ∈ Σ(s′′i , t

q
ki+1, . . . , t

q
ki+1−1, s

′
i+1),

nor[ri],nor[si] ≥ i+ 2.

Since (K,Σ) is linked we may choose ti ∈ Σ(ri) ∩ Σ(si) such that nor[ti] ≥ i + 1.
Now look at (u, t0, t1, . . .). It is a condition in Q∗

∞(K,Σ,Σ⊥) stronger than both p
and q. �

1(b,c) and 2(a,b) Similarly (and much easier).

3. Let h ∈ ωω be a regressive function and let F ⊆ (ω\2)ω be a countable h–closed
family which is ≥∗–directed. Suppose that (K,Σ) is a local, h–linked and really
finitary creating pair (because of the “local” Σ⊥ can be omitted as it is trivial).
We are going to show that “being a (countable) pre-dense subset of Q∗

F(K,Σ)” is
a Borel property.

Let X = (
⋃

n<ω

∏

i<n

H(i)) ×Kω, Xω and Y = P(FC(K,Σ)) be equipped with the

natural (product) Polish topologies (note that FC(K,Σ) is a countable set). For
p̄ = 〈pn : n < ω〉 ∈ Xω , p̄ ⊆ Q∗

F(K,Σ), w ∈
⋃

m<ω

∏

i<m

H(i) and f ∈ F we define

N p̄(n) = min{m
tpni
dn : (∀j ≥ i)(nor[tpn

j ] ≥ 2)},

and

T p̄
w,f = {(w, t0, . . . , tk) ∈ FC(K,Σ) : (∀i ≤ k)(nor[ti] ≥ f(mti

dn)) and

(∀n < ω)(N p̄(n) ≤ mtk
up ⇒ pos(w, t0, . . . , tk) ∩ POS(pn) = ∅)}.

Note that (Q∗
F (K,Σ))ω is a Borel subset of Xω and the functions

p̄ 7→ N p̄ : (Q∗
F (K,Σ))ω −→ ωω and p̄ 7→ T p̄

w,f : (Q∗
F (K,Σ))ω −→ Y

are Borel. Now, each T p̄
w,f is essentially a finitary tree, so

T p̄
w,f is well founded if and only if T p̄

w,f is finite.

Consequently, for each w and f , the set

{p̄ ∈ (Q∗
F (K,Σ))ω : T p̄

w,f is well founded }

is Borel. Since there are countably many possibilities for w and f , we easily finish
the proof using the following observation.

Claim 1.3.4.2. Let p̄ = 〈pn : n < ω〉 ∈ (Q∗
F (K,Σ))ω. Then

p̄ is pre-dense in Q∗
F(K,Σ) if and only if

for each w ∈
⋃

m<ω

∏

i<m

H(i) and f ∈ F the tree T p̄
w,f is well–founded.
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14 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Proof of the claim. Suppose that, for some w and f , the tree T p̄
w,f has an ω–branch

and let q = (w, t0, t1, . . .) be such a branch. Necessarily q ∈ Q∗
F(K,Σ) (as witnessed

by f). If follows from the definition of T p̄
w,f that POS(q) ∩ POS(pn) is finite for

each n ∈ ω and therefore q ⊥Q∗
F

(K,Σ) pn (remember 1.1.11).

Now assume that p̄ is not pre-dense in Q∗
F(K,Σ) and let q ∈ Q∗

F(K,Σ) be a
condition incompatible with all pn. We may demand that for some f ∈ F we have

(∀i ∈ ω)(nor[tqi ] ≥ f(m
tqi
dn)). It should be clear that q determines an ω–branch in

the tree T p̄
wq,f (remember that (K,Σ) is h–linked). �

Similarly we deal with the respective variant of 2(b). �

1.4. Unbounded and dominating reals.

Lemma 1.4.1. Let V ⊆ V∗ be universes of ZFC∗. Assume that 〈fi : i < ω〉 ∈ V
and g ∈ V∗ are such that

(a) g ∈ ωω, fi ∈ ωω, fi+1 <
∗ fi for all i ∈ ω,

(b) (∀i ∈ ω)(∃∞k ∈ ω)(g(k) < fi(k)),
(c) if h ∈ ωω ∩V is such that (∀i ∈ ω)(h <∗ fi), then h <

∗ g.

Then ωω ∩V is bounded in V∗.

Proof. It follows from the assumptions (a), (b) that we may find an infinite set
K = {k0, k1, k2, . . .} ∈ V∗ ∩ [ω]ω such that for each i ∈ ω we have

(∗) f0(ki) > f1(ki) > . . . > fi(ki) > g(ki).

Let ϕ ∈ ωω ∩V∗ be such that (∀n ∈ ω)(|K ∩ (n, ϕ(n))| > 2n+1). We claim that
the function ϕ dominates ωω ∩V, i.e.

(∀f ∈ ωω ∩V)(∀∞n ∈ ω)(f(n) < ϕ(n)).

If not, then we may choose an increasing sequence 〈ni : i < ω〉 ∈ V of integers such
that n0 = 0 and

(i) (∃∞i ∈ ω)(|(ni, ni+1) ∩K| > 2ni),
(ii) (∀i ∈ ω)(∀n ≥ ni+1)(fi+1(n) < fi(n)).

Define h ∈ ωω ∩V by h↾[ni, ni+1) = fi↾[ni, ni+1) (for i ∈ ω). It follows from (ii)
that h <∗ fi for each i ∈ ω, so we may apply the assumption (c) to conclude that
h <∗ g. But look at the clauses (∗) and (i) above. Whenever |(ni, ni+1)∩K| > 2ni ,
there is ℓ ∈ ω such that kℓ ∈ (ni, ni+1), ℓ > i and

f0(kℓ) > . . . > fi(kℓ) = h(kℓ) > . . . > fℓ(kℓ) > g(kℓ),

so easily we get a contradiction. �

Definition 1.4.2. Let (K,Σ) be a creating pair or a (local) tree–creating pair.

(1) (See [16, Def. 5.1.6]) We say that (K,Σ) is reducible if for each t ∈ K with

nor[t] ≥ 3, there is s ∈ Σ(t) such that nor[t]
2 ≤ nor[s] ≤ nor[t] − 1.

(2) The pair (K,Σ) is normal if it is reducible, linked and if
(⊞) for each s, t ∈ K:

nor[s] < nor[t] ⇒ (∀u ∈ dom(val[t]))(∃v)(〈u, v〉 ∈ val[t] \ val[s]).

(3) A creating pair (K,Σ) is semi–normal if it is linked, and for each n ∈ ω

and t ∈ K such that nor[t] > 2n+2, mt
up−m

t
dn > 22n+4

, there is a sequence
〈sℓ : ℓ ≤ n〉 ⊆ K satisfying
(α) s0 = t, sℓ+1 ∈ Σ(sℓ), 2n+1−ℓ < nor[sℓ+1] ≤ 2n−ℓ+2 (for ℓ < n), and
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SWEET & SOUR 15

(β) if s ∈ K, ms
dn = mt

dn, ms
up = mt

up and nor[s] > 2n−ℓ+3, ℓ < n, then

(∀u ∈ dom(val[s]))(∃v)(〈u, v〉 ∈ val[s] \ val[sℓ+1]).

(4) A ⊗–creating triple (K,Σ,Σ⊥) (or just (K,Σ)) is super–gluing if it is gluing
and for every s0, . . . , sk ∈ K and N ∈ ω such that msi

up ≤ m
si+1

dn for i < k
and msk

up ≤ N , there is s ∈ K satisfying:
• ms

dn = ms0
dn, ms

up = N , dom(val[s]) = dom(val[s0]), and
• nor[s] ≥ min{nor[si] : i ≤ k} − 1, and
• (∀〈u, v〉 ∈ val[s])(∀i ≤ k)(〈v↾msi

dn, v↾m
si
up〉 ∈ val[si]).

Remark 1.4.3. Note that “normal” implies “semi–normal”. What we really need
in the proofs of 1.4.4(1,2) is semi–normality (or rather a suitable variant of it).
However, the normality is more natural and only in the case of ⊗–creating triples
(which are gluing and have the cutting property) the natural norms are semi–normal
but not normal; see Examples at the end of this section.

Theorem 1.4.4. (1) Let f : ω × ω −→ ω be a fast function, and let (K,Σ) be
a local creating pair (a local tree–creating pair, respectively). Assume that
(K,Σ) is normal and Q∗

f (K,Σ) 6= ∅ (Qtree
f (K,Σ) 6= ∅, resp.). Then the

forcing notion Q∗
f (K,Σ) (Qtree

f (K,Σ), resp.) adds a dominating real.

(2) If (K,Σ) is a normal (local) tree–creating pair and Qtree
1 (K,Σ) 6= ∅, then

the forcing notion Qtree
1 (K,Σ) 6= ∅ adds a dominating real.

(3) Assume that (K,Σ,Σ⊥) is a semi–normal ⊗–creating triple which is super–
gluing and has the cutting property (and Q∗

∞(K,Σ,Σ⊥) 6= ∅). Then the
forcing notion Q∗

∞(K,Σ,Σ⊥) adds a dominating real.

Proof. In all cases we will use Lemma 1.4.1 for functions fi ∈
∏

n∈ω
(n + 1) defined

by fi↾[0, i) ≡ 0, fi(n) = n − i for n ≥ i (for i ∈ ω) and a suitably chosen name ġ
for a function in

∏

n∈ω
(n+ 1).

(1) We consider the case when (K,Σ) is a local creating pair only.
Let p ∈ Q∗

f (K,Σ). Using the normality of (K,Σ), choose an increasing sequence

〈mn : n < ω〉 ⊆ ω and a sequence 〈sℓn : ℓ ≤ n, n < ω〉 ⊆ K such that for each n ∈ ω
and ℓ < n:

(a) s0
n = tpmn

, nor[tpmn
] > f(n+ 2,m

tpmn

dn ),

(b) sℓ+1
n ∈ Σ(sℓn), f(n− ℓ+ 1,m

sℓ+1
n

dn ) < nor[sℓ+1
n ] ≤ f(n− ℓ+ 2,m

sℓ+1
n

dn ).

Let Ẇ be the name for Q∗
f (K,Σ)–generic real, i.e.

Q∗
f

(K,Σ) Ẇ =
⋃

{wq : q ∈ ΓQ∗
f
(K,Σ)}

(see [16, Def. 1.1.13, Prop. 1.1.14]). Let ġ be a Q∗
f(K,Σ)–name for a function in

∏

n∈ω
(n+ 1) defined by

p  “ (∀n ∈ ω)(∀ℓ ≤ n)(ġ(n) = ℓ ⇔ 〈Ẇ ↾m
sℓn
dn, Ẇ ↾m

sℓn
up〉 ∈ val[sℓn] \ val[sℓ+1

n ]) ”

(if 〈Ẇ ↾m
snn
dn, Ẇ ↾m

snn
up〉 ∈ val[snn] then ġ(n) = n).

Claim 1.4.4.1. (α) p Q∗
f
(K,Σ) (∀i ∈ ω)(∃∞n ∈ ω)(ġ(n) < fi(n)),

(β) Assume that h ∈ ωω is such that h <∗ fi for all i ∈ ω. Then p “ h <∗ ġ ”.
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16 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Proof of the claim. (α) Let i ∈ ω and let p0 ≥ p, N ∈ ω. Take n > N + i so that

for some k < ω we have tp0

k ∈ Σ(tpmn
) and nor[tp0

k ] > f(i + 3,m
t
p0
k

dn ). Since (K,Σ)

is normal, we may find w ∈ pos(wp0 , tp0

0 , . . . , t
p0

k ) such that 〈w↾m
t
p0
k

dn , w↾m
t
p0
k

up 〉 /∈

val[sn−i
n ] (remember nor[sn−i

n ] ≤ f(i + 3,m
sn−i
n

dn )). Clearly the condition q =
(w, tp0

k+1, t
p0

k+2, . . .) forces that ġ(n) < n− i = fi(n).

(β) Let h ∈ ωω be such that h <∗ fi for all i ∈ ω and let p0 ≥ p. Let ℓ be such
that tp0

0 ∈ Σ(tpℓ ) (so tp0

k ∈ Σ(tpk+ℓ) for each k). We may assume that if mn ≥ ℓ then

h(n) < n − 5 and that (∀k < ω)(nor[tp0

k ] > f(5,m
t
p0
k

dn )). For each k ∈ ω choose tk
as follows:

• if k + ℓ /∈ {mn : n ∈ ω}, then tk = tp0

k ,

• if k + ℓ = mn, n ∈ ω, then tk ∈ Σ(tp0

k ) ∩ Σ(s
h(n)+1
n ) is such that nor[tk] ≥

min{nor[tp0

k ],nor[s
h(n)+1
n ]} − 1

(remember that (K,Σ) is linked). Since nor[s
h(n)+1
n ] > f(n − h(n) + 1,m

s0n
dn) we

easily see that q = (wp0 , t0, t1, . . .) ∈ Q∗
f (K,Σ), and clearly it is a condition stronger

than p0. As q Q∗
f

(K,Σ) (∀n ∈ ω)(mn ≥ ℓ ⇒ ġ(n) > h(n)), the claim follows. �

Now, the first clause of the theorem is an immediate consequence of 1.4.4.1 and
1.4.1.

(2) The proof is similar to the one above. Let p ∈ Qtree
1 (K,Σ). Choose fronts

Fn of T p (for n ∈ ω) such that for each n:

• (∀η ∈ Fn+1)(∃ν ∈ Fn)(ν ⊳ η),
• (∀η ∈ Fn)(nor[tpη] > 2n+2)

(clearly possible; see [16, Prop. 1.3.8]). For each n ∈ ω and η ∈ Fn choose a
sequence 〈sℓη : ℓ ≤ n〉 ⊆ K such that

s0
η = tpη, sℓ+1

η ∈ Σ(sℓη) and 2n−ℓ+1 < nor[sℓ+1
η ] ≤ 2n−ℓ+2.

Let Ẇ be the name for the Qtree
1 (K,Σ)–generic real and let ġ be a Qtree

1 (K,Σ)–name

for a real in
∏

n∈ω
(n + 1) such that (the condition p forces that) if η = Ẇ ↾m ∈ Fn

(for some m,n ∈ ω) and Ẇ ↾(m+ 1) ∈ pos(sℓη) \ pos(sℓ+1
η ), then ġ(n) = ℓ.

Claim 1.4.4.2. (α) p Qtree
1 (K,Σ) (∀i ∈ ω)(∃∞n ∈ ω)(ġ(n) < fi(n)),

(β) If h ∈ ωω is such that h <∗ fi for all i ∈ ω, then p Qtree
1 (K,Σ)“ h <

∗ ġ ”.

Proof of the claim. (α) Like 1.4.4.1(α).

(β) Let q ≥ p. We may assume that for some m > 2 we have: root(q) ∈ Fm,
nor[tqν ] > 8 for all ν ∈ T q, and h(n) < n − 5 for all n ≥ m. We build inductively
a tree T ⊆ T q and a system 〈tη : η ∈ T 〉 as follows. We declare that root(q) =
root(T ) ∈ T . Suppose we have declared that η ∈ T . If η /∈

⋃

n∈ω
Fn, then we let

tη = tqη and we declare pos(tη) ⊆ T . If η ∈ Fn for some n ≥ m, then we choose

tη ∈ Σ(tqη) ∩ Σ(s
h(n)+1
η ) such that nor[tη] ≥ min{nor[tqη], 2n−h(n)+1} − 1, and we

declare pos(tη) ⊆ T .
Finally, we let q∗ = 〈tη : η ∈ T 〉 and we notice that q∗  h <∗ ġ. �
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(3) Let p ∈ Q∗
∞(K,Σ,Σ⊥). By “gluing”, we may assume that m

tp
k

up − m
tp
k

dn >

22k+4

for each k < ω. Using semi–normality we may choose an increasing sequence
〈mn : n < ω〉 and a sequence 〈sℓn : ℓ ≤ n, n < ω〉 ⊆ K such that

(a) s0
n = tpmn

, nor[tpmn
] > 2n+2, sℓ+1

n ∈ Σ(sℓn), 2n−ℓ+1 < nor[sℓ+1
n ] ≤ 2n−ℓ+2

(for ℓ < n < ω),

(b) if t ∈ K, mt
dn = m

s0n
dn, mt

up = m
s0n
up, and nor[t] > 2n−ℓ+3, ℓ < n < ω, then

(∀u ∈ dom(val[t]))(∃v)(〈u, v〉 ∈ val[t] \ val[sℓ+1
n ]).

Now we define the name ġ like before, so for n ∈ ω and ℓ < n,

p Q∗
∞(K,Σ,Σ⊥) “ ġ(n) = ℓ ⇔ 〈Ẇ ↾m

sℓn
dn, Ẇ ↾m

sℓn
up〉 ∈ val[sℓn] \ val[sℓ+1

n ] ”.

Claim 1.4.4.3. (α) p Q∗
∞(K,Σ,Σ⊥) (∀i ∈ ω)(∃∞n ∈ ω)(ġ(n) < fi(n)),

(β) If h <∗ fi for all i ∈ ω, then p Q∗
∞(K,Σ,Σ⊥)“ h <

∗ ġ ”.

Proof of the claim. (α) Suppose q ≥ p, and i, N < ω. Passing to a stronger
condition (using “gluing and cutting”) we may assume that

• nor[tq0] > 2i+4 and

• m
tq0
dn = m

tpmn

dn , m
tq0
up = m

tpmn
up for some n > N + i+ 1.

Choose w ∈ pos(wq , tq0) such that 〈wq , w〉 /∈ sn−i
n and look at the condition q′ =

(w, tq1, t
q
2, . . .).

(β) Let q ≥ p. Passing to a stronger condition if necessary, we may assume that
for some increasing sequence 〈Nk : k < ω〉 ⊆ ω we have:

• m
tq
k

dn = m
tpmNk

dn , m
tq
k

up = m
tpmNk+1

dn , nor[tqk] > 5 for all k < ω,
• if n ≥ N0 then h(n) < n− 5.

Using “super–gluing” choose creatures sk ∈ K (for k ∈ ω) such that

• msk
dn = m

tpmNk

dn , msk
up = m

tpmNk+1

dn , and

• nor[sk] ≥ min{nor[s
h(n)+1
n ] : Nk ≤ n < Nk+1} − 1, and

• (∀〈u, v〉 ∈ val[sk])(∀n ∈ [Nk, Nk+1))(〈v↾m
s0n
dn, v↾m

s0n
up〉 ∈ val[s

h(n)+1
n ]).

Apply “linked” to choose creatures tk ∈ Σ(sk) ∩ Σ(tqk) such that

1 + nor[tk] ≥ min{nor[sk],nor[tqk]} ≥ min{nor[tqk], 2n−h(n) : Nk ≤ n < Nk+1}.

Then q∗ = (wq , s0, s1, s2, . . .) is a condition in Q∗
∞(K,Σ,Σ⊥), q∗ ≥ q and it forces

that (∀n ≥ N0)(h(n) < ġ(n)). �

�

Remark 1.4.5. Note that 1.4.4(1) applies to forcing notions Q∗
∞(K,Σ) too, see 1.1.7.

Definition 1.4.6. A ccc forcing notion P is nice if there is a partition 〈Pm : m < ω〉
of P such that

(⋆) if 〈pn : n < ω〉 ⊆ P is a maximal antichain in P, m ∈ ω,
then there is N < ω such that

(∀p ∈ Pm)(∃n < N)(p, pn are compatible ).

Theorem 1.4.7 (Miller [12], Brendle and Judah [2]; see [1, Thm. 6.5.11]). If
F ⊆ ωω is an unbounded family and P is a nice ccc forcing notion, then

P “ the family F is unbounded ”.
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18 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Remark 1.4.8. Since no dominating reals can be added at limit stages of FS iter-
ations of ccc forcing notions (see [22, Con. VI.3.17]), it follows from 1.4.7 that FS
iterations of nice forcing notions do not add dominating reals.

Definition 1.4.9. (1) Let (K,Σ) be a local creating pair (or a local tree–
creating pair) for H. We say that (K,Σ) is Cohen–producing if for each
n ∈ ω there is a set An ⊆ H(n) such that

if t ∈ K, nor[t] > 1, u ∈ dom(val[t]), lh(u) = n,
then there are v0, v1 such that 〈u, v0〉, 〈u, v1〉 ∈ val[t] and
v1(n) ∈ An and v0(n) /∈ An.

(2) A creating pair (K,Σ) is of the BCB–type if it is local, forgetful and satisfies
the following condition:

(⊛BCB) for every sequence 〈sn : n < ω〉 of creatures from K with msn
dn = i,

nor[sn] ≥ 2 (for all n), there are a0, . . . , am ∈ H(i) and an increasing
sequence 〈nk : k < ω〉 ⊆ ω such that

(∀a ∈ H(i) \ {a0, . . . , am})(∀∞k ∈ ω)(∀u ∈ dom(val[snk
]))(〈u, u⌢〈a〉〉 ∈ val[snk

]).

(3) A local tree–creating pair (K,Σ) is of the BCBtree–type if
(⊛BCB

tree ) for every η ∈
⋃

n<ω

∏

i<n

H(i) and a sequence 〈sn : n < ω〉 ⊆ LTCRη ∩

K such that nor[sn] ≥ 2, there are a0, . . . , am ∈ H(lh(η)) and an
increasing sequence 〈nk : k < ω〉 ⊆ ω such that

(∀a ∈ H(lh(η)) \ {a0, . . . , am})(∀∞k ∈ ω)(η⌢〈a〉 ∈ pos(snk
)).

Remark 1.4.10. (1) Note that if H(i) is finite for each i ∈ ω then any lo-
cal forgetful creating pair (local tree creating pair) is of the BCB–type
(BCBtree–type, respectively).

(2) The difference between BCB and BCBtree is not serious, the two notions
are just fitted to their contexts.

(3) “BCB” stands for “bounded – co-bounded”. The “bounded” part reflects
what is stated in (1) above, and the “co-bounded” is supposed to point out
the analogy to the co-bounded topology on ω in the case when each H(i)
is infinite; compare Miller [12].

Theorem 1.4.11. Assume that h : ω × ω −→ ω is a regressive function and
F ⊆ (ω \ 2)ω is a countable h–closed family which is ≥∗–directed.

(1) If (K,Σ) is a local Cohen–producing h–linked creating pair (tree–creating
pair, respectively), then the forcing notion Q∗

F(K,Σ) (Qtree
F (K,Σ), resp.)

adds a Cohen real.
(2) If (K,Σ) is an h–linked tree–creating pair of the BCBtree–type, then the

forcing notion Qtree
F (K,Σ) is nice.

(3) If a creating pair (K,Σ) is h–linked and of the BCB–type, then the forcing
notion Q∗

F(K,Σ) is nice.

Proof. (1) Let (K,Σ) be a creating pair for H and let sets An ⊆ H(n) (for
n ∈ ω) witness that it is Cohen–producing. Let ċ be a Q∗

F(K,Σ)–name for a real
in 2ω defined by

Q∗
F

(K,Σ) (∀n ∈ ω)(ċ(n) = 1 ⇔ Ẇ (n) ∈ An)

(where Ẇ is the name for the Q∗
F(K,Σ)–generic real). Suppose that a condition

p ∈ Q∗
F(K,Σ) is such that nor[tpn] > 1 for all n ∈ ω. Let σ : [lh(wp), N ] −→ 2,
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lh(wp) ≤ N < ω. It should be clear that there is w ∈ pos(wp, tp0, . . . , t
p
N−lh(wp))

such that
(∀n ∈ [lh(wp), N ])(w(n) ∈ An ⇔ σ(n) = 1).

Hence easily ċ is a name for a Cohen real.

(2) Let ν ∈
⋃

n∈ω

∏

i<n

H(i), f ∈ F and let

Pν,f
def
= {p ∈ Qtree

F (K,Σ) : root(p) = ν & (∀η ∈ T p)(nor[tpη] ≥ f(lh(η)))}.

Suppose that 〈pn : n < ω〉 ⊆ Qtree
F (K,Σ) is a maximal antichain such that, for each

n ∈ ω and η ∈ T pn , we have nor[tpn
η ] ≥ 2.

Claim 1.4.11.1. There is N < ω such that

(∀q ∈ Pν,f )(∃n < N)(q, pn are compatible ).

Proof of the claim. Assume not. Then we may choose a sequence 〈qk : k < ω〉 ⊆
Pν,f such that for each n < k < ω the conditions qk and pn are incompatible. We
inductively build a tree T and a system 〈sη : η ∈ T 〉 together with a sequence
〈Xn, Yn : n < ω〉 so that

(α) Xn ⊆
⋃

m∈ω

∏

i<m

H(i), Yn+1 ⊆ Yn ∈ [ω]ω ,

(β) (∀η ∈ Xn)(∀∞k ∈ Yn)(η ∈ T qk),
(γ) nor[sη] ≥ f(lh(η)), T =

⋃

n∈ω
Xn.

Fix a bijection # :
⋃

m∈ω

∏

i<m

H(i) −→ ω such that η0 ⊳ η1 implies #(η0) < #(η1).

We declare that ν = root(T ), X0 = {ν}, Y0 = ω.
Suppose we have arrived to the (n + 1)th stage of the construction and Xn, Yn

have been already defined so that the clauses (α), (β) above are satisfied. Let
η ∈ Xn be such that

#(η) = min{#(η′) : η′ ∈ Xn}.

Let Y ′
n ∈ [ω]ω consist of these k ∈ Yn that η ∈ T qk (remember (β)). Apply (⊛BCB

tree )
of 1.4.9(3) to the sequence 〈tqkη : k ∈ Y ′

n〉 to choose an infinite set Yn+1 ⊆ Y ′
n such

that, letting k∗ = min(Yn+1) and sη = tqk∗

η we have

(∀η′ ∈ pos(sη))(∀∞k ∈ Yn+1)(η′ ∈ pos(tqkη )).

Finally, we let Xn+1 = (Xn \ {η}) ∪ pos(sη). This finishes the description of the
inductive step.

After the construction is carried out we let q∗ = 〈sη : η ∈ T 〉. It should be clear
that q∗ ∈ Qtree

F (K,Σ) (and even q∗ ∈ Pν,f ). Consequently we find n < ω such that
the conditions pn and q∗ are compatible.

Suppose that ν E root(pn). Then necessarily root(pn) ∈ T . It follows from our
construction (remember clause (β)) that we may find k > n such that root(pn) ∈
T qk . But then, using the assumption that (K,Σ) is h–linked and F is h–closed
and ≥∗–directed, we immediately get that the conditions pn, qk are compatible,
contradicting the choice of the qk. Similarly, if root(pn) ⊳ ν then taking any k > n
we get that the conditions qk, pn are compatible, again a contradiction. �

Since the conditions of the form used above are dense in Qtree
F (K,Σ) one easily

concludes that the forcing notion Qtree
F (K,Σ) is nice.

(3) Similarly. �
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1.5. Examples. Our first example recalls the forcing notion of [15, §3]. Let us start
with presenting the main tool for this type of constructions – norms determined by
Hall’s Marriage Theorem.

Definition 1.5.1. Let H : ω −→ H(ω1).

(1) Let KH be the collection of all finite non-empty families ∆ of finite partial
functions f such that ∅ 6= dom(f) ⊆ ω and f(n) ∈ H(n) for all n ∈ dom(f).
For integers m0 < m1 let

KH

m0,m1

def
= {∆ ∈ KH : (∀f ∈ ∆)(dom(f) ⊆ [m0,m1))}.

(2) Let ∆ ∈ KH, k ∈ ω. A function F : ∆ −→ [ω]k is a k–selector for ∆ if

(∀f, f ′ ∈ ∆)
(

F (f) ⊆ dom(f) and f 6= f ′ ⇒ F (f) ∩ F (f ′) = ∅
)

.

(3) For ∆0,∆1 ∈ KH we write ∆0 � ∆1 whenever

(∀f ∈ ∆0)(∃g ∈ ∆1)(g ⊆ f).

(4) We define the Hall norms of a set ∆ ∈ KH as follows:

hn+(∆)
def
= max{k + 1 : k ∈ ω and there is an k–selector for ∆},

hn(∆)
def
= max{k + 1 : k ∈ ω and for every ∆′ ⊆ ∆ there is ∆′′ ⊆ ∆′ such that

elements of ∆′′ have pairwise disjoint domains and
|

⋃

f∈∆′′

dom(f)| ≥ k · |∆′|},

HN(∆)
def
= max{hn(∆′) : ∆ � ∆′}.

Lemma 1.5.2. (1) If ∆ ∈ KH and k0 ∈ ω then

hn+(∆) > k0 if and only if (∀∆′ ⊆ ∆)(|
⋃

{dom(f) : f ∈ ∆′}| ≥ k0 · |∆
′|)

and 1 ≤ hn(∆) ≤ hn+(∆) ≤ HN(∆).
(2) If ∆0,∆1 ∈ KH and xx ∈ {hn,hn+,HN} then

xx(∆0 ∪ ∆1) ≥ ⌊min{
xx(∆0)

2
,
xx(∆1)

2
}⌋.

(3) If m0
0 < m0

1 ≤ m1
0 < m1

1 ≤ . . . ≤ mk
0 < mk

1 < ω, ∆i ∈ KH

mi
0,m

i
1
(for i ≤ k)

and xx ∈ {hn,hn+,HN} then

xx(
⋃

i≤k

∆i) = min{xx(∆i) : i ≤ k}.

(4) Suppose that m0 < m < m1 < ω and ∆ ∈ KH

m0,m1
. Let

∆0 = {f↾[m0,m) : f ∈ ∆ & |dom(f) ∩ [m0,m)| ≥ 1
2 |dom(f)|},

∆1 = {f↾[m,m1) : f ∈ ∆ & |dom(f) ∩ [m,m1)| ≥ 1
2 |dom(f)|}.

Then, for i < 2, either ∆i = ∅ or hn(∆i) ≥
1
2hn(∆).

Proof. (1) It follows from Hall’s Theorem (see Hall [4]) and the definitions of the
norms.
(2)–(4) Straightforward (compare [15, Claim 3.1.2]). �

Example 1.5.3. Let H : ω −→ H(ω1), |H(n)| ≥ 2 for all n ∈ ω.
We construct a ⊗–creating triple (KH,ΣH,Σ

⊥
H

) for H which:
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(1) is semi–normal (see 1.4.2(3)), forgetful (see 1.1.2(4)) and super–gluing (see
1.4.2(4)),

(2) has the cutting property (see 1.1.12(3)),
(3) is really finitary (see 1.3.3) provided H(n) is finite for each n ∈ ω.

Construction. Let KH consist of all creatures t ∈ CR[H] such that

• dis[t] = (mt
dn,m

t
up,∆t) for some ∆t ∈ KH

m0,m1
∪ {∅} such that, if ∆t 6= ∅,

hn+(∆t) > 1,
• val[t] = {〈u, v〉 ∈

∏

i<mt
dn

H(i) ×
∏

i<mt
up

H(i) : u ⊳ v & (∀f ∈ ∆t)(f * v)},

• if ∆t = ∅ then nor[t] = mt
dn + 1, otherwise nor[t] = log8(hn(∆t)).

(Note that hn+(∆t) > 1 implies val[t] 6= ∅.) For t0, . . . , tn ∈ KH such that

mti
up = m

ti+1

dn (for i < n) let

ΣH(t0, . . . , tn) = {t ∈ KH : mt
dn = mt0

dn & mt
up = mtn

up &
⋃

i≤n

∆ti ⊆ ∆t}.

It should be clear that ΣH is a composition operation on KH, KH is countable and
forgetful, and if each H(n) is finite then KH is really finitary.

For a creature t ∈ KH we define Σ⊥
H

(t) as follows. It consists of all finite sets
{s0, . . . , sn} ⊆ KH (a suitable enumeration) such that

• mt
dn = ms0

dn < ms0
up = ms1

dn < . . . < m
sn−1
up = msn

dn < msn
up = mt

up, and
• (∀f ∈ ∆t)(∃ℓ ≤ n)(f↾[msℓ

dn,m
sℓ
up) ∈ ∆sℓ).

It is clear that Σ⊥
H

is a decomposition operation on KH, so (KH,ΣH,Σ
⊥
H

) is a
⊗–creating triple.

It follows from 1.5.2(2) that (KH,ΣH) is linked, and using 1.5.2(3) one easily
shows that it is super–gluing. Similarly, (KH,ΣH,Σ

⊥
H

) has the cutting property by
1.5.2(4).

Note that

(∗) if f ∈
m1−1
∏

i=m0

H(i), then hn({f}) = HN({f}) = m1 −m0 + 1.

Hence, using 1.5.2(2), we may easily conclude that (KH,ΣH) is reducible. However,
it is not normal – one can build s, t ∈ KH such that nor[s] < nor[t] but val[t] ⊆
val[s] (which is in some sense paradoxical, and this is why we modify this example
in 1.5.5).

Claim 1.5.3.1. (KH,ΣH,Σ
⊥
H

) is semi–normal.

Proof of the claim. Let n ∈ ω, t ∈ KH be such that nor[t] > 2n+2, mt
up −mt

dn >

22n+4

. We may assume that ∆t 6= ∅ (remember (∗)). We choose inductively a
sequence 〈∆ℓ, Aℓ : ℓ ≤ n〉 such that

(1) ∆ℓ ∈ KH

mt
dn,m

t
up

, Aℓ ⊆
mt

up−1
∏

i=mt
dn

H(i), Aℓ � ∆ℓ,

(2) ∆0 = ∆t,

(3) 82n+2−ℓ−1 ≤ hn(∆ℓ+1) = HN(∆ℓ+1) = HN(Aℓ+1) < 82n+2−ℓ

(for ℓ < n),
(4) (∀f ∈ Aℓ)(∀g ∈

⋃

k<ℓ

∆k)(g * f).
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There are no problems for ℓ = 0 (note that there are practically no restrictions on
A0, and ∆0 is determined). So suppose that we have arrived to a stage ℓ + 1 ≤ n

of the construction. It follows from 1.5.2(1,2) that hn(
⋃

k≤ℓ

∆k) > 82n+3−ℓ−2. Let

A∗ = {f ∈

mt
up−1
∏

i=mt
dn

H(i) : (∀g ∈
⋃

k≤ℓ

∆k)(g * f)}.

Necessarily HN(A∗) ≤ 2. Now, using (∗) and 1.5.2(2), we may choose Aℓ+1 ⊆ A∗

such that 82n+2−ℓ−1 ≤ HN(Aℓ+1) < 82n+2−ℓ

. Next, we pick ∆ℓ+1 ∈ KH

mt
dn,m

t
up

satisfying Aℓ+1 � ∆ℓ+1 and HN(Aℓ+1) = hn(∆ℓ+1) = HN(∆ℓ+1). This finishes
the construction.

For ℓ ≤ n let sℓ ∈ ΣH(t) be such that ∆sℓ =
⋃

k≤ℓ

∆k. It should be clear that

(α) s0 = t, sℓ+1 ∈ Σ(sℓ), 2n+1−ℓ < nor[sℓ+1] ≤ 2n−ℓ+2 (for ℓ < n).

We claim that additionally

(β) if s ∈ KH, ms
dn = mt

dn, ms
up = mt

up and nor[s] > 2n−ℓ+3, ℓ < n, then

(∀u ∈ dom(val[s]))(∃v)(〈u, v〉 ∈ val[s] \ val[sℓ+1])

(what will finish the proof of the claim). So suppose s ∈ KH, ms
dn = mt

dn, ms
up =

mt
up and nor[s] > 2n−ℓ+3, ℓ < n. Let u ∈

∏

i<mt
dn

H(i). If ∆s = ∅, then we

may take v ∈
∏

i<mt
up

H(i) such that u ⊳ v and (∃f ∈ ∆t)(f ⊆ v), so clearly

〈u, v〉 ∈ val[s] \ val[sℓ+1]. Assume now that ∆s 6= ∅, so hn(∆s) > 82n−ℓ+3

. Since

HN(Aℓ+1) < 82n+2−ℓ

< hn(∆s), there is f ∈ Aℓ+1 such that (∀g ∈ ∆s)(g * f).
Clearly 〈u, u⌢f〉 ∈ val[s] \ val[sℓ+1]. �

Finally note that the forcing notion Q∗
∞(KH,ΣH,Σ

⊥
H

) is not trivial. �

Conclusion 1.5.4. Let H : ω −→ H(ω1) be such that |H(n)| ≥ 2 for all n < ω.
Then the forcing notion Q∗

∞(KH,ΣH,Σ
⊥
H

) (where (KH,ΣH,Σ
⊥
H

) is as defined in
1.5.3) is σ-∗–linked and it adds a dominating real. Consequently it is not ω–nw–nep
(by [26]).

If one looks at val[t] for t ∈ KH in 1.5.3, then it is clear that HN is more
appropriate to determine the norms of creatures. We presented 1.5.3 as it is a
direct relative of the forcing notion of [15, §3]. However, it seems that the following
example presents a nicer member of this family.

Example 1.5.5. Let H : ω −→ H(ω1), |H(n)| ≥ 2 for all n ∈ ω.
We construct a ⊗–creating triple (K1.5.5,Σ1.5.5,Σ

⊥
1.5.5) for H which:

(1) is almost normal (see the construction), regular (see 1.3.2), forgetful and
super–gluing,

(2) has the cutting property,
(3) is really finitary provided H(n) is finite for each n ∈ ω.

Construction. It is similar to 1.5.3, but instead of hn we use HN. So K1.5.5 consists
of t ∈ CR[H] such that

• dis[t] = (mt
dn,m

t
up,∆t) for some ∆t ∈ KH

m0,m1
∪ {∅} such that, if ∆t 6= ∅,

hn+(∆t) > 1,
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• val[t] = {〈u, v〉 ∈
∏

i<mt
dn

H(i) ×
∏

i<mt
up

H(i) : u ⊳ v & (∀f ∈ ∆t)(f * v)},

• if ∆t = ∅ then nor[t] = log8(mt
up −mt

dn) + 2mt
dn + 1, otherwise nor[t] =

log8(HN(∆t)).

For t0, . . . , tn ∈ K1.5.5 such that mti
up = m

ti+1

dn (for i < n) let

Σ1.5.5(t0, . . . , tn) = {t ∈ K1.5.5 : mt
dn = mt0

dn & mt
up = mtn

up &
⋃

i≤n

∆ti ⊆ ∆t}.

For t ∈ K1.5.5, Σ⊥
1.5.5(t) consists of all finite sets {s0, . . . , sn} ⊆ K1.5.5 such that

• mt
dn = ms0

dn < ms0
up = ms1

dn < . . . < m
sn−1
up = msn

dn < msn
up = mt

up, and
• (∀f ∈ ∆t)(∃ℓ ≤ n)(f↾[msℓ

dn,m
sℓ
up) ∈ ∆sℓ).

Clearly (K1.5.5,Σ1.5.5,Σ
⊥
1.5.5) is a forgetful super–gluing ⊗–creating triple. It is

linked, and it is really finitary provided H(n) is finite for each n ∈ ω.

Claim 1.5.5.1. Suppose s, t ∈ K1.5.5 are such that nor[s] < nor[t]. Then

(∀u ∈ dom(val[t]))(∃v)(〈u, v〉 ∈ val[t] \ val[s]).

Proof of the claim. We may assume that ms
dn = mt

dn, ms
up = mt

up (otherwise triv-
ial). It follows from the assumptions (and the definition of nor[s]) that ∆s 6= ∅. If
∆t = ∅, then the conclusion is immediate, so assume ∆t 6= ∅. Thus ∆s,∆t ∈ KH

and HN(∆s) < HN(∆t). Choose ∆ ∈ KH such that ∆t � ∆ and hn(∆) =
HN(∆t). Note that, by 1.5.2(1), we have hn(∆) = HN(∆) = hn+(∆). Con-
sequently, we may choose ∆′ ∈ KH such that elements of ∆′ have pairwise dis-
joint domains, ∆ � ∆′ and hn(∆′) = hn(∆). Now, for some f ∈ ∆s we have

(∀g ∈ ∆′)(g * f). By the choice of ∆′ we may build f∗ ∈
ms

up−1
∏

i=ms
dn

H(i) such that

f ⊆ f∗ and (∀g ∈ ∆′)(g * f∗). Since ∆t � ∆′ we are done. �

Using 1.5.5.1 we see that (K1.5.5,Σ1.5.5) is almost normal in the following sense:
the reducibility demand (see 1.4.2(1)) holds for those t ∈ K1.5.5 for which ∆t 6= ∅.
However, this is enough to carry out, e.g., the proof of 1.4.4(3) with almost no
changes.

Claim 1.5.5.2. (K1.5.5,Σ1.5.5,Σ
⊥
1.5.5) is regular and has the cutting property.

Proof of the claim. First we show the regularity. So suppose that

(w, t0, . . . , tn), (u, s0, . . . , sm) ∈ FC(K1.5.5,Σ1.5.5,Σ
⊥
1.5.5)

are such that (w, t0, . . . , tn) ≤ (u, s0, . . . , sm), msm
up ≤ mtn

up, nor[s0] ≥ 3, and

nor[tℓ] ≥ 3, where ℓ ≤ n is such that mtℓ
dn < ms0

dn < mtℓ
up ≤ ms0

up. It follows
from the definition of ≤ (see 1.1.3) that

(∀f ∈ ∆tℓ)
(

f↾ms0
dn * u or (∃g ∈ ∆s0)(g ⊆ f)

)

.

Let t′, t′′ ∈ K1.5.5 be such that mt′

dn = mtℓ
dn, mt′

up = mt′′

dn = ms0
dn, mt′′

up = mtℓ
up and

∆t′ = {f↾[mtℓ
dn,m

s0
dn) : f ∈ ∆tℓ & f↾ms0

dn * u},
∆t′′ = {f↾[ms0

dn,m
tℓ
up) : f ∈ ∆tℓ & f↾ms0

dn ⊆ u}.

Then {t′, t′′} ∈ Σ⊥
1.5.5(tℓ) and clearly u ∈ pos(w, t0, . . . , tℓ−1, t

′). The only thing left
is to show that the norm of t′′ is at least 2. If ∆t′′ = ∅, then it is clearly true as
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mt′′

dn ≥ 1. So suppose that ∆t′′ 6= ∅ and we have to argue that HN(∆t′′) ≥ 64. But
this is clear as ∆t′′ � ∆s0 .

Now let us show that (K1.5.5,Σ1.5.5,Σ
⊥
1.5.5) has the cutting property. Let t ∈

K1.5.5, nor[t] > 1, mt
dn < m < mt

up. Choose ∆ ∈ KH

mt
dn,m

t
up

such that elements of

∆ have pairwise disjoint domains, ∆t � ∆ and HN(∆t) = hn(∆) (like in the proof
of 1.5.5.1). Put

∆0 = {f↾[mt
dn,m) : f ∈ ∆ & |dom(f) ∩ [mt

dn,m)| ≥ 1
2 |dom(f)|},

∆1 = {f↾[m,mt
up) : f ∈ ∆ & |dom(f) ∩ [m,mt

up)| ≥ 1
2 |dom(f)|}.

Let s0, s1 ∈ K1.5.5 be such that ms0
dn = mt

dn, ms0
up = m = ms1

dn, ms1
up = mt

up and

∆s0 = {g↾[mt
dn,m) : g ∈ ∆t & (∃f ∈ ∆0)(f ⊆ g)},

∆s1 = {g↾[m,mt
up) : g ∈ ∆t & (∃f ∈ ∆1)(f ⊆ g)}.

Now check. �

�

Conclusion 1.5.6. The forcing notion Q∗
∞(K1.5.5,Σ1.5.5,Σ

⊥
1.5.5) is σ-∗–linked Souslin

ccc and it adds a dominating real. Consequently it adds a Cohen real (by [21]) and
it is not ω–nw–nep (by [26]).

Hall’s norms are of special interest because of “gluing and cutting”, but we may
use them to build local creating pairs to.

Example 1.5.7. Let H∗ : ω −→ H(ω1), 2 ≤ |H∗(i)| < ω for all i ∈ ω. Suppose
that n̄ = 〈nk : k < ω〉 ⊆ ω is an increasing sequence such that lim

k→∞
nk+1 −nk = ∞

and let H = H∗[n̄] : ω −→ H(ω1) be defined by H(k) =
nk+1−1
∏

i=nk

H∗(i).

We construct a really finitary creating pair (K1.5.7,Σ1.5.7) for H which is local,
forgetful, normal and Cohen–producing (see 1.4.9(1)).

Construction. Let K1.5.7 consist of creatures t ∈ CR[H] such that

• dis[t] = (mt,∆t) for some mt < ω and ∆t ∈ KH
∗

nmt ,nmt+1
∪ {∅} such that, if

∆t 6= ∅, hn+(∆t) > 1,
• val[t] = {〈u, v〉 ∈

∏

i<mt

H(i) ×
∏

i≤mt

H(i) : u ⊳ v & (∀f ∈ ∆t)(f * v(mt))},

• if ∆t 6= ∅, then nor[t] = log8(HN(∆t)), otherwise nor[t] = log8(nmt+1 −
nmt

+ 1).

The operation Σ1.5.7 gives non-empty results for singletons only and

Σ1.5.7(t) = {s ∈ K1.5.7 : mt
dn = ms

dn & ∆t ⊆ ∆s}.

Clearly, (K1.5.7,Σ1.5.7) is a really finitary creating pair which is local, forgetful and
linked (remember 1.5.2(2)).

Claim 1.5.7.1. (K1.5.7,Σ1.5.7) is normal and Cohen–producing.

Proof of the claim. First note that (K1.5.7,Σ1.5.7) is reducible (remember (∗) of the
construction for 1.5.3; note that here there are no problems caused by ∆t = ∅).
Next note that (the proof of) 1.5.5.1 applies here too.



6
7
2
 
 
r
e
v
i
s
i
o
n
:
2
0
0
3
-
1
0
-
0
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
1
0
-
0
1
 
 

SWEET & SOUR 25

To show that (K1.5.7,Σ1.5.7) is Cohen–producing fix (for k ∈ ω) an ak ∈ H∗(nk)
and let

Ak = {f ∈

nk+1−1
∏

i=nk

H∗(i) : f(nk) = ak} ⊆ H(k).

Suppose that t ∈ K1.5.7, nor[t] > 1, mt
dn = k and let u ∈ dom(val[t]). If ∆t = ∅,

then we easily choose v0, v1 ∈ rng(val[t]) extending u and such that v0(k) /∈ Ak,
v1(k) ∈ Ak (remember |H∗(nk)| ≥ 2). So suppose that ∆t 6= ∅ and thus HN(∆t) >

8. Then we may find ∆′ ∈ KH
∗

nk,nk+1
such that ∆t � ∆′, elements of ∆′ have pairwise

disjoint domains all of size > 2. Now we easily build v0, v1 ∈ dom(rng[t]), both
extending u and such that v0(k) /∈ Ak, v1(k) ∈ Ak. �

�

Conclusion 1.5.8. Assume H∗, n̄,H and (K1.5.7,Σ1.5.7) are as in 1.5.7.

(1) Suppose f : ω × ω −→ ω is a fast function such that

(∀k ∈ ω)(∀∞ℓ ∈ ω)(f(k, ℓ) < log8(nℓ+1 − nℓ))

(e.g. f(k, ℓ) = 22k). Then Q∗
f(K1.5.7,Σ1.5.7) is a non-trivial σ-∗–linked

Borel ccc forcing notion which adds a dominating real (so it adds a Cohen
real and it is not ω–nw–nep).

(2) Let h(n,m) = max{0,m− 1} (so h : ω × ω −→ ω is a regressive function).
Suppose that F ⊆ (ω \2)ω is a countable h–closed ≥∗–directed family such
that (∀f ∈ F)(∀∞ℓ ∈ ω)(f(ℓ) < log8(nℓ+1 − nℓ)) (e.g. F = {fk : k < ω},
fk(ℓ) = max{2, ⌊ 1

k log8(nℓ+1 − nℓ)⌋}). Then Q∗
F(K1.5.7,Σ1.5.7) is a non-

trivial σ–∗–linked very Borel ccc forcing notion, it adds a Cohen real and
it is nice (so it preserves unbounded families).

Our next examples generalize (in some sense) the Eventually Different Real Forc-
ing of Miller [12].

Example 1.5.9. Let H : ω −→ H(ω1), |H(k)| ≥ 4. For k < ω, let Nk be |H(k)| if
H(k) is finite, and 2k+2 otherwise. Assume lim

k 7→∞
Nk = ∞. Let h : ω × ω −→ ω be

given by

h(k, n) =







n− 1 if n ≥ Nk,
2n−Nk if 7

8Nk < n < Nk,
1 otherwise.

(Note that h is regressive.) We construct an h–linked creating pair (K1.5.9,Σ1.5.9)
for H which is local, forgetful, Cohen–producing and of the BCB–type (see 1.4.9).

Construction. Let K1.5.9 be the collection of all t ∈ CR[H] such that

• dis[t] = (kt, Et) for some kt < ω and Et ⊆ H(kt) such that 0 < |Et| < Nkt
,

• val[t] = {〈u, v〉 ∈
∏

i<kt

H(i) ×
∏

i≤kt

H(i) : u ⊳ v & v(kt) /∈ Et},

• if |Et| ≥
1
4Nkt

then nor[t] = 1; otherwise nor[t] = Nkt
− |Et|.

The operation Σ1.5.9 is natural: it gives non-empty results for singletons only and

Σ1.5.9(t) = {s ∈ K1.5.9 : ks = kt & Et ⊆ Es}.

It should be clear that (K1.5.9,Σ1.5.9) is a local forgetful creating pair for H.
To show that it is h–linked suppose that k > 1, t0, t1 ∈ K1.5.9, nor[t0],nor[t1] ≥

k and ℓ = mt0
dn = mt1

dn. Then |Et0 |, |Et1 | <
1
4Nℓ and thus 0 < |Et0 ∪Et1 | < Nℓ. Let
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s ∈ K1.5.9 be such that ks = ℓ, Es = Et0 ∪ Et1 . Clearly s ∈ Σ1.5.9(t0) ∩ Σ1.5.9(t1).
If h(ℓ, k) = 1 then clearly nor[s] ≥ h(ℓ, k), so suppose h(ℓ, k) > 1. Necessarily
7
8Nℓ < k < Nℓ, so |Et0 |, |Et1 | <

1
8Nℓ and therefore |Es| <

1
4Nℓ. Hence

nor[s] = Nℓ − |Es| ≥ Nℓ − |Et0 | − |Et1 | ≥ 2k −Nℓ = h(ℓ, k).

Let us show now that (K1.5.9,Σ1.5.9) is Cohen–producing. For each n ∈ ω choose
a set An ⊆ H(n) such that |An| = ⌊ 1

2 |H(n)|⌋ if H(n) is finite, and An is infinite co-
infinite if H(n) is infinite. Suppose that t ∈ K1.5.9, nor[t] > 1. Then Et ⊆ H(kt),
|Et| <

1
4Nkt

, so we may choose a1 ∈ Akt
\ Ekt

and a0 ∈ H(kt) \ (Akt
∪ Ekt

), and
we easily finish.

Finally, let us argue that (K1.5.9,Σ1.5.9) is of the BCB–type, To this end suppose
that 〈sn : n < ω〉 ⊆ K1.5.9, msn

dn = ksn = ℓ, nor[sn] ≥ 2. Then |Esn | <
1
4Nℓ for

each n.
If H(ℓ) is finite, then the demand in (⊛BCB) of 1.4.9(2) is trivially satisfied (just
take {a0, . . . , am} = H(ℓ)).
So suppose that H(ℓ) is infinite and to simplify notation let H(ℓ) = ω. Let Esn =
{bn0 , . . . , b

n
kn−1} be the increasing enumeration; kn = |Esn |. We may find an infinite

set Y ⊆ ω and k∗ ≤ k < ω such that

• kn = k for each n ∈ Y ,
• 〈bni : n ∈ Y 〉 is constant for each i < k∗,
• 〈bni : n ∈ Y 〉 is strictly increasing for each i ∈ [k∗, k).

Suppose a ∈ H(ℓ) \ {bni : i < k∗} for some (equivalently: all) n ∈ Y . Then,
for sufficiently large n ∈ Y , for every i ∈ [k∗, k) we have bni > a. Consequently
(∀∞n ∈ Y )(a /∈ Esn), so we may easily finish. �

Conclusion 1.5.10. Let H, 〈Nk : k < ω〉, h and (K1.5.9,Σ1.5.9) be as in 1.5.9.
Suppose that F ⊆ (ω \2)ω is a countable h–closed ≥∗–directed family such that for
some f ∈ F we have (∀∞k ∈ ω)(f(k) < Nk) (e.g. F = {fℓ : ℓ < ω}, fℓ(k) = Nk−2ℓ

if Nk > 2ℓ+1, fℓ(k) = 2 otherwise). Then Q∗
F(K1.5.9,Σ1.5.9) is a non-trivial σ–∗–

linked Borel ccc forcing notion which adds a Cohen real and is nice (so it preserves
unbounded families).

If H and F are as in 1.5.10, and H(k) is finite for each k, then we may use
1.3.4(3) to get that the forcing notion Q∗

F(K1.5.9,Σ1.5.9) is very Borel ccc. We
may prove the same conclusion without the additional assumption on H (see 1.5.11
below). Unfortunately, this proof is very specific for Q∗

F(K1.5.9,Σ1.5.9) and it does
not generalize to cover more forcing notions of the form Q∗

F(K,Σ)

Proposition 1.5.11. Assume that H, 〈Nk : k < ω〉, h, K = K1.5.9 and Σ = Σ1.5.9

are as in 1.5.9, and F ⊆ (ω \ 2)ω is a countable h–closed ≤∗–directed family such
that

(∃f ∈ F)(∀∞k ∈ ω)(f(k) < Nk).

Then the forcing notion Q∗
F(K1.5.9,Σ1.5.9) is very Borel ccc.

Proof. The only thing that should be shown is that being a maximal antichain is
a Borel relation (remember 1.5.10 and so 1.3.4(1c)). Put Z =

⋃

i<ω

∏

j<i

H(i) \ {〈〉},

X = (Z ∪ {〈〉}) ×Kω, and Y = Xω and Z = ωZ × ωZ .
Then X ,Y,Z are Polish spaces (each equipped with the respective product topol-

ogy), Q∗
∅(K,Σ) and Q∗

F(K,Σ) are Π0
1 and Σ0

2 subsets of X , respectively, and for
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our conclusion it is enough to show that

P
def
=

{

〈pn : n < ω〉 ∈ Y : (∀n < ω)(pn ∈ Q∗
F(K,Σ)) and

{pn : n < ω} is pre-dense in Q∗
F(K,Σ)

}

is a Borel subset of Y.
Plainly we may assume that

(∀f ∈ F)(∀k < ω)(2 ≤ f(k) < Nk)

(as we may modify suitable the family F without changing the forcing notion).
Now, for f ∈ F we define

Cf = {(h0, h1) ∈ Z : (∀η ∈ Z)(h0(η) < lh(η) & h1(η) < Nh0(η) − f(h0(η)))}.

Clearly each Cf is a compact subset of Z.

Claim 1.5.11.1. Suppose that p̄ = 〈pn : n < ω〉 ∈ Y, where pn ∈ Q∗
F(K,Σ) are

such that nor[tpn

k ] > 1 (for all k, n < ω). Then the following are equivalent:

(A)p̄ There is a condition p ∈ Q∗
F(K,Σ) incompatible with every pn (for n < ω).

(B)p̄ There are η ∈ Z and f ∈ F and (h0, h1) ∈ Cf such that
(i) for every ν ∈ Z, if η ⊳ ν then h0(ν) ≥ lh(η), and

(ii) for every ν0, ν1 ∈ Z, if η ⊳ ν0, η ⊳ ν1 and ν0, ν1 ∈
⋃

n<ω
POS(pn) and

h0(ν0) = h0(ν1) and h1(ν0) = h1(ν1), then ν0(h0(ν0)) = ν1(h0(ν1)).

Proof of the claim. Assume (A)p̄ and pick p ∈ Q∗
F(K,Σ) and f ∈ F such that

(∀k < ω)(nor[tpk] = Nlh(wp)+k − |Etp
k
| = f(lh(wp) + k)),

and p is incompatible with all pn (for n < ω). For ℓ = lh(wp) + k, k < ω, let
〈xℓm : m < Nℓ−f(ℓ)〉 be an enumeration of Etp

k
. Note that, as p⊥pn, if ν ∈ POS(pn)

and wp ⊳ ν, then for some h0(ν) ∈ [lh(wp), lh(ν)) and h1(ν) < Nh0(ν) − f(h0(ν))

we have ν(h0(ν)) = x
h0(ν)
h1(ν). Letting η = wp we may now easily define (h0, h1) so

that η, f, (h0, h1) witness (B)p̄.
Suppose now that η, f and (h0, h1) witness (B)p̄. Let wp = η and for ℓ =

lh(wp) + k, k < ω and m < Nℓ − f(ℓ) let xℓm ∈ H(ℓ) be such that

(∗) if ν ∈
⋃

n<ω
POS(pn), wp ⊳ ν and h0(ν) = ℓ and h1(ν) = m,

then xℓm = ν(ℓ).

(The choice of the xℓm’s is possible by (B)p̄(ii).) Now, for each k < ω pick tpk ∈ K
so that

m
tp
k

dn = lh(wp) + k and Etp
k

= {xlh(wp)+k
m : m < Nlh(wp)+k − f(lh(wp) + k)}.

Notice that for sufficiently large k we have f(lh(wp)+k) > 7
8Nlh(wp)+k, so for those

k we will also have nor[tpk] = f(lh(wp) + k). Hence p ∈ Q∗
F(K,Σ) and easily it is a

condition incompatible with all pn’s. �

For η ∈ Z and f ∈ F , let Bη,f consist of all (h0, h1, p̄) ∈ Z × Y such that

• (h0, h1) ∈ Cf , p̄ = 〈pn : n < ω〉 ∈ Y, where pn ∈ Q∗
∅(K,Σ) are such that

nor[tpn

k ] > 1 for all k, n < ω, and
• (∀ν ∈ Z)(η ⊳ ν ⇒ lh(η) ≤ h0(ν)), and



6
7
2
 
 
r
e
v
i
s
i
o
n
:
2
0
0
3
-
1
0
-
0
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
1
0
-
0
1
 
 

28 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

• for all ν0, ν1 ∈ Z ∩
⋃

n<ω
POS(pn) we have

h0(ν0) = h0(ν1) & h1(ν0) = h1(ν1) ⇒ ν0(h0(ν0)) = ν1(h1(ν1)).

It should be clear that Bη,f is a closed subset of Cf × Y and hence (as Cf is
compact) the set

Aη,f = {p̄ ∈ Y : (∃(h0, h1) ∈ Cf )((h0, h1, p̄) ∈ Bη,f )}

is a closed subset of Y, and Aη,f∩
(

Q∗
F(K,Σ)

)ω
is Borel. Now, pick a Borel function

π : Y −→ Y such that
if p̄ = 〈pn : n < ω〉 ∈

(

Q∗
F(K,Σ)

)ω
and q̄ = 〈qn : n < ω〉 = π(p̄),

then

• for each n < ω, qn ∈ Q∗
F(K,Σ) and (∀k < ω)(nor[tqnk ] > 1),

• for each n < ω, for some m < ω and k < ω we have

wqn ∈ pos(wpm , tpm

0 , . . . , tpm

k ) and qn = (wqn , tpm

k+1, t
pm

k+2, . . .),

• if m < ω, k < ω, w ∈ pos(wpm , tpm

0 , . . . , tpm

k ), and (∀ℓ > k)(nor[tpm

ℓ ] > 1),
then (w, tpm

k+1, t
pm

k+2, . . .) ∈ {qn : n < ω}.

Clearly, p̄ ∈
(

Q∗
F(K,Σ)

)ω
is pre-dense if and only if so is π(p̄). Hence, for p̄ ∈

(

Q∗
F(K,Σ)

)ω
we have

p̄ not is pre-dense if and only if
there are η ∈ Z and f ∈ F such that π(p̄) ∈ Aη,f

(remember 1.5.11.1). Since both Z and F are countable, the proof of the proposition
is completed. �

The construction presented in 1.5.9 is a particular case of a more general method
of building linked creating pairs from some of the examples presented in [16]. First
let us recall the following definition.

Definition 1.5.12 (See [16, Def. 5.2.5]). Let (K,Σ) be a creating pair. We say
that a creature t ∈ K is (n,m)–additive if for all t0, . . . , tn−1 ∈ Σ(t) such that
nor[ti] ≤ m (for i < n) there is s ∈ Σ(t) such that

t0, . . . , tn−1 ∈ Σ(s) and nor[s] ≤ max{nor[tℓ] : ℓ < n} + 1.

Example 1.5.13. Suppose that (K,Σ) is a local and forgetful creating pair for H,
and it satisfies the demand (⊞) of 1.4.2(2). Let t̄∗ = 〈t∗0, t

∗
1, t

∗
2, . . .〉 ∈ PC∞(K,Σ)

be such that each t∗n is (2,nor[t∗n])–additive and mt0
dn = 0. We construct a local

linked creating pair (Kc
t̄∗ ,Σ

c
t̄∗) (the t̄∗–dual of (K,Σ)).

Construction. For n < ω and a creature t ∈ Σ(t∗n) let a creature tc be such that

• nor[tc] = max{0,nor[t∗n] − nor[t]},
• val[tc] =

(
∏

i<n

H(i) ×
∏

i≤n

H(i)
)

\ val[t],

• dis[tc] = (dis[t], c).

[The creature tc is defined only if val[tc] 6= ∅.] Let Kc
t̄∗ be the collection of all

(correctly defined) tc (for t ∈ Σ(t∗n), n < ω). For tc ∈ Kc
t̄∗ (defined as above for

t ∈ Σ(t∗n)) we let

Σc
t̄∗(tc) = {sc : t ∈ Σ(s) & s ∈ Σ(t∗n)}.

�
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The examples of local creating pairs have their (local) tree–creating variants too.
They can be constructed like the following example.

Example 1.5.14. Let H ∈ ωω be a strictly increasing function such that H(0) > 2.
We construct a really finitary, normal (local) tree–creating pair (K1.5.14,Σ1.5.14) for
H which is Cohen–producing.

Construction. The family K1.5.14 consists of tree–creatures t ∈ LTCR[H] such that

• dis[t] = (mt, ηt, Et) such that mt < ω, ηt ∈
∏

i<mt

H(i) and ∅ 6= Et ⊆ H(mt),

Et 6= H(mt),
• val[t] = {〈ηt, ν〉 : ηt ⊳ ν ∈

∏

i≤mt

H(i) & ν(mt) /∈ Et},

• nor[t] = log4(H(mt)
|Et|

).

The tree composition Σ1.5.14 is natural: it gives non empty results for singletons
only and then

Σ1.5.14(t) = {s ∈ K1.5.14 : ηs = ηt & Et ⊆ Es}.

Now check. �

Conclusion 1.5.15. Suppose H ∈ ωω is strictly increasing, H(0) > 4.

(1) The forcing notion Qtree
1 (K1.5.14,Σ1.5.14) is non-trivial, σ–∗–linked and it

adds a dominating real.
(2) Assume that f : ω × ω −→ ω is a fast function such that

(∀n,m < ω)(f(n,m) < log4(H(m))).

Then the forcing notion Qtree
f (K1.5.14,Σ1.5.14) is non-trivial, σ–∗–linked,

Borel ccc, and it adds a dominating real.
(3) Suppose that F ⊆ (ω \ 2)ω is a countable ≥∗–directed family such that

(∃f ∈ F)(∀∞n ∈ ω)(f(n) < log4(H(n))) and
(∀f ∈ F)(∃g ∈ F)(∀∞n ∈ ω)(g(n) < f(n) − 1).

Then the forcing notion Qtree
F (K1.5.14,Σ1.5.14) is non-trivial, σ–∗–linked,

very Borel ccc, and it adds a Cohen real and is nice.

2. More constructions

In this section we introduce more schemes for building ccc forcing notions as
well as more norm conditions that can be used in conjunctions with the methods
presented in the previous section.

2.1. Mixtures with random.

Definition 2.1.1. Let H : ω −→ H(ω1). We say that (K,Σ,F) is a mixing triple
for H if

(a) (K,Σ) is a (local) tree–creating pair for H,
(b) for each η ∈

⋃

m∈ω

∏

i<m

H(i) there is t∗η ∈ K such that

(∀t ∈ LTCRη[H] ∩K)(t ∈ Σ(t∗η)),

(c) F = 〈Fη : η ∈
⋃

m∈ω

∏

i<m

H(i)〉, where for each η ∈
⋃

m∈ω

∏

i<m

H(i):

(d) Fη : [0, 1]pos(t∗η) −→ [0, 1],
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(e) if 〈rν : ν ∈ pos(t∗η)〉, 〈r′ν : ν ∈ pos(t∗η)〉 ∈ [0, 1]pos(t∗η), rν ≤ r′ν for all
ν ∈ pos(t∗η), then Fη(rν : ν ∈ pos(t∗η)) ≤ Fη(r′ν : ν ∈ pos(t∗η)),

(f) if 〈rν : ν ∈ pos(t∗η)〉 ∈ [0, 1]pos(t∗η), ε > 0, then there are r′ν < rν (for

ν ∈ pos(t∗η)) such that for each 〈r′′ν : ν ∈ pos(t∗η)〉 ∈ [0, 1]pos(t∗η) satisfying
r′ν < r′′ν ≤ rν (for ν ∈ pos(t∗η)) we have

Fη(rν : ν ∈ pos(t∗η)) − ε < Fη(r′′ν : ν ∈ pos(t∗η)),

(g) if rν ≥ ε > 0 for ν ∈ pos(t∗η) then Fη(rν : ν ∈ pos(t∗η)) ≥ ε.

Definition 2.1.2. Let (K,Σ,F) be a mixing triple for H.

(1) Let T ∗ = T ∗
K,Σ ⊆

⋃

m∈ω

∏

i<m

H(i) be a tree such that

root(T ∗) = 〈〉 and (∀η ∈ T ∗)(succT∗(η) = pos(t∗η)).

(2) If X ⊆ pos(t∗η), η ∈ T ∗ and 〈rν : ν ∈ X〉 ⊆ [0, 1], then we define Fη(rν : ν ∈
X) as Fη(r∗ν : ν ∈ pos(t∗η)), where

r∗ν =

{

rν if ν ∈ X,
0 if ν ∈ pos(t∗η) \X.

(3) Suppose that p = 〈tpη : η ∈ T p〉 ∈ Qtree
∅ (K,Σ) and A ⊆ T p is a front

of T p. We let T [p,A] = {η ∈ T p : (∃ρ ∈ A)(η E ρ)}, and we define
µF

p,A = µp,A : T [p,A] −→ [0, 1] by downward induction as follows:

• if η ∈ A then µp,A(η) = 1,
• if µp,A(ν) has been defined for all ν ∈ pos(tpη), η ∈ T [p,A] \ A, then

we put µp,A(η) = Fη(µp,A(ν) : ν ∈ pos(tpη)).

(4) For p = 〈tpη : η ∈ T p〉 ∈ Qtree
∅ (K,Σ) we define

µF(p) = inf{µp,A(root(p)) : A is a front of T p}.

(5) Let Qmt
∅ (K,Σ,F) = {p ∈ Qtree

∅ (K,Σ) : µF(p) > 0} be equipped with the

partial order inherited from Qtree
∅ (K,Σ). Similarly we define forcing notions

Qmt
1 (K,Σ,F), Qmt

f (K,Σ,F), Qmt
F (K,Σ,F) (for suitable f and F).

Definition 2.1.3. A mixing triple (K,Σ,F) is ccc–complete if

(a) for each η ∈ T ∗
K,Σ and A ⊆ pos(t∗η), there is a unique tree–creature tA ∈

Σ(t∗η) such that pos(tA) = A,
(b) if η ∈ T ∗

K,Σ, A ⊆ B ⊆ pos(t∗η), then tA ∈ Σ(tB) and nor[tA] ≤ nor[tB],

(c) if rν = r′ν + r′′ν , rν , r
′
ν , r

′′
ν ∈ [0, 1] (for ν ∈ pos(t∗η), η ∈ T ∗

K,Σ), then

Fη(rν : ν ∈ pos(t∗η)) = Fη(r′ν : ν ∈ pos(t∗η)) + Fη(r′′ν : ν ∈ pos(t∗η)).

Lemma 2.1.4. Let (K,Σ,F) be a ccc–complete mixing triple for H. Suppose that
p0, . . . pm ∈ Qmt

∅ (K,Σ,F) are such that
∑

ℓ≤m

µF(pℓ) > 1 and root(p0) = . . . =

root(pm). Then for some ℓ < n ≤ m the conditions pℓ, pn are compatible in
Qmt

∅ (K,Σ,F).

Proof. Let ν = root(p0) = . . . = root(pm). For each ℓ < n ≤ m such that [T pℓ ] ∩
[T pn ] 6= ∅ choose a tree Tℓ,n ⊆ T ∗

K,Σ satisfying

max(Tℓ,n) = ∅, root(Tℓ,n) = ν and [Tℓ,n] = [T pℓ ] ∩ [T pn ].
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Let pℓ,n ∈ Qtree
∅ (K,Σ) be such that T pℓ,n = Tℓ,n (defined if [T pℓ ] ∩ [T pn ] 6= ∅,

ℓ < n ≤ m). Our aim is to show that for some ℓ < n ≤ m, pℓ,n is defined and
belongs to Qmt

∅ (K,Σ,F) (i.e., µF(pℓ,n) > 0). So suppose that for each ℓ < n ≤ m,

either [T pℓ ] ∩ [T pn ] = ∅ or µF(pℓ,n) = 0. Let ε = 2−(m+1)(
∑

ℓ≤m

µF(pℓ) − 1) > 0 and

let p ∈ Qtree
∅ (K,Σ) be such that root(p) = ν and T p = T p0 ∪ . . . ∪ T pm (clearly

min{µF(pℓ) : ℓ ≤ m} ≤ µF(p) ≤ 1). Choose a front A of T p such that for each
ℓ < n ≤ m, if pℓ,n is defined and Aℓ,n = A ∩ T pℓ,n , then µpℓ,n,Aℓ,n

(ν) < ε, and if
[T pℓ ] ∩ [T pn ] = ∅ then T pℓ ∩ T pn ⊆ T [p,A] \A).

Claim 2.1.4.1. For each η ∈ T [p,A] we have

(⊗) µp,A(η) ≥
∑

ℓ≤m

µpℓ,Aℓ(η) −
∑

ℓ<n≤m

µpℓ,n,Aℓ,n
(η),

where Aℓ = A ∩ T pℓ (for ℓ ≤ m), and if ℓ < n ≤ m and pℓ,n is not defined or
η /∈ T [pℓ,n, Aℓ,n] then we stipulate µpℓ,n,Aℓ,n

(η) = 0 (and similarly µpℓ,Aℓ(η) = 0 if

η /∈ T [pℓ, A
ℓ]).

Proof of the claim. We show this by downward induction on lh(η).
First suppose that η ∈ A. Let k = |{ℓ ≤ m : η ∈ Aℓ}| =

∑

ℓ≤m

µpℓ,Aℓ(η). Then

∑

ℓ<n≤m

µpℓ,n,Aℓ,n
(η) =

(

k
2

)

and

∑

ℓ≤m

µpℓ,Aℓ(η) −
∑

ℓ<n≤m

µpℓ,n,Aℓ,n
(η) = k −

k(k − 1)

2
≤ 1 = µp,A(η).

Suppose now that (⊗) has been shown for all ρ ∈ pos(tpη), η ∈ T [p,A] \A. Let

X = {ρ ∈ pos(tpη) :
∑

ℓ≤m

µpℓ,Aℓ(ρ) ≥
∑

ℓ<n≤m

µpℓ,n,Aℓ,n
(ρ)}

and Y = pos(tpη) \X . It follows from the inductive hypothesis and 2.1.3(c) that

Fη(µp,A(ρ) : ρ ∈ X) ≥
∑

ℓ≤m

Fη(µpℓ,Aℓ(ρ) : ρ ∈ X) −
∑

ℓ<n≤m

Fη(µpℓ,n,Aℓ,n
(ρ) : ρ ∈ X).

[Note that though 2.1.3(c) guarantees the additivity of Fη only when rν = r′ν + r′′ν ,
rν , r

′
ν , r

′′
ν ∈ [0, 1], we can first prove that

Fη(
1

M
· rν : ν ∈ pos(t∗η)) =

1

M
Fη(rν : ν ∈ pos(t∗ν)).

Next, we may reduce the needed additivity to the one postulated in 2.1.3(c) by
dividing all terms by suitably large M .] Now, by 2.1.1(e),

∑

ℓ≤m

Fη(µpℓ,Aℓ(ρ) : ρ ∈ Y ) ≤
∑

ℓ<n≤m

Fη(µpℓ,n,Aℓ,n
(ρ) : ρ ∈ Y ),

and hence

Fη(µp,A(ρ) : ρ ∈ Y ) ≥
∑

ℓ≤m

Fη(µpℓ,Aℓ(ρ) : ρ ∈ Y ) −
∑

ℓ<n≤m

Fη(µpℓ,n,Aℓ,n
(ρ) : ρ ∈ Y ).

Since

µp,A(η) = Fη(µp,A(ρ) : ρ ∈ X) + Fη(µp,A(ρ) : ρ ∈ Y ),
µpℓ,Aℓ(η) = Fη(µpℓ,Aℓ(ρ) : ρ ∈ X) + Fη(µpℓ,Aℓ(ρ) : ρ ∈ Y ),
µpℓ,n,Aℓ,n

(η) = Fη(µpℓ,n,Aℓ,n
(ρ) : ρ ∈ X) + Fη(µpℓ,n,Aℓ,n

(ρ) : ρ ∈ Y ),



6
7
2
 
 
r
e
v
i
s
i
o
n
:
2
0
0
3
-
1
0
-
0
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
1
0
-
0
1
 
 

32 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

we may easily finish. �

Now we apply 2.1.4.1 to ν = root(p0). We get then

1 ≥ µp,A(ν) ≥
∑

ℓ≤m

µpℓ,Aℓ(ν) −
∑

ℓ<n≤m

µpℓ,n,Aℓ,n
(ν) >

∑

ℓ≤m

µF(pℓ) − 2m+1 · ε = 1,

a contradiction. �

Corollary 2.1.5. Let (K,Σ,F) be a ccc–complete mixing triple for H.

(1) The forcing notion Qmt
∅ (K,Σ,F) satisfies the ccc.

(2) If f : ω × ω −→ ω is a fast function and (K,Σ) is linked, then the forcing
notions Qmt

f (K,Σ,F) and Qmt
1 (K,Σ,F) are ccc.

(3) If h : ω × ω −→ ω is regressive, (K,Σ) is h–linked and F ⊆ (ω \ 2)ω is
either countable or ≥∗–directed, then Qmt

F (K,Σ,F) is ccc.

Remark 2.1.6. (1) Forcing notions determined by mixing triples are in some
sense mixtures of the random real forcing with forcings determined by tree–
creating pairs. The “mt” in Qmt

∗ (K,Σ,F) stands for “measured tree”.
(2) Because of 2.1.5(1) (and the proof of 2.1.4) we can be very generous as far

as the demands on the norms are concerned, and still we may easily ensure
that the resulting forcing notion satisfies the ccc. For example, if (K,Σ,F)
is a ccc–complete mixing triple, (K,Σ) is semi–linked in the sense that the
demand of 1.2.3(1) is satisfied whenever lh(η) is even, and

Qmt
1/2(K,Σ,F) = {p ∈ Qmt

∅ (K,Σ,F) : (∀η ∈ [T p])( lim
k→∞

nor[tpη↾2k] = ∞)},

then Qmt
1/2(K,Σ,F) is ccc too.

(3) This type of constructions (i.e., mixture–like) for not-ccc case will be pre-
sented in [17] and [14, §2].

Let us finish this subsection with showing that the forcing notions Qmt
∅ (K,Σ,F)

tend to have many features of the random real forcing.

Definition 2.1.7. Let (K,Σ,F) be a mixing triple, p ∈ Qmt
∅ (K,Σ,F).

(1) A function µ : T p −→ [0, 1] is a semi–F–measure on p if

(∀η ∈ T p)
(

µ(η) ≤ Fη(µ(ν) : ν ∈ pos(tpη))
)

.

(2) If above the equality holds (for each η ∈ T p), then µ is called an F–measure.

Proposition 2.1.8. Assume (K,Σ,F) is a mixing triple, p ∈ Qtree
∅ (K,Σ).

(1) If µ : T p −→ [0, 1] is semi–F–measure on p, then for each η ∈ T p we have
µ(η) ≤ µF(p[η]).

(2) The mapping η 7→ µF(p[η]) : T p −→ [0, 1] is an F–measure on p.
(3) If there is a semi–F–measure µ on p such that µ(root(p)) > 0, then p ∈

Qmt
∅ (K,Σ,F).

Proof. Straightforward. �

Proposition 2.1.9. Suppose that (K,Σ,F) is a ccc–complete mixing triple, and
p0, . . . , pm ∈ Qmt

∅ (K,Σ,F) are such that root(p0) = . . . = root(pm). Let p ∈
Qmt

∅ (K,Σ,F) be such that T p = T p0 ∪ . . . ∪ T pm. Then:

(1) µF(p) ≤
∑

ℓ≤m

µF(pℓ),
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(2) if [T pℓ ] ∩ [T pn ] = ∅ for ℓ < n ≤ m (or just p0, . . . , pm are pairwise incom-
patible in Qmt

∅ (K,Σ,F)), then µF(p) =
∑

ℓ≤m

µF(pℓ),

(3) {p0, . . . , pm} is pre-dense above p.

Proof. Like 2.1.4. �

Lemma 2.1.10. Let (K,Σ,F) be a ccc–complete mixing triple.

(1) Suppose that conditions p, q ∈ Qmt
∅ (K,Σ,F) are such that root(p) = root(q),

p ≤ q, µF(q) < µF(p), and let 0 < ε < 1. Then there is a condition
r ∈ Qmt

∅ (K,Σ,F) stronger than p and incompatible with q and such that

root(r) = root(p), µF(r) ≥ (1 − ε) · (µF(p) − µF(q)).
(2) If p ∈ Qmt

∅ (K,Σ,F), ε > 0 then there is η ∈ T p such that µF(p[η]) > (1−ε).

Proof. 1) Let ν = root(p). Choose a front A of T p such that

µq,A∩T q (ν) < µF(q) + ε · (µF(p) − µF(q)) < µF(p)

(so necessarily A \ T q 6= ∅). Take r0, r1 ∈ Qtree
∅ (K,Σ) such that

T r0 = {η ∈ T p : (∃ρ ∈ A \ T q)(η E ρ or ρ ⊳ η)}
T r1 = {η ∈ T p : (∃ρ ∈ A ∩ T q)(η E ρ or ρ ⊳ η)}.

Clearly root(ri) = ν, A∩T ri is a front of T ri , A = (A∩T r0)∪(A∩T r1 ) and T q ⊆ T r1.
Hence, r1 ∈ Qmt

∅ (K,Σ,F) and µF(q) ≤ µF(r1) < µF(q) + ε · (µF(p)− µF(q)). Now,

using 2.1.3(c), we may conclude that µF(r0) ≥ (1 − ε) · (µF(p) − µF(q)), finishing
the proof.

2) Straightforward. �

Proposition 2.1.11. Assume that (K,Σ,F) is a ccc–complete mixing triple, p ∈
Qmt

∅ (K,Σ,F). Let m < ω, ε > 0 and let τ̇ be a Qmt
∅ (K,Σ,F)–name such that

p  τ̇ < m. Then there are X ⊆ m and conditions qℓ ∈ Qmt
∅ (K,Σ,F) (for ℓ ∈ X)

such that

(α) qℓ  τ̇ = ℓ,
(β) root(qℓ) = root(p),
(γ)

∑

ℓ∈X

µF(qℓ) ≥ (1 − ε)µF(p).

Proof. Let ν = root(p). For each ℓ < m define µℓ : T p −→ [0, 1] by:

µℓ(η) = sup{µF(q) : q ∈ Qmt
∅ (K,Σ,F) & q ≥ p[η] & root(q) = η & q  τ̇ = ℓ}

(with the convention that sup ∅ = 0). It follows from 2.1.1(f) that each µℓ is an
F–measure on p.

Claim 2.1.11.1. µF(p) =
∑

ℓ<m

µℓ(ν).

Proof of the claim. First note that, by a suitable modification of 2.1.4, we have
µF(p) ≥

∑

ℓ<m

µℓ(ν). So suppose that µF(p) >
∑

ℓ<m

µℓ(ν), and let n ∈ ω be such that

(1 − 2
n ) · µF(p) >

∑

ℓ<m

µℓ(ν). Let

S = {η ∈ T p : (1 −
1

n
) · µF(p[η]) >

∑

ℓ<m

µℓ(η)},
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and let T ⊆ S be a tree such that root(T ) = ν and η ∈ T , ρ ∈ succTp(η) ∩ S
imply ρ ∈ T . Clearly max(T ) = ∅, so we may choose r ∈ Qtree

∅ (K,Σ) so that

T = T r. If µF(r) > 0, then (r ∈ Qmt
∅ (K,Σ,F) and) we may choose a condition

q ∈ Qmt
∅ (K,Σ,F) stronger than r which decides the value of τ̇ . By 2.1.10(2) we

find η ∈ T q such that µF(q[η]) > (1 − 1
n ) ≥ (1 − 1

n )µF(p[η]), what contradicts

T q ⊆ T r ⊆ S. Therefore µF(r) = 0, and like in 2.1.10(1) we may build a condition
q ≥ p and a front A of T q such that

• root(q) = ν, A ∩ T r = ∅,
• T q = {η ∈ T p : (∃ρ ∈ A)(η E ρ or ρ ⊳ η)},
• (1 − 1

n )µF(p[η]) ≤
∑

ℓ<m

µℓ(η) ≤ µF(p[η]) for each η ∈ A, and

• µF(q) > (1 − 1
n )µF(p).

Now, we may easily conclude that
∑

ℓ<m

µℓ(ν) ≥ (1− 2
n ) · µF(p), getting a contradic-

tion. �

The conclusion of the proposition follows immediately from 2.1.11.1 and the
definition of µℓ’s (so we take X = {ℓ < m : µℓ(ν) > 0} and suitable qℓ’s for
ℓ ∈ X). �

Proposition 2.1.12. Suppose that (K,Σ,F) is a ccc–complete mixing triple and
τ̇ is a Qmt

∅ (K,Σ,F)–name for an ordinal. Let p ∈ Qmt
∅ (K,Σ,F), 0 < ε < 1. Then

there is a condition q ≥ p and a front A of T q such that

(α) root(q) = root(p), µF(q) > (1 − ε)µF(p),
(β) for each η ∈ A the condition q[η] decides the value of τ̇ .

Proof. Let

B = {η ∈ T p : for some p∗ ≥ p we have: root(p∗) = η,
µF(p∗) ≥ (1 − ε

2 )µF(p[η]), and p∗ decides τ̇ on a front}.

It follows from 2.1.10 that, if q ∈ Qmt
∅ (K,Σ,F) is a condition stronger than p, then

T q ∩B 6= ∅. If root(p) ∈ B, then we are clearly done, so suppose root(p) /∈ B. Note
that if η ∈ T p \B then succTp(η) \B 6= ∅. Thus

T
def
= {η ∈ T p : (∀ν E η)(ν /∈ B)}

is a tree with max(T ) = ∅, T ∩ B = ∅, root(T ) = root(p). This T determines a
condition r ∈ Qtree

∅ (K,Σ), root(r) = root(p). It follows from the previous remark

that µF(r) = 0. Take a front A of T p such that µr,A∩T r(root(r)) < 1
4 · ε · µF(p)

and A ⊆ T r ∪ B. For each ν ∈ A \ T r fix a condition qν such that p[ν] ≤ qν ,
µF(qν) ≥ (1 − ε

2 )µF(p[ν]), and qν decides τ̇ on a front. Let q be such that

T q = {η ∈ T p : (∃ν ∈ A \ T r)(η ∈ T qν or ν E η)}.

It should be clear that q is a condition as required �

2.2. Exotic norm conditions. The norm conditions introduced in the first sec-
tion have their counterparts in the non-ccc case (as presented in [16]). Here we
formulate more norm conditions which may be used to build ccc forcing notions
from linked creating pairs (or tree–creating pairs), and which seem to be very ccc–
specific. Let us start with a norm condition that allows us to include into our
framework the “Mathias with ultrafilter” forcing notion.
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Definition 2.2.1. (1) A local creating pair (K,Σ) for H is strongly linked if
it is full (see 1.1.2(5)), linked and

(⊗)sl there are tmin
ℓ ∈ K (for ℓ < ω) such that m

tmin
ℓ

dn = ℓ and if t ∈ K,
mt

dn = ℓ, then tmin
ℓ ∈ Σ(t).

If additionally for each ℓ < ω we have

(∀u ∈ dom(val[tmin
ℓ ]))(∃! v ∈ rng(val[tmin

ℓ ]))(u ⊳ v),

then we say that (K,Σ) is strongly+ linked.
(2) A local tree–creating pair (K,Σ) for H is (tree-) strongly linked if it is linked

and
(⊗)sl

tree there are tmin
η ∈ K ∩ LTCRη[H] (for η ∈

⋃

m∈ω

∏

i<m

H(i)) such that if

t ∈ K ∩ LTCRη[H], η ∈
⋃

m∈ω

∏

i<m

H(i), then tmin
η ∈ Σ(t).

If, additionally, |pos(tmin
η )| = 1 for each η then we say that (K,Σ) is

strongly+ linked.
(3) Let D be a non-principal ultrafilter on ω. We define norm conditions C(D)

and Ctree(D) (for the contexts of creating pairs and tree–creating pairs,
respectively) and the corresponding forcing notions Q∗

D(K,Σ), Qtree
D (K,Σ)

as follows.
• A sequence 〈ti : i < ω〉 satisfies C(D) if for some ℓ < ω we have:

(∀i < ω)(mti
dn = ℓ+ i) and lim

D
〈nor[tj−ℓ] : ℓ ≤ j < ω〉 = ∞.

For a local creating pair (K,Σ), Q∗
D(K,Σ) is the forcing notion

Q∗
C(D)(K,Σ) = {p ∈ Q∗

∅(K,Σ) : 〈tpi : i < ω〉 satisfies C(D)}.

• A system 〈tη : η ∈ T 〉 ⊆ LTCR[H] satisfies Ctree(D) if T is a tree,
tη ∈ LTCRη[H] and pos(tη) = succT (η) ⊆

∏

i≤lh(η)

H(i) for each η ∈ T ,

and (∀η ∈ [T ])(limD〈nor[tη↾k] : lh(root(T )) ≤ k < ω〉 = ∞).
For a local tree creating pair (K,Σ), Qtree

D (K,Σ) is the forcing notion

Qtree
C(D)(K,Σ) = {p ∈ Qtree

∅ (K,Σ) : 〈tpη : η ∈ T p〉 satisfies Ctree(D)}.

Remark 2.2.2. Strongly linked (and especially strongly+ linked) creating pairs re-
semble omittory creating pairs of [16, Def. 2.1.1] – in both cases the practical
examples are such that we may “omit” some of the creatures from a condition p.
Here the “omitting” is done by replacing tpi by the suitable tmin

ℓ (see 2.4.5).

Proposition 2.2.3. Let D be a non-principal ultrafilter on ω. If (K,Σ) is a lo-
cal strongly linked creating pair (tree–creating pair, respectively), then the forcing
notion Q∗

D(K,Σ) (Qtree
D (K,Σ), respectively) is σ–centered.

Proof. Straightforward. �

Forcing notions Q∗
D(K,Σ), though similar to the Mathias forcing notion, do

not have (in general) as many nice properties as this one. For example “deciding
formulas without changing the root” may easily fail, even though we may have some
kind of continuous reading of names.

Definition 2.2.4 (See [16, Def. 1.2.9]). Let D be a non-principal ultrafilter on ω,
(K,Σ) be a local strongly linked creating pair and τ̇ be a Q∗

D(K,Σ)–name for an
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ordinal. We say that a condition p ∈ Q∗
D(K,Σ) approximates τ̇ at tpn (or at n)

whenever the following demand is satisfied:

(∗) for each w1 ∈ pos(wp, tp0, . . . , t
p
n−1), if there is a condition r ∈ Q∗

D(K,Σ)
stronger than p and such that wr = w1 and r decides the value of τ̇ , then
the condition (w1, t

p
n, t

p
n+1, . . .) decides the value of τ̇

Proposition 2.2.5. Assume that D is a Ramsey ultrafilter on ω and (K,Σ) is a
local, really finitary and strongly+ linked creating pair. Then for each p ∈ Q∗

D(K,Σ)
and a name τ̇ for an ordinal, there is a condition q ≥ p which approximates τ̇ at
every n and such that wp = wq.

Proof. The proof follows the lines of the appropriate proof for the Mathias forcing
notion (see e.g. [1, §7.4]). Let 〈tmin

ℓ : ℓ < ω〉 witness that (K,Σ) satisfies (⊗)sl of
2.2.1(1), (∀u ∈ dom(val[tmin

ℓ ]))(∃!v ∈ rng(val[tmin
ℓ ]))(u ⊳ v). For simplicity, we

assume that nor[tmin
ℓ ] ≤ 1 (for ℓ < ω).

For a condition p ∈ Q∗
D(K,Σ) and n ∈ ω let

suppn(p)
def
= {m

tpi
dn : i < ω & nor[tpi ] > n+ 1} ∈ D.

Choose inductively conditions pn ∈ Q∗
D(K,Σ) such that for each n < ω:

(1) p0 = p, pn ≤ pn+1, wpn = wp, and t
pn+1

i = tpn

i for i < n,

(2) if w ∈ pos(wp, tp0, . . . , t
p
n−1) and there is p∗ ≥ p such that wp∗

= w and p∗

decides τ̇ , then (w, t
pn+1
n , t

pn+1

n+1 , . . .) decides τ̇ .

(Note that “strongly linked” implies that if wq0 = wq1 , then q0, q1 are compatible;
also remember that (K,Σ) is full.) Since D is Ramsey, we may choose an increasing
sequence 〈in : n < ω〉 ⊆ ω \ lh(wp) such that

{in : n < ω} ∈ D and (∀n ∈ ω)(in + 2 < in+1 ∈ suppn+1(pin−lh(wp)+2)).

For j < ω let

tqj =

{

t
pin−lh(wp)+2

j if j = in+1 − lh(wp), n ∈ ω,

tmin
j if j + lh(wp) /∈ {in+1 : n < ω}.

It should be clear that q
def
= (wp, tq0, t

q
1, . . .) ∈ Q∗

D(K,Σ) is a condition stronger than
p and for every w ∈ pos(wp, tp0, . . . , t

p
in−lh(wp)), n ∈ ω we have

(w, tqin−lh(wp)+1, t
q
in−lh(wp)+2, . . .) ≥ (w, t

pin−lh(wp)+2

in−lh(wp)+1, t
pin−lh(wp)+2

in−lh(wp)+2, . . .).

Hence easily q approximates τ̇ at all points of the form in+1 − lh(wp) + 1 (for
n < ω), and by the additional demand on tmin

ℓ (in “strongly+”) we conclude that q
approximates τ̇ at all n < ω. �

Proposition 2.2.6. Suppose that (K,Σ) is a strongly+ linked local creating pair
(with tmin

n witnessing this). Assume that nor[tmin
n ] ≤ 1 (for n < ω) and

(∗) for each n ∈ ω there are disjoint sets An, Bn ⊆ H(n) such that
• if 〈u, v〉 ∈ val[tmin

n ], then v(n) /∈ An ∪Bn,
• if t ∈ K, nor[t] > 1, u ∈ dom(val[t]), lh(u) = n
then there are v0, v1 such that 〈u, v0〉, 〈u, v1〉 ∈ val[t] and v1(n) ∈ An

and v0(n) ∈ Bn.

Let D be an ultrafilter on ω. Then the forcing notion Q∗
D(K,Σ) adds a Cohen real.
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Proof. Let Ẇ be the name for Q∗
D(K,Σ)–generic real and let K̇ = {k̇n : n < ω} be

a name for a subset of ω such that

K̇ = {k ∈ ω : Ẇ (k) ∈ Ak ∪Bk}.

(Clearly K̇ is infinite.) Let ċ ∈ 2ω be given by ċ(n) = 0 if and only if Ẇ (k̇n) ∈ An.
It should be clear that ċ is a name for a Cohen real over V. �

Now we will give some norm conditions that can be used in the context of local
and forgetful creating pairs. Note that if (K,Σ) is of that type, then for each t ∈ K
we have (unique) set Pt ⊆ H(mt

dn) such that

〈u, v〉 ∈ val[t] if and only if v(mt
dn) ∈ Pt, u ⊳ v and lh(v) = lh(u) + 1

(for some, equivalently all, u ∈ dom(val[t])). The set Pt corresponds to pos(t) in
the tree–creatures context, and below we will use the notation pos(t) for it (hoping
that this does not cause any confusion). Our next definition is a variant of 2.1.3(a,b)
for the case of local forgetful creating pairs.

Definition 2.2.7. A local forgetful creating pair (K,Σ) for H is complete if

(a) for each i ∈ ω and a nonempty set A ⊆ H(i), there is a unique creature

tiA ∈ K such that m
tiA
dn = i and pos(tiA) = A,

(b) if i ∈ ω, A ⊆ B ⊆ H(i), then tiA ∈ Σ(tiB) and nor[tiA] ≤ nor[tiB].

Definition 2.2.8. Let H : ω −→ H(ω1) be such that (∀n ∈ ω)(|H(n)| > 2n) and
let (K,Σ) be a complete creating pair for H.

(1) A 1–norming system (for H) is a pair (K̄, ḡ) such that
(α) K̄ = 〈Kℓ : ℓ ∈ ω〉 is a sequence of infinite pairwise disjoint subsets of

ω, min(Kℓ) ≥ ℓ,

(β) ḡ = 〈gρ : ρ ∈ 2<ω〉, where for each ℓ < ω:

(γ) if ρ ∈ 2ℓ then gρ ∈
∏

m∈Kℓ

H(m), and

(δ) for every m ∈ Kℓ, there are no repetitions in 〈gρ(m) : ρ ∈ 2ℓ〉.
(2) Let C(nor) be a norm condition for K and (K̄, ḡ) be a 1–norming system.

We define (K̄, ḡ)–modified version C(nor)K̄,ḡ of C(nor) by

a sequence 〈ti : i < ω〉 satisfies C(nor)K̄,ḡ if and only if
it satisfies C(nor) and for some ρ0, . . . , ρk ∈ 2ω, k < ω we have

(∀i, ℓ < ω)(∀ρ ∈ 2ℓ)([mti
dn ∈ Kℓ & gρ(mti

dn) /∈ pos(ti)] ⇒ [ρ ⊳ ρ0 ∨ . . . ∨ ρ ⊳ ρk]).

(3) If C(nor) is one of C∞(nor), CF (nor) or Cf (nor) (for suitable f , F ; see
1.1.5), then the forcing notions corresponding to (K̄, ḡ)–modified versions

of C(nor) will be denoted by QK̄,ḡ
∞ (K,Σ), QK̄,ḡ

F (K,Σ), QK̄,ḡ
f (K,Σ), respec-

tively.

Proposition 2.2.9. Let H : ω −→ H(ω1) be such that (∀n ∈ ω)(|H(n)| > 2n).
Assume that (K,Σ) is a complete creating pair, and (K̄, ḡ) is a 1–norming system
(for H).

(1) If f : ω × ω −→ ω is fast and (K,Σ) is linked, then QK̄,ḡ
∞ (K,Σ) and

QK̄,ḡ
f (K,Σ) are σ-∗–linked Souslin forcing notions.
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(2) Assume that h : ω × ω −→ ω is regressive and F ⊆ (ω \ 2)ω is an h–closed
family which is either countable or ≥∗–directed. Suppose (K,Σ) is local

and h–linked. Then the forcing notion QK̄,ḡ
F (K,Σ) is σ-∗–linked, and if F

is countable and ≥∗–directed, then QK̄,ḡ
F (K,Σ) is also Souslin.

Proof. Straightforward. �

Definition 2.2.10. Let (K,Σ) be a local forgetful creating pair for H.

(1) A 2–norming system is a sequence Ū = 〈Uρ,k : ρ ∈ 2<ω & k < ω〉 of
pairwise disjoint infinite subsets of ω such that lh(ρ) ≤ min(Uρ,k).

(2) For a norm condition C(nor) and a 2–norming system Ū we define Ū–

modified version C(nor)Ū of C(nor) by

a sequence 〈ti : i < ω〉 satisfies C(nor)Ū if and only if
it satisfies C(nor) and for some ρ0, . . . , ρℓ ∈ 2ω and k0, . . . , kℓ < ω,

ℓ < ω,
for every i, k < ω and ρ ∈ 2<ω we have:

[mti
dn ∈ Uρ,k & pos(ti) 6= H(mti

dn)] ⇒ [ρ ⊳ ρ0 ∨ . . . ∨ ρ ⊳ ρℓ and k ∈ {k0, . . . , kℓ}].

We will use notation QŪ
∞(K,Σ), QŪ

F(K,Σ), QŪ
f (K,Σ) for the respective

forcing notions (and suitable f , F).

Proposition 2.2.11. Let (K,Σ) be a complete creating pair, and Ū be a 2–norming
system.

(1) If f : ω×ω −→ ω is fast and (K,Σ) is linked, then QŪ
∞(K,Σ) and QŪ

f (K,Σ)
are σ-∗–linked Souslin forcing notions.

(2) Assume that h : ω × ω −→ ω is regressive and F ⊆ (ω \ 2)ω is an h–closed
family which is either countable or ≥∗–directed. Suppose (K,Σ) is local

and h–linked. Then the forcing notion QŪ
F(K,Σ) is σ-∗–linked, and if F is

countable and ≥∗–directed, then QŪ
F(K,Σ) is also Souslin.

Proof. Straightforward. �

2.3. Universal forcing notions. Here we introduce constructions involving very
peculiar norm conditions. As a matter of fact, norms are not important in that
type of constructions, but they still provide examples. Prototypes for the method
described here are the Universal Meager forcing notion UM and forcing notions
related to variants of the PP–property (see [22, Ch.VI, §2.12], [16, Ch.7]).

Definition 2.3.1. Let (K,Σ) be a tree–creating pair for H. A finite candidate for

(K,Σ) is a system 〈tη : η ∈ Ŝ〉 such that

(i) S ⊆
⋃

k≤lev(S)

∏

i<k

H(i) is a tree of height lev(S) < ω, each node in S has a

successor at the last level lev(S),

(ii) Ŝ = S \ max(S) (i.e., non-maximal nodes of S),

(iii) tη ∈ LTCRη[H] ∩K and pos(tη) = succS(η) (for η ∈ Ŝ).

The collection of finite candidates for (K,Σ) is denoted FC(K,Σ). It is equipped
with the following order (similar to that of Qtree

∅ (K,Σ)):

〈t0η : η ∈ Ŝ0〉 ≤ 〈t1η : η ∈ Ŝ1〉 if and only if lev(S0) ≤ lev(S1) and

(∀η ∈ S1)(lh(η) < lev(S0) ⇒ η ∈ S0 & t1η ∈ Σ(t0η)).
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Remark 2.3.2. Finite candidates for tree–creating pairs correspond to that for cre-
ating pairs (see 1.1.9). In general, finite candidates do not have to be finite (just
the respective tree is of finite height), but if (K,Σ) is finitary then they are.

Definition 2.3.3. Let H : ω −→ H(ω1). A universality parameter p for H is a
tuple (Kp,Σp,Fp,Gp) = (K,Σ,F ,G) such that

(α) (K,Σ) is a really finitary local tree–creating pair for H,
(β) F ⊆ (ω \ 2)ω is either countable or ≤∗–directed [note the direction of the

inequality!],

(γ) elements of G are quadruples (〈tη : η ∈ Ŝ〉, ndn, nup, r̄) such that

• 〈tη : η ∈ Ŝ〉 ∈ FC(K,Σ), root(S) = 〈〉,
• ndn ≤ nup ≤ lev(S),
• r̄ = 〈ri : i ∈ dom(r̄)〉, ri ∈ ω, dom(r̄) ⊆ [ndn, nup],

(δ) if:

• (〈t0η : η ∈ Ŝ0〉, n0
dn, n

0
up, r̄

0) ∈ G,

• 〈t1η : η ∈ Ŝ1〉 ∈ FC(K,Σ), 〈t0η : η ∈ Ŝ0〉 ≤ 〈t1η : η ∈ Ŝ1〉 and

• r̄1 = 〈r1
i : i ∈ dom(r̄1)〉, r1

i ∈ ω, dom(r̄0) ⊆ dom(r̄1), and r0
i ≤ r1

i for
i ∈ dom(r̄0), and

• n1
dn ≤ n0

dn, n0
up ≤ n1

up ≤ lev(S1) and dom(r̄1) ⊆ [n1
dn, n

1
up],

then: (〈t1η : η ∈ Ŝ1〉, n1
dn, n

1
up, r̄

1) ∈ G,

(ε) for some increasing function F = FG ∈ ωω , if:

• (〈tℓη : η ∈ Ŝℓ〉, nℓ
dn, n

ℓ
up, r̄

ℓ) ∈ G (for ℓ < 2), lev(S0) = lev(S1),

• 〈tη : η ∈ Ŝ〉 ∈ FC(K,Σ), 〈tη : η ∈ Ŝ〉 ≤ 〈tℓη : η ∈ Ŝℓ〉 (for ℓ < 2),

• lev(S) < n0
dn, n0

up < n1
dn, F (n1

up) < lev(S1),

then: there is (〈t∗η : η ∈ Ŝ∗〉, n∗
dn, n

∗
up, r̄

∗) ∈ G such that

• n∗
dn = n0

dn, n∗
up = F (n1

up), dom(r̄∗) = [n∗
dn, n

∗
up], r̄∗ ⊇ r̄0 ∪ r̄1, and

r∗i ≤ 1 for all i ∈ [n∗
dn, n

∗
up] \ (dom(r̄0) ∪ dom(r̄1)),

• lev(S∗) = lev(S0) = lev(S1), S ⊆ S∗ and t∗η = tη for η ∈ Ŝ,

• 〈t∗η : η ∈ Ŝ∗〉 ≤ 〈tℓη : η ∈ Ŝℓ〉 (for ℓ < 2).

Remark 2.3.4. In Definition 2.3.5 below, we may think about the forcing notion
Qtree(p) in the following way. We have a criterion for “small trees” provided by G
and F (these are (G, f)–narrow trees, see 2.3.5(c)). We try to add a small tree that
will almost cover all small trees from the ground model. So, naturally, a condition
p consists of a small tree (it is the system 〈tpη : η ∈ T p〉), in which some finite part
(“below Np”) is declared to be fixed. Now, when we extend the condition p, we
cannot change the tree below the level Np, but above that level we may increase
it. The function fp controls in some sense the “smallness” of the tree T p. See more
later.

Definition 2.3.5. Let p = (K,Σ,F ,G) be a universality parameter for H. We
define a forcing notion Qtree(p) as follows.

A condition in Qtree(p) is a triple p = (Np, 〈tpη : η ∈ T p〉, fp) such that

(a) 〈tpη : η ∈ T p〉 ∈ Qtree
∅ (K,Σ), root(T p) = 〈〉,

(b) Np ∈ ω, fp ∈ F ,
(c) the system 〈tpη : η ∈ T p〉 is (G, fp)–narrow, which means:

for infinitely many n < ω, for some (〈tη : η ∈ Ŝ〉, ndn, nup, r̄) ∈ G we have
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• ndn = n, and (∀i ∈ dom(r̄))(ri ≤ fp(i)) and
• if η ∈ T p, lh(η) < lev(S), then η ∈ S and tpη ∈ Σ(tη).

The relation ≤ on Qtree(p) is given by:
(N0, 〈t0η : η ∈ T 0〉, f0) ≤ (N1, 〈t1η : η ∈ T 1〉, f1) if and only if

• N0 ≤ N1, 〈t0η : η ∈ T 0〉 ≥ 〈t1η : η ∈ T 1〉 (in Qtree
∅ (K,Σ)), and

• if η ∈ T 1, lh(η) < N0 then η ∈ T 0 and t0η = t1η, and

• (∀∞i ∈ ω)(f0(i) ≤ f1(i)).

Proposition 2.3.6. If p = (K,Σ,F ,G) is a universality parameter, then Qtree(p)
is a σ–centered forcing notion. If additionally F is countable and ≤∗–directed then
Qtree(p) is Borel ccc.

Proof. It is easy to check that the relation ≤ of Qtree(p) is transitive (so Qtree(p) is
a forcing notion). Let us argue that it is σ–centered when F is countable (the case
of ≤∗–directed F can be handled similarly).

For 〈tη : η ∈ S〉 ∈ FC(K,Σ), f ∈ F let

Q
〈tη:η∈S〉
f = {p ∈ Qtree(p) : Np = lev(S) and S ⊆ T p and fp = f and

(∀η ∈ T p)(lh(η) < Np ⇒ η ∈ S & tpη = tη)}.

Claim 2.3.6.1. Each Q
〈tη:η∈S〉
f is a directed subset of Qtree(p).

Proof of the claim. Let (N ℓ, 〈tℓη : η ∈ T ℓ〉, f ℓ) ∈ Q
〈tη:η∈S〉
f (for ℓ < 2). (Thus

N ℓ = lev(S), f ℓ = f .)
Let FG ∈ ωω be the increasing function given by 2.3.3(ε). Pick a sequence

lev(S) + 1 = n0,0
dn < n0,0

up < n1,0
dn < n1,0

up < . . . < n0,k
dn < n0,k

up < n1,k
dn < n1,k

up < . . .

such that FG(n1,k
up ) + 1 < n0,k+1

dn and (for ℓ < 2 and k ∈ ω)

(〈tℓη : η ∈ T ℓ & lh(η) < nℓ,k
up 〉, n

ℓ,k
dn , n

ℓ,k
up , f↾[n

ℓ,k
dn , n

ℓ,k
up ]) ∈ G

(possible by the definition of the forcing Qtree(p) and 2.3.3(δ)). Now build induc-
tively a system 〈t∗η : η ∈ T ∗〉 ∈ Qtree

∅ (K,Σ) as follows.
We declare that root(T ∗) = root(S) = 〈〉, and if η ∈ T ∗, lh(η) < lev(S), then

t∗η = tη and succT∗(η) = pos(t∗η).

Suppose we have defined T ∗ up to the level n0,k
dn − 1, so we know t∗η for lh(η) <

n0,k
dn −1. Let Sk be the tree of height n0,k

dn −1 built from these t∗η (so it is the respective

“initial part” of our future T ∗), and assume that 〈t∗η : η ∈ Ŝk〉 ≤ 〈tℓη : η ∈ T ℓ〉 (for

ℓ = 0, 1). Apply 2.3.3(ε) to get 〈t∗η : η ∈ Ŝk+1〉 such that

(〈t∗η : η ∈ Ŝk+1〉, n
0,k
dn , n

1,k
up , f↾[n

0,k
dn , n

1,k
up ]) ∈ G,

and Sk ⊆ Sk+1, lev(Sk+1) = n0,k+1
dn − 1 and 〈t∗η : η ∈ Ŝk+1〉 ≤ 〈tℓη : η ∈ T ℓ〉 (for

ℓ < 2). We declare that T ∗ up to the level n0,k+1
dn − 1 is Sk+1 (and the respective

t∗η are as chosen above).

Plainly, (lev(S), 〈t∗η : η ∈ T ∗〉, f) ∈ Q
〈tη:η∈S〉
f is a condition stronger than both

(N0, 〈t0η : η ∈ T 0〉, f0) and (N1, 〈t1η : η ∈ T 1〉, f1). �

The rest should be clear. �
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2.4. Examples.

Example 2.4.1. Let H(i) = ω. Suppose that D,B,S are functions such that

• dom(D) ⊆ ω<ω, D(η) is a non-principal ultrafilter on ω (for η ∈ dom(D)),
• dom(S) = dom(B) = ω<ω \D(η) and for each η ∈ dom(B):

2 ≤ B(η) ∈ ω ∪ {ω}, S(η) = 〈sηk : k ∈ B(η)〉 ⊆ (0, 1), and
∑

k∈B(η)

sηk = 1.

We build a ccc–complete (see 2.1.3) mixing triple (K2.4.1,Σ2.4.1,F2.4.1) for H (for
the parameters B,D,S).

Construction. Let K2.4.1 consist of all tree creatures t ∈ LTCR[H] such that

• dis[t] = (nt, ηt, At) for some nt ∈ ω, ηt ∈
∏

i<nt

H(i) and At ⊆ ω such that

At ∈ D(ηt) if ηt ∈ dom(D), and ∅ 6= At ⊆ B(ηt) if ηt ∈ dom(B),

• nor[t] = nt,
• val[t] = {〈ηt, ν〉 : ηt ⊳ ν ∈

∏

i≤nt

H(i) & ν(nt) ∈ At}.

The operation Σ2.4.1 is natural:

Σ2.4.1(t) = {s ∈ K2.4.1 : ns = nt & ηs = ηt & As ⊆ At}.

For η ∈
∏

i<n

H(i) let t∗η ∈ K2.4.1 ∩ LTCRη[H] be such that

At∗η =

{

ω if η ∈ dom(D),
B(η) if η ∈ dom(B),

and for 〈rν : ν ∈ pos(t∗η)〉 ∈ [0, 1]pos(t∗η) let

F 2.4.1
η (rν : ν ∈ pos(t∗η)) =

{
∑

k∈B(η)

sηk · rη⌢〈k〉 if η ∈ dom(B),

limD(η)〈rη⌢〈k〉 : k ∈ ω〉 if η ∈ dom(D).

Let F2.4.1 = 〈F 2.4.1
η : η ∈

⋃

n∈ω

∏

i<n

H(i)〉. Check that (K2.4.1,Σ2.4.1,F2.4.1) is a

ccc–complete mixing triple for H. �

Conclusion 2.4.2. Let H,D,B and S be as in 2.4.1. Then the forcing notion
Qmt

∅ (K2.4.1,Σ2.4.1,F2.4.1) (for the parameters D,B,S) is ccc (and non-trivial).

Remark 2.4.3. If dom(D) = ω<ω then Qmt
∅ (K2.4.1,Σ2.4.1,F2.4.1) is equivalent to

the “Laver with ultrafilters” forcing notion.
If dom(D) = ∅ and B(η) is finite (for each η) then Qmt

∅ (K2.4.1,Σ2.4.1,F2.4.1) is
the random real forcing (with weights determined by S in an obvious way).

Between these two extremes we have cases of “mixtures of random with ultra-
filters” and our next observation applies to most of them. It could be formulated
with a larger generality (e.g. regarding dom(D)), what should be clear after reading
the proof.

Proposition 2.4.4. Let H(n) = ω for n ∈ ω, and let X ⊆ ω be an infinite co-
infinite set. Suppose that

(a) D is a function such that dom(D) = {η ∈ ω<ω : lh(η) ∈ X} and D(η) is
a non-principal Ramsey ultrafilter on ω (for η ∈ dom(D)),

(b) n̄ = 〈nℓ : ℓ ∈ ω \X〉 is a sequence of integers, nℓ ≥ 1,
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(c) B,S are functions such that dom(B) = dom(S) = {η ∈ ω<ω : lh(η) /∈ X},
B(η) = nlh(η) and S(η) = 〈 1

nlh(η)
: k < nlh(η)〉.

Let (K2.4.1,Σ2.4.1,F2.4.1) be the mixing triple built for the parameters D,B,S as in
2.4.1, and let f ∈ ωω be such that f(n) ≥ 2 (for n ∈ ω).

Then for every Qmt
∅ (K2.4.1,Σ2.4.1,F2.4.1)–name τ̇ for a real in

∏

i∈ω

f(i), there are

an increasing sequence 〈mj : j ∈ ω〉 ⊆ ω and a function g ∈
∏

i∈ω

f(i) such that

Qmt
∅

(K2.4.1,Σ2.4.1,F2.4.1) “ (∀∞j ∈ ω)(τ̇↾[mj ,mj+1) 6= g↾[mj ,mj+1)) ”.

Hence, in particular, forcing with Qmt
∅ (K2.4.1,Σ2.4.1,F2.4.1) does not add Cohen

reals (but it clearly adds a dominating real).

Proof. For notational convenience, let (K2.4.1,Σ2.4.1,F2.4.1) = (K,Σ,F).

Note that we may assume that f(n) > 22n+2

(as we may work with the mapping
n 7→ f↾[kn, kn+1) for some increasing 〈kn : n < ω〉 instead). Let X = {xm :
m < ω} be the increasing enumeration, and let mk be defined by: m0 = 0 and
mk+1 = mk + 2k · (1 +

∏

ℓ∈xk\X

nℓ)
k (for k ∈ ω). [Here we keep the convention that

if xk \X = ∅, then
∏

ℓ∈xk\X

nℓ = 1; or just assume that x0 > 0.]

Let τ̇ be a Qmt
∅ (K,Σ,F)–name for an element of

∏

i∈ω

f(i), and let p be a condition

in Qmt
∅ (K,Σ,F). We may assume that lh(root(p)) ∈ X , and just for simplicity let

lh(root(p)) = x0.

We define inductively a tree T ⊆ T p, mappings Y : T ∩
⋃

i<ω

ωxi + 1 −→ [ω]ω,

π : T ∩
⋃

i<ω

ωxi + 1 −→ ω, a function g ∈
∏

i∈ω

f(i), and a system 〈qη : η ∈ T ∩

⋃

i<ω

ωxi + 1〉 of conditions from Qmt
∅ (K,Σ,F).

We declare root(T ) = root(p). Using 2.1.11 and 2.1.9 we choose an increasing
sequence of conditions 〈qkroot(T ) : k < ω〉 and values for g(mk) < f(mk) (thus

defining g↾{mk : k ∈ ω}) such that

• q0
root(T ) ≥ p, root(qkroot(T )) = root(T ) and µF(qkroot(T )) >

3
4µ

F(p),

• qkroot(p)  τ̇(mk) 6= g(mk).

Since D(root(T )) is a Ramsey ultrafilter we may choose a set {ak : k < ω} ∈
D(root(T )) (the increasing enumeration) such that

root(T )⌢〈ak〉 ∈ T qkroot(T ) and µF((qkroot(T ))
[root(T )⌢〈ak〉]) >

3

4
µF(p).

We declare that root(T )⌢ak ∈ T for all k < ω and we let

π(root(T )⌢〈ak〉) = k, qroot(T )⌢〈ak〉 = (qkroot(T ))
[root(T )⌢〈ak〉].

Next we choose pairwise disjoint sets Y (root(T )⌢〈ak〉) ⊆ ω \{mℓ : ℓ ∈ ω} such that
mk+1 ∩ Y (root(T )⌢〈ak〉) = ∅ and

(∀ℓ < ω)(|Y (root(T )⌢〈ak〉) ∩ (mℓ+k+1,mℓ+k+2)| = 1).

Suppose now that we have already defined T ∩ ωxi + 1, i < ω, together with

Y (η) ⊆ ω \ {mk : k ∈ ω}, π(η) ∈ ω, qη ∈ Qmt
∅ (K,Σ,F) (for η ∈ T ∩ ωxj + 1, j ≤ i)
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and

gi
def
= g↾({mk : k < ω} ∪

⋃

{Y (η) : η ∈ T ∩ ωxj + 1, j < i})

so that the following conditions are satisfied:

(α) if ν ⊳ η, and π(ν), π(η) are defined, then π(ν) < π(η),
(β) if ν ∈ T ∩ ωxj , j ≤ i, then there are no repetitions in the sequence 〈π(η) :

ν ⊳ η ∈ T ∩ ωxj + 1〉,

(γ) if η ∈ T ∩ ωxj + 1, j ≤ i, then

Yη ∩mπ(η)+1 = ∅ and (∀ℓ < ω)(|Yη ∩ [mπ(η)+ℓ+1,mπ(η)+ℓ+2)| = 1),

(δ) the (defined) Y (η)’s are pairwise disjoint,

(ε) for each η ∈ T ∩ ωxi + 1 we have: root(qη) = η and

qη  (∀k ≤ π(η))(gi↾[mk,mk+1) * τ̇),

(ζ) if q ∈ Qmt
∅ (K,Σ,F) is a condition such that root(q) = root(T ), T q ∩

ωxi + 1 = T ∩ ωxi + 1 and q[η] = qη for all η ∈ ωxi + 1, then µF(q) ≥
(1

2 + 1
2i+2 )µF(p).

[Check that these conditions are satisfied at the first stage of the construction.]
Note that it follows from clauses (α) and (β) that for each k we have

|{η ∈ T ∩ ω≤ xi + 1 : π(η) ≤ k}| ≤ 2k(1 +
∏

ℓ∈xi\X

nℓ)
k,

and hence (by clause (γ))

(⊠k) |[mk+1,mk+2) ∩
⋃

{Y (η) : η ∈ T ∩ ω≤ xi + 1}| ≤ 2k(1 +
∏

ℓ∈xi\X

nℓ)
k.

Fix η ∈ T ∩ ωxi + 1 (and note that π(η) ≥ i). Choose an increasing sequence
〈qkη : π(η) < k < ω〉 of conditions in Qmt

∅ (K,Σ,F) and values for g↾Yη such that

• qkη ≥ qη, root(qkη ) = η and µF(qkη ) > (1 − 2−(i+4))µF(qη),

• if j ∈ Yη ∩ [mk,mk+1), π(η) < k < ω, then qkη  τ̇ (j) 6= g(j),

• the sequence 〈T qkη ∩ωxi+1 : π(η) < k < ω〉 is constant (and let {νℓ : ℓ < ℓ∗}

be the enumeration of T qkη ∩ ωxi+1 ; necessarily ℓ∗ ≤
xi+1−1
∏

k=xi+1

nk),

• rℓ
def
= lim

k→∞
µF((qkη )[νℓ]) > 0 for each ℓ < ℓ∗ (note that the limit exists as the

sequence is non-increasing).

[Why possible? Use 2.1.11 and 2.1.9, remember our additional assumption on f .]
Choose aℓk ∈ ω (for ℓ < ℓ∗ and k > π(η)) so that:

• {aℓk : π(η) < k < ω} ∈ D(νℓ),

• νℓ
⌢〈aℓk〉 ∈ T qkη and µF((qkη )[η⌢〈aℓ

k〉]) > (1 − 2−(i+4))rℓ

(remember that each D(νℓ) is a Ramsey ultrafilter). Now we declare that νℓ
⌢aℓk ∈ T

for all ℓ < ℓ∗ and π(η) < k < ω and we let

π(νℓ
⌢〈aℓk〉) = k, qνℓ⌢〈aℓ

k
〉 = (qkη )[νℓ

⌢〈aℓ
k〉].

This finishes the definitions of T ∩ω≤ xi+1+1 and of π(ν), qν for ν ∈ T ∩ωxi+1+1.
It should be clear that (the respective variants of) clauses (α), (β), (ε) and (ζ) are



6
7
2
 
 
r
e
v
i
s
i
o
n
:
2
0
0
3
-
1
0
-
0
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
1
0
-
0
1
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satisfied. Using (⊠k) we may easily choose sets Y (ν) (for ν ∈ T ∩ωxi+1 +1) so that
the demands (γ), (δ) hold. The construction is finished.

The tree T is perfect and it determines a condition q ∈ Qtree
∅ (K,Σ).

Claim 2.4.4.1. µF(q) > 0 (so q ∈ Qmt
∅ (K,Σ,F)).

Proof of the claim. First note that the clause (ζ) is not enough to show this, as

there are fronts in T q which are not included in any T q ∩ ω≤ xi + 1. However,
we may use the specific way the construction was carried out to build a semi–F–
measure µ : T q −→ [0, 1] such that µ(root(q)) = 3

8µ
F(p) > 0 (what is enough by

2.1.8). So, if η ∈ T ∩ ωxi + 1, i < ω, then we let µ(η) = (1 − 1
2i+1 )µF(qη); if η ∈ T ,

xi + 1 < lh(η) ≤ xi+1 then µ(η) = Fη(µ(ν) : ν ∈ succT (η)). Now check. �

Thus q is a condition stronger than p and it forces that (∀k ∈ ω)(τ̇↾[mk,mk+1) 6=
g↾[mk,mk+1)). Since Qmt

∅ (K,Σ,F) satisfies the ccc, we may easily finish. �

Our next example is a small modification of 1.5.14. In a similar way we may
modify other examples from the previous section to produce more strongly linked
creating pairs.

Example 2.4.5. Let H ∈ ωω be a strictly increasing function such that H(0) > 2.
We construct a really finitary, strongly+ linked creating pair (K2.4.5,Σ2.4.5) for H
which satisfies the demands of 2.2.6 (in particular (∗) there).

Construction. The family K2.4.5 consists of creatures t ∈ CR[H] such that

• dis[t] = (mt, Et) such that mt < ω and ∅ 6= Et ⊆ H(mt) \ {0},
• val[t] = {〈u, v〉 ∈

∏

i<mt

H(i) ×
∏

i≤mt

H(i) : u ⊳ v & v(mt) /∈ Et},

• nor[t] = log4(H(mt)
|Et|

).

The operation Σ2.4.5 is natural:

Σ2.4.5(t) = {s ∈ K2.4.5 : ms = mt & Et ⊆ Es}.

Now check. �

Conclusion 2.4.6. Suppose that H ∈ ωω is strictly increasing, H(0) > 2 and
(K2.4.5,Σ2.4.5) is built as in 2.4.5 for H. Let D be a Ramsey ultrafilter on ω.
Then the forcing notion Q∗

D(K2.4.5,Σ2.4.5) is σ–centered, adds a Cohen real and
adds a dominating real.

Now we turn to universality parameters. As said before, one of the prototypes
here is the Universal Meager forcing notion UM. Let us represent it as Qtree(p) (for
a suitable p).

Example 2.4.7. We construct a universality parameter p such that Qtree(p) is
equivalent to UM.

Construction. Let H : ω −→ ω \ 2 and let K consists of tree creatures t for H such
that

• dis[t] = (mt, ηt, At) for some mt < ω, ηt ∈
⋃

i<mt

H(i) and ∅ 6= At ⊆ H(mt),

• nor[t] = |At|,
• val[t] = {〈ηt, ηt

⌢〈a〉〉 : a ∈ At}.
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The operation Σ is natural, so s ∈ Σ(t) if and only if ηs = ηt and As ⊆ At. Let
F = {f}, f(i) = 2.

G consists of quadruples (〈tη : η ∈ Ŝ〉, ndn, nup, r̄) such that

• 〈tη : η ∈ Ŝ〉 ∈ FC(K,Σ),
• ndn ≤ nup ≤ lev(S),
• r̄ = 〈ri : i ∈ dom(r̄)〉, ri < ω, dom(r̄) ⊆ [ndn, nup],
• if η ∈ S, lh(η) = ndn then for some ν ∈ S we have η E ν, lh(ν) < nup and
nor[tν ] < H(lh(ν)).

Easily p = (K,Σ,F ,G) is a universality parameter and Qtree(p) is the Universal
Meager forcing notion, �

Remark 2.4.8. Our next example 2.4.9 captures a number of constructions related
to the PP–property. Under the assumptions on (K,Σ) as there, we may think that
we have a way to measure how large splittings are, and this fully determines what
are the tree-creatures in K (and what are the norms). The function F is used to
define (possibly totally not related) norms of sets of nodes of the same length. Thus
F may just count how many elements are in max(S) (in this case the universality
parameter given by 2.4.9 is related to the PP–property). Other possibilities for F
include taking the maximum value of nor[tη], or taking the product of all relevant
nor[tη]’s.

Example 2.4.9. Assume that H : ω −→ ω \ 2 is strictly increasing and a family
F ⊆ (ω\2)ω is either countable or ≤∗–directed [note the direction of the inequality].
Let (K,Σ) be a local, really finitary, tree–creating pair for H such that

• for each η ∈
∏

i<n

H(i), n < ω and a nonempty A ⊆ H(n) there is a unique

tη,A ∈ LTCRη[H] ∩K with pos(tη,A) = {η⌢〈a〉 : a ∈ A}, and
• if |A| = 1, then nor[tη,A] ≤ 1, and
• if ∅ 6= B ⊆ A ⊆ H(n), then tη,B ∈ Σ(tη,A) and nor[tη,B] ≤ nor[tη,A].

Furthermore, let F : FC(K,Σ) −→ R≥0 be such that

if 〈tη : η ∈ Ŝ〉 ∈ FC(K,Σ), nor[tη] ≤ 1 (for η ∈ Ŝ), then F(〈tη : η ∈ Ŝ〉) ≤ 1.

We construct G = GK,Σ
F

such that (K,Σ,F ,G) is a universality parameter.

Construction. For a nonempty set Y ⊆
∏

j<i

H(j), i < ω, we define NOR(Y ) as the

value of F(〈tη : η ∈ Ŝ〉) for S such that max(S) = Y and root(S) = 〈〉. (Note that

under our assumptions on (K,Σ) there is exactly one such 〈tη : η ∈ Ŝ〉 ∈ FC(K,Σ).)

Let G consists of all quadruples (〈tη : η ∈ Ŝ〉, ndn, nup, r̄) satisfying the demands
of 2.3.3(γ) and such that

for some sequence 〈Yi : i ∈ dom(r̄)〉 we have

• Yi ⊆
∏

j<i

H(j), NOR(Yi) ≤ ri,

• (∀η ∈ S ∩
∏

j<nup

H(j))(∃i ∈ dom(r̄))(η↾i ∈ Yi).

Now check. �

Example 2.4.10. A universality parameter p such that Qtree(p) is the “universal
closed measure zero” forcing notion.

Construction. Let H, (K,Σ) and F be as defined in the construction for 2.4.7.
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Let G consists of all quadruples (〈tη : η ∈ Ŝ〉, ndn, nup, r̄) satisfying the demands
of 2.3.3(γ) and such that

|S ∩
∏

i<nup

H(i)|

|
∏

i<nup

H(i)|
≤

∑

i∈dom(r̄)

1

(i+ 1)2
.

Let p = (K,Σ,F ,G). Note that the forcing notion Qtree(p) is equivalent to Q
defined as follows.
A condition in Q is a pair (N, T ) such that N < ω and T ⊆

⋃

n<ω

∏

i<n

H(i) is a tree

such that [T ] is a measure zero subset of
∏

i<ω

H(i);

the order of Q is the natural one: (N0, T0) ≤ (N1, T1) if and only if N0 ≤ N1,
T0 ⊆ T1 and T1 ∩

∏

i<N0

H(i) ⊆ T0. �

3. Interlude: ideals

Here we introduce σ–ideals determined by forcing notions discussed in this paper.
Most of the content of this part is well known and belongs to folklore (some of this
material is presented in Judah and Ros lanowski [7], [6]).

3.1. Generic ideals. We will show how a Souslin ccc forcing notion adding one
real produces a ccc Borel σ–ideal on some Polish space. While we could do this in
a larger generality (e.g., considering any name for a real, not only the ones of the
form specified in 3.1.1(3) below, compare [24, §4] and [25, §6, §7]), we have decided
to use the specific form of the forcing notions we want to deal with and simplify
the notation and arguments (loosing slightly on generality, but it will be clear how
possible generalizations go).

Context 3.1.1. (1) H : ω −→ H(ω1), |H(n)| ≥ 2 for all n ∈ ω; Tn =
∏

i<n

H(i)

(for n ∈ ω) and T =
⋃

n<ω
Tn. Let X =

∏

n∈ω
H(n) = [T ] be equipped with

the natural product (Polish) topology.
(2) P is a Souslin ccc forcing notion with a parameter r ∈ 2ω (which also

encodes H), so we have Σ1
1–formulas ϕ0(·, r), ϕ1(·, ·, r), ϕ2(·, ·, r) defining

P,≤P and ⊥P, respectively.
(3) Ẇ = 〈pη : η ∈ T 〉 ⊆ P is such that

(α) p〈〉 = ∅P, and if η ⊳ ν ∈ T then pη ≤P pν ,
(β) 〈pη⌢〈a〉 : a ∈ H(lh(η))〉 is a maximal antichain above pη,
(γ) for each p ∈ P there is n < ω such that

|{η ∈ Tn : p, pη are compatible }| ≥ 2,

(δ) if p, q ∈ P are incompatible, then there is η ∈ T such that p, pη are
compatible but q, pη are incompatible.

[We will treat Ẇ as a P–name for a real in X such that pη  η ⊳ Ẇ , and

so  Ẇ /∈ V.]

Definition 3.1.2. For P, Ẇ ,H,X as in 3.1.1, let I
P,Ẇ be the collection of all Borel

subsets B of X such that

P “ Ẇ /∈ B ”.
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Proposition 3.1.3. (1) IP,Ẇ is a ccc σ–ideal of Borel subsets of X .

(2) IP,Ẇ contains all singletons.

(3) Let ψ(p, c) be the formula

“ p ∈ P and c ∈ 2ω is a Borel code (for a set ♯c ⊆ X ) and p  Ẇ ∈ ♯c ”.

(a) If M is a transitive model of ZFC∗, p, r, c, Ẇ ∈M , then

ψ(p, c) ⇔ M |= ψ(p, c).

(b) There are a Σ1
2–formula ψ0 and a Π1

2–formula ψ1 (both with the pa-
rameter r) such that

ψ(p, c) ≡ ψ0(p, c) ≡ ψ1(p, c)

(i.e., the equivalences are provable in ZFC).
(4) The formula “c ∈ 2ω is a Borel code (for a set ♯c ⊆ X ) and ♯c ∈ IP,Ẇ” is

absolute between transitive models of ZFC∗ (containing r, Ẇ , c).

Proof. (1), (2) Straightforward.
(3) See (the proof of) [1, Lemma 3.6.12].
(4) Follows from (3) and the definition of I

P,Ẇ (remember that “being a maximal

antichain of P” is absolute; see [1, Lemma 3.6.4]). �

Definition 3.1.4. Let P, Ẇ ,H,X be as in 3.1.1.

(1) Let x ∈ X and M be a transitive model of ZFC∗, r, Ẇ ∈ M . We say that
x is IP,Ẇ–generic over M , if x /∈ B for every Borel set B from IP,Ẇ coded
in M .

(2) For a condition p ∈ P let

S(p) = SẆ (p)
def
= {η ∈ T : pη, p are compatible }.

(3) For a maximal antichain A ⊆ P let

BA = BẆ ,A
def
= {x ∈ X : (∀p ∈ A)(∃n < ω)(x↾n /∈ S(p))}.

Let I0
P,Ẇ

be the family of all subsets of X that can be covered by a set of

the form BA (for a maximal antichain A ⊆ P).

Proposition 3.1.5. (a) For each p ∈ P, S(p) is a perfect subtree of T . If
p ≤ q, then S(q) ⊆ S(p). If p, q ∈ P and S(q) ⊆ S(p), then q  p ∈ ΓP.

(b) If G ⊆ P is a generic filter over V, then V[G] = V[ẆG].
(c) I0

P,Ẇ
is an ideal of subsets of X ; sets BA (for a maximal antichain A ⊆ P)

are Π0
2.

(d) Let x ∈ X and M be a transitive model of ZFC∗, r, Ẇ ∈ M . Then x is
I
P,Ẇ–generic over M if and only if there is a PM–generic filter G ⊆ PM

over M such that ẆG = x.
(e) IP,Ẇ is the σ–ideal generated by I0

P,Ẇ
. Every set from IP,Ẇ can be covered

by a Σ0
3 set from IP,Ẇ .

Proof. Straightforward (or see [7, §2]). �
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Conclusion 3.1.6. The quotient algebra Borel(X )/IP,Ẇ is a ccc complete Boolean
algebra. The mapping

π : P −→ Borel(X )/I
P,Ẇ : p 7→

[

[S(p)]
]

I
P,Ẇ

satisfies:

(1) rng(π) is a dense subset of the algebra Borel(X )/I
P,Ẇ ,

(2) (∀p, q ∈ P)(p⊥q ⇔ π(p) ∩ π(q) = 0),
(3) (∀p, q ∈ P)(q  p ∈ ΓP ⇔ π(q) ⊆ π(p)).

Consequently, the complete Boolean algebra RO(P) (of regular open subsets of P)

determined by P is isomorphic to Borel(X )/I
P,Ẇ . Moreover, π maps Ẇ onto the

canonical name for the generic real in Borel(X )/I
P,Ẇ , so for a Borel code c (for a

Borel subset ♯c of X ) we have [[Ẇ ∈ ♯c]]RO(P) = [♯c]I
P,Ẇ

.

Remark 3.1.7. It follows from 3.1.6 that we have nice description of names for reals
in the extensions via P.

(1) If τ̇ is a P–name for an element of X , then there is a Borel function f :

X −→ X such that P f(Ẇ ) = τ̇ .

(2) If Ḃ is a P–name for a Borel subset of X , then there is a Borel set A ⊆ X×X
such that P Ḃ = (A)Ẇ , where (A)x = {y : (x, y) ∈ A}.

(See [1, Lemma 3.7.1].)

3.2. Universality ideals. For a forcing notion Qtree(p) (where p is a universality
parameter) we may consider the ccc ideal defined as in 3.1.2, however there is
another Borel σ–ideal related to Qtree(p) (justifying the term “universality forcing
notion”).

Definition 3.2.1. Let p = (K,Σ,F ,G) be a universality parameter for H.

(1) We say that p is suitable whenever:
(a) for every f ∈ F and n < ω there is N > n such that

if (〈tη : η ∈ Ŝ〉, ndn, nup, f↾[ndn, nup]) ∈ G, N ≤ ndn and η ∈
∏

i<n

H(i),

then (∃ν ∈
∏

i<lev(S)

H(i))(η ⊳ ν & ν /∈ S),

(b) for every f ∈ F and n < ω there is N > n such that

if 〈tη : η ∈ Ŝ〉 ∈ FC(K,Σ), root(S) = 〈〉, lev(S) = n, η ∈
∏

i<N

H(i)

and η↾n ∈ S,
then there is (〈t∗ν : ν ∈ Ŝ∗〉, ndn, nup, f↾[ndn, nup]) ∈ G such that

n < ndn ≤ nup < N , S ⊆ S∗ and tν = t∗ν for ν ∈ Ŝ and η ∈ S∗.
(2) I0

p is the collection of subsets A of
∏

i<ω

H(i) such that for some f ∈ F

and a (G, f)–narrow system 〈tη : η ∈ T 〉 ∈ Qtree
∅ (K,Σ) (see 2.3.5(c)) with

root(T ) = 〈〉 we have A ⊆ [T ].
Trees T as above will be called (G, f)–narrow.

(3) Ip is the σ–ideal of subsets of
∏

i<ω

H(i) generated by I0
p .

(4) Ṫp is a Qtree(p)–name such that

Qtree(p) Ṫp =
⋃

{T p ∩
∏

i<Np

H(i) : p ∈ ΓQtree(p)}.
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Remark 3.2.2. The universality parameters constructed in Examples 2.4.7, 2.4.10
are suitable. Also the parameters given by Example 2.4.9 can be easily made
suitable: condition 3.2.1(1)(b) easily follows. To ensure 3.2.1(1)(a) we may require
that F,F satisfy

(∗) if n < ω, f ∈ F , η ∈
∏

i<n

H(i) and Y ⊆
∏

i≤n

H(i) satisfy NOR(Y ) ≤ f(n),

then (∃y ∈ H(n))(η⌢〈y〉 /∈ Y ).

(But clearly much less is enough.)

Proposition 3.2.3. Let p = (K,Σ,F ,G) be a suitable universality parameter for
H.

(1) Every set in I0
p is nowhere dense (in the product topology of

∏

i<ω

H(i)); all

singletons belong to I0
p .

(2) Ip is a proper Borel σ–ideal of subsets of
∏

i<ω

H(i).

(3) If F is ≤∗–directed then I0
p is an ideal.

(4) In VQtree(p), Ṫp is a tree with no maximal branches which is (G, h)–narrow
for some function h (possibly h /∈ F). If F is a singleton, then h ∈ F .

(5) Suppose that 〈Pα, Q̇α : α < δ〉 is finite support iteration of ccc forcing
notions such that for some increasing sequence α0 < α1 < α2 < . . . < δ,
Q̇αn

is (forced to be) Qtree(p). Let Ṫn be the name for the tree Ṫp added at
stage αn. Then, in VPδ , if T ∈ V is (G, f)–narrow for some f ∈ F then

T ⊆ Ṫn for some n < ω.
(6) If in 5 above we additionally assume that F = {f} then, in VPδ , there is a

set from Ip which contains all Borel sets from Ip coded in V.

4. Sweet and Sour

4.1. On amalgamation. One of the major problems in set theory of the 20th
century was the following: suppose (P1,≤P1), (P2,≤P2) are ccc partial orders and
P1 × P2 is equipped with the coordinate-wise order (so (p1, p2) ≤ (q1, q2) iff p1 ≤P1

q1 & p2 ≤P2 q2). Does (P1×P2,≤) satisfy the ccc? The interest in this question came
from topology as well as from its close relation to the Souslin Problem. The intensive
investigations of the productivity of ccc for forcing notions (or Boolean algebras,
or topologies) resulted in many interesting concepts and discoveries. Several strong
ccc properties implying that the product of respective partial orders satisfies the
ccc were introduced. Examples of those properties include

• The Knaster Property: A partial order (P,≤P) has the Knaster prop-
erty if for every uncountable family A ⊆ P there is an uncountable B ⊆ A
such that members of B are pairwise compatible.

• The pre-caliber ω1: (P,≤P) has pre-caliber ω1 if for every uncountable
A ⊆ P there is an uncountable B ⊆ A such that every finite subfamily of B
has a common upper bound in P.

(Note that pre-caliber ω1 ⇒ Knaster Property ⇒ productive ccc.) Lastly,
the Souslin Problem was completed by Solovay and Tennenbaum [30] who proved
that it is consistent that every ccc forcing notion has the Knaster Property (and
thus, consistently, ccc is productive).
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50 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

Since the productivity question occurred to be so productive, one can ask if we
may generalize the problem by replacing the product by the amalgamation of forcing
notions. Let us recall the definition of this operation.

Definition 4.1.1. (1) Suppose P,Q are forcing notions such that P <◦ RO(Q).
Then (Q : P) is a P–name for a forcing notion which is a suborder of Q,

p P “ q ∈ (Q : P) ” if and only if
every p′ ∈ P stronger than p is compatible with q in RO(Q).

(2) Suppose that P,Q0,Q1 are forcing notions and fℓ : P −→ RO(Qℓ) (for
ℓ < 2) are complete embeddings. The amalgamation of Q0,Q1 over f0, f1

is

Q0 ×f0,f1 Q1 =
{(q1, q2) ∈ Q0 ×Q1 : (∃p ∈ P)(p  “ q0 ∈ (Q0 : f0[P]) & q1 ∈ (Q1 : f1[P])”)}

ordered in the natural way (so (q0, q1) ≤ (q′0, q
′
1) if and only if q0 ≤ q′0 and

q1 ≤ q′1).

It can be easily seen from the definition of the amalgamation that Q0 ×f0,f1 Q1

is equivalent to P ∗
(

(Q0 : f0[P]) × (Q1 : f1[P])
)

. So, if P <◦ Q0, P <◦ Q1 (and f0, f1

are the identity mappings) then

Q0 ×P Q1
def
= Q0 ×f0,f1 Q1 = P ∗

(

(Q0 : P) × (Q1 : P)
)

and the amalgamation can be thought of as a generalization of the product. Thus
the question when amalgamation of ccc forcing notions satisfies the ccc can be
thought of as a generalization of the productivity problem. However, there is no
nice answer here. By Shelah [19, §1], a Cohen real adds a Souslin tree, so let Ṡ

be a C–name for a Souslin tree (ordered naturally). The forcing notion Q = C ∗ Ṡ
satisfies the ccc, but the amalgamation Q×CQ = C∗(Ṡ×Ṡ) does not satisfy the ccc
(this example exists in any universe of ZFC, of course). Even demanding stronger
variants of ccc (which clearly worked for products) may not help for amalgamations:

Roitman [13] gave an example of P, Q̇1, Q̇2 such that

(a) P ∗ Q̇1,P ∗ Q̇2 have pre-caliber ω1, but

(b) P“ Q̇1 × Q̇2 does not satisfy the ccc ”, so

(c)
(

P ∗ Q̇1

)

×P

(

P ∗ Q̇2

)

does not satisfy the ccc.

However, there are sweet (=strong ccc) properties of forcing notions which are
preserved by amalgamations.

Definition 4.1.2 (Shelah [19, Def. 7.2]).
A triple (P,D, Ē) is model of sweetness (on P) whenever:

(i) P is a forcing notion, D is a dense subset of P,
(ii) Ē = 〈En : n < ω〉, each En is an equivalence relation on D such that D/En

is countable,
(iii) equivalence classes of each En are ≤P–directed, En+1 ⊆ En,
(iv) if {pi : i ≤ ω} ⊆ D, pi Ei pω (for i ∈ ω) ,then

(∀n ∈ ω)(∃q ≥ pω)(q En pω & (∀i ≥ n)(pi ≤ q)),

(v) if p, q ∈ D, p ≤ q and n ∈ ω then there is k ∈ ω such that

(∀p′ ∈ [p]Ek
)(∃q′ ∈ [q]En

)(p′ ≤ q′).
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If there is a model of sweetness on P, then we say that P is sweet.

Definition 4.1.3 (Stern [31, Def. 1.2]). Let P be a forcing notion and τ be a
topology on P. We say that (P, τ) is a model of topological sweetness whenever the
following conditions are satisfied:

(i) the topology τ has a countable basis,
(ii) ∅P is an isolated point in τ ,
(iii) if a sequence 〈pn : n < ω〉 ⊆ P is τ–converging to p ∈ P, q ≥ p and W is a

τ–neighbourhood of q, then there is a condition r ∈ P such that
(a) r ∈ W , r ≥ q,
(b) the set {n ∈ ω : pn ≤ r} is infinite.

A forcing notion P is topologically sweet, if there is a topology τ on P such that
(P, τ) is a model of topological sweetness.

Definition 4.1.4. (1) Let (Pℓ,Dℓ, Ēℓ) (for ℓ < 2) be models of sweetness. We
say that (P1,D1, Ē1) extends the model (P0,D0, Ē0) if

• P0 <◦ P1, D0 ⊆ D1 and E0
n = E1

n↾D0 for each n ∈ ω,
• if p ∈ D0, n ∈ ω, then [p]E1

n
⊆ D0,

• if p ≤ q, p ∈ D1, q ∈ D0, then p ∈ D0.
(2) Let (Pℓ, τℓ) (for ℓ < 2) be models of topological sweetness. We say that

(P1, τ1) extends the model (P0, τ0) if P0 <◦ P1, P0 is a τ1–open subset of P1

and τ1↾P0 = τ0.

Theorem 4.1.5. (1) (Shelah [19, 7.5]) Suppose that (Pℓ,Dℓ, Ēℓ) (for ℓ < 2)
are models of sweetness, and fℓ : P −→ RO(Pℓ) (for ℓ < 2) are complete
embeddings. Then there is a model of sweetness (P0×f0,f1 P1,D∗, Ē∗) based
on the amalgamation P0×f0,f1 P1 and extending each (Pℓ,Dℓ, Ēℓ) for ℓ < 2.

(2) (Stern [31, §2.2]) Suppose that (Pℓ, τℓ) (for ℓ < 2) are models of topological
sweetness, and fℓ : P −→ RO(Pℓ) (for ℓ < 2) are complete embeddings.
Then there is a model of topological sweetness (P0 ×f0,f1 P1, τ

∗) based on
the amalgamation P0 ×f0,f1 P1 and extending each (Pℓ, τℓ) for ℓ < 2.

The real interest in preserving ccc in amalgamations comes from the indepen-
dence results related to regularity properties of definable sets. Assuming the exis-
tence of an inaccessible cardinal, Solovay [29] showed the consistency of the following
two statements

(M) every projective set of reals is Lebesgue measurable,
(B) every projective set of reals has the Baire property.

The key ingredient of Solovay’s proof was the observation that the Collapse Algebra
is very homogeneous. Shelah [19] proved that

• (M) implies ω1 is inaccessible in L, but
• the consistency of (B) can be established without inaccessible cardinals.

For the latter result one builds a homogeneous ccc forcing notion adding a lot of
Cohen reals. Homogeneity is obtained by multiple use of amalgamation (see [6] for
a full explanation of how this works), the Cohen reals come from compositions with
the Universal Meager forcing notion UM or with the Hechler forcing notion D. An
important feature of sweetness is that it is preserved in compositions with UM, D.

Proposition 4.1.6. (1) (Shelah [19, §7]) If P is sweet then both P ∗ ˙UM and

P ∗ Ḋ are sweet.
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52 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

(2) (Stern [31, 3.3]) If P is topologically sweet then both P ∗ ˙UM and P ∗ Ḋ are
topologically sweet.

4.2. More on sweetness. The original model of Shelah [19] for (B) (i.e., “all
projective sets of reals have the Baire property”) satisfies also CH. Can we have
(B)+¬CH? Judah and Shelah [9] aimed at exactly this, but the proof there has an
irreparable gap. However, a recent work in progress [18] gives a totally different
way of building models for (B)+¬CH. Then we may ask for models of ZFC in which
(B) holds and some cardinal characteristics of the continuum are large. Thus we
would like to use (in addition to UM or D) other forcings in the constructions as in
[19], [18]. However, the proofs for 4.1.6 were very specific and it has not been clear
if there are more forcing notions which could be composed with sweet ones. In this
subsection we show that sweetness of 4.1.2 is essentially everything we need. We
also show that our methods may lead to sweet and/or topologically sweet forcing
notions.

Definition 4.2.1. Let B be a countable basis of a topology on a forcing notion P.
We say that (P,B) is a model of iterable sweetness if

(i) B is closed under finite intersections,
(ii) each U ∈ B is ≤P–directed and p ≤ q ∈ U ⇒ p ∈ U ,
(iii) if 〈pn : n ≤ ω〉 ⊆ U ∈ B and the sequence 〈pn : n < ω〉 converges to pω (in

the topology generated by B), then there is a condition p ∈ U such that
(∀n ≤ ω)(pn ≤ p).

Proposition 4.2.2. Assume that (P,D, Ē) is a sweetness model on P, Ē = 〈En :
n < ω〉, D = P. Furthermore, suppose that any two compatible elements of P have
a least upper bound, i.e., if p0, p1 ∈ P are compatible, then there is q ≥ p0, p1 such
that (∀r ∈ P)(r ≥ p0 & r ≥ p1 ⇒ r ≥ q). For p̄ = 〈pℓ : ℓ ≤ k〉 ⊆ P and
n̄ = 〈nℓ : ℓ ≤ k〉 ⊆ ω let

U(p̄, n̄)
def
= {q ∈ P : (∀ℓ ≤ k)(∃q′ ∈ [pℓ]Enℓ

)(q ≤ q′)},

and let B be the collection of all sets U(p̄, n̄) (for p̄ ⊆ P, n̄ ⊆ ω, lh(p̄) = lh(n̄)).
Then (P,B) is a model of iterable sweetness.

Proof. Plainly, B is closed under finite intersections. Since the equivalence classes
of each En are directed and any two compatible members of P have a least upper
bound, we may conclude that the elements of B are directed and downward closed.

Before we verify the demand 4.2.1(iii), let us first note that if p ∈ U(p̄, n̄),
p̄ = 〈pℓ : ℓ ≤ k〉, n̄ = 〈nℓ : ℓ ≤ k〉, then for some N we have U(〈p〉, 〈N〉) ⊆ U(p̄, n̄).
[Why? Use 4.1.2(v) to choose N such that

(∀ℓ ≤ k)(∀q ∈ [p]EN
)(∃q′ ∈ [pℓ]Enℓ

)(q ≤ q′).

Clearly this N is as required.]
Now suppose that a sequence 〈pn : n < ω〉 converges to pω in the topology

generated by B, and pω, pn ∈ U(q̄, n̄) ∈ B for all n < ω. Take N such that
U(〈pω〉, 〈N〉) ⊆ U(q̄, n̄). Choose an increasing sequence 〈mi : i < ω〉 such that

(∀i < ω)(∀n ≥ mi)(pn ∈ U(〈pω〉, 〈N + 1 + i〉)).

Next pick conditions p∗i ∈ [pω]EN+1+i
such that

(∀i < ω)(∀n ∈ [mi,mi+1))(pn ≤ p∗i )
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(remember that each [pω]EN+1+i
is directed). It follows from 4.1.2(iv) that we may

find a condition q′ ≥ pω such that q′ ∈ [pω]EN
and (∀i < ω)(p∗i ≤ q′). Then

(∀n ≥ m0)(pn ≤ q′) and q′ ∈ U(q̄, n̄).

Since U(q̄, n̄) is directed and q′, p0, . . . , pm0 ∈ U(q̄, n̄), the conditions q′, p0, . . . , pm0

have an upper bound in U(q̄, n̄) – let q be such an upper bound. Then q is as
needed to justify 4.2.1(iii). �

Lemma 4.2.3. Assume that (P, τ) is a model of topological sweetness.

(1) If p, q ∈ P, p ≤ q and q ∈ U ∈ τ , then there is an open neighbourhood V of
p such that

(∀r ∈ V )(∃r′ ∈ U)(r ≤ r′).

(2) If m ∈ ω, p ∈ U ∈ τ , then there is an open neighbourhood V of p such that
any p0, . . . , pm ∈ V have a common upper bound in U .

Proof. Straightforward. �

Theorem 4.2.4. Suppose that (P, τ) is a model of topological sweetness and Ḃ, Q̇
are P–names such that

P “ (Q̇, Ḃ) is a model of iterable sweetness ”.

Then there is dense subset R of the iteration P∗ Q̇ and a topology τ∗ on R such that
P ⊆ R and (R, τ∗) is a model of topological sweetness extending the model (P, τ).

Proof. Let V̇n be P–names such that

P “ V̇0 = {∅Q̇} and {V̇n : 0 < n < ω} enumerates Ḃ \ {∅} ”

(note that  “ (Q̇, {V̇n : n < ω}) is a model of iterable sweetness ” and also

 “ ∅
Q̇
∈ V̇n for all n ”, remember 4.2.1(ii)). Let U be a countable basis of the

topology τ and let

R
def
= {(p, q̇) ∈ P ∗ Q̇ : p 6= ∅P and (∃n < ω)(p  q̇ ∈ V̇n)} ∪ {(∅P, ∅̇Q̇)}.

For U ∈ U , Ū = 〈U0, . . . , Um−1〉 ⊆ U and n̄ = 〈n0, . . . , nm−1〉 ⊆ ω and k̄ =
〈k0, . . . , kM 〉 ⊆ ω (m,M < ω) we put

U∗(U, Ū, n̄, k̄)
def
= {(p, q̇) ∈ R : p ∈ U and (∀ℓ ≤M)(p  q̇ ∈ V̇kℓ

) and

(∀ℓ < m)(∃p′ ∈ Uℓ)(p ≤ p′ & p′  q̇ ∈ V̇nℓ
)}.

Let C be the collection of all sets of the form U∗(U, Ū, n̄, k̄) (for suitable parameters
U, Ū, n̄, k̄).

Claim 4.2.4.1. (1) The family C forms a countable basis of a topology on R;
we will denote this topology by τ∗. ∅R is an isolated point in τ∗.

(2) If (p, q̇), (p′, q̇′) ∈ R, (p, q̇) ≤ (p′, q̇′) and (p′, q̇′) ∈ U∗ ∈ C, then there is
V ∗ ∈ C such that (p, q̇) ∈ V ∗ and (∀r ∈ V ∗)(∃r′ ∈ U∗)(r ≤ r′).

Proof of the claim. 1) Should be clear.
2) Let U∗ = U∗(U, 〈U0, . . . , Um−1〉, 〈n0, . . . , nm−1〉, 〈k0, . . . , kM 〉) and let p′ℓ ∈ Uℓ

(for ℓ < m) be such that p′ ≤ p′ℓ and p′ℓ  q̇′ ∈ V̇nℓ
. Choose U ′

ℓ ∈ U such that
p′ℓ ∈ U ′

ℓ ⊆ Uℓ and every two members of U ′
ℓ have a common upper bound in Uℓ

(possible by 4.2.3(2)). Next pick U ′, U ′′ ∈ U such that p′ ∈ U ′′ ⊆ U ′ ⊆ U and

• every member of U ′ has an upper bound in each of the sets U ′
0, . . . , U

′
m−1,
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• every M + 1 elements of U ′′ have a common upper bound in U ′.

Let U+ ∈ U be such that p ∈ U+ and each element of U+ has an upper bound in
U ′′, and let k be such that p  q̇ ∈ V̇k. Put

V ∗ = U∗(U+, 〈U ′
0, . . . , U

′
m−1, U

′′, . . . , U ′′〉, 〈n0, . . . , nm−1, k0, . . . , kM 〉, 〈k〉) ∈ C.

First we show that (p, q̇) ∈ V ∗. By our choices, p ∈ U+ and p  q̇ ∈ V̇k. For ℓ < m,

p′ℓ ∈ U ′
ℓ is a condition stronger than p′ ≥ p and p′ℓ  q̇ ≤ q̇′ ∈ V̇nℓ

, so p′ℓ  q̇ ∈ V̇nℓ

(remember 4.2.1(ii)). Next, for i ≤ M , we have p′ ∈ U ′′ and p′  q̇ ≤ q̇′ ∈ V̇ki
, so

p′  q̇ ∈ V̇ki
.

Now, suppose that (p∗, q̇∗) ∈ V ∗. Then p∗ ∈ U+ and we have conditions p∗ℓ ∈ U ′
ℓ

(for ℓ < m) and conditions p∗∗i ∈ U ′′ (for i ≤M) such that

• p∗ℓ ≥ p∗ and p∗∗i ≥ p∗,

• p∗ℓ  q̇∗ ∈ V̇nℓ
and p∗∗i  q̇∗ ∈ V̇ki

.

Pick a condition p+ ∈ U ′ stronger than all p∗∗i (for i ≤ M). We claim that

(p+, q̇∗) ∈ U∗. Clearly p+ ∈ U and p+  q̇∗ ∈ V̇ki
(for i ≤ M). Fix ℓ < m. By

the choice of U ′, we find p+
ℓ ∈ U ′

ℓ stronger than p+. By the choice of U ′
ℓ, we find a

condition pℓ ∈ Uℓ stronger than both p+
ℓ and p∗ℓ . Then pℓ  q̇∗ ∈ V̇nℓ

and we are
done. �

Claim 4.2.4.2. Suppose that a sequence 〈(pk, q̇k) : k < ω〉 ⊆ R is τ∗–converging to
(pω, q̇ω), and (pω, q̇ω) ∈ U∗(U, 〈U0, . . . , Um−1〉, 〈n0, . . . , nm−1〉, k̄) ∈ C. Then there
are an infinite set X ⊆ ω and conditions p∗ℓ ≥ pω (for ℓ < m) such that for each
ℓ < m and k ∈ X:

(i) p∗ℓ ∈ Uℓ, p
∗
ℓ ≥ pk,

(ii) p∗ℓ  q̇k ∈ V̇nℓ
.

Proof of the claim. Pick pℓω ∈ Uℓ, p
ℓ
ω ≥ pω such that pℓω  q̇ω ∈ V̇nℓ

(for ℓ < m).
Fix sequences 〈W ℓ

j : j < ω〉 ⊆ U (for ℓ < m) such that

• pℓω ∈ W ℓ
j+1 ⊆W ℓ

j ,

• {W ℓ
j : j < ω} forms a basis of neighbourhoods of pℓω.

Clearly (pω, q̇ω) ∈ U∗(U, 〈W 0
j , . . . ,W

m−1
j 〉, 〈n0, . . . , nm−1〉, k̄) for every j < ω, so

we may pick an increasing sequence 〈kj : j < ω〉 ⊆ ω such that

(∀j < ω)((pkj
, q̇kj

) ∈ U∗(U, 〈W 0
j , . . . ,W

m−1
j 〉, 〈n0, . . . , nm−1〉, k̄)).

Let pℓkj
∈ W ℓ

j be such that pkj
≤ pℓkj

, pℓkj
 q̇kj

∈ V̇nℓ
(for ℓ < m, j < ω). Each

sequence 〈pℓkj
: j < ω〉 τ–converges to pℓω so we may find an infinite set A ⊆ ω and

conditions p∗ℓ ∈ Uℓ (for ℓ < m) such that

p∗ℓ ≥ pℓω ≥ pω and (∀j ∈ A)(∀ℓ < m)(p∗ℓ ≥ pℓkj
).

Let X = {kj : j ∈ A}. �

Claim 4.2.4.3. Suppose 〈(pn, q̇n) : n < ω〉 ⊆ R is τ∗–converging to (pω, q̇ω). Then
there is X ∈ [ω]ω such that:

(⊠) if (pω, q̇ω) ∈ U∗(U, 〈U0, . . . , Um−1〉, 〈n0, . . . , nm−1〉, k̄) ∈ C,
then for some N ∈ ω and p∗ℓ ∈ Uℓ (for ℓ < m) we have:

(i) p∗ℓ ≥ pω, (∀n ∈ X \N)(p∗ℓ ≥ pn),

(ii) (∀n ∈ X \N)(∀ℓ < m)(p∗ℓ  q̇n ∈ V̇nℓ
).
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Proof of the claim. Let 〈U∗
i : i < ω〉 enumerate all sets U∗ ∈ C to which (pω, q̇ω)

belongs. Apply 4.2.4.2 to choose inductively a decreasing sequence 〈Xi : i < ω〉 ⊆
[ω]ω such that for each i < ω:

if U∗
i = U∗(U, 〈U0, . . . , Um−1〉, 〈n0, . . . , nm−1〉, k̄), then there are

conditions piℓ ≥ pω (for ℓ < m) satisfying

(∀ℓ < m)(∀n ∈ Xi)(p
i
ℓ ∈ Uℓ & piℓ ≥ pn & piℓ  q̇n ∈ V̇nℓ

).

Next pick an infinite set X ⊆ ω almost included in all Xn’s. �

Claim 4.2.4.4. Suppose that 〈(pn, q̇n) : n < ω〉 ⊆ R τ∗–converges to (pω, q̇ω) ∈
U∗ ∈ C. Then there is a condition (p∗, q̇∗) ∈ U∗ stronger than (pω, q̇ω) and such
that

(∃∞n ∈ ω)((pn, q̇n) ≤ (p∗, q̇∗)).

Proof of the claim. Let U∗ = U∗(U, 〈U0, . . ., Um−1〉, 〈n0, . . ., nm−1〉, 〈k0, . . . , kM 〉),
and let pℓω ∈ Uℓ (for ℓ < m) be such that pℓω ≥ pω and pℓω  q̇ω ∈ V̇nℓ

. Pick
U ′, U ′

0, . . . , U
′
m−1 ∈ U such that

• pω ∈ U ′ ⊆ U , pℓω ∈ U ′
ℓ ⊆ Uℓ,

• any 3 elements of U ′
ℓ have a common upper bound in Uℓ,

• every element of U ′ has an upper bound in each of U ′
0, . . . , U

′
m−1.

Apply 4.2.4.3 to choose X ∈ [ω]ω such that the condition (⊠) of 4.2.4.3 holds. Note
that then

pω  “ the sequence 〈q̇n : n ∈ X〉 is Ḃ–convergent to q̇ω ”.

[Why? If not, then we may pick a condition r ≥ pω and an integer N such that

r  “ q̇ω ∈ V̇N & (∃∞n ∈ X)(q̇n /∈ V̇N ) ”.

Pick W ∈ U such that r ∈ W and any 2 members of W are compatible, and apply
(⊠) of 4.2.4.3 to U∗(U, 〈W 〉, 〈N〉, 〈k0, . . . , kM 〉). We get a condition r∗ ∈ W such
that

(∀∞n ∈ X)(r∗ ≥ pn & r∗  q̇n ∈ V̇N ).

Since r∗, r are compatible, we get a contradiction.]
Since 〈pn : n ∈ X〉 τ–converges to pω, we may find an infinite X ′ ⊆ X and a

condition p∗ ∈ U ′ such that

p∗ ≥ pω & (∀n ∈ X ′)(p∗ ≥ pn).

Next use (⊠) of 4.2.4.3 to pick conditions p′ℓ ∈ U ′
ℓ and N ∈ ω such that

(∀n ∈ X ′ \N)
(

p′ℓ ≥ pn and p′ℓ  q̇n ∈ V̇nℓ
and (∀i ≤M)(pn  q̇n ∈ V̇ki

)
)

.

By the choice of U ′, U ′
0, . . . , U

′
m−1 we get conditions p∗ℓ ∈ Uℓ such that p∗ℓ ≥ p∗,

p∗ℓ ≥ p′ℓ, p
∗
ℓ ≥ pℓω (for ℓ < m).

Now we are going to define a P–name q̇∗ for a condition in Q̇. Let A be a
maximal antichain of P such that for each ℓ < m and r ∈ A:

• either r ≥ p∗ℓ or r, p∗ℓ are incompatible, and
• either r ≥ p∗ or r, p∗ are incompatible.
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Fix r ∈ A. If r, p∗ are incompatible, then let q̇r be ∅̇
Q̇

. Assume r ≥ p∗ and let

I = {nℓ : ℓ < m & r ≥ p∗ℓ} ∪ {ki : i ≤M} (6= ∅).

The condition r forces that the sequence 〈q̇n : n ∈ X ′ \ N〉 converges to q̇ω, and

q̇ω ∈
⋂

j∈I

V̇j , and q̇n ∈
⋂

j∈I

V̇j (for all n ∈ X ′ \ N). Applying 4.2.1(i+iii) we find a

P–name q̇r for an element of Q̇ such that

r  “ (∀n ∈ X ′ \N)(q̇n ≤ q̇r & q̇ω ≤ q̇r & q̇r ∈
⋂

j∈I

V̇j) ”.

Now, let q̇∗ be a P–name such that r  q̇∗ = q̇r (for r ∈ A).

Look at the condition (p∗, q̇∗) ∈ R. Clearly p∗  q̇∗ ∈ V̇ki
(for all i ≤ M) and

p∗ℓ ≥ p∗, p∗ℓ  q̇∗ ∈ V̇nℓ
(for ℓ < m), so (p∗, q̇∗) ∈ U∗. Moreover, if n ∈ (X ′\N)∪{ω},

then p∗ ≥ pn and p∗  q̇n ≤ q̇, so (p∗, q̇∗) ≥ (pn, q̇n) and we are done. �

Claim 4.2.4.5. If (p, q̇) ∈ U∗ ∈ C, then there is V ∗ ∈ C such that (p, q̇) ∈ V ∗ and
any two conditions (p0, q̇0), (p1, q̇1) ∈ V ∗ have a common upper bound in U∗.

Proof of the claim. Let U∗ = U∗(U, 〈U0, . . . , Um−1〉, 〈n0, . . . , nm−1〉, 〈k0, . . . , kM 〉)
and let pℓ ∈ Uℓ (for ℓ < m) be such that p ≤ pℓ and pℓ  q̇ ∈ V̇nℓ

. Pick U ′
ℓ ∈ U such

that pℓ ∈ U ′
ℓ ⊆ Uℓ and every three members of U ′

ℓ have a common upper bound in
Uℓ. Also choose U ′, U ′′ ∈ U such that p ∈ U ′′ ⊆ U ′ ⊆ U , and each member of U ′

has an upper bound in every U ′
ℓ (for ℓ < m) and every two members of U ′′ have a

common upper bound in U ′. Put

V ∗ = U∗(U ′′, 〈U ′
0, . . . , U

′
m−1〉, 〈n0, . . . , nm−1〉, 〈k0, . . . , kM 〉) ∈ C.

Clearly (p, q̇) ∈ V ∗. Suppose now that (p0, q̇0), (p1, q̇1) ∈ V ∗ and let piℓ ∈ U ′
ℓ be

such that piℓ  q̇i ∈ V̇nℓ
and pi ≤ piℓ (for i = 0, 1 and ℓ < m). Also let p∗ ∈ U ′

be stronger than both p0 and p1, and for each ℓ < m let p∗ℓ ∈ Uℓ be stronger than
both p∗ and p0

ℓ and p1
ℓ . Now, like in the proof of 4.2.4.4, choose a P–name q̇∗ for a

condition in Q̇ such that

p∗ “ q̇∗ ≥ q̇0 & q̇∗ ≥ q̇1 ”, and
p∗ℓ “ q̇∗ ∈ V̇nℓ

” for ℓ < m, and

p∗ “ q̇∗ ∈ V̇kℓ
” for ℓ ≤M .

(Remember that the sets
⋂

j∈I

V̇j are forced to be directed by 4.2.1(i+ii).) Then

(p∗, q̇∗) ∈ U∗ is a condition stronger than both (p0, q̇0) and (p1, q̇1). �

Now we may put together 4.2.4.4, 4.2.4.1(2) and 4.2.4.5 to conclude that the
topology τ∗ satisfies the demand 4.1.3(iii), finishing the proof of the theorem.

Note that (p, ∅̇
Q̇

) ∈ R for each p ∈ P and the mapping p 7→ (p, ∅̇
Q̇

) is a homeo-

morphic embedding of (P, τ) into (R, τ∗), so we may think that τ is the restriction
of τ∗ to P ⊆ R. Moreover, under this interpretation, P is an open subset of R. �

Proposition 4.2.5. (1) In the cases discussed in 1.1.14(1,2), the forcing no-
tion under considerations is topologically sweet, provided K is countable.

(2) If (K,Σ) is a really finitary (see 1.3.3) linked tree–creating pair, and f is
a fast function, then the forcing notion Qtree

f (K,Σ) is topologically sweet.

(3) Let p = (K,Σ,F ,G) be a universality parameter for H. Assume that
(a) F is either countable or <ω1—≤∗–directed, and
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(b) for each η ∈
⋃

n<ω

∏

i<n

H(i) there is tmax
η ∈ LTCRη[H] ∩K such that

(∀t ∈ LTCRη[H] ∩K)(t ∈ Σ(tmax
η )).

Then the forcing notion Qtree(p) is sweet (and thus iterably sweet, provided
elements compatible in Qtree(p) have the least upper bound).

Proof. 1) Let (K,Σ,Σ⊥) be a ⊗–creating triple for H : ω −→ H(ω1). Suppose
that (K,Σ,Σ⊥) is linked, gluing and has the cutting property.

For c = (w, t0, . . . , tn) ∈ FC(K,Σ,Σ⊥) and N < ω let

U(c, N) = {p ∈ Q∗
∞(K,Σ,Σ⊥) : wp = w & (∀k ≤ n)(tpk = tk) &

(∀k > n)(nor[tpk] ≥ N)}.

Let τ be the topology generated by the sets U(c, N) (for c ∈ FC(K,Σ,Σ⊥) and
N < ω) and {∅Q∗

∞(K,Σ,Σ⊥)}. It is straightforward to check that (Q∗
∞(K,Σ,Σ⊥), τ)

is a model of topological sweetness.

Other instances of 1) and 2) can be handled similarly.

3) We consider the case when F is countable only (if F is <ω1—≤∗–directed the
proof is similar). We put D = Qtree(p) and we define relations En (for n < ω) on
D as follows:
p0 En p1 if and only if
Np0 = Np1 , fp0 = fp1 and

(∀η ∈ T p0)(lh(η) < Np0 + n ⇒ η ∈ T p1 & tp0 = tp1).

We claim that (Qtree(p),D, 〈En : n < ω〉) is a model of sweetness. Plainly, each
En is an equivalence relation with countably many equivalence classes, En+1 ⊆ En.
Similarly as in 2.3.6.1 one can show that the equivalence classes of each En are
directed and that the clause 4.1.2(v) is satisfied. Let us show that the demand
4.1.2(iv) holds.

So suppose pi Ei pω (for i ≥ n, n < ω). Thus fpi = fpω = f , Npi = Npω = N
(for i ≥ n). We build inductively a system 〈tη : η ∈ T 〉 ∈ Qtree

∅ (K,Σ) as follows.
First we let M0 = N + n and we declare

η ∈ T pω & lh(η) < M0 ⇒ η ∈ T & tη = tpω
η .

Suppose that we have defined 〈tη : η ∈ T & lh(η) < Mk〉 ∈ FC(K,Σ) already. Pick
M ′

k > Mk such that for some nk
dn, n

k
up we have Mk < nk

dn ≤ nk
up ≤ FG(nk

up) < M ′
k

and

(〈tpω
η : η ∈ T pω & lh(η) < M ′

k〉, n
k
dn, n

k
up, f↾[n

k
dn, n

k
up]) ∈ G.

Next, choose Mk+1 and nk,i
dn , n

k,i
up (for i ∈ [n,M ′

k]) such that M ′
k < nk,n

dn , nk,i
dn ≤

nk,i
up ≤ FG(nk,i

up ) < nk,i+1
dn -2, FG(n

k,M ′
k

up ) < Mk+1 and

(〈tpi
η : η ∈ T pi & lh(η) < Mk+1〉, n

k,i
dn , n

k,i
up , f↾[n

k,i
dn , n

k,i
up ]) ∈ G.

Let 〈tkη : η ∈ Ŝk〉 ∈ FC(K,Σ) be such that root(Sk) = 〈〉, lev(Sk) = Mk+1, and

tkη = tpω
η when lh(η) < M ′

k and tkη = tmax
η when M ′

k ≤ lh(η) < lev(Sk). Apply
repeatedly 2.3.3(ε) to get 〈tη : η ∈ T & lh(η) < Mk+1〉 ∈ FC(K,Σ) such that

(〈tη : η ∈ T & lh(η) < Mk+1〉, n
k
dn, n

k,M ′
k

up , f↾[nk
dn, n

k,M ′
k

up ]) ∈ G,



6
7
2
 
 
r
e
v
i
s
i
o
n
:
2
0
0
3
-
1
0
-
0
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
3
-
1
0
-
0
1
 
 

58 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

and 〈tη : η ∈ T & lh(η) < Mk+1〉 ≤ 〈tkη : η ∈ Ŝk〉, and

〈tη : η ∈ T & lh(η) < Mk+1〉 ≤ 〈tpi
η : η ∈ T pi〉 for all i ∈ [n,M ′

k].

Note that then 〈tη : η ∈ T & lh(η) < Mk+1〉 ≤ 〈tpi
η : η ∈ T pi〉 for all i ∈ [n, ω].

After the construction is carried out one easily checks that q = (N, 〈tη : η ∈
T 〉, f) ∈ Qtree(p) is a condition stronger than all pi’s (for i ∈ [n, ω]) and q En pω. �

Definition 4.2.6. Suppose that a function h : ω × ω −→ ω is regressive, F ⊆
(ω \ 2)ω , and (K,Σ) is a local creating pair for H. We define Qh

F(K,Σ) as the
suborder of Q∗

F(K,Σ) consisting of conditions p ∈ Q∗
F (K,Σ) such that

(∃f ∈ F)(∀k < ω)(∀∞n < ω)(h(k)(mtpn , ⌊nor[tpn]⌋) ≥ f(mtpn)),

where h(k+1)(i, j) = h(k)(i, h(i, j)), h(0)(i, j) = j.

Remark 4.2.7. Note that the norm condition introduced in 4.2.6 is in many cases
nothing new. If for each f ∈ F there is f+ ∈ F such that

(∀k < ω)(∀∞n < ω)(h(k)(n, f(n)) ≥ f+(n)),

then clearly Q∗
F(K,Σ) = Qh

F(K,Σ).

Proposition 4.2.8. Let h : ω × ω −→ ω be regressive and F ⊆ (ω \ 2)ω be a
countable family. Assume that (K,Σ) is a local h–linked creating pair for H such
that K is countable and

(∗) if s, t ∈ K and s ∈ Σ(t), then nor[s] ≤ nor[t].

Then the forcing notion Qh
F(K,Σ) is topologically sweet.

Proof. For a finite candidate c = (w, t0, . . . , tm) ∈ FC(K,Σ) and sequences f̄ =
〈fℓ : ℓ ≤ ℓ∗〉 ⊆ F and k̄ = 〈kℓ : ℓ ≤ ℓ∗〉 ⊆ ω we let

U(c, f̄ , k̄) = {p ∈ Qh
F(K,Σ) : wp = w & (∀n ≤ m)(tpn = tn) &

(∀ℓ ≤ ℓ∗)(∀n > m)(h(kℓ)(m
tpn
dn, ⌊nor[t

p
n]⌋) ≥ fℓ(m

tpn)) &

(∀ℓ ≤ ℓ∗)(∀k < ω)(∀∞n < ω)(h(k)(m
tpn
dn, ⌊nor[t

p
n]⌋) ≥ fℓ(m

tpn)) }.

Plainly the sets U(c, f̄ , k̄) (for suitable c, f̄ , k̄) and {∅Qh
F

(K,Σ)} constitute a basis of

a topology τ on Qh
F(K,Σ). It is not difficult to check that (Qh

F(K,Σ), τ) is a model
of topological sweetness. �

4.3. The sour part of the spectrum. The main point of the sweet properties is
that amalgamations of sweet forcing notions are ccc, see 4.1.5. A kind of opposite
behaviour is when amalgamating results in a forcing notion that collapses ω1. This
effect will be called sourness, and we have a number of variants of it (see 4.3.2
below).

In this part, whenever we use Q–names for elements of a space X =
∏

i<ω

H(i),

we assume that they are in a standard form. Thus, a Q–name τ̇ for a real in X is
a system

〈qnη,k : n < ω & η ∈
∏

i<n

H(i) & k < Nη〉,

where qnη,k ∈ Q, Nη ≤ ω and for each n < ω

〈qnη,k : η ∈
∏

i<n

H(i) & k < Nη〉
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is a maximal antichain of Q, and

ν ⊳ η ⇒ (∀k < Nη)(∃m < Nν)(qlh(ν)
ν,m ≤ q

lh(η)
η,k ).

(The intension is that qnη,k  η ⊳ τ̇ .) If (Q is ccc and) τ̇0 is a Q–name for an
element of X then there is a standard name τ̇ such that  τ̇0 = τ̇ . The point of
using standard names is that their specific forms allows us to bound the complexity
of some formulas; see, e.g., [1, 3.6.12].

Context 4.3.1. Let P, Ẇ ,X be as in 3.1.1, and let Q0,Q1 be Souslin ccc forcing
notions. Suppose that, for ℓ < 2, τ̇ℓ is a standard Qℓ–name for an element of

X . Furthermore, suppose that there are isomorphisms fℓ : RO(P)
onto
−→ (RO(Qℓ))τ̇ℓ

mapping Ẇ onto τ̇ℓ (i.e., fℓ([[η ⊳ Ẇ ]]RO(P)) = [[η ⊳ τ̇ℓ]]RO(Qℓ)).
Let r be a real encoding all parameters required for the definitions of the above
objects (including partial orders and the respective incompatibility relations).

Definition 4.3.2. Let P, Ẇ ,X ,Qi, τ̇ℓ, fℓ, r be as in 4.3.1.

(a) The amalgamation Q0 ×f0,f1 Q1 will be also denoted Q0 ×τ̇0=τ̇1 Q1.

We say that

(b) (Q0, τ̇0) is weakly sour to (Q1, τ̇1) if the amalgamation Q0 ×τ̇0=τ̇1 Q1 fails
the ccc;

(c) (Q0, τ̇0) is sour to (Q1, τ̇1) whenever the following condition holds:
(⊞) if V ⊆ V′ are universes of ZFC, r ∈ V, G0, G1 ∈ V′, Gℓ ⊆ QV

ℓ is

generic over V and τ̇G0
0 = τ̇G1

1 , then V′ |=“ ωV
1 is countable ”;

(d) (Q0, τ̇0) is explicitly sour to (Q1, τ̇1) if there are sequences 〈Em : m < ω〉
and 〈qℓα,n : α < ω1 & n < ω〉 (for ℓ < 2) such that

(i) each Em is an equivalence relation on ω1 with at most countably many
equivalence classes,

(ii) {qℓα,n : n < ω} ⊆ Qℓ is predense in Qℓ (for each α < ω1, ℓ < 2),

(iii) if α < β < ω1, m < ω, α Em β and n0, n1 < m and both (q0
α,n0

, q1
α,n1

)

and (q0
β,n0

, q1
β,n1

) are in the amalgamation Q0 ×τ̇0=τ̇1 Q1, then the

conditions (q0
α,n0

, q1
α,n1

), (q0
β,n0

, q1
β,n1

) are incompatible (in Q0 ×τ̇0=τ̇1

Q1);
(e) (Q0, τ̇0) is very explicitly sour to (Q1, τ̇1) if there are a closed perfect subset

C of ωω and Borel functions gℓ : C × ω −→ Qℓ such that
(i) {gℓ(x, n) : n < ω} is predense in Qℓ (for each x ∈ C, ℓ < 2),

(ii) if x0, x1 ∈ C are distinct, x0↾m = x1↾m, k0, k1 < m, then there are
n < ω and disjoint sets A0, A1 ⊆

∏

i<n

H(i) such that for ℓ < 2:

(∀q ∈ Qℓ)([q ≥ gℓ(x0, kℓ) & q ≥ gℓ(x1, kℓ)] ⇒ q  τ̇ℓ↾n ∈ Aℓ).

We say that Q0 is sour to Q1 over (P, Ẇ ) if there are names τ̇0, τ̇1 (as above) such
that (Q0, τ̇0) is sour to (Q1, τ̇1) (and similarly for the variants).

A forcing notion Q is sour over (P, Ẇ ) if it is sour to itself over (P, Ẇ ) (and similarly
for the other notions).

We may skip Ẇ and say “over P” if it is clear what Ẇ we consider.

Remark 4.3.3. Sourness (4.3.2(c)) is a strong way to say that the amalgamation
Q0 ×τ̇0=τ̇1 Q1 collapses ω1. Explicit sourness (4.3.2(d)) guarantees that we have a
nice witness for the collapse, see 4.3.4 below. What is the point of “very explicitly
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60 ANDRZEJ ROS LANOWSKI AND SAHARON SHELAH

sour”? On one hand that condition implies that the amalgamation collapses the
continuum, and on the other hand the name for the collapsing function is encoded
in a nice way by a real. Note that the properties of the functions g0, g1 required
in 4.3.2(e)(i,ii) are Π1

1 (remember that τ̇ℓ are standard names), and thus we have
suitable absoluteness.

Proposition 4.3.4. Let (Q0, τ̇0), (Q1, τ̇1), (P, Ẇ ) and r be as in 4.3.1.

(1) If (Q0, τ̇0) is explicitly sour to (Q1, τ̇1) in every universe V of ZFC con-
taining r, then (Q0, τ̇0) is sour to (Q1, τ̇1).

(2) If (Q0, τ̇0) is very explicitly sour to (Q1, τ̇1) with functions g0, g1 witnessing
this, then (Q0, τ̇0) is explicitly sour to (Q1, τ̇1) in every universe of ZFC
containing r and (the Borel codes for) g0, g1.

Proof. 1) Suppose that V ⊆ V′ are universes of ZFC, r ∈ V, G0, G1 ∈ V′,

Gℓ ⊆ QV

ℓ is generic over V and τ̇G0
0 = τ̇G1

1 .
Assume V′ |= ωV

1 = ω1.

Claim 4.3.4.1. (1) If qℓ ∈ Qℓ and (q0, q1) /∈ Q0 ×τ̇0=τ̇1 Q1, then for some
disjoint Borel sets B0, B1 ⊆ X we have q0  τ̇0 ∈ B0 and q1  τ̇1 ∈ B1.
Consequently, if q0 ∈ G0 and q1 ∈ G1, then (q0, q1) ∈ Q0 ×τ̇0=τ̇1 Q1.

(2) If (q0, q1), (q′0, q
′
1) ∈ Q0 ×τ̇0=τ̇1 Q1 are incompatible in Q0 ×τ̇0=τ̇1 Q1, then

for some disjoint Borel sets B0, B1 ⊆ X we have (for ℓ = 0, 1):

(∀p ∈ Qℓ)(p ≥ qℓ & p ≥ q′ℓ ⇒ p  τ̇ℓ ∈ Bℓ).

Proof of the claim. Straightforward if you remember 3.1.6. �

Now, let 〈Em : m < ω〉, 〈qℓα,k : α < ωV

1 , k < ω〉 ∈ V witness that (Q0, τ̇0) is

explicitly sour to (Q1, τ̇1) (in V). By 4.3.2(d)(ii) we know that, in V′,

(∀α < ω1)(∃k0
α, k

1
α < ω)(q0

α,k0
α
∈ G0 & q1

α,k1
α
∈ G1).

For some k0, k1 < ω the set

Y = {α < ω1 : k0
α = k0 & k1

α = k1}

is uncountable. Letm = k0+k1+1. It follows from 4.3.2(d)(i) that there are distinct
α, β ∈ Y such that α Em β. By 4.3.4.1(1) we know (q0

α,k0 , q1
α,k1), (q0

β,k0 , q1
β,k1) ∈

Q0×τ̇0=τ̇1 Q1, so by 4.3.2(d)(iii) these two conditions are incompatible in Q0×τ̇0=τ̇1

Q1. But then, using 4.3.4.1(2), we find disjoint Borel sets B0, B1 ⊆ X such that

τ̇G0
0 ∈ B0 and τ̇G1

1 ∈ B1, a contradiction to τ̇G0
0 = τ̇G1

1 .

2) Let V contain r and g0, g1. Working in V, pick a sequence 〈xα : α < ω1〉 of
pairwise distinct members of C. Put:

• q0
α,n = g0(xα, n), q1

α,n = g1(xα, n),
• α Em β if and only if xα↾m = xβ↾m.

Now check. �

Proposition 4.3.5. Let r,P, Ẇ ,Qℓ, τ̇ℓ (for ℓ < 2) be as in 4.3.1. Moreover, let

Qℓ, Ẇℓ,Xℓ,Hℓ (for ℓ < 2) be as in 3.1.1 (with the real r encoding all the needed
parameters). Assume that

(a) ω1 is not an inaccessible cardinal in L,
(b) (Q0, τ̇0) is sour to (Q1, τ̇1),
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(c) for every real s and a Borel set B ⊆ Xℓ coded in L[r, s], if B /∈ IQℓ,Ẇℓ
then

there is an IQℓ,Ẇℓ
–generic real over L[r, s] belonging to the set B.

Then there is a Σ1
3 set which does not have IP,Ẇ–Baire property.

Proof. Since Qℓ, Ẇℓ are as in 3.1.1, we have a nice description of Qℓ–names for reals,
see 3.1.7. So we have Borel functions hℓ : Xℓ −→ X such that Qℓ

τ̇ℓ = hℓ(Ẇℓ). It
follows from the assumed properties of τ̇ℓ that

(∗)1 for every Borel set A ⊆ X , if A /∈ IP,Ẇ then h−1
ℓ [A] /∈ IQℓ,Ẇℓ

.

(Note that hℓ is coded by the real r as well.) Since ω1 is not inaccessible in L, for

some real a we have ω
L[a]
1 = ω1. Let

Xℓ = {x∈X : for some IQℓ,Ẇℓ
–generic real y ∈ Xℓ over L[a, r] we have hℓ(y) = x}.

(Note that if y is IQℓ,Ẇℓ
–generic over L[a, r], then it determines a QL[a,r]

ℓ –generic

filter G ⊆ QL[a,r]
ℓ over L[a, r] and hℓ(y) = τ̇Gℓ ; remember 3.1.5 and the choice of

hℓ.)

(∗2) Xℓ is a Σ1
3 subset of Xℓ.

[Why? Note that, by 3.1.3(4), the formula “c is a Borel code for a set ♯c ⊆ Xℓ and
♯c ∈ I

Qℓ,Ẇℓ
” is (equivalent in ZFC to) a Π1

2 formula. Hence easily the formula “y

is IQℓ,Ẇℓ
–generic over L[a, r]” is Π1

2.]

(∗3) For every Borel set B ⊆ X , if B /∈ IP,Ẇ then Xℓ ∩B 6= ∅.

[Immediate by (∗1) and the assumption (c).]

(∗4) X0 ∩X1 = ∅.

[It follows from the sourness and the assumption that ω
L[a]
1 = ω1.]

Finally note that (∗3) + (∗4) implies that both sets X0, X1 do not have the
IP,Ẇ –Baire property. �

Corollary 4.3.6. Suppose that r,P, Ẇ ,Qℓ, τ̇ℓ, Ẇℓ are as in 4.3.5, and clauses (a)–

(c) there hold, and Q0 = Q1, Ẇ0 = Ẇ1. Assume additionally that, for some k < ω,

there are Q(k)
0 –names ρ̇0

ℓ , ρ̇
1
ℓ (for ℓ < 2) and a Q0–name τ̇ such that

(d) Q0“ τ̇ ∈ X is I
P,Ẇ–generic over V ”,

(e) 
Q

(k)
0

“ ρ̇0
ℓ , ρ̇

1
ℓ ∈ X0 are IQ0,Ẇ0

–generic over V ”, and for ℓ < 2 and every

IQ0,Ẇ0
–positive Borel set B ⊆ X0 there is q ∈ Q(k)

0 such that q “ ρ̇0
ℓ ∈ B ”,

(f) 
Q

(k)
0

“ τ̇ [ρ̇0
ℓ ] = τ̇ℓ[ρ̇

1
ℓ ] ”.

(Above, Q(k)
0 stands for the iteration of length k of the forcing notion Q0.)

Then there is a projective subset of X0 that does not have the IQ0,Ẇ0
–Baire property.

Let us turn to getting sourness for some of the forcing notions discussed in this
paper. Of course, because of 4.1.5 the forcing notions covered by 4.2.5 are not
sour (they are in the sweet kingdom, after all). However, there are sour examples
around. Let us introduce them starting with exotic norm conditions which were
chosen specially with the sourness in mind.

Proposition 4.3.7. Let (K,Σ) be a local forgetful and complete (see 2.2.7) creating
pair for H.

(1) Assume (K,Σ) is linked and
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(α) (∀n < ω)(|H(n)| > 2n),
(β) (K̄, ḡ) is a 1–norming system for H (see 2.2.8), K̄ = 〈Kℓ : ℓ < ω〉,

ḡ = 〈gρ : ρ ∈ 2<ω〉,
(γ) if A ⊆ H(n), a ∈ A and nor[tnA] > 1 then nor[tnA\{a}] ≥ nor[tnA] − 1,

(δ) letting An = H(n) \ {gρ(n) : ρ ∈ 2ℓ} for n ∈ Kℓ, and An = H(n) for
n /∈

⋃

ℓ<ω

Kℓ, we have lim
n→∞

nor[tnAn
] = ∞.

(Above, for n ∈ ω and A ⊆ H(n), tnA is the unique creature t ∈ K with
mt

dn = n and pos(t) = A; see 2.2.7.)

Then the forcing notion QK̄,ḡ
∞ (K,Σ) (see 2.2.8) is very explicitly sour over

Cohen.
(2) If (K,Σ), (K̄, ḡ) and H are as in (1), and f : ω × ω −→ ω is fast and

(∀n < ω)(∀i ≥ n)(f(n, i) ≤ nor[ti
H(i)]),

then QK̄,ḡ
f (K,Σ) is very explicitly sour over Cohen.

(3) Assume that h : ω × ω −→ ω is regressive, F ⊆ (ω \ 2)ω is h–closed,
countable and ≥∗–directed. Suppose that (K,Σ) is h–linked and clauses
(α)—(γ) hold true, and

(δ+) for An as in (δ), for each f ∈ F we have (∀∞n ∈ ω)(f(n) ≤ nor[tnAn
]).

Then the forcing notion QK̄,ḡ
F (K,Σ) is very explicitly sour over Cohen.

(4) Assume that (K,Σ) is linked, satisfies the demand 1(γ), and lim
n→∞

nor[tn
H(n)] =

∞. Let Ū = 〈Uρ,k : ρ ∈ 2<ω & k < ω〉 be a 2–norming system (see 2.2.10).

Then the forcing notion QŪ
∞(K,Σ) (see 2.2.10) is very explicitly sour over

Cohen.
(5) Similarly for forcing notions QŪ

f (K,Σ), QŪ
F(K,Σ) (under assumptions par-

allel to that in 2,3 above, with clause (δ+) replaced by just f(n) ≤ nor[tn
H(n)]

for n < ω, f ∈ F).

Proof. 1) Let us think about the Cohen forcing C as the set of partial functions

from 2<ω to 2 with the relation of extension; HC(ρ) = 2 for ρ ∈ 2<ω (so we

interpret ω as 2<ω), and ẆC is the natural name for the C–generic real in 22<ω

.

Let Ẇ be the name for QK̄,ḡ
∞ (K,Σ)–generic real, i.e.,  Ẇ =

⋃

{wq : q ∈

Γ
Q

K̄,ḡ
∞ (K,Σ)

}. Let τ̇0, τ̇1 be standard QK̄,ḡ
∞ (K,Σ)–names for functions from 2<ω to

2 such that

• τ̇0(ρ) = 1 if and only if (∃m ∈ Klh(ρ)+1)(Ẇ (m) ∈ {gρ⌢〈0〉(m), gρ⌢〈1〉(m)}),
• τ̇1(ρ) = 1 − τ̇0(ρ).

Claim 4.3.7.1.


Q

K̄,ḡ
∞ (K,Σ)

“ τ̇0, τ̇1 are C–generic over V ”;

moreover [[τ̇ℓ ∈ B]]
Q

K̄,ḡ
∞ (K,Σ)

6= 0 for any non-meager Borel set B ⊆ 22<ω

. Hence

(C, ẆC), (QK̄,ḡ
∞ (K,Σ), τ̇0), (QK̄,ḡ

∞ (K,Σ), τ̇1) are as in 4.3.1.

Proof of the claim. Let q ∈ QK̄,ḡ
∞ (K,Σ) and let ρ0, . . . , ρk ∈ 2ω be such that

ρ ∈ 2ℓ & m
tqi
dn ∈ Kℓ & gρ(m

tqi
dn) /∈ pos(tqi ) ⇒ ρ ⊳ ρ0 ∨ . . . ∨ ρ ⊳ ρk.

Pick N ≥ lh(wq) such that ρ0↾N, . . . , ρk↾N are pairwise distinct and
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(a) m
tqi
dn ≥ N ⇒ nor[tqi ] ≥ 2, and

(b) n ≥ N ⇒ nor[tnAn
] ≥ 2, where An is as in the assumption (δ).

Suppose M > N and h : {ρ ∈ 2<ω : N < lh(ρ) ≤ M} −→ 2. Build a condition
p = (wp, tp0, t

p
1, . . .) such that

(c) wq ⊳ wp, wp(m) ∈ pos(tqj) if m = m
tqj
dn < lh(wp), and tpi ∈ Σ(tqj) whenever

m
tqj
dn = m

tpi
dn,

(d) if N < lh(ρ) ≤ M , h(ρ) = 1, then for some m = m(ρ) ∈ Klh(ρ)+1 we
have m < lh(wp) and wp(m) ∈ {gρ⌢〈0〉(m), gρ⌢〈1〉(m)} ∩ pos(tqi ), where

m
tqi
dn = m,

(e) if m
tqi
dn ≥ lh(wp) then nor[tqi ] ≥ 2M+3,

(f) if m < lh(wp) is not any of the m(ρ)’s from clause (d) above (for h(ρ) = 1),

m ∈ Kℓ, ℓ > N (so m > N), then wp(m) ∈ pos(tqi ) \ {gρ(m) : ρ ∈ 2ℓ},

where m
tqi
dn = m (remember: (K,Σ) is linked and (a)+(b)),

(g) if m = lh(wp) + i ∈ Kℓ, N < ℓ ≤ M + 1 and m
tqj
dn = m, then tpi ∈ Σ(tqj) is

such that

nor[tpi ] ≥ nor[tqj ] − 2M+1 and pos(tpi ) ∩ {gρ(m) : ρ ∈ 2ℓ} = ∅

(remember assumption (γ) and clause (e)),

(h) if m = lh(wp) + i /∈
M
⋃

ℓ=N+1

Kℓ, m = m
tqj
dn, then tpi = tqj .

It should be clear that we can build p ∈ QK̄,ḡ
∞ (K,Σ) satisfying the demands (c)–(h)

and that then q ≤ p and p  h ⊆ τ̇0.
Now we easily conclude that τ̇0 is Cohen over V; the rest should be clear too. �

For ρ ∈ 2ω and k < ω let pρ,k ∈ QK̄,ḡ
∞ (K,Σ) be such that wpρ,k = 〈〉, if i ∈ Kℓ,

i > k, then pos(t
pρ,k

i ) = H(i) \ {gρ↾ℓ(i)}, and if either i ≤ k or i /∈
⋃

ℓ∈ω

Kℓ then

pos(t
pρ,k

i ) = H(i). Note that the function g∗ : 2ω×ω −→ QK̄,ḡ
∞ (K,Σ) : (ρ, k) 7→ pρ,k

is Borel.

Claim 4.3.7.2. (1) For each ρ ∈ 2ω the set {pρ,k : k < ω} is predense in

QK̄,ḡ
∞ (K,Σ).

(2) If ρ0, ρ1 ∈ 2ω, ρ0↾m = ρ1↾m = σ, ρ0(m) = 0, ρ1(m) = 1 and k < m, then

(∀q ∈ QK̄,ḡ
∞ (K,Σ))(q ≥ pρ0,k & q ≥ pρ1,k ⇒ q  τ̇0(σ) = 0).

Proof of the claim. (1) Straightforward.

(2) Note that if q ≥ pρ0,k, q ≥ pρ1,k then for each i, n = m
tqi
dn ∈ Km+1 implies

(n ≥ m+ 1 > k and) gρ0↾(m+1)(n), gρ1↾(m+1)(n) /∈ pos(tqi ) (and, of course, σ⌢〈0〉 =
ρ0↾(m+ 1), σ⌢〈1〉 = ρ1↾(m+ 1)). Also, if n < lh(wq), n ∈ Km+1, then (n > k and)
wq(n) /∈ {gρ0↾(m+1)(n), gρ1↾(m+1)}. �

Now one easily shows that (QK̄,ḡ
∞ (K,Σ), τ̇0) is very explicitly sour to (QK̄,ḡ

∞ (K,Σ), τ̇1).

2), 3) Similarly.

4) Here we think about the Cohen forcing C as the set of finite partial functions

from 2<ω × ω to 2 ordered by the extension; HC, ẆC are interpreted suitably.
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For each n < ω pick an ∈ H(n). Let Ẇ be the name for QŪ
∞(K,Σ)–generic real,

and take standard QŪ
∞(K,Σ)–names τ̇0, τ̇1 for functions from 2<ω ×ω from 2 such

that

• τ̇0(σ, k) = 0 if and only if (∀n ∈ Uσ⌢〈0〉,k ∪ Uσ⌢〈1〉,k)(Ẇ (n) 6= an),
• τ̇1(σ, k) = 1 − τ̇0(σ, k).

Claim 4.3.7.3.

QŪ
∞(K,Σ) “ τ̇0, τ̇1 are C–generic over V ”;

moreover [[τ̇ℓ ∈ B]]QŪ
∞(K,Σ) 6= 0 for any non-meager Borel set B ⊆ 22<ω

. Hence

(C, ẆC), (QŪ
∞(K,Σ), τ̇0), (QŪ

∞(K,Σ), τ̇1) are as in 4.3.1.

Proof of the claim. Quite similar to 4.3.7.1. �

Now, for ρ ∈ 2ω and n, k < ω let pnρ,k ∈ QŪ
∞(K,Σ) be such that wpn

ρ,k = 〈〉, and

if i ∈ Uρ↾m,k, m < ω, n ≤ i, then pos(t
pn
ρ,k

i ) = H(i) \ {ai}, and pos(t
pn
ρ ,k

i ) = H(i) is
all other cases.

Claim 4.3.7.4. (1) For each ρ ∈ 2ω and k ∈ ω, the set {pnρ,k : n < ω} is

predense in QŪ
∞(K,Σ).

(2) If k < ω, ρ0, ρ1 ∈ 2ω, ρ0↾m = ρ1↾m = σ, ρ0(m) 6= ρ1(m) and n ≤ m, then

(∀q ∈ QŪ
∞(K,Σ))(q ≥ pnρ0,k & q ≥ pnρ1,k ⇒ q  τ̇0(σ, k) = 0).

Proof of the claim. Straightforward. �

Now we easily finish.

5) Similarly. �

Definition 4.3.8. Let (K,Σ) be a local creating pair for H and let F ⊆ (ω \ 2)ω.
A sourness system for (K,Σ,F) is a pair (ḡ, ℓ̄) such that

(α) ℓ̄ = 〈ℓk : k < ω〉 ⊆ ω is increasing,

(β) ḡ = 〈gρ : ρ ∈ 2<ω〉, if ρ ∈ 2k then gρ ∈
∏

i<ℓk

P(H(i)), and

ρ ⊳ ρ′ ⇒ gρ ⊳ gρ′ ,

(γ) for each n ∈ [ℓk, ℓk+1), k < ω, the sets {gρ(n) : ρ ∈ 2k + 1} are pairwise

disjoint and non-empty, and H(n) \
⋃

{gρ(n) : ρ ∈ 2k + 1} 6= ∅,

(δ) if f ∈ F , 〈t0, t1, . . .〉 ∈ PC(K,Σ) (see 1.1.9), mt0
dn = ℓk0 , nor[tn] ≥ f(n+ℓk0)

for n < ω then:
(i) for some N < ω, for each k ≥ k0, we have

|{ρ ∈ 2k + 1 : |{n ∈ [ℓk, ℓk+1) : gρ(n) ∩ pos(tn−ℓk0
) 6= ∅}| < 2k+1}| ≤ N,

(ii) for some k1 ≥ k0 we have

(∀k ≥ k1)(∀n ∈ [ℓk, ℓk+1))(pos(tn−ℓk0
) \

⋃

{gρ(n) : ρ ∈ 2k + 1} 6= ∅)

Theorem 4.3.9. Suppose that h : ω × ω −→ ω is regressive, and F ⊆ (ω \ 2)ω is
a countable h–closed and ≥∗–directed family. Let (K,Σ) be a local, h–linked and
complete creating pair for H such that

(a) for some f∗ ∈ F we have that (∀n < ω)(nor[tn
H(n)] ≥ f∗(n)) (see 2.2.7),
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(b) there is a sourness system (ḡ, ℓ̄) for (K,Σ,F); let ḡ = 〈gρ : ρ ∈ 2<ω〉,
ℓ̄ = 〈ℓk : k < ω〉,

(c) if A ⊆ H(n), ℓk ≤ n < ℓk+1, ρ ∈ 2k + 1 and A \ gρ(n) 6= ∅, then

nor[tnA\gρ(n)] ≥ h(n,nor[tnA]).

Then the forcing notion Q∗
F(K,Σ) is very explicitly sour over Cohen.

Proof. Here we interpret the Cohen forcing notion C in the standard way, i.e., it is
(2<ω,⊳) (and HC, ẆC are natural).

For ρ ∈ 2ω let gρ =
⋃

i∈ω

gρ↾i ∈
∏

i∈ω

P(H(i)) (remember 4.3.8(β)). Let Ẇ be the

canonical name for the Q∗
F(K,Σ)–generic real and let τ̇0, τ̇1 be standard Q∗

F (K,Σ)–
names for reals in 2ω such that

• τ̇0(k) = 0 if and only if there are ρ0, ρ1 ∈ 2ω such that ρ0↾k = ρ1↾k,

ρ0(k) 6= ρ1(k) and (∀n ≥ ℓk)(Ẇ (n) /∈ gρ0(n) ∪ gρ1(n));
• τ̇1(n) = 1 − τ̇0(n).

Claim 4.3.9.1. (C, ẆC), (Q∗
F(K,Σ), τ̇0), (Q∗

F (K,Σ), τ̇1) are as in 4.3.1.

Proof of the claim. We will show that τ̇0 is (a name for) a Cohen real over V; then
the rest should be clear.

So suppose p = (wp, tp0, t
p
1, . . .) ∈ Q∗

F(K,Σ) and we may assume that lh(wp) =
ℓk0 , k0 < ω. For k ≥ k0 let

Υp
k = Υk

def
= {ρ ∈ 2k + 1 : |{n ∈ [ℓk, ℓk+1) : gρ(n) ∩ pos(tpn−ℓk0

) 6= ∅}| < 2k+1},

and let N be such that (∀k ≥ k0)(|Υk| < N) (remember 4.3.8(δ(i)). Let

uk = {i ≤ k : (∃ρ0, ρ1 ∈ Υk)(ρ0↾i = ρ1↾i & ρ0(i) 6= ρ1(i))}.

Clearly, for all k ≥ k0, |uk| ≤ N , and thus we may choose an infinite set A ⊆ ω
such that {uk : k ∈ A} forms a ∆–system with the heart, say, u∗. Take k1 >
max(u∗) + k0 +N such that

(∗1) (∀k ≥ k1)(∀n ∈ [ℓk, ℓk+1))(pos(tpn−ℓk0
) \

⋃

{gρ(n) : ρ ∈ 2k + 1} 6= ∅)

(remember 4.3.8(δ(ii)) and suppose that v ⊆ [k1, k2), k2 > k1. We are going to
build a condition q ≥ p such that

q  (∀j ∈ [k1, k2))(τ̇0(j) = 0 ⇔ j ∈ v).

To this end, pick i > k2 such that

(∗2) ui ∩ [k1, k2) = ∅, and
(∗3) for some f ∈ F we have

(∀n ≥ ℓi+1)(f(n) < h(k2)(n,nor[tpn−ℓk0
]),

where h(k+1)(n,m) = h(n, h(k)(n,m)).

(Possible by the choice of k1 and the assumption that F is h–closed.) Since |Υi| <
N < 2k1 , we may find ρ∗ ∈ 2ω such that ρ∗↾k1 /∈ {σ↾k1 : σ ∈ Υi}. For k ∈ v fix
ρk ∈ 2ω such that ρk↾k = ρ∗↾k, ρk(k) = 1 − ρ∗(k).

Let 〈σj : j < 2i+1 − |v| − 1〉 enumerate 2i+ 1 \ {ρ∗↾(i + 1), ρk↾(i + 1) : k ∈ v}.
By induction on j < 2i+1 − |v| − 1 define n∗

j ∈ [ℓi, ℓi+1) ∪ {∗} as follows:

if there is n ∈ [ℓi, ℓi+1) \ {n∗
j′ : j′ < j} such that gσj

(n) ∩ pos(tpn−ℓk0
) 6= ∅,

then n∗
j is the first such number,
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otherwise n∗
j is ∗.

Now we choose wq , tq0, t
q
1, . . . so that:

(i) lh(wq) = ℓi+1, wp ⊳ wq;
(ii) if n ∈ [ℓi, ℓi+1), n = n∗

j , j < 2i+1−|v|−1, then wq(n) ∈ gσj
(n)∩pos(tpn−ℓk0

);

(iii) if ℓk0 ≤ n < ℓk1 , then wq(n) ∈ pos(tpn−ℓk0
);

(iv) if n ∈ [ℓk1 , ℓi) ∪ ([ℓi, ℓi+1) \ {n∗
j : j < 2i+1 − |v| − 1}), then

wq(n) ∈ pos(tpn−ℓk0
) \

⋃

{gρ(n) : ρ ∈ 2i+ 1};

(v) tqn ∈ Σ(tpn+ℓi+1−ℓk0
) is such that nor[tqn] ≥ f(n+ ℓi+1) and

(

gρ∗(n+ ℓi+1) ∪
⋃

k∈v

gρk
(n+ ℓi+1)

)

∩ pos(tqn) = ∅

(where f is given by (∗3)).

[Why is the choice possible? Demands (i)–(iii) are easy; (iv) can be satisfied by
(∗1), remember 4.3.8(β); (v) is possible by the assumption (c) of the theorem and
(∗3).] One easily checks that the demands (i)–(v) imply q = (wq , tq0, t

q
1, . . .) is a

condition in Q∗
F(K,Σ) stronger than p. Also, by (ii)+(iv)+(v),

q  (∀k ∈ v)(∀n ≥ ℓk)(Ẇ (n) /∈ gρ∗(n) ∪ gρk
(n))

(remember 4.3.8(γ); thus gσj
(n)∩gρ∗(n) = gσj

(n)∩gρk
(n) = ∅ in clause (ii)). Hence

q  (∀k ∈ v)(τ̇0(k) = 0). Now we argue that q  (∀k ∈ [k1, k2) \ v)(τ̇0(k) = 1). If

not, then for some k ∈ [k1, k2) \ v we find ρ+
0 , ρ

+
1 ∈ 2i+ 1 such that

ρ+
0 ↾k = ρ+

1 ↾k, ρ+
0 (k) 6= ρ+

1 (k) and (∀n ∈ [ℓk, ℓi+1))(wq(n) /∈ gρ+
0

(n)∪gρ+
1

(n)).

Necessarily, {ρ+
0 , ρ

+
1 } * {ρ∗↾(i + 1), ρk↾(i + 1) : k ∈ v}. Moreover, if ρ+

ℓ ∈ {σj :

j < 2i+1 − |v| − 1}, then ρ+
ℓ ∈ Υi (as if ρ+

ℓ = σj /∈ Υi then n∗
j ∈ [ℓi, ℓi+1)

and wq(n∗
j ) ∈ gρ+

ℓ
(n∗

j )). Since ρ∗↾k1 /∈ {σ↾k1 : σ ∈ Υi}, we may conclude that

ρ+
0 , ρ

+
1 ∈ {σj : j < 2i+1 − |v| − 1} (and thus both are in Υi). However, then we get

k ∈ ui, what contradicts (∗2). �

For ρ ∈ 2ω and n ∈ ω let pρ,n ∈ Q∗
F(K,Σ) be such that wpρ,n = 〈〉, t

pρ,n

k = tk
H(k)

for k < n, and t
pρ,n

k = tk
H(k)\gρ(k) for k ≥ n. Let

g0, g1 : 2ω × ω −→ Q∗
F(K,Σ) : (ρ, n) 7→ pρ,n.

It is straightforward to check that g0, g1 witness (Q∗
F(K,Σ), τ̇0) is very explicitly

sour to (Q∗
F (K,Σ), τ̇1) (note that if k, k′ < m, ρ0, ρ1 ∈ 2ω, ρ0↾m = ρ1↾m, ρ0(m) 6=

ρ1(m) and q ≥ g0(ρ0, k), g1(ρ1, k
′), then q “ τ̇0(m) = 0 & τ̇1(m) = 1 ”). �

Remark 4.3.10. In 4.3.9, in the assumptions on the family F , instead of demanding
that “F is countable h–closed and ≥∗–directed”, we may require that “F is h–
closed and either countable or ≥∗–directed”, and then conclude that Q∗

F(K,Σ) is
explicitly sour. The “countable and ≥∗–directed” assumption is needed only to be
in the context of 4.3.1 (i.e., to make sure that Q∗

F(K,Σ) is Souslin).
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4.4. Conclusions.

Conclusion 4.4.1. (1) Let H : ω −→ H(ω1). The following forcing notions are
topologically sweet:
(a) Q∗

∞(KH,ΣH,Σ
⊥
H

) of 1.5.3 and Q∗
∞(K1.5.5,Σ1.5.5,Σ

⊥
1.5.5),

(b) Q∗
f(K1.5.7,Σ1.5.7) for f as in 1.5.8(1), and Q∗

F (K1.5.7,Σ1.5.7) for F as

defined in 1.5.8(2) (the “e.g.” part).

Conclusion 4.4.2. The forcing notions Qtree(p) for the universality parameters p

defined in 2.4.7, 2.4.9 and 2.4.10 are iterably sweet.

Conclusion 4.4.3. Let H : ω −→ ω, H(i) ≥ 22i+1

, and let h be as in 1.5.9.

(1) Let f0
k (n) = max{2,H(n) − 2kn} and F0 = {f0

k : k < ω}. Then the forcing
notion Q∗

F0
(K1.5.9,Σ1.5.9) (constructed for H as in 1.5.9) is topologically

sweet.
(2) Let f1

k (n) = max{2,H(n) − 2k}, F1 = {f1
k : k < ω}. Then the forcing

notion Q∗
F1

(K1.5.9,Σ1.5.9) is very explicitly sour over Cohen.

Similarly if f2
k (n) = max{2,H(n) − (k2n)}, F2 = {f2

k : k < ω}.

Proof. (2) We are going to apply 4.3.9. First note that even though (K1.5.9,Σ1.5.9)
as defined in 1.5.9 is not complete we can easily make it so, or restrict our attention
to the forcing notion below some condition (the problems with completeness come
from the technical requirement in the definition of t ∈ K1.5.9 that Et 6= ∅).

We are going to build a sourness system (ḡ, ℓ̄) for (K1.5.9,Σ1.5.9,F1) such that
the demand 4.3.9(c) holds.

Let ℓ0 = 0, ℓk+1 = ℓk + 22k

. For ρ ∈ 2<ω pick gρ such that

(⊕1) if ρ ∈ 2k, then gρ ∈
∏

i<ℓk

H(i), and ρ ⊳ ρ′ ⇒ gρ ⊳ gρ′ ,

(⊕2) if n ∈ [ℓk, ℓk+1), k < ω, then there are no repetitions in the sequence

〈gρ(n) : ρ ∈ 2k + 1〉.

We claim that, letting ℓ̄ = 〈ℓk : k < ω〉 and ḡ = 〈gρ : ρ ∈ 2<ω〉, (ḡ, ℓ̄) is as required

(we identify H(i) with [H(i)]1, of course). Clauses 4.3.8(α)–(γ) are clear.
Suppose that 〈t0, t1, . . .〉 ∈ PC(K1.5.9,Σ1.5.9), mtn = n, dis[tn] = (n,En),

nor[tn] ≥ f1
N(n). Then, for large enough n, |En| ≤ 2N , so let M = max{|En| : n <

ω}. Assume that ρi ∈ 2k + 1 (for i ≤ M) are pairwise distinct. By (⊕2), for each
n ∈ [ℓk, ℓk+1) there is i ≤M such that gρi

(n) /∈ En. Hence for some i ≤M

|{n ∈ [ℓk, ℓk+1) : gρi
(n) /∈ En}| ≥

ℓk+1 − ℓk
M + 1

=
22k

M + 1
.

Hence we easily conclude that 4.3.8(δ(i)) holds. The demands 4.3.8(δ(ii)) and
4.3.9(c) are even easier.

For F2 we proceed similarly, but we choose gρ so that gρ(n) ∈ [H(n)]2
n

. �

5. Epilogue

A general problem that we have in mind in this paper is classifying “nice” ccc
forcing notions, in particular finding dividing lines in this family, or at least natural
properties. We should explain what we mean. A forcing notion is “nice” if it has a
quite absolute definition, so Borel is natural, but Souslin is more central (see 1.3.1
and also [25]), but we may be happy with just “one of the form presented in this
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paper”. A dividing line is a property of such definitions, so that both it and its
negation is meaningful (that is we can prove theorems from both). Thus a dividing
line may serve as a division to cases in solving problems. (On parallel in Model
Theory see [20] and [23].)

The first (possible) dividing line we considered here is determined by “being ω–
nw–nep” (or just “being very Souslin ccc”). In some sense, one can consider very
Souslin forcing notion as those which are really close to random and Cohen. We
have examples of very Borel ccc forcing notions (see 1.5.8(2), 1.5.11, 1.5.15(3)), and
forcing notions which are not ω–nw–nep (see 1.5.4, 1.5.6, 1.5.8(1), 1.5.15(1,2)). The
argument for “not being ω–nw–nep” was in all cases the same: adding a dominating
real. So we arrive to the following question.

Problem 5.1. Suppose P is a Borel ccc forcing notion which is not equivalent to
a ω–nw–nep forcing. Does P add a dominating real?

If one looks at 1.3.4(3) and 1.5.11, then the following (perhaps less central but
still intriguing) question related to ω–nw–nep forcing notions arises.

Problem 5.2. Assume H,K,Σ,F and h are as in 1.3.4(1c) or as in 1.3.4(2b).
Is the forcing notion Q∗

F (K,Σ) (or Qtree
F (K,Σ), respectively) very Borel ccc? (Of

course, we are interested in non-finitary (K,Σ).)

The second dividing line originates in [19] and studies of the Baire property
(and measurability) of projective sets. To get a model in which all projective sets
have the Baire property, [19] uses sweetness while [31] applies topological sweetness.
However, the use of the two variants of sweetness might be slightly confusing. What
we really need for this type of construction are two properties, say, (a)–sweetness
and (b)–sweetness such that

(i) if P is (a)–sweet and Q̇ is a P–name for a (b)–sweet forcing notion, then

P ∗ Q̇ is (a)–sweet,
(ii) if P0,P1 are (a)–sweet then for sufficiently many forcing notions Q and their

two complete embeddings fℓ : Q −→ RO(Pℓ), the amalgamation P0×f0,f1P1

is (a)–sweet,
(iii) the Universal Meager forcing notion UM is (b)–sweet,
(iv) (a)–sweetness implies the ccc.

(Note that in (ii) we do not require that all amalgamations are (a)–sweet, we just
need to cover the amalgamations needed to ensure suitable homogeneity of the
Boolean algebra we construct; see [6]) To some extend this approach was materi-
alized in 4.2.4: the topological sweetness may serve as (a)–sweetness and iterable
sweetness is a good candidate for (b)–sweetness. It should be remarked here, that
it is quite surprising that compositions of (topologically) sweet forcing notions with
the Universal Meager UM (or the Hechler forcing notion D ) are topologically sweet
because the second iterand is sweet. (The respective proofs in [19], [31] were some-
what less general.) Still, it is very reasonable to ask

Problem 5.3. Can 4.2.4 be improved by weakening the demands on Q̇? Can you
find (a)–sweetness and (b)–sweetness satisfying (i)–(iv) and weaker than topological
sweetness and iterable sweetness, respectively?

The sweet/sour division is sometimes very surprising — compare 4.4.3(1) and
4.4.3(2). The forcing notions Q∗

F0
(K1.5.9,Σ1.5.9) and Q∗

F2
(K1.5.9,Σ1.5.9) (of 4.4.3)
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look very similar and one could expect that both are like the Cohen forcing. How-
ever, the first is topologically sweet (so not so far from Cohen) while the other is
very explicitly sour (so one could even say that worse than random).

Topological sweetness occurs to be not so seldom (see 4.4.1), however it does not
imply that we could make real use of these forcing notions in constructions like [18].
These forcings seem to be quite far from the iterable sweetness, so we conjecture
that the following has an affirmative answer.

Problem 5.4. Let Q be one of the forcing notion covered by 4.2.5(1,2) and 4.2.8.
Is there k < ω such that the (k–step) iteration Q(k) is sour over Cohen? Over Q?

Proposition 4.2.5(3) gives sweet forcing notions, so they could be of some use
in constructions like that in [18]. However, do we really need to force additionally
with these forcings? In other particular:

Problem 5.5. Is there a universality parameter p satisfying the requirements of
4.2.5(3) such that no finite iteration of the Universal Meager forcing notion adds a
Qtree(p)–generic real? Does the Universal Meager forcing add generic reals for the
forcing of 2.4.10? Of 2.4.9?

An intriguing thing is that in the cases we proved sourness over the Cohen, we
actually got that the considered forcing notion is very explicitly sour over Cohen
(so in particular the amalgamation collapses c).

Problem 5.6. Let Q be a Souslin ccc (or just nep ccc) forcing notion, and (P, Ẇ )
is as in 3.1.1.

(1) Assume that Q is sour over (P, Ẇ ). Is it explicitly sour over (P, Ẇ )? Very
explicitly?

(2) Suppose that Q is not topologically sweet and adds a Cohen real. Is it
(weakly) sour over Cohen?

Since sweet/sour division is related to the Baire property of projective sets, let
us finish with the following general problem.

Problem 5.7. (1) Let (P, Ẇ ) be as in 3.1.1, P be of the type studied in this
paper. For a cardinal κ, let Iκ

P,Ẇ
be a <κ–complete ideal generated by

IP,Ẇ .
What is the consistency strength of the statement “every projective subset
of X has the Iκ

P,Ẇ
–Baire property” ?

(We conjecture that it is always either ZFC or “ZFC + there exists an
inaccessible cardinal ”, and we would like to characterize and/or describe
this dividing line.)

(2) Similarly for (typically non-ccc) ideals Ip determined by suitable universal-
ity parameters p (see 3.2.1).
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