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A PARTITION THEOREM SH679 3

§0 Introduction

We prove the following: there is a primitive recursive function f∗
−(−,−) , in

three variables in the integers, such that: for all natural numbers t, n, c and k,
if n > 0, t > 0 and k ≥ f∗

t (n, c), then the following holds. Assume that Λ is an
alphabet with n > 0 letters, M is the family of non empty subsets of {1, . . . , k} with
at most t members and V is the set of functions from M to Λ and d is a c-colouring
of V (i.e. a function with domain V and range with at most c members). Then
there is a d-monochromatic V -line, which means that there are w ⊆ {1, . . . , k},
with at least t members and function ρ from {u ∈ M : u not a subset of w} to Λ
such that

(∗) d ↾ Lρ is constant which means ρ, ν ∈ Lρ ⇒ d(ρ) = d(ν) where Lρ =:
{η ∈ V : the function η extend ρ and for each s = 1, . . . , t it is constant on
{u ∈ M : u ⊆ w has exactly s members }},
(for t = 1 those are the Hales-Jewett numbers).

A second theorem relates to the first just as the affine Ramsey theorem of Graham,
Leeb and Rothschild (which continues the n-parameter Ramsey theorem of Graham
and Rothschild), relates to the Hales Jewett theorem. We also note an infinitary
related theorem parallel to the Galvin-Prikry theorem and the Carlson-Simpson
theorem.

Let us review history and background, not repeating what is said in [GRS80].
In the late seventies, Furstenberg and Sarkozy independently proved that if (p(x)
is a polynomial in Z[x] satisfying p(0) = 0 and A ⊆ N is a set of positive density
then for some a, b ∈ A and n ∈ N we have a − b = p(n). Bergelson and Leibman
[BeLe96] continuing Furstenberg [Fu] prove (they also prove a density theorem
like Szemerédi): if r, k, t,m are natural numbers, pℓ,s(x) for ℓ = 1, . . . , k and
s = 1, . . . , t are polynomials with rational coefficients, taking integer values at
integers, and vectors v̄1, . . . , v̄t ∈

mZ and any r−colouring of mZ there are ā ∈ mZ

and n ∈ Z(n 6= 0) such that the set S(ā, n) = {ā + §j=1,tpi,j(n)v̄j : i = 1, . . . , k} is
monochromatic.

Bergelson and Leibman [BeLe99] prove a theorem, ”set polynomial extension”,
which is, in a different formulation, like the first theorem described above but
without a bound (i.e. the primitive recursiveness). Their method is infinitary so
does not seem to give even the weak bound in 2.5 (one with triple induction), and
certainly does not give primitive recursive bounds.

Naturally our proofs continue [Sh 329]. We thank friends of Bruce Rothchild for
telling us about [BeLe99] of which we were not aware and other helpful comments.
See a discussion of related problems in [Sh 702].
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4 SAHARON SHELAH

No previous knowledge is assumed (if the reader does not like the notions of
“structure” and “vocabulary” which are fully explained in Definition 1.1, he can
use the alternative in 1.2).

The connection between the theorems stated in the beginning and our framework
is as in 1.16.

0.1 Notation.

(a) We use Λ for a finite alphabet, always non empty, members of which are
denoted by α, β, γ

(b) We use M,N to denote structures (see Definition 1.1) which serve as index
sets, so we call them index models. We use τ to denote vocabularies, (see
Definition 1.1), F to denote function symbols and P to denote predicate
symbols. Let fim mean full index model.

(c) We use n,m, k, ℓ, i, j, c, r, s, t to denote natural numbers, but usually n is
the number of letters, i.e. the number of members in an alphabet; k the
dimension of the index models and c ≥ 1 the number of colours

(d) |X | and also card(X) denote the number of elements of the set X

(e) We use η, ν, ρ to denote members of (combinatorial) spaces, we use V, U to
denote (combinatorial) spaces and a, b to denote elements of M,N and d
to denote colourings, p to denote the “type” of a point in a line and p to
denote the type of a line or a space (see Definition 1.9(3)). We use L to
denote (combinatorial) lines, S to denote (combinatorial) subspaces

(f) A bar on a symbol, say x̄ denote finite sequences of such objects with the
length of x̄ being ℓg(x̄) and the i-th element in the sequence being xi (and
for x̄m or x̄m it is xm

i )

(g) let mX = {(x0, . . . , xm−1) : x0, . . . , xm−1 ∈ X}.

0.2 Definition. 1) For m ≥ 1, let Em be the minimal class of functions from
natural numbers to natural numbers (with any number of places) that is closed
under composition, which for m = 1 contains 0, 1, x+1 and the projection functions,
and for m > 1 contains any function which we get by inductive definition on
functions from Em−1. See [Ro84], so E3 is the family of polynomials, E4 contains

the tower function (and E5 contains the so-called waw function) and
⋃

m≥1

Em is the

family of primitive recursive functions, and the “simplest” function not there is the
Ackerman function.
2) We allow an object like Λ, Λ̄ to be one of the arguments meaning, if Λ̄ = 〈ΛF :
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A PARTITION THEOREM SH679 5

F ∈ I〉 then we replace it by
∏

F∈τ

(|ΛF | + |arity τ(F )|) and Λ we replace by |Λ|.

Abusing notation, we may say “f is in En” instead of “f is bounded by a function
from En”, also writing fΛ̄(−, . . . ) we count Λ̄ as one of the arguments.
2) We can define the Ackerman function An(m) by double induction:

A0(m) = m + 1,
An(0) = n,
An+1(m + 1) = An(An+1(m)).

(In a sense it is the simplest, smallest function which is not primitive recursive).

0.3 Definition. 1) Let RAM(t, ℓ, c) be the Ramsey number, i.e. the first k such
that k → (t)ℓc see below.
2) Let k → (t)ℓc mean that if A is a set with k elements, and d is a c-colouring
of [A]ℓ =: {B : B is a subset of A with ℓ elements}, that is a function with this
domain and range of cardinality ≤ c, then for some A1 ∈ [A]t we have d ↾ [A1]ℓ is
constant.
3) Let HJ(n,m, c) be the Hales-Jewett number for getting a monochromatic sub-
space of dimension m, when the colouring has c colours and for an alphabet with
n members. (This is, by our subsequent definitions, f1(Λ̄, m, c) when τ(Λ̄) = {id},
and Λid has n members, see Definition 1.11).
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6 SAHARON SHELAH

§1 Basic definitions

We can look at the Hales-Jewett theorem in geometric terms: R is replaced by
Λ, a finite alphabet; the k-dimensional euclidean space is replaced by [1,k]Λ; (or
[0,k)Λ), essentially the set of sequences of length k of members of the alphabet Λ; a
subspace is replaced by the set of solutions (x1, . . . , xk) ∈ [1,k]Λ of a family of linear
equations, which here means just xi = α (where α ∈ Λ, 1 ≤ i ≤ k) or xi = xj. Here
the basic set [1, k] is replaced by a structure M , a τ -fim (= full index model, see
below). Such basic definitions are given in this section.

We define a “space over an index model of dimension k, over an alphabet Λ of
size n”, we define for such a space lines and more. We then define the function
f1, such that for every n, if k is f1

τ (n, c) then for every colouring of the space
by ≤ c colours, there is a monochromatic line (in the appropriate interpretation.)
Of course the use of id as a special function symbol is not really needed, also we
can waive the linear order on PM , and the set of automorphisms of the resulting
structure are natural for our purpose, but not for the structures from 1.13(3); but
at present those decisions do not matter.

If Definition 1.1(1) is not clear, try Definition 1.2. The point is that though we
like, for a finite linear order J , to colour functions from {u : u ⊆ J, 1 ≤ |u| ≤ t}
to an alphabet Λ, we may need to use several copies of the same u, and we find it
convenient to consider nondecreasing sequences of length r instead of subsets of size
r (you can say that we consider subsets of J with possibly multiple membership).

1.1 Definition. 1) We call M a full index model [fim or τ -fim or fim for τ ] if M
consists of a set τ of symbols, the universe M , and appropriate interpretation for
each symbol of τ ; in full detail if:

(a) the vocabulary τ = τM = τ(M) of M includes a unary predicate1 P , a
binary predicate <, and finitely many function symbols F , F being arity(F )-
place and no other symbols (so F varies over such function symbols). We
may write arityτ(F ) for arity(F ). We usually treat τ as the set of function
symbols in τ

(b) univ(M), the universe of M which is a finite, nonempty set; we may write
a ∈ M instead of a ∈ univ(M) and B ⊆ M instead of B ⊆ univ(M)

(c) PM is a non empty subset of the universe of M and we call its cardinality
dim(M), the dimension of M

(d) <M is a linear order of PM , so x <M y implies x, y ∈ PM

1a predicate P is just a symbol such that in τ -structures M it is interpreted as P
M , similarly

for function symbols.
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A PARTITION THEOREM SH679 7

(e) for F ∈ τ, FM is a function with arity τ (F )-places from PM to univ(M)
such that

(f) the function FM is symmetric, i.e. does not depend on the order of the
arguments, and so writing FM (a1, . . . , ar) we assume a1, . . . , ar ∈ PM and,
of course, r = arityτ (F ), and if not said otherwise we assume a1 ≤M a2 ≤M

. . . ≤M ar

(g) if FM
1 (a1, . . . , ar) = FM

2 (b1, . . . , bt) then F1 = F2 (hence r = t) and aℓ = bℓ
for ℓ = 1, . . . , t (under the convention from clause (f)) and every b ∈ M \
PM has this form. So we let baseM (b) =: {a1, . . . , ar} and let baseℓ(b) =
baseM,ℓ(b) =: aℓ where b = FM (a1, . . . , ar) (and a1 ≤M a2 ≤M . . . ≤M ar

of course) and FM,b =: F ; those are well defined by the previous sentence.

(h) idM is the identity function on PM , so id is always considered a unary
function symbol of τ .

2) For τ as in part 1), let arity(τ) be Max{arity(F ) : F ∈ τ}, so it is at least 1
by clause (h) of part 1) and let m̄[τ ] =: 〈mτ

t : t = 1, . . . , arity(τ)〉 where mτ
t is the

number of F ∈ τ with arity t; and we call m̄τ the signature of τ , of course when
saying “the signature of M” we mean “of τ(M)”.
3) For M a fim we call B ⊆ M closed in M (or M -closed) if for b = FM (a1, . . . , as)
we have b ∈ B iff a1, . . . , as ∈ B. Let the closure of A in M or clM (A) for A ⊆ M , be
the minimal M -closed set B ⊆ M which includes A. We do not strictly distinguish
between a closed subset B of M and the model M ↾ B (which are fims with the
same vocabulary, see part 6), 7)).
4) For τ -index models M,N with τM = τN let PHom(M,N) be the set of functions
f from PM into PN such that x ≤M y ⇐ f(x) ≤N f(y). Let Hom(M,N) be
the set of functions f from M into N such that f ↾ PM ∈ PHom(M,N) and
b = FM (a1, . . . , at) implies f(b) = FN (f(a1), . . . , f(at)). Let PHm(M,N) be the
set of functions f from PM into PN , and let Hm(M,N) be the set of functions f
from M into N such that f ↾ PM ∈ PHm(M,N) and b = FM (a1, . . . , at) implies
f(b) = FN (f(a1), . . . , f(at)) recalling that FM is symmetric.
5) Let SortM (F ) be the range of FM .
6) For M a τ -form and non empty subset u of PM , we say that N is the submodel
of M with universe B = clM (u), N = M ↾ B in symbols, if N is the unique τ -fims
such that

univ(N) = cℓM (u)
PN = u
<N=<M ↾ u, i.e. a <N b ⇔ a ∈ u & b ∈ u & a <M b
FN = FM ↾ u, (i.e. FN (a1, . . . , ar) = b iff r = arity(F ), a1, . . . , ar ∈ u and

b = FM (a1, . . . , ar)).

So N is uniquely determined by M and univ(N) when N is a submodel of N ; and
there is N ⊆ M , univ(N) = B iff B is a closed subset of M .
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8 SAHARON SHELAH

7) We say that N is a submodel of M if for some non empty u ⊆ PM , N is the
submodel of M with universe cℓM (u). We also say M extends N ; if PN is an initial
segment of PM we say M end-extends N .

An alternative presentation of 1.1(1) is:

1.2 Definition. We say that τ is a t-vocabulary for

(A) τ is a function with finite domain, but allow to write F ∈ τ instead F ∈
Dom(τ) and write arityτ (F ) instead of τ(F ). We may write F ∈ τ instead
F ∈ Dom(τ), always id ∈ τ so we may not say it.

(B) t is a natural number. Omitting t means for some t; we let t = t(τ)

(C) if F ∈ τ then arityτ (F ) ∈ {1, 2, . . . , t}

(D) t = max{arityτ (F ), arityτ (id) : F ∈ τ}

(E) id ∈ τ, arityτ (F ), arityτ (id) = 1.

2) We say that M is a τ -fim (or fim for τ) if for some linear order J,M = Mτ (J),
see below.
3) For a linear order J and vocabulary τ let M = Mτ (J) be the following object:
it consists of

(a) τM = τ(M) = τ

(b) univ(M) = {(F, ā) : ā is a ≤J -increasing sequence of members of J, F ∈ τ
and ℓg(ā) = arityτ (F )} but if ā = 〈a〉 we may write a instead of ā

(c) PM = {(id, {a}) : a ∈ J}, we tend to identify a ∈ J with (id,{a})

(d) <M is the following linear order on PM

(id, {a}) <M (id, {b}) iff a <J b

(e) for F ∈ τ with r = arityτ (F ) let FM be an r-place function from PM to
univ(M) defined by

F (a1, . . . , ar) = (F, (aπ(1), . . . , aπ(r)))

where π is a permutation of {1, . . . , r} such that aπ(1) ≤J aπ(2) ≤J . . . ≤J

aπ(r).

4) The signature of τ is 〈mτ
s : s = 1, . . . , s〉 where mτ

s = |{F ∈ τ : arityτ (F ) = m}|.
5) In 2), if x = (F, ā) then we let baseM (x) = {aℓ : ℓ = 1, . . . , ℓg(ā)}, dim(M) =
|PM |.
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A PARTITION THEOREM SH679 9

1.3 Fact. 1) For any finite linear order J and vocabulary τ,Mτ(J) as defined in
1.2(3) is really a τ -fim.

1.4 Fact. 1) For any f ∈ PHom(M,N) there is a unique f̂ ∈ Hom(M,N) which
extends f .

2) For any f ∈ PHm(M,N) there is a unique f̂ ∈ Hm(M,N) which extends f .

1.5 Claim/Definition. 1) For any fim M there is a polynomial p(x), with ratio-
nal coefficients but positive integers as values for x a positive integer such that for
u ⊆ PM , the set clM (u) has exactly p(|u|) members.
2) Fixing a vocabulary τ , let p(x) = Σ{pF (x) : F ∈ τ} where pF (x) = Σ{binom(x, 〈m1, . . . , mn〉) :
1 ≤ n ≤ arityτ (F ) and m1 + m2 + . . . + mr = arityτ (F )}. Then for any τ -fim M
we have card(univ(M)) = p(|PM |) and |SortF (M)| = pF (|PM |), recall Definition
1.1(5).
3) Now p(x) depends on the signature of τ only and so we shall denote it by pτ (x)
or pM (x). Note that pτ (0) = 0.

1.6 Definition. 1) We say that τ is a canonical vocabulary for t (or t-canonical)
and write τ = τt if τ = {F1, . . . , Ft, P, <} where arity(Fs) is s, F1 is also called id;
(in Definition 1.2 we have Dom(τ) = {F1, . . . , Ft} and τ(Fr) = r).
2) We say that M is a (J, t)-canonical fim if:

(a) J is a finite linear order

(b) M is a fim with the t-canonical vocabulary

(c) (PM , <M ) is J

(d) FM
1 is the identity on PM

(e) for r = 2, . . . , t the function FM
r is FM

r (a1, . . . , ar) =: 〈aπ(1), . . . , aπ(r)〉
whenever π is a permutation of {1, . . . , r} such that aπ(1) ≤J . . . ≤J aπ(r).

1.7 Definition. 1) Let M be a fim with vocabulary τ = τM and let {A1, A2}
be a partition of PM into convex sets such that A1 <M A2 which means that
(∀a1 ∈ A1)(∀a2 ∈ A2)[a1 <M a2]. We define a vocabulary τM,A1,A2

= τ(M,A1, A2).
It contains, in addition to the symbols P,<, for each function symbol F of τ and
a ≤M −increasing sequence ā1 from A1 and a ≤M -increasing sequence ā2 from
A2 such that ℓg(ā1) + ℓg(ā2) < arityτ (F ) a function symbol called Fā1,ā2

with

arityτ(M,A1,A2)(F ) being arityτ (F ) − ℓg(ā1) − ℓg(ā2).
We identify F ∈ τ with F〈〉,〈〉 and so consider τM,ā1,ā2

an extension of τ .
2) Let m̄ = m̄[τ, k0, k1] be m̄[τM,A0,A1

], the signature of τM,A0,A2
whenever M is a
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10 SAHARON SHELAH

τ -fim of dimension k0 + k1 and A0 is the set of k0 first members of PM and A1 is
the set of k1 last members of PM .
3) Let M τ

k be a fim of vocabulary τ and dimension k, say PM = {1, . . . , k}, i.e. as

in Definition 1.2. Let τ [k,ℓ] be τMτ
k+ℓ

,A0,A1
where A0 is the set of the first k members

of PM and A1 is the set of the last ℓ members of PM .

1.8 Definition. 1) Let Λ̄ denote a sequence 〈ΛF : F ∈ τ〉 where ΛF is a finite (non
empty) alphabet, and we let τ [Λ̄] = τ , as Λ̄ determines τ . We call Λ̄ an alphabet
sequence (for τ) or a τ -alphabet sequence.
We may write (τ,Λ) instead Λ̄ if τ = τ [Λ̄] and ΛF = Λ for every F ∈ τ .
2) We say p is a Λ̄-type if p is a function with domain τ = τ [Λ̄] such that p(F ) ∈ ΛF

for F ∈ τ ; let p, q denote non empty sets of Λ̄-types;. We identify a set of Λ̄-types
with the characteristic function that it defines, i.e. p is a function from the set of
Λ̄-types to {0, 1}, so we assume that from p we can reconstruct Λ̄ hence τ [Λ̄]. Let
pΛ̄ be the set of all Λ̄-types. We may write Λ instead of Λ̄ if ΛF = Λ for every
F ∈ τ and then let pτ,Λ be the set of constant (τ,Λ)-types.

1.9 Definition. 1) For Λ̄ a τ -alphabet sequence and M a τ -fim, let V = SpaceΛ̄(M)
be defined as follows:

its set of elements is the set of functions η with domain M , such that
b ∈ SortM (F ) ⇒ η(b) ∈ ΛF ; we assume that from V we can reconstruct
M and Λ.

2) We say d is a C-colouring of V , if d is a function from V into C; we say that d is a
c-colouring if C has c members and the default value of C is [0, c) = {0, 1, . . . , c−1}.
3) We say L is a V -line or a line of V if for q = pΛ̄ we have: L is a (V, q)-line or a
q-line of V ; (see below).
4) For q a (non empty) subset of pΛ̄ let “L is a (V, q)-line” or a “q-line of V ” mean:

L is a subset of V such that for some subset supp(L) = suppM (L) of M we have:

(a) supp(L) ∩ PM is non empty and we call it suppP (L)

(b) supp(L) is the M -th closure of suppP (L)

(c) for any η, ν ∈ L we have η ↾ (M\ suppM (L)) = ν ↾ (M\ suppM (L))

(d) for any η ∈ L there is p ∈ q such that: if b ∈ suppM ((L) then η(b) = p(FM,b)

(e) For any p ∈ q there is η ∈ L as in clause (d).

5) For L as above and p ∈ q let ptL(p) be the unique ν ∈ L such that for every
a ∈ suppM (L) we have ν(a) = p(FM,b). For q∗ ⊆ q, the q∗-subline of a q-line L is
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A PARTITION THEOREM SH679 11

{ptL(p) : p ∈ q∗}.
6) For a colouring d of V , we say a V -line (or a (V, q)-line) L is d−monochromatic
if d is constant on L.
7) When we are given M, τ, Λ̄, V as in part (1) and in addition we are given m, we
define when S is an m-dimensional V -subspace, or m-dimensional subspace of V .
It means that for some sequence 〈Mℓ : ℓ < m〉 we have

(a) each Mℓ is a submodel of M , (see Definition 1.1(7))

(b) if ℓ1 < ℓ2 < m then Mℓ1 ,Mℓ2 are disjoint,

(c) there is ρ = ρS, a function with domain (M \cℓ(∪{Mℓ : ℓ < m)})) such that
ρ(b) ∈ ΛFM,b

for every b ∈ Dom(ρ), and there is an m−dimensional τ−fim
K say K = M τ

[0,m) such that the following holds. Let N be the submodel

of M with universe cℓM (
⋃

ℓ<m

Mℓ).

There is f ∈ Hm(N,K) which is onto K such that f ↾ PMℓ is constant for each
ℓ, 〈Rang(f ↾ PMℓ) : ℓ < ω〉 are pairwise disjoint and:

(∗) ν ∈ S iff ν extends ρ and for some ̺ ∈ SpaceΛ̄(K) we have b ∈ N ⇒ ν(b) =

̺(f̂(b)).

8) We call S convex if

(a) for ℓ1 < ℓ2 < m and a1 ∈ Mℓ1 and a2 ∈ Mℓ2 we have a1 <M a2 and

(b) f ∈ Hom(N,K).

9) For S as above and (see Definition 1.7(3)) ̺ ∈ SpaceΛ(M τ
[0,m)) we define ptS(̺)

as the unique ν ∈ S as above in (∗) of part (7).
10) We call S weakly converse if ℓ1 < ℓ2 ⇒ (∃a1 ∈ Mℓ1)(∀a2 ∈ Mℓ2)(a1 <M a2).

We may define now a natural function, which is our main concern here:

1.10 Definition. 1) Let f1(p, c) where p ⊆ pΛ̄ (and Λ̄ = 〈ΛF : F ∈ τ〉 an alphabet
sequence) be the minimal k such that for any τΛ̄−fim M of dimension k, we have:

(∗)k for any c-colouring d of V = SpaceΛ̄(M) there is a p-line L of V which is
d-monochromatic, i.e. such that p, q ∈ p implies that ptL(p), ptL(q) have
the same colour (by d).

If k does not exist we may say it is ω or is ∞. We may write f1
τ (p, c) or f1(p, c; τ)

to stress the role of τ .
2) If p = pΛ̄ we may write f1(Λ̄, c). If ΛF = Λ for every F ∈ τ = τ [Λ̄] then we may
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12 SAHARON SHELAH

write f1
τ (Λ, c); in this case we can replace Λ by |Λ|. Clearly only m̄τ is important

so we may write it instead of τ . Also we may write f1
τ (n̄, c) for f1

τ (Λ̄, c) whenever
n̄ = 〈nF : F ∈ τ〉 and |ΛF | = nF .

We can, of course, use the multidimensional versions of those definitions.

1.11 Definition. Let f1(Λ̄, m, c) where Λ̄ = 〈ΛF : F ∈ τ〉 be the minimal k such
that

(∗∗)k for any τ -fim M of dimension k we have: for any c−colouring d of SpaceΛ̄(M)
there is a convex subspace S of V of dimension m which is d-monochromatic,
i.e. such that all the points in S have the same colour (by d), if k does not
exist we say it is ω or is ∞.

We may write f1
τ (Λ̄, m, c) or f1

τ (Λ, m, c) etc. as before. Clearly only m̄τ is important
(rather than τ), so we may write only it. We may replace Λ by |Λ|. We may replace
Λ̄ by 〈nF : F ∈ τ〉 when nF = |ΛF |.

1.12 Remark. In the present paper, it does not really matter if in Definition 1.11
we omit the demand that S is convex.

The function has some obvious monotonicity properties, we mention those we shall
actually use.

1.13 Claim. 1) For ℓ = 1, 2 assume Λ̄ℓ is an alphabet sequence for the vocabulary
τ ℓ and arity(τ1) ≤ arity(τ2) and for each m = 1, . . . , arity(τ1) we have

Π{|Λ1
F | : F ∈ τ1 has arity m} ≤ Π{|Λ2

F | : F ∈ τ2 has arity m}.

Then f1(Λ̄1,c) ≤ f1(Λ̄2,c).
2) For ℓ = 1, 2 assume Λ̄ℓ is an alphabet sequence for the vocabulary τ ℓ and τ1 ⊆ τ2

and Λ̄1 = Λ̄2 ↾ τ1 and F ∈ τ2 \ τ1 ⇒ |Λ2
F | = 1.

Then f1(Λ̄1, c) = f1(Λ̄2, c).

Proof. Straightforward. �1.13
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A PARTITION THEOREM SH679 13

1.14 Definition. 1) We define, for ℓ = 1, 2, 3 what is a fimℓ; we just replace in
Definition 1.1, clauses (f), (g) by

(f)ℓ FM is an arity τ (F )-place function from PM to M such that if FM (a1, . . . , ar)
is well defined (so r = arity(F )) then a1, . . . , am ∈ PM and ℓ = 1 implies
the function is symmetric, i.e. does not depend on the order of the variables,
so if not said otherwise we assume a1 ≤M a2 ≤M . . . ≤M ar

(g)ℓ if FM
1 (a1, . . . , ar) = FM

2 (b1, . . . , bt) and ℓ ∈ {1, 2} then F1 = F2 (hence

r = t) and ℓ = 2 ⇒
∧

s=1,... ,r

as = bs and

ℓ = 1 ∧
∧

s=1,...,r−1

as ≤
M as+1 ∧

∧

s=1,...,r−1

bs ≤
M bs+1 ⇒

∧

s=1,...,r

as = bs.

So we let baseM (b) =: {a1, . . . , ar} and when ℓ = 1, 2 let bases(b) = baseM,s(b) =df

as where b = FM (a1, . . . , ar) (and if ℓ = 1 then a1 ≤M a2 ≤M . . . ≤M ar, of
course) and FM,b =: F ; those are well defined by the demand above.

(g)
′

ℓ if ℓ ∈ {1, 2, 3} and b ∈ M\PM then for some F ∈ τ and a1, ..., aarity(F ) ∈ PM

we have b = FM (a1, ..., aarity(F )).

So ℓ = 1 is the old notion and for ℓ = 3 we require very little.
2) We define f ℓ

λ(Λ̄, c) as in Definition 1.11 for fimℓ (so again ℓ = 1 is our standard
case).

1.15 Claim. Let τ be a vocabulary and τ◦ = {GF,π : F ∈ τ and π is a permutation
of {1, . . . ,arity(F )}} with arity (GF,π) = arity(F ).
Then

(α) If Λ̄ is a τ−alphabet sequence and Λ̄◦ = 〈Λ◦
G : G ∈ τ◦〉 where Λ◦

GF,π
= ΛF

then f2
τ (Λ̄, c) ≤ f1

τ◦
(Λ̄◦, c)

(β) for Λ̄ a τ−alphabet sequence we have:
f3
τ (Λ̄, c) is at most RAM(f2

τ (Λ̄◦, c), arity(τ), c∗) where e.g. c∗ depends on τ
only (and RAM stand for Ramsey number (see 0.3(1))

(γ) f1
τ (Λ̄, c) ≤ f2

τ (Λ̄, c)

(δ) f2
τ (Λ̄, c) ≤ f3

τ (Λ̄, c).

Proof. Straightforward. �1.15
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14 SAHARON SHELAH

1.16 Claim. If n > 0, t > 0, c > 0, then letting τ = τt (see Definition 1.6(1)),
Λ = {1, . . . , n}, then f1

τ (Λ, c) from Definition 1.10(2) can serve as f∗
t (n, c) from

the beginning of the introduction.

Proof. Recall that M there is {u : u ⊆ {1, . . . , k}, 1 ≤ |u| ≤ t}. Let J = ([1, k], <)
and M∗ = Mτ (J) and f : M → univ(M∗) is defined by: for if 1 ≤ j1 < j2 <
. . . < jr ≤ k, r ∈ {1, . . . , t} then f({j1, . . . , jr}) = (Fr, 〈j1, . . . , jr〉). So f is 1-to-1
and for c : MΛ → C let c∗ : SpaceΛ(M) → C be c∗(ρ) = c(ν) if ν ∈ MC, and
(∀x ∈ M)(ν(x) = ρ(f(x)))].
The rest should be clear. �1.16
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A PARTITION THEOREM SH679 15

§2 Proof of the partition Theorem with a bound

Except Definitions 2.1, 2.2 this section is for the reader convenience only, as it
gives a proof of a weaker version of the first theorem (with a bound which we get
by triple induction). Later in 4.1 - 4.10 we give a complete proof with the primitive
recursive bound, formally not depending on the proofs here. The strategy is to
make the b ∈ M with |baseM (b)| maximal immaterial. We first define some help
functions.

2.1 Definition. 1) We call a vocabulary τ monic if there is a unique function
symbol of maximal arity, we then denote it by Fmax

τ .
2) For a ∈ PM let Ma be clM ({PM \ {a}}).
3) For V = SpaceΛ̄(M) and N a closed subset of M and H ∈ τ , we say that a
colouring d of V is (N,α,H)−invariant if: α ∈ ΛH , and the following holds, for
any a ∈ PN :

(∗) if ν, η ∈ V and ν ↾ Ma = η ↾ Ma and [b ∈ M ∧ base(b) = {a} ∧ FM,b =
H ⇒ ν(b) = α = η(b)] then d(ν) = d(η).

4) In part (3) we write (ℓ, α,H)−monochromatic if the above N is such that PN

is the set of the last ℓ members of PM . We write (M,α,H)−monochromatic if in
part (3) we have M = N .
5) In parts (3) and (4) we may omit H when τ is monic and H = Fmax

τ . Replacing
α by Λ∗ means that Λ∗ is a subset of ΛH and the demand holds for every α ∈ Λ∗.
Replacing Λ∗ by 0 means Λ∗.

2.2 Definition. Let f0 be defined as follows. First, f0
Λ̄

(n, ℓ, c) = f0
τ,Λ̄

(n, ℓ, c) is

defined iff τ = τ [Λ̄] is monic with H = Fmax
τ and Λ̄ is an alphabet sequence for τ

and n ≤ |ΛH | and n < |ΛH | ∨ (n = |ΛH | ∧ ℓ = 0).
Second, f0

Λ̄
(n, ℓ, c) is the first k (natural number, if not defined we can understand

it as ∞ or ω or “does not exist”) such that (∗)k below holds, where:

(∗)k If clauses (a)-(f) below hold then there is a d-monochromatic line of V ,
where :

(a) M is a fim of vocabulary τ

(b) the dimension of M is k

(c) V = SpaceΛ̄(M)

(d) Λ◦ is a subset of ΛH with exactly n members

(e) d is an (M,Λ◦, H)−invariant colouring of V

(f) if ℓ 6= 0, then there is an α such that α ∈ ΛH \ Λ◦ and d is (ℓ, α,H)-
invariant.
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16 SAHARON SHELAH

Immediate connections are:

2.3 Observation. 1) The function f0
τ,Λ̄

(n, ℓ, c) increases with c and decreases with ℓ

and n.
2) The function f0

τ,Λ̄
(n, ℓ, c) depends just on n, ℓ, c and the set {(arity(F ), |ΛF |) :

F ∈ τ} (possibly with multiple membership), so if ΛF = Λ we may replace τ by its
m̄τ (similarly for other such functions).
3) In definitions 1.10, 1.11, 2.2 the demand (∗)k′ holds for any k′ larger then k.
4) f0

Λ̄
(0, 0, c) = f1(Λ̄, c).

5) If τ is monic and H = Fmax
τ and τ− = τ \{H} then f0

Λ̄
(|ΛH |, 0, c) = f1(Λ̄ ↾ τ−, c).

6) If ℓ∗ = f0
Λ̄

(n + 1, 0, c) then f0
Λ̄

(n, ℓ∗, c) = ℓ∗.

Proof. Trivial.

2.4 Main Claim. Assume

(a) Λ̄ is an alphabet sequence for a vocabulary τ = τ [Λ̄], and n < |ΛH |

(b) τ is a monic vocabulary with H = Fmax
τ

(c) k0 ≥ f0
Λ̄

(n, ℓ + 1, c) and k0 > ℓ

(d) K is a τ -fim of dimension k0−1 and A2 is the set of last ℓ elements of PK

and A1 is the set of the first (k0− ℓ−1)-elements of PK (this K serves just
for notation)

(e) τ∗ is the vocabulary (τK,A1,A2
) \ {H}; see Definition 1.7(3); so

(i) arity(τ∗) < arity(τ),

(ii) proj is the following function from τ∗ to τ : it maps FK,ā1,ā2
to F so

proj↾ τ is the identity,

(iii) Λ̄∗ =: 〈Λ∗
F : F ∈ τ∗〉 where Λ∗

F = Λproj(F ).

(f) c∗ =: ccard(SpaceΛ̄(K)).

Then

f0
Λ̄(n, ℓ, c) ≤ k0 + f1(Λ̄∗, c∗) − 1.

Proof. Let k1 = f1(Λ̄∗, c∗) and let k = k0 + k1 − 1, so it suffices to prove that
k ≥ f0

Λ̄
(n, ℓ, c). For this it is enough to check (∗)k from Definition 2.2(1), so let
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A PARTITION THEOREM SH679 17

Λ◦ be a subset of ΛH with n elements and α∗ ∈ ΛH \ Λ∗, also let M be a fim of
vocabulary τ and dimension k (i.e. PM is with k members), V = SpaceΛ̄(M), and
d an (ℓ, α∗, H)-invariant and (M,Λ◦, H)-invariant C-colouring of V such that C
has ≤ c members. So we just have to prove that the conclusion of Definition 2.2(1)
holds, which means that: there is a d-monochromatic line of V .
Let w1 =: {a : a ∈ PM and the number of b <M a is ≥ k0 − ℓ − 1 but is
< k0 − ℓ − 1 + k1}, hence in w1 there are k1 members, and let w0 be the set
of first k0 − ℓ− 1 members of PM by <M , and lastly let w2 be the set of the ℓ last
members of M by <M . So w0, w1, w2 form a convex partition of PM .
Now we let K be M restricted to clM (w0 ∪w2), (note that this gives no contradic-
tion to the assumption on K i.e. clause (d) of the assumptions, as concerning K
there, only its vocabulary and dimension are important and they fit). Let K+ be a
fim with vocabulary τ and dimension k0, let g0 ∈ PHom(M,K+) be the following

function from PM onto PK+

: it maps all the members of w1 to one member of

PK+

which we call b∗, it is a one to one order preserving function from w2 onto

{b ∈ PK+

: b∗ <K+

b} and it is a one to one order preserving function from w0

onto {b ∈ PK+

: b >K+

b∗}. Let g ∈ Hom(M,K+) be the unique extension of g0;
without loss of generality g0 is the identity on w0 and on w2 hence without loss
of generality g is the identity on K, it exists by 1.4. Hence clearly w0 = A1 and
w2 = A2 so τ∗ = τK,w0,w2

\{H}.
Next recall that the vocabulary τ∗ = τK,wo,w2

\ {H} is a well defined vocabulary
(see Definition 1.7(1) and remember that τ ⊆ τK,w0,w2

so H ∈ τK,w0,w2
). Next

we shall define a τ∗-model N . Its universe is (M \K) \ A∗ where A∗ =: {b ∈ M :
baseM (b) ⊆ w1 and FM,b = H}, we let PN be w1 and <N be <M ↾ PN . Now we have
to define each function FN

K,ā1,ā2
, say of arity r, where F ∈ τ, ā1 a non decreasing

sequence from w0 and ā2 a non decreasing sequence from w2, and ℓg(ā1)+ ℓg(ā2) <

arityτ (F ) and arityτ∗

(FK,ā1,ā2
) < arity(τ). Note that the last condition is equiva-

lent to: if F = H then at least one of the sequences ā1, ā2 is not empty.
For b1 ≤N . . . ≤N bt ∈ PN we let FN

ā1,ā2
(b1, . . . , bt) be equal to b = FM (ā1, b1, . . . , bt, ā2) =

FM (a11, a
1
2, . . . , a

1
ℓg(ā1)

, b1, . . . , bt, a
2
1, . . . , a

2
ℓg(ā2)

).

It is easy to check that the number of arguments is right and also the sequence they
form is ≤M −increasing, so this is well defined and b belongs to M , but still we
have to check that it belongs to N . First note that it does not belong to K, as if
b ∈ K then baseℓg(ā1)+1(b) ∈ K and it is just b1 which belongs to w1, contradiction.
Second note that it does not belong to A∗; this holds as we have substructed
H = F<>,<> when we have defined τ∗.
Lastly it is also trivial to note that every member of N has this form. It is easy to
check that N is really a τ∗-fim. We next let V ∗ = SpaceΛ̄∗(N) and let C∗ = {g : g
is a function from SpaceΛ̄(K) to C} and we shall define a C∗-colouring d∗ of V ∗.
For η ∈ V ∗ let d∗(η) be the following function from SpaceΛ̄(K) to C, letting ̺ be
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18 SAHARON SHELAH

the function with domain A∗ which is constantly α∗: for ν ∈ SpaceΛ̄(K) we let
(d∗(η))(ν) = d(η ∪ ν ∪ ̺).
Clearly the function d∗(η) is a C∗-colouring of SpaceΛ̄(K). How many such func-
tions are there? The domain has clearly card(SpaceΛ̄(K)) members, (we can get
slightly less if ℓ > 0, but with no real influence). The range has at most c members,
so the number of such functions is at most ccard(SpaceΛ̄(K)), a number which we have
called c∗. So d∗ is a c∗-colouring of V ∗.

Now as we have chosen k1 = f1(Λ̄∗, c∗) we can apply Definition 2.2 to V ∗ =
SpaceΛ̄∗(N) and d∗; so we can find a d∗-monochromatic V ∗-line and we call it L∗.
Let h be the function from U =: SpaceΛ̄(K+) to V defined as follows:

(∗) h(ρ) = ν iff:

(a) ν ∈ V, ρ ∈ U ,

(b) ν ↾ K = ρ ↾ K

(c) if b ∈ N\ suppN (L∗) (see Definition 1.9(3)) then ν(b) = η(b) for every
η ∈ L∗

(d) if a ∈ A∗ \ cℓM (suppN (L∗)) then ρ(a) = α∗

(e) if a ∈ suppN (L∗), (so a ∈ N,F ∈ τ−, FN,a = FK,ā1,ā2
, baseN (a) ⊆

suppP
N (L∗)), and b ∈ K+, FK+,b = F, b = F (ā1, b

∗, . . . , b∗, ā2) (with

the number of cases of b∗ being arityτ∗

(FK,ā1,ā2
)) then ρ(b) = ν(a)

(f) if a ∈ A∗ ∩ cℓM (supN (L∗)) and b ∈ K+ is H(b∗, . . . , b∗) then ρ(b) =
ν(a).

Let the range of h be called S. Now clearly

⊗1(α) h is a one to one function from U onto S ⊆ V

(β) S has |SpaceΛ̄(K+)| members

(γ) S is a subspace of V of dimension k0, such that h(ρ) = ptS(ρ), see 1.9(7).

Now clearly

⊗2 there is a C-colouring d◦ of U such that:

d◦(ν) = d(h(ν)) for ν ∈ U.

and

⊗3(a) d◦ is (K+,Λ∗)-invariant

(b) d◦ is (ℓ + 1, α∗, H))-invariant.
[Why? Reflect].
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A PARTITION THEOREM SH679 19

Applying the definition of k0 ≥ f0
τ,Λ̄

(n, ℓ+1, c), that is Definition 2.2 to Λ̄, α∗, U, d◦

we can conclude that there is a d◦-monochromatic U -line L◦. Let L =: {h(ρ) : ρ ∈
L◦}. It is easy to check that L is as required. �2.4

As a warm up for the later bounds we prove:

2.5 Theorem. 1) The function f1
τ (Λ̄, c) is well defined, i.e. always get value which

is, a natural number.
2) Moreover f1 has a bound which we have got by triple induction.
3) Similarly the function f0.

Proof. 1) The proof follows by induction, the main induction is on t = arity(τΛ̄).
Now by observation 1.13(1) without loss of generality τ is monic, i.e. has a unique
function symbol of arity t, called H =: Fmax

τ . Fixing t, we prove by induction on
s = |ΛH |.

Case 0: t = 1.
This is Hales-Jewett theorem (on a bound see [Sh 329] and [GRS80]).

Case 1: t > 1, s = 1.
By Claim 1.13(2) we can decrease t.

Case 2: t > 1, s ≥ 2.
We note that f1(Λ̄, c) = f0

Λ̄
(0, 0, c) by 2.3(4) so it is enough to bound the later

one. But by 2.3(5) we know f0
Λ̄

(|ΛH |, 0, c) = f1(Λ̄ ↾ τ−, c) where τ− =: τ \{H}, but

for the later one we have a bound by the induction hypothesis on t as arity(τ−) < t,
so we have a bound on f0

Λ̄
(|ΛH |, 0, c). By the last two sentences together, it is enough

to find a bound to f0
Λ̄

(n, 0, c) by downward induction on n ≤ |ΛH |, and on the one
hand we have the starting case n = |ΛH | and on the other hand the case n = 0 gives
the desired conclusion. So assume we know for n + 1 and we shall do it for n. Let
ℓ∗ =: f0

Λ̄
(n+1, 0, c), so we know that ℓ∗ = f0

Λ̄
(n, ℓ∗, c) by 2.3(6), so we by downward

induction on ℓ ≤ ℓ∗ give a bound to f0
Λ̄

(n, ℓ, c). So we are left with bounding

f0
Λ̄

(n, ℓ, c) given bound for f0
Λ̄

(n, ℓ+ 1, c) (and also f1
τ◦

(Λ̄◦, c◦) whenever arity(τ◦) <

t). For this 2.4 was designed, it says f0
Λ̄

(n, ℓ, c) ≤ f0
Λ̄

(n, ℓ + 1, c) + f1
τ∗(Λ̄∗, c) + 1

where τ∗, Λ̄∗ were defined there and arity(τ∗) < arity(τ). (Well, we have to assume
that ℓ < f0

Λ̄
(n, ℓ + 1, c), but otherwise use ℓ + 1 + f1

τ∗(Λ̄∗, c) + 1).
2), 3) Should be clear. �2.5
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20 SAHARON SHELAH

§3 Higher Dimension Theorems

Concerning the multidimensional case (see Definition 1.11):

3.1 Conclusion. 1) For any Λ̄, m and c, we have f1(Λ̄, m, c) is well defined (with
bound as in the proof, actually using one further induction using only f1

τi
(Λ̄, c) for

suitable τi-s in the i-step).
2) We can naturally define τ -fim of dimension ℵ0 and convex subspaces, and prove
that for any τ -fim M of dimension ℵ0 and alphabet sequence Λ̄, (with each ΛF and
τ finite (of course)) the following holds: if SpaceM (Λ̄) is the union of finitely many
Borel subsets, then some convex subspace S of dimension ℵ0 is included in one of
those Borel subsets.

Proof. 1) For simplicity (and without loss of generality by Definition 1.13(1)) we
have Λ̄ is constantly Λ, so each ΛF is Λ, a fixed alphabet. We choose by induction
on i = 0, . . . , m the objects Mi, τi, ki and ci such that:

(a) k0 = 0 and ki < ki+1

(b) Mi is a fim for τ of dimension ki; (we allow empty fim, if you do not like it
start with k0 = 1)

(c) Mi+1 is an end extension of Mi, (see Definition 1.1(7))

(d) τi = τMi,P
Mi ,∅ (see Definition 1.7(1))

(e) c0 is c and ci+1 is c|SpaceΛ(ki+m−i)|

(f) ki+1 = ki + f1
τi

(Λ, ci).

There is no problem to carry over the definition and we can prove that km ≥
f1
τ (Λ, m, c).

The proof is straight.
2) Such theorems are closed relatives of theorems on appropriate forcing notions,
so as it is a set theoretical theorem in the proof we use forcing. Specifically we
use the general treatment of creature forcing of [RoSh 470]. For any finite non
empty u ⊆ ω let M τ

u = M τ [u] be a τ -model with (PMτ
u ,≤Mτ

u ) = (u,≤), and
without loss of generality u1 ⊆ u2 ⇒ M τ

u1
⊆ M τ

u2
. So for infinite u ⊆ ω we have

M τ
u = ∪{M τ

u1
: u1 ⊆ u finite} is a well defined τ -fim of dimension ℵ0.

A Λ̄-creature c consists of a convex subspace Sc = S[c] of some SpaceΛ̄(Mc),Mc =
M τ

u for some finite non empty u = u[c] of the form [n,m] = [nc, mc].
For creatures c1, . . . , ck we let Σ(c1, . . . , ck) be well defined iff mcℓ

= ncℓ+1
for

ℓ ∈ [1, k) and it is the set of Λ̄−creatures c such that nc = nc1
, mc = mck

and
η ∈ Sc ∧ ℓ ∈ [1, k) ⇒ η ↾ Mc ∈ Scℓ .
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A PARTITION THEOREM SH679 21

So the forcing notion Q is well defined by [RoSh 470] for the case “the lim-sup of
the norms is infinity”. So a condition p has the form 〈η, c1, c2, . . . 〉 = 〈ηp, cp1, c

p
2, . . . 〉

where for t = 1, 2, . . . , cpt is a Λ̄-creature satisfying m
c
p

t+1
= n

c
p
t

and for some

η∗ ∈ SpaceΛ̄(M τ
ω), see below, we have

η = η∗ ↾ {a ∈ M τ
ω : for no ℓ, k, c do we have

1 ≤ ℓ < k, c ∈ Σ(cℓ, cℓ+1, . . . , ck) and

a ∈ M τ
[mcℓ

,nck
)\ Dom(ρSc)}.

Let B =: SpaceΛ̄(M τ
ω) = {ρ : ρ is a function with domain M τ

ω satisfying f(b) ∈
ΛF (b)} where F (b) = FMτ

ω ,b. We say that ρ ∈ B obeys p ∈ Q if ηp ⊆ ρ and
for t = 1, 2, . . . we have for some c ∈ Σ(c1, . . . , ct), ρ ↾ univ(Mc) ∈ Sc. It is
proved there that such forcing notions have many good properties. In particular

let cont(p) = {ρ : ρ ∈ B obeys p} and defining the Q-name f̂ = ∪{ηp : p ∈ G
˜
Q}.

Now note that:

(a) p Q “f̂ ∈ cont(p)”

(b) if N ≺ (H (χ),∈) is countable, the definition of the given finitely many
Borel sets belongs to N , and p ∈ Q ∩N , then we can find q such that

(i) p ≤ q

(ii) every f ∈ cont(q) is a generic for Q over N

(iii) for some p′ ≤ n′ we have p ≤ p′ ∈ N ∩Q, p′ ≤ q and p′ Q “f̂ ∈ An′”.

Together we conclude that cont(q) ⊆ An′ and we are done. �3.1

We turn to relating the old results from Bergelson Leibman [BeLe96].

3.2 Conclusion. 1) Assume that

(a) τ is a t-canonical vocabulary (see 1.6)

(b) k = f1
τ (Λ, c),  L a (finite) alphabet

(c) R is a ring, and r1, . . . , rk ∈ R

(d) for α ∈ Λ,pα(x) is a polynomial over R (i.e. with parameters in R)

(e) d is a c-colouring of R ( actually enough to consider a finite subset, the
range of g in the proof below).
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22 SAHARON SHELAH

Then we can find y, z and w ⊆ {1, . . . , k} such that

(α) y ∈ R and z = Σℓ∈wrℓ ∈ R

(β) the set {y + pα(z) : α ∈ Λ} is d-monochromatic.

(2) Assume that:

(a) τ is a vocabulary of arity t, such that for each s = 1, . . . , t in τ there are
exactly m∗ function symbols of arity s

(b) k = f1
τ (Λ, c), Λ a (finite) alphabet; see Definition 1.10(2)

(c) R is a ring, and r1, . . . , rk ∈ R

(d) for α ∈ Λ and m < m∗,pα,m(x) is a polynomial over R (i.e. with coefficients
in R)

(e) d is a c-colouring of m∗

R = {〈ym : m < m∗〉 : y0, . . . , ym∗−1 ∈ R} (actually
enough to consider a finite subset, the range of g in the proof below).

Then we can find y, z and w ⊆ {1, . . . , k} such that

(α) y ∈ R and z = Σℓ∈wrℓ ∈ R

(β) the set {〈y + pα,m(z) : m < m∗〉 : α ∈ Λ} is d-monochromatic.

Proof. 1) Let M be a fim for τ of dimension k and let h be a one to one order
preserving function from PM onto {1, . . . , k}. We define a function g from V =

SpaceΛ(M) to R. For η ∈ V we let g(η) =
∑

b∈M

gb(η(b)) where gb is the following

function from Λ to R. For b = F (b1, . . . , bt) ∈ M and α ∈ Λ we let gb(α) be zero if

〈b1, b2, . . . , bt〉 is with repetitions and otherwise we consider pα(
∑

i=1,t

rh(bi)), expand

it as sum of monoms in r1, . . . , rk , and let gb(α) be the sum of those monoms for
which {rj : j ∈ {1, . . . , k} and rj appear in the monom} = {h(b1), . . . , h(bt)}. Now
we define a c−colouring d∗ of V by d∗(η) = d(g(η)). Let L be a d∗-monochromatic

line of V , let suppM (L) = N . Now let y =:
∑

b∈M\N

gb(ptL(α)) for any α ∈ Λ, note

that all the α ∈ Λ give the same value. Let w =: {h(b) : b ∈ suppP
M (L)}, recalling

Definition 1.9(5) and so z =
∑

ℓ∈w

rℓ, now check.

Note that algebraically it is more natural to define g differently, working with the
rank of the monom rather than with the set of variables appearing.
2) Similarly, left to the reader. �3.2
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3.3 Discussion. It is natural to ask:

(1) Can we generalize the Graham Rothschild theorem? (see [GR71], [GRS80])

(2) Can we get here primitive recursive bounds?

(3) Can we prove the density version of the theorem 2.5?

Below we answer positively questions (1),(2), we believe that the answer to question
(3) is positive too but probably it requires methods of dynamical systems, see the
book Furstenberg [Fu81].

3.4 Definition. We define f4(Λ̄, t, ℓ, c) = f4
τ (Λ̄, t, ℓ, c) where 0 ≤ ℓ < t as follows.

It is the minimal k such that: if M is fim for τ with k = dim(M), V = SpaceΛ̄(M)
and d is a c-colouring of {S : S is an ℓ-subspace of V } then for some subspace U
of V of dimension t, all the ℓ-subspaces of U (equivalently, ℓ-subspaces of V which
are contained in U) have the same colour by d.

3.5 Theorem. 1) For any Λ̄,t, ℓ, c as in Definition 3.3, the function f4(Λ̄, t, ℓ, c)
is well defined, i.e. is finite.
2) Let m = RAM(t, ℓ, c), see Definition 0.3(1), where τ is a vocabulary and Λ̄ is a
τ -alphabet sequence, and define ki for i = 0, . . . , m by induction on i as follows (on
τ [k,r] see 1.7(3)): k0 = 0, Λ̄0 = Λ̄ and ki+1 = ki + f1

τi
(Λ̄i, ci) where τi =: τ [ki,m−i]

and Λ̄i is a τ [k,m−i]-alphabet sequence, and Λi
FMτ

ki+m−i
,ā1,ā2

has |Λi
F |+ℓ+|M τ

ki+m−i|

members and ci = ccard(SpaceΛ̄i (M
τ
ki+m−i)).

Then f4
τ (Λ, t, ℓ, c) ≤ km.

Proof. 1) Follows from (2).
2) Without loss of generality Λ̄ = 〈ΛF : F ∈ τ〉 is a sequence of pairwise disjoint
sets and Λ = ∪{ΛF : F ∈ τ}.
Let N = M τ

ℓ (see notation in 1.7(3), recall that ℓ is the dimension of the subspaces
we are colouring) and let {γa : a ∈ N} list a set disjoint to Λ without repetitions.
We choose for i = 0, . . . , m the objects ki, τi, Λ̄

i (consistently with what is said in
the statement of the theorem) and Mi,M

+
i , by induction on i as follows:

⊗1(a) k0 = 0 and ki < ki+1

(b) Mi is a fim for τ of dimension ki (we allow empty fim, the space is a
singleton, if you do not like it start with k0 = 1)

(c) Mi+1 an end extension of Mi and M+
i is an end extension of Mi (so both

have vocabulary τ) and M+
i has dimension ki + m− i
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24 SAHARON SHELAH

(d) τi = τ
M+

i
,PMi ,P

M
+
i \PMi

(see Definition 1.7(3))

(e) Λ̄0 = Λ̄ and for F ∈ τ and Λi
Fā1,ā2

is the disjoint union of ΛF ,Λ
∗
F and Λ∗∗

F

where Λ∗
F =: {γb : b ∈ N and FN,b = F} and Λ∗∗

F =: {βb : b ∈ M+
i such

that FM+
i
,b = F} (and no two letters are incidentally equal, of course)

(f) c0 is c and ci+1 is ccard(SpaceΛ̄i
(Mτ

ki+m−i))

(g) ki+1 = ki + f1
τi

(Λ̄i, ci).

Let k = km,M = Mm and let Vi = SpaceΛ̄(M τ
i ) and V = Vm. We shall regard

an ℓ-subspace Φ of V as a function from M to Λ∗ =: {γb : b ∈ N} ∪ Λ, such that
(recall Λ = ∪{ΛF : F ∈ τ}):

⊗2(a) Φ(b) ∈ Λ∗
FM,b

∪ ΛFM,b
, see clause (e) of ⊗1

(b) if b ∈ M,α ∈ Λ and (∀ν)[ν ∈ Φ ⇒ ν(b) = α] then Φ(b) = α

(c) if b ∈ M, a ∈ N and for every ρ ∈ SpaceΛ̄(N) we have (ptΦ(ρ))(b) = ρ(a)
then Φ(b) = γa.
(Reflect on the meaning of ℓ-subspace of M , i.e. Definition 1.9(7) and it
should be clear.)

Let d be a c-colouring of the set of ℓ-subspaces of V . We shall define by downward
induction on i < m a pair (Ai, ρi) such that

(∗)0(i) Ai is a (non empty) subset of PMi+1 disjoint to Mi and

(ii) ̺i is a function from Bi =: M\ clM (Mi ∪
⋃

j=i,... ,m−1

Aj) \
⋃

j=i+1,...,m−1

Bj

into Λ ∪ {βa : a ∈ M+
i } such that b ∈ Bi ⇒ ̺i(b) ∈ ΛFM,b

∪ Λ∗∗
FM,b

.

We let Ri denote the family of ℓ-subspaces Φ of V which satisfies:

(∗)1(a) if j satisfies i ≤ j < m and b ∈ Bj and ̺j(b) ∈ Λ then Φ(b) = ̺j(b)

(b) if j satisfies i ≤ j < m and b ∈ Bj and ̺j(b) = βa where a ∈ Mj then
Φ(b) = Φ(a)

(c) if b1, b2 satisfies the following then Φ(b1) = Φ(b2) where the demand is:

(i) b1, b2 ∈ clM (Mi ∪
⋃

j=i,...,m−1

Aj) and

(ii) FM,b1 = FM,b2 and for every r ∈ {1, . . . ,arity(FM,b1)} we have: baseM,r(b1) =
baseM,r(b2) or they both belong to the same Aj for some j ∈ {i, . . . , m−
1}.
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Now Ai, Bi, ̺i will be chosen such that the following condition holds:

(∗)2 If Φ,Ψ ∈ Ri satisfy the clauses (a),(b) below then d(Φ) = d(Ψ) where

(a) Φ ↾ clM (Mi ∪
⋃

j=i+1,...,m−1

Aj) = Ψ ↾ clM (Mi ∪
⋃

j=i+1,...,m−1

Aj)

(b) if b ∈ N and γb ∈ Rang(Φ ↾ Mi+1) then γb ∈ Rang(Φ ↾ Mi).

Suppose now that we have carried this induction, and we shall show that this suffice.
Let S be the following subset of V :

(∗)3 η ∈ S iff

(a) if i < m and b ∈ Bi and ̺i(b) ∈ Λ then η(b) = ̺i(b)

(b) if i < m and b ∈ Bi and ̺i(b) = βa and a ∈ Mi then η(b) = η(a).

(c) if bℓ = F (bℓ1, . . . , b
ℓ
t) for ℓ = 1, 2 and [r ∈ {1, . . . , t} ∧ b1r 6= b2r ⇒

(∃i)(b1r ∈ Ai & b2i ∈ Ai)] then η(b1) = η(b2).

Clearly S is an m−subspace of V , and we may by (∗)2 above show that:

(∗)4 if Φ is an ℓ-subspace of S, then d(Φ) can be computed from J [Φ] =: { Min
{i : Φ ↾ Ai is constantly the r-th member of PN} : r < ℓ}.

Clearly J [Φ] is a subset of {0, . . . , m− 1} with exactly ℓ elements.
So for some function e, with domain the family of subsets of {0, . . . , m− 1} with ℓ
elements, we have: if Φ is an ℓ-subspace of S then d(Φ) = e(J [Φ]). Clearly the set
Rang(e) has ≤ |Rang(d)| elements.
By Ramsey’s theorem and the choice of m, there is a subset w of {0, . . . , m − 1}
with t members such that the function e is constant on the family of subsets of
w with ℓ elements. Let U be a subspace of S of dimension t such that if b ∈ M ,

base(b) not a subset of
⋃

i∈w

Ai then 〈ν(b) : b ∈ U〉 is constant (and, of course, the

constant value belongs to ΛFM,b
).

Clearly U is as required. So it is enough to prove that we can carry the induction,
that is, assume that i ∈ {0, . . . , m− 1} and 〈Aj, ̺j : ̺ = i + 1, i+ 2, . . . , m− 1〉 are
as required (in (∗)0 + (∗)2); and we have to choose (Ai, ̺i) as required. But this is
obvious by the choice of ki+1 see clause (g) of ⊗1 above. �3.5
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26 SAHARON SHELAH

§4 The main Theorem

Now we turn to the obtainment of primitive recursive bounds. The idea is that
we decrease the dependency from below, dealing with the unary functions each time
(rather than dealing with H ∈ τ of maximal arity).

In the definition below, we shall use the case r = 1.

4.1 Definition. 1) Recall that for a ∈ PM we let Ma be clM (PM \ {a}), that is
M restricted to this set.
2) For V = SpaceΛ̄(M) and u ⊆ PM we say that a colouring d of V is (u, r)-base-
invariant if the following holds, for any a ∈ u:

(∗) if ν, η ∈ V and ν ↾ Ma = η ↾ Ma and [b ∈ M ∧ r < |{i : i = 1, . . . ,
arity(FM,b) and baseM,i(b) = a}| ⇒ ν(b) = η(b)] then d(ν) = d(η).

3) We write (ℓ, r)-base-invariant if above u is the set of the last ℓ members of PM .
4) We may replace u by a submodel N of M , meaning u = PN .

4.2 Definition. Let f6 be defined as follows. First, f6
Λ̄

(ℓ, c) = f6(Λ̄, ℓ, c) =

f6
τ (Λ̄, ℓ, c) is defined iff Λ̄ is an alphabet sequence for a vocabulary τ . Second,

let f6
Λ̄

(ℓ, c) be the first k (natural number, if not defined we can understand it as
∞ or ω or “does not exist”) such that (∗)k below holds, where:

(∗)k If clauses (a)-(d) below hold then there is a d-monochromatic line of V ,
where:

(a) M is a fim of vocabulary τ

(b) the dimension of M is k

(c) V = SpaceΛ̄(M)

(d) d is an (ℓ, 1)-base-invariant colouring of V .

Immediate connections are:

4.3 Observation. 1) The function f6
Λ̄

(ℓ, c) increases with c and decreases with ℓ.

2) We have f6
τ1

(Λ̄1, ℓ1, c1) ≤ f6
τ2

(Λ̄2, ℓ2, c2) if:

(a) c1 ≤ c2, ℓ1 ≥ ℓ2, and

(b) s ≤ arity(τ1) ⇒ Π{|Λ1
F | : F ∈ τ1, arityτ (F ) = s} ≤ Π{|Λ2

F | : F ∈ τ2,
arityτ (F ) = s} and

(c) arity(τ1) < s ≤ arity (τ2) ∧ F ∈ τ2∧ arity(F ) = s ⇒ |Λ2
F | = 1.
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3) In definition 4.2 the demand (∗)k′ holds for any k′ larger than k.
4) f6

Λ̄
(0, c) = f1(Λ̄, c).

Proof. Trivial, e.g.
4) The point is that in (∗) of 4.1, the implication [b ∈ M ∧ 0 < |{i : i =
1, . . . , arity(FM,b) and baseM,i(b) = a}| ⇒ ν(b) = η(b)] the antecedent means just
b ∈ M\Ma so the implication means η ↾ (M\Ma) = ν ↾ (M\Mb), so the assumption
in (∗) says η = ν hence (∗) is an empty demand. �4.3

4.4 Claim. Assume

(a) τ is a vocabulary of arity > 1 and Λ̄ is a τ−alphabet sequence

(b) τ∗ is the following vocabulary:
{GF,e : F ∈ τ and e is a convex equivalence relation on {1, . . . , arityτ (F )}
such that if arityτ (F ) > 1 then each e-equivalence class has at least two

elements} with arityτ
∗

(GF,e) = the number of e-equivalence classes and for

some H ∈ τ of maximal arity, letting e =: {(i, j) : i, j ∈ [1,arityτ
∗

(H)]} we
identify GH,e with id ∈ τ∗

(c) Λ̄∗ is the following τ∗-alphabet sequence: Λ∗
GF,e

= ΛF

(d) ℓ∗ = f1
τ∗(Λ̄∗, c).

Then f6
Λ̄

(ℓ∗, c) ≤ ℓ∗.

Proof. Let M be a fim of vocabulary τ and dimension ℓ∗ and V = SpaceΛ̄(M)
and d is a c-colouring of V which is (ℓ∗, 1)-base-invariant; it suffices to find a
monochromatic V -line L.
Let M∗ be a fim of vocabulary τ∗ and dimension ℓ∗ and V ∗ = SpaceΛ̄∗(M∗). Let g0
be an isomorphism from (PM , <M ) onto (PM∗

, <M∗

). We define a partial function
g from M into M∗ as follows; if b = FM (b1, . . . , bt) so t = arityτ (F ) and b1 ≤M

b2 ≤M . . . ≤M bt and e = {(i, j) : bi = bj} and GF,e ∈ τ∗ is well defined (i.e. t = 1 or
every e-equivalence class has at least two elements) and the e-equivalence classes are

[si, si+1) for i = 1, . . . ,arityτ∗

(GF,e) − 1 and 1= s1 < s2 < . . . < sarity(GF,e) = t + 1

then g(b) = GM∗

F,e (g0(bs1), . . . , g0(bsarity(GF,e)−1
)).

Note:

(∗)1 g is really a partial function from M to M∗

(∗)2 if η, ν ∈ V and η ↾ Dom (g) = ν ↾ Dom (g) then d(η) = d(ν).
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28 SAHARON SHELAH

[Why? By the transitivity of equality, it is enough to consider the case that for
some a∗ ∈ M\ Dom(g) we have {a∗} = {a ∈ M : η(a) 6= ν(a)}. Clearly by the
definition of g for some a ∈ PM we have (∃!i)[baseM,i(a

∗) = a]. Now we know
that d is (ℓ∗, 1)-base invariant (see clause (d) of (∗)k from Definition 4.2). Hence
by Definition 4.1(3), d is (PM , 1)-base invariant. Hence by Definition 4.1(2), our
η, ν satisfies (∗) of Definition 4.1(2).
Now the first assumption in (∗), i.e. η ↾ Ma = ν ↾ Ma holds as by the choice of a
we have a∗ /∈ Ma as we have (∀b ∈ M)(b 6= a∗ → η(a) = ν(a)). Also the second
assumption of (∗) holds as the antecedent fails for b = a∗ (as 1 = |{i : baseM,i(a

∗) =
a}| and its conclusion, η(b) = ν(b) holds for b ∈ M\{a∗}. We can conclude that
d(η) = d(ν) as required.]

(∗)3 we can define a c-colouring d∗ of V ∗ such that: if η ∈ V, ν ∈ V ∗, and [b ∈
Dom(g) ⇒ η(b) = ν(g(b))] then d(η) = d∗(ν).

[Why? By (∗)2.]

(∗)4 for any V ∗-line L∗ there is a V−line L such that for every η ∈ L for some
ν ∈ L∗ we have d(η) = d∗(ν).

[Why? Reflect. In details, let w∗ = suppP (L∗) and N∗ = supp(L∗) and ν∗ is the
function with domain M∗ \ N∗ such that for every b from this set and ν ∈ L∗ we
have ν(b) = ν∗(b). Let w =: {b ∈ PM : g0(b) ∈ w∗} and let N =: clM (w) and
choose a function η∗ with domain M \ N such that for every b ∈ M \ N we have
η∗(b) = ν∗(g(b)) if b ∈ Dom (g) and is any member of ΛFM,b

otherwise. Let L be
the V -line such that supp(L) = N and for every η ∈ L the function η extends η∗.
Clearly, L is a V -line and let η ∈ L and we should check the desired conclusion.
So there is p ∈ pΛ̄ such that η = ptL(p); now we define q ∈ pΛ̄∗ as follows:
q(GF,e) = p(F ), the later belongs to ΛF which is equal to Λ∗

GF,e
. Let ν = ptL∗(q)

and we should just check that η, ν are as in (∗)3 above so we are done.]

By the assumption ℓ∗ = f1(Λ̄∗, c) (see clause (d) in the assumption), hence there
is a d∗-monochromatic V ∗-line L∗. Apply (∗)4 to it, so there is a d-monochromatic
V -line and so we are done. �4.4

4.5 Definition. 1) Assume the following:

(i) Λ̄ is an alphabet sequence for the vocabulary τ

(ii) P ⊆ {(p, q) : p, q are Λ̄-types}, see Definition 1.8

(iii) m, c > 0.

We define f7
Λ̄

(P, m, c) as the first k (if there is no such k it is ω or ∞ or undefined)
such that (∗)k stated below holds, where
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(∗)k if clauses (a)-(e) below hold, then there is a subspace S of V of dimension
m, satisfying:
if L is a V -line ⊆ S, then L is (P, d)-monochromatic which means:
if (p, q) ∈ P then d(ptL(p)) = d(ptL(q)) where

(a) M is a fim of vocabulary τ

(b) M has dimension k

(c) V = SpaceΛ̄(M)

(d) P is a subset of {(p, q) : p, q ∈ pΛ̄ and [F ∈ τ∧ arity(F ) > 1 ⇒ p(F ) =
q(F )]}

(e) d is a c-colouring of V .

2) Let PΛ̄ = {(p, q) : p, q ∈ pΛ̄ and [F ∈ τ∧ arity(F ) > 1 ⇒ p(F ) = q(F )]}.

4.6 Main Claim. Assume

(a) Λ̄ is an alphabet sequence for a vocabulary τ = τ [Λ̄]

(b) k0 ≥ f6
Λ̄

(ℓ + 1, c) and k0 > ℓ

(c) K is a τ−fim of dimension k0 − 1 and A2 is the set of the last ℓ elements
and A1 is the set of the first (k0 − ℓ − 1)-elements (this K serves just for
notation)

(d) τ∗ is the vocabulary τK,A1,A2
, see Definition 1.7(1) and proj is the following

function from τ∗ to τ : it maps FK,ā1,ā2
to F and Λ̄∗ =: 〈Λ∗

F : F ∈ τ∗〉
where Λ∗

F = Λproj(F ), so proj ↾ τ is the identity

(e) c∗ =: ccard(SpaceΛ̄(K)).

Then f6
Λ̄

(ℓ, c) ≤ k0 + f7
Λ̄∗

(PΛ̄∗ , 1, c∗) − 1.

Remark. This is similar to the proof of 2.4, but for completeness we do it in full.

Proof. Let k1 = f7
Λ̄∗

(PΛ̄∗ , 1, c∗) and let k = k0 + k1 − 1, so it suffices to prove that

k ≥ f6
Λ̄

(n, ℓ, c). For this it is enough to check (∗)k from Definition 4.2. So let M

be a fim of vocabulary τ and dimension k (that is PM is with k members), V =
SpaceΛ̄(M), and d an (ℓ, 1)-base-invariant C-colouring of V such that C has ≤ c
members. So we just have to prove that the conclusion of Definition 4.2 holds,
which means that there is a monochromatic V -line.
Let w1 =: {a : a ∈ PM and the number of b <M a is ≥ k0 − ℓ − 1 but is
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< k0 − ℓ − 1 + k1} hence in w1 there are k1 members, and let w0 be the set of
first k0 − ℓ− 1 members of PM by <M , lastly let w2 be the set of the ℓ last mem-
bers of M by <M . So w0, w1, w2 form a convex partition of PM .
Now we let K be M restricted to clM (w0 ∪ w2), (note that this gives no contra-
diction to the assumption on K, as concerning K there, only its vocabulary and
dimension are important and they fit) hence w0 = A1, w2 = A2. Let K+ be a
fim with vocabulary τ and dimension k0, let g0 ∈ PHom(M,K+) be the following

function from PM onto PK+

: it maps all the members of w1 to one member of

PK+

which we call b∗, it is a one to one order preserving function from w2 onto

{b ∈ PK+

: b∗ <K+

b} and it is a one to one order preserving function from w0

onto {b ∈ PK+

: b <K+

b∗}. Let g ∈ Hom(M,K+) be the unique extension of g0;
without loss of generality g0 is the identity on w0 and on w2 hence without loss of
generality g is the identity on K; it exists by 1.4.
Next recall that the vocabulary τ∗ = τK,wo,w2

is a well defined vocabulary (see
Definition 1.7(1)). Next we shall define a τ∗-fim N . Its universe is M \K; we let
PN be w1 and <N be <M ↾ PN . Now we have to define the function FN

ā1,ā2
, say of

arity r, where F ∈ τ, ā1 a non decreasing sequence from w0 and ā2 a non decreasing
sequence from w2, and ℓg(ā1)+ℓg(ā2) < arity(F ). So r = arity(F ) − ℓg(ā1)−ℓg(ā2).
For b1 ≤N . . . ≤N br ∈ PN we let FN

ā1,ā2
(b1, . . . , br) be equal to b = FM (ā1, b1, . . . , br, ā2) =

FM (a11, a
1
2, . . . , a

1
ℓg(ā1), b1, . . . , br, a

2
1, . . . , a

2
ℓg(ā2)).

It is easy to check that the number of arguments is right and also the sequence
they form is ≤M −increasing, so this is well defined and b belongs to M , but still
we have to check that it belongs to N . But N = M \ K and if b ∈ K then
baseℓg(ā1)+1(b) ∈ K and it is just b1 which belongs to w1, contradiction. Lastly it
is also trivial to note that every member of N has this form. It is easy to check
that N is really a τ∗-fim.
We next let V ∗ = SpaceΛ̄∗(N), let C∗ = {g : g is a function from SpaceΛ̄(K) to C}
and define a C∗-colouring d∗ of V ∗. For η ∈ V ∗ let d∗(η) be the following function
from SpaceΛ̄(K) to C: for ν ∈ K we let (d∗(η))(ν) = d(η ∪ ν).
Clearly the function d∗(η) is a C∗-colouring of K. How many such functions, that
is members of C∗ are there? The domain has clearly card(SpaceΛ̄(K)) members,
(we can get slightly less if ℓ > 0, but with no real influence). The range has at most
c members, so the number of such functions is at most ccard(SpaceΛ̄(K)), a number
which we have called c∗ in the claim’s statement.
Hence d∗ is a c∗-colouring of V ∗.
So as we have chosen k1 = f7

Λ̄∗
(PΛ̄∗ , 1, c∗) we can apply Definition 4.5 to V ∗ =

SpaceΛ̄∗(N) and d∗; so we can find a (PΛ̄∗ , d∗)-monochromatic V ∗-line L∗ (see (∗)k
of Definition 4.5(1)). Let h be the function from U =: SpaceΛ̄(K+) to V defined
as follows:

(∗) h(ρ) = ν iff:
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(a) ν ∈ V, ρ ∈ U ,

(b) ν ↾ K = ρ ↾ K

(c) if b ∈ N\ suppN (L∗) then ν(b) = η(b) for every η ∈ L∗

(d) if a ∈ suppN (L∗), (so a ∈ N,FN,a = FK,ā1,ā2
, baseN (a) ⊆ suppP

N (L∗)),
and b ∈ K+, FK+,b = F, b = F (ā1, b

∗, . . . , b∗, ā2) (with the number of
cases of b∗ being arity(FK,ā1,ā2

)) then ρ(b) = ν(a).

Let the range of h be called S. Now clearly

⊗1(α) h is a one to one function from U onto S ⊆ V

(β) S has |SpaceΛ̄(K+)| members

(γ) S is a subspace of V of dimension k0, h(ρ) = ptS(ρ), see Definition 1.9(7).

Now clearly

⊗2 there is a C-colouring d◦ of U such that:
d◦(ν) = d(h(ν)) for ν ∈ U

⊗3 d◦ is (ℓ + 1, 1)-base-invariant.

[Why? Let b ∈ PK+

be among the (ℓ + 1) last members, (by <K+

) and we should
prove that d◦ is ({b}, 1)-base invariant, see Definition 4.1(1),(2).
If b ∈ w2 we just use “d is (ℓ, 1)-base invariant of the space V ”. If b /∈ w2 then
necessarily b = b∗, translating the desired property “d0 is a ({b∗}, 1)-base invariant”,
to a property of the colouring d, we get a demand on d ↾ L∗, which holds as L is
(PΛ̄∗ , d∗)-base invariant (recalling by Definition 4.5(2), PΛ̄∗ = {(p, q) : p, q ∈ PΛ̄∗

such that [F ∈ τ∗ ∧ arityτ∗

(F ) > 1 ⇒ p(F ) = q(F )]).
So ⊗3 really holds.]

Applying the definition of k0 = f6
Λ̄

(ℓ+1, c), that is Definition 4.2 to Λ̄, U, d◦ we can
conclude that there is a d◦-monochromatic U -line L◦. Let L =: {h(ρ) : ρ ∈ L◦}. It
is easy to check that L is as required. �4.6

4.7 Claim. 1) Assume that Λ̄ is a τ -alphabet sequence, and p∗ ∈ pΛ̄ and P+ = P∪
{(p∗, q) : q ∈ pΛ̄ and [F ∈ τ∧ arity (F ) > 1 ⇒ q(F ) = p∗(F )]} ⊆ PΛ̄ (see Definition
4.5) and n = ΠF∈τ, arity(F )=1|ΛF |. Then f7

Λ̄
(P+, m, c) ≤ HJ(n, f7

Λ̄
(P, m, c), c) (on

HJ see 0.3(2)).
2) f7(Λ̄,PΛ̄, m, c) is in E6.
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Proof. 1) Straight. Let M be a τ -fim of dimension k =: HJ(n, f7
Λ̄

(P, m, c), c) and let
V = SpaceΛ̄(M) and let d be a c-colouring of V . Let τ∗ = {F ∈ τ : arityτ (F ) = 1}
and let M∗ be a τ∗-fim of dimension k; without loss of generality M∗ is M restricted
to τ∗ and the universe of M∗. Let Λ̄∗ = Λ̄ ↾ τ∗ and let V ∗ = SpaceΛ̄∗(M∗) and
let h be the function from V ∗ to V defined as follows: let η ∈ V ∗, for b ∈ M let
(h(η))(b) be η(b) if b ∈ M∗ and be p∗(FM,b) if b ∈ M \M∗. So h is a function as
required and we define a c-colouring d∗ of V ∗ by d∗(ν) = d(h(ν)) for ν ∈ V ∗.

Now essentially we apply the definition of k = HJ(n, f7
Λ̄

(P, m, c), c) to the space V ∗

and the colouring d∗ and we get a subspace S∗ of V ∗ on which d∗ is constant and
has dimension f7

Λ̄
(P, m, c); we say “essentially” because as in Claim 1.13(1) we can

reduce τ to a singleton id with Λ = π{Λ∗
F : F ∈ τ∗} that is

(∗)0 f7
Λ̄

(Pi+1, m, c) ≤ HJ(|ΠF∈τ, arity(F )=1|ΛF ||, f
7
Λ̄

(Pi, m, c), c).

There is a unique subspace S′ of V of dimension f7
Λ̄

(P, m, c) such that η ∈ S′ ⇒ η ↾

M∗ ∈ S∗. Clearly:

(∗)1 if L is a V -line which is ⊆ S and (p, q) ∈ P+\P then d(ptL(p)) = d(ptL(q)).

Now, letting k′ = f7
Λ̄

(P, m, c) and d′ = d ↾ S′, we can apply the definition of

f7
Λ̄

(P, m, c) and get a subspace S of S′ of dimension m such that

(∗)2 if L is a V -line which is included in S and (p, q) ∈ P then d′(ptL(p)) =
d′(ptL(q)) which means that d(ptL(p)) = d(ptL(q)).

By (∗)1 + (∗)2, clearly S is as required.
2) Let {p∗i : i < i(∗)} be maximal subset of PΛ̄ such that i < j < i(∗) ⇒ p∗i ↾ {F ∈
τ : arity(F ) > 1} 6= p∗j ↾ {F ∈ τ : arity(F ) > 1} and let Pj = {(p∗i , q) : i < j and
q ∈ pΛ̄ and q ↾ {F ∈ τ : arity(F ) > 1} = p∗i ↾ {F ∈ τ : arity(F ) > 1}}. By part (1)
we have a recursion formula (we use 1.13 freely, more exactly, (∗)0 from the proof
of part (1)).
As HJ belongs to E5 (by [Sh 329, 1.8(2),p.691]), we are done. �4.7

4.8 Definition. Let f6,∗(Λ̄, ℓ, t, c) be defined by induction on ℓ as follows:

f6,∗(Λ̄, 0, t, c) = t

f6,∗(Λ̄, ℓ + 1, t, c) is equal to k0 + f7
Λ̄[k0]

(PΛ̄[k0], 1, c
card(SpaceΛ̄(Mτ

k0
)) − 1 where

k0 = Max{ℓ + 1, f6,∗(Λ̄, ℓ, t, c)} and Λ̄[k0] is defined from Λ̄ as in the main claim
4.6.
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4.9 Claim. f6,∗ belongs to E7.

Proof. Straight.

4.10 Theorem. 1) The function f1(Λ̄, c) is well defined, i.e. always get a value
which is a natural number and is primitive recursive, in fact belongs to E8.
2) Similarly the function f6(Λ̄, ℓ, c), see Definition 4.2.
3) f4 is primitive recursive, in fact belongs to E9, see Definition 3.4.

Proof. 1),2) We write a proof of the existence of f1(Λ̄, c), f6(Λ̄, ℓ, c) which makes
it clear that they are in E8.
Let τ = τ [Λ̄]. The proof follows by induction, the main induction is on t =
arityτ (τΛ̄) (or, if you prefer ΠF∈τ [Λ̄](|ΛF | + 1)).

CASE 0: arity(τ) = 1.
This is Hales-Jewett theorem (on a bound see [Sh 329] or [GRS80]).

CASE 1: arity(τ) > 1.
Let τ∗∗, Λ̄∗∗ be as τ∗, Λ̄∗ in Claim 4.4, so arity(τ∗) ≤ arity(τ)/2 and |τ∗| ≤

|τ | × 2arity(τ). Let ℓ∗ = f1(Λ̄∗∗, c) so (by 4.4) clearly f6
Λ̄

(ℓ∗, c) ≤ ℓ∗ hence (by

Definition 4.8) clearly f6,∗(Λ̄, 0, ℓ∗, c) = ℓ∗ = f1(Λ̄∗∗, c); together we get f6
Λ̄

(ℓ∗, c) ≤

f6,∗(Λ̄, 0, ℓ∗, c). Now (by 4.6 + Definition 4.8), we shall prove by induction on ℓ ≤ ℓ∗

that f6
Λ̄

(ℓ∗ − ℓ, c) ≤ f6,∗(Λ̄, ℓ, ℓ∗, c); for ℓ = 0 this holds by the previous sentence;
for the induction step, i.e. the proof for ℓ+1 we apply Theorem 4.6 with ℓ∗−ℓ, ℓ∗−
(ℓ+ 1) here standing for ℓ+ 1, ℓ there and letting k0 = Max{ℓ∗ℓ, f6

Λ̄
(ℓ∗ − ℓ, c)} and

τ∗, Λ̄∗, c∗ defined as there, and we get that f6
Λ̄

(ℓ∗−(ℓ+1), c) ≤ k0+f7
Λ̄∗

(PΛ̄∗ , 1, c∗)−

1 ≤ Max{ℓ∗ℓ, f6
Λ̄

(ℓ∗ − ℓ, c)} + f7
Λ̄∗

(PΛ̄∗ , 1, c∗) − 1 but the last expression is exactly

f6,∗(Λ̄, ℓ + 1, ℓ∗, c).
So (using ℓ = ℓ∗) clearly f6

Λ̄
(0, c) ≤ f6,∗(Λ̄, ℓ∗, ℓ∗, c).

Now f1(Λ̄, c) = f6
Λ̄

(0, c) ≤ f6,∗(Λ̄, ℓ∗, ℓ∗, c) ≤ f6,∗(Λ̄, f1(Λ̄∗∗, c), f1(Λ̄∗∗, c), c).

As f6,∗ is from E7 by 4.7, this clearly give the desired conclusion.
3) Should be clear from the proof of 3.5 and the previous parts. �4.10
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