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Abstract

A function F : R2 → R is sup-measurable if Ff : R → R given
by Ff (x) = F (x, f(x)), x ∈ R, is measurable for each measurable
function f : R → R. It is known that under different set theoretical
assumptions, including CH, there are sup-measurable non-measurable
functions, as well as their category analogues. In this paper we will
show that the existence of the category analogues of sup-measurable
non-measurable functions is independent of ZFC. A similar result for
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the original measurable case is the subject of a work in prepartion by
RosÃlanowski and Shelah.

1 Introduction

Our terminology is standard and follows that from [3], [4], [10], or [12].
In particular, pr : X × Y → X will stand for the projection onto the first
coordinate. A subset A of a Polish space X is nowhere meager provided
A ∩ U is not meager for every non-empty open subset of X.

The ternary Cantor subset of R will be identified with with its home-
omorphic copy, 2ω, which stands for the set of all function x : ω → {0, 1}
considered with the product topology. In particular, the basic open subsets
of 2ω are in the form

[s]
def
= {x ∈ 2ω : s ⊂ f},

where s ∈ 2<ω. Also, since R \ Q is homeomorphic to 2ω \ E for some
countable set E (the set of all eventually constant functions in 2ω) in our
more technical part of the paper we will be able replace R with 2ω.

The study of sup-measurable functions1 comes from the theory of dif-
ferential equations. More precisely it comes from the question: For which
functions F : R2 → R does the Cauchy problem

y′ = F (x, y), y(x0) = y0 (1)

have a (unique) a.e.-solution in the class of locally absolutely continuous
functions on R in the sense that y(x0) = y0 and y′(x) = F (x, y(x)) for almost
all x ∈ R? (For more on this motivation see [8] or [2]. Compare also [9].)
It is not hard to find measurable functions which are not sup-measurable.
(See [13] or [1, Cor. 1.4].) Under the continuum hypothesis CH or some
weaker set-theoretical assumptions nonmeasurable sup-measurable functions
were constructed in [6], [7], [1], and [8]. The independence from ZFC of
the existence of such an example is the subject of a work in prepartion by
RosÃlanowski and Shelah.

A function F : R2 → R is a category analogue of sup-measurable function
(or Baire sup-measurable) provided Ff : R → R given by Ff(x) = F (x, f(x)),
x ∈ R, has the Baire property for each function f : R → R with the Baire

1This is abbreviation from superposition-measurable function.
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property. A Baire sup-measurable function without the Baire property has
been constructed under CH in [5]. (See also [1] and [2].) The main goal of
this paper is to show that the existence of such functions cannot be proved
in ZFC. For this we need the following easy fact. (See [1, Prop. 1.5].)

Proposition 1 The following conditions are equivalent.

(i) There is a Baire sup-measurable function F : R2 → R without the Baire

property.

(ii) There is a function F : R2 → R without the Baire property such that

Ff has the Baire property for every Borel function f : R → R.

(iii) There is a set A ⊂ R2 without the Baire property such that the pro-

jection pr(A ∩ f) = {x ∈ R : 〈x, f(x)〉 ∈ A} has the Baire property for

each Borel function f : R → R.

(iv) There is a Baire sup-measurable function F : R2 → {0, 1} without the
Baire property.

The equivalence of (i) and (ii) follows from the fact that the function
F : R2 → R is Baire sup-measurable if and only if Ff has a Baire property
for every Borel function f : R → R.2

The main theorem of the paper is the following.

Theorem 2 It is consistent with the set theory ZFC that

ϕ: for every A ⊂ 2ω × 2ω for which the sets A and Ac = (2ω × 2ω) \A are

nowhere meager in 2ω × 2ω there exists a homeomorphism f from 2ω

onto 2ω such that the set pr(A ∩ f) does not have the Baire property
in 2ω.

Before proving this theorem let us notice that it implies easily the follow-
ing corollary.

Corollary 3 The existence of Baire sup-measurable function F : R2 → R
without the Baire property is independent from the set theory ZFC.

2It is also true that F : R2 → R is Baire sup-measurable provided Ff has the Baire
property for every Baire class one function f : R → R, and that F : R2 → R is sup-
measurable provided Ff is measurable for every continuous function f : R → R. See for
example [2, lemma 1 and remark 1].
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Proof. As mentioned above under CH there exist Baire sup-measurable
functions without the Baire property. So, it is enough to show that the
property ϕ from Theorem 2 implies that there are no such functions.

So, take an arbitrary A ⊂ R2 without the Baire property. By (iii) of
Proposition 1 it is enough to show there exists a Borel function f : R → R
for which the set pr(A ∩ f) does not have the Baire property.

We will first show this under the additional assumption that the sets A
and R2 \ A are nowhere meager in R2. But then the set A0 = A ∩ (R \Q)2

and its complement are nowhere meager in (R \Q)2. Moreover, since R \Q
is homeomorphic to 2ω \E for some countable set E we can consider A0 as a
subset of (2ω \E)2 ⊂ 2ω× 2ω. Then A0 and its complement are still nowhere
meager in 2ω × 2ω. Therefore, by ϕ, there exists an autohomeomorphism f
of 2ω such that the set pr(A0 ∩ f) = {x ∈ 2ω \ E : 〈x, f(x)〉 ∈ A0} does not
have the Baire property in 2ω. Now, as before, f ¹ (2ω \E) can be considered
as defined on R \ Q. So if f̄ : R → R is an extension of f ¹ (2ω \ E) (under
such identification) to R which is constant on Q, then f̄ is Borel and the set
pr(A0 ∩ f̄) does not have the Baire property in R.

Now, if A is an arbitrary subset of R2 without the Baire property we can
find non-empty open intervals U and W in R such that A and (U ×W ) \ A
are nowhere meager in U ×W . Since U and W are homeomorphic with R
the above case implies the existence of Borel function f0 : U →W such that
pr(A ∩ f0) does not have the Baire property in U . So any Borel extension
f : R → R of f0 works.

2 Reduction of the proof of Theorem 2 to the

main lemma

The theorem will be proved by the method of iterated forcing, a knowledge
of which is needed from this point on.

The idea of the proof is quite simple. For every nowhere meager subset
A of 2ω×2ω for which Ac = (2ω×2ω)\A is also nowhere meager we will find
a natural ccc forcing notion QA which adds the required homeomorphism f .
Then we will start with the constructible universe V = L and iterate with
finite support these notions of forcing in such a way that every nowhere
meager set A∗ ⊂ 2ω × 2ω, with (2ω × 2ω) \A∗ nowhere meager, will be taken
care of by some QA at an appropriate step of iteration.
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There are two technical problems with carrying through this idea. First
is that we cannot possibly list in our iteration all nowhere meager subsets
of 2ω × 2ω with nowhere meager complements since the iteration can be of
length at most continuum c and there are 2c such sets. This problem will be
solved by defining our iteration as Pω2 = 〈〈Pα, Q̇α〉 : α < ω2〉 such that the
generic extension V [G] of V with respect to Pω2 will satisfy 2ω = 2ω1 = ω2

and have the property that

(m) every non-Baire subset A∗ of 2ω contains a non-Baire subset A of car-
dinality ω1.

Thus in the iteration we will use only the forcing notions Qα = QA for the
sets A of cardinality ω1, whose number is equal to ω2, the length of iteration.
Condition (m) will guarantee that this will give us enough control of all
nowhere meager subsets A∗ of 2ω × 2ω.

The second problem is that even if at some stage α < ω2 of our iteration
we will add a homeomorphism f appropriate for a given set A ⊂ 2ω × 2ω,
that is such that

V [Gα] |= “pr(A ∩ f) is not Baire in 2ω,”

where Gα = G ∩ Pα, then in general there is no guarantee that the set
pr(A ∩ f) will remain non-Baire in the final model V [G]. The preservation
of non-Baireness of each appropriate set pr(A ∩ f) will be achieved by care-
fully crafting our iteration following a method known as the oracle-cc forcing
iteration.

The theory of the oracle-cc forcings is described in details in [12, Ch. IV]
(compare also [11, Ch. IV]) and here we will recall only the fragments that
are relevant to our specific situation. In particular if

Γ
def
= {λ < ω1 : λ is a limit ordinal}

then

• an ω1-oracle is any sequence M = 〈Mδ : δ ∈ Γ〉 where Mδ is a countable
transitive model of ZFC− that is, ZFC without the power set axiom)
with a property that δ + 1 ⊂ Mδ, Mδ |= “δ is countable,” and the set
{δ ∈ Γ: A ∩ δ ∈Mδ} is stationary in ω1 for every A ⊂ ω1.
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The existence of an ω1-oracle is equivalent to the diamond principle ♦.
With each ω1-oracle M = 〈Mδ : δ ∈ Γ〉 there is associated a filter DM

generated by the sets IM(A) = {δ ∈ Γ: A∩ δ ∈ Mδ} for A ⊂ ω1. It is proved
in [12, Claim 1.4] that DM is a proper normal filter containing every closed
unbounded subset of Γ.

We will also need the following fact which, for our purposes, can be viewed
as a definition of M-cc property.

Fact 4 Let P be a forcing notion of cardinality ≤ ω1, e : P → ω1 be one-to-

one, and M = 〈Mδ : δ ∈ Γ〉 be an ω1-oracle. If there exists a C ∈ DM such

that for every δ ∈ Γ ∩ C

e−1(E) is predense in P for every set E ∈ Mδ ∩ P(δ), for which
e−1(E) is predense in e−1({γ : γ < δ}),

then P has the M-cc property.

This follows immediately from the definition of M-cc property [12, Defini-
tion 1.5, p. 150].

Our proof will rely on the following main lemma.

Lemma 5 For every A ⊂ 2ω × 2ω for which A and Ac = (2ω × 2ω) \ A are

nowhere meager in 2ω × 2ω and for every ω1-oracleM there exists an M-cc

forcing notion QA of cardinality ω1 such that QA forces

there exists an autohomeomorphism f of 2ω such that the sets

pr(f ∩ A) and pr(f \ A) are nowhere meager in 2ω.

The proof of Lemma 5 represents the core of our argument and will be
presented in the next section. In the remainder of this section we will sketch
how Lemma 5 implies Theorem 2. Since this follows the standard path, as
described in [12, Chapter IV], the readers familiar with this treatment may
proceed directly to the next section.

First of all, to define an appropriate iteration we will treat forcings QA

from Lemma 5 as defined on ω1. More precisely, in the iteration we will always
replace QA with its order isomorphic copy 〈ω1,≤A 〉. So, we can treat any fi-
nite support iteration Pα = 〈〈Pβ, Q̇β〉 : β < α〉 of QA forcing notions as having
an absolute and fixed universe, say Uα = {g ∈ (ω1)

ω2 : g−1(ω1 \ {0}) ∈ [α]<ω}.
This will allow us to treat the ♦ω2-sequence 〈Xα : α < ω2〉 as a sequence of
Pα-names of subsets of 2ω × 2ω. (After appropriate coding.)

We will also need the following variant of [12, Example 2.2].

6
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Lemma 6 Assume that ♦ω1 holds and that S ⊂ 2ω is such that S and Sc

are nowhere meager in 2ω. Then there exists an ω1-oracleM such that if P
is an arbitrary M-cc forcing then P forces that

S and Sc are nowhere meager in 2ω.

Proof. By [12, Example 2.2] for any non-empty basic open set W of 2ω

there are oracles M0
W and M1

W such any M0
W -cc forcing forces that S ∩W

is not meager, and any M1
W -cc forcing forces that Sc∩W is not meager. So,

by [12, Claim 3.1], there is a single ω1-oracle M which “extends” all oracles
Mi

W , and it clearly does the job.

Now, the iteration Pω2 is defined by choosing by induction the sequence
〈〈Pα, Ȧα,Ṁα, Q̇α, ḟα〉 : α < ω2〉 such that for every α < ω2

(a) Pα = 〈〈Pβ, Q̇β〉 : β < α〉 is a finite support iteration,

(b) Ȧα is a Pα-name for which Pα forces that

Ȧα and (Ȧα)c are nowhere meager subsets of 2ω × 2ω,

(c) Ṁα is a Pα-name for which Pα forces that

Ṁα is an ω1-oracle and for every Q̇ satisfying Ṁα-cc we have

(i) for every β < α if Pα = Pβ ∗ Ṗβ,α then

Pβ ° “Ṗβ,α ∗ Q̇ is Ṁβ-cc,”

(ii) if α = γ + 1 then

Q̇ ° “pr(ḟγ ∩ Ȧγ), pr(ḟγ \ Ȧγ) ⊂ 2ω are nowhere meager in 2ω,”

(d) Q̇α is a Pα-name for a forcing such that Pα forces

Q̇α is an Ṁα-cc forcing QȦα
from Lemma 5,

(e) ḟα is a Pα+1-name for which Pα+1 forces that

ḟα is a Q̇α-name for the function f from Lemma 5.

7
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If for some α < ω2 the sequence 〈〈Pβ, Ȧβ,Ṁβ, Q̇β , ḟβ〉 : β < α〉 has been
defined then we proceed as follows. Forcing Pα is already determined by (a).
We choose Ȧα as Xα from the ♦ω2-sequence if it satisfies (b) and arbitrarily,
still maintaining (b), otherwise. Since steps (d) and (e) are facilitated by
Lemma 5, it is enough to construct Ṁα satisfying (c). For this we will
consider two cases.

Case 1: α is a limit ordinal.
For a moment fix a β < α and work in V Pβ . Let Mβ and Pβ,α be the

interpretations of Ṁβ and Ṗβ,α, respectively. By the inductive assumption
for every β < γ < α forcing Pβ,γ is Mβ-cc. So, by [12, Claim 3.2], Pβ,α is
Mβ-cc. Thus, by [12, Claim 3.3], in (V Pβ)Pβ,α = V Pα there is an ω1-oracle
M∗

β such that if Q is M∗
β-cc then Pβ,α ∗Q is Mβ-cc.

So, in V Pα, we have ω1-oracles M∗
β for every β < α. Thus, by [12,

Claim 3.1], in V Pα there exists an ω1-oracle Mα which is stronger than all
M∗

β’s in a sense that if Q is Mα-cc then Q is also M∗
β-cc. So, there is a

Pα-name Ṁα for Mα for which (c) holds.

Case 2: α is a successor ordinal, α = γ + 1. Then Pα = Pγ ∗ Q̇γ.
Since, by (d), Pγ forces that Q̇γ is Ṁγ-cc, using (c) for α = γ we conclude

that
Pβ ° “Ṗβ,α is Ṁβ-cc”

for every β < γ. So, proceeding as in Case 1, in V Pα we can find ω1-oracles
Ṁ∗

β such that

Pβ ° “Ṗβ,α ∗ Q̇ is Ṁβ-cc”

for every Q which is Ṁ∗
β-cc. Let M be an ω1-oracle from Lemma 6 used

with S = pr(ḟγ ∩ Ȧγ). As above we can find, in V Pα, an ω1-oracle Mα which
is stronger than all M∗

β’s and M. Then, there is a Pα-name Ṁα for Mα for
which (c) holds. This finishes the construction of the iteration.

To finish the argument first note that the interpretations of pr(ḟα ∩ Ȧα)
and pr(ḟα \ Ȧα) in the final model V [G] remain nowhere meager in 2ω. This
is the case since, by (e), Pα+1 forces that

pr(ḟα ∩ Ȧα) and pr(ḟα \ Ȧα) are nowhere meager in 2ω,

and, by (c)(i), that

every Ṗα+1,γ is Ṁα+1-cc

8
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while, by condition (c)(ii), every Ṁα+1-cc forcing preserves nowhere meager-
ness of pr(ḟα ∩ Ȧα) and pr(ḟα \ Ȧα). To finish this part of the argument it
is enough to note that Pα+1 forces that “Ṗα+1,ω2 is Ṁα+1-cc” which follows
from [12, Claim 3.2].

To complete the argument it is enough to show that each nowhere meager
subset A∗ of 2ω × 2ω from V [G] with nowhere meager complement contains
an interpretation of some Ȧα. However, Pω2 is ccc. So, if Ȧ is a Pω2-name
for A∗ then the set

{

α ∈ Γ: Pα ° Ȧ ∩ V Pα is nowhere meager in 2ω × 2ω
}

contains a closed unbounded subset of Γ. Thus ♦ω2 guarantees that A∗

contains an interpretation of some Ȧα.

3 Proof of Lemma 5

Let K be the family of all sequences h̄ = 〈hξ : ξ ∈ Γ〉 such that each hξ is a
function from a countable set Dξ ⊂ 2ω onto Rξ ⊂ 2ω and that

Dξ ∩Dη = Rξ ∩ Rη = ∅ for every distinct ξ, η ∈ Γ.

For each h̄ ∈ K we will define a forcing notion Qh̄. Forcing QA satisfying
Lemma 5 will be chosen as Qh̄ for some h̄ ∈ K.

So fix an h̄ ∈ K. Then Qh̄ is defined as the set of all triples p = 〈n, π, h〉
for which

(A) h is a function from a finite subset D of
⋃

ξ∈ΓDξ into 2ω;

(B) n < ω and π is a permutation of 2n;

(C) |D ∩Dξ| ≤ 1 for every ξ ∈ Γ;

(D) if x ∈ D ∩Dξ then h(x) = hξ(x) and h(x) ¹ n = π(x ¹ n).

Forcing Qh̄ is ordered as follows. Condition p′ = 〈n′, π′, h′〉 is stronger than
p = 〈n, π, h〉, p′ ≤ p, provided

n ≤ n′, h ⊂ h′, and π′(s) ¹ n = π(s ¹ n) for every s ∈ 2n
′

. (2)

9
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Note that the second part of (D) says that for every x ∈ D and s ∈ 2n

x ∈ [s] if and only if h(x) ∈ [π(s)]. (3)

Also, if n < ω we will write [s] ¹ 2n for {x ¹ 2n : x ∈ [s]}. Note that in this
notation the part of (2) concerning permutations says that π ′ extends π in a
sense that π′ maps [t] ¹ 2n

′

onto [π(t)] ¹ 2n
′

for every t ∈ 2n.
In what follows we will use the following basic property of Qh̄.

(∗) For every q = 〈n, π, h〉 ∈ Qh̄ and m < ω there exist an n′ ≥ m and a
permutation π′ of 2n

′

such that q′ = 〈n′, π′, h〉 ∈ Qh̄ and q′ extends q.

The choice of such n′ and π′ is easy. First pick n′ ≥ max{m,n} such
that x ¹ n′ 6= y ¹ n′ for every different x and y from either domain D or
range R = h[D] of h. This implies that for every t ∈ 2n the set Dt =
{x ¹ n′ : x ∈ D ∩ [t]} ⊂ [t] ¹ 2n

′

has the same cardinality as D ∩ [t] and
Ht = {x ¹ n′ : x ∈ h[D] ∩ [π(t)]} ⊂ [π(t)] ¹ 2n

′

has the same cardinality as
h[D] ∩ [π(t)]. Since, by (3), we have also |D ∩ [t]| = |h[D] ∩ [π(t)]| we see
that |Dt| = |Ht|. Define π′ on Dt by π′(x ¹ n′) = h(x) ¹ n′ for every x ∈ Dt.
Then π′ is a bijection from Dt onto Ht and this definition ensures that an
appropriate part of the condition (D) for h and π′ is satisfied. Also, if for
each t ∈ 2n we extend π′ onto [t] ¹ 2n

′

as a bijection from ([t] ¹ 2n
′

) \Dt onto
([π(t)] ¹ 2n

′

) \Ht, then the condition (2) will be satisfied. Thus such defined
q′ = 〈n′, π′, h〉 belongs to Qh̄ and extends q.

Next note that forcing Qh̄ has the following property, described in Fact 7,
needed to prove Lemma 5. In what follows we will consider 2ω with the
standard distance:

d(r0, r1) = 2−min{n<ω : r0(n)6=r1(n)}

for different r0, r1 ∈ 2ω.

Fact 7 Let h̄ = 〈hξ : ξ ∈ Γ〉 ∈ K and f =
⋃

{h : 〈n, π, h〉 ∈ H}, where H
is a V -generic filter over Qh̄. Then f is a uniformly continuous one-to-one

function from a subset D of 2ω into 2ω. Moreover, if for every ξ ∈ Γ the

graph of hξ is dense in 2ω × 2ω, then D and f [D] are dense in 2ω and f can

be uniquely extended to an autohomeomorphism f̃ of 2ω.

Proof. Clearly f is a one-to-one function from a subset D of 2ω into 2ω.
To see that it is uniformly continuous choose an ε > 0. We will find δ > 0

10
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such that r0, r1 ∈ D and d(r0, r1) < δ imply d(f(r0), f(r1)) < ε. For this
note that, by (∗), the set

S = {q = 〈n, π, h〉 ∈ Qh̄ : 2−n < ε}

is dense in Qh̄. So take a q = 〈n, π, h〉 ∈ H ∩ S and put δ = 2−n. We claim
that this δ works.

Indeed, take r0, r1 ∈ D such that d(r0, r1) < δ. Then there exists a
q′ = 〈n′, π′, h′〉 ∈ H stronger than q such that r0 and r1 are in the domain
of h′. Therefore, n ≤ n′ and for j < 2

f(rj) ¹ n = h′(rj) ¹ n = (h′(rj) ¹ n′) ¹ n = π′(rj ¹ n′) ¹ n = π(rj ¹ n)

by the conditions (D) and (2). Since d(r0, r1) < δ = 2−n implies that
r0 ¹ n = r1 ¹ n we obtain

f(r0) ¹ n = π(r0 ¹ n) = π(r1 ¹ n) = f(r1) ¹ n

that is, d(f(r0), f(r1)) ≤ 2−n < ε. So f is uniformly continuous.
Essentially the same argument (with the same values of ε and δ) shows

that f−1 : f [D] → D is uniformly continuous. Thus, if f̃ is the unique
continuous extension of f into cl(D), then f̃ is a homeomorphism from cl(D)
onto cl(f [D]).

To finish the argument assume that all functions hξ have dense graphs,
take a t ∈ 2m for some m < ω, and notice that the set

St = {q = 〈n, π, h〉 ∈ Qh̄ : the domain D′ of h intersects [t]}

is dense in Qh̄. Indeed, if q = 〈n, π, h〉 ∈ Qh̄ then, by (∗), strengthening q
if necessary, we can assume that m ≤ n. Then, refining t if necessary, we
can also assume that m = n, that is, that t is in the domain of π. Now, if
[t] intersects the domain of h, then already q belongs to St. Otherwise take
ξ ∈ Γ with D′ ∩Dξ = ∅ and pick 〈x, hξ(x)〉 ∈ [t]× [π(t)], which exists by the
density of the graph of hξ. Then 〈n, π, h ∪ {〈x, hξ(x)〉}〉 belongs to St and
extends q.

This shows that D ∩ [t] 6= ∅ for every t ∈ 2<ω, that is, D is dense in 2ω.
A similar argument shows that for every t ∈ 2<ω the set

St = {q = 〈n, π, h〉 ∈ Qh̄ : the range of h intersects [t]}

11
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is dense in Qh̄, which implies that h[D] is dense in 2ω. Thus f̃ is a homeo-
morphism from cl(D) = 2ω onto cl(h[D]) = 2ω.

Now take A ⊂ 2ω × 2ω for which A and Ac = (2ω × 2ω) \ A are nowhere
meager in 2ω×2ω and fix an ω1-oracle M = 〈Mδ : δ ∈ Γ〉. By Fact 7 in order
to prove Lemma 5 it is enough to find an h̄ = 〈hξ : ξ ∈ Γ〉 ∈ K such that

QA = Qh̄ is M-cc (4)

and Qh̄ forces that, in V [H],

the sets pr(f ∩ A) and pr(f \ A) are nowhere meager in 2ω. (5)

(In (5) function f is defined as in Fact 7.)
To define h̄ we will construct a sequence 〈〈xα, yα〉 ∈ 2ω × 2ω : α < ω1〉

aiming at hξ = {〈xξ+n, yξ+n〉 : n < ω}, where ξ ∈ Γ.
Let {〈sn, tn〉 : n < ω} be an enumeration of 2<ω × 2<ω with each pair

〈s, t〉 appearing for an odd n and for an even n. Points 〈xξ+n, yξ+n〉 are
chosen inductively in such a way that

(i) 〈xξ+n, yξ+n〉 is a Cohen real over Mδ[〈〈xα, yα〉 : α < ξ + n〉] for every
δ ≤ ξ, δ ∈ Γ, that is, 〈xξ+n, yξ+n〉 is outside all meager subsets of
2ω × 2ω which are coded in Mδ[〈〈xα, yα〉 : α < ξ + n〉];

(ii) 〈xξ+n, yξ+n〉 ∈ A if n is even, and 〈xξ+n, yξ+n〉 ∈ Ac otherwise.

(iii) 〈xξ+n, yξ+n〉 ∈ [sn]× [tn].

The choice of 〈xξ+n, yξ+n〉 is possible since both sets A and Ac are nowhere
meager, and we consider each time only countably many meager sets. Con-
dition (iii) guarantees that the graph of each of hξ will be dense in 2ω × 2ω.
Note that if Γ 3 δ ≤ α0 < · · · < αk−1, where k < ω, then (by the product
lemma in Mδ)

〈〈xαi , yαi〉 : i < k〉 is an Mδ-generic Cohen real in (2ω × 2ω)k. (6)

For q = 〈n, π, h〉 ∈ Qh̄ define

q̂ =
⋃

〈s,t〉∈π

[s]× [t].

12
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Clearly q̂ is an open subset of 2ω×2ω and condition (2) implies that for every
q, r ∈ Qh̄ with r = 〈n′, π′, h′〉

if q ≤ r then q̂ ⊂ r̂ and q̂ ∩ ([s]× [t]) 6= ∅ for every 〈s, t〉 ∈ π′. (7)

Also for δ ∈ Γ let (Qh̄)δ =
{

〈n, π, h〉 ∈ Qh̄ : h ⊂
⋃

ζ<δ hζ

}

. To prove (4) and

(5) we will use also the following fact.

Fact 8 Let δ ∈ Γ and let E ∈ Mδ be a predense subset of (Qh̄)δ. Then for

every k < ω and p = 〈n, π, h〉 ∈ (Qh̄)δ the set

Bk
p =

⋃

{

(q̂)k : q extends p and some q0 ∈ E
}

(8)

is dense in (p̂)k ⊂ (2ω × 2ω)k.

Proof. By way of contradiction assume that Bk
p is not dense in (p̂)k. Then

there exist m < ω and s0, t0, . . . , sk−1, tk−1 ∈ 2m with the property that
P =

∏

i<k([si] × [ti]) ⊂ (p̂)k is disjoint from Bk
p . Increasing m and refining

the si’s and tj’s, if necessary, we may assume that m ≥ n, all si’s and tj’s are
different,

⋃

i<k[si] is disjoint from the domain D of h, and h[D]∩
⋃

i<k[ti] = ∅.
We can also assume that x ¹ m 6= y ¹ m for every different x and y from
D and from h[D]. Now, refining slightly the argument for (∗) we can find
r = 〈m, π′, h〉 ∈ (Qh̄)δ extending p such that π′(si) = ti for every i < k.
(Note that P ⊂ (p̂)k.) We will obtain a contradiction with the predensity of
E in (Qh̄)δ by showing that r is incompatible with every element of E.

Indeed if q were an extension of r ≤ p and an element q0 of E, then we
would have (q̂)k ⊂ Bk

p . But then, by (7) and the fact that 〈si, ti〉 ∈ π′ for
i < k, we would also have (q̂)k ∩ P 6= ∅, contradicting P ∩ Bk

p = ∅. This
finishes the proof of Fact 8.

Now we are ready to prove (4), that is, that Qh̄ isM-cc. So, fix a bijection
e : Qh̄ → ω1 and let

C =
{

δ ∈ Γ: (Qh̄)δ = e−1(δ) ∈Mδ

}

.

Then C ∈ DM. (Just use a suitable nice codding or [12, Claim 1.4(4)].) Take
a δ ∈ C and fix an E ⊂ δ, E ∈ Mδ, for which e−1(E) is predense in (Qh̄)δ.
By Fact 4 it is enough to show that

e−1(E) is predense in Qh̄.

13
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Take p0 = 〈n, π, h0〉 from Qh̄, let h = h0 ¹
⋃

η<δDη and h1 = h0 \ h,

and notice that the condition p = 〈n, π, h〉 belongs to (Qh̄)δ. Assume that
h1 = {〈xi, yi〉 : i < k}. Since s(h1) = 〈〈xi, yi〉 : i < k〉 ∈ (p̂)k, Bk

p ∈ Mδ (as
defined from (Qh̄)δ ∈ Mδ) and, by Fact 8, Bk

p is dense in (p̂)k condition (6)
implies that s(h1) ∈ Bk

p . So there are q = 〈n0, π0, g〉 ∈ (Qh̄)δ extending p
and some q0 ∈ e−1(E) for which s(h1) ∈ q̂k. But then p′ = 〈n0, π0, g ∪ h1〉
belongs to Qh̄ and extends q. This finishes the proof of (4).

The proof of (5) is similar. We will prove only that pr(f \A) = pr(f ∩Ac)
is nowhere meager in 2ω, the argument for pr(f ∩ A) being essentially the
same.

By way of contradiction assume that pr(f \ A) is not nowhere meager
in 2ω. So there exists an s∗ ∈ 2<ω such that pr(f \ A) is meager in [s∗]. Let
a condition p∗ ∈ Qh̄ and Qh̄-names U̇m, for m < ω, be such

p∗ °Qh̄
each U̇m is an open dense subset of [s∗] and pr(f \ A) ∩

⋂

m<ω

U̇m = ∅.

For each m < ω, since p∗ forces that U̇m is an open dense subset of [s∗], for
every t ∈ 2<ω extending s∗ there is a maximal antichain 〈pms,k : k < κms 〉 in Qh̄

forcing that U̇m ∩ [t] contains some basic open subset [s].
Note that each of these antichains must be countable, since the forcing

notion Qh̄ is M-cc and therefore ccc. Combining all these antichains we get
a sequence 〈pms,k ∈ Qh̄ : m < ω, s ∈ 2<ω, k < κms 〉 such that

• κms ≤ ω,

• pms,k °Qh̄
[s] ⊆ U̇m,

• for every q ∈ Qh̄ extending p∗ and t ∈ 2<ω extending s∗ there are
s ∈ 2<ω and k < κms such that the conditions q and pms,k are compatible
and t ⊂ s.

Note that for sufficiently large δ ∈ Γ we have pms,k ∈ (Qh̄)δ for all m < ω,
s ∈ 2<ω, and k < κms .

Now, by the definition of ω1-oracle, the set B0 of all δ ∈ Γ for which

〈pms,k ∈ Qh̄ : m < ω, s ∈ 2<ω, k < κms 〉 ∈Mδ and (Qh̄)δ ∈Mδ

is stationary in ω1. (Just use a suitable nice coding, or see [12, Ch.IV,
Claim 1.4(4)]). Thus, using clause (iii) of the choice of xξ’s, we may find a
δ ∈ B0, an odd j < ω, and a condition p0 = 〈n0, π0, h0〉 ∈ Qh̄ such that

14
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• p0 ≤ p∗, s∗ ⊂ xδ+j , and

• xδ+j belongs to the domain of h0.

Then p0 ° “xδ+j ∈ [s∗]∩proj(f\A)” (remember j is odd so 〈xδ+j, yδ+j〉 ∈ Ac).
We will show that

p0 ° xδ+j ∈
⋂

m<ω

U̇m,

which will finish the proof.
So, assume that this is not the case. Then there exist an i < ω and

a p1 = 〈n, π, h1〉 ∈ Qh̄ stronger than p0 such that p1 ° “xδ+j /∈ U̇i.” Let
us define h = h1 ¹ {xα : α < δ} and h1 \ h = {〈al, bl〉 : l < m}. Notice
that the condition p = 〈n, π, h〉 belongs to (Qh̄)δ. We can also assume that
〈xδ+j, yδ+j〉 = 〈a0, b0〉.

Now consider the set Z of all 〈z0, z
′
0, . . . , zm−1, z

′
m−1〉 ∈ (2ω × 2ω)m for

which

• there exist s ∈ 2<ω, k < κis, and q ∈ (Qh̄)δ such that s ⊂ z0, q extends
p and pis,k, and 〈z0, z

′
0, . . . , zm−1, z

′
m−1〉 ∈ (q̂)m.

Claim The set Z belongs to the model Mδ and it is an open dense subset

of (p̂)m.

Proof. It should be clear that Z is (coded) in Mδ. (Remember the choice
of δ.) To show that it is dense in (p̂)m we proceed like in the proof of Fact 8.
We choose s0, t0, . . . , sm−1, tm−1 and r exactly as there. Next pick a condition
q ∈ Qh̄, a sequence s ∈ 2<ω, and k < κms such that

s0 ⊂ s and q extends pis,k and r.

(Remember the choice of the pis,k’s.) Clearly we can demand that q ∈ (Qh̄)δ.
Now note that it is possible to choose a z̄ = 〈z0, z

′
0, . . . , zm−1, z

′
m−1〉 ∈ (q̂)m

such that s ⊂ z0, si ⊂ zi, ti ⊂ z′i. Then z̄ ∈ Z ∩
∏

i<k([si]× [ti]).
Since Z is clearly open, this completes the proof of Claim.

Now, by (6) and the Claim above, 〈〈al, bl〉 : l < m〉 belongs to Z since
〈〈al, bl〉 : l < m〉 belongs to (p̂1)

m = (p̂)m. But this means that there exist
q = 〈nq, πq, hq〉 ∈ (Qh̄)δ and s ∈ 2<ω such that:

• q ≤ p, q °“[s] ⊆ U̇i”, and

• 〈〈al, bl〉 : l < m〉 ∈ (q̂)m, and xδ+j = a0 ∈ [s].
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But then p2 = 〈nq, πq, hq ∪ {〈al, bl〉 : l < m}〉 belongs to Qh̄ and extends
both q and p1. So, p2 forces that xδ+j = a0 ∈ [s] ⊆ U̇i, contradicting our
assumption that p1 ° “xδ+j /∈ U̇i.”

This finishes the proof of (5) and of Lemma 5.
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