ON ULTRAPRODUCTS OF BOOLEAN ALGEBRAS AND IRR **SH703** SAHARON SHELAH Institute of Mathematics The Hebrew University Jerusalem, Israel Rutgers University Mathematics Department New Brunswick, NJ USA I would like to thank Alice Leonhardt for the beautiful typing. Latest revision - 02/June/11 ### Annotated Content #### §1 Consistent inequality [We prove the consistency of $\operatorname{irr}(\prod_{i<\kappa} B_i/D) < \prod_{i<\kappa} \operatorname{irr}(B_i)/D$ where D is an ultrafilter on κ and each B_i is a Boolean algebra and irr(B) is the maximal size of irredundant subsets of a Boolean algebra B, see full definition in the text. This solves the last problem, 35, of this form from Monk's list of problems in [M2]. The solution applies to many other properties, e.g. Souslinity. #### $\S 2$ Consistency for small cardinals We get similar results with $\kappa = \aleph_1$ (easily we cannot have it for $\kappa = \aleph_0$) and Boolean algebras B_i ($i < \kappa$) of cardinality $< \beth_{\omega_1}$. This article continues Magidor Shelah [MgSh 433] and Shelah Spinas [ShSi 677], but does not rely on them: see [M2] for the background. #### §1 Consistent inequality - **1.1 Definition.** Assume $\mu < \lambda, \lambda$ is strongly inaccessible Mahlo. Let $B^* = B_{\lambda}$ be the Boolean algebra freely generated by $\{x_{\alpha} : \alpha < \lambda\}$ and for $u \subseteq \lambda$ let B_u be the subalgebra of B^* generated by $\{x_{\alpha} : \alpha \in u\}$. - 1) We define a forcing notion $\mathbb{Q} = \mathbb{Q}^1_{\mu,\lambda}$ as follows: - $p \in \mathbb{Q}$ iff: p has form (w^p, B^p) , we may write (w[p], B[p]) for typographical reasons, satisfying: - (i) $w^p = w[p] \subseteq \lambda$ - (ii) $B^p = B[p]$ is a Boolean algebra of the form $B_{w[p]}/I^p$ where $I^p = I[p]$ is an ideal of $B_{w[p]}$, so B^p is generated by $\{x_{\alpha}/I^p : \alpha \in w^p\}$ - (iii) $x_{\alpha}/I^{p} \notin \langle \{x_{\beta}/I^{p} : \beta \in w^{p} \cap \alpha \} \rangle_{B[p]}$, equivalently $x_{\alpha} \notin \langle \{x_{\beta} : \beta \in w^{p} \cap \alpha \} \cup I^{p} \rangle_{B_{w[p]}}$ - (iv) for every strongly inaccessible $\chi \in (\mu, \lambda]$ we have $|w^p \cap \chi| < \chi$. The order is given by $p \leq q$ iff $w^p \subseteq w^q$ and $I^p = I^q \cap B_{w[q]}$, so, abusing notation, we pretend that $B^p \subseteq B^q$, not distinguishing sometimes x_α from $x_\alpha/I^p \in B^p$ or (see below) from x_α/I in B. - 2) We define $\underline{I} = \bigcup \{I^p : p \in G_{\mathbb{Q}^1_{\mu,\kappa}}\}$ and \underline{B} is defined as $B_{\lambda}/\underline{I}$. - **1.2 Claim.** For $\mu < \lambda$ as in Definition 1.1, the forcing notion $\mathbb{Q}^1_{\mu,\lambda}$ is μ^+ -complete (hence, adds no new subsets to μ), has cardinality λ , satisfies the λ -c.c., collapse no cardinal, changes no cofinality, so cardinal arithmetic which holds after the forcing is clear. *Proof.* Like the proof of the same facts for Easton forcing. - **1.3 Claim.** For the forcing $\mathbb{Q} = \mathbb{Q}^1_{\mu,\lambda}$ with μ,λ as in Definition 1.1 we have $1) \Vdash_{\mathbb{Q}} \text{"} \underline{P} \text{ is a Boolean Algebra generated by } \{x_{\alpha} : \alpha < \lambda\} \text{ such that } \alpha < \lambda \Rightarrow x_{\alpha} \notin \{x_{\beta} : \beta < \alpha\} \rangle_{B}, \text{ so } |\underline{P}| = \lambda \text{ and } \lambda = \cup \{w^{p} : p \in \underline{G}_{\mathbb{Q}}\}\text{"}.$ - 2) $\Vdash_{\mathbb{Q}}$ " $irr^+(\underline{B}) = \lambda = irr(\underline{B})$ ", see Definition 1.4 below. - 3) $\Vdash_{\mathbb{Q}}$ "if $y_{\beta} \in \underline{B}$ for $\beta < \lambda$ then for some $\beta_0 < \beta_1 < \beta_2 < \lambda$ we have $\underline{B} \models y_{\beta_1} \cap y_{\beta_2} = y_{\beta_0}$ ". - 4) Let B^* be a finite Boolean algebra generated by $\{a^*, b^*, y_0^*, \dots, y_{n(*)}^*\}$ such that $y_m^* \notin \langle \{y_\ell^* : \ell < m\} \cup \{a^*, b^*\} \rangle_{B^*}$ and $0 < a^* < y_m^* < b^* < 1 \text{ for } m \in \{0, \dots, n(*)\}.$ <u>Then</u> it is forced, $(\Vdash_{\mathbb{Q}^1_{\mu,\lambda}})$ that: $\Box_{\underline{B}}^{\lambda,n(*)} \qquad if \ y_{\beta} \in \underline{B} \ for \ \beta < \lambda \ and \ \beta \neq \gamma \Rightarrow y_{\beta} \neq y_{\gamma} \ \underline{then} \ we \ can \ find$ $a, b \ in \ \underline{B} \ satisfying \ 0 < a < b < 1 \ and$ $\beta_0 < \ldots < \beta_{n(*)} < \lambda \ such \ that$ - (α) $B \models "a < y_{\beta_{\ell}} < b"$ - (β) there is an embedding f of B^* into \underline{B} mapping a^* to a, b^* to b and y_{ℓ} to $y_{\beta_{\ell}}^*$ for $\ell = 0, \ldots, n(*)$. ## Recalling - **1.4 Definition.** For a Boolean algebra B let: - 1) $X \subseteq B$ is called irredundant, if no $x \in X$ belongs to the subalgebra $\langle X \setminus \{x\} \rangle_B$ of B generated by $X \setminus \{x\}$. - 2) $\operatorname{irr}^+(B) = \bigcup \{|X|^+ : X \subseteq B \text{ is irredundent}\}.$ - 3) $irr(B) = \bigcup \{|X| : X \subseteq B \text{ is irredundent}\}\$ so irr(B) is $irr^+(B)$ if the latter is a limit cardinal and is the predecessor of $irr^+(B)$ if the later is a successor cardinal. Remark. Concerning 1.3, for the case $\kappa = \aleph_1$ see Rubin [Ru83], generally see [Sh 128], [Sh:e]. Proof of 1.3. 1) Should be clear. - 2) Clearly for every $\chi < \lambda$ and $p \in \mathbb{Q}^1_{\mu,\lambda}$ we can find an $\alpha < \lambda$ such that $\alpha > \chi$ and $w^p \cap [\alpha, \alpha + \chi) = \emptyset$, hence we can find a q such that $p \leq q \in \mathbb{Q}^1_{\mu,\lambda}$ and $w^q = w^p \cup [\alpha, \alpha + \chi)$ and in B^q the set $\{x_\beta : \beta \in [\alpha, \alpha + \chi)\}$ is independent, hence $q \Vdash \text{``irr}^+(B) > \chi$ ". So we get $\Vdash \text{``irr}^+(B) \geq \lambda$. To prove equality use part (3). - 3) Assume toward contradiction that $p \Vdash \text{``}\langle \underline{y}_{\beta} : \beta < \lambda \rangle$ is a counterexample''. We can find for each $\beta < \lambda$ a quadruple $(p_{\beta}, n_{\beta}, \langle \alpha_{\beta, \ell} : \ell < n_{\beta} \rangle, \sigma_{\beta})$ such that: - $(i) \ p \le p_{\beta} \in \mathbb{Q}^1_{\mu,\lambda}$ - (ii) $n_{\beta} < \omega$ - (iii) $\alpha_{\beta,\ell} \in w^{p_{\beta}}$ increasing with ℓ - (iv) $\sigma_{\beta}(x_0,\ldots,x_{n_{\beta}-1})$ is a Boolean term - (v) $p_{\beta} \Vdash$ "in \underline{B} we have $\underline{y}_{\beta} = \sigma_{\beta}(x_{\alpha_{\beta,0}}, x_{\alpha_{\beta,1}}, \dots, x_{\alpha_{\beta,n_{\beta}-1}})$ ". Call the right-hand side y_{β} , so by part (1), without loss of generality, $\{\alpha_{\beta,\ell} : \ell < n_{\beta}\} \subseteq w^{p_{\beta}}$ hence y_{β} is a member of $B_{w[p_{\beta}]}$. So we can choose a stationary $S \subseteq \{\chi : \chi \text{ strongly inaccessible}, \mu < \chi < \lambda\}$ and $n, \sigma, m, \langle \alpha_{\ell} : \ell < m \rangle, w, r \text{ such that}$ for every $\beta \in S$ we have: $n_{\beta} = n \& \sigma_{\beta} = \sigma, \ell < m \Rightarrow \alpha_{\beta,\ell} = \alpha_{\ell}, \ell \in [m,n) \Rightarrow \alpha_{\beta,\ell} \geq \beta$ and $w^{p_{\beta}} \cap \beta = w$. Without loss of generality also $\alpha < \beta \in S \Rightarrow w^{p_{\alpha}} \subseteq \beta$. Without loss of generality \circledast for β_0, β_1 in S the mapping $F_{\beta_0,\beta_1} = \mathrm{id}_w \cup \{\langle (\alpha_{\beta_0,\ell}, \alpha_{\beta_1,\ell}) : \ell < n \rangle\}$ induces an isomorphism g_{β_1,β_0} from the Boolean algebra $\langle \{x_\gamma : \gamma \in w\} \cup \{x_{\beta_0,\ell} : \ell < n\} \rangle_{B[p_{\beta_0}]}$ onto the Boolean algebra $\langle \{x_\gamma : \gamma \in w\} \cup \{x_{\beta_1,\ell} : \ell < n\} \rangle_{B[p_{\beta_1}]}$ that is g_{β_1,β_0} maps x_γ to x_γ for $\gamma \in w$ and maps $x_{\beta_0,\ell}$ to $x_{\beta_1,\ell}$ for $\ell < n$. Choose in S three ordinals $\beta_0 < \beta_1 < \beta_2$ and we define $q \in \mathbb{Q}^1_{\mu,\lambda}$ such that $w^q = w[p_{\beta_0}] \cup w[p_{\beta_1}] \cup w[p_{\beta_2}]$ and B^q is the Boolean algebra generated by $\{x_\alpha : \alpha \in w[p_{\beta_0}] \cup w[p_{\beta_1}] \cup w[p_{\beta_2}]\}$ freely except the equations which hold in p_{β_ℓ} for each $\ell = 0, 1, 2$ and the equation $y_{\beta_1} \cap y_{\beta_2} = y_{\beta_0}$, in other words I^q is the ideal of B_{w^q} generated by $I[p_{\beta_0}] \cup I[p_{\beta_1}] \cup I[p_{\beta_2}] \cup \{y_{\beta_1} \cap y_{\beta_2} - y_{\beta_0}, y_{\beta_0} - y_{\beta_1} \cap y_{\beta_2}\}$. We should prove that $q \in \mathbb{Q}^1_{\mu,\lambda}$ and $I[q] \cap B_{w[p_{\beta_\ell}]} = I[p_{\beta_\ell}]$ for $\ell = 0, 1, 2$ (the rest: $p_{\beta_\ell} \leq q$ hence $p \leq q$ and $q \Vdash "y_{\beta_\ell} = y_{\beta_\ell}$ for $\ell = 0, 1, 2$ and $y_{\beta_1} \cap y_{\beta_2} = y_{\beta_0}$ " should be clear). For $w \subseteq \lambda$ and $f \in {}^{w}2$ let \hat{f} be the unique homomorphism from the Boolean algebra B_{w} freely generated by $\{x_{\alpha} : \alpha \in w\}$ to $\{0,1\}$ such that $\alpha \in w \Rightarrow \hat{f}(x_{\alpha}) = f(\alpha)$. For $p^{*} \in \mathbb{Q}^{1}_{\mu,\lambda}$ let $\mathscr{F}[p^{*}] = \{f : f \in {}^{(w^{p^{*}})}2 \text{ and } \{x_{\alpha} : f(\alpha) = 1\} \cup \{-x_{\alpha} : f(\alpha) = 0\}$ generates an ultrafilter of $B[p^{*}]\}$. For each $f \in \mathscr{F}[p^{*}]$ let $f^{[p^{*}]}$ be the homomorphism Let B_0 be the trivial Boolean algebra $\{0,1\}$. from $B[p^*]$ to B_0 induced by f, i.e., $f^{[p^*]}(x_\alpha) = f(\alpha)$ for every $\alpha \in w^{p^*}$. Clearly $\mathscr{F}[p^*]$ gives all the information on p^* . Define $u = w^{p_{\beta_0}} \bigcup w^{p_{\beta_1}} \bigcup w^{p_{\beta_2}}$ and let $$\mathscr{F} = \left\{ f : f \in {}^{u}2, \text{ and } \ell \leq 2 \Rightarrow f \upharpoonright w[p_{\beta_{\ell}}] \in
\mathscr{F}[p_{\beta_{\ell}}] \text{ and} \right.$$ $$B_{0} \models \text{``}\hat{f}(\sigma(\langle x_{\beta_{1},\ell} : \ell < n \rangle)) \cap \hat{f}(\sigma(\langle x_{\beta_{2},\ell} : \ell < n \rangle))$$ $$= \hat{f}(\sigma(\langle x_{\beta_{0},\ell} : \ell < n \rangle))\text{'`} \right\}.$$ We need to show that \mathscr{F} is rich enough, clearly $\otimes_1 + \otimes_2$ below suffice. \bigotimes_1 if $\ell \in \{0, 1, 2\}$ and $f_\ell \in \mathscr{F}[p_{\beta_\ell}]$ then there is an $f \in \mathscr{F}$ extending f_ℓ . [Why? For m=0,1,2 let p'_{β_m} be such that $B[p'_{\beta_m}]$ is the subalgebra of $B[p_{\beta_m}]$ generated by $\{x_\gamma: \gamma \in w[p_{\beta_m}] \text{ and } \gamma < \beta_m \vee \gamma \in \{\alpha_{\beta_m,0},\ldots,\alpha_{\beta_m,n-1}\}\}$. We define for m=0,1,2 a homomorphism g_m from $B[p'_{\beta_m}]$ to B_0 such that: $\gamma \in w \Rightarrow g_m(x_\gamma) = f_\ell(\gamma)$ and $\gamma = \beta_{m,k} \Rightarrow g_m(x_\gamma) = f_\ell(\beta_{\ell,k})$. This is possible by \circledast and let h_m be chosen as follows: it is $f_\ell^{[p_{\beta_\ell}]}$ if $\ell=m$ and it is chosen as any homomorphism (703) revision:2002-06-11 from $B[p_{\beta_m}]$ to B_0 extending g_m if $m \in \{0,1,2\} \setminus \{\ell\}$, as $B[p'_{\beta_m}]$ is a subalgebra of $B[p_{\beta_m}]$ this clearly exists. Let $f_m \in {}^{w[p_{\beta_\ell}]}2$ for m=0,1,2 be $f_m(\gamma)=h_m(x_\gamma)$; for $m=\ell$ the definitions are compatible; i.e., the definition of f_{ℓ} we have just given and the old one. Finally, let $f = f_0 \cup f_1 \cup f_2$. This is clearly a well defined function; now of the three conditions in the definition of \mathscr{F} , the first holds by the definition of u, the second by the choice of the h_m 's and the third by the choice of the g_m 's, it is easy to see $f_{\ell} \subseteq f \in \mathscr{F}$.] \bigotimes_2 if $\ell \in \{0,1,2\}, \alpha \in w[p_{\beta_\ell}]$ then there are $f', f'' \in \mathscr{F}$ such that $f'(\alpha) \neq f''(\alpha)$ but $f' \upharpoonright (\alpha \cap u) = f'' \upharpoonright (\alpha \cap u)$. [Why? As $p_{\beta_{\ell}} \in \mathbb{Q}^1_{\mu,\lambda}$ we can find $f'_{\ell}, f''_{\ell} \in \mathscr{F}[p_{\beta_{\ell}}]$ such that $f'_{\ell}(\alpha) \neq f''_{\ell}(\alpha)$ but $f'_{\ell} \upharpoonright (\alpha \cap w[p_{\beta_{\ell}}]) = f'' \upharpoonright (\alpha \cap w[p_{\beta_{\ell}}])$. Now for $m \in \{0, 1, 2, \} \setminus \{\ell\}$ recalling \circledast above there are $f'_{m} \in \mathscr{F}[p_{\beta_{m}}]$ which extends $f'_{\ell} \circ F_{\beta_{\ell},\beta_{m}}$ and $f''_{m} \in \mathscr{F}[p_{\beta_{m}}]$ which extends $f''_{m} \circ F_{\beta_{\ell},\beta_{m}}$ in both cases this is shown as in the proof of \otimes_{1} . If $\ell = 0$, let $f' = f'_0 \cup f'_1 \cup f''_2 \in \mathscr{F}$ and let $f'' = f''_0 \cup f''_1 \cup f''_2 \in \mathscr{F}$; both memberships hold as in the proof of \otimes_1 and we are done. Also if $\alpha < \beta_\ell$ (so $\alpha \in w = \bigcap_{m \leq 2} w[p_{\beta_m}]$) the same proof works. So assume $\ell \neq 0, \alpha \notin w = \bigcap w[p_{\beta_m}]$. If $(f'_{\ell})^{[p_{\beta_{\ell}}]}(y_{\beta_{\ell}}) =$ $(f''_{\ell})^{[p_{\beta_{\ell}}]}(y_{\beta_{\ell}})$ let $f' = f'_0 \cup f'_1 \cup f'_2, f'' = f''_{\ell} \cup (f' \upharpoonright (w[p_{\beta_0}] \cup w[p_{\beta_{3-\ell}}])),$ clearly O.K. So without loss of generality assume $(f'_{\ell})^{[p_{\beta_{\ell}}]}(y_{\beta_{\ell}}) = 0, (f''_{\ell})^{[p_{\beta_{\ell}}]}(y_{\beta_{\ell}}) = 1, \ell \in \{1, 2\}$ and $\alpha \in w[p_{\beta_{\ell}}] \setminus w[p_{\beta_0}]$; and then choose $f' = f'_0 \cup f'_1 \cup f'_2$ as above and $f'' = f''_{\ell} \cup (f')$ $(w[p_{\beta_0}] \cup w[\beta_{\beta_{3-\ell}}])$. Now check; the main point is that as $\hat{f}'_{3-\ell}(y_{\beta_{3-\ell}}) = \hat{f}'_0(y_{\beta_0})$ we have $B_0 \models \text{``}\hat{f}''(y_{\beta_1}) \cap \hat{f}''(y_{\beta_2}) = \hat{f}''(y_{\beta_\ell}) \cap \hat{f}''(y_{\beta_{3-\ell}}) = \hat{f}''(y_{\beta_\ell}) \cap \hat{f}'(y_{\beta_{3-\ell}}) = \hat{f}''(y_{\beta_1}) \cap \hat{f}'(y_{\beta_3-\ell}) = \hat{f}''(y_{\beta_1}) \cap \hat{f}''(y_{\beta_2}) \hat{f}''(y_{\beta_2}) \cap \hat{f}''(y_{\beta_2}) = \hat$ $1_{B_0} \cap \hat{f}'_{3-\ell}(y_{\beta_{3-\ell}}) = \hat{f}'_{3-\ell}(y_{\beta_{3-\ell}}) = \hat{f}'_0(y_{\beta_0}) = \hat{f}''(y_{\beta_0}).$ 4) The proof is similar to that of the previous part (with a, b now in $p_{\beta_{\ell}} \upharpoonright \beta_{\ell}!$). $\square_{1.3}$ - **1.5 Claim.** 1) If $\mathbb{Q} = \mathbb{Q}^1_{\mu,\lambda} * \mathbb{Q}^2$ and $\Vdash_{\mathbb{Q}^1_{\mu,\lambda}} "\mathbb{Q}^2$ satisfies the $(\lambda,3)$ -Knaster condition (see below)", $\underline{then} \Vdash_{\mathbb{Q}} "irr^+(B) = \lambda$ ". - 2) If in **V** the condition $\square_B^{\lambda,n(*)}$ from 1.3(4) holds and the forcing notion \mathbb{Q} satisfies the (λ, n^*+1) -Knaster condition <u>then</u> also in $\mathbf{V}^{\mathbb{Q}}$ the condition $\Box_B^{\lambda, n(*)}$ holds. Hence $if \mathbb{Q} = \mathbb{Q}^1_{\mu,\lambda} * \mathbb{Q}^2 \ and \Vdash_{\mathbb{Q}_{\lambda,\mu}} \text{``} \square_B^{\lambda,n(*)} \ holds \ (see 1.3(4))" \ and \Vdash_{\mathbb{Q}^1_{\lambda,\mu}} \text{``} \mathbb{Q}^2 \ satisfies \ the$ $(\lambda, n(*) + 1)$ -Knaster condition" <u>then</u> $\Vdash_{\mathbb{Q}^1_{\lambda, \mu} * \mathbb{Q}^2}$ " $\boxdot_B^{\lambda, n(*)}$ ". - 3) In part (1) we even get the conclusion of Claim 1.3(3). - **1.6 Definition.** 1) The λ -Knaster condition says that among any λ members there is a set of λ members which are pairwise compatible. Recall that it is preserved by composition. - 2) For $n^* \leq \omega$, the (λ, n^*) -Knaster condition says that among any λ member there is a set of λ such that any $< 1 + n^*$ of them have a common upper bound. Proof of 1.5. 1), 3) Clearly it suffices to prove (3). This follows immediately by 1.3(3), in fact, just such \mathbb{Q}^2 preserves the properties mentioned there. 2) Similarly using 1.3(4). #### $\square_{1.5}$ ## 1.7 Theorem. Suppose - (a) V satisfies GCH above μ (for simplicity) - (b) κ is measurable, $\kappa < \chi < \mu$ - (c) μ is supercompact, Laver indestructible, more explicitly, - (*) for some $h_{\ell}: \mu \to \mathscr{H}(\mu)$, (for $\ell = 0, 1$) we have for every $(< \mu)$ directed complete forcing \mathbb{Q} , cardinal $\theta \geq \mu$ and \mathbb{Q} -name x of a subset of θ , there is in $\mathbf{V}[G_{\mathbb{Q}}]$ a normal ultrafilter \mathscr{D} on $[\theta]^{<\mu}$ such that $\prod_{a \in [\theta]^{<\mu}} (h_1(a \cap \mu), h_2(a \cap \mu))/\mathscr{D} \cong (\theta, x[G_{\mathbb{Q}}])$ - (d) $\lambda > \mu$ is strongly inaccessible, Mahlo and λ^* is such that $\lambda^* = (\lambda^*)^{\mu} \geq \lambda$ - (e) D^* is a normal ultrafilter on κ . <u>Then</u> for some forcing notion \mathbb{P} we have, in $\mathbf{V}^{\mathbb{P}}$: - (α) forcing with \mathbb{P} collapse no cardinal of \mathbf{V} except those in the interval (μ^+, λ) - (β) forcing with \mathbb{P} adds no subsets to χ , preserves " μ is strong limit" and makes $2^{\mu} = \lambda^*$ - (γ) μ is strong limit of cofinality κ and $\langle \mu_i : i < \kappa \rangle$ is an increasing continuous sequence of strong limit cardinals with limit μ - (δ) for each $i < \kappa, \mu_i < \lambda_i \le \lambda_i^* = (\lambda_i^*)^{\mu_i} = 2^{\mu_i}$ and we let $\mu_{\kappa} = \mu, \lambda_{\kappa} = \lambda, \lambda_{\kappa}^* = \lambda^*$ - (ε) for each $i \leq \kappa$ we have: B_i is a Boolean algebra of cardinality λ_i and $irr^+(B_i) = \lambda_i$ - (ζ) for $i < \kappa, \lambda_i$ is a Mahlo cardinal even strongly inaccessible, but - (η) $\lambda = \lambda_{\kappa}$ is μ^{++} (this in $\mathbf{V}^{\mathbb{P}}$) - (θ) $B = B_{\kappa}$ is isomorphic to $\prod_{i < \kappa} B_i/D^*$, hence - \boxtimes $\operatorname{irr}^+(B) = \lambda = \mu^{++}$ so $\operatorname{irr}(B) = \mu^{+}$ whereas $\operatorname{irr}(B_i) = \operatorname{irr}^+(B_i) = \lambda_i$ and $\prod_{i < \kappa} \lambda_i / D^* = \lambda$, so $\operatorname{irr}(\prod_{i < \kappa} B_i / D^*) < \prod_{i < \kappa} \operatorname{irr}(B_i) / D^*$. *Proof.* Let $\mathbb{Q}_1 = \mathbb{Q}^1_{\mu,\lambda}$ and B be from 1.2, let and for $Z \subseteq \lambda^*$ let $\mathbb{Q}_{2,Z}$ be $\{f : f \text{ a partial function from } Z \text{ to } \{0,1\}$ with domain of cardinality $< \mu\}$ ordered by inclusion, let $\mathbb{Q}_2 = \mathbb{Q}_{2,\lambda^*}$ and let $\mathbb{Q} = \mathbb{Q}_1 \times \mathbb{Q}_2$. Let $G = G_1 \times G_2 \subseteq \mathbb{Q}$ be generic over \mathbf{V} and let $\mathbf{V}_0 = \mathbf{V}, \mathbf{V}_1 = \mathbf{V}[G_1]$ and $\mathbf{V}_2 = \mathbf{V}[G] = \mathbf{V}_1[G_2]$. \boxtimes_0 In \mathbf{V}_2 , $\underline{\mathcal{P}}[G_1]$ is a Boolean algebra of cardinality λ with $\operatorname{irr}^+(B) = \lambda$ and, for notational simplicity, with a set of elements λ . [Why? In \mathbf{V}_1 , $\underline{\mathcal{P}}[G_1]$ is like that by 1.3. Now as in \mathbf{V}_1 , \mathbb{Q}_2 satisfies the (λ, n) -Knaster for every n hence clearly by 1.5 we are done.] In V_2 we have $2^{\mu} = \lambda^*$ and the cardinal μ is still supercompact, hence it is well known that \boxtimes_1 for every $Y \subseteq 2^{\mu}$ for some normal ultrafilter \mathscr{D} on μ and $\bar{Y} = \langle Y_i : i < \mu \rangle, Y_i \subseteq 2^{|i|}$ we have \bar{Y}/\mathscr{D} is Y (i.e. $\bar{Y}/\mathscr{D} \in \mathbf{V}_2^{\mu}/\mathscr{D}$ and in the Mostowski Collapse of $\mathbf{V}_2^{\mu}/\mathscr{D}$ the element \bar{Y}/\mathscr{D} is mapped to Y), hence $(2^{\mu}, Y, \mu, <)$ is isomorphic to $\prod_{i \leq \mu} (2^{|i|}, Y_i, i,
<)/\mathscr{D}$. Again it is well known and follows from \boxtimes_1 that there is a sequence $\bar{\mathscr{D}}^0 = \langle \mathscr{D}_{\zeta}^0 : \zeta < (2^{\mu}) \rangle^+$ of normal (fine) ultrafilters on μ satisfying: for each $\zeta < (2^{\mu})^+$ the sequence $\bar{\mathscr{D}}^0 \upharpoonright \zeta$ belongs to (the Mostowski collapse of) $\mathbf{V}_2^{\mu}/\mathscr{D}_{\zeta}^0$. In \mathbf{V}_2 we can code $\underline{B} = \underline{B}[G_1]$ and $\mathscr{P}(\mu)$ and $\bar{\mathscr{D}}^0 \upharpoonright \kappa$ as a subset Y of $2^{\mu} = \lambda^*$ and get \mathscr{D}, \bar{Y} as in \boxtimes_1 hence for some set $A \in \mathscr{D}$ of strongly inaccessible cardinals $> \chi$ there is a sequence $\langle (\mu_i, \lambda_i, B_i, \lambda_i^*) : i \in A \rangle$ such that: - (*)₁ for $i \in A$ we have $i = \mu_i < \lambda_i \le \lambda_i^* = (\lambda_i^*)^{\mu_i} < \mu, \lambda_i$ is weakly inaccessible, Mahlo, B_i is a Boolean algebra generated by $\{x_\alpha : \alpha < \lambda_i\}, x_\alpha \notin \langle \{x_\beta : \beta < \alpha \} \rangle_{B_i}$, irr⁺ $(B_i) = \lambda_i$ and, for notational simplicity, its sets of elements is λ_i - $(*)_2$ B is isomorphic to $\prod_{i \in A} B_i/\mathscr{D}$ and $(\lambda^*, <) \cong \prod_{i \in A} (\lambda_i^*, <)/\mathscr{D}$. For $i \in \mu \backslash A$ choose $\mu_i, \lambda_i, \lambda_i^*, B_i$ such that $(*)_1$ holds such that $\mu_i \geq i$; why are there such λ_i, B_i ? Just e.g. use $\lambda_{\min(A \backslash i)}, B_{\min(A \backslash i)}$. Let $\mathscr{D}_i = \mathscr{D}_i^0$ for $i < \kappa$ and \mathscr{D}_{κ} be the \mathscr{D} as above. So \mathscr{D}_i (for $i \le \kappa$) is a normal ultrafilter on μ and we have $i < j \le \kappa \Rightarrow \mathscr{D}_i \in \mathbf{V}_2^{\mu}/\mathscr{D}_j$, that is, there is a sequence $\bar{g} = \langle g_{i,j} : i < j \le \kappa \rangle$ satisfying $g_{i,j} \in {}^{\mu}(\mathscr{H}(\mu))$ such that \mathscr{D}_i is (the Mostowski collapse of) $g_{i,j}/\mathscr{D}_j \in \mathbf{V}_2^{\mu}/\mathscr{D}_j$. All this was in $\mathbf{V}_2 = \mathbf{V}[G]$. So we have \mathbb{Q} -names $\bar{g} = \langle g_{i,j} : i < j \leq \kappa \rangle$, $\bar{\mathcal{Q}} = \langle \mathcal{Q}_i : i \leq \kappa \rangle$ and $\langle (\mu_i, \lambda_i, B_i, \lambda_i^*) : i < \mu \rangle$. As $\mathbb{Q} = \mathbb{Q}_1 \times \mathbb{Q}_2$, \mathbb{Q}_2 satisfies the μ^+ -c.c. and \mathbb{Q}_1 is μ^+ -complete without loss of generality \bar{g} is a \mathbb{Q}_2 -name and \bar{g} is from $\mathbf{V}[G_2]$. Hence without loss of generality \bar{g} and similarly $\langle (\mu_i, \lambda_i, B_i, \lambda_i^*) : i < \mu \rangle$ belong to $\mathbf{V}[G_{2,Z}]$ where $G_{2,Z} = G_2 \cap \mathbb{Q}_{2,Z}$, as we could have forced first with $\{f \in \mathbb{Q}_2 : \mathrm{Dom}(f) \subseteq Z\}$ for some $Z \in [\lambda^*]^{\leq \mu}$. Let $\mathbb{P}(\bar{\mathcal{Q}}, \bar{g})$ be (the \mathbb{Q} -name of the) Magidor forcing for $(\bar{\mathcal{Q}}, \bar{g})$ (see [Mg4]). Let $\langle \mu_i : i < \kappa \rangle$ be the $\mathbb{P}(\bar{\mathcal{Q}}, \bar{g})$ -name of the increasing continuous κ -sequence converging to μ which the forcing adds and we can restrict ourselves to the case $\mu_0 > \chi$. Clearly clauses $(\alpha) - (\zeta)$ in the conclusion hold for $\mathbb{P} = \mathbb{Q} * \mathbb{P}(\bar{\mathcal{D}}, \bar{g})$. Now \boxtimes_2 in \mathbf{V}_2 , if $p \in \mathbb{P}(\bar{\mathscr{D}}, \bar{g})$ and $p \Vdash$ " $\tilde{f} \in \prod_{i < \kappa} \lambda_{\mu_i}$ " then there are q, an extension of p in $\mathbb{P}(\bar{D}, \bar{g})$ and $f \in \prod_{i \in A^*} \lambda_i$ such that $q \Vdash_{\mathbb{P}(\bar{\mathscr{D}}, \bar{g})}$ " $\{i < \kappa : \tilde{f}(i) = f(\mu_i)\} \in D^*$ ". [Why? By the properties of $\mathbb{P}(\bar{\mathcal{D}}, \bar{g})$ there are a pure extension q_0 of p in $\mathbb{P}(\bar{\mathcal{D}}, \bar{g})$ and/or sequence $\langle u_i : i < \kappa \rangle$ such that above q_0 we have: f(i) depends just on $\langle \mu_j : j \in u_i \cup \{i\} \rangle$ where $u_i \subseteq i$ is finite. As D^* is a normal ultrafilter on κ , for some $a^* \in D^*$ and a finite $u \subseteq \kappa$ we have $i \in a^* \Rightarrow u_i = u$. So there is a q such that $\mathbb{P}(\bar{\mathcal{D}}, \bar{g}) \models q_0 \leq q$ and $q \Vdash "\mu_j = \mu_j^*"$ for $j \in u$, and so f is well defined.] Let $G_3 \subseteq \mathbb{P}(\bar{\mathcal{D}}, \bar{g})$ be generic over \mathbf{V}_2 and $\mathbf{V}_3 = \mathbf{V}_2[G_3]$ and let $\mu_i = \underline{\mu}_i[G_3]$ so really $\langle \mu_i : i < \kappa \rangle$ is generic for $\mathbb{P}(\bar{\mathcal{D}}, \bar{g})$. Now we shall show that: \boxtimes_3 in $\mathbf{V}_3 = \mathbf{V}_2[G_3]$ we have $$B \cong \prod_{i < \kappa} B_{\mu_i} / D^*.$$ [Why? In V_2 , by $(*)_2$ above there is an isomorphism F from B onto $\prod_{i < \mu} B_i / \mathscr{D} = \prod_{i \in A^*} B_i / \mathscr{D}_{\kappa}, \text{ so let } F(x) = f_x / \mathscr{D}_{\kappa} \text{ with } f_x \in \prod_{i \in A^*} \lambda_i \text{ for } x \in B,$ i.e. $x \in \lambda$. In V_3 let $f'_x \in \prod \lambda_{\mu_i}$ be defined by $f'_x(i) = f_x(\mu_i)$ and we define a func- tion F' from B, i.e. from λ to $\prod B_{\mu_i}/D^*$ by $F'(x) = f'_x/D^*$. Now $Y \in \mathscr{D} \Rightarrow \{i < \kappa : \mu_i \in Y\} = \kappa \mod J_{\kappa}^{bd} \text{ by the definition of } \mathbb{P}(\bar{\mathscr{D}}, \bar{g}),$ so as F is one to one also F' is, and F' commute with the Boolean operations as F does; lastly F' is onto by \boxtimes_2 . \boxtimes_4 if $i < \kappa$ then $\mathscr{H}(\mu_{i+1})^{\mathbf{V}_3}$ is the same as $\mathscr{H}(\mu_{i+1})^{\mathbf{V}_0^{\mathbb{P}_i}}$, for some μ_i -centered forcing notion from $\mathcal{H}(\mu_{i+1})$ (hence this forcing notion is λ_{μ_i} -Knaster). [Why? Note that $\mathscr{H}(\mu_j)^{\mathbf{V}_2} = \mathscr{H}(\mu_j)^{\mathbf{V}_0}$ for $j \leq \kappa$. Also for each $i < \kappa$ in \mathbf{V}_0 there are \mathscr{D}_{i}^{i} , a normal ultrafilter on μ_{i} such that $(\bar{\mathscr{D}}^{i}, \bar{g}^{i}) = (\langle \mathscr{D}_{j}^{i} : j \leq i \rangle, \langle g_{j_{1}, j_{2}} \upharpoonright \mu_{i} : j_{1} < i \rangle)$ $(j_2 \leq i\rangle) \in \mathbf{V}$ is as above, i.e. $(j_1 < j_2 \leq i \Rightarrow \mathcal{D}^i_{j_1} = g_{j_1,j_2}/\mathcal{D}^i_{j_2} \in \mathbf{V}^{\mu_i}/\mathcal{D}^i_{j_2}, g^i_{j_1,j_2} \in \mathbf{V}^{\mu_i}/\mathcal{D}^i_{j_2}$ $\mu_i(\mathscr{H}(\mu_i))$ so $\mathbb{P}(\bar{\mathscr{D}}^i, \bar{g}^i)$ is as in [Mg4], and for some $G_{3,i} \subseteq \mathbb{P}(\langle \mathscr{D}^i_j : j \leq i \rangle, \langle g_{j_1,j_2} | i \rangle)$ $\mu_i: j_1 \leq \mu_2 \leq i\rangle$) generic over \mathbf{V}_0 (equivalently over \mathbf{V}_2) we have $G_{3,i} \in \mathbf{V}_3$ and $\mathscr{H}(\mu_{i+1})^{\mathbf{V}_3} = \mathscr{H}(\mu_{i+1})^{\mathbf{V}_2[G_{3,i}]} = \mathscr{H}(\mu_{i+1})^{\mathbf{V}_0[G_{3,i}]}$. See [Mg4]. As $\mathbb{P}(\bar{D}^i, \bar{g}^i)$ is μ_{i-1} centered, clearly \boxtimes_4 follows.] So obviously (by 1.5) \boxtimes_5 in \mathbf{V}_3 , for each $i < \kappa$ we have B_{μ_i} is a Boolean algebra of cardinality λ_{μ_i} , $\operatorname{irr}^+(B_{\mu_i}) = \lambda_{\mu_i}, \lambda_{\mu_i}$ is weakly Mahlo. Also in $V[G_1]$, the forcing notion \mathbb{Q}_2 satisfies the λ -Knaster condition and in V_2 $\mathbf{V}[G_1, G_2]$, the forcing notion $\mathbb{P}(\bar{\mathcal{D}}, \bar{g})$ from [Mg4] is μ -centered hence satisfies the λ -Knaster hence \boxtimes_6 in \mathbf{V}_3, B is a Boolean Algebra of cardinality λ , a Mahlo cardinal and $\operatorname{irr}^+(B) = \lambda.$ Now let $\mathbb{R} = \text{Levy}(\mu^+, <\lambda)^{\mathbf{V}} = \{f \in \mathbf{V} : \text{Dom}(f) \subseteq \{(\alpha, \gamma) : \alpha < \lambda, \gamma < \alpha\} \}$ μ^+ , $|\text{Dom}(f)| \le \mu$ and for $\gamma < \alpha$, we have $f(\alpha, \gamma) < 1 + \alpha$, ordered by inclusion. Clearly \mathbb{R} satisfies the λ -Knaster condition, is μ^+ -complete in \mathbf{V} and also in \mathbf{V}_1 . Let $G_{\mathbb{R}} \subseteq \mathbb{R}$ be generic over \mathbf{V}_1 . Now in $\mathbf{V}[G_1, G_{\mathbb{R}}]$, the forcing notion \mathbb{Q}_2 has the same definition and same properties. Also (as in [MgSh 433], [ShSi 677]), in $\mathbf{V}[G_1, G_2, G_{\mathbb{R}}]$ the $\mathcal{D}_i(i \leq \kappa)$ are still normal ultrafilters on μ and the definition of $\mathbb{P}(\bar{\mathcal{D}},\bar{q})$ gives the same forcing notion with the same properties and add the same family of subsets to κ (as $\mathscr{P}(\kappa)^{\mathbf{V}[G_1,G_2]} = \mathscr{P}(\kappa)^{\mathbf{V}[G_1,G_2,G_{\mathbb{R}}]}$). So $G_{\mathbb{R}}$ is a subset of \mathbb{R} generic over $V[G_1, G_2, G_3]$. Also in $V[G_1, G_2]$, \mathbb{R} satisfies the λ -Knaster condition and in $\mathbf{V}[G_1, G_2, G_{\mathbb{R}}], \mathbb{P}(\bar{\mathcal{D}}, \bar{g})$ is μ -centered hence satisfies the λ -Knaster condition. Let $\mathbf{V}_4 = \mathbf{V}_3[G_{\mathbb{R}}]$, so in \mathbf{V}_4 all the conclusions above holds but $\lambda = \mu^{++}$ hence $irr(B) = \mu^{+}$ whereas $irr^{+}(B)$ remains $\lambda = \mu^{++}$. So we are done. $\square_{1.7}$ **1.8 Claim.** 1) In the Theorem 1.7 we can replace "a Boolean algebra B of cardinality λ , $irr^+(B) = \lambda$ " by e.g. "a λ -Souslin tree" The " λ strongly inaccessible Mahlo" is needed just for applying 1.3, etc., but for $\prod B_i/D^* \cong B$ it is not needed (any model M, with universe $\subseteq \lambda$ is O.K.) 2) We can apply the proof above to the proof in [Sh 128] hence to theories of cardi $nality < \mu \ for \ simplicity \ in \ logics \ with \ Magidor \ Malitz \ quantifiers.$
Proof. Similar to 1.7. $\square_{1.7}$ ### §2 Consistency for small cardinals Theorem 2.1 generalizes 1.7 in some ways. First D^* , instead of being a normal ultrafilter on κ is just a normal filter which is large in an appropriate sense so later it will be applied to the case $\kappa = \aleph_1$ (after a suitable preliminary forcing). Second, we deal with a general model and properties. Thirdly, the forcing makes μ to \beth_{κ} (and more) ### 2.1 Theorem. Suppose - (a) V satisfies GCH for every $\mu' \ge \mu$ (for simplicity) - (b) κ is regular uncountable, $\aleph_0 \leq \theta \leq \kappa < \chi < \mu < \vartheta < \lambda \leq \lambda^* = (\lambda^*)^{\mu}$, say $\vartheta = \mu^+$ - (c) μ is supercompact, Laver indestructibly or just indestructibly λ^* -hypermeasure (generally on such indestructibility see [GiSh 344], on the amount of hypermeasurable needed here see Gitik Magidor [GM]) - (d) D^* is a filter on κ including the clubs and if f is a pressing down function on κ then for some $u \in [\kappa]^{<\theta}$ we have $\{\delta < \kappa : f(\delta) \in u\} \in D^*$ - (e) \mathbb{Q}_1 is a $(<\mu)$ -directed complete forcing, $|\mathbb{Q}_1| \leq \lambda^*$ and $\Vdash_{\mathbb{Q}_1}$ "M is a model with universe λ and vocabulary $\tau \in \mathcal{H}(\chi)$ " - (f) \mathbb{R} is a μ^{++} -complete forcing notion of cardinality $\leq \lambda^*$ - (g) \mathbb{Q}_2 is the forcing of adding λ^* μ -Cohen subsets to μ and $\mathbb{Q} = \mathbb{Q}_1 \times \mathbb{Q}_2$. <u>Then</u> for some forcing notion \mathbb{P} we have $\mathbb{Q}_1 \times \mathbb{Q}_2 \times \mathbb{R} \lessdot \mathbb{P}$ and in $\mathbf{V}^{\mathbb{P}}$: - (α) the forcing with \mathbb{P} collapse no cardinal except those collapsed by $\mathbb{Q}_1 \times \mathbb{R}$, in fact $\mathbb{P}/(\mathbb{Q}_1 \times \mathbb{Q}_2 \times \mathbb{R})$ is ϑ^- -centered; i.e., $\mu^{+\alpha}$ -centered if $\vartheta = \mu^{+\alpha+1}$ - (β) forcing with \mathbb{P} add no subset of χ , forcing with $\mathbb{P}/(\mathbb{Q}_1 \times \mathbb{Q}_2 \times \mathbb{R})$ satisfies $\boxtimes_{\kappa,\mu,\vartheta,\lambda,\lambda^*}^+$ from Definition 2.2 below as witnessed by $\langle \mu_i : i < \kappa \rangle$ - (γ) $\mu_i = \mu_i[G_{\mathbb{P}}], \mu$ is strong limit of cofinality κ and $\langle \mu_i : i < \kappa \rangle$ is an increasing continuous sequence of strong limit singulars with limit μ (and $\mathcal{H}(\mu_{i+1})$ satisfies a parallel of the statement \boxtimes_4 from the proof of 1.7), - (δ) for each $i < \kappa$ we have $\mu_i < \lambda_i \le \lambda_i^* = (\lambda_i^*)^{\mu_i}$ and $\mu_{\kappa} = \mu, \lambda_{\kappa} = \lambda, \lambda_{\kappa}^* = \lambda^*$ and $(\mu_i, \lambda_i, \lambda_i^*)$ is quite similar to $(\mu, \lambda, \lambda^*)$ (see proof), more specifically: in some intermediate universe \mathbf{V}_1 , for some normal ultrafilter \mathscr{D} on μ and $F, F_* : \mu \to \mu$ we have $\prod_{i < \mu} (F(i), <)/D \cong (\lambda, <), \lambda_i = F(\mu_i)$ and $$\prod_{i<\mu} (F_*(i),<)/\mathscr{D} \cong (\lambda^*,<) \text{ and } F_*(\mu_i) = \lambda_i^* \text{ and we have } \bar{M} = \langle M_i : i < \mu \rangle$$ and M_i a model with universe λ_i and vocabulary τ ; and $\prod_{i \leq \mu} M_i/\mathscr{D} \cong M$ - (ε) for $i < \kappa$ we have $2^{\mu_i} = \lambda_i^*$ and $2^{\lambda_i^*} = \mu_{i+1}$ - (ζ) $\prod_{i < \kappa} M_{\mu_i}/D^*$ is isomorphic to M if D^* is a normal ultrafilter, in fact, $\{\langle f(\mu_i) : i < \kappa \rangle / D^* : f \in \mathbf{V}_1 \text{ and } f \in \prod_{i < \mu} F(i) \}$ is the universe of $\prod_{i < \kappa} M_{\mu_i}/D^*$ - (η) for every $f \in \prod_{i < \kappa} M_i/D^*$ we can in \mathbf{V}_1 find $\varepsilon(f) < \theta$ and $g_{f,\varepsilon} \in \prod_{i < \mu} F(i)$ for $\varepsilon < \varepsilon(f)$ such that $\{i < \kappa : \bigvee_{\varepsilon < \varepsilon(f)} f(i) = g_{f,\varepsilon}(\mu_i)\} \in D^*$ - (θ) $\prod_{i < \kappa} (\lambda_i, <)/D^*$ is λ-like linear ordering (not necessarily well ordering as possibly $\theta > \aleph_0$) - (i) if D^* is a normal ultrafilter, $\mathbb{Q}_1 = \mathbb{Q}^1_{\mu,\lambda}$ (of 1.1) and $\mathbb{R} = \text{Levy}(\mu, < \lambda)$, then the conclusion on irr in 1.7 holds. - **2.2 Definition.** 1) We say $\boxtimes_{\gamma,\mu,\vartheta,\lambda^*}(\mathbb{Q})$ or we say \mathbb{Q} satisfies $\boxtimes_{\gamma,\mu,\vartheta,\lambda^*}$ (as witnessed by $(\bar{\mu},\mathcal{D})$ if: - (i) \mathbb{Q} is a forcing notion of cardinality $\leq \lambda^*$ - (ii) \mathbb{Q} satisfies the θ -c.c. - (iii) \mathbb{Q} (i.e. forcing with \mathbb{Q}) add a sequence $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma \rangle$ of cardinals $\langle \underline{\mu}_i : i < \gamma$ - $(iv) \Vdash_{\mathbb{Q}}$ " $\mu_i (i < \gamma)$ is increasing continuous" - (v) \mathscr{D} is a normal ultrafilter on μ - (vi) for every $p \in \mathbb{Q}$ for some $\beta < \gamma$ for every $A \in \mathcal{D}$ there is q satisfying $p \leq q \in \mathbb{Q}$ such that $q \Vdash \text{``}\{\mu_i : \beta < i < \gamma\} \subseteq A\text{''}$ - (vii) if γ is a limit ordinal then $\Vdash_{\mathbb{Q}}$ " $\mu = \bigcup_{i < \gamma} \mu_i$ " - (viii) in $\mathbf{V}^{\mathbb{Q}}$ we have $2^{\mu} = \lambda^*$ and μ is strong limit. - 2) We say $\boxtimes_{\gamma,\mu,\vartheta,\lambda^*}^+(\mathbb{Q})$ or we say \mathbb{Q} satisfies $\boxtimes_{\gamma,\mu,\vartheta,\lambda^*}^+$ (as witnessed by $(\bar{\mu}, f_{\theta}, f_{\lambda^*})$ if: - (a) \mathbb{Q} satisfies $\boxtimes_{\gamma,\mu,\vartheta,\lambda^*}$ as witnessed by $\bar{\mu} = \langle \mu_i : i < \gamma \rangle$ - (b) if $G \subseteq \mathbb{Q}$ is generic over \mathbf{V} then for every $\beta < \gamma$ we have $\mathscr{H}(\mu_{\beta+1})^{\mathbf{V}^{\mathbb{Q}}}$ is gotten from $\mathscr{H}(\mu_{\beta+1})^{\mathbf{V}}$ by a forcing $\mathbb{Q}_{\beta+1}$ which is like \mathbb{Q} with (β, μ_{β}) here standing for (γ, μ) there. *Proof.* Like the proof of 1.7 but we use [GM] instead of [Mg4]; note that $\vartheta = \mu^{+3}$ comes from making the forcing μ^{+3} -c.c. So the pure decision of $\mathbb{P}(\bar{\mathcal{D}}, \bar{g})$ is changed accordingly. Of course, the change in
the assumption on D^* also has some influence. $\square_{2.1}$ So we get e.g. - <u>2.3 Conclusion</u>: Assume **V** satisfies ZFC + μ is supercompact +" $\lambda > \mu$ is strong inaccessible". - 1) For some forcing extension V^* , for some ultrafilter D^* on ω_1 there is $\langle \lambda_i : i < \omega_1 \rangle$ such that: - (i) for $i < \omega_1, \lambda_i$ is weakly inaccessible $< \beth_{\omega_1}$ - (ii) $\lambda = \beth_{\omega_1}^{++}$ - (iii) the linear order $\prod_{i<\omega_1}(\lambda_i,<)/D^*$ is λ -like, - (iv) λ_i is first weakly inaccessible $> \beth_i$. - 2) In part (1) we have: for some sequence $\langle B_i : i < \omega_1 \rangle$ of Boolean algebras, each of cardinality $\langle \beth_{\omega_1}$ we have Length($\prod_{i < \omega_1} B_i/D^*$) $\langle \prod_{i < \omega_1} \text{Length}(B_i)/D^*$. 3) If λ in $\mathbf{V}, \lambda > \mu$ is Mahlo, replace (iv) by (iv)' and we can demand in addition - 3) If λ in $\mathbf{V}, \lambda > \mu$ is Mahlo, replace (iv) by (iv)' and we can demand in addition that for some sequence $\langle B_i : i < \omega_1 \rangle$ of Boolean algebra, $|B_i| = \operatorname{irr}(B_i) = \lambda_i$ we have $\operatorname{irr}(\prod_{i < \omega_1} B_i/D^*) = \beth_{\omega_1}^+ < \prod_{i < \omega_1} \lambda_i/D^*$ where - (iv)' λ_i is the first weakly inaccessible Mahlo cardinal $> \beth_i$. - *Proof.* 1) We start getting by forcing using a forcing notion from $\mathcal{H}(\mu)$ (see [Sh:f, Ch.XVI,2.5,p.793] and history there) a normal filter D^0 on ω_1 such that $\mathcal{P}(\omega_1)/D^*$ is layered¹ and $\diamondsuit_{\aleph_1} + 2^{\aleph_1} = \aleph_2$. Hence (see [FMSh 252] and history there) there is an ultrafilter D^* on ω_1 extending D as required in 2.1 clause (d) for $\kappa = \theta =$ \aleph_1 , that is: if $g \in {}^{\omega_1}\omega_1$ is pressing down on some member of D^* then for some $\alpha < \omega_1, \{\beta < \omega_1 : g(\beta) < \alpha\} \in D^*$. Next by forcing with some \aleph_2 -complete μ -c.c. forcing notion of cardinality μ , we get Laver indestructibility (by [L]). Now apply 2.1 with $\kappa = \theta = \aleph_1, \mathbb{R} = \text{Levy}(\mu^+, < \lambda), \mathbb{Q}_1$ trivial or for part (3) as in 1.1 recall that λ is inaccessible. Note that easily in $\mathbf{V}^{\mathbb{P}}$, $(\forall \lambda_1 < \lambda)(\lambda_1^{\aleph_0} < \lambda)$. The main new point is clause (iii) which follows by clause (η) of the conclusion of 2.1 and the previous sentence; see the proof of part (3). - 2) The proofs in [MgSh 433] applies also in our changed circumstances. - 3) But for irr the problem seems more involved. We use 2.5 below instead of 1.3 and note that \mathbb{Q}_2 , \mathbb{R} and the Gitik Magidor forcing $\mathbb{P}/(\mathbb{Q}_1 \times \mathbb{Q}_2 \times \mathbb{R})$ though not fully preserving $(*)_{\lambda,<\mu,\underline{p}}$ of 2.5 below it still preserves enough as we now prove. So in $\mathbf{V}^{\mathbb{P}}$ let $f_{\alpha}/D^* \in \prod_{i < \kappa} B_{\mu_i}/D^*$ so $f_{\alpha} \in \prod_{i < \kappa} B_{\mu_i}$ for $\alpha < \lambda$. For each α we can find in \mathbf{V}_2 a sequence $\langle g_{\alpha,n} : n < \omega \rangle$ satisfying $g_{\alpha,n} \in \prod_{i < \kappa} B_i$ such that $\{i < \omega_1 : (\exists n)(f_\alpha(i) = g_{\alpha,n}(\mu_i))\} \in D^*$. Without loss of generality we have $A_{\alpha,n} = A_n$ where $A_{\alpha,n} = \{i < \omega_1 : f_{\alpha}(i) = g_{\alpha,n}(\mu_i)\}$, as $2^{\aleph_1} < \beth_{\omega_1} < \lambda = \operatorname{cf}(\lambda)$. Now in V_1 , there is an isomorphism \mathbf{j} from $\prod B_i/\mathscr{D}$ onto B, so $\mathbf{j}(g_{\alpha,n}/\mathscr{D}) \in B$. In $\mathbf{V}_2[G_{\mathbb{R}}]$ we apply $(*)_{\lambda,\aleph_0,B}$ of 2.5 and find $\beta_0 < \beta_1 < \beta_2 < \beta_3 < \lambda$ such that $n < \omega \Rightarrow B \models \mathbf{j}(g_{\beta_0,n}/\mathscr{D}) = \sigma(\mathbf{j}(g_{\beta_0,n}/\mathscr{D}), \mathbf{j}(g_{\beta_0,n}/\mathscr{D}), \mathbf{j}(g_{\beta_3,n}/\mathscr{D}))$ where σ is the Boolean term $\sigma^*(x_0, x_1, x_2) = (x_0 \cap x_1) \cup (x_0 \cap x_2) \cup (x_1 \cap x_2)$. Hence $$Y_n = {}^{df} \{ \zeta < \mu : B_{\zeta} \models g_{\beta_0,n}(\zeta) = \sigma^*(g_{\beta_1,n}(\zeta), g_{\beta_2,n}(\zeta), g_{\beta_3,n}(\zeta)) \} \in \mathscr{D}$$ hence $Y = \bigcap_{i \in \mathcal{D}} Y_n \in \mathcal{D}$ hence for some $i^* < \kappa, (\forall i)[i^* \le i < \kappa \to \mu_i \in Y]$ but $\mu_i \in Y \stackrel{n<\omega}{\Rightarrow} (\forall n < \omega)[B_{\mu_i} \models g_{\beta_0,n}(\mu_i) = \sigma(g_{\beta_1,n}(\zeta), g_{\beta_i,n}(\zeta), g_{\beta_3,n}(\zeta))]$. As $A_{\beta_{\ell},n} = A_n$ we are done. $\square_{2.3}$ 2.4 Remark. 1) In 2.3(1),(2) without loss of generality \beth_{ω_1} is the limit of the first ω_1 (weakly) inaccessible. 2) In 2.3(3) without loss of generality \beth_{ω_1} is the limit of the first ω_1 Mahlo (weakly) ¹it means that this Boolean algebra is $\bigcup B_i^*, B_i^*$ is a Boolean algebra of cardinality \aleph_1 , increasing continuous with i, and $cf(i) = \aleph_1 \Rightarrow B_i \lessdot \mathscr{P}(\omega_1)/D^*$ (703) revision:2002-06-11 inaccessible. Can we omit Mahlo? - 3) Of course, 2.3 is just one extreme variant. - 4) If we would like to replace in 2.3, \aleph_1 by $\kappa = \kappa^{<\kappa} > \aleph_1$, we can use [FMSh 252], hence higher large cardinals. - **2.5 Claim.** 1) For $\mathbb{Q} = \mathbb{Q}^1_{\mu,\lambda}$, B as in 1.3 we have, for $\tau < \mu$ it is forced $(\Vdash_{\mathbb{Q}^1_{\mu,\lambda}})$ that: - $(*)_{\lambda,\tau,\underline{B}} \text{ if } y_{\alpha,\varepsilon} \in \underline{B} \text{ for } \alpha < \lambda, \varepsilon < \tau \text{ <u>then</u> for some } \beta_0 < \beta_1 < \beta_2 < \beta_3 \text{ we have}$ $\varepsilon < \tau \Rightarrow y_{\beta_0,\varepsilon} = \sigma^*(y_{\beta_1,\varepsilon}, y_{\beta_2,\varepsilon}, y_{\beta_3,\varepsilon}) \text{ where } \sigma^*(y_1, y_2, y_3) = (y_1 \cap y_2) \cup (y_1 \cap y_3) \cup (y_2 \cap y_3).$ - 2) If B is a Boolean algebra, $\tau < \lambda$ and \mathbb{Q}^* is τ^+ -complete (or just do not add new τ -sequence of ordinals < |B|) and satisfies the $(\lambda, 4)$ -Knaster property (i.e. among any λ conditions there are λ , any three of them has a common upper bound), then forcing by \mathbb{Q}^* preserve $(*)_{\lambda,\tau,B}$. - Proof. 1) As in the proof of 1.3, again the point is checking $(*)_{\lambda,\tau,\underline{B}}$ so let $p \Vdash "\langle \underline{y}_{\beta,\varepsilon} : \beta < \lambda, \varepsilon < \tau \rangle$ be a counterexample". For each $\alpha < \lambda$ choose p_{α} such that $p \leq p_{\alpha}$ and $p_{\alpha} \Vdash "\underline{y}_{\alpha,\varepsilon} = y_{\alpha,\varepsilon}"$ for $\varepsilon < \tau$ and without loss of generality $y_{\alpha,\varepsilon} \in B_{w[p_{\alpha}]}$ and choose $\alpha_{\beta,\zeta} \in w[p_{\beta}]$ for $\zeta < \zeta_{\beta}$ such that $y_{\beta,\varepsilon} \in \langle \{x_{\gamma} : \gamma \in \{\alpha_{\beta,\varepsilon} : \varepsilon < \zeta_{\beta}\} \rangle_{B[p_{\beta_{\varepsilon}}]}$ for some $\zeta_{\beta} < \tau^+$ with $\alpha_{\beta,\varepsilon}$ increasing with ε , and let $\xi_{\beta} \leq \zeta_{\beta}$ be such that $(\forall \varepsilon)[\alpha_{\beta,\varepsilon} < \beta \equiv \varepsilon < \xi_{\beta}]$. Let $y_{\beta,\varepsilon} = \sigma_{\beta,\varepsilon}(\dots,x_{\alpha_{\beta,\varepsilon}},\dots)_{\varepsilon<\zeta_{\beta}}$ (so the term $\sigma_{\beta,\varepsilon}$ uses only finitely many of its variables). We choose S, w, r, etc., as in the proof there with $\xi \leq \zeta$, $\langle \alpha_{\varepsilon} : \varepsilon < \xi \rangle$, $\langle \sigma_{\varepsilon} : \varepsilon < \tau \rangle$ replacing $m \leq n$, $\langle \alpha_{\ell} : \ell < m \rangle$, σ . We choose $\beta_0 < \beta_1 < \beta_2 < \beta_3$ in S and it is enough to find $q \in \mathbb{Q}^1_{\mu,\lambda}$ such that $\ell < 4 \Rightarrow p_{\beta_\ell} \leq q$ and $q \Vdash "y_{\beta_0,\varepsilon} = \sigma(y_{\beta_1,\varepsilon},y_{\beta_2,\varepsilon},y_{\beta_3,\varepsilon})$ for $\varepsilon < \tau$ ". We define $u = \bigcup_{\ell < 4} w[p_{\beta_\ell}]$ and \mathscr{F} as there, i.e., $$\left\{ f : f \in {}^{u}2, f \upharpoonright w[p_{\beta_{\ell}}] \in \mathscr{F}[p_{\beta_{\ell}}] \text{ for } \ell < 4 \text{ and for some} \right.$$ $$\ell \in \left\{ 1, 2, 3 \right\} \text{ we have}$$ $$m \in \left\{ 0, 1, 2, 3 \right\} \backslash \left\{ \ell \right\} \ \& \ \zeta < \mu \Rightarrow f(x_{\alpha_{\beta_{0}}, \zeta}) = f(x_{\alpha_{\beta_{m}}, \zeta}) \right\}.$$ Now check. 2) Straightforward. $\square_{2.5}$ Another case is, e.g. -11 (703) revision:2002-06-11 **2.6 Claim.** We can replace in all the results above irr(B) by -cof(B). Remark. Recall h-cof⁺(B) = \cup {|Y|⁺ : Y \subseteq B and Y = { a_{α} : $\alpha <$ |Y|} satisfies $\alpha < \beta \Rightarrow \neg (a_{\beta} \leq a_{\alpha})$, see [M2, Th.18.1,p.226]. *Proof.* Similar just easier. #### REFERENCES. - [FMSh 252] Matthew Foreman, Menachem Magidor, and Saharon Shelah. Martin's maximum, saturated ideals and nonregular ultrafilters. II. *Annals of Mathematics. Second Series*, **127**:521–545, 1988. - [GM] Moti Gitik and Menachem Magidor. The Singular Cardinals Hypothesis revisited. In H. Judah, W. Just, and H. Woodin, editors, *The Proc. of MSRI conference on The Set Theory of the Continuum*, Mathematical Sciences Research Institute Publications, pages 243–380. Springer Verlag, 1992. - [GiSh 344] Moti Gitik and Saharon Shelah. On certain indestructibility of strong cardinals and a question of Hajnal. *Archive for Mathematical Logic*, **28**:35–42, 1989. - [L] Richard Laver. Making the supercompactness of κ indestructible under κ -directed closed forcing.
Israel J. of Math., **29**:385–388, 1978. - [Mg4] Menachem Magidor. Changing cofinality of cardinals. Fund. Math., XCIX:61–71, 1978. - [MgSh 433] Menachem Magidor and Saharon Shelah. Length of Boolean algebras and ultraproducts. *Mathematica Japonica*, **48**(2):301–307, 1998. arxiv:math.LO/9805145. - [M2] J. Donald Monk. Cardinal Invariants of Boolean Algebras, volume 142 of Progress in Mathematics. Birkhäuser Verlag, Basel–Boston–Berlin, 1996. - [Ru83] Matatyahu Rubin. A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness. *Trans. Amer. Math. Soc.*, **278**:65–89, 1983. - [Sh:e] Saharon Shelah. *Non-structure theory*, accepted. Oxford University Press. - [Sh 128] Saharon Shelah. Uncountable constructions for B.A., e.c. groups and Banach spaces. *Israel Journal of Mathematics*, **51**:273–297, 1985. - [Sh:f] Saharon Shelah. *Proper and improper forcing*. Perspectives in Mathematical Logic. Springer, 1998. - [ShSi 677] Saharon Shelah and Otmar Spinas. On incomparability and related cardinal functions on ultraproducts of Boolean algebras. *Mathematica Japonica*, **52**:345–358, 2000. arxiv:math.LO/9903116.