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2 SAHARON SHELAH

ANNOTATED CONTENT

§1  Consistent inequality

[We prove the consistency of irr(H B;/D) < H irr(B;)/D where D is an
1<K 1<K

ultrafilter on x and each B; is a Boolean algebra and irr(B) is the maximal

size of irredundant subsets of a Boolean algebra B, see full definition in

the text. This solves the last problem, 35, of this form from Monk’s list

of problems in [M2]. The solution applies to many other properties, e.g.

Souslinity. |

§2  Consistency for small cardinals

[We get similar results with k = Ny (easily we cannot have it for k = N)
and Boolean algebras B; (i < k) of cardinality < 3, .]

This article continues Magidor Shelah [MgSh 433] and Shelah Spinas [ShSi 677],
but does not rely on them: see [M2] for the background.
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§1 CONSISTENT INEQUALITY

1.1 Definition. Assume p < A, A is strongly inaccessible Mahlo. Let B* = B), be
the Boolean algebra freely generated by {x, : @« < A} and for u C X let B, be the
subalgebra of B* generated by {z, : a € u}.
1) We define a forcing notion Q = @/3, ) as follows:

p € Q iff: p has form (wP, BP), we may write (w[p], B[p]) for typographical
reasons, satisfying:

(1) wP = wlp] € A

(i) BP = Blp| is a Boolean algebra of the form B,,,/I” where I? = I[p] is an
ideal of B,,[p), so B? is generated by {z./I” : a € wP}

(ii1) xo/IP ¢ ({2p/IP : B € WP Na}) gy, equivalently x4 & ({z5: € wP Na}U
IP)p

(iv) for every strongly inaccessible x € (u, A\] we have |wP N x| < x.

w(p]

The order is given by p < ¢ iff w? C w? and I? = I1N B,,[4, s0, abusing notation,
we pretend that BP C B, not distinguishing sometimes z,, from z,/I? € BP or
(see below) from z,/I in B.

2) We define I = U{I” : p € Gq  } and B is defined as B,/I.

1.2 Claim. For p < X as in Definition 1.1, the forcing notion QL,A is u+-complete
(hence, adds no new subsets to ), has cardinality A, satisfies the A-c.c., collapse no
cardinal, changes no cofinality, so cardinal arithmetic which holds after the forcing
18 clear.

Proof. Like the proof of the same facts for Easton forcing.

1.3 Claim. For the forcing Q = Q}M\ with p, A as in Definition 1.1 we have

1) kg “B is a Boolean Algebra generated by {zo : o < A} such that o < X\ = x4 ¢
({zg: B <a})p, so|B] =X and A = U{w? : p € Go}”.

2) kg “irrt (B) = XA = irr(B)”, see Definition 1.4 below.

3) kg “ifys € B for B < X then for some By < 1 < P2 < X\ we have B |=

”

Ys MY = Ypo -
4) Let B* be a finite Boolean algebra generated by {a*,b*,y, .. .,y;‘fb(*)} such that

yr, & yp L <m}u{a*,b*})p- and 0 < a* <y, <b* <1 form € {0,...,n(x)}.
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Then it is forced, (“_@i ) that:
D%’n(*) if Ys E’B for B < X and 8 # v = yg # y then we can find
~ a,b in B satisfying 0 < a < b <1 and
Bo < ... < Bux) <A such that
(@) BE “a<yg, <V
(B) there is an embedding f of B* into B mapping a* to a,b* to b and y,
to ys, for £=10,...,n(x).

Recalling

1.4 Definition. For a Boolean algebra B let:

1) X C B is called irredundant, if no x € X belongs to the subalgebra (X\{z})p
of B generated by X\{z}.

2) irr™(B) = U{|X|" : X C B is irredundent }.

3) irr(B) = U{|X| : X C B is irredundent} so irr(B) is irr™(B) if the latter is a
limit cardinal and is the predecessor of irr™(B) if the later is a successor cardinal.

Remark. Concerning 1.3, for the case k = X; see Rubin [Ru83], generally see [Sh
128], [Sh:e].

Proof of 1.3. 1) Should be clear.

2) Clearly for every x < A and p € Q}L’A we can find an a < A such that a > x
and w? N o, + x) = 0, hence we can find a ¢ such that p < ¢ € QL’A and
w? = wP U [a,a+ x) and in B? the set {x3: 8 € [, + x)} is independent, hence
q I+ “irr™(B) > x7. So we get |- “irrt(B) > A. To prove equality use part (3).

3) Assume toward contradiction that p IF “(yg : < A) is a counterexample”. We

can find for each 8 < A a quadruple (pg,ng, (g : ¢ < ng),os) such that:

(iv) o (xo, ..., Tny—1) is a Boolean term

ps b “in B we have yg = 05(Tag s Tag s - - .,xaﬁ’nﬂil)”. Call the right-

hand side yg, so by part (1), without loss of generality, {age: ¢ < ng} C
wP? hence yg is a member of By,
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So we can choose a stationary S C {x : x strongly inaccessible, u < x < A} and
n,o,m, (o : £ < m),w,r such that for every 5 € S we have: ng =n & og =
ol <m= agy= oyl €[mmn)= ag, > and wP? N = w. Without loss of
generality also a < € S = wP> C 3. Without loss of generality

® for By, /1 in S the mapping Fja, g, = idy, U{((ag, ¢, a8, ¢) : £ < n)} induces
an isomorphism gg, g, from the Boolean algebra ({z, : v € w}U{xg, ¢ : € <
n}) Blp,,, onto the Boolean algebra ({z : v € w} U {zpg, ¢ 1 € < n})pp, )
that is gg, g, maps z~ to z, for v € w and maps g, ¢ to zg, ¢ for £ <n.

Choose in S three ordinals By < 1 < [2 and we define ¢ € Qi)\ such that
wd = wlpg,] Uwlps,] Uwps,] and B? is the Boolean algebra generated by {z, :
a € wlpg, | Uwlpg, | Uwlpg,|} freely except the equations which hold in pg, for each
¢ =0,1,2 and the equation yg, Nyg, = ys,, in other words I? is the ideal of B,

generated by I[pg,] U I[ps,] UIlps,] U{ys, Nys, — sy Ys, — Ys NYp,}- We should
prove that ¢ € Q) , and I[g] N Bups,] = Ilps,| for £ = 0,1,2 (the rest: ps, < ¢

hence p < g and ¢ |- “Zjﬁe =yg, for £ =10,1,2 and yg, Ny, = yg,” should be clear).
Let By be the trivial Boolean algebra {0, 1}.

Forw C Aand f € "2 let f be the unique homomorphism from the Boolean algebra
B, freely generated by {z, : @ € w} to {0,1} such that a € w = f(z,) = f(@).
For p* € Q, \ let Z[p*|={f:f¢c )2 and {zq: fla) =1} U{—2x4: f(a) =0}
generates an ultrafilter of B[p*]}. For each f € .Z[p*] let fP'] be the homomorphism

from B[p*] to By induced by f, i.e., fP1(z4) = f(a) for every a € wP . Clearly
F[p*] gives all the information on p*. Define u = wPs | JwPs1 | JwPs2 and let

={f:f€"2, and { < 2= f | w[pg,] € Flpg,] and
By k= “fo((p, e : € <)) N fo((zg,0: £ <))
= f(o((gye: £ <)) }.

We need to show that .# is rich enough, clearly ®; + ®2 below suffice.
@, if £ €{0,1,2} and f, € F[pg,] then there is an f € .F extending fo.

[Why? For m = 0,1,2 let pj; be such that B[pj ] is the subalgebra of B[pg,,]

generated by {z, : v € wipg,,| and v < B, Vv € {0g,,.0,--- 08, n-1}}. We
define for m = 0, 1,2 a homomorphism g,,, from B[pﬁm] o By such that: v € w =

gm(x~) = fo(y) and v = B = gm(x,y) = fo(Be,x). This is possible by ® and let

pB[

hy, be chosen as follows: it is f, "*" if £ = m and it is chosen as any homomorphism
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from Bpg,,| to By extending g,, if m € {0,1,2}\{¢}, as B[pj; | is a subalgebra of

Blpg,,] this clearly exists. Let f,, € “P5]2 for m = 0,1,2 be fo(7) = hp(x,); for
m = ¢ the definitions are compatible; i.e., the definition of f, we have just given
and the old one. Finally, let f = foU f1 U fo. This is clearly a well defined function;
now of the three conditions in the definition of .%#, the first holds by the definition
of u, the second by the choice of the h,,’s and the third by the choice of the g,,’s,
it is easy to see fy C f € Z ]

X, if £ € {0,1,2}, o € w[pg,] then there are f', f” € .Z such that f'(«a) # f"(«)
but f' [ (anNu) = f" (aNu).

[Why? As pg, € Q) we can find f}, f{' € F[pg,] such that fi(a) # f/'(a) but
fi 1 (anwlpg]) = f" T (e Nwlpg,]). Now for m € {0,1,2, }\{¢} recalling ®
above there are f/, € Z|[pg, | which extends f; o Fp, g, and f), € F[pg,, | which
extends f) o Fj, g, in both cases this is shown as in the proof of ®;. If £ =0, let
ff=fufiufy e F and let [ = fU fl'U fl € Z; both memberships hold
as in the proof of ®; and we are done. Also if & < B¢ (so a € w = ﬂ w(ps,,])
m<2
the same proof works. So assume ¢ # 0, ¢ w = ﬂ wpg,,]. If (f)Psel (yg,) =
m<2
(fE) Pl (ys,) let f' = FEUFLUf3, £ = [ U(f' 1 (wlps,] Uwlpg,_,])), clearly O.K.
So without loss of generality assume (f;)P%)(ys,) = 0, (fi)Peel (yg,) = 1,£ € {1,2}
and o € w[pg,]\w[pg,|; and then choose f' = fiUfiUf5 as above and f” = f/U(f’ |

~

(wlpg,] Uw[Bs,_,])). Now check; the main point is that as f5 ,(ys,_,) = f(ys,)
we have Bo = “f"(ys,) 0 " (ys,) = 1" (ys,) O " (Yps_r) = 7' (wp,) O f'(ypa_,) =

Ig, N fé—£<yﬁ3—e) = fé—[(yﬁs—z) = f(l)(yﬁo) = f//(yﬁo)”'
4) The proof is similar to that of the previous part (with a,b now in pg, [ 5,!).
U3

1.5 Claim. 1) IfQ = Q}W\*@Q andlFqi “Q? satisfies the (X, 3)-Knaster condition
(see below)”, then IFq “irrt(B) = \”.

2) If in 'V the condition D%’n(*) from 1.3(4) holds and the forcing notion Q satisfies
the (A, n*+1)-Knaster condition then also in V¢ the condition Dg’n(*) holds. Hence
if Q = Q;IM\ *Q? and kg, , “Dg’n(*) holds (see 1.3(4))” and II—Q;“ “Q? satisfies the

i ” w () »
(N, n(x) + 1)-Knaster condition” then H_Qi,u*@Q L5 ),
3) In part (1) we even get the conclusion of Claim 1.3(3).
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1.6 Definition. 1) The A\-Knaster condition says that among any A\ members there
is a set of A members which are pairwise compatible. Recall that it is preserved by
composition.

2) For n* < w, the (A, n*)-Knaster condition says that among any A\ member there
is a set of A such that any < 1+ n* of them have a common upper bound.

Proof of 1.5. 1), 3) Clearly it suffices to prove (3).

This follows immediately by 1.3(3), in fact, just such Q? preserves the properties
mentioned there.

2) Similarly using 1.3(4). Ois

1.7 Theorem. Suppose

(a) V satisfies GCH above p (for simplicity)
(b) K is measurable, Kk < x < i

(¢) w is supercompact, Laver indestructible, more explicitly,

(%) for some hy : p — F(pn), (for £ = 0,1) we have for every (< p)-

directed complete forcing Q, cardinal 0 > p and Q-name x of a subset
of 0, there is in V[Gq] a normal ultrafilter 9 on [0]<* such that
II (r(anvp),ha(anp)/2 = (6, 2(Gq))

aclf]<~r

(d) A > p is strongly inaccessible, Mahlo and \* is such that \* = (A\*)#* > A

(e) D* is a normal ultrafilter on k.
Then for some forcing notion P we have, in VT :

() forcing with P collapse no cardinal of V except those in the interval (u+, \)

(8) forcing with P adds no subsets to x, preserves “u is strong limit” and makes
20 = \*

(v) p is strong limit of cofinality k and (p; : i < K) is an increasing continuous
sequence of strong limit cardinals with limit p

(0) for each i < K,p; < Nj < Xf = (A)H = 2M and we let p, = p, A\ =
AAL ="

(€) for each i < k we have: B; is a Boolean algebra of cardinality \; and
’éTT+(Bi) = )\1

(¢) fori < k,\; is a Mahlo cardinal even strongly inaccessible, but

(n) A= A\ is utt (this in VF)



nodi fi ed: 2003- 03- 07

revi sion: 2002-06-11

(703)

8 SAHARON SHELAH

(0) B = By, is isomorphic to H B;/D*, hence
1<K
X irrt(B) = A= ptt soirr(B) = put whereas irr(B;) = irrt(B;) = A\

and H Ai/D* = X, so irr(H B;/D*) < H irr(B;)/D*.

1<K <K 1<K

Proof. Let Q1 = (Q)}LA and B be from 1.2, let and for Z C \* let Q2 7z be {f : f

a partial function from Z to {0,1} with domain of cardinality < u} ordered by
inclusion, let Q2 = Q2 x- and let Q = Q; x Q2. Let G = G x G2 € Q be generic
over V and let Vo =V, V; = V[G4] and Vo = V[G] = V1[G2].

Xy In Vo, B[G4] is a Boolean algebra of cardinality A with irr™(B) = A and,

for notational simplicity, with a set of elements \.
[Why? In Vi, B[G;] is like that by 1.3. Now as in Vi, Qo satisfies the

(A, n)-Knaster for every n hence clearly by 1.5 we are done.]

In V, we have 2# = A\* and the cardinal p is still supercompact, hence it is well
known that

X, for every Y C 2* for some normal ultrafilter ¥ on p and Y = (Y, i <
1), Y; C 2l we have Y /2 is Y (ie. Y/2 € V5/2 and in the Mostowski
Collapse of VE/Z the element Y /2 is mapped to Y), hence (2#,Y, u, <) is
isomorphic to H(QW,YZ', i, <)/ 9.

<p

Again it is well known and follows from X; that there is a sequence 2° = (_@g :
¢ < (2#))*) of normal (fine) ultrafilters on p satisfying: for each ¢ < (2#)* the
sequence 2° | ¢ belongs to (the Mostowski collapse of) V¥4 / .@g. In V3 we can code
B = B[G1] and £ () and 2° | k as a subset Y of 2¢ = \* and get 2,Y as in X,

hence for some set A € & of strongly inaccessible cardinals > y there is a sequence
((is Aiy Biy AY) =1 € A) such that:

()1 for i € A we have i = p; < A\; < A = (A\)* < p, A; is weakly inaccessible,
Mahlo, B; is a Boolean algebra generated by {z : o < A\i}, 20 ¢ ({2p: 8 <
a})p,, irrt(B;) = \; and, for notational simplicity, its sets of elements is \;

()2 B is isomorphic to H B;/2 and (\*, <) & H()\f, <)/ 9.
i€A icA
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For i € p\A choose p;, Ai, Af, B; such that (x); holds such that p; > i; why are
there such A;, B;? Just e.g. use Amin(a\i)> BMin(A\i)-

Let 2; = 29 for i < k and %, be the 2 as above. So %; (for i < k) is a normal
ultrafilter on p and we have i < j < k = %; € V4 /2;, that is, there is a sequence
g = (gij 1 < j < k) satistying g; ; € *((n)) such that Z; is (the Mostowski
collapse of) g; ;/9; € V4 /%;.

All this was in Vo = V[G]. So we have Q-names g = (g, : i < j < k), 2 =

<22 o < HJ) and <(/:[/Z7%\Z7BZ72\’T) t1 < N) As Q = Ql X Q27@2 satisfies the /1’+_
c.c. and Q; is u-complete without loss of generality g is a Q2-name and g is from

V[G2]. Hence without loss of generality g and similarly ((u;, i, Bi, AY) i < p)
belong to V[G2 z| where Gz = G2 N Qg z, as we _Could have forced first with
{f € Qa : Dom(f) C Z} for some Z € [\*]<*. Let P(Z,g) be (the Q-name of the)

Magidor forcing for (2, g) (see [Mgd]). Let (u; : i < k) be the P(Z2, g)-name of the
increasing continuous k-sequence converging to p which the forcing adds and we
can restrict ourselves to the case pg > x. Clearly clauses () — (¢) in the conclusion

hold for P = Q xP(Z, g) Now

Xy in Vo, if p € P(2,5) and p IF “f e H Au,” then there are ¢, an extension
1<K
of pin P(D,g) and f € H A; such that
IEA*
qlrpgg) i <w: f(i)=f(u)} € D7

[Why? By the properties of P(Z, g) there are a pure extension gy of p in P(Z, g)
and/or sequence (u; : i < k) such that above gy we have: f(i) depends just on

(i : j € u; U{i}) where u; C i is finite. As D* is a normal ultrafilter on &, for

some a* € D* and a finite u C k we have ¢ € a* = u; = u. So there is a ¢ such

that P(2,9) = qo < q and ¢ IF “uj = ;7 for j € u, and so f is well defined.]

Let G3 C P(Z,3) be generic over Vo and V3 = V,[G3] and let u; = 1i[Gs] so

really (p; : i < k) is generic for P(2, g). Now we shall show that:

X3 in V3 = V3[G3] we have

B=]][B./D"

1<K
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[Why? In Vg, by (x)2 above there is an isomorphism F from B onto
[1Bi/2 = [] Bi/%x, so let F(x) = fu/ P, with f, € [] Ai for x € B,

i<p i€A* i€ Ax
ie. x €A
In V3 let f € H Ay, be defined by f7(i) = f,(ui) and we define a func-
1<K
tion F’ from B, ie. from A to HBM/D* by F'(x) = f./D*. Now
1<K

Ye€2={i<k:pu €Y} =rmod J by the definition of P(2,g),
so as F' is one to one also F” is, and F’ commute with the Boolean opera-
tions as F' does; lastly F’ is onto by Xs.]

X, if i < K then 7 (p;41)V? is the same as ,%”(,uiﬂ)v]gi, for some p;-centered
forcing notion from . (p;41) (hence this forcing notion is A,,-Knaster).

[Why? Note that 52 (u;)V? = 5 (;)V0 for j < k. Also for each i < k in Vj there
are 2}, anormal ultrafilter on ; such that (2°,3") = ((Z} : j < @), (g5, | i : 1 <

j2 <i)) € Vis as above, ie. j1 <jo <i= I} =g, ,/%5 € VH'/D5,:95, .5, €

Wi (A (1)) so P(2°,g") is as in [Mg4], and for some G3; C P2} -5 <1),(gjrgo |
wi g1 < pe < i)) generic over Vg (equivalently over Va) we have G3,; € V3 and
H (pig1)V? = A (i) V2931 = A0 (i) VolGoil. See [Mgd]. As P(D',g') is -
centered, clearly X, follows.]

So obviously (by 1.5)

X5 in V3, for each i < k we have B, is a Boolean algebra of cardinality A,
irr™(B,,) = Ay, s Ay, is weakly Mahlo.

Also in V[G1], the forcing notion _@2 satisfies the A-Knaster condition and in V5 =

V[G1, Gs], the forcing notion P(Z, g) from [Mg4] is p-centered hence satisfies the
A-Knaster hence

X in V3, B is a Boolean Algebra of cardinality A\, a Mahlo cardinal and
irrt(B) = .

Now let R = Levy(ut,< \)V = {f € V : Dom(f) C {(a,7) : a < A\ v <
w3}, [Dom(f)] < p and for v < a, we have f(a,7) < 1+ a}, ordered by inclusion.
Clearly R satisfies the A-Knaster condition, is p"-complete in V and also in V.
Let Gr C R be generic over V. Now in V[G1, Gr]|, the forcing notion Q2 has
the same definition and same properties. Also (as in [MgSh 433], [ShSi 677]), in
V[G1, Gs, Gr] the Z;(i < k) are still normal ultrafilters on p and the definition of
P(2,3) gives the same forcing notion with the same properties and add the same
family of subsets to s (as P (k) VIC1:G2l = P2 ()VIG1,G2.Ga]y
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So Gr is a subset of R generic over V[G1, G2, G3]. Also in V[G1, G5, R satisfies
the A\-Knaster condition and in V[G1, Gz, Gg],P(Z, §) is p-centered hence satisfies
the A-Knaster condition. Let V4 = V3|GRr], so in V4 all the conclusions above
holds but A = u™* hence irr(B) = u™ whereas irr™(B) remains A = ut+. So we

are done. Oy 7

1.8 Claim. 1) In the Theorem 1.7 we can replace

“a Boolean algebra B of cardinality A, irrt (B) = A" by e.g. “a A-Souslin
tree”

The “\ strongly inaccessible Mahlo” is needed just for applying 1.3, etc., but for
H B;/D* = B it is not needed (any model M, with universe C X is O.K.)
1<K
2) We can apply the proof above to the proof in [Sh 128] hence to theories of cardi-
nality < p for simplicity in logics with Magidor Malitz quantifiers.

Proof. Similar to 1.7. Ly .7
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§2 CONSISTENCY FOR SMALL CARDINALS

Theorem 2.1 generalizes 1.7 in some ways. First D*, instead of being a normal
ultrafilter on x is just a normal filter which is large in an appropriate sense so later
it will be applied to the case k = Ny (after a suitable preliminary forcing). Second,
we deal with a general model and properties. Thirdly, the forcing makes p to 3.
(and more)

2.1 Theorem. Suppose

(a) V satisfies GCH for every u' > p (for simplicity)

(b) Kk is reqular uncountable, Ng < 0 < Kk < x < pu <V < A <A = (A)H, say
9 =pt

(¢) w is supercompact, Laver indestructibly or just indestructibly \*-hypermeasure

(generally on such indestructibility see [GiSh 344], on the amount of hyper-
measurable needed here see Gitik Magidor [GM])

(d) D* is a filter on k including the clubs and if f is a pressing down function
on K then for some u € [k]<% we have {§ < r : f(§) € u} € D*

e) Qq is a (< p)-directed complete forcing, |Q1| < A* and kg, “M is a model
() Iz p 9 o “N

with universe A and vocabulary T € H(x)”

(f) R is a u™-complete forcing notion of cardinality < \*
(9) Q2 is the forcing of adding \* p-Cohen subsets to p and Q = Q1 x Q.

Then for some forcing notion P we have Q; x Qo x R < P and in V':

(a) the forcing with P collapse no cardinal except those collapsed by Q1 x R, in
fact P/(Qq x Qg x R) is 9~ -centered; i.e., u™*-centered if 9 = pTT?

(B) forcing with P add no subset of x, forcing with P/(Q x Q2 x R) satisfies
&:,u,ﬁ,k \+ from Definition 2.2 below as witnessed by (;ﬁ 11 < K)

(v) i = pi|Gpl, p is strong limit of cofinality k and (u; : 1 < K) is an increasing

continuous sequence of strong limit singulars with limit p (and F(pit1)
satisfies a parallel of the statement Xy from the proof of 1.7),

(0) for each i < k we have p; < X\i < Xf = (A)H and e = p, Ay = A, AL = A
and (pi, Niy A7) is quite similar to (p, \, \*) (see proof), more specifically:
i some intermediate universe Vi, for some normal ultrafilter & on p
and F,F, : u — p we have H(F(z),<)/D = (N <), A = F(pi) and

1< pL
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H(F*(z), <)/ = (\*, <) and F.(1;) = \f and we have M = (M; : i < p)
1<pt
and M; a model with universe \; and vocabulary 7; and H M;/2 = M
<p
() fori < k we have 2% = \* and 2N = p;
€) H M,,,/D* is isomorphic to M if D* is a normal ultrafilter, in fact,
1<K

{(f(pi) i < K)/p~ = f € Vi and f € HF(@)} is the universe of

1< pL
1./
1<K
(n) for every f € HMl/D* we can in Vi find (f) < 6 and g5 € HF(@)
1<K <[
fore <e(f) such that {i < k : \/ f(i) = g¢e(pi)} € D*

e<e(f)

(9) H()\i, <)/D* is A-like linear ordering (not necessarily well ordering as pos-
1<K
sibly 0 > V)

(¢) if D* is a normal ultrafilter, Q1 = Q) (of 1.1) and R = Levy(u, < A),
then the conclusion on irr in 1.7 holds.

2.2 Definition. 1) We say X, , 9.1+(Q) or we say Q satisfies X, , 9 x+ (as wit-
nessed by (i, 2) if:

(i) Q is a forcing notion of cardinality < \*
(7i) Q satisfies the ¥-c.c.
(7i7) Q (i.e. forcing with Q) add a sequence (u; : ¢ < ) of cardinals < p, strongly

inaccessible in V, strong limit in V@

(1v) IFg “pi (4 < 7y) is increasing continuous”

(v) Z is a normal ultrafilter on p
(vi) for every p € Q for some § < v for every A € & there is ¢ satisfying
p<q€Qsuchthat ¢IF “{u;: 8<i<~n} CA"
(vii) if 7 is a limit ordinal then IFg “p = U i
1<y
(viii) in V@ we have 2# = \* and p is strong limit.
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2) We say &;—,uﬂ?)\* (Q) or we say Q satisfies &;—,uﬂ?)\* (as witnessed by (i, fo, fx+)
if:

(a) Q satisfies X, , 9,1+ as witnessed by fi = (u; : i <)

(b) if G C Q is generic over V then for every 5 < 7 we have %(NBH)VQ is
gotten from 7 (ug11)V by a forcing Q41 which is like Q with (8, us) here
standing for (v, ) there.

Proof. Like the proof of 1.7 but we use [GM] instead of [Mg4]; note that ¢ = p+3
comes from making the forcing p*3-c.c. So the pure decision of P(2, §) is changed
accordingly. Of course, the change in the assumption on D* also has some influence.

Uaq

So we get e.g.

2.3 Conclusion: Assume V satisfies ZFC + p is supercompact +“\ > p is strong
inaccessible”.

1) For some forcing extension V*, for some ultrafilter D* on wq there is (\; : i < wy)
such that:

(1) for i < wq, \; is weakly inaccessible < 3,
(id) A=3LF
(7i7) the linear order H (Xi, <)/D* is A-like,
1<wi

(1v) A; is first weakly inaccessible > 3.

2) In part (1) we have: for some sequence (B; : i < wy) of Boolean algebras, each
of cardinality < J,, we have Length( H B;/D*) < H Length(B;)/D*.

1<wi 1<wi

3) If X in V, A > u is Mabhlo, replace (iv) by (iv)’ and we can demand in addition
that for some sequence (B; : i < wi) of Boolean algebra, |B;| = irr(B;) = \; we
have irr( H B;/D*) =13 < H i/ D* where

1<wi 1<wi

(1v)" A; is the first weakly inaccessible Mahlo cardinal > J;.

Proof. 1) We start getting by forcing using a forcing notion from .7 (u) (see [Sh:f,
Ch.XVI,2.5,p.793] and history there) a normal filter D° on w; such that Z(w;)/D*
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is layered! and {n, + 28 = Ny. Hence (see [FMSh 252] and history there) there
is an ultrafilter D* on w; extending D as required in 2.1 clause (d) for k = 0 =
Nq, that is: if g € “1w; is pressing down on some member of D* then for some
a <wy,{f <w:g(B) <a} e D*. Next by forcing with some No-complete p-c.c.
forcing notion of cardinality p, we get Laver indestructibility (by [L]). Now apply
2.1 with kK = 0 = R;,R = Levy(u™, < \),Q trivial or for part (3) as in 1.1 recall
that X is inaccessible. Note that easily in VT, (¥A; < A\)(AY® < A). The main new
point is clause (iii) which follows by clause (1) of the conclusion of 2.1 and the
previous sentence; see the proof of part (3).

2) The proofs in [MgSh 433] applies also in our changed circumstances.

3) But for irr the problem seems more involved. We use 2.5 below instead of
1.3 and note that Q2, R and the Gitik Magidor forcing P/(Q; x Q2 x R) though

not fully preserving (*)x <, of 2.5 below it still preserves enough as we now

prove. So in V¥ let f,/D* € I_IBM./D>k so fo € HBM for @ < A. For each
1<K 1<K
a we can find in V3 a sequence (go,, : n < w) satisfying g, € HBi such
1<p
that {i < w1 : (In)(fa(?) = ga.n(pi))} € D*. Without loss of generality we have
Aan = Ay, where Ay = {i < wi t foli) = gan(pi)}, as 2% < 3y, < A = cf(N).
Now in V7, there is an isomorphism j from H B;/2 onto B, 50 j(gan/Z) € B.
1< pL
In V3[GRr] we apply (*)xxn,.5 of 2.5 and find By < f1 < B2 < B3 < A such that

n<w= B j(gﬁo,n/@) = U(j(gﬁo,n/‘@)7j(gﬁ0,n/9)7j<gﬁ3,n/9)) where o is the
Boolean term o*(xg, x1,22) = (zo Nx1) U (zo N2z2) U (21 Nz2). Hence

Y, = {C < W BC ): gﬁo,n(C) = 0*(951,n(<)7952,n(<)7gﬁg,n(C))} €9

hence Y = ﬂ Y, € 2 hence for some i* < k,(Vi)[i* < i < kK = p; € Y]

n<w
but i € Y = (VTL < w)[B/M ): gﬁo’n(,uz) = O-(g,Bl,n(C>7gﬂzgn(€)7gﬁg,n(€)>] As
Ag, n = Ay, we are done. Ua.3

2.4 Remark. 1) In 2.3(1),(2) without loss of generality J,, is the limit of the first
wy (weakly) inaccessible.
2) In 2.3(3) without loss of generality J,, is the limit of the first w; Mahlo (weakly)

lit means that this Boolean algebra is U B}, B} is a Boolean algebra of cardinality Ni,
1<wo
increasing continuous with 4, and cf(i) = Ry = B; < X (w1)/D*
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inaccessible. Can we omit Mahlo?

3) Of course, 2.3 is just one extreme variant.

4) If we would like to replace in 2.3, X; by k = k<% > Ny, we can use [FMSh 252],
hence higher large cardinals.

2.5 Claim. 1) For Q = (Q)}L x» B as in 1.8 we have, for 7 < it is forced (IFgr )
s ~ By A
that:

($)a7B if Ya,e € B for a < X\, e <7 then for some By < B1 < B2 < B3 we have

€< T =Ygye =0 (YB1,e1YBa,e»r YBs,e) Where o™ (Y1, Y2, y3) = (Y1 Ny2) U(y1 N
y3) U (y2 Nys).

2) If B is a Boolean algebra, 7 < X and Q* is 7 -complete (or just do not add new
T-sequence of ordinals < |B|) and satisfies the (\,4)-Knaster property (i.e. among
any A conditions there are \, any three of them has a common upper bound), then
forcing by Q* preserve (x)x r B.

Proof. 1) As in the proof of 1.3, again the point is checking () -,z so let p IF “(g!gﬁ :

B < Ae < 1) be a counterexample”. For each a < A choose p,, such that p < p,

and po IF “Yo,e = Ya,e” for e < 7 and without loss of generality y, . € Bupa and

choose ag ¢ € wlpg| for ¢ < (g such that ys . € ({zy 1 v € {ap. 1 € < (s}) By,
for some (3 < 71 with ag. increasing with €, and let {5 < (g be such that
(Ve)lape < B=ce <&l Let yge =08e(--- ,Tay.,---)e<cy (S0 the term og . uses
only finitely many of its variables). We choose S, w,r, etc., as in the proof there
with € < (, (e 1€ < &), (0. : € < 1) replacing m < n, (ay : £ < m),o.

We choose By < 1 < f2 < B3 in S and it is enough to find ¢ € Qi)\ such
that £ <4 = pg, < qand gl “yg,c = 0(YB, e YBo,es Yss,e) for € < 77. We define

u = U wpg,] and F as there, i.e.,

<4
{f:fe"2 flwpg] € F[ps, for £ <4 and for some
¢ € {1,2,3} we have
m € {0,1,2,31\{¢} & ¢ <p= f(zay.c) = f(Tay, )}
Now check.
2) Straightforward. Uas

Another case is, e.g.
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2.6 Claim. We can replace in all the results above irr(B) by -cof(B).

Remark. Recall h-coft(B) = U{|[Y|" : Y C B and Y = {a,
a < f=(ag < aq), see M2, Th.18.1,p.226].

Proof. Similar just easier.

s a < |Y|} satisfies
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