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Mirna Džamonja
School of Mathematics

University of East Anglia
Norwich, NR4 7TJ, UK

M.Dzamonja@uea.ac.uk

http://www.mth.uea.ac.uk/people/md.html

Saharon Shelah

Mathematics Department
Hebrew University of Jerusalem

91904 Givat Ram, Israel

and
Mathematics Department Rutgers University

New Brunswick, New Jersey, USA
shelah@sunset.huji.ac.il

http://www.math.rutgers.edu/∼shelarch

May 29, 2005

Abstract

We introduce the oak property of first order theories, which is a
syntactical condition that we show to be sufficient for a theory not
to have universal models in cardinality λ when certain cardinal arith-
metic assumptions about λ implying the failure of GCH (and close to
the failure of SCH) hold. We give two examples of theories that have
the oak property and show that none of these examples satisfy SOP4,
not even SOP3. This is related to the question of the connection of
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the property SOP4 to non-universality, as was raised by the earlier
work of Shelah. One of our examples is the theory T ∗

feq for which non-
universality results similar to the ones we obtain are already known,
hence we may view our results as an abstraction of the known results
from a concrete theory to a class of theories.

We show that no theory with the oak property is simple. 1

0 Introduction

Since the very early days of the mathematics of the infinite, the existence of

a universal object in a category has been the object of continued interest to

specialists in various disciplines of mathematics- even Cantor’s work on the

uniqueness of the rational numbers as the countable dense linear order with

no endpoints is a result of this type. For some more recent examples see for

instance [ArBe], [FuKo]. We approach this problem from the point of view

of model theory, more specifically, classification theory, and we concentrate

on first order theories. In [Sh -c] the idea was to consider properties that

can serve as good dividing lines between first order theories (in [Sh -c], more

general theories in other work). This is to be taken in the sense that useful

information can be obtained both from the assumption that a theory satisfies

the property, and the assumption that it does not, and in general we may

expect several equivalent definitions for such properties. Preferably, there

is an “outside property” and a “syntactical property” which end up being

equivalent. The special outside property which was central in [Sh -c] was the

number of pairwise non-isomorphic models, and it lead to considering the

notions of stability and superstability. It is natural to ask if other divisions

can be obtained using problems of similar nature. This is a matter of much

investigation and some other properties have been looked at, see for example

[GrIoLe], [Sh 715] and more generally [Sh 702]. One of such properties is

1This publication is numbered 710 in the list of publications of Saharon Shelah. The
authors thank the United-States Israel Binational Science Foundation and NSF for their
support during the preparation of this paper, and Mirna Džamonja thanks the Academic
Study Group for their support during the summer of 1999 and Leverhulme Trust for their
grant number F/00204B.

AMS 2000 Classification: 03C55, 03E04, 03C45.
Keywords: universal models, oak property, singular cardinals, pp.
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that of universality, which is the main topic of this paper.

In a series of papers, e.g. Kojman-Shelah [KjSh 409] (see there also

for earlier references), [KjSh 447], Kojman [Kj], Shelah [Sh 457], [Sh 500],

Džamonja-Shelah [DjSh 614], the thesis claiming the connection between the

complexity of a theory and its amenability to the existence of universal mod-

els, has been pursued. Further research on the subject is in preparation in

Shelah’s [Sh 820]. It follows from the classical results in model theory (see

[ChKe]) that if GCH holds then every countable first order theory admits

a universal model in every uncountable cardinal, so the question we need

to ask is what happens when GCH fails. We may define the universality

number of a theory T at a given cardinal λ as the smallest size of the family

of models of T of size λ having the property that every model of T of size

λ embeds into an element of the family. Hence, if GCH holds this number

for uncountable λ and countable T is always at most 1. It is usually “easy”

to force a situation in which such universality number is as large as possible,

namely 2λ, (by adding Cohen subsets, see [KjSh 409]), however assuming

that GCH fails and allowing ourselves a vague use of the words “many” and

“often” for the moment, we can distinguish between those theories which for

many cardinals have the largest possible universality number in that cardinal

whenever GCH fails, and those for which it is possible to construct a model

of set theory in which GCH fails, yet our theory has a small universality

number at the cardinality under consideration. This division would suggest

that the latter theories, let us call them for the sake of this introduction

amenable, are of lower complexity than the former ones. The definition of

amenability can be given in more precise terms. In the view of the preceding

discussion involving the universality behaviour in models of GCH, it is not

surprising that this definition is expressed in terms of forcing.

Definition 0.1 We say that a theory T is amenable iff whenever λ is an

uncountable cardinal larger than the size of T and satisfying λ<λ = λ and

2λ = λ+, while θ satisfies cf(θ) > λ+, there is a λ+-cc (< λ)-closed forcing

notion that forces 2λ to be θ and the universality number univ(T, λ+) (see

Definition 0.7) to be smaller than θ.

Localising this definition at a particular λ we define what is meant by

3
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theories that are amenable at λ.

Kojman and Shelah in [KjSh 409] proved that the theory of a dense linear

order exhibits high non-universality behaviour, making it a prototypical ex-

ample of a non-amenable theory. Namely they proved (§3, proof of Theorem

3.10) that the theory of a dense linear order satisfies the property described

in Definition 0.3, which we shall call high non-amenability. We shall indicate

below that this name is well chosen, in the sense that high non-amenability

implies the negation of amenability as introduced above. In order to define

high non-amenability we shall need a somewhat technical definition of a tight

(κ, µ, λ) club guessing sequence, but as this definition will be anyway needed

in §2, we shall give the exact definition now rather than glancing over it for

the sake of the introduction.

Definition 0.2 (1) Suppose that κ < λ are regular cardinals and that

κ ≤ µ < λ while S is a stationary subset of λ consisting of points of co-

finality κ. A sequence 〈Cδ : δ ∈ S〉 will be called a tight [truly tight] (κ, µ, λ)

club guessing sequence iff

(i) for every δ ∈ S the set Cδ is a subset of δ with otp(Cδ) = µ,

(ii) for every club E of λ there is δ ∈ S such that Cδ ⊆ E, and

(iii) for every α ∈ λ

|{Cδ ∩ α : δ ∈ S & α ∈ (Cδ \ lim(Cδ))}| < λ.

[In addition to (i)-(iii) above,

(iv) sup(Cδ) = δ.]

(2) Suppose that λ is a regular cardinal, µ < λ and 〈Cδ : δ ∈ S〉 satisfies

(i)-(iii) from (1) with the possible exception of S not necessarily being a set

of points of cofinality κ for any fixed κ. Then we say that 〈Cδ : δ ∈ S〉 is a

tight (µ, λ) club guessing sequence.

4
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Definition 0.3 A theory T is said to be highly non-amenable iff for every

large enough regular cardinal λ and κ < λ such that there is a truly tight

(κ, κ, λ) club guessing sequence 〈Cδ : δ ∈ S〉 the number univ(T, λ) is at

least 2κ.

Suppose that a theory T is both amenable and highly non-amenable, and

let λ be a large enough regular cardinal while V = L or simply λ<λ = λ

and ♦(Sλ+

λ ) holds. Let P be the forcing exemplifying that T is amenable.

Clearly there is a truly tight (λ, λ, λ+) club guessing sequence C̄ in V , and

since the forcing P is λ+-cc, every club of λ+ in V P contains a club of λ+ in

V , hence C̄ continues to be a truly tight (λ, λ, λ+) club guessing sequence in

V P . Then on the one hand we have that in V P , univ(T, λ+) ≥ 2λ by the high

non-amenability, while univ(T, λ+) < 2λ by the choice of P , a contradiction.

In fact [KjSh 409] proves that any theory with the strict order property is

highly non-amenable. On the other hand Shelah proved in [Sh 500] that all

simple theories are amenable at all successors of regular κ satisfying κ<κ = κ.

In that same paper Shelah introduced a hierarchy of complexity for first order

theories, and showed that high non-amenability appears as soon as a certain

level on that hierarchy is passed. The details of this hierarchy are described in

the following Definition 0.8, but for the moment let us just mention the fact

that the hierarchy describes a sequence SOPn (3 ≤ n < ω) of properties of

increasing strength such that the theory of a dense linear order possesses all

the properties, while on the other hand no simple theory can have the weakest

among them, SOP3. Shelah proved in [Sh 500] that the property SOP4 of

a theory T implies that T exhibits the same non-universality results as the

theory of a dense linear order, in other words it is highly non-amenable. In

the light of these results it might then be asked if SOP4 is a characterisation

of high non-amenability, that is if all highly non-amenable theories also have

SOP4.

The results available in the literature do not provide a counter-example,

and the question in fact remains open after this investigation. However we

provide a partial solution by continuing a result of Shelah about the theory

T ∗
feq of infinitely many indexed independent equivalence relations, [Sh 457].

It is proved there that this particular theory exhibits a non-amenability be-

haviour provided that some cardinal arithmetic assumptions close to the fail-
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ure of the singular cardinal hypothesis SCH are satisfied (see §1 for details).

This does not necessarily imply high non-amenability as it was proved also

in [Sh 457] that this theory is in fact amenable at any cardinal which is the

successor of a cardinal κ satisfying κ<κ = κ. Here we generalise the first of

these two results by defining a property which implies such non-amenability

results and is possessed by T ∗
feq. This property is called the oak property, as

its prototype is the model completion of Th(Mλ,κ,f,g), a theory connected to

that of the tree κ≥λ (for details see Example 1.3). The oak property cannot

be made a part of the SOPn hierarchy, as we exhibit a theory which has

oak, and is NSOP3, while the model completion of the theory of triangle

free graphs is an example of a SOP3 theory which does not satisfy the oak

property. On the other hand we prove at the end of §1 that no oak theory

is simple. We also exhibit a close connection between T ∗
feq and Th(Mλ,κ,f,g).

These results indicate that in order to make the connection between the high

non-amenability, amenability and the SOPn hierarchy more exact one needs

to consider the failure of SCH as a separate case. In addition the oak prop-

erty, not being compatible with the SOPn hierarchy gives a new evidence

that this hierarchy is not exhaustive of the unstable theories that do not

have the strict order property. Note that in [[Sh 500], 2.3(2)] there is an ex-

ample of a first order theory that satisfies the strong order property but not

the strict order property (and the strong order property implies all SOPn,

though it is not implied by their conjunction).

To finish this introduction, let us summarise the connection between the

cardinal arithmetic and the universality number that is shown in this paper

(a more detailed discussion of this can be found at the end of §2). Firstly,

by classical model theory, if GCH holds then the universality number of

any first order theory of size < λ, at any cardinal ≥ λ, is 1 -hence the

situation is trivialised. Similarly, the results that we have here on sufficient

conditions for non-amenability trivialise if the Strong Hypothesis StH of

Shelah holds ([Sh 420]) because the conditions are never satisfied. StH says

that pp(µ) = µ+ for every singular µ, hence cf([µ]<κ,⊆) ≤ µ+ for every

κ < µ, so StH implies the Singular Cardinal Hypothesis SCH (it is itself

implied by ¬0]). However, if StH fails, say κ, λ regulars satisfy that for

some singular µ we have cf(µ) = κ and µ+ < λ while pp(µ) > λ, for all we

6
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know the results here hold and are not trivial, in the sense that not only do

all known consistency proofs of the failure of StH show this, but it is not

known if it is consistent to have the failure of StH and at the same relevant

cardinals a failure of our assumptions.

Let us now commence the mathematical part of the paper by giving some

background notions which will be used in the main sections of the paper,

starting with some classical definitions of model theory.

Convention 0.4 A theory in this paper means a first order complete theory,

unless otherwise stated. Such an object is usually denoted by T .

Notation 0.5 (1) Given a theory T , we let C = CT stand for “the monster

model”, i.e. a saturated enough model of T . As is usual, we assume without

loss of generality that all our discussion takes place inside of some such

model, so all expressions to the extent “there is”, “exists” and “|=” are

to be relativised to this model, all models are ≺ C, and all subsets of C we

mention have size less than the saturation number of C. We let κ̄ = κ̄(CT )

be the size of C, so this cardinal is larger than any other cardinal mentioned

in connection with T .

(2) For a formula ϕ(x̄; ā) we let ϕ(C; ā) be the set of all tuples b̄ such that

ϕ[b̄; ā] holds in C.

Definition 0.6 (1) The tuple b̄ is defined by ϕ(x̄; ā) if ϕ(C; ā) = {b̄}. It is

defined by the type p if b̄ is the unique tuple which realizes p. It is definable

over A if tp(b̄, A) defines it.

(2) The formula ϕ(x̄; ā) is algebraic if ϕ(C; ā) is finite. The type p is

algebraic if it is realized by finitely many tuples only. The tuple b̄ is algebraic

over A if tp(b̄, A) is.

(3) The definable closure of A is

dcl(A)
def
= {b : b is definable over A}.

(4) The algebraic closure of A is

acl(A)
def
= {b : b is algebraic over A}.

(5) If A = acl(A), we say that A is algebraically closed. When dcl(A) and

acl(A) coincide, then cl(A) denotes their common value.

7
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Definition 0.7 (1) For a theory T and a cardinal λ, models {Mi : i < i∗}

of T , each of size λ, are jointly universal iff for every N a model of T of size

λ, there is an i < i∗ and an isomorphic embedding of N into Mi.

(2) For T and λ as above,

univ(T, λ)
def
= min{|M| : M is a family of jointly

universal models of T of size λ}.

To make Definition 0.7 more readable, note that univ(T, λ) = 1 iff there

is a universal model of T of size λ. The following is the main definition of

Shelah’s [Sh 500].

Definition 0.8 (Shelah, [Sh 500]) Let n ≥ 3 be a natural number.

(1) A formula ϕ(x̄, ȳ) is said to exemplify the n-strong order property, SOPn

if lg(x̄) = lg(ȳ), and there are āk for k < ω, each of length lg(x̄) such

that

(a) |= ϕ[āk, ām] for k < m < ω,

(b) |= ¬(∃x̄0, . . . , x̄n−1)[
∧

{ϕ(x̄`, x̄k) : `, k < n and k = `+1 mod n}].

T has SOPn if there is a formula ϕ(x̄, ȳ) exemplifying this.

(2) A theory that does not posses SOPn is said to have NSOPn.

Note 0.9 Using a compactness argument and Ramsey theorem, one can

prove that if T is a theory with SOPn and ϕ(x̄, ȳ), and 〈ān : n < ω〉 exemplify

it, without loss of generality 〈ān : n < ω〉 is an indiscernible sequence. See

[Sh -c], or [GrIoLe] for examples of such arguments.

Example 0.10 The model completion of the theory of triangle-free graphs

is a prototypical example of a SOP3 theory, with the formula ϕ(x, y) just

stating that x and y are connected. It can be shown that this theory is

NSOP4, see [Sh 500].

The following fact indicates that SOPn(3 ≤ n < ω) form a hierarchy, and

the thesis is that this hierarchy is reflected in the complexity of the behaviour

of the relevant theories under natural constructions in model theory.

8
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Fact 0.11 (Shelah, [Sh 500], §2) For 3 ≤ n < ω the property SOPn+1 of a

theory implies the property SOPn.

1 The oak property

In this section we define a theory T ∗ that will serve as a prototype of a

theory that possesses the oak property. Then we introduce the oak property

and prove that the theory T ∗ has this property. We are interested in the

connection between the oak property and the SOP hierarchy (see Definition

0.8). To this end we shall show that T ∗ satisfies NSOP3 (so by Fact 0.11

it clearly does not satisfy SOP4). As another example we shall show that

the model completion of the theory of infinitely many indexed independent

equivalence relations, T ∗
feq, also satisfies oak and NSOP3. This theory is

known not to be simple [Sh 500], but we shall in fact show that no theory

wit the oak property is simple.

We commence by some auxiliary theories which will allow us to define T ∗

(as the model completion of T +
0 ).

Definition 1.1 (1) Let T0 be the following theory in the language

{Q0, Q1, Q2, F0, F1, F2, F3} :

(i) Q0, Q1, Q2 are unary predicates which form a partition of the universe,

(ii) F0 is a partial function from Q1 to Q0,

(iii) F1 is a partial two-place function from Q0 × Q2 to Q1.

(iv) F2 is a partial function from Q0 to Q2,

(v) F3 is a partial function from Q2 to Q0,

(vi) the range of F1 is included in the domain of F0 and for all (x, z) ∈ Dom(F1)

we have F0(F1(x, z)) = x, and

(vii) the range of F2 is included in the domain of F3 and F3(F2(x)) = x for

all x ∈ Dom(F2).

9
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(2) Let T +
0 be defined like T0, but with the requirement that F0, F1, F2 and

F3 are total functions.

Remark 1.2 It is to be noted that the above definition of T0 uses partial

rather than the more usual full function symbols. Using partial functions

we have to be careful when we speak about submodels, where we have a

choice of deciding whether statements of the form “Fl(x) is undefined” are

preserved in the larger model. We choose to request that the fact that Fl is

undefined at a certain entry is not necessarily preserved in the larger model.

Functions F2 and F3 are “dummies” whose sole purpose is to assure that

models of T +
0 are non-trivial, while keeping T +

0 a universal theory (which is

useful when discussing the model completion). Also note that neither T0 nor

T+
0 is complete, but every model M of T0 in which QM

0 , QM
2 6= ∅ and F0 and

F3 are onto, can be extended to a model of T +
0 with the same universe (Claim

1.4 (2)), and every model of T0 is a submodel of a model of T +
0 (Claim 1.4(4)).

T+
0 has a complete model completion (Claim 1.5). This model completion

is the main theory we shall work with and, as we shall show, it has the oak

property (Claim 1.11) and is NSOP 4 (Claim 1.7).

As we are only interested in the model completion T ∗ of T+
0 we might

have omitted the mention of T0 all together, but in the interest of possible

future examples and also in order to make the proof of the existence of T ∗

easier through Claim 1.4 we defined both T0 and T+
0 and then showed how

to pass from models of one to models of the other.

Example 1.3 Suppose that κ and λ are infinite cardinals and f is any sur-

jective function from κλ to κ, while g is a function from κ to κλ satisfying

g(f(ν)) = ν for all ν ∈ κλ. Then we can construct a model M = Mκ,λ,f,g as

follows: let QM
0 be κ, QM

1 be κ>λ, and QM
2 = κλ. Further let F M

0 (η) be the

length of η for η ∈ Q1, and let F M
1 (α, ν) = ν ¹ α. Let F M

3 be f and let F M
2

be g.

We consider this type of examples to be prototypical for models of T +
0 .

Claim 1.4 (1) If M is a model of T +
0 , then QM

0 , QM
1 and QM

2 are all non-

empty, and F M
0 and F M

3 are onto.

10
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(2) Every model M of T0 in which QM
0 6= ∅ and QM

2 6= ∅, while F M
0 and F M

3

are onto, can be extended to a model of T +
0 with the same universe

(and every model of T +
0 is a model of T0).

(3) There are models M of T0 with QM
0 6= ∅ and QM

2 6= ∅ and F M
3 onto,

which cannot be extended to a model of T +
0 with the same universe.

(4) Every model of T0 is a submodel of a model of T +
0 .

(5) T +
0 has the amalgamation property and the joint embedding property

JEP .

(6) If M |= T0 and A ⊆ M is finite, then the closure B of A under

F M
0 , F M

1 , F M
2 and F M

3 is finite (in fact |B| ≤ |A|2 + 2|A|), moreover:

(a) B ∩ QM
2 = (A ∩ QM

2 ) ∪ {F M
2 (a) : a ∈ A ∩ QM

0 },

(b) B∩QM
0 = (A∩QM

0 )∪{F M
0 (b) : b ∈ A∩QM

1 }∪{F M
3 (c) : c ∈ A∩QM

2 }

and

(c) B ∩ QM
1 = (A ∩ QM

1 ) ∪ {F M
1 (a, c) : a ∈ B ∩ QM

0 & c ∈ B ∩ QM
2 }.

In this case, B |= T0 and if M |= T +
0 , then B |= T +

0 .

To declutter the notation we shall from now on whenever possible in

discussing T0, T+
0 (and its model completion T ∗ which shall be introduced

later) omit the superscript M from the functions symbols.

Proof.

(1) As M is a model we have that M 6= ∅, so at least one among QM
0 , QM

1 , QM
2

is not empty.

If QM
0 6= ∅, then F2 guarantees that QM

2 6= ∅, so QM
1 6= ∅ because of

F1. If QM
1 6= ∅, then QM

0 6= ∅ because of F0. Finally, if QM
2 6= ∅, then

QM
0 6= ∅ because of F3, and we can again argue as above.

If a ∈ QM
0 , let b ∈ QM

2 be arbitrary. Then F1(a, b) ∈ QM
1 and

F0(F1(a, b)) = a. Hence, F0 is onto. Also, F3(F2(a)) = a, so F M
3 is

onto.

11
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(2) Let M |= T0 and QM
0 , QM

2 6= ∅. For x ∈ QM
0 and z ∈ QM

2 such

that (x, z) /∈ Dom(F M
1 ), let F1(x, z) = y for any y ∈ QM

1 such that

F0(y) = x, which exists as F M
0 is already onto. For x ∈ QM

0 for

which F2(x) is not already defined, let F2(x) = z for any z such that

F3(z) = x, which exists as F M
3 is onto. Finally, extend F0 and F3 to be

total. The described model is a model of T +
0 with the same universe as

M .

(3) Let κ1 < κ2 < λ and let QM
0 = κ2, QM

1 = κ1>λ, while QM
2 = κ1λ. For

α < κ2 let F2(α) be the function in κ1λ which is constantly α, and for

ν ∈ κ1λ let F3(ν) = min(Rang(ν)) if this value is < κ2, and 0 otherwise.

Also, let F0(η) = lg(η) and F1(α, ν) = ν ¹ α be defined for ν ∈ κ1λ and

α < κ1.

This is a model of T0, but not of T +
0 because F1 is not total. If this

model were to be extended to a model of T +
0 with the same universe,

we would have that for every ν ∈ κ1λ

F0(F1(κ1, ν)) = κ1 & F1(κ1, ν) = η

for some η ∈ κ1>λ. As F0(η) is already defined, F0(η) = lg(η) < κ1,

which is a contradiction.

(4) Given a model M of T0. First assure that QM
0 , QM

1 , QM
2 6= ∅ by adding

new elements if necessary. Then make sure that F0 and F3 are total

and onto, which might require adding new elements to M (and hence

redefining QM
0 , QM

1 , QM
2 if needed). Now for each x ∈ QM

0 choose

y(x) ∈ QM
1 such that F0(y(x)) = x, which is possible since F0 is onto,

and then define for every (x, z) ∈ QM
0 ×QM

2 the value of F1(x, z) to be

y(x), unless F1(x, z) has already been defined to start with, in which

case we leave it at that value. Finally declare for x ∈ QM
0 for which

F2(x) has not already been defined, that F2(x) = z for any z such that

F3(z) = x, which can be done since F3 is onto.

(5) We first prove the amalgamation property. Suppose that M0, M1 and

M2 are models of T +
0 with |M1| ∩ |M2| = |M0|, and M0 ⊆ M1, M2. We

define M3 as follows. Let |M3| = |M1|
⋃

|M2|, and for m ∈ {0, 2, 3} let

12
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F M3
m (x) = F Ml

m (x) if x ∈ Ml for some l. This is well defined, because

M1 and M2 agree on M0. Also, the identity F3(F2(x)) = x is satisfied in

M3. Now we let F M3

1 = F M1

1 ∪F M2

1 . This does not necessarily give us a

total function, but we still have a model of T0 with universe |M1|∪|M2|

and so to obtain the desired amalgam (which has the same universe)

we apply part (2) of this claim. From this definition it follows that

both M1 and M2 are submodels of M3 and equal to its restriction to

their respective universes.

To see that JEP holds, suppose that we are given two models M1,

M2 of T+
0 . Define M by letting its universe be the disjoint union

of M1 and M2, and define the functions Fm for m ∈ {0, 1, 2, 3} by

F M
m = F M1

m ∪ F M2
m . Then M is a model of T0, but like in the proof

of amalgamation, the function F1 might happen to be only partial, in

which case we extend M to a model of T +
0 by applying part (2) of this

claim. Then it can easily be checked that M embeds both M1 and M2.

(6) Suppose that A and M are as in the assumptions. Then items (a)–(c)

of the statement uniquely define a subset of M , which we shall call B.

The proof will be complete if we can prove that B is of the required

size and is the closure of A.

Clearly B is contained in the closure of A and the size of B is as

claimed. Namely, letting for l ∈ {0, 1, 2} the size of A ∩ QM
l be

nl and n = Σl<3nl, we have first that |B ∩ QM
2 | ≤ n2 + n0, then

|B ∩ QM
0 | ≤ n0 + n1 + n2 ≤ n, and so |B ∩ QM

1 | ≤ n1 + n2. It can

be checked directly that B is closed, using the equations of T0, and it

also easily follows that B is a model of T0, or of T +
0 if M is.

F1.4

Claim 1.5 T+
0 has a complete model completion T ∗ which admits elimina-

tion of quantifiers, and is ℵ0-categorical. In this theory the closure and the

algebraic closure coincide.

Proof. We can construct T ∗ directly. T ∗ admits elimination of quantifiers

because T +
0 has the amalgamation property and is universal ([ChKe] 3.5.19).

13
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It can be seen from the construction of T ∗ that it is complete, or alternatively,

it can be seen that T ∗ has JEP and so by [ChKe] 3.5.11, it is complete. To

see that the theory is ℵ0-categorical, observe that Claim 1.4(6) implies that

for every n there are only finitely many T0-types in n-variables. Then by

the Characterisation of Complete ℵ0-categorical Theories ([ChKe] 2.3.13),

T ∗ is ℵ0-categorical. Using the elimination of quantifiers and the fact that

all relational symbols of the language of T ∗ have infinite domains in every

model of T ∗, we can see that the algebraic closure and the definable closure

coincide in T ∗. F1.5

Observation 1.6 If A, B ⊆ CT ∗ are closed and c ∈ cl(A ∪ B) \ A \ B, then

c ∈ QCT∗

1 .

Proof. Notice that

cl(A ∪ B) =A ∪ B ∪ {F1(a, c) : a ∈ (A ∪ B) ∩ Q0 & c ∈ (A ∪ B) ∩ Q2

& {a, c} * A & {a, c} * B}

by Claim 1.4(6).

Claim 1.7 T ∗ is NSOP3, consequently NSOP4.

Proof. Suppose that T ∗ is SOP3 and let ϕ(x̄, ȳ), and 〈ān : n < ω〉 exemplify

this in a model M (see Definition 0.8(1)). Without loss of generality, by

redefining ϕ if necessary, each ān is without repetition and is closed (recall

Claim 1.4(6)). By Ramsey theorem and compactness, we can assume that

the given sequence is a part of an indiscernible sequence 〈āk : k ∈ Z〉, hence

āks form a ∆-system. Let for k ∈ Z

X<
k

def
=

⋂

m<k

cl(āmˆāk), X>
k

def
=

⋂

m>k

cl(āmˆāk), Xk = cl(X<
k ∪ X>

k ).

Hence Rang(āk) ⊆ Xk, and Xk is closed. By Claim 1.4(6), there is an a

priori finite bound on the size of Xk, hence by indiscernibility, we have that

|Xk| = n∗ for some fixed n∗ not depending on k. Let ā+
k list Xk with no

14
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repetition. By Observation 1.6, Claim 1.4(6), indiscernibility and the fact

that each āk is closed, we have that for l ∈ {0, 2}

cl(āmˆāk) ∩ QC

l = (Rang(ām) ∪ Rang(āk)) ∩ QC

l

and

Xk ∩ QC

0 ⊆ Rang(āk) ∩ QC

0 and Xk ∩ QC

2 ⊆ Rang(āk) ∩ QC

2 .

Applying Ramsey theorem again, without loss of generality we have that

〈ā+
k : k ∈ Z〉 are indiscernible. Let

w∗
0

def
= {l : ā+

k1
(l) = ā+

k2
(l) for some (equivalently all) k1 6= k2}.

If ā+
k1

(l1) = ā+
k2

(l2) for some k1 6= k2, without loss of generality k1 < k2, by

indiscernibility and symmetry. By transitivity and the fact that each ā+
k is

without repetition, using k1 < k2 < k3 we get l1 = l2 ∈ w∗
0. Let w∗

1
def
= n∗\w∗

0,

and let ā = ā+
k ¹ w∗

0 and ā′
k = ā+

k ¹ w∗
1. Hence, 〈ā̂ ā′

k : k ∈ Z〉 is an

indiscernible sequence, and Rang(ā) ∩ Rang(ā′
k) = ∅ for all k. In addition,

for k1 6= k2 we have Rang(ā′
k1

) ∩ Rang(ā′
k2

) = ∅ and Rang(āˆā′
k) = Xk.

Now we define a model N . Its universe is ∪0≤l<3{clM(āˆā′
lˆā

′
l+1)}, and

QN
i = QM

i ∩ N , F N
j = ∪{Fj,l : l < 3}, where Fj,l = F M

j ¹ clM(āˆā′
lˆā

′
l+1), or

Fj,l = F M
j ¹ (clM(ā̂ ā′

lˆā
′
l+1))

2, as appropriate. Note that N is well defined,

and that it is a model of T0. N is not necessarily a model of T +
0 , as the

function F1 may be only partial. Notice that Xl ⊆ N for l ∈ [0, 3]. We wish

to define N ′ like N , but identifying ā+
0 and ā+

3 coordinatwise. We shall now

check that this will give a well defined model of T0. Note that by the proof

of Observation 1.6 we have

N ′ =
⋃

0≤l<3

Xl ∪
⋃

0≤l<3

{F N
1 (c, d) : c, d ∈ Xl ∪ Xl+1

& {c, d} * Xl & {c, d} * Xl+1 & F N
1 (c, d) /∈ Xl ∪ Xl+1}.

The possible problem is that F N ′

i might not be well defined, i.e. there

could perhaps be a case defined in two distinct ways. We verify that this

does not happen, by discussing various possibilities.

Case 1. For some b ∈ Rang(ā+
0 ), say b = ā+

0 (t), b′ = ā+
3 (t) and j ∈ {0, 2, 3}

we have Fj(b) 6= Fj(b
′) after the identification of ā+

0 with ā+
3 . As ā+

k ’s are

15
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closed, we have Fj(b) = ā+
0 (s) and Fj(b

′) = ā+
3 (s′) for some s, s′. By indis-

cernibility, we have s = s′, hence the identification will make Fj(b) = Fj(b
′).

Case 2. For some s, t we have that F1(ā
+
0 (s), ā+

0 (t)) and F1(ā
+
3 (s), ā+

3 (t))

are well defined, but not the same after the identification of ā+
0 and ā+

3 . This

case cannot happen, as can be seen similarly as in the Case 1.

Case 3. For some τ(x, y) ∈ {F1(x, y), F1(y, x)} and d1 = ā+
0 (s), d2 = ā+

3 (s)

and some e ∈ N we have that τN (e, d1), τ
N(e, d2) are well defined but do not

get identified when N ′ is defined.

By Case 2, we have that e /∈ ā and s /∈ w∗
0. As τ(e, d1) is well defined

and d1 ∈ X0 \ ā, necessarily e ∈ clM(X0 ∪ X1). Similarly, as τ(e, d2) is well

defined and d2 ∈ X3 \ ā, we have e ∈ clM(X2 ∪ X3). But, as F1(e, dl) is well

defined, we have e ∈ Q2 ∪ Q0. Hence e ∈ clM(X0 ∪ X1) \ Q1 ⊆ X0 ∪ X1 and

similarly e ∈ X2 ∪ X3. This implies e ∈ ā, a contradiction.

As M is a model of T0, F M
0 is onto (Claim 1.4(1)). Suppose y ∈ QN

0 ,

then for some l ∈ [0, 3) we have that y ∈ clM(Xl ∪ Xl+1), so by Observation

1.6, we have y ∈ Xl ∪ Xl+1. As each Xl is closed in M , by Claim 1.4(6)

each Xl is a model of T +
0 , so y ∈ Rang(F M

0 ¹ Xl), hence y ∈ Rang(F N
0 ) and

y ∈ Rang(F N ′

0 ). We can similarly prove that F N ′

3 is onto, and as each Xl

is a model of T +
0 we have by Claim 1.4(1) that QN ′

0 , QN ′

1 and QN ′

2 are all

non-empty. By Claim 1.4(2), N ′ can be extended to a model of T +
0 .

By the choice of ϕ and the fact that T ∗ is complete we have that

T ∗ |= (∀x̄0, x̄1, x̄2)¬[ϕ(x̄0, x̄1) ∧ ϕ(x̄1, x̄2) ∧ ϕ(x̄2, x̄0)].

As T ∗ is the model completion of T +
0 , in particular T ∗ and T+

0 are cotheories,

so we have that

T+
0 |= (∀x̄0, x̄1, x̄2)¬[ϕ(x̄0, x̄1) ∧ ϕ(x̄1, x̄2) ∧ ϕ(x̄2, x̄0)],

yet in N ′ we have

N ′ |= ϕ(ā0, ā1) ∧ ϕ(ā1, ā2) ∧ ϕ(ā2, ā0),

by the identification of ā0 and ā3. This is a contradiction. F1.7
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Definition 1.8 (1) A theory T is said to satisfy the oak property as exhib-

ited by a formula ϕ(x̄, ȳ, z̄) iff for any infinite λ, κ there are b̄η(η ∈ κ>λ)

and c̄ν(ν ∈ κλ) and āi(i < κ) such that

(a) [η C ν & ν ∈ κλ] =⇒ ϕ[ālg(η), b̄η, c̄ν],

(b) If η ∈ κ>λ and η 〈̂α〉 C ν1 ∈
κλ and η 〈̂β〉 C ν2 ∈

κλ, while α 6= β

and i > lg(η), then ¬∃ȳ [ϕ(āi, ȳ, c̄ν1
) ∧ ϕ(āi, ȳ, c̄ν2

)],

and in addition ϕ satisfies

(c) ϕ(x̄, ȳ1, z̄) ∧ ϕ(x̄, ȳ2, z̄) =⇒ ȳ1 = ȳ2.

We allow for the replacement of CT by C
eq
T (i.e. allow ȳ to be a definable

equivalence class).

(2) We say that oak holds for T if this is true for some ϕ.

Observation 1.9 If some infinite λ, κ exemplify that oak(ϕ) holds, then so

do all infinite λ, κ. (This holds by the compactness theorem).

Remark 1.10 We shall not need to use this, but let us remark that witnesses

ā, b̄, c̄ to oak(ϕ) can be chosen to be indiscernible along an appropriate index

set (a tree). This can be proved using the technique of [Sh -c], Chapter

VII, which employs the compactness argument and an appropriate partition

theorem.

Claim 1.11 T ∗ has oak.

Proof. Let

ϕ(x, y, z)
def
= Q0(x) ∧ Q1(y) ∧ Q2(z) ∧ F0(y) = x ∧ F1(x, z) = y.

Clearly, (c) of Definition 1.8 (1) is satisfied. Given λ, κ, we shall define

a model N = Nλ,κ of T+
0 . This will be a submodel of C = CT ∗ such

that its universe consists of QN
0

def
= {ai : i < κ} with no repetitions,

QN
1

def
= {bη : η ∈ κ>λ} with no repetitions and QN

2
def
= {cν : ν ∈ κλ} with no

repetitions, while Q0, Q1, Q2 are pairwise disjoint. We also require that the

following are satisfied in C = CT ∗:

17
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F0(bη) = alg(η), F1(ai, cν) = bν¹i

and that N is closed under F2 and F3. That such a choice is possible can be

seen by writing the corresponding type and using the saturativity of C.

We can check that N |= T +
0 , and that N is a submodel of C when un-

derstood as a model of T +
0 . Clearly, (a) from Definition 1.8(1) is satisfied

for ϕ and ai, bη, cν in place of āi, b̄η, c̄ν respectively. To see (b), suppose that

η, α, β, ν1, ν2 and i are as there, but d is such that ϕ(ai, d, cν1
) ∧ ϕ(ai, d, cν2

).

Hence F1(ai, cν1
) = F1(ai, cν2

), so ν1 ¹ i = ν2 ¹ i, a contradiction. This shows

that ϕ is a witness for T ∗ having oak. F1.11

A similar argument can be used to show that T ∗ is not simple, but in

fact we shall prove that no theory with the oak property is simple (this in

particular answers a question of A. Dolich raised in a private communication).

Claim 1.12 No theory with the oak property is simple.

Proof. Let T be a theory with the oak property and let κ, λ be cardinals

such that κ > |T |, 2κ < λ and λ = λ<κ < λκ (such cardinals always exist).

By Observation 1.9 we may assume that the oak property of T is exemplified

by a formula ϕ(x̄, ȳ, z̄) and sequences 〈āi : i < κ〉, 〈b̄η : η ∈ κ>λ〉 and

〈c̄ν : ν ∈ κλ〉. For ν ∈ κλ let pν = pν(z̄)
def
= {ϕ(āi, b̄ν¹i, z̄) : i < κ}. Hence

each pν is a type of cardinality κ and the set {pν : ν ∈ κλ} consists of

pairwise incompatible types. The set of parameters used in
⋃

{pν : ν ∈ κλ}

has size ≤ κ · λ<κ = λ. By [[Sh -c], III, 7.7, pg. 141] this implies that T is

not simple. F1.12

We now pass to another example of a theory with oak that satisfies

NSOP3, which is the theory T ∗
feq of infinitely many indexed independent

equivalence relations. This example also shows why it is that this research

continues [Sh 457]. The readers uninterested in T ∗
feq can skip to the next

section without loss of continuity. We use the notation for T ∗
feq which was

used in [DjSh 692], while the fact that this is equivalent to the notation in

[Sh 457] was explained in [DjSh 692]. The existence of the required model

completion is explained in [DjSh 692].

18
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Definition 1.13 (1) T +
feq is the following theory in {Q, P, E, R, F}

(a) Predicates P and Q are unary and disjoint, and (∀x) [P (x) ∨ Q(x)],

(b) E is an equivalence relation on Q,

(c) R is a binary relation on Q × P such that

[x R z & y R z & x E y] =⇒ x = y.

(explanation: so R picks for each z ∈ Q (at most one) representative of any E-equivalence class).

(d) F is a (total) binary function from Q × P to Q, which satisfies

F (x, z) ∈ Q & (F (x, z) R z) & (x E F (x, z)) .

(explanation: so for x ∈ Q and z ∈ P , the function F picks the representative of the E-equivalence

class of x which is in the relation R with z).

(2) T ∗
feq is the model completion of T +

feq.

Remark 1.14 After renaming, C
eq
T ∗

feq
is a reduct of C

eq
T ∗, formally T ∗

feq is in-

terpretable in T ∗. Given a model M of T ∗, we define N = N1[M ] by letting

its universe be QM
1

⋃

QM
2 and P N = QM

2 , while QN = QM
1 . We let

y Ez iff F M
0 (y) = F M

0 (z) and F N(x, z) = F1(F0(x), z).

We also let x R z ⇐⇒ F N(x, z) = x. It is easily seen that N |= T +
feq, and

moreover, N |= T ∗
feq.

Using the above Remark and the fact that oak and NSOP3 are preserved

up to isomorphism of Ceq, we obtain:

Corollary 1.15 (1) T ∗
feq has oak.

(2) T ∗
feq has NSOP3

2.

2It has subsequently been proved by Shelah and Usvyatsov in [ShUs E32] that T ∗

feq has
a stronger property NSOP1.
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Proof. (1) Use the formula ϕ(x, y, z) ≡ F (x, z) = y.

(2) Follows by Remark 1.14. F1.15

Part (2) of Corollary 1.15 was stated without proof in [Sh 500]. The

results here suggest the following questions.

Question 1.16 (1) Does T ∗ satisfy SOP2 or SOP1?

(2) Are there any nontrivial examples of oak theories that have SOP3?

Properties SOP2 or SOP1 were introduced in [DjSh 692] where it was

shown that SOP3 =⇒ SOP2 =⇒ SOP2 =⇒ not simple, but it was left

open to decide if any of these implications is reversible. These properties are

studied further in [ShUs E32] where it is proved that T ∗
feq has NSOP1. It

makes it reasonable to conjecture that the answer to both parts of 1.16 is

positive.

We finish the section by quoting a result of Shelah from [Sh 457], which

can be compared with our non-universality results from §2. The notation is

explained in §2.

Theorem 1.17 (Shelah) Suppose that κ, µ and λ are cardinals satisfying

(1) κ = cf(µ) < µ, λ = cf(λ),

(2) µ+ < λ,

(3) there is a family

{(ai, bi) : i < i∗, ai ∈ [λ]<µ, bi ∈ [λ]κ}

such that |{bi : i < i∗}| ≤ λ and satisfying that for every f : λ → λ

there is i such that f(bi) ⊆ ai; and

(4) ppΓ(κ)(µ) > λ + |i∗|.

Then univ(T +
feq, λ) ≥ ppΓ(κ)(µ).
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2 Non-universality results

In this section we present two general theorems showing that under certain

cardinal arithmetic assumptions oak theories do not admit universal models.

Let us start by introducing some common abbreviations that we shall use in

the statements and the proofs in this section.

Notation 2.1 (1) Let κ ≤ λ be cardinals. We let

[λ]κ
def
= {A ⊆ λ : |A| = κ}.

If κ is regular we let

Sλ
κ

def
= {α < λ : cf(α) = κ}.

(2) For a set A of ordinals we let the set of accumulation points of A be

acc(A)
def
= {α ∈ A : α = sup(A ∩ α)} and the set of non-accumulation points

be nacc(A)
def
= A \ acc(A).

Before proceeding to the non-universality theorems recall from the In-

troduction the definition of a tight club guessing sequence (Definition 0.2).

Note that the definition does not require sets Cδ to be either closed or un-

bounded in δ. It can be deduced from the existing literature on club guessing

sequences that tight and truly tight club guessing sequences exist for many

triples (κ, µ, λ). We shall indicate in Claim 2.10 how this deduction can be

made, but let us leave this for the discussion on the consistency of the as-

sumptions of the non-universality theorems, which will be given after their

proofs. We shall now give two non-universality theorems. These theorems

have set-theoretic and model-theoretic assumptions. The model-theoretic as-

sumption in both cases is the same, that we are dealing with an oak theory

of size < λ, with the desired conclusion being that the universality number

univ(T, λ) is larger than λ. The set-theoretic assumptions, which are differ-

ent for the two theorems, will be phrased in the form of certain combinatorial

statements that are needed for the proofs of the theorem. As with tight club

guessing sequences, it might not be immediately clear to the reader that these

assumptions are consistent. However, after we prove the theorems we shall
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give some sufficient conditions for these assumptions to be satisfied and as a

corollary get some non-universality results whose set-theoretic assumptions

are phrased in the form of cardinal arithmetic and known to be consistent.

Theorem 2.2 and 2.4 have similar proofs, as we explain below, so we shall

first state both theorems and then give the proofs simultaneously.

Theorem 2.2 Assume that κ, µ, σ and λ are cardinals satisfying

(1) cf(κ) = κ < µ < λ = cf(λ) and there is a tight (µ, λ) club guessing

sequence,

(2) λ < µκ,

(3) κ ≤ σ ≤ λ,

(4) There are families P1 ⊆ [λ]κ and P2 ⊆ [σ]κ such that

(i) for every injective g : σ → λ there is X ∈ P2 with {g(i) : i ∈ X} ∈ P1,

(ii) |P1| < µκ, |P2| ≤ λ,

(5) T is a theory of size < λ which has the oak property.

Then

univ(T, λ) ≥ µκ.

Definition 2.3 For cardinals κ ≤ µ we define

UJbd
κ

(µ)
def
= min{|P| : P ⊆ [µ]κ & (∀b ∈ [µ]κ)(∃a ∈ P)(|a ∩ b| = κ}.

More on UJbd
κ

(µ) can be found in [Sh E12].

Theorem 2.4 Assume that κ, µ, σ and λ are cardinals satisfying

(1) cf(κ) = κ < µ < λ = cf(λ) and there is a tight (µ, λ) club guessing

sequence,

(2) λ < UJbd
κ

(µ),

(3) κ ≤ σ ≤ λ,
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(4) There are families P1 ⊆ [λ]κ and P2 ⊆ [σ]κ such that

(i) for every injective g : σ → λ there is X ∈ P2 such that for some

Y ∈ P1

|{g(i) : i ∈ X} ∩ Y | = κ,

(ii) |P1| < UJbd
κ

(µ), |P2| ≤ λ,

(5) T has the oak property.

Then

univ(T, λ) ≥ UJbd
κ

(µ).

Before we start the proof let us give an introduction to the methods that

appear within it. When proving that the universality number of a certain

category with given morphisms (so not just in the context of first order model

theory) is high it is often the case that one can associate to each object in the

category a certain construct, an invariant, which is to some extent preserved

by morphisms. For example such an invariant might be an ordinal number

and then one can prove that such an invariant may only increase after an

embedding. The proof then proceeds by contradiction by showing that any

candidate for the universal would have to satisfy too many invariants. A

trivial example would be to show that there is no countable well-ordering

that is universal under order preserving emebeddings: the order type of the

ordering is an invariant that satisfies that if f : P → Q is an order preserving

embedding, then the order type of Q is at least as large as that of P . Any Q

that would be universal would have to have a countable well-order type that

is larger than that of all countable ordinals, a contradiction. As trivial as it is,

this example points out two stages of a non-universality proof: construction

which associates an object to every invariant prescribed by a certain set (e.g.

the uncountable set of all countable ordinals) and preservation that shows

that some essential features of the invariant are preserved (e.g. the order type

does not decrease) under embeddings. In our proofs we shall use the same

method, except that the invariants will be defined as certain λ-sequences of

subsets of µ, unique modulo the club filter on λ, and that the preservation

and the resulting contradiction will be dependent on a certain club guessing

23
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sequence. Using such invariants is a technique that was first used by Kojman

and Shelah in [KjSh 409] and has appeared in a number of papers since. The

main point tends to be the right definition of an invariant and the use of a

right kind of club guessing.

Proof. We shall use the same proof for both Theorem 2.2 and Theorem 2.4.

The two main Lemmas are the same for both theorems, and we shall indi-

cate the differences which occur toward the end of the proof. Suppose that

ϕ(x̄, ȳ, z̄) shows that T has the oak property and let ai (i < κ), bη (η ∈ κ>λ)

and cν(ν ∈ κλ) exemplify the oak property of ϕ(x̄, ȳ, z̄) for λ and κ. For

notational simplicity, let us assume that lg(x̄) = lg(ȳ) = lg(z̄) = 1.

Let 〈Cδ : δ ∈ S〉 be a tight (µ, λ) club guessing sequence. For each δ, let

〈α(δ, ζ) : ζ < µ〉 be the increasing enumeration of Cδ. Let C+ be a (saturated

enough) expansion of CT by the Skolem functions for CT .

Definition 2.5 (1) For N̄ = 〈Nγ : γ < λ〉 an ≺-increasing continuous

sequence of models of T of size < λ, and for a, c ∈ Nλ
def
=

⋃

γ<λ Nγ , and

δ ∈ S, we let

invN̄(c, Cδ, a)
def
= {ζ < µ : (∃b ∈ Nα(δ,ζ+1) \ Nα(δ,ζ))(Nλ |= ϕ[a, b, c])}.

(2) For a set A and δ, N̄ as above, let

invA
N̄(c, Cδ)

def
=

⋃

{invN̄ (c, Cδ, a) : a ∈ A}.

Note 2.6 Following the notation of Definition 2.5, notice that invN̄ (c, Cδ, a)

is always a singleton or empty, since if there is b ∈ Nλ such that ϕ[a, b, c]

holds then such b is unique (by part (c) of Definition 1.8). Consequently

invA
N̄

(c, Cδ) ∈ [µ]≤|A|.

Construction Lemma 2.7 For every A∗ ∈ [µ]κ of order type κ, there is an

≺-increasing continuous sequence N̄A∗

= 〈NA∗

γ : γ < λ〉 of models of T of

size < λ and a set {âi : i < σ} of elements of NA∗

def
=

⋃

γ<λ NA∗

γ such that

for some club E∗ of λ, for every X ∈ P2, for some αX < λ, for every δ ∈ S

satisfying min(Cδ) > αX , there is c ∈ NA∗ such that inv
{âi: i∈X}

N̄A∗

(c, Cδ) = A∗.

In addition, the universe of NA∗ is λ.
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Proof of the Lemma. Let P2 = {Xα : α < α∗ ≤ λ}. Without loss of

generality σ ⊆
⋃

α<α∗ Xα.

Given A∗. Let f = fA∗ be an increasing function from the successor

ordinals < κ into µ such that Rang(f) = A∗. For δ ∈ S let νδ be the

function from κ into λ such that νδ(ζ) = α(δ, f(ζ)) for all ζ < κ. Note that

νδ is increasing. Hence cνδ
is well defined, as is bη for η C νδ. For X ∈ P2,

let ρX be a bijection between the ordinals < κ that have the form β + 2 for

some β and X. For η ∈ κ>λ let us say that η is good iff the domain of η is of

the form β + 2 for some β < κ.

By a compactness argument, we can see that there are 〈âi : i < σ〉 and

for X ∈ P2, sequences 〈cX
νδ

: δ ∈ S〉, 〈bX
η : η C νδ & η good & δ ∈ S〉 such

that for η good and δ ∈ S

η C νδ =⇒ |= ϕ[âρX(lg(η)), b
X
η , cX

νδ
]

and the appropriate translation of (b) from Definition 1.8 holds. By taking

an isomorphic copy of C+ if necessary, we can assume that the Skolem hull

in C+ of

{âi : i < σ} ∪ {bX
η : X ∈ P2 & (∃δ ∈ S)η C νδ} ∪ {cX

νδ
: X ∈ P2 & δ ∈ S}

is contained in λ. Let for γ < λ the model NA∗

γ be the reduction to L(T ) of

the Skolem hull in C+ of

γ ∪ {âi : i ∈ ∪α<min{α∗,γ}Xα}∪

∪
⋃

α<min{α∗,γ}

{cXα

νδ
: δ ∈ S ∩ γ & sup(Rang(νδ)) < γ}∪

∪
⋃

α<min{α∗,γ}

{bXα

η : η C νδ for some δ ∈ S & η good & sup(Rang(η)) < γ}.

Hence N̄A∗

= 〈NA∗

γ : γ < λ〉 is ≺-increasing continuous, and it also follows

that the universe of NA∗ def
=

⋃

γ<λ NA∗

γ is λ. We observe also that for γ < λ

we have |NA∗

γ | < λ because λ is regular, T has size < λ and the Skolem

hull needed to obtain NA∗

γ is taken over a set of size < λ. That this set has

size < λ might not be immediate, since in the last clause of its definition we
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allow δ to range over the entire set S, whose size is λ. However, for every η

appearing in this part of the definition η is increasing (as an initial segment

of some νδ) and it satisfies sup(Rang(η)) < γ. Since the domain of η is of

the form β +2 for some β, this means η(β +1) < γ. For any δ ∈ S such that

η C νδ we have that η(β +1) ∈ Cδ, so either η(β +1) ∈ nacc(Cδ) or for some

γ′ ∈ nacc(Cδ) we have that η(β) < γ ′ < η(β + 1). At any rate, Rang(η) is a

subset of size < κ of a set of the form Cδ ∩ ξ ∪{o} for some ξ ∈ nacc(Cδ) and

ξ, o are both < γ. As part of the choice of C̄ we obtain that for any ξ < γ

|{Cδ ∩ ξ : δ ∈ S, ξ ∈ nacc(Cδ)}| < λ.

For δ ∈ S and ξ ∈ nacc(Cδ) let ζ∗(δ, ξ)
def
= min{ζ : α(δ, f(ζ)) ≥ ξ}, if this is

well defined, and let ζ∗(δ, ξ) = κ otherwise. Now notice that if Cδ∩ξ = Cδ′∩ξ

then we have ζ∗(δ, ξ) = ζ∗(δ′, ξ) and that νδ ¹ ζ∗(δ, ξ) = νδ′ ¹ ζ∗(δ′, ξ). Our

analysis shows that any η relevant to the third clause of the definition of NA∗

γ

and having domain β + 2 satisfies that η ¹ (β + 1) = (νδ ¹ ζ∗(δ, ξ)) ¹ (β + 1)

for some δ ∈ S and ξ < γ and hence that there are < λ choices for bXα
η . Let

E∗ be a club of λ such that for every δ ∈ E∗ and good η we have:

b
Xβ
η ∈ NA∗

δ iff β < δ & (∃δ′ ∈ S ∩ δ)[η C νδ′ ].

Given α < α∗, X = Xα and δ ∈ S with min(Cδ) ≥ α + 1 and Cδ ⊆ E∗, we

shall show that with

I
def
= inv

{âi: i∈X}

N̄A∗ (cX
νδ

, Cδ)

we have I = A∗. Notice that ε < κ =⇒ α(δ, f(ε)) > α trivially since

min(Cδ) > α. Let i ∈ X, β + 2 = ρ−1
X (i) and let η = 〈α(δ, f(ε)) : ε ≤ β + 1〉.

We have that η C νδ and i = ρX(lg(η)). Hence ϕ[âi, b
X
η , cX

νδ
] holds. Let

ζ = f(β + 1). We then have that bX
η ∈ NA∗

α(δ,ζ)+1 ⊆ NA∗

α(δ,ζ+1) (as α(δ, ζ) + 1

is strictly larger than sup(Rang(η)) = α(δ, ζ) and α < α(δ, ζ) + 1), but

bX
η /∈ NA∗

α(δ,ζ) by the choice of E∗. Hence ζ = f(β +1) ∈ I. So A∗ ⊆ I because

every element of A∗ is f(β + 1) for some β as above.

In the other direction, suppose ζ ∈ I and let i ∈ X be such that ζ

is in invN̄A∗ (cX
νδ

, Cδ, âi). Hence for some b ∈ NA∗

α(δ,ζ+1) \ NA∗

α(δ,ζ) we have

|= ϕ[âi, b, c
X
νδ

]. Constructing η as in the previous paragraph we have that

|= ϕ[âi, b
X
η , cX

νδ
] holds. Using the uniqueness property from (c) of Definition

1.8 we see that b = bX
η so ζ = f(β + 1) for some β. So A∗ = I. F2.7
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Note 2.8 With the notation of Lemma 2.7, for any i ∈
⋃

α<min{α∗,δ} Xα we

have invN̄A∗ (cX
δ , Cδ, âi) 6= ∅, as follows from the forward direction of the proof

that A∗ = I.

Preservation Lemma 2.9 Suppose that N and N ∗ are models of T both

with universe λ, and f : N → N ∗ is an elementary embedding, while

〈Nγ : γ < λ〉 and 〈N∗
γ : γ < λ〉 are continuous increasing sequences of

models of T of cardinality < λ with
⋃

γ<λ Nγ = N and
⋃

γ<λ N∗
γ = N∗.

Further suppose that {âα : α < κ} ⊆ N is given. Let

E
def
=

{

γ :
(N, N∗, f) ¹ γ ≺ (N, N ∗, f) & sup({aα : α < κ}) < γ &

the universes of Nγ and N∗
γ are both the set γ

}

.

Then for every c ∈ N and δ with Cδ ⊆ E, and for every α < κ we have

invN̄(c, Cδ, âα) = invN̄∗(f(c), Cδ, f(âα)).

Proof of the Lemma. Note that E is a club of λ. Fix c ∈ N and

δ ∈ S as required, and let a = aα for some α < κ. We shall see that

invN̄(c, Cδ, a) = invN̄∗(f(c), Cδ, f(a)).

Suppose ζ < µ is an element of invN̄ (c, Cδ, a), so there is b ∈ Nα(δ,ζ+1)

with N |= ϕ[a, b, c], while there is no such b ∈ Nα(δ,ζ) (we are using the

uniqueness property from (c) of Definition 1.8). We have that N ∗ satis-

fies ϕ[f(a), f(b), f(c)]. As Cδ ⊆ E we have that α(δ, ζ + 1) ∈ E, and as

b ∈ Nα(δ,ζ+1), clearly f(b) ∈ N ∗
α(δ,ζ+1). Similarly, by the definition of E again

and the fact that f is injective we have f(b) /∈ N ∗
α(δ,ζ). By the assumptions

on ϕ we have

N∗ |= “(∀y)[ϕ(f(a), y, f(c)) =⇒ y = f(b)]”,

so ζ ∈ invN̄∗(f(c), Cδ, f(a)).

In the other direction, suppose ζ < µ is an element of invN̄∗(f(c), Cδ, f(a)),

so there is b∗ ∈ N∗
α(δ,ζ+1) with N∗ |= ϕ[f(a), b∗, f(c)], while there is no such

b∗ ∈ N∗
α(δ,ζ). Hence N∗ |= ∃y (ϕ[f(a), y, f(c)]), so N |= ∃y (ϕ[a, y, c]). Let

b ∈ N be such that N |= ϕ[a, b, c]. Hence N ∗ |= ϕ[f(a), f(b), f(c)]. Again

by (c) of Definition 1.8, we have f(b) = b∗, so b ∈ Nα(δ,ζ+1) \ Nα(δ,ζ) be-

cause {α(δ, ζ), α(δ, ζ + 1)} ⊆ E, so by the choice of E we have that for
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γ ∈ {α(δ, ζ), α(δ, ζ + 1)}, (N, N ∗, f) ¹ γ is an elementary submodel of

(N, N∗, f). As this b is unique (by (c) of Definition 1.8) we have that ζ

belongs to invN̄(c, Cδ, a). F2.9

Proof of the Theorems continued. Theorem 2.2 [Theorem 2.4]. To con-

clude the proof of the theorems, given θ < µκ [θ < UJbd
κ

(µ)], we shall see that

univ(T, λ) > θ. Without loss of generality, we can assume that θ ≥ λ + |P1|.

Given 〈N∗
j : j < θ〉 a sequence of models of T each of size λ, we shall show

that these models are not jointly universal. So suppose they were. Without

loss of generality, the universe of each N ∗
j is λ. Let N̄∗

j = 〈N∗
γ,j : γ < λ〉

be an increasing continuous sequence of models of T of size < λ such that

N∗
j =

⋃

γ<λ N∗
γ,j, for j < θ. For each A ∈ P1 (so A ∈ [λ]κ), δ ∈ S, j < θ and

d ∈ N∗
j , we compute invA

N̄∗

j
(d, Cδ), each time obtaining an element of [µ]≤κ.

The number of elements of [µ]≤κ obtained in this way is

≤ |P1| · |S| · θ · λ ≤ θ.

By the choice of θ [and the definition of UJbd
κ

(µ)], we can choose A∗ ∈ [µ]κ

such that A∗ is not equal to any of these sets [is almost disjoint (i.e. has

intersection of size < κ) to any one of these sets]. Let N
def
= NA∗ be as

guaranteed to exist by the Construction Lemma, and let {âi : i < σ},

N̄A∗ def
= 〈NA∗

γ : γ < λ〉 and E∗ be as in that Lemma. In particular, the

universe of N is λ. Suppose that j < θ and f : N → N ∗
j is an elementary

embedding, and let

E∗∗ def
=

{

δ ∈ E∗ : (N, N∗
j , f) ¹ δ ≺ (N, N ∗

j , f) &

the universe of each N ∗
δ,j, N

A∗

δ is δ

}

.

Let g : σ → λ be given by g(i) = f(âi). Note that g is injective because f is

an isomorphic embedding. By assumption (4)(i) of Theorem 2.2 [2.4], there

is X = Xα ∈ P2 such that {f(âi) : i ∈ X} ∈ P1, [for some Y ∈ P1 we have

|{f(âi) : i ∈ X} ∩ Y | = κ].

Let αX < λ be as provided by the Construction Lemma, and let

E
def
= (E∗∗ \ αX) ∩ {δ : {âi : i ∈ X} ⊆ δ}.
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Since we have that the universe of N is λ we have {âi : i < σ} ⊆ λ, so as X

is a set of size κ < λ we can conclude that E is a club of λ. We now choose

δ ∈ S such that Cδ ⊆ E, so in particular Cδ ⊆ E∗ and min(Cδ) > αX .

The Construction Lemma guarantees that there is c ∈ N such that

inv
{âi: i∈X}

N̄
(c, Cδ) = A∗. By the Preservation Lemma we have

inv
{f(âi): i∈X}

N̄∗

j

(f(c), Cδ) = A∗

[inv
{f(âi): i∈X}

N̄∗

j

(f(c), Cδ) ∩ A∗ includes inv
{f(âi): i∈X}∩Y

N̄∗

j

(f(c), Cδ)].

In the case of Theorem 2.2 we have a contradiction with the choice of A∗

and we are done. We are almost done also in the case of Theorem 2.4, but

we need to know that inv
{f(âi): i∈X}∩Y

N̄∗

j

(f(c), Cδ) has size κ. We know that

{f(âi) : i ∈ X}∩Y has size κ, but it is a priori possible that for some i ∈ X

we have invN̄∗

j
(f(c), Cδ, f(âi)) = ∅. However, by Note 2.8 and the choice of

E we have that invN̄ (c, Cδ, âi) 6= ∅ for all i, and then by the Preservation

Lemma invN̄∗

j
(f(c), Cδ, f(âi)) 6= ∅. This finishes the proof of Theorem 2.4.

F2.2, F2.4

Let us now pass to the promised discussion of the consistency of our

assumptions. The following is a claim about the existence of tight club

guessing sequences. If we were to concentrate on truly tight club guessing

sequences then we could quote further results, for example a theorem of

Shelah from [Sh 420], so in this sense Claim 2.10 is not optimal. However

for what we need in the main theorems tight club guessing sequences suffice

hence the claim is formulated in a form that is not optimal but is sufficient,

with a gain of simplicity in presentation.

Claim 2.10 Suppose that κ < λ are regular.

(1) If κ+ < λ then there is a truly tight (κ, κ, λ) club guessing sequence.

(2) If κ = cf(µ) ≤ µ and µ+ < λ then there is a tight (µ, λ) guessing

sequence.

Proof. (1) This is proved in [[Sh E12], 1.3.(a)]. An alternative proof is to

deduce the statement from Claim 1.6. of [Sh 420] (for uncountable κ) by

letting Pδ = {Cδ} for δ ∈ S.
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(2) If µ++ < λ we simply find a truly tight (µ+, µ+, λ) sequence 〈Eδ : δ ∈ S〉,

which exists by (1) and then let Cδ be the first µ elements of Eδ. If λ = µ++,

the statement is proved in [[Sh E12], 1.3.(b)]. Alternatively, this follows from

the partial square for successors of regulars proved in [[Sh 351], §4]. F2.10

Remark 2.11 A problematic but natural case for (2) in Claim 2.10 would

be when κ = cf(µ) < µ and λ = µ+. The conclusion still “usually” holds

(i.e. it holds in most natural models of set theory).

Let us now comment on the assumptions (3) and (4) used in Theorems 2.2

and Theorem 2.4. An impatient reader might have accused us at this point of

unnecessary generalisation and introduction of too many cardinals into the

theorem, only to obscure the real issues. Why not set κ = µ = σ? The reason

is that in this case (2) would prevent us from fulfilling (4). For example,

suppose that κ<κ = κ and we are considering the requirements of Theorem

2.2. We can let P of size θ
def
= κκ be a family of almost disjoint elements of [κ]κ.

Let 〈gj : j < θ〉 be some sequence enumerating all increasing enumerations of

the elements of P. Hence for j 6= j ′ the set {γ : gj(γ) = gj′(γ)} has size < κ.

Suppose that P1 and P2 exemplify that (3) and (4) hold with σ = κ, and

assume also that (1) and (2) hold with µ = κ. Let P2 = {Xα : α < α∗ ≤ λ}.

For every j < θ there is α(j) < α∗ such that {gj(i) : i ∈ Xα(j)} ∈ P1. Since

|P1|, λ < θ, there is A ∈ P1 such that BA
def
= {j < θ : {gj(i) : i ∈ Xα(j)} = A}

has size at least λ+. Since |P2| ≤ λ, there is β such that

|{j : α(j) = β & {gj(i) : i ∈ Xα(j)} = A}| ≥ λ+.

This is a contradiction with the fact that the elements of P are almost dis-

joint.

In fact the situation that is natural for us to consider is when µ is a

strong limit singular, because of the following Claim, which follows from the

“generalised GCH” theorem of Shelah proved in [Sh 460] (Theorem 0.1).

Claim 2.12 Suppose that θ is a strong limit singular cardinal (for exam-

ple θ = iω) and that κ = cf(κ) and λ satisfy θ ∈ (κ, λ]. Then for every

large enough regular σ ∈ (κ, θ), there are P1, P2 satisfying parts (4) of the

assumptions of Theorem 2.2 and |P1|, |P2| ≤ λ.
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Proof. By Theorem 0.1 of [Sh 460] for every large enough regular σ ∈ (κ, θ)

there is a family P = P(σ) of elements of [λ]σ whose size is λ and such that

any element of [λ]σ can be covered by the union of < σ members of P (in

the notation of [Sh 460], λ[σ] = λ). Let us fix such a σ and let P = P(σ).

Let P2 = [σ]κ, so since θ is a strong limit we have |P2| < θ ≤ λ. Let P1 be

the family of all subsets of size κ of the elements of P, so |P1| ≤ λ · σκ ≤ λ.

Suppose now that g : σ → λ is injective, hence the range of g is an

element of [λ]σ. By the choice of P and the regularity of σ there is Z ∈ P

such that Rang(g) ∩ Z has size σ. Let Y be any subset of Z of size κ, so

Y ∈ P1. Letting X be such that {g(i) : i ∈ X} = Y we have that X ∈ P2

since g is injective. F2.12

Putting together Claim 2.10 and Claim 2.12 we can see that our non-

universality results apply in a large number of set-theoretic situations that

are known to be consistent, moreover follow just from the assumptions on

the cardinal arithmetic:

Corollary 2.13 Suppose that θ is a strong limit singular cardinal and that

κ, µ and λ satisfy

(1) cf(µ) = κ < θ ≤ µ < µ+ < λ = cf(λ),

(2) λ < µκ.

Then for any theory T of size < λ satisfying the oak property, we have

univ(T, λ) ≥ µκ.

Proof. The assumptions in (1) in specifically say that λ > µ+. By Claim

2.10 assumption (1) of Theorem 2.2 is satisfied. By Claim 2.12 assumption

(4) of Theorem 2.2 is satisfied for all large enough regular σ ∈ (κ, θ). The

conclusion follows by Theorem 2.2.

We shall now show that a conclusion similar to the one obtained in Corol-

lary 2.13 can be obtained from an assumption whose negation is not known

to be consistent (i.e. for all we know this assumption is true just in ZFC).
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Claim 2.14 Suppose that κ and λ are regular and λ ≥ κ+ω+1. Further

suppose that

for some n, cov(λ, κ+n+1, κ+n+1, κ+n) = λ. (∗λ,κ)

Then for any n showing that (∗λ,κ) holds, letting σ = κ+n we have that clause

(4) of the assumptions of Theorem 2.4 holds with some P1,P2 satisfying

|P1|, |P2| ≤ λ.

Here we use the familiar pcf notation:

Notation 2.15 For cardinals λ ≥ µ ≥ θ ≥ σ we let cov(λ, µ, θ, σ) be the

smallest possible size of a family P of elements of [λ]<µ such that every

element of [λ]<θ is covered by the union of < σ elements of P.

Proof. By the choice of n there is P0 ⊆ [λ]κ
+n

with |P0| ≤ λ and such that

for every A ∈ [λ]κ
+n

there are α < κ+n and Ai ∈ P0 for i < α such that

A ⊆ ∪i<αAi. As κ is regular, cf([κ+n]κ,⊆) ≤ κ+n+1. Let P2 ⊆ [σ]κ exemplify

this. For A ∈ P0 let hA be a one-to-one function from σ onto A, and let

P1 = {hA“B : A ∈ P0, B ∈ P2}. We have that |P1|, |P2| ≤ λ and that

P1 ⊆ [λ]κ.

As for the clause (i) of (4), let an injective g : σ → λ be given. By

the choice of P1, there are α < σ and Ai ∈ P0 for i < α such that

Rang(g) ⊆ ∪i<αAi. Hence for some i < α we have |Rang(g) ∩ Ai| = σ.

Let B = {ζ < σ : hAi
(ζ) ∈ Rang(g)}, so B ∈ [σ]σ. Hence for some B′ ∈ P2

we have |B ∩ B′| = κ. Let Y = hAi
“B′, so Y ∈ P1. Now choose X ∈ P2 that

includes {ε < σ : g(ε) ∈ Y }, so clearly |{g(i) : i ∈ X} ∩ Y | = κ. F2.14

Remark 2.16 In the notation of Claim 2.14, the failure of (∗λ,κ) is not

known to be consistent for any λ, κ as above. For example, consider the

hypothesis (F) of [Sh 420]§6, which states:

for every λ the set of singular cardinals χ < λ whose cofinality is un-

countable and that satisfy ppΓ(cf(χ))(χ) ≥ λ is finite,

and the consistency of whose negation is not known. By the “cov versus

pp” theorem of [Sh -g], II 5.4, we have that for every n ≥ 1

cov(λ, κ+n+1, κ+n+1, κ+n) = sup{ppΓ(κ+n)(χ) : χ ∈ [κ+n+1, λ], cf(χ) = κ+n},
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so Hypothesis (F) implies (∗λ,κ). One can see from the proof of Claim 2.14

that for our purposes even weaker statements suffice.

Corollary 2.17 Suppose that

(1) cf(µ) = κ < µ < µ+ < λ,

(2) (∗λ,κ), and

(3) λ < UJbd
κ

(µ).

Then for every theory T of size < λ satisfying the oak property we have

univ(T, λ) ≥ UJbd
κ

(µ).

Proof. The conclusion follows by Claim 2.10, Claim 2.14 and Theorem 2.4.

F2.17

Let us also comment on the connection between the assumptions of The-

orem 2.2 and 2.4. If ℵ0 < κ = cf(µ) < µ and for all θ < µ we have θκ < µ,

then

ppJbd
κ

(µ) = µκ = UJbd
κ

(µ)

(by [Sh -g], Chapter VII, §1).
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