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Abstract

The following results are proved:

(a) In a model obtained by adding ℵ2 Cohen reals, there is always a c.c.c.

complete Boolean algebra without the weak Freese-Nation property.

(b) Modulo the consistency strength of a supercompact cardinal, the ex-

istence of a c.c.c. complete Boolean algebra without the weak Freese-Nation

property is consistent with GCH.

(c) If a weak form of 2µ and cof([µ]ℵ0 ,⊆) = µ+ hold for each µ >

cf(µ) = ω, then the weak Freese-Nation property of 〈P(ω),⊆〉 is equivalent

to the weak Freese-Nation property of any of C(κ) or R(κ) for uncountable

κ.

(d) Modulo the consistency of (ℵω+1,ℵω) →→ (ℵ1,ℵ0), it is consistent with

GCH that C(ℵω) does not have the weak Freese-Nation property and hence the

assertion in (c) does not hold, and also that adding ℵω Cohen reals destroys

the weak Freese-Nation property of 〈P(ω),⊆〉.

These results solve all of the problems listed in Fuchino-Soukup [5] and

some other problems posed by S. Geschke.
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1 Introduction

A quasi-ordering 〈P,≤〉 is said to have the weak Freese-Nation property if there is

a mapping f : P → [P ]≤ℵ0 such that:

For any p, q ∈ P with p ≤ q there is r ∈ f(p) ∩ f(q) such that p ≤ r ≤ q.

A mapping f as above is called a weak Freese-Nation mapping on P .

The weak Freese-Nation property was introduced in Chapter 4 of [8] as a weak-

ening of a notion of almost freeness of Boolean algebras.

The weak Freese-Nation property of a quasi-ordering P can be characterized in

terms of σ-suborderings: a subordering Q of P is said to be a σ-subordering of P

(notation: Q ≤σ P ) if the following holds: for every p ∈ P there are a countable

cofinal subset U of Q|̀ p and a countable coinitial subset V of Q ↑ p.

Proposition 1.1 (see [4]) A quasi-ordering P has the weak Freese-Nation property

if and only if {Q ∈ [P ]ℵ1 : Q ≤σ P} contains a club subset of [P ]ℵ1 .

Note that various notions of almost freeness of Boolean algebras can be also char-

acterized in similar ways in terms of largeness of the family of subalgebras which

are “nice” in some sense (e.g. relatively complete subalgebras, free factor etc. —

see [8]).

In [4], it was shown that 〈P(ω1),⊆〉 does not have the weak Freese-Nation

property. If a complete Boolean algebra B does not have the c.c.c., then 〈P(ω1),⊆〉

can be completely embedded into B. Hence, in this case, B cannot have the weak

Freese-Nation property (see Proposition 1.3 (1)).

It is easily seen that every quasi-ordering of cardinality ≤ ℵ1 has the weak

Freese-Nation property (see e.g. [4]). It follows that, under CH, 〈P(ω),⊆〉 has the

weak Freese-Nation property.

Similarly to the situation with P(ω1) and non-c.c.c. complete Boolean algebras,

if 〈P(ω),⊆〉 does not have the weak Freese-Nation property, then no infinite c.c.c.

complete Boolean algebra (and hence no infinite complete Boolean algebra at all)

can have the weak Freese-Nation property.

Foundation for Scientific Research grant no. 25745.

Section 6 of the present paper was worked out during the conference ”Algebra and Discrete

Mathematics” in Hattingen, Germany 1999 which was organized by the third author and attended

by all of the other authors.
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To simplify the formulation of some of the results below, let us say that a model

of set-theory is neat if cof([µ]ω,⊆) = µ+ for each µ > cf(µ) = ω and the very weak

variant of 2µ introduced in [5] (see the end of section 4) holds.

In [4] and [5], it was shown that if CH holds, then every c.c.c. complete Boolean

algebra of size < ℵω has the weak Freese-Nation property; and in a neat model,

CH implies that every c.c.c. complete Boolean algebra has the weak Freese-Nation

property. The following questions remained unanswered in [5]:

Question 1 ([5, Problem 5]) Are the following equivalent?

(a) 〈P(ω),⊆〉 has the weak Freese-Nation property;

(b) every c.c.c. complete Boolean algebra has the weak Freese-Nation property.

Question 2 ([5, Problem 2]) Does ZFC + GCH imply that every c.c.c. complete

Boolean algebra has the weak Freese-Nation property ?

We give here negative answers to these questions: see Corollary 3.4 for question

1 and Theorem 4.2 for question 2. By the result in [5] mentioned above, we need the

consistency strength of some large cardinal to give a negative answer to Question

2. Indeed, the ground model V in the negative solution to this question is obtained

by starting from a model of ZFC with a supercompact cardinal.

In [4] it was shown that if CH holds, then adding less than ℵω many Cohen

reals preserves the weak Freese-Nation property of 〈P(ω),⊆〉. By [5], in the generic

extension obtained by adding any number of Cohen reals to a neat model satisfying

CH, not only 〈P(ω),⊆〉 but every tame c.c.c. complete Boolean algebra has the

weak Freese-Nation property. Here, letting P = Fn(τ, 2) (= the standard p.o.

for adding τ Cohen reals), a Boolean algebra B in a P -generic extension is said

to be tame, if there is a P -name ≤̇ of a partial ordering of B and a mapping

t : B → [τ ]ℵ0 in V such that, for every p ∈ P and x, y ∈ B, if p ‖–P “x ≤̇ y ”, then

p|̀ (t(x) ∪ t(y)) ‖–P “x ≤̇ y ” (we assume here without loss of generality that B is

chosen so that its underlying set is a ground model set).

These results suggest the following questions posed in [5]:

Question 3 ([5, Problem 3]) Assume that V [G] is a model obtained by adding

Cohen reals to a model of ZFC + CH. Is it true that P(ω) has the weak Freese-

Nation property in V [G] ?

Question 4 ([5, Problem 4]) Assume that V [G] is a model obtained by adding ℵ2

Cohen reals to a model of ZFC+CH. Is it true that every c.c.c. complete Boolean

algebra (not just the tame ones) has the weak Freese-Nation property in V [G]?

3
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The results of the present paper answer these questions in the negative: see

Theorem 6.1 for question 3 and Corollary 3.3 for question 4.

By the result in [5] mentioned above, we need the consistency strength of some

large cardinal for a negative solution of Question 3. The ground model V in the

negative solution of this problem given in Theorem 6.1 is obtained by starting from

a model of ZFC with a large cardinal slightly stronger than a huge cardinal.

After the negative solution of Problem 5 in [5] (listed here as Question 1), the

following question still remains:

Problem 1 For which Boolean algebras B, is the weak Freese-Nation property of

B equivalent with the weak Freese-Nation property of 〈P(ω),⊆〉 ?

The following trivial lemma can also be seen in connection with this problem:

Lemma 1.2 The following are equivalent:

(a) 〈P(ω),⊆〉 has the weak Freese-Nation property;

(b) 〈P(ω),⊆∗〉 has the weak Freese-Nation property;

(c) 〈P(ω)/fin,⊆∗〉 has the weak Freese-Nation property;

(d) 〈ωω,≤〉 has the weak Freese-Nation property;

(e) 〈ωω,≤∗〉 has the weak Freese-Nation property.

(f) 〈ωR,≤〉 has the weak Freese-Nation property.

S. Koppelberg [10] pointed out that the weak Freese-Nation property of the

Cohen algebra C(ω) is equivalent to the weak Freese-Nation property of 〈P(ω),⊆〉.

In the present paper, we show that it is also equivalent to the weak Freese-Nation

property of the measure algebra R(ω) (Proposition 5.1) and moreover, in a neat

model, also to the weak Freese-Nation property of C(κ) and/or R(κ) for any κ ≥ ℵ0

(Corollary 5.4). Here, we denote by C(κ) and R(κ) the c.c.c. complete Boolean al-

gebras Borel(κ2)/meager(κ2) and Borel(κ2)/null(κ2) respectively. We show that

some extra set-theoretic assumptions are really necessary in Corollary 5.4 by con-

structing a model of GCH and the negation of weak Freese-Nation property of

C(ℵω) starting from a model of GCH and Chang’s conjecture for ℵω.

Assume that 〈Pα, Q̇α : α < ω2〉 is a finite support iteration such that the forcing

with Q̇α just adds a real to V Pα. Then, as S. Geschke showed in [7] , if this iteration

preserves the weak Freese-Nation property of P(ω), then in many cases, we can

conclude that for stationarily many α the partially ordered set Q̇α just adds one

Cohen real. On the other hand, in any model obtained by adding ≥ ℵ2 Cohen

reals, there is a c.c.c. complete Boolean algebra B without the weak Freese-Nation

property (Corollary 3.3). So there is no easy way to blow up the continuum while

preserving the weak Freese-Nation property of all c.c.c. complete Boolean algebras.

This suggests that the following question is a quite reasonable one:

4
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Problem 2 Does CH follow from the assumption that every c.c.c. complete Boolean

algebra has the weak Freese-Nation property?

If b > ℵ1 or if there is an ℵ2-Luzin-gap, then 〈P(ω),⊆〉 does not have the weak

Freese-Nation property (see [4] and [5]). The following question (([5, Problem 1]))

was raised against this background:

Suppose that P(ω) does not have any increasing chain of length ≥ ω2 with

respect to ⊆∗ and that there is no ℵ2-Luzin gap. Does it follow that P(ω) has the

weak Freese-Nation property ?

This can be solved negatively using results from [2] and [7]: Let V be a model

of CH and V [G] its generic extension by adding many random reals side by side.

Using results from [2] we see that, in V [G], there are neither increasing ω2 chains

in P(ω) with respect to ⊆∗ nor ℵ2-Luzin gaps. On the other hand S. Geschke [7]

showed that, in V [G], 〈P(ω),⊆〉 does not have the weak Freese-Nation property.

Consequences of the weak Freese-Nation property of 〈P(ω),⊆〉 were studied in

[10] and [6]. In the latter paper it was shown that a set-theoretic universe with the

weak Freese-Nation property of 〈P(ω),⊆〉 looks quite similar to a Cohen model.

In particular, under the weak Freese-Nation property of 〈P(ω),⊆〉, all cardinal

invariants which appear in [1] take the same value as in a Cohen model with the

same size of 2ℵ0 .

Problem 3 Find a combinatorial (Π1
1) characterization of the weak Freese-Nation

property of P(ω).

The weak Freese-Nation property of a quasi-ordering 〈P,≤〉 is actually a prop-

erty of the corresponding partial ordering 〈P,≤〉 obtained as the quotient structure

of 〈P,≤〉 with respect to the equivalence relation “x ≤ y ∧ y ≤ x”: 〈P,≤〉 has the

weak Freese-Nation property if and only if 〈P,≤〉 does (the first author thanks

David Fremlin for pointing out this fact).

The following criteria of the weak Freese-Nation property are used in the later

sections. A partial ordering Q is said to be a retract of a partial ordering P if there

are order preserving mappings i : Q→ P and j : P → Q such that j ◦ i = idQ.

Q is said to be a σ-subordering of P (notation: Q ≤σ P ) if, for every p ∈ P ,

Q|̀ p = {q ∈ Q : q ≤ p} has a countable cofinal subset and Q ↑ p = {q ∈ Q : q ≥

p} has a countable coinitial subset. Note that if C is a complete subalgebra of a

complete Boolean algebra B (notation: C ≤c B) or a countable union of complete

subalgebras of B, then it follows that C ≤σ B.

Proposition 1.3 (1) (Lemma 2.7 in [4]) If Q is a retract of P and P has the

weak Freese-Nation property then Q has the weak Freese-Nation property.

5



7
1
2
 
 
r
e
v
i
s
i
o
n
:
2
0
0
1
-
0
1
-
2
9
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
1
-
0
1
-
3
0
 
 

(2) Suppose that Q is a complete Boolean algebra and there is a strictly order-

preserving embedding f of Q into P (i.e. f preserves ordering and incomparability).

If P has the weak Freese-Nation property then Q also has the weak Freese-Nation

property.

(3) (Lemma 2.3 (a) in [4]) If Q ≤σ P and P has the weak Freese-Nation property,

then Q also has the weak Freese-Nation property.

(4) (Lemma 2.6 in [4]) If Pα, α < δ is an increasing sequence of partial orderings

with the weak Freese-Nation property such that Pα ≤σ Pα+1 for every α < δ and

Pγ =
⋃

α<γ Pα for all γ < δ with cf(γ) > ω, then P =
⋃

α<δ Pα also has the weak

Freese-Nation property.

Proposition 1.3 (2) follows easily form Proposition 1.3 (1): the mapping g : P → Q

defined by g(p) =
∑

{q ∈ Q : f(q) ≤ p} for p ∈ P witnesses that Q is a retract of

P .

2 The partial ordering PS

In this section we introduce a construction of partial orderings PS and Boolean

algebras BS which will be used in the following Section 3 and 4. For S ⊆ κ and an

indexed family S = 〈Sα : α ∈ S〉 of subsets of κ, let

PS = {xi : i ∈ κ} ∪ {yα : α ∈ S}

where the xi’s and yα’s are pairwise distinct, and let ≤S be the partial ordering on

PS defined by

p ≤S q ⇔ p = q or

p = xi and q = yα for some i ∈ κ and α ∈ S with i ∈ Sα .

Let BS be the Boolean algebra generated freely from PS except the relation ≤S .

Note that the identity map on PS canonically induces a strictly order-preserving

embedding of PS into BS .

Proposition 2.1 Suppose that cf(κ) ≥ ω2, S ⊆ κ is stationary such that S ⊆

{α < κ : cf(α) ≥ ω1} and S = {Sα : α ∈ S} is such that Sα is a cofinal subset

of α for each α ∈ S. If PS is embedded into a partial ordering P by a strictly

order-preserving mapping then P does not have the weak Freese-Nation property.

In particular, BS and its completion do not have the weak Freese-Nation property.

6
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Proof Without loss of generality, we may assume that PS is a subordering of P .

Assume to the contrary that there is a weak Freese-Nation mapping f : P → [P ]≤ℵ0 .

Let

C = {ξ < κ : ∀η < ξ ∀p ∈ f(xη)

[ ∃α ∈ S [ xη ≤ p ≤ yα ] → ∃α′ ∈ S ∩ ξ [ xη ≤ p ≤ yα′ ] ] }.

Then C is a club subset of κ. Let α ∈ C ∩ S and let

A = {p ∈ f(yα) : ∃η ∈ Sα [ p ∈ f(xη) ∧ xη ≤ p ≤ yα ] }.

Since α ∈ C, for each p ∈ A there is αp < α such that p ≤ yαp. Let α
∗ = sup{αp :

p ∈ A}. Since A is countable we have α∗ < α. Let β ∈ Sα \ α
∗. Since xβ ≤ yα,

there is a p ∈ A such that xβ ≤ p ≤ yα. Hence xβ ≤ yαp. But this is impossible

since αp < α∗ ≤ β. (Proposition 2.1)

3 Cohen models

Consider the following principle:

(∗∗) There is a sequence 〈Sα : α ∈ Lim(ω2)〉 such that each Sα is a cofinal

subset of α and for any pairwise disjoint 〈xβ : β < ω1〉 with xβ ∈ [ω2]
<ℵ0

for β < ω1, there are β0 < β1 < ω1 such that xβ0 ∩ Sα = ∅ for all

α ∈ xβ1 ∩ Lim(ω2) and that xβ1 ∩ Sα = ∅ for all α ∈ xβ0 ∩ Lim(ω2) .

Proposition 3.1 Let P = Fn(ω2, 2). Then ‖–P “ (∗∗) ”.

Proof Without loss of generality we may assume P = Fn(
⋃

α∈Lim(ω2) α× {α}, 2).

For α ∈ Lim(ω2), let Ṡα be a P -name such that ‖–P “ Ṡα = {β ∈ α : ġ(β, α) = 1} ”

where ġ is the canonical name for the generic function. By genericity, ‖– P “ Ṡα is

cofinal in α ” for every α ∈ Lim(ω2). Let Ṡ be a P -name such that ‖–P “ Ṡ = 〈Ṡα :

α ∈ Lim(ω2)〉 ”.

To show that Ṡ is forced to satisfy the property in (∗∗), let 〈ẋβ : β < ω1〉 be

a P -name of a sequence of pairwise disjoint finite subsets of ω2. For each β < ω1,

let pβ and xβ ∈ [ω2]
<ℵ0 be such that pβ ‖–P “ ẋβ = xβ ”. By thinning out the index

set ω1, we may assume without loss of generality that dom(pβ), β < ω1 form a

∆-system with the root d and pβ |̀ d, β < ω1 are all equal to the same p ∈ P .

Since pβ, β < ω1 are then pairwise compatible, xβ, β < ω1 are pairwise disjoint.

Further, we may assume that sβ, β < ω1 form a ∆-system with the root s where

sβ = {γ : 〈γ, α〉 ∈ dom(pβ) for some α ∈ Lim(ω2)}. Note vthat xβ , β < ω1 are

pairwise disjoint since pβ’s are pairwise compatible.

7
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Let β0 < β1 < ω1 be such that xβ0 ∩ s = ∅, xβ1 ∩ s = ∅, xβ0 ∩ sβ1 = ∅ and

xβ1 ∩ sβ0 = ∅. To take such β0 and β1, first fix a β0 such that xβ0 ∩ s = ∅. This

is possible since s is finite and xβ’s are pairwise disjoint. By the same argument

we can find infinitely many β’s such that xβ ∩ (s ∪ sβ0) = ∅. Now for such β’s,

since sβ \ s are pairwise disjoint, there are infinitely may β’s among them with

xβ0 ∩ sβ = ∅. Let β1 be one of such β’s.

Let

p∗ = pβ0 ∪ pβ1 ∪ {〈〈β, α〉, 0〉 : β ∈ xβ0 , α ∈ xβ1 ∩ Lim(ω2)}

∪{〈〈β, α〉, 0〉 : β ∈ xβ1 , α ∈ xβ0 ∩ Lim(ω2)}

Then p∗ ∈ P . Clearly p∗ ‖–P “ ẋβ0 ∩ Ṡα = ∅ ” for all α ∈ ẋβ1 ∩ Lim(ω2) and

p∗ ‖–P “ ẋβ1 ∩ Ṡα = ∅ ” for all α ∈ ẋβ0 ∩ Lim(ω2). (Proposition 3.1)

Proposition 3.2 Suppose that 〈Sα : α ∈ Lim(ω2)〉 is as in (∗∗). Let S = {α <

ω2 : cf(α) = ω1} and S = 〈Sα : α ∈ S〉. Then BS satisfies the c.c.c.

Proof Otherwise we can find Iα ∈ [ω2]
<ℵ0, Jα ∈ [S]<ℵ0 for α < ω1 and t(α, i),

u(α, ξ) ∈ {+1,−1} for each i ∈ Iα, ξ ∈ Jα and α < ω1 such that

zα =
∏

i∈Iα t(α, i) xi ·
∏

ξ∈Jα u(α, ξ) yξ, α < ω1

form a pairwise disjoint family of elements of BS
+.

By a ∆-system argument, we may assume that Iα ∪ Jα, α < ω1 are pairwise

disjoint. Applying (∗∗) to 〈Iα ∪ Jα : α < ω1〉, we find β0 < β1 < ω1 such that

Iβ0 ∩ Sξ = ∅ for all ξ ∈ Jβ1 and that Iβ1 ∩ Sξ = ∅ for all ξ ∈ Jβ0 . By definition of

BS , it follows that zβ0 · zβ1 6= 0 . This is a contradiction. (Proposition 3.2)

Theorem 3.3 In a Cohen model (i.e. any model obtained by adding ≥ ℵ2 Cohen

reals) there is a c.c.c. complete Boolean algebra B of density ℵ2 without the weak

Freese-Nation property.

Proof By Proposition 3.1, (∗∗) holds in a Cohen model. Hence BS as in Proposi-

tion 3.2 satisfies the c.c.c. By Proposition 2.1, the completion of BS does not have

the weak Freese-Nation property. (Theorem 3.3)

Corollary 3.4 The weak Freese-Nation property of 〈P(ω),⊆〉 does not imply the

weak Freese-Nation property of all c.c.c. complete Boolean algebras.

Proof If we start from a model of CH and add ℵ2 Cohen reals, then 〈P(ω),⊆〉

has the weak Freese-Nation property in the resulting model (see e.g. [5]). On the

other hand, by Theorem 3.3, there is a c.c.c. complete Boolean algebra without the

weak Freese-Nation property in such a model. (Corollary 3.4)

8
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Under CH, every c.c.c. complete Boolean algebra of size ℵ2 has the weak Freese-

Nation property ([4]). Hence it follows from the result above that CH implies the

negation of the principle (∗∗). This can be also seen directly as follows:

Proposition 3.5 CH implies ¬(∗∗).

Proof Let 〈Sα : α ∈ Lim(ω2)〉 be any sequence such that each Sα is a cofinal

subset of α for α ∈ Lim(ω2). To show that 〈Sα : α ∈ Lim(ω2)〉 is not as in (∗∗),

let χ be sufficiently large and let M ≺ H(χ) be such that |M | = ℵ1; 〈Sα : α ∈

Lim(ω2)〉 ∈ M ; ω1 ⊆ M ; ω2 ∩M ∈ ω2 and, letting γ = ω2 ∩M , cf(γ) = ω1. By

CH — and since ω1 ⊆ M and cf(γ) = ω1, we have [γ]ℵ0 ⊆M .

Now, by induction, choose distinct α0
β , α

1
β < γ for β < ω1 such that (1) α0

β ∈ Sγ ,

and (2) {α0
ξ : ξ < β} ⊆ Sα1

β
for all β < ω1. (2) is possible: since {α

0
ξ : ξ < β} ⊆ Sγ

and {α0
ξ : ξ < β} ∈M , we have

M |= ∃ν < ω2 [ sup{α
1
ξ : ξ < β} < ν ∧ {α0

ξ : ξ < β} ⊆ Sν ]

by elementarity. Let xβ = {α0
β, α

1
β} for β < ω1. Then there are no β0 < β1 < ω1

such that xβ0 ∩ Sα = ∅ for all α ∈ xβ1 ∩ Lim(ω2). (Proposition 3.5)

4 The Weak Freese-Nation property of c.c.c. com-

plete Boolean algebras under GCH

In [5] it is proved that, assuming CH and a weak form of the square principle at

singular cardinals of cofinality ω, every c.c.c. complete Boolean algebra has the

weak Freese-Nation property. In this section we show that even GCH does not

suffice for this result.

Hajnal, Juhász and Shelah [9] showed that, starting from a model with a super-

compact cardinal, a model of GCH and the following principle can be constructed:

(∗∗∗) There are a stationary S ⊆ {α < ωω+1 : cf(α) = ω1} and a family

S = 〈Sα : α ∈ S〉 such that each Sα is a cofinal subset of α of ordertype

ω1 and that, for all distinct α, β ∈ S, Sα ∩ Sβ is finite.

Proposition 4.1 Suppose that S = 〈Sα : α ∈ S〉 is as in (∗∗∗). Then BS

satisfies the c.c.c.

Proof Otherwise we can find Iα ∈ [ωω+1]
<ℵ0 , Jα ∈ [S]<ℵ0 , α < ω1 and t(α, i),

u(α, ξ) ∈ {+1,−1} for each α < ω1, i ∈ Iα and ξ ∈ Jα such that

zα =
∏

i∈Iα t(α, i) xi ·
∏

ξ∈Jα u(α, ξ) yξ, α < ω1

9
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form a pairwise disjoint family of elements of BS
+.

By a ∆-system argument, we may assume that Iα ∪ Jα, α < ω1 are pairwise

disjoint and each Iα has the same size, say n.

For α < β < ω1, since zα ·zβ = 0, either (I) there is η ∈ Jα such that Iβ∩Sη 6= ∅

or else (II) there is ξ ∈ Jβ such that Iα ∩ Sξ 6= ∅. If (I) holds then let us say that

〈α, β〉 is of type (I).

Now, one of the following two cases holds. We show that both of them lead to

a contradiction.

Case I. There is an infinite subset S of ω such that for every β ∈ ω1 \ ω,

{k ∈ S : 〈k, β〉 is of type (I)} is cofinite in S. In this case, by thinning out the

index set ω1, we may assume that, for any k ∈ ω and β ∈ ω1 \ ω, 〈k, β〉 is of type

(I). For all β ∈ ω1 \ω, since | Iβ | = n, there are 0 ≤ i0(β) < i1(β) < n+1 such that

I∗β = Iβ ∩ Sα0(β) ∩ Sα1(β) 6= ∅ for some αk(β) ∈ Jik(β) for k = 0, 1 by the pigeonhole

principle. Hence we can find an infinite X ⊆ ω1 \ ω, 0 ≤ i0 < i1 < n + 1 and α0,

α1 ∈ ω1, α
0 6= α1 such that α0(β) = α0 and α1(β) = α1 for all β ∈ X. But then

⋃

β∈X I
∗
β ⊆ Si0 ∩ Si1 . Since the set on the left side is infinite as a disjoint union of

pairwise disjoint non-empty sets, this is a contradiction to (∗∗∗).

Case II. For any infinite subset S ⊆ ω, there is β ∈ ω1 \ ω such that for

infinitely many k ∈ S, 〈k, β〉 is not of type (I). In this case, by thinning out the

first ω elements of the index set ω1, we may assume that for each k ∈ ω, there is

ξ(k) ∈ Jω such that Ik∩Sξ(k) 6= ∅. Note that Jω is finite. So by thinning out further

the first ω elements of the index set ω1, we may assume that there is ξ0 ∈ Jω such

that Ik ∩ Sξ0 6= ∅ for every k < ω. Similarly we may also assume that there are

ξi ∈ Jω+i for 1 ≤ i ≤ n such that Ik∩Sξi 6= ∅ for every k < ω. Then for each k < ω,

we can find i0(k) < i1(k) ≤ n such that I∗k = Ik∩Sξi0(k)
∩Sξi1(k)

6= ∅ by the pigeonhole

principle. Since there are only n(n − 1)/2 possibilities of i0(k) < i1(k) ≤ n, there

are i0 < i1 ≤ n and an infinite set X ⊆ ω such that for every k ∈ X, i0(k) = i0

and i1(k) = i1. It follows that Sξ
i0
∩ Sξ

i1
⊇

⋃

k∈X I
∗
k . As Sξ

i0
∩ Sξ

i1
is finite, while

⋃

k∈X I
∗
k is infinite as a union of infinitely many pairwise disjoint non-empty sets,

this is a contradiction. (Proposition 4.1)

Theorem 4.2 It is consistent with GCH (modulo the consistency strength of a

supercompact cardinal) that there is a c.c.c. complete Boolean algebra of size ℵω+1

without the weak Freese-Nation property.

Proof Let S be a family as in (∗∗∗). By Proposition 4.1, BS satisfies the c.c.c.

Hence the completion B of BS is a c.c.c. complete Boolean algebra of size ℵω+1.

By Proposition 2.1, B does not have the weak Freese-Nation property. (Theorem 4.2)

The following weak form of the square principle was introduced in [5]. 2∗∗∗ℵ1 ,µ

10
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is the following assertion: there exists a sequence 〈Cα : α < µ+〉 and a club set

D ⊆ µ+ such that for α ∈ D with cf(α) ≥ ω1

(y1) Cα ⊆ α, Cα is unbounded in α;

(y2) [α]<ω1 ∩ {Cα′ : α′ < α} dominates [Cα]
<ω1 (with respect to ⊆).

It can be easily seen that 2∗∗∗ℵ1,µ
follows from the very weak square principle for µ

by Foreman and Magidor [3] (see [5]).

Proposition 4.3 2∗∗∗ℵ1,µ
together with CH implies the negation of (∗∗∗).

Proof In [5] it is proved that under CH and 2∗∗∗ℵ1,ℵω
, every c.c.c. complete Boolean

algebra of cardinality ℵω+1 has the weak Freese-Nation property. Hence the asser-

tion follows from the proof of Theorem 4.2. (Proposition 4.3)

By Proposition 4.3, we see that the consistency strength of some large cardinal is

involved in GCH + (∗∗∗).

5 The weak Freese-Nation property of c.c.c. com-

plete Boolean algebras under very weak square

principles

In this section, we turn to the question for which c.c.c. complete Boolean algebras

B the weak Freese-Nation property of B is equivalent to the weak Freese-Nation

property of 〈P(ω),⊆〉. Lemma 1.2 was already an easy observation in ZFC in this

direction. S. Koppelberg pointed out in [10] that the Cohen algebra C(ω) is such a

Boolean algebra.

Note that 〈P(ω),⊆〉 can be embedded in every complete Boolean algebra.

Hence it follows from Proposition 1.3 (2) that, if 〈P(ω),⊆〉 does not have the

weak Freese-Nation property then no complete Boolean algebra can have the weak

Freese-Nation property.

Proposition 5.1 The measure algebra R(ω) has the weak Freese-Nation property

if and only if 〈P(ω),⊆〉 has the weak Freese-Nation property.

Proof By the remark above and by Proposition 1.3 (2) and Lemma 1.2, it is

enough to find a strictly order-preserving embedding of R(ω) into 〈ωR,≤〉. We may

replace ω by the countable set Clop(ω2) where Clop(ω2) denotes the clopen sets of

the Cantor space ω2.

We define e : R(ω) → Clop(ω2)R by taking e(a)(c) = µ(a ∩ c) for c ∈ Clop(ω2).

Then clearly e is an order-preserving map of R(ω) into Clop(ω2)R.

11
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To show that e is a strictly order-preserving, assume that µ(a \ b) > 0. Then

there is c ∈ Clop(ω2) such that µ((a \ b) ∩ c) > µ(c)/2. Then e(a)(c) > µ(c)/2 >

e(b)(c), so e(a) 6≤ e(b). (Proposition 5.1)

In a similar way, we can also show that R(ω) is a retract of P(ω) as a partially

ordered set though it is known that R(ω) is not a retract of P(ω) as a Boolean

algebra: the mapping e : R(ω)→ P(Clop(ω2)× Q) defined by e(c) = {〈a, q〉 : a ∈

Clop(ω2), q < µ(a ∩ c)} is easily seen to be a strictly order preserving embedding.

In general, the weak Freese-Nation property of C(κ) or that of R(κ) for arbitrary

κ ≥ ω is not equivalent with the weak Freese-Nation property of 〈P(ω),⊆〉. In the

next section we shall give a model where 〈P(ω),⊆〉 has the weak Freese-Nation

property while C(ℵω) (and hence also R(ℵω)) does not.

However the equivalence does hold if κ < ℵω or some consequences of ¬0# are

available. To prove this, we need the following instance of Theorem 7 in [5]:

Theorem 5.2 (Theorem 7 in [5] for κ = ℵ1) Suppose that µ > cf(µ) = ω,

cf([λ]ℵ0 ,⊆) = λ for cofinally many λ < µ and 2∗∗∗ℵ1,µ
holds. Then for any suffi-

ciently large regular χ and x ∈ H(χ), there is a matrix 〈Mα,i : α < µ+, i < ω〉

such that

(1) Mα,i ≺ H(χ), x ∈Mα,i, ω1 ⊆ Mα,i and |Mα,i | < µ for all α < µ+ and i < ω;

(2) 〈Mα,i : i < ω〉 is an increasing sequence for each α < µ+;

(3) If α < µ+ and cf(α) ≥ ω1, then there is an i∗ < ω such that for every

i∗ ≤ i < ω, [Mα,i]
ℵ0 ∩Mα,i is cofinal in 〈[Mα,i]

ℵ0 ,⊆〉;

(4) Let Mα =
⋃

i<ωMα,i for α < µ+. Then Mα ≺ H(χ) (by (1) and (2)). More-

over 〈Mα : α < µ+〉 is continuously increasing and µ+ ⊆
⋃

α<µ+ Mα.

For a complete Boolean algebra B and X ⊆ B, let us denote by 〈X〉cmB the

complete subalgebra of B generated completely byX. The following theorem shows

that in a neat model (in the sence of Section 1) if every countably generated c.c.c.

Boolean algebra has the weak Freese-Nation property, then every c.c.c. Boolean

algebra (without the restriction on the size of its set of generators) has the weak

Freese-Nation property.

Theorem 5.3 Let λ be a cardinal. Suppose that for every µ < λ with µ > cf(µ) =

ω, we have:

(i) cf([µ]ℵ0 ,⊆) = µ+;

(ii) 2∗∗∗ℵ1,µ
.

Then for any c.c.c. complete Boolean algebra B with a set of complete generators

12
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of size < λ, B has the weak Freese-Nation property if and only if every complete

subalgebra of B generated completely by a countable subset of B has the weak Freese-

Nation property.

Proof The “only if” part of the theorem follows from Proposition 1.3 (3). The

“if” part of the theorem is proved by induction on the minimal cardinality of a

subset X of B completely generating B.

If X is countable, then there is nothing to prove. Let µ = |X | < λ and

suppose that we have the theorem for any c.c.c. complete Boolean algebra with a

set of complete generators of size < µ.

If cf(µ) > ω, let X = {xα : α < µ} and Bβ = 〈{xα : α < β}〉cmB for β < µ.

Bβ is a complete subalgebra of B and hence Bβ ≤σ B for all β < µ. By induction

hypothesis, every Bβ, β < µ has the weak Freese-Nation property. By the c.c.c. of

B, we have Bγ =
⋃

β<γ Bβ for all limit γ < µ with cf(γ) > ω and B =
⋃

β<µBβ .

By Proposition 1.3 (4), it follows that B has the weak Freese-Nation property.

If cf(µ) = ω, then there is 〈Mα,i : α < µ+, i < ω〉 as in the previous theorem

for x = 〈B,X〉.

For α < µ+ and i < ω, let Bα,i = 〈B ∩Mα,i〉
cm
B and Bα =

⋃

i<ω Bα,i.

Claim 5.3.1 For every α < µ+, Bα has the weak Freese-Nation property and

Bα ≤σ B.

` For every i < ω, Bα,i has the weak Freese-Nation property by induction hy-

pothesis. Since Bα,i is a complete subalgebra of B for every i < ω it follows that

Bα =
⋃

i<ω Bα,i ≤σ B. Also by Proposition 1.3 (4) it follows that Bα has the weak

Freese-Nation property. a (Claim 5.3.1)

Claim 5.3.2 If γ < µ+ and cf(γ) > ω, then Bγ =
⋃

α<γ Bα.

` Suppose that a ∈ Bγ. Then, by the c.c.c. of B, there is an i < ω and s ∈

[B ∩ Mγ,i]
ℵ0 such that a ∈ 〈s〉cmB . By (3) in Theorem 5.2, we may assume that

s ∈ Mγ,i. By (4), there is α < γ and j < ω such that s ∈ Mα,j. It follows that

s ⊆ Mα,j and hence a ∈ Bα,j ⊆ Bα. a (Claim 5.3.2)

Claim 5.3.3 B =
⋃

α<µ+ Bα .

` By the last statement of (4) in Theorem 5.2 and (i), [X]ℵ0∩
⋃

α<µ+ Mα is cofinal

in 〈[X]ℵ0,⊆〉.

Suppose now that a ∈ B. Then by the c.c.c. of B, there is a countable s ∈ [X]ℵ0

such that a ∈ 〈s〉cmB . By the remark above, we may assume that s ∈
⋃

α<µ+ Mα,

say s ∈ Mα∗,i∗ for some α∗ < µ+ and i∗ < ω. Then s ⊆ B ∩Mα∗,i∗ and hence

a ∈ Bα∗,i∗ ⊆ Bα∗ . a (Claim 5.3.3)

13
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Now by Theorem 1.3 (4) and the claims above, it follows that B has the weak

Freese-Nation property. (Theorem 5.3)

Corollary 5.4 Let λ be as in Theorem 5.3 and ω ≤ κ < λ. Then the following

are equivalent:

(a) 〈P(ω),⊆〉 has the weak Freese-Nation property;

(b) C(κ) has the weak Freese-Nation property;

(c) R(κ) has the weak Freese-Nation property.

Proof (1) ⇒ (0) and (2) ⇒ (0) follow from Proposition 1.3 (3).

For (0) ⇒ (2) assume that 〈P(ω),⊆〉 has the weak Freese-Nation property.

Since R(κ) has the set Clop(κ2) of complete generators of cardinality κ, it is enough

by Theorem 5.3 to show that every countably generated subalgebra of R(κ) has the

weak Freese-Nation property. Let A be such an algebra. Then there is X ∈ [κ]ℵ0

such that A is a complete subalgebra of R(X). Since R(X) has the weak Freese-

Nation property by Proposition 5.1, it follows by Proposition 1.3 (3) that A also

has the weak Freese-Nation property.

The proof of (0) ⇒ (1) is similar. (Corollary 5.4)

Note that the conditions on λ in Theorem 5.3 hold vacuously for λ = ℵω. Hence

we obtain the following as a special case of the corollary above:

Corollary 5.5 The following are equivalent (in ZFC):

(a) 〈P(ω),⊆〉 has the weak Freese-Nation property;

(b) C(ℵn) has the weak Freese-Nation property for some/all n ∈ ω;

(c) R(ℵn) has the weak Freese-Nation property for some/all n ∈ ω.

6 Chang’s Conjecture

In this section, we give the negative answer to Problem 3 mentioned in the intro-

duction (Theorem 6.1). We also show that Corollary 5.5 in the last section is an

optimal result in ZFC (Theorem 6.2).

Theorem 6.1 Suppose that V0 is a transitive model of ZFC such that

V0 |= GCH + (ℵω+1,ℵω)→→ (ℵ1,ℵ0) .

Let P be a c.c.c. partial ordering in V0 of cardinality ℵ1 adding a dominating real.

Let η ∈ ωω be a dominating real over V0 generically added by P and let V1 = V0[η].

Note that V1 |= GCH. In V1 let Q = Fn(ℵω, ω) and let Q̇ be a corresponding

P -name. Then we have:

V1 |= ‖–Q “ 〈P(ω),⊆〉 does not have the weak Freese-Nation property ”.

14
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Proof In the proofs of this and the next theorem, we shall denote by a dotted

symbol a name of an element in a generic extension. By the same symbol without

the dot, we denote the corresponding element in a fixed generic extension. Without

further mention, we shall identify P ∗ Q̇ names with the corresponding Q-name in

V1 and vice versa.

Now toward a contradiction, assume that there is a Q-name Ḟ in V1 such that

(⊗) V1 |= ‖–Q “ Ḟ is a weak Freese-Nation mapping on 〈ωω,≤∗〉 ”.

Let ϕ̇ be a P ∗Q̇-name of the function ℵω → ω generically added by Q over V1. Let

V2 = V1[ϕ]. By GCH, we can find in V0 a scale 〈fα : α < ℵω+1〉 in 〈
∏

n∈ω ℵn,≤
∗〉.

Without loss of generality, we may assume that for every α < ℵω+1 and n ∈ ω,

fα(n) ∈ ℵn \ ℵn−1 (where we set ℵ−1 = ∅). For each α ∈ ℵω+1, let gα : ω → ω be

defined by

gα = ϕ ◦ fα .

Let χ be sufficiently large and let N ≺ 〈H(χ),∈〉 be such that N contains

everything we need in the course of the proof — in particular 〈fα : α < ℵω+1〉 ∈ N ,

| ℵω ∩N | = ℵ0, and otp(ℵω+1 ∩ N) = ω1. The last two conditions are possible by

the assumption of V0 |= (ℵω+1,ℵω)→→ (ℵ1,ℵ0).

In V0, let {ξn,k : k ∈ ω} be an enumeration of (ℵn \ ℵn−1) ∩N for each n ∈ ω.

Here again, we use the convention that ℵ−1 = ∅. Let ḣ∗ be a P ∗ Q̇-name of an

element of ωω such that

‖–P∗Q̇ “ ḣ
∗(n) = max{ϕ̇(ξn,k) : k ≤ η̇(n)} for all n ∈ ω ”.

Claim 6.1.1 For every α ∈ ℵω+1 ∩N , ‖–P∗Q̇ “ ġα ≤
∗ ḣ∗ ”.

` Since α ∈ N we have fα ∈ N . Let eα : ω → ω be the function in V0 such that

fα(n) = ξn,eα(n) for all n ∈ ω. Since η is dominating, there is n∗ ∈ ω such that

V1 |= eα |̀ (ω \ n
∗) ≤ η |̀ (ω \ n∗).

By definition of ḣ∗, it follows that

V2 |= gα(n) = ϕ ◦ fα(n) = ϕ(ξn,eα(n)) ≤ h∗(n)

for all n ≥ n∗. a (Claim 6.1.1)

Let N0 = N , N1 = N0[η] and N2 = N1[ϕ]. Then we have N2 ≺ H(χ)[η][ϕ].

Let ḣl ∈ N0, l ∈ ω be P ∗ Q̇-names such that

‖–P∗Q̇ “ {ḣl : l ∈ ω} = Ḟ (ḣ∗) ∩ Ṅ2 ”.

15
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For l ∈ ω, let Sl ∈ [ℵω]
ℵ0 ∩N0 be such that, regarding ḣl as a P -name of Q̇-name,

V0 |= ‖–P “ ḣl is a Fn(Sl, ω)-name ”.

This is possible since P has the c.c.c., ‖–P “ Q̇ has the c.c.c. ” and by the elemen-

tarity of N0. For each l ∈ ω, let sl ∈
∏

n∈ω ℵn ∩N0 be defined (in N0) by sl(0) = 0

and

sl(m) = sup Sl ∩ ℵm

for m ∈ ω \ {0}. Since 〈fα : α < ℵω+1〉 was taken to be a scale on 〈
∏

n∈ω ℵn,≤
∗〉,

there is αl ∈ ℵω+1∩N0 for each l ∈ ω such that sl ≤
∗ fαl . Since otp(ℵω+1∩N0) = ω1,

we can find an α∗ ∈ ℵω+1 ∩N0 such that sup{αl : l ∈ ω} ≤ α∗.

Now, by the choice of ḣl, l ∈ ω, the following claim together with Claim 6.1.1

contradicts to (⊗) and hence proves the theorem:

Claim 6.1.2 V1 |= ‖–Q “ ġα∗ 6≤
∗ḣl for all l ∈ ω ”.

` Assume to the contrary that, in V1, we have

q ‖–Q “ ġα∗ |̀ (ω \ k) ≤ ḣl |̀ (ω \ k) ”

for some q ∈ Q and k, l ∈ ω. We may assume that

sl |̀ (ω \ k) < fα∗ |̀ (ω \ k)

and sup(dom(q)) < fα∗(m) for all m ∈ ω \ k as well. Working further in V1, let

m∗ = k + 1 and let q′ ≤ q be such that

q′ ‖–Q “ ḣl(m
∗) = j∗ ”

for some j∗ ∈ ω. Then q′′ = q ∪ (q′ |̀ Sl) also forces the same statement. Since

fα∗(m
∗) ∈ ℵm∗ \ (sl(m

∗) ∪ dom(q)), we have

fα∗(m
∗) 6∈ dom(q′′).

Hence

q∗ = q′′ ∪ {〈fα∗(m
∗), j∗ + 1〉}

is an element of Q and q∗ ≤ q′′ ≤ q. But

q∗ ‖–Q “ ġα∗(m
∗) = ϕ̇ ◦ fα∗(m

∗) = j∗ + 1 > j∗ = ḣl(m
∗). ”

This is a contradiction. a (Claim 6.1.2)

(Theorem 6.1)

A similar but slightly simpler proof yields the following:
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Theorem 6.2 Suppose that V0, P , η, η̇, V1 are as in the previous theorem. Then

V1 |= C(ℵω) does not have the weak Freese-Nation property.

Proof Suppose to the contrary that F ∈ V1 is a weak Freese-Nation mapping on

C(ℵω). Let X = {xξ : ξ < ℵω} be the canonical free subset of C(ℵω) completely

generating the whole C(ℵω). We have X ∈ V0.

Let 〈fα : α < ℵω+1〉 be as in the proof of the previous theorem. For n ∈ ω, let

cn = xn · −
∑

m<n xm. Note that {cn : n ∈ ω} is a partition of C(ℵω). For each

α < ℵω+1 and n ∈ ω, let

bα,n =
∑

m>n
(xfα(m) · cm).

Let χ be sufficiently large and let N ≺ 〈H(χ),∈〉 be such that N contains every-

thing we need in the course of the proof, | ℵω ∩N | = ℵ0, and otp(ℵω+1 ∩N) = ω1.

The last two conditions are possible because of V0 |= (ℵω+1,ℵω) →→ (ℵ1,ℵ0). In

V0, let {ξn,k : k ∈ ω} be an enumeration of (ℵn \ ℵn−1) ∩ N for each n ∈ ω. In

V1 = V0[η] let

b∗ =
∑

n∈ω
(cn ·

∑

l≤η(n)
xξn,l) .

Claim 6.2.1 For every α ∈ ℵω+1 ∩N , there is nα ∈ ω such that bα,nα ≤ b∗.

` In V0, let tα ∈
ωω be such that fα(n) = ξn,tα(n) for all n ∈ ω. Note that tα

is well-defined by fα ∈ N . Since η is dominating, there is an nα ∈ ω such that

tα |̀ (ω \ nα) ≤ η |̀ (ω \ nα). By definition of bα,n and b∗, it follows that bα,nα ≤ b∗.

a (Claim 6.2.1)

Now, let N1 = N [η]. Note that we have N1 ≺ H(χ)V1 . Let 〈dl : l ∈ ω〉 be an

enumeration of F (b∗) ∩ C(ℵω)|̀ b∗ ∩ N1 and ḋl, l ∈ ω be corresponding P -names.

Since P is proper, we can choose these names so that {ḋl : l ∈ ω} ⊆ N .

By c.c.c. of P and elementarity of N , we can find Sl ∈ [ℵω]
ℵ0 ∩N for each l ∈ ω

such that

‖–P “ ḋl ∈ 〈{xξ : ξ ∈ Sl}〉
cm
C(ℵω) ”.

For l ∈ ω, let sl ∈
∏

n∈ω ℵn ∩N be defined by sl(0) = 0 and

sl(m) = supℵm ∩ Sl

for m ∈ ω \ {0}. Since 〈fα : α < ℵω+1〉 was taken to be a scale on 〈
∏

n∈ω ℵn,≤
∗〉,

there is α∗l ∈ ℵω+1 ∩N for each l ∈ ω such that sl <
∗ fα∗

l
. By otp(ℵω+1 ∩N) = ω1,

we can find an α∗ ∈ ℵω+1 ∩N such that α∗l < α∗ for all l ∈ ω.

Since bα∗,nα∗ ∈ N1 and bα∗,nα∗ ≤ b∗ by Claim 6.2.1, the following claim gives the

desired contradiction:
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Claim 6.2.2 In V1, bα∗,nα∗ 6≤ dl for all l ∈ ω, .

` For l ∈ ω, let m ∈ ω be such that

(1) nα∗ < m, and

(2) sl(m) < fα∗(m).

Note that we have cm 6≤ dl, since dl ≤ b∗ and cm 6≤ b∗ by definition of b∗. By

(2), fα∗(m) 6∈ Sl (note that we also have ω < fα∗(m)). Hence xfα∗ (m) · cm 6≤ dl.

But xfα∗ (m) · cm ≤ bα∗,nα∗ by (1) and by the definition of bα∗,nα∗ . It follows that

bα∗,nα∗ 6≤ dl. a (Claim 6.2.2)

(Theorem 6.2)
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