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Abstract

We show that a strong form of the so called Lindstrom’s Theo-
rem [4] fails to generalize to extensions of L, and L.: For weakly
compact k there is no strongest extension of L, with the (k,k)-
compactness property and the Lowenheim-Skolem theorem down to k.
With an additional set-theoretic assumption, there is no strongest ex-
tension of L, with the (k, k)-compactness property and the Lowenheim-
Skolem theorem down to < k.

By a well-known theorem of Lindstrém [4], first order logic L, is the
strongest logic which satisifies the compactness theorem and the downward
Lowenheim-Skolem theorem. For weakly compact k, the infinitary logic L,
satisfies both the (k, k)-compactness property and the Léwenheim-Skolem
theorem down to x. In [1] Jon Barwise pointed out that L, is not maximal
with respect to these properties, and asked what is the strongest logic based
on a weakly compact cardinal x which still satisfies the (k, k)-compactness
property and some other natural conditions suggested by k. We prove (Corol-
lary 5) that for weakly compact k there is no strongest extension of L, with
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the (k, k)-compactness property and the Lowenheim-Skolem theorem down
to k. This shows that there is no extension of L,, which would satisify
the most obvious generalization of Lindstrom’s Theorem. A stronger result
(Theorem 11) is proved under an additional assumption.

We use the notation and terminology of [2, Chapter IT] as much as possi-
ble. We will work with concrete logics such as first order logic L, infinitary
logic L,y and their extensions L, ({Q; : i € I}) and L\({Q; : i € I}) by
generalized quantifiers. Therefore it is not at all critical which definition of
a logic one uses as long as these logics are included and some basic closure
properties are respected. We use £ < L’ to denote the sublogic relation. Let
P be a property of logics. A logic L* is strongest extension of L with P, if

1. £L<L¥
2. L* has property P,

and whenever L is a sublogic £ and £ has property P, then £ < L*.

Let £ be a logic and x and A infinite cardinals. £ is (k, \)-compact if for
all ® C L of power &, if each subset of ® of cardinality < A has a model, then
® has a model. L is k-compact if it is (k,w)-compact. L is weakly k-compact
if £ is (k, k)-compact. L is fully compact if it is k-compact for all k. £ has
the Lowenheim-Skolem property down to k, denoted by LS(k) if every ¢ € L
which has a model, has a model of cardinality < k. If every sentence ¢ € L
which has a model, has a model of cardinality < x, we say that L satisfies
LS(< k). The order-type of the well-ordering R is denoted by otp(R).

Theorem 1 [4] The logic Ly, is strongest extension of Ly, with Ro-compactness

and LS(Rp).
Let C be a class of cardinals. Let

A= Qeayo(z,y,7) < otp({(a,b) : A = ¢(a,b,0)}) € C.

By 9], Lu.(QZ) is always fully compact. For C' an interval we use the
notation Qf; ,y and Qf -

Proposition 2 There is no strongest k-compact extension of L. In fact:

1. there are fully compact logics L, n < w, such that L,, < L, 11 for all
n < w, but no Ng-compact logic extends each L,.
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2. There is an Wo-compact logic L1 and a fully compact logic Lo such that
no No-compact logic extends both L1 and L.

Proof. Let £, = Lu({Qf, 0} U{QK, : I < n}). By [9], each L, is fully
compact. Clearly, no Ng-compact logic can extend each L,.

For the second claim, let £, be the logic L, (Q1), where ()1 is the quanti-
fier “there exists uncountable many” introduced by Mostowski [8]. This logic
is Rp-compact [3], see [2, Chapter IV] for more recent results. Let £y be the
logic L, (Qp), where @ is the quantifier “there is a branch” introduced by
Shelah [10]. More exactly,

QprytuM (2)T(y)(t < u)

if and only if <r is a partial order of T" C M and there are D,<p, f and B
such that:

1. <p is a total order of D C M

2. [ (T,<7p) — (D,<p) is strictly increasing
3. Vse DIp e T(f(p) = s)

4. B C T is totally ordered by <r

5. Vbe B((pe T&p <rb) — p € B)

6. Vs € Db e B(s <p f(b)).

The reader is referred to [10] for a proof of the full compactness of Ls.

Suppose there were an Ny-compact logic £ containing both £; and L,
as a sublogic. It is easy to see that the class of countable well-orders can
be expressed as a relativized pseudoelementary class in £. This contradicts
No-compactness of L. O

Lauri Hella pointed out that by elaborating the proof of claim (2) of the
above proposition, we can make £; fully compact. It was proved in [11] that,
assuming GCH, there is no strongest extension of L, which is Ny-compact.
Our proof of (1) of the above proposition essentially occurs in a note, based
on a suggestion of Paolo Lipparini, added after Theorem 8 of [11].

Proposition 3 Suppose k > Ny. There is no strongest extension of L+,
with LS(k)
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Proof. Let £, = Ly+,(Qg,) and Ly = L+, (Qy, ) By using standard
arguments with elementary chains of submodels, it is easy to see that both
L, and £, have LS(k), but the consistent sentence

R is a linear order with no last element A

QR zyR(z, y) A =Qp, qryR(z,y)
has no models of size < k. O

It was proved in [11] that there is no strongest extension of L, with
LS(w).

Lemma 4 Suppose k is weakly compact. Then L,W(Q?;O}) and L., ( f{h H])

are weakly k-compact. Moreover, if k > w, these logics satisfy LS(k).

Proof. The claim concerning LS(k) is proved with a standard elementary
chain argument. We prove the weak compactness of C,W(inz 17,@]). The case
of Lw(QfNO}) is similar, but easier. For this end, suppose T is a set of
sentences of L., (Qfy, ) and |T'| = k. We may assume 7' C x. If @ < &, then
we assume that there is a model M, = T N a. In view of LS(k), it is not
a loss of generality to assume that 9, = (k, R,), where R, C k X k. Let
R(a, B,7) <= R.(B,7). By weak compactness there is a transitive M of
cardinality « such that

(H(k),e,T,R) <p,, (M,e, T* R")

and k € M. Let MM = (M, S), where S(z,y) <= R*(k,z,y). We claim
that 9t = T'. We need only worry about the cofinality-quantifier. Cofinalities
< k can be expressed in L, so they are preserved both ways. Therefore also
cofinality x is preserved, and no other cofinalities can occur as the models
have cardinality x. O

Since the logics L. (QR,)) and L., (Qly, ) cannot both be a sublogics of
a logic with LS(k), we get from the above lemma:

Corollary 5 Suppose k > w is weakly compact. Then there is no strongest
weakly k-compact extension of Ly, with LS(k).

The logic L, actually satisfies the property LS(< &) which is stronger
than LS(k). To prove a result like the above corollary for the property

4
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LS(< k) we have to work a little harder. At the same time we extend the
proof to extensions of L,,. Here the cofinality quantifiers Q¢ will not help as
Q‘f)\} is definable in L., for A < k. Therefore we use more refined order-type
quantifiers.

Definition 6 Let L,\(Q) denote the formal extension of L.y by the gener-

alized quantifier symbol Qzyo(z,y,2). If YV is a class of ordinals, we get a
logic Lix(Q,Y) from Ly (Q) by defining the semantics by

A Quyo(,y,0) <= otp({{a,b) : A = ¢(a,b,0)}) € V.
Ifp € Lin(Q,Y) and A |= ¢, we say that A = ¢ holds in the YV-interpretation.
If 2 is a model, then
oA, Y, K, \)
is the supremum of all otp({{a,b) : A = ¢(a,b,¢)}) where ¢ € L,x(Y),
ce A and {{a,b) : A = ¢(a,b,c)} is well-ordered.

Lemma 7 Suppose k > X\, ¢ € Lon(Q), 2 is a model, @ € A<*, and Y' N
o, Y, k,A) = Y. Then A = ¢(d) in the Y-interpretation if and only if
A = ¢(d) in the YV -interpretation.

Proof. This is a straightforward induction of the length of the formula ¢.O

Lemma 8 1. Suppose k > w, ¢ € L (Q), and ¢ has a model 2 in the Y-
interpretation. Then there is a submodel B of A of cardinality < 2% and
V' C(25)" such that Y' Nk =) and B = ¢ in the Y -interpretation.

2. Suppose k = k<", T C L..(Q), |T| < k and T has a model A in the
YV-interpretation. Then for all £ < k™ there is a submodel B of 2 of
cardinality < k and Y' C k™ such that Y NE =Y NE and B =T in
the Y -interpretation.

Proof. We may assume |A| > 2%. Let us expand 2 by

1. A well-ordering < the order-type of which exceed all the order-types of
well-orderings definable by subformulas of ¢ with parameters in A.

2. A new predicate P which contains those elements d of A for which
otp({(a,b) :a <b=<d}) €Y



nodi fi ed: 2001- 06- 12

revi sion: 2001- 06-08

726

3. A prediacte F' which codes an isomorphism from each well-ordering,
definable by a subformula of ¢ with parameters in A, onto an initial
segment of <.

Let (2, <, P, F') be the expanded structure and (8, <*, P*, ['*) an L,-elementary

substructure of it of cardinality < 2. Let

V' = {otp({(a,b) € B*:a <*b=<*d}:de P*}
It is easy to see that B |= ¢ in the )’-interpretation. The second claim is
proved similarly. O

Let m be a canonical bijection from triples of ordinals to ordinals such
that 7[r®] = k for each infinite cardinal k. We say that a pair (41, Z;) codes
a pair (dz, Zs) if 01, 9y are ordinals, Z; C 1, Zy C d9 and there is a bijection
f : 03 — 07 such that

1. 9; is closed under 7

2. 70,0, 0) € Z1 <= f(a) < f(B)
3. 7(1,0,a) € Z) <= f(a) € Zs.

Suppose k is an uncountable cardinal. The weakly compact ideal on k is
the ideal of subsets of x generated by the sets {a : (H(«), €, ANH () = —¢},
where A C H(x) and ¢ is a IIi-sentence such that (H(a),e, AN H(a)) [ ¢.

Definition 9 A cardinal k satisfies $(WC) if it is weakly compact and there
is a sequence (A, : o < k) such that

1. A, Ca for a < k.

2. VACK){AN<k:Ay=ANA} €IT), where T is the weakly compact
tdeal on k.

We make the following remarks without proof: If x is measurable > w,
then k satisfies $(WC). If k is weakly compact > w, then there is a generic
extension which preserves all cardinals and in which x satisfies $(WC). If
V=L, then every weakly compact cardinal > w satisfies $(WC).

Theorem 10 Suppose k > w satisfies G(WC) and 25 = k*. Then there is
no strongest extension of L. for which k is weakly compact and which has
LS(< k).
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Proof. We shall construct two sets V', V? C k* such that the logics
L. (Q, V") are weakly r-compact for and these logics satisfy LS(< «), but no
logic containing both L, (Q, V') and L, (Q, V?) satisfies LS(< k). The sets
V' are constructed by induction together with ordinals ¢!, < k™ such that:

yi:Ua<n+ygv

%= =
Vo =YzN¢, fora<p
;gfg for a < 3

Vi=Uper Vi, & =U,o, &, for v=Uv
Viny:=40 fora <k

First we define V! for a < & in such a way that L. (") will in the end
have the property LS(< k).

Let S1,.5; be a partition of the set of cardinals < x into two stationary
sets. Let {¢! : v € S;} list all L,,.(Q)-sentences so that each sentence is
listed as ¢! for stationary many v € S;.

Suppose @« = A + 1 and & = \. Suppose \ € S;.

Case 1. Suppose that (A, A)) codes some pair (£, Z). In this case we let
Vo =NU(Z\N), & =¢

3—1 3—1
ya b= A "

Case 2. Otherwise we let £ =\, V! = Vi Y31 =i

Suppose then o = A+ 2, £§ = A € S; and we have defined &}, and Vi ;.
Case 3. The sentence ¢} has a model in the Y-interpretation for some
Y C wt with YN&L,, = Vi,,. By Lemma 8 part 2, ¢4 has a model A
of cardinality < k in the Y-interpretation for some ) C k of cardinality
< k with YN &, = Vi, Let g be minimal such that ¢ € £,,(Y). Let
fg\—l—Z = O(Qla y? s ,LL) and y;\+2 = y Let i—;; = i;zl
Case 4. Otherwise &, =&, V. = Vi, Vi ' = i’fri

Finally for all other o < k we let &, and Y’ be defined canonically.

This ends the construction of yé for &« < k. Note that y; N y,f = 0.

Moreover, if ¢¢, has a model in the Y-interpretation for some ) 2 Vi, then,
by construction, ¢! has a model of cardinality < x in the Y-interpretation.

7
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Let Vi, = V.U {x} and €., = k + 2. Next we shall define Y and
& for k+1 < a < k*. For this, let (T, : k < a < k) enumerate all
L, (Q)-theories of cardinality < x in a language of cardinality < x which
satisfy the condintion that every subset of cardinality < x has a model in the
Y'-interpretation. Here we use the assumption 2 = x*. We may assume
T, C k for all a.

- Suppose Vi and &j have been defined for § < a. If a = Ua, Y, and
¢!, are defined canonically. So assume o = §+ 1. Let T': H(k) — H(k)
be the function T'(a) = T Na. If a € H(k), then T'(a) has a model B, in
the YVi-interpretation. By construction, we may assume B, € H(x). Let
B: H(k) — H(r) be the function B(a) = B,. Let Z C & code (£}, V}). By
OGWC), W ={A<k:Ay=ZNA} €Z", where Z is the weakly compact
ideal on k. Let A : k — H(k) be the function A(a) = A,. By the definition
of Z, there are a transitive set M and Y*, R* such that

<H(/{;)7€7 A’Wy,i? B? T> _<,“€H, <M7 6’ A*7W*7Y*7B*7T*>

and x € W*. Now A*(k) = Z and, by construction, Y*N &y = Vi
It is clear now that B(k) is a model of T, in the Y*-interpretation. By
Lemma 8 there is a model ®B of cardinality < x of T3 in the Y**-interpretation
for some Y** with Y** Ny = Vj. Let &, = o(B, Y™, k, k) and Y, = Y**NE,.
Finally, let ' =, .+ Vi
Claim 1. L, ()") satisfies the LS(< k)-property.

Suppose ¢ is a sentence of L,.()?) with a model. Let A € S; such that
£ = X and ¢} = ¢. By the construction of Vi, , there is a model of ¢ of
cardinality < k.

Claim 2. L,,.()") is weakly k-compact.

Suppose T C L,.()") is given and every subset of T, of cardinality <
x has a model in the Yi-interpretation. Then T = T, for some «. By
construction, every subset of T,, of cardinality < & has a model in the Y* N k-
interpretation. Thus the definition of y; is made so that 7, has a model
B in the Y-interpretation for some ) such that Y N o(B, YV, K, k) = VN
o(B,Y,k,k). Thus by Lemma 7, B = T, in the Y'-interpretation. The
Claim is proved.

We can now finish the proof of the theorem. In a logic in which both the
quantifier Qy1 and )y are definable, we can say that the order-type of a
well-ordering is in Y' N V2. Thus such a logic cannot satisfy LS(< ). O

8
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It is interesting to note that a proof like above would not be possible for
the following stronger Lowenheim-Skolem property: A filter-family is a family
F = (F(A)) axp, where F(A) is always a filter on the set A. Luosto [6] defines
the concept of a (k*,w)-neat filter family. We will not repeat the definition
here, its elements are closure under bijections, fineness, x'-completeness,
normality and upward relativizability (all defined in [6]). Suppose L is a
logic of the form LHA(Q) for some sequence C? of generalized quantifiers.
We say that £ has the F, rk-persistency property, if for all models 2 and
B € F(A), we have A | B < 2. Luosto proves that if £; and £, both satisfy
the F, k-persistency property, then there is £3 such that £; < L3, Lo < L3
and L3 satisfies the F, k-persistency property. Lipparini [5] proves a similar
result for families of limit ultrafilters related closely to compactness.

Tapani Hyttinen pointed out that the assumption 2® = k™ is not needed
in Theorem 10, if £ is assumed to be measurable.
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