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NONREFLECTING STATIONARY SETS IN Pκλ

SAHARON SHELAH AND MASAHIRO SHIOYA

Abstract. Let κ be a regular uncountable cardinal and λ ≥ κ
+.

The principle of Stationary Reflection in Pκλ has been successful
in settling problems of infinitary combinatorics in the case κ = ω1.
For κ ≥ ω2 the principle is known to fail if λ is large enough. In
this paper the principle is shown to fail for every λ ≥ κ

+.

1. Introduction

In [6] Foreman, Magidor and Shelah introduced the following prin-
ciple for a cardinal λ ≥ ω2: If S is a stationary set in Pω1

λ, S ∩ Pω1
A

is stationary in Pω1
A for some ω1 ⊂ A ⊂ λ of size ω1. Let us call the

principle Stationary Reflection in Pω1
λ. It follows from Martin’s Max-

imum [6] and holds after a supercompact cardinal is Lévy-collapsed to
ω2 [2]. For recent applications of reflection principles for stationary sets
in Pω1

λ, see e.g. [3, 14, 16, 17].
What if ω1 is replaced by a higher regular cardinal? Feng and Magi-

dor [4] proved that Stationary Reflection in Pω2
λ fails if λ is large

enough. Their argument shows in effect that Stationary Reflection in
Pκλ for some large enough λ implies that the club filter on κ is pre-
saturated (see also [2]). It is known that the club filter on a successor
cardinal ≥ ω2 cannot be presaturated [10].

Extending the Feng–Magidor result, Foreman and Magidor [5] proved
in effect that Stationary Reflection in Pκλ fails if κ is regular ≥ ω2 and
λ is large enough. More precisely

Theorem 1. Let κ be regular ≥ ω2. Then Stationary Reflection in

Pκλ fails for every λ ≥ 2κ+

.
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2

We include a proof of Theorem 1 in §4. A further example of nonre-
flection, which is based on PCF Theory [11] can be found in [12].

This paper shows that for κ ≥ ω2 Stationary Reflection in Pκλ fails
everywhere:

Theorem 2. Let κ be regular ≥ ω2. Then Stationary Reflection in

Pκλ fails for every λ ≥ κ+.

In §3 we prove Theorem 2 in much greater generality.

2. Preliminaries

For background material we refer the reader to [7]. Throughout the
paper, we use κ, λ, µ to denote an infinite cardinal. We write Sκ

λ for
{γ < λ : cf γ = κ}, and [λ]µ for {x ⊂ λ : |x| = µ}.

Let A be a set of ordinals. The set of limit points of A is denoted
lim A. It is easy to see | lim A| ≤ |A|. A is called σ-closed if γ ∈ A for
every γ ∈ lim A of cofinality ω.

Let κ be regular, ω1 ≤ κ ≤ µ ≤ λ and f : [λ]<ω → Pκλ. We write
C(f) for {x ∈ Pκλ : f“[x]<ω ⊂ P(x)}. For x ∈ Pκλ the smallest
superset of x in C(f) is denoted clf x. It is well-known that for every
club C ⊂ Pκλ there is f : [λ]<ω → Pκλ with C(f) ⊂ C.

Stationary Reflection in Pκλ states that if S is a stationary set in
Pκλ, S∩PκA is stationary in PκA for some κ ⊂ A ⊂ λ of size κ. Let S

be a stationary set in Pκλ. S is called nonreflecting if it witnesses the
failure of Stationary Reflection, i.e. S∩PκA is nonstationary in PκA for
every κ ⊂ A ⊂ λ of size κ. More generally S is called µ-nonreflecting
if S ∩ PκA is nonstationary in PκA for every µ ⊂ A ⊂ λ of size µ.
If S is a µ-nonreflecting stationary set in Pκµ

+ and µ+ ≤ λ, {x ∈
Pκλ : x ∩ µ+ ∈ S} is (easily seen to be) a µ-nonreflecting stationary
set. In particular Stationary Reflection in Pκλ fails for every λ ≥ κ+

iff Stationary Reflection in Pκκ
+ fails.

3. Main Theorem

This section is devoted to the main Theorem 3 and its corollaries. We
prove Theorem 3 using ideas from Nonstructure Theory [13]. Similar
ideas can be found in the proof of Diamond for Pκλ [10, 15].

Theorem 3. Let κ be regular ≥ ω2 and µ a cardinal ≥ κ. Assume

there are {cξ : ξ < µ} ⊂ Pκµ and a stationary T ⊂ Pκµ of size µ such

that if z ∈ T and b ∈ [z]ω, there is ξ ∈ z with b ⊂ cξ. Then Pκλ has a

µ-nonreflecting stationary subset for every λ ≥ µ+.
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Proof. It suffices to give a µ-nonreflecting stationary set in Pκµ
+.

Let {cξ : ξ < µ} and T be as above. By Solovay’s theorem we have
a partition of Sω

µ+ into µ disjoint stationary sets {Sz : z ∈ T}. For

µ ≤ γ < µ+ fix a bijection πγ : µ → γ.
Set S = {x ∈ Pκµ

+ : ∀γ ∈ x−µ(πγ“(x∩µ) ⊂ x)∧x∩µ ∈ T ∧sup x ∈
Sx∩µ}.

Claim. S is stationary in Pκµ
+.

Proof. Since {x ∈ Pκµ
+ : ∀γ ∈ x−µ(πγ“(x∩µ) ⊂ x)} is club, it suffices

to show that {x ∈ Pκµ
+ : x ∩ µ ∈ T ∧ sup x ∈ Sx∩µ} is stationary.

Fix f : [µ+]<ω → Pκµ
+. For z ∈ T consider the following game G(z)

of length ω between two players I and II:
In round n I chooses µ ≤ γn < µ+. Then II chooses xn ∈ C(f) with

γn < sup xn. We further require sup xn < γn+1 and xn ⊂ xn+1. Finally
II wins just in case xn ∩ µ = z for every n < ω.

Set T ′ = {z ∈ T : II has no winning strategy in G(z)}.

Subclaim. T ′ is nonstationary in Pκµ.

Proof. Suppose otherwise. Note that the game G(z) is closed for II,
hence determined. Hence for z ∈ T ′ we have a winning strategy σz

for I in G(z). Set D = {δ < µ+ : f“[δ]<ω ⊂ Pκδ}, which is club. By
induction on n < ω we define βn ∈ Sω

µ+ ∩ D and xz
n for z ∈ T ′ so that

〈xz
n : n < ω〉 is a play of II in G(z) against σz and sup xz

n = βn for every
z ∈ T ′ as follows:

Assume we have βi and {xz
i : z ∈ T ′} for i < n as above. Since

|T ′| ≤ |T | = µ, we have supz∈T ′ σz(〈x
z
i : i < n〉) < βn ∈ Sω

µ+ ∩D. Then

βn−1 = sup xz
n−1 < σz(〈x

z
i : i < n〉) < βn for every z ∈ T ′.

Fix z ∈ T ′. Since sup xz
n−1 < βn ∈ Sω

µ+ ∩D, Cz
n = {x ∈ Pκβn∩C(f) :

xz
n−1 ⊂ x∧ sup x = βn} is club in Pκβn. Let xz

n be πβn
“z if πβn

“z ∈ Cz
n,

otherwise an element of Cz
n.

Set β = supn<ω βn. Then µ ≤ supz∈T ′ σz(∅) < β0 < β. Since
βn ∈ Sω

µ+ ∩ D for every n < ω, C = {x ∈ Pκβ ∩ C(f) : ∀n < ω

(πβn
“(x ∩ µ) = x ∩ βn ∧ sup(x ∩ βn) = βn)} is club in Pκβ. Since T ′ is

stationary in Pκµ, we can take x ∈ C so that x ∩ µ ∈ T ′.
Set z = x ∩ µ ∈ T ′. Since x ∈ C, we see by induction on n < ω

that πβn
“z = πβn

“(x ∩ µ) = x ∩ βn ∈ Cz
n and xz

n = x ∩ βn. Hence
xz

n ∩ µ = x ∩ µ = z for every n < ω. Thus II wins in G(z) against
σz with the play 〈xz

n : n < ω〉. This contradicts that σz is a winning
strategy for I in G(z), as desired. ¤

Fix z ∈ T − T ′ and a winning strategy τ for II in G(z). Since Sz

is stationary in µ+, we have µ < γ ∈ Sz such that sup τ(s) < γ for
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4

every s ∈ γ<ω. Since cf γ = ω, we have γn inductively so that γ0 = µ,
sup τ(〈γi : i < n〉) < γn and supn<ω γn = γ. Then 〈γn : n < ω〉 is a
play of I in G(z) against τ .

For n < ω set xn = τ(〈γi : i ≤ n〉). Then II wins in G(z) with the play
〈xn : n < ω〉. Hence {xn : n < ω} ⊂ C(f) is increasing, xn ∩µ = z and
γn < sup xn < γn+1 for every n < ω. Set x =

⋃
n<ω xn. Then x ∈ C(f),

x∩µ = z ∈ T and sup x = supn<ω sup xn = supn<ω γn = γ ∈ Sz = Sx∩µ,
as desired. ¤

Claim. S is µ-nonreflecting.

Proof. Suppose to the contrary S ∩PκA is stationary in PκA for some
µ ⊂ A ⊂ µ+ of size µ. Then {x ∈ PκA : ∀γ ∈ x − µ(πγ“(x ∩ µ) ⊂ x)}
is unbounded in PκA. Hence γ = πγ“µ = πγ“(A ∩ µ) ⊂ A for every
γ ∈ A − µ. Thus A = δ for some µ ≤ δ < µ+.

Subclaim. cf δ < κ.

Proof. Since {x ∈ Pκδ : πδ“(x ∩ µ) = x} is club, S ′ = {x ∈ S ∩ Pκδ :
πδ“(x∩µ) = x} is stationary in Pκδ. Fix x ∈ S ′. Since sup x ∈ Sx∩µ ⊂
Sω

µ+, we have bx ∈ [x]ω with sup bx = sup x. Since π−1
δ “bx ∈ [x ∩ µ]ω

and x ∩ µ ∈ T , we have ξ ∈ x ∩ µ with π−1
δ “bx ⊂ cξ.

Now we have ξ∗ < µ and a stationary S∗ ⊂ S ′ such that bx ⊂ πδ“cξ∗

for every x ∈ S∗. Since S∗ is unbounded in Pκδ, δ = supx∈S∗ sup x =
supx∈S∗ sup bx ≤ sup πδ“cξ∗ ≤ δ. Hence δ = sup πδ“cξ∗ has cofinality
< κ. ¤

Thus {x ∈ S ∩ Pκδ : sup x = δ} is stationary in Pκδ. Take x, y from
this set so that x ∩ µ 6= y ∩ µ. Then δ = sup x = sup y ∈ Sx∩µ ∩ Sy∩µ.
This contradicts Sx∩µ ∩ Sy∩µ = ∅, as desired. ¤

Therefore Pκµ
+ has a µ-nonreflecting stationary subset. ¤

Now Theorem 2 follows from Theorem 3 with µ = κ: It is easy to
check that the hypothesis of Theorem 3 is satisfied with cξ = ξ for
ξ < κ and T = Sω1

κ .
Theorem 3 with µ = κ+ yields the following

Corollary 1. Let κ be regular ≥ ω2. Then Pκλ has a κ+-nonreflecting

stationary subset for every λ ≥ κ++.

Proof. It suffices to check that the hypothesis of Theorem 3 is satisfied.
For κ ≤ γ < κ+ we have a club Tγ ⊂ Pκγ of size κ. List the set⋃
κ≤γ<κ+ Tγ as {cξ : ξ < κ+}. Then D = {δ < κ+ :

⋃
κ≤γ<δ Tγ = {cξ :

ξ < δ}} is club. Set T = {z ∈
⋃

κ≤γ<κ+ Tγ : ∀b ∈ [z]ω∃ξ ∈ z(b ⊂ cξ)}.
Then |T | ≤ κ+. We show that T is stationary in Pκκ

+.
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Fix f : [κ+]<ω → Pκκ
+. We have δ ∈ Sκ

κ+ ∩ D with f“[δ]<ω ⊂ Pκδ.
Then Tδ ∩ C(f) is club in Pκδ. Moreover {cξ : ξ < δ} =

⋃
κ≤γ<δ Tγ is

unbounded in Pκδ. Hence we can build an increasing sequence {zα :
α < ω1} ⊂ Tδ ∩ C(f) so that zα ⊂ cξ for some ξ ∈ zα+1. Then⋃

α<ω1
zα ∈ T ∩ C(f), as desired. ¤

If cf µ < κ, Pκµ has no stationary subset of size µ. So Theorem 3
has nothing to say in this case. It has something to say, however, about
a question of [8]:

Corollary 2. Let κ be regular ≥ ω2 and µ<κ = µ. Then Pκλ has a

µ-nonreflecting stationary subset for every λ ≥ µ+.

Proof. Since µ<κ = µ, we can list Pκµ as {cξ : ξ < µ}. Then T = {z ∈
Pκµ : ∀b ∈ [z]ω∃ξ ∈ z(b ⊂ cξ)} is stationary:

Fix f : [µ]<ω → Pκµ. Build an increasing sequence {zα : α < ω1} ⊂
C(f) so that zα = cξ for some ξ ∈ zα+1. Then

⋃
α<ω1

zα ∈ T ∩ C(f),
as desired. ¤

4. Proof of Theorem 1

This section presents the Foreman–Magidor example of a nonreflect-
ing stationary set in Pκλ as we understand it. Although the construc-
tion seems to work only for λ ≥ 2κ+

, the example has the virtue that
the intersection with {x ∈ Pκλ : cf(x ∩ κ) = ω} is stationary [5]. In
contrast our example of Theorem 2 is (easily seen to be) a subset of
{x ∈ Pκλ : cf(x ∩ κ) > ω = cf sup(x ∩ κ+)}.

Two Subclaims below are proved using ideas to show that Chang’s
Conjecture holds after a measurable cardinal is Lévy-collapsed to ω2 [9]
and that Pκκ

+ has a club subset of size ≤ (κ+)ω1 [1] respectively.

Proof of Theorem 1. Since λ ≥ 2κ+

, we can list (possibly with repeti-
tion) the functions : κ+ → Pκκ as {gξ : ξ < λ}. For κ ≤ γ < κ+ fix a
bijection πγ : κ → γ. Define h : κ × (κ+ − κ) → Pκκ

+ by h(α, β) =
lim πβ“α. Then D = {x ∈ Pκλ : ∀ξ ∈ x(gξ“(x ∩ κ+) ⊂ P(x)) ∧ ∀γ ∈
x∩ (κ+−κ)(πγ“(x∩κ) = x∩γ)∧h“((x∩κ)× (x∩ (κ+−κ))) ⊂ P(x)}
is club.

Set S = {x ∈ Pκλ : {sup(y ∩ κ+) : x ⊂ y ∈ D ∧ y ∩ κ = x ∩ κ} is
nonstationary in κ+}.

Claim. S is stationary in Pκλ.

Proof. Suppose otherwise. By induction on n < ω we build fn :
[λ]<ω → Pκλ and ξn : [λ]<ω → λ as follows:

Since S is nonstationary, we have f0 with C(f0) ⊂ D − S. Assume
next we have fn. Define ξn and fn+1 by gξn(a)(γ) = clfn

(a ∪ {γ}) ∩ κ
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6

and fn+1(a) = fn(a) ∪ {ξn(a)}. Finally define f : [λ]<ω → Pκλ by
f(a) =

⋃
n<ω fn(a).

Subclaim. If x ∈ C(f), {sup(z ∩ κ+) : x ⊂ z ∈ C(f)∧ z ∩ κ = x ∩ κ}
is unbounded in κ+.

Proof. Fix α < κ+. Since x ∈ C(f) ⊂ C(f0) ⊂ Pκλ−S, {sup(y∩κ+) :
x ⊂ y ∈ D∧y∩κ = x∩κ} is stationary in κ+. Hence we have x ⊂ y ∈ D

such that y ∩ κ = x ∩ κ and α < sup(y ∩ κ+). Fix α < γ ∈ y ∩ κ+.
Then z =

⋃
{clfn

(a∪{γ}) : n < ω∧a ∈ [x]<ω} witnesses the Subclaim:
Since γ ∈ z, α < γ ≤ sup(z ∩ κ+). By the definition of f , it is easy

to check x ⊂ z ∈ C(f). To see z ∩ κ ⊂ x ∩ κ, fix β ∈ z ∩ κ. Then
β ∈ clfn

(a ∪ {γ}) ∩ κ = gξn(a)(γ) for some n < ω and a ∈ [x]<ω. Since
x ∈ C(f) and a ∈ [x]<ω, ξn(a) ∈ f(a) ⊂ x ⊂ y. Since ξn(a), γ ∈ y ∈ D,
β ∈ gξn(a)(γ) ⊂ y ∩ κ = x ∩ κ, as desired. ¤

For i = 0, 1 build an increasing sequence {xi
ξ : ξ < ω1} ⊂ C(f)

so that xi
ξ ∩ κ = x0

0 ∩ κ ∈ Sω1

κ , κ < sup(x0
ξ ∩ κ+) ≤ sup(x1

ξ ∩ κ+) <

sup(x0
ξ+1∩κ+) but x1

0∩κ+ is not an initial segment of x0
1∩κ+ as follows:

First we have x0
0 ∈ C(f) such that x0

0∩κ ∈ Sω1

κ and κ < sup(x0
0∩κ+).

By the Subclaim we can take x0
1 from X = {z ∈ C(f) : x0

0 ⊂ z∧z∩κ =
x0

0∩κ} so that sup(x0
1∩κ+) is the κ-th element of {sup(z∩κ+) : z ∈ X}.

Since x0
1 ∩ κ+ has < κ initial segments, we have x1

0 ∈ X such that
sup(x1

0 ∩ κ+) < sup(x0
1 ∩ κ+) but x1

0 ∩ κ+ is not an initial segment
of x0

1 ∩ κ+, as required above. The rest of the construction using the
Subclaim is routine.

Set xi =
⋃

ξ<ω1
xi

ξ. Since {xi
ξ : ξ < ω1} ⊂ C(f) is increasing and κ ≥

ω2, xi ∈ C(f). Since xi
ξ, x

i ∈ C(f) ⊂ D, xi
ξ ∩ κ+ is an initial segment

of xi ∩ κ+: xi
ξ ∩ γ = πγ“(xi

ξ ∩ κ) = πγ“(x0
0 ∩ κ) = πγ“(xi ∩ κ) = xi ∩ γ

for every γ ∈ xi
ξ ∩ (κ+−κ). By the construction of xi

ξ’s, sup(x0∩κ+) =

supξ<ω1
sup(x0

ξ ∩ κ+) = supξ<ω1
sup(x1

ξ ∩ κ+) = sup(x1 ∩ κ+) ∈ Sω1

κ+.

Subclaim. xi ∩ κ+ is σ-closed.

Proof. Fix γ ∈ lim(xi ∩ κ+) of cofinality ω. Then we have b ⊂ xi ∩ κ+

of order type ω with sup b = γ. Since κ < sup(xi ∩ κ+) ∈ Sω1

κ+, we have

b ⊂ β ∈ xi∩(κ+−κ). Since β ∈ xi ∈ D, π−1
β “(xi∩β) = xi∩κ = x0

0∩κ ∈

Sω1

κ . Since π−1
β “b ∈ [π−1

β “(xi ∩β)]ω, we have π−1
β “b ⊂ α ∈ xi ∩κ. Hence

b ⊂ πβ“α. Since α, β ∈ xi ∈ D, γ = sup b ∈ lim πβ“α = h(α, β) ⊂ xi,
as desired. ¤

Thus we have sup(x0
1 ∩ κ+) < γ ∈ x0 ∩ x1 ∩ κ+. Since γ ∈ xi ∈ D,

x0 ∩ γ = πγ“(x0 ∩ κ) = πγ“(x0
0 ∩ κ) = πγ“(x1 ∩ κ) = x1 ∩ γ. This



7
6
4
 
 
r
e
v
i
s
i
o
n
:
2
0
0
5
-
0
3
-
0
8
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
5
-
0
3
-
0
8
 
 

7

contradicts that xi
ξ ∩ κ+ is an initial segment of xi ∩ κ+ but x1

0 ∩ κ+ is

not an initial segment of x0
1 ∩ κ+, as desired. ¤

Claim. S is nonreflecting.

Proof. Suppose to the contrary S ∩PκA is stationary in PκA for some
κ ⊂ A ⊂ λ of size κ. Fix a bijection π : κ → A. Then {γ < κ :
π“γ ∈ S} is stationary. Since {γ < κ : (π“γ) ∩ κ = γ} is club, their
intersection T is stationary. Since {y ∈ Pκλ : π“(y ∩ κ) ⊂ y ∈ D} is
club, {y ∈ Pκλ : π“(y ∩ κ) ⊂ y ∈ D ∧ y ∩ κ ∈ T} is stationary. Hence
{sup(y ∩ κ+) : π“(y ∩ κ) ⊂ y ∈ D ∧ y ∩ κ ∈ T} is stationary in κ+.

Since |T | = κ, we have γ ∈ T such that {sup(y ∩ κ+) : π“(y ∩ κ) ⊂
y ∈ D ∧ y ∩ κ = γ} is stationary in κ+. Note that (π“γ) ∩ κ = γ by
γ ∈ T . Hence {sup(y ∩ κ+) : π“γ ⊂ y ∈ D ∧ y ∩ κ = (π“γ) ∩ κ} is
stationary in κ+. But π“γ ∈ S by γ ∈ T . Contradiction. ¤

Therefore Stationary Reflection in Pκλ fails. ¤

Finally we remark that the same proof goes through even if “non-
stationary” is replaced by “bounded” in the definition of S.
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