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SPECIALISING ARONSZAJN TREES BY COUNTABLE

APPROXIMATIONS

HEIKE MILDENBERGER AND SAHARON SHELAH

Abstract. We show that there are proper forcings based upon countable
trees of creatures that specialise a given Aronszajn tree.

0. Introduction

The main point of this work is finding forcing notions specialising an Aron-
szajn tree, which are creature forcings, tree-like with halving, but being based
on ω1 (the tree) rather than ω. Techniques to specialise a given Aronszajn tree
are often useful for building models of the Souslin hypothesis SH, i.e. models
in which there is no Souslin tree. The present work grew from attempts at
showing the consistency of SH together with ♣ (see [9, I.7.1]), a question by
Juhász. This stays open.

Creature forcing tries to enlarge and systemise the family of very nice forc-
ings. There is “the book on creature forcing” [6], and for uncountable forcings
the work is extended in [5, 7, 3, 8, 4] and [Sh:F977]. At first glance it cannot
be applied for specialising an Aronszajn tree, because we have to add a subset
of ω1 rather than a subset of ω. Here we adopt it to ω1. We dispense with
some of the main premises made in the previous work and show new technical
details. The work may also be relevant to cardinal characteristics of ω12, but
this is left for future work.

The norm of creatures (see Definition 1.6) we shall use is natural for spe-
cialising Aronszajn trees, cf. [9, Ch. V, §6]. It is convenient that there is some
α < ω1 such that the union of the domains of the partial specialisation func-
tions that are attached to any branch of the tree-like forcing condition is the
initial segment of the Aronszajn tree T<α, i.e. the union of the levels less than
α. However, allowing that there is a finite set u such that for every branch of
a given condition the union of the domains of the partial specialisations that
lie on this branch is T<α ∪ u is used for density arguments that show that the
generic filter leads to a total specialisation function.
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2 HEIKE MILDENBERGER AND SAHARON SHELAH

1. Tree creatures

In this section we define the tree creatures which will be used later to describe
the branching of the countable trees that will serve as forcing conditions. We
prove three important technical properties about gluing together (Claim 1.8),
about filling up (Claim 1.9) and about changing the base together with thinning
out (Claim 1.10) of creatures. We shall define the forcing conditions only in the
next section. They will be countable trees with finite branching, such that each
node and its immediate successors in the tree are described by a creature in the
sense of Definition 1.5. Roughly spoken, in our context, a creature will be an
arrangement of partial specialisation functions with some side conditions.

We reserve the symbol (T,<T ) for the trees in the forcing conditions, which
are trees of partial specialisation functions of some given Aronszajn tree (T, <T).
A specialisation function is a function f : T → ω such that for all s, t ∈ T, if
s <T t, then f(s) 6= f(t), see [2, p. 244].

χ stands for some sufficiently high regular cardinal, and H(χ) denotes the
set of all sets of hereditary cardinality less than χ. For our purpose, χ = (2ℵ1)+

is enough.

Throughout this work we make the following assumption:

Hypothesis 1.1. T is an Aronszajn tree ordered by <T, and for α < ω1 the
level α of T satisfies:

Tα ⊆ [ωα, ωα + ω).

The tree T will be fixed for the main part of the work, the analysis of QT..
Only in the end we iterate over all Aronszajn trees in the ground model and in
termediate models and use 2ω1 = ω2 to accomplish this. We define the following
finite approximations of specialisation maps:

Definition 1.2. For u ⊆ T and n < ω we let

specn(u) = {η | η : u → [0, n) ∧ (η(x) = η(y) → ¬(x <T y))}.
We let spec(u) =

⋃

n<ω specn(u) and spec = specT =
⋃{spec(u) : u ⊂

T, u finite}.
Choice 1.3. We choose two sequences of natural numbers 〈nk,i : i < ω〉,
k = 2, 3, such that the following growth conditions are fulfilled:

n2,i ≤ n3,i,(1.1)

n3,i < n2,i+1.(1.2)

The norm of an i creature will be ≤ n3,i in all our versions of norms. In order
not to say “do nothing” at many levels of the trees in the tree creature forcing,
it is good to require 2n3,i ≤ n2,i+1. However, it does not matter. Moreover, also
all the computations the numbers n2,i and n3,i can be replaced by requiring just
finiteness of the partial specialisations and finiteness of pos(c) for each creature
c and letting a ⊆ ω instead of a ⊆ n3,i in Def. 1.6, and then also items (a)(β)
and (b) in Def. 1.6 of the nor0 are not needed.

We fix the nj,i, j = 2, 3, i < ω, for the rest of this work.
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 3

We compare with the book [6] in order to justify the use of the name “crea-
ture”. However, we cannot just cite that work, because the framework devel-
oped there is not suitable for the approximation of uncountable domains T.

Definition 1.4. (1) ([6, 1.1.1]) Let H =
⋃

i∈ω H(i), and let H(i) be sets. A
triple c = (nor[c], val[c],dis[c]) is a weak creature for H if the following
holds:

(a) nor[c] ∈ R≥0.

(b) Let ⊳ be the strict initial segment relation.

val[c] is a non-empty subset of
{

〈x, y〉 ∈
⋃

m0<m1<ω

[
∏

i<m0

H(i) ×
∏

i<m1

H(i)] : x ⊳ y
}

.

(c) dis[c] ∈ H(χ).

(2.) nor stands for norm, val stands for value, and dis stands for distinguish.

In our case, we drop the component dis will be called i(c) and k(c), two
natural numbers.

As we will see in the next definition, in this work (b) of 1.4 is not fulfilled:
For us val is a non-empty subset of {〈x, y〉 ∈ specT × specT : x <T y} for
some strict partial order <T as in Definition 2.1. Though the members of
specT are finite partial functions, they cannot be written in a natural manner
with some n ∈ ω as a domain, since specT is uncountable and we want to
allow arbitrary finite parts. Often properness of a tree creature forcing follows
from the countability of H. Note that our analogue to H is not countable. In
Section 3 we shall prove that the notions of forcing we introduce are proper for
other reasons.

Nevertheless the creature in the next definition is a specific case for the
distinction part and the value of a weak creature in the sense of 1.4 without
item (1.)(b), and later we will assign a norm. As common in the work with tree
creatures we write pos(c) for rge(val[c]), the set of possibilities for c.

Definition 1.5. (1) A creature is a tuple c = (i(c), η(c),pos(c), k(c)) with
the following properties:

(a) The first component, i(c), is called the kind of c and is just a
natural number. c is an i-creature if i(c) = i.

(b) The second component, η(c), is called the base of c. We require
(η(c) = ∅ and i(c) = 0) or (i(c) = i > 0 and |dom(η(c))| <
n2,i−1), and η(c) ∈ specn3,i−1

.

(c) pos(c) is a non-empty subset of {η ∈ specn3,i
: η(c) $ η ∧

|dom(η)| < n2,i}. So we have val(c) = {η(c)} × rge(val(c)).
That the domain is a singleton, is typical for tree-creating crea-
tures.

(d) k(c) ∈ ω \ {0}.
(2) The set of creatures is denoted by K.
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4 HEIKE MILDENBERGER AND SAHARON SHELAH

For a non-negative real number r we let m = ⌊r⌋ be the largest natural
number such that m ≤ r. We let lg denote the logarithm function to the base
2. Let log2(x) = ⌊lg(x)⌋ for x > 0, and we set log2 0 = 0.

The following definition has ideas from [9, Ch. V, § 6] and is the most im-
portant definition in this work.

Definition 1.6. (1) For an i-creature c we define nor0(c) as the maximal
natural number m such that if a ⊆ n3,i and |a| ≤ m and B0, . . . , Bm−1

are branches of T, then there is ν ∈ pos(c) such that

(α) (∀x ∈ (
⋃

ℓ<k Bℓ ∩ dom(ν)) \ dom(η(c)))(η(x) 6∈ a),

(β)
|dom(ν)|

n2,i
≤ 1

m
.

(2) We define nor1(c) = log2(nor0(c)).

(3) In order not to fall into specific computations, we use functions f that
exhibit the following properties, in order to define norms on creatures
that, in contrast to nor0 and nor1 also use the component k(c):

(∗)1 f : R+ × R+ → R, where R+ is the set of strictly positive reals.

(∗)2 f fulfils the following monotonicity properties: If n1 ≥ n2 ≥
k2 ≥ k1 then f(n1, k1) ≥ f(n2, k2).

(∗)3 (For the 2-bigness, see Claim 1.11) f(n
2 , k) ≥ f(n, k) − 1.

(∗)4 n ≤ k → f(n, k) ≤ 0.

(∗)5 (For the halving property, see Definition 3.3) For all n, k: If
f(n, k) ≥ 1, then there is some k′(n, k) = k′ such that k < k′ < n
and

f(n, k′) ≥ f(n, k)

2
,

and for all n′, if k′ < n′ < n and f(n′, k′) ≥ 1, then

f(n′, k) ≥ f(n, k)

2
.

For example, f(n, k) = lg(n
k
) for k ≤ n, and f(n, k) = 0 otherwise, and

k′(n, k) = ⌊
√

nk⌋, fulfil these conditions since k′ < n′ < n and f(n′, k′) ≥ 1

imply f(n′, k) = f(n′, k′) + f(k′, k) ≥ 1 + f(n,k)
2 − 1 = f(n,k)

2 .
For a creature c we define its norm

norf (c) = f(nor0(c), k(c)).

Note that nor0(c) ≤ n2,i for an i-creature with i > 0. Some of the inequalities
in the conditions of Claims 1.9 and 1.10 are easy to fulfil. Most of the time the
requirement (α) is the hardest one.

Remark 1.7. Definition 1.6(1) speaks about infinitely many requirements, by
ranging over all m-tuples of branches of T. However, at a crucial point in the
proof Claim 1.9 this boils down to counting the possibilities for a ⊆ n3,i.

The next claim shows that we can extend the possibilities of a creature and
at the same time decrease the norm of the creature only by a small amount.
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 5

Claim 1.8. Assume that

(a) η∗ ∈ spec,

(b) c is an i-creature with base η∗, nor0(c) > 0,

(c) k∗ > 0,

(d) for each η ∈ pos(c) and k < k∗ we are given η ⊆ ρη,k ∈ specn3,i
with

|dom(ρη,k)| < n2,i,

(e) for each η ∈ pos(c), if k1 < k2 < k∗ and x1 ∈ dom(ρη,k1) \ dom(η) and
x2 ∈ dom(ρη,k2) \ dom(η), then x1, x2 are <T-incomparable,

(f) ℓ∗ = max{|dom(ρη,k)| : η ∈ rge(val(c)) ∧ k < k∗}.
Then there is an i-creature d given by

pos(d) = {ρη,k : k < k∗, η ∈ pos(c)},
η(d) = η∗,

k(d) = k(c).

We have nor0(d) ≥ m0
def
= min

{

nor0(c), ⌊n2,i

ℓ∗
⌋, k∗ − 1

}

.

Proof. First of all we are to check Definition 1.5(1). Clauses (a),(b), and (c)
follow immediately from the premises of the claim. From premise (e) and from
the properties of c it follows that η(d) = η∗. Therefore d satisfies clause (d).

Now for the norm: We check clause (α) of Definition 1.6. Let branches
B0, . . . Bm0−1 of T and a set a ⊆ n3,i be given, |a| ≤ m0. Since m0 ≤
nor0(c), there is some η ∈ pos(c) such that (∀x ∈

(
⋃

ℓ<m0
Bℓ

)

∩ dom(η) \
dom(η(c)))(η(x) 6∈ a). We fix such an η. Now for each ℓ < m0, we let

wη,ℓ = {j < k∗ : ∃x ∈ Bℓ ∩ dom(ρη,j) \ dom(η)}.
Now we have that |wη,ℓ| ≤ 1 because otherwise we would have k1 < k2 < k∗

in wη,ℓ and xi ∈ Bℓ ∩ dom(ρη,ki
) \ dom(η), i = 1, 2. As x1 and x2 are <T-

comparable, this is contradicting the requirement (e) of 1.8.
Since m0 < k∗, there is some j ∈ k∗ \ ⋃

ℓ<m0
wη,ℓ. For such a j, ρη,j is as

required.

We check clause (β) of Definition 1.6. We take the ρη,j as chosen above.
Then we have

|dom(ρη,j)|
n2,i

≤ ℓ∗

n2,i
≤ 1

⌊n2,i

ℓ∗
⌋ ≤ 1

m0
,

as m0 ≤ ⌊n2,i

ℓ∗
⌋. ⊣

Whereas the previous claim will be used only in Section 3 in the proof on
properness in Claim 3.8, the following two claims will be used in the next section
for density arguments in the forcings built from creatures.

Claim 1.9. Suppose that c, m, k are as follows:

(a) c is an i-creature,

(b) nor0(c) = k + m,
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6 HEIKE MILDENBERGER AND SAHARON SHELAH

(c) m ≤ n2,i

k
− n2,i

k+m
, so for example m ≤ n2,i

k(k+1) (if we do not want to have

a quadratic inequality),

(d) x0, . . . , xm−1 ∈ T, 1 ≤ m,

(e) n3,i ≥ n2,i

k+m
+ m + k.

Then there is some creature d such that

(1) η(d) = η(c),

(2) pos(d) ⊆ {ν ∈ specT : (∃η ∈ pos(c))(η ⊆ ν ∧ dom(ν) = dom(η) ∪
{x0, . . . , xm−1})},

(3) nor0(d) ≥ k.

Proof. For each η ∈ pos(c) we choose m + k elements from n3,i r rge(η), and
put them into a set Bη. By (e) this set is not empty. Note that given k ≥ 2
and m for a sufficiently large i, (e) is automatically true, since n2,i ≤ n3,i. For

each a ∈ [ω]k choose some set {zm′ : m′ < m} ⊆ Bη, {zm′ : m′ < m} ∩ a = ∅
such that the zm′ ’s are pairwise different. Then we have a specialisation νη,z̄ =
η∪{(xm′ , zm′) : m′ < m}. Since the zm′ are not in rge(η) it is a specialisation.
We set

d = {(η(c), νη,z̄) : η ∈ pos(c), z̄ ∈ [Bη]
m}.

Now we check the norm: Let B1, . . . , Bk be branches of T and let a ⊆ ω,
|a| ≤ k. We have to find ν ∈ pos(d) such that (∀ℓ < k)(∀y ∈ dom(ν) ∩ Bℓ r
dom(η(c)))(ν(y) 6∈ a). We add branches Bk+i, i < m, Bi containing xi. By
premise (b), we find η ∈ pos(c) such that

(∀ℓ < k + m)(∀x ∈ dom(η) ∩ Bℓ r dom(η(c)))(η(x) 6∈ a).

Taking z̄ disjoint from a in Bη, we have νη,z̄ ∈ pos(d) such that

(∀ℓ < k)(∀x ∈ dom(νη,z̄) ∩ Bℓ r dom(η(c)))(νη,z̄(x) 6∈ a).

Now νη,z̄ = ν is a witness for the norm also in item (β): We have
n2,i

k+m
+m ≤

n2,i

k
, which follows from the premises on m. ⊣

Usually in the applications we have m = 1 and k ≥ 2. Suppose we have filled
up the range of the value of a creature according to one of the previous claims.
Then we want that these extended functions can serve as bases for suitable
creatures as well. This is provided by the next claim, which makes the previous
claim almost obsolete. We need only the weakening of the previous claim that
there is η∗ ⊇ η(c), η∗ ∈ specTn3,i

and x0, . . . , xm−1 ∈ dom(η). i from 1.9 will
now appear in 1.10 as i − 1 since the following claim speaks about in the next
level of a tree built from creatures. The idea is: Each element of pos(ct) is a
basis of ct′ for t′ being a direct successor of t in a tree of creatures.

Claim 1.10. Assume that

(a) c is an i-creature.

(b) η∗ ⊇ η(c), η∗ ∈ specn3,i−1
(note that we do not suppose that η∗ ∈

pos(c)). Furthermore we assume |dom(η∗)| ≤ n2,i−1.
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 7

(c) We set
ℓ∗2 = |dom(η∗) \ dom(η(c))|,

and

ℓ∗1 = |{y : (∃ν ∈ pos(c))(y ∈ dom(ν) \ dom(η(c)))

∧ (∃x ∈ dom(η∗) \ dom(η(c)))(x <T y)}|,
and we assume that ℓ∗1 + ℓ∗2 < nor0(c).

We define d by η(d) = η∗ and

pos(d) = {ν ∪ η∗ : ν ∈ pos(c) ∧ ν ∪ η∗ ∈ specn3,i
∧ |dom(ν ∪ η∗)| < n2,i}.

Then

(α) d is an i-creature.

(β) nor0(d) ≥ nor0(c) − ℓ∗2 − ℓ∗1.

Proof. Item (α) follows from the requirements on η∗ and from the estimates
on the norm, see below. For item (β), we set k = nor0(c) − ℓ∗1 − ℓ∗2. We let
B0, . . . , Bk−1 be branches of T and a ⊆ n3,i(c), |a| ≤ k. We set ℓ∗ = ℓ∗1 + ℓ∗2.
We let 〈yℓ : ℓ < ℓ∗1〉 list Y = {y : ∃ν(ν ∈ pos(c) ∧ y ∈ dom(ν) ∧ (∃x)(x ∈
dom(η∗) \ dom(η(c)) ∧ x ≤T y))} without repetition. Let Bk, . . . , Bk+ℓ∗1−1

be branches of T such that yℓ ∈ Bk+ℓ for ℓ < ℓ∗1. Let 〈xℓ : ℓ < ℓ∗2〉 list
dom(η∗) \ dom(η(c)). Take for ℓ < ℓ∗2, Bk+ℓ∗1+ℓ such that xℓ ∈ Bk+ℓ∗1+ℓ. We set

a′ = a ∪ {η∗(xℓ) : ℓ < ℓ∗2}. Since nor0(c) ≥ k + ℓ∗ there is some ν ∈ pos(c)
such that ∀x ∈ ((dom(ν) \ dom(η(c))) ∩ ⋃

ℓ<k+ℓ∗ Bℓ)(ν(x) 6∈ a′). Then, if

x 6∈ dom(η∗), (ν ∪ η∗)(x) 6∈ a. Moreover |dom(ν ∪ η∗)| ≤ n2,i

k+ℓ∗
+ ℓ∗2 ≤ n2,i

k
, if

n2,i

k
is sufficiently large.

We have to show that ν ∪ η∗ is a partial specialisation: Since η∗ and ν are
specialisation maps, we have to consider only the case x ∈ dom(η∗)\dom(η(c))
and (y ∈ Y or (y ∈ dom(ν) \ dom(η∗) and y <T x)). If y ∈ Y , then we have
ν(y) 6= η∗(xℓ) for all ℓ < ℓ∗2. If y ∈ dom(ν) \ dom(η∗) and y <T x, then y is
in a branch leading to some xℓ, ℓ < ℓ∗2, and hence again ν(y) 6= η∗(xℓ), ℓ < ℓ∗2. ⊣

In the applications, the proofs of the density properties, ℓ∗2 will be small
compared to the norm (we add ℓ∗2 points to the domain of the functions in the
set of possibilities of a creature with sufficiently high norm) and ℓ∗1 ≤ |u|, were
u is the set that sticks out of T<α(p) (see Definition 2.2). We will suppose

that these two are small in comparison to nor0(c), so that the premises for
Claims 1.8, 1.9 and 1.10 are fulfilled.

The next claim will help to find large homogeneous subtrees of the trees built
from creatures that will later be used as forcing conditions.

Claim 1.11. (1) The 2-bigness property [6, Definition 2.3.2]. If c is an
i-creature with nor1(c) ≥ k + 1, and c1, c2 are i-creatures such that
val(c) = val(c1) ∪ val(c2), then nor1(c1) ≥ k or nor1(c2) ≥ k.

(2) If c is an i-creature with norf (c) ≥ k + 1, and c1, c2 are i-creatures
such that val(c) = val(c1) ∪ val(c2), and k(c1) = k(c2) = k(c), then
norf (c1) ≥ k or norf (c2) ≥ k.
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8 HEIKE MILDENBERGER AND SAHARON SHELAH

Proof. (1) We first consider nor0. Let j = 2k. We suppose that nor0(c1) < j and
nor0(c2) < j and derive a contradiction: For ℓ = 1, 2 let branches Bℓ

0, . . . , B
ℓ
j−1

and sets aℓ ⊆ n3,i exemplify this.
Let a = a1 ∪ a2 and let, by nor0(c) ≥ 2j, η ∈ pos(c) be such that for all

x ∈ (dom(η)∩⋃

ℓ=1,2

⋃j−1
i=0 Bℓ

i )\dom(η(c)) we have η(x) 6∈ a. But then for that

ℓ ∈ {1, 2} for which η ∈ pos(cℓ) we get a contradiction to nor0(ci) < j. Hence
(1) follows for nor1.

Since the k-components of the creatures coincide, part (2) follows from the
requirements on f in Definition 1.6(4): f(n

2 , k) ≥ f(n, k) − 1. ⊣

2. Forcing with tree-creatures

Now we define a notion of forcing with ω-trees 〈ct : t ∈ (T,<T )〉 as condi-
tions. Every node t of such a tree (T,<T ) = (dom(p), <p) and its immediate
successors are described by a certain creature ct from Definition 1.5. We have
basis(ct) = t.

First we collect some general notation about trees. The trees here are not the
Aronszajn trees of the first section, but trees T of finite partial specialisation
functions, ordered by <T which is a subrelation of ⊂↾ (specT)2. Some of these
trees T together with a tag ct = (i(ct), val[ct], k(ct)) at each node t ∈ T will
serve as forcing conditions. We write such tagged trees as p = 〈ct : t ∈ T 〉 and
if T ′ is a subtree of T then we let p ↾ T ′ = 〈ct : t ∈ T ′〉.
Definition 2.1. (1) A tree (T,<T ) is a set finite or countable set T with a

partial order <T such that for t ∈ T , {s ∈ T : s <T t} is a finite linear
order.

(2) We define the successors of η in T , the restriction of T to η, the splitting
points of T and the maximal points of T by

sucT (η) = {ν ∈ T : η <T ν ∧ ¬(∃ρ ∈ T )(η <T ρ <T ν)},
T 〈η〉 = {ν ∈ T : η ≤T ν},

split(T ) = {η ∈ T : | sucT (η)| ≥ 2},
max(T ) = {ν ∈ T : ¬(∃ρ ∈ T )(ν <T ρ)}.

(3) A T-tree (T,<T ) is a set T ⊆ specT, such that for any η ∈ T , ({ν :
ν <T η}, <T ) is a finite linear order and such that in T there is a least
element, called the root, rt(T ). We have for η, ν ∈ T : η <T ν iff η ⊂ ν.
We shall only work with finitely branching trees.

(4) The n-th level of T is

T [n] = {η ∈ T : η has n and not more <T -predecessors}.
The set of all branches through T is

lim(T ) = {〈ηk : k < ℓ〉 : ℓ ≤ ω ∧ (∀k < ℓ)(ηk ∈ T [k])

∧ (∀k < ℓ − 1)(ηk <T ηk+1)

∧ ¬(∃ηℓ ∈ T )(∀k < ℓ)(ηk <T ηℓ)}.
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 9

A tree is well-founded if there are no infinite branches through it.

(4) A subset F of T is called a front of T if every branch of T passes through
this set, and the set consists of <T -incomparable elements.

Definition 2.2. Let T be an Aronszajn tree. We define a notion of forcing
Q = QT.

(A) p ∈ Q iff p = (i(p), T p, kp) has the following properties:

(a) There is a set dom(p) ⊆ specT such that T p = T (p) = (dom(p), <p

) is a T-tree with ω levels, the ℓ-th level of which is denoted by

(T (p))[ℓ] = p[ℓ]. If η ∈ specT appears more than once in the tree new addition
we do not identify the nodes in the different positions. Strictly
speaking we have dom(p) ⊆ spec<ω and each η ∈ dom(p) is just
an abbreviation for 〈rt(p), η1, . . . , ηn−1 = η〉 where this is the list
of <p-predecessors of η. end of new

(b) T p has a root, the unique element of level 0, called rt(p).

(c) kp : dom(p) → ω.

(d) There is i(p) = i < ω such that the following holds: For any
ℓ < ω and η ∈ p[ℓ] the set

sucp(η) = {ν ∈ p[ℓ+1] : η <p ν}
is pos(c) for a (i + ℓ)-creature c with base η and k(c) = kp(η).
We denote this creature by cp,η. (So we have i(cp,rt(p)) = i(p).)

(e) There is α = α(p) ∈ ω1 such that the following holds: For some

k < ω for every η ∈ p[k] there is a finite set uη ⊆ T \ T<α such
that for every ω-branch 〈ηℓ : ℓ < ω〉 of T p satisfying ηk = η we
have

⋃

ℓ∈ω dom(ηℓ) \ uη = T<α.

(f) For every ω-branch 〈ηℓ : ℓ ∈ ω〉 of T p we have limℓ→ω norf (cp,ηℓ
) =

ω.

(B) The order ≤=≤Q is given by letting p ≤ q (q is stronger than p, we
follow the Jerusalem convention) iff i(p) ≤ i(q) and there is a projection
prq,p which satisfies

(a) prq,p is a function from dom(q) to dom(p).

(b) If η ∈ dom(q) then η ⊇ prq,p(η).

(c) If η1, η2 are both in dom(q) and if η1 ≤q η2, then prq,p(η1) ≤p

prp,q(η2).

(d) For every η ∈ dom(q), kq(η) ≥ kp(prq,p(η)).

(e) For any ℓ ∈ ω, η ∈ q[ℓ] ⇒ prq,p(η) ∈ p[ℓ+i(q)−i(p)].

(f) For any ℓ ∈ ω: If ν ∈ q[ℓ] and ρ ∈ q[ℓ+1] and ν <q ρ, prq,p(ν) = η,
prq,p(ρ) = τ , then dom(τ) ∩ dom(ν) = dom(η).

Definition 2.3. For p ∈ Q and η ∈ dom(p) we let

p〈η〉 = p ↾ {ρ ∈ dom(p) : η ≤ ρ}.
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10 HEIKE MILDENBERGER AND SAHARON SHELAH

Let us give some informal description of the ≤-relation in Q: The stronger
condition’s domain is via prq,p mapped homomorphically w.r.t. the tree orders

into dom(p〈prq,p(rt(q))〉). The projection is in general neither one-to-one nor
onto. The root can grow as well. According to (b), the projection preserves

the levels in the trees but for one jump in heights (the ℓ’s in p[ℓ]), due to a
possible lengthening of the root. The partial specialisation functions sitting on
the nodes of the tree are extended (possibly by more than one extension per
function) in q as to compared with the ones attached to the image under pr,
but by (b) the extensions are so small and so few that it preserves the kind i
of the creature given by the node and its successors, and according to (f) the
new part of the domain of the extension is disjoint from the domains of the old
partial specification functions living higher up in the projection of the new tree
to the old tree.

Let us compare our setting with the forcings given in the book [6]: There
the ≤-relation of the forcing is based on a sub-composition function (whose
definition is not used here, because we just deal with one particular forcing
notion) whose inputs are well-founded subtrees of the weaker condition. Here
the extension rt(q) \ prq,p(rt(q)) is taken from somewhere in the Aronsajn tree
and not from higher up in p, indeed, by (f) this is even forbidden. On the other
hand, the projections shift all the levels by the same amount i(q) − i(p), and
are not arbitrary finite contractions as in most of the tree creature forcings in
the book [6].

Definition 2.4. (1) p ∈ Q is called normal iff for every ω-branch 〈ηℓ : ℓ ∈
ω〉 of T p the sequence 〈nor(cp,ηℓ

) : ℓ ∈ ω〉 is non-decreasing.

(2) p ∈ Q is called smooth iff in clause (v) of Definition 2.2 the number k
is 0 and u is empty.

(3) p ∈ Q is called weakly smooth iff in clause (v) of Definition 2.2 the
number k is 0.

(4) For a weakly smooth p or a smooth p we let α(p) =
⋃{dom(η) : η ∈ b}

for any branch b in (p,<p).

Fact 2.5. (1) Def. 2.2(f) does not only hold for ℓ and ℓ + 1 but for any
finite difference of levels.

(2) If p is weakly smooth and p ≤ q and η ∈ dom(p), ν ∈ dom(q), η =
prq,p(ν) and η <p τ ∈ dom(p), then dom(ν) ∩ dom(τ) = dom(η).

(3) If p ≤ q and p is weakly smooth with witness u then
ν ∈ dom(q) → dom(ν) ∩ (T<α(p) ∪ u) = dom(prq,p(ν)).

Proof. (2): If p is weakly smooth, then all branches of T p have the same union
of domains, and hence it is immaterial whether ρ and ν from 2.2(f) are in the
range of prq,p or not. (3) follows from (2). ⊣

Definition 2.6. For 0 ≤ n < ω we define the partial order ≤n on Q by letting
p ≤n q iff

(i) p ≤ q,
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 11

(ii) i(p) = i(q),

(iii) rt(p) = rt(q),

(iv) (p[<n], <p) = (q[<n], <q), and and p ↾
⋃

ℓ<n p[ℓ] = q ↾
⋃

ℓ<n q[ℓ],

(v) for every projection prq,p, if prq,p(η) = ν then

– η = ν and cq,η = cp,ν

– or norf (cq,η) ≥ n.

Note that, e.g., p ↾ p[0] = q ↾ q[0] means rt(p) = rt(q) and cp,rt(p) = cq,rt(p),
which is a requirement on two levels in T p and in T q. So property (iv) says that
also on the level n the two trees still coincide. Below we show that norf (cq,η) ≥
n implies norf (cp,ν) ≥ n.

We state and prove some basic properties of the notions defined above.

Claim 2.7. (1) If p ≤ q and p is weakly smooth, then prq,p is unique.

(2) (Q,≤Q) is a partial order.

(3) If p ≤ q and prq,p(η) = ν, then i(cq,η) = i(cp,ν).

(4) If p ≤ q and prq,p(η) = ν, then nor0(cq,η) ≤ nor0(cp,ν) and the same
holds for norf .

(5) (Q,≤n) is a partial order.

(6) p ≤n+1 q → p ≤n q → p ≤ q.

(7) If c is an i-creature with m ≤ nor0(c) and η ∈ pos(c), then there is an
i-creature c′ with m = nor0(c′), η ∈ pos(c′) and val(c′) ⊆ val(c). The
same holds for norf .

(8) For every p ∈ Q there is a q ≥ p such that for all η and ν

prq,p(η) = ν →(nor0(cq,η) = min{nor0(cp,ρ) : ν ≤p ρ ∈ dom(p)}∧
nor0(cq,η) = min{nor0(cq,ρ) : ν ≤q ρ ∈ dom(q)})

Hence the normal conditions are dense in Q.

(9) For every (not necessarily normal) p we have that limn→ω min{norf (cp,η) :

η ∈ p[n]} = ∞.

(10) If p ∈ Q and η ∈ p[ℓ] then |dom(η)| < n2,i(p)+ℓ−1 or ℓ = 0 and i(p) = 0
and η = ∅.

Proof. (1) By induction on ℓ we show that prq,p ↾
⋃

ℓ′≤ℓ p[ℓ′] is unique: It is

easy to see that for weakly smooth p, prq,p(rt(q)) is the ⊆-maximal element
of T p that is a subfunction of rt(q). By Definition 2.1(1) such a maximum
exists. Then we proceed level by level in T q, and again Definition 2.1(1) yields
uniqueness of prq,p.

(2) Given p ≤ q and q ≤ r we define prr,p = prq,p ◦prr,q. It is easily seen that
this function is as required.

(3) Let ℓ be such that η ∈ q[ℓ]. Then i(cq,η) = i(q) + ℓ and ν ∈ p[ℓ+i(q)−i(p)].
Hence i(cp,ν) = i(p) + ℓ + i(q) − i(p) = i(q) + ℓ = i(cq,η).
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12 HEIKE MILDENBERGER AND SAHARON SHELAH

(4) Suppose nor0(cq,η) > nor0(cp,ν). Let m = nor0(cq,η) and let i = i(cq,η) =
i(cp,ν). Suppose that a ⊆ n3,i and the branches B0, . . . , Bm−1 of T exemplify
that nor0(cp,ν) < m. Hence for all τ ∈ sucp(ν)

(α) there is x ∈ (dom(τ) ∩ ⋃k−1
ℓ=0 Bℓ) \ dom(ν) such that τ(x) ∈ a, or

(β) |dom(τ)| >
n2,i

m
.

Then a and B0, . . . , Bm−1 exemplify nor0(cq,η) < m.

(5) Suppose that p ≤n q ≤n r and prr,q(σ) = η and prq,p(η) = ν. By (2) we
have that prr,p(σ) = ν, and now (4) implies that p ≤n r.

(6) Obvious.

(7) We may assume that nor0(c) > m, because otherwise c itself is as re-
quired. Let η ∈ pos(c). Look at

Y = {d :d is a i-creature and val(d) 6= ∅ and

nor0(d) ≥ k, η ∈ pos(d), and val(d) ⊆ val(c)}.
Since c ∈ Y , it is non-empty, and it has a member d with a minimal number

of elements. We assume towards a contradiction that nor0(d) > m. We choose
η∗ ∈ pos(d). We let pos(d∗) = pos(d) \ {η∗}.

Claim: d∗ 6= ∅. Otherwise we choose x ∈ dom(η∗) \ dom(η(c)). Now we let
B0 be a branch of T to which x belongs and set a = {η∗(x)}. They witness that
nor0(d) 6≥ 1, so nor0(d) = 0, which contradicts the assumption that nor0(d) >
m > 0.

Claim: nor0(d∗) ≥ m. Otherwise there are branches B0, . . . , Bm−1 and a set
a ⊆ n3,i witnessing nor0(d∗) 6≥ m. Let x ∈ dom(η∗) \ dom(η(d)) and let Bm be
a branch such that x ∈ Bm and set a′ = a ∪ {η∗(x)}. The B0, . . . , Bm and a′

witness that nor0(d) 6≥ k + 1. Hence d∗ is a member of Y with fewer elements
than d, contradiction.

(8) Follows from (7). We can even take dom(q) ⊆ dom(p). First see: For
no m the set {η ∈ p such that for densely (in T p) many η′ ≥p η we have that
nor0(cp,η′) < m}. is anywhere dense. Otherwise we can choose a branch 〈ηℓ :
ℓ ∈ ω〉 such that there is some m ∈ ω such that for all ℓ < ω, nor0(cp,ηℓ

) < m.
Now by thinning out a spanning tree between the fronts

Fn = {̺ ∈ T p : (∀η ≥p ̺)(nor(cp,η ≥ n)∧(∀ν < ̺)(∃η ≥ ν)(nor(cp,η)) < n)}
we construct q with T q ⊆ T p and the identity is a level preserving embedding.

Now we choose by induction of ℓ, dom(qℓ) ⊆ dom(p), such that dom(qℓ) has
no infinite branch and hence is finite, though we do not have a bound on its
height.

First step: Say min{nor0(cp,η) : η ∈ dom(p)} = m and it is reached in

η ∈ dom(p). We take q[0] = {η}.
([1]) Then we take for any η′ ∈ pos(cp,η) the <p-minimal η′′ > η′ such that

η′′ ∈ dom(p) and such that for all η̃ ≥p η′′, if η̃ ∈ dom(p) then nor0(cp,η̃) ≥ m+1.
By the mentioned nowhere-density result, this is possible. We put such an η′′

in q[ℓ], if it is in p[ℓ+i(q)−i(p)].
([2]) Then we look at the ν in the branch between η and η′′ in dom(p). If

nor0(cp,ν) > m we take according to (8) a subcreature c′ of cp,ν) with norm
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 13

k that contains in its possibilities that member of pos(cp,ν) that lies on the
branch. We let c′ = cq1,ν . We have to put successors to all ν ′ ∈ pos(cp,ν) for
all ν in question into dom(q1). This is done as in ([1]), applied to ν instead of
η. With all the ν in this subset we do the procedure in ([1]), and repeat and
repeat it. In finitely many (intermediate) steps we reach a subtree dom(q1) of
dom(p) without any ω-branches such that all its leaves fulfil η′′ ∈ dom(p) and
such that for all η̃ ⊇ η′′, if η̃ ∈ dom(p) then nor0(cp,η̃) ≥ k +1, and all its nodes
η fulfil nor0(cq1,η) ≥ m. By König’s lemma, this tree dom(q1) is finite.

([3]) With the leaves of dom(q1) and m + 2 instead of m + 1, we repeat the
choice procedure in ([1]) and ([2]). We do it successively for all ℓ ∈ ω, and thus
get qℓ such that for very node ν ∈ T qℓ \T qℓ−1, nor(cqℓ,ν) = m + ℓ. The union of
the dom(qℓ), ℓ ∈ ω, is a q as desired in (9).

(9) This follows from König’s lemma: Since T p is finitely branching, there is
a branch though every infinite subset.

(10) Follows from Definitions 1.5 and 2.2. ⊣

Lemma 2.8. Let 〈ni : i ∈ ω〉 be a strictly increasing sequence of natural num-
bers. We assume that for every i, qi ≤ni

qi+1, and we set n−1 = 0. Moreover
we assume that the qi are smooth conditions. Then q =

⋃

i<ω

⋃

ni−1≤n<ni
(qi) ↾

q
[n]
i ∈ Q and for all i, q ≥ni

qi.

Proof. Clear by the definitions. ⊣

Now we fill up the domains of the partial specialisation functions and to show
that the smooth conditions are dense in Q.

Lemma 2.9. If p ∈ Q and m < ω then for some smooth q ∈ Q we have
p ≤m q. Moreover, if

⋃{dom(η) : η ∈ T p} ⊆ T<α then we can demand that
⋃{dom(η) : η ∈ T q} = T<α.

Proof. We write the proof for nor0. In the version for norf we choose the
minimal k(cq,ν) that is allowed by Def 2.2(d), and thus the result follows from
a slight modification of the proof for the case of nor1.

We first use the definition of p ∈ Q: We assume α(p) < α, otherwise we

can take q = p. By item (v) there is some k < ω for every η ∈ p[k] there is
uη ∈ T\T<α(p) such that for every ω-branch 〈ηℓ : ℓ < ω〉 of T p satisfying ηk = η

we have
⋃

ℓ∈ω dom(ηℓ)\uη = T<α(p). We fix such a k and such uη, η ∈ p[k]. Now

for each η ∈ p[k] separately we perform the following inductive filling up: Fix
η ∈ p[k]. Let {xη

r : r < ω} enumerate T<α \ (T<α(p) ∪ uη) without repetition.

Since m is arbitrary, it is enough to assume that pη,ℓ ≥m p〈η〉 is already found
with union of the domains = T<α(p) ∪ uη ∪ {xη

r : r < ℓ} along each of its
branches and we have to find qη,ℓ ≥m pη,ℓ such there qη,ℓ ≥m pη,ℓ such that for
every b of T (qη,ℓ)

⋃

{dom(ν) : ν ∈ b} = T<α(p) ∪ uη ∪ {xη
r : r ≤ ℓ}.
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14 HEIKE MILDENBERGER AND SAHARON SHELAH

Then we can apply a fusion argument, since all the conditions pη,ℓ, ℓ < ω,
are weakly smooth and the union of the domains along each branch of pη,ℓ is
T<α(p) ∪ uη ∪ {xη

r : r < ℓ}, and thus union over all ℓ is T<α.
So we aim for such a condition. We can find n < ω such that

(∗)1 m ≤ n, ℓ ≤ n,

(∗)2 |uη| ≪ n,

(∗)3 for every ν ∈ p[≥n], we have nor0(cpℓ,ν) ≫ m + |uη| + ℓ + 1,

(∗)4 if ν ∈ (p〈η〉)[n], uη ∪ {xη
r : r < ℓ} ⊆ dom(ν).

For each ν ∈ (p〈η〉)[n] let

w+
ν = {̺ : ν <pη,ℓ

̺ ∈ dom(pℓ) ∧ nor0(cpη,ℓ,̺) > ℓ + n + nor0(cpη,ℓ,ν)},

wν = {̺ ∈ w+
ν : (6 ∃ζ)(ν <pη,ℓ

ζ <pη,ℓ
̺ ∧ ζ ∈ w+

ν )}.
For each ̺ ∈ wν take ˜̺ ⊇ ̺ with xη

ℓ ∈ dom(˜̺) as in Claim 1.9 such that
dom(˜̺) \ dom(̺) = {xη

ℓ}. Then we have

|dom(˜̺) \ dom(̺)| ≤ 1, and

|{y : (∃η̃ ∈ pos(cpη,ℓ,̺))(y ∈ dom(η̃) ∧ xη
ℓ <pη,ℓ

y)}| ≤ |uη| + ℓ ≪ n,
(⊠)

since only y 6∈ T<α(p) can be in the latter set.
So for each cpℓ,ρ we can do the operation from Claim 1.10 and get a creature

as d there with xη
ℓ ∈ dom(basis(d)), and d serves as dqη,ℓ+1,̺. Then we can go

on with Claim 1.10 and thin out cpη,ℓ,ν
′ to cqℓ,ℓ,ν

′ for all ν ′ >pη,ℓ
̺ as there and

after having worked through all of T (pη,ℓ) we let qη,ℓ = pη,ℓ+1 ≥ℓ+m qη,ℓ.
Indeed the construction of pη,ℓ+1 can be performed so that nor1(cq,η,ℓ+1,ν) ≥

nor1(cpη,ℓ+1,prpη,ℓ+1,pη,ℓ
(ν))−1 and, k(cpη,ℓ+1,ν) can be chosen so that norf (cpη,ℓ+1,ν) ≥

norf (cpη,ℓ,prpη,ℓ+1,pη,ℓ
(ν))−1 for ν ∈ T (pη,ℓ+1). This is accomplished by inserting

the xη
ℓ at sufficiently high-normed nodes of T pη,ℓ . (⊠) says what is high enough.

By the choice of q =
⋃

η∈p[k],ℓ<ω pη,ℓ, it is smooth. ⊣

The fusion lemma together with the previous lemma are usually applied in
the following setting:

Conclusion 2.10. (1) The smooth conditions are ≤m-dense in Q.

(2) Suppose p ∈ Q is given and we are to find q ≥ p such that q in the
intersection of countably many open dense sets. For this it is enough to
find for any dense open set and any p0 and k∗ ∈ ω some q ≥k∗ p0 in the
dense open set.

Conclusion 2.11. Forcing with Q specialises T.

Proof. We have to show that for any α ∈ ω1(= T), D(α) = {p ∈ Q : α < α(p)}
is dense in Q. This follows from the proof of Lemma 2.9. ⊣
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 15

3. Decisions taken by the tree creature forcing

In this section we prove that Q is proper and ωω-bounding. Indeed, we
prove that Q has “continuous reading of names” (this is the property stated in
Claim 3.9), which implies Axiom A (see [1]) and ωω-bounding. These implica-
tions are proved Sections 2.6 and 3.1 of [6].

Claim 3.1. (1) If p ∈ Q and {η1, . . . , ηn} is a front of p, then {p〈η1〉, . . . , p〈ηn〉}
is predense above p.

(2) If {η1, . . . , ηn} is a front of p and p〈ηℓ〉 ≤ qℓ ∈ Q for each ℓ, then there is

q ≥ p with {η1, . . . , ηn} ⊆ T q such that for all ℓ we have that q〈ηℓ〉 = qℓ.

Hence {q〈ηℓ〉 : 1 ≤ ℓ ≤ n} is predense above q.

(3) If n ∈ ω and {η1, . . . , ηr} is a front of p and p〈ηℓ〉 ≤0 qℓ ∈ Q for each ℓ
and

– for all ℓ ≤ r, (∀ν ∈ dom(qℓ))(nor(cqℓ,ν) ≥ n)

– for all ν ∈ p if nor(cp,ν) < n then (∃ℓ ≤ r)(ν <p ηℓ),

then there is q ≥n p with {η1, . . . , ηr} ⊆ T q such that for all ℓ we have

that q〈ηℓ〉 = qℓ and {η1, . . . , ηr} is a front of q.

Claim 3.2. If p ∈ Q and X ⊆ dom(p) is <p-downwards closed, then there is
some q such that

(a) p ≤0 q, and either (∀ℓ)(q[ℓ] ⊆ X) or (∀∞ℓ)(q[ℓ] ∩ X = ∅),
(b) dom(q) ⊆ dom(p),

(c) kq = kp ↾ dom(q),

(c) for every ν ∈ dom(q), if cq,ν 6= cp,ν, then nor1(cq,ν) ≥ nor1(cp,ν) − 1
and norf (cq,ν) ≥ norf (fcp,ν) − 1.

Proof. We will choose dom(q) ⊆ dom(p) and then let kq = kp ↾ dom(q). For
each ℓ we first choose by downward induction on j ≤ ℓ subsets a colouring fℓ,j

of p[j] with two colours, 0 and 1. For ν ∈ p[ℓ] we set fℓ,ℓ(ν) = 0 iff ν ∈ X and
fℓ,ℓ(ν) = 1 otherwise.

Suppose that fℓ,j is defined. For η ∈ p[j−1] we have

pos(cη,p) ={ν ∈ pos(cη,p) : fℓ,j(ν) = 0}∪
{ν ∈ pos(cη,p) : fℓ,j(ν) = 1}

By Claim 1.11 there is r ∈ {0, 1} such that cr = (i(cp,η), η, {ν ∈ pos(cη,p) :
fℓ,j(ν) = r}, k(cp,η)) has with nor1(cr) ≥ nor1(cη,p) − 1. The same holds for

norf . Now we colour η ∈ p[j−1] as follows fℓ,j−1(η) = r iff the non-minority of
ν ∈ pos(cη,p) has fℓ,j(ν) = r, so that is, if we chose cr at the place η. We work
downwards until we come to the root of p and keep fℓ,0(rt(p)) in our memory.

We repeat the procedure of the downwards induction on j for larger and
larger ℓ. Since X is downwards closed, we have for each η, ℓ and j ≤ ℓ if
fℓ+1,j(η) = 0, then fℓ,j(η) = 0.

First case: There are infinitely many ℓ such that fℓ,ℓ(rt(p)) = 0. If there
are infinitely many ℓ such that fℓ,ℓ(rt(p)) = 0, then this holds for all ℓ. Since



7
7
8
 
 
r
e
v
i
s
i
o
n
:
2
0
1
1
-
0
5
-
0
5
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
1
-
0
5
-
0
8
 
 

16 HEIKE MILDENBERGER AND SAHARON SHELAH

for each fixed ℓ there are only finitely many possible 〈fℓ,j(η) : η ∈ p[], j ≤ ℓ}
and since the preimage of colour 0 shrinks with increasing ℓ we find an infinite
subsequence 〈ℓk : k < ω〉 such that for each k for all k′ ≥ k for all j ≤ ℓk, for all
η ∈ p[j], f(ℓk′, j)(η) = f(ℓk, j)(η) = 0 and the we build a condition q and an infi-

nite subset A′ ⊆ A such that ∀ℓ ∈ A′, q[ℓ] ⊆ X. The norms drop at most by one
by taking the majority, and since X is downwards closed we have the first pos-
sibility in (a). In the opposite case, there is ℓ′ such that ∀ℓ ≥ ℓ′, fℓ,ℓ(rt(p)) = 1

and hence there is a subset of dom(p) such that (∀ℓ′ ≥ ℓ)(q[ℓ′] ∩ X = ∅). The
item (b) is clear. We choose for η ∈ dom(q), kq(cq,η) = kp(cp,η). Then item (c)
is true. Item (d) follows from our choice of q and from Claim 1.11. ⊣

The next claim is very similar to 3.2. We want to find q ≥m p, and therefore
we have to weaken the homogeneity property in item (a) of 3.2.

Claim 3.3. If p ∈ Q, m ∈ ω, and X ⊆ dom(p), then there is some q such
that

(a) p ≤m q, and there is a front {ν0, . . . , νs−1} such that {ν ∈ dom(p) :
nor0(cp,ν) ≤ m} ⊆ {ν ∈ dom(q) : (∃i < s)(ν <q νi)}, and such that for

all νi we have: either (∀ℓ)(q〈νi〉)[ℓ] ⊆ X or (∀∞ℓ)((q〈νi〉)[ℓ] ∩X = ∅) and
for all i ≤ s, ν ≥ νi, nor0(cq,ν) ≥ m, The same holds for norf .

(b) dom(q) ⊆ dom(p) and q = p ↾ dom(q),

(c) for every ν ∈ dom(q), if cq,ν 6= cp,ν, then nor1(cq,ν) ≥ nor1(cp,ν) − 1
and norf (cq,ν) ≥ norf (cp,ν) − 1.

Proof. We choose a front of p as in (a) and repeat the proof of 3.2 for each p〈νi〉.
⊣

Now for the first time we make use of the coordinate k(c) of our creatures.
The next lemma states that the creatures have the halving property (compare
to [6, 2.2.7]).

Definition 3.4. K has the halving property, iff there is a function half : K → K
with the following properties:

(1) half(c) = (i(c), η(c),pos(c), k(half(c))),

(2) norf (half(c)) ≥ nor(c)
2 ,

(3) if c′ = (i, η(c′),pos(c′), k(c)) is an i creature and

(•) if k ≥ k(half(c)) and norf (i(c′), η(c′),pos(c′), k) > 0,

then norf (i(c′), η(c′),pos(c′), k(c)) ≥ norf (c)
2 .

Note that equation (•) is a strong requirement. In our constructions we can
first take cq,η) = half(cp,η) and thus increase kp to kq but then continuing the
construction with q, we have to fulfill (•) in the next construction step c′, and
this is hard, because k there is big. It turns out that we can leave out this
halving step and just go on with p directly.

Lemma 3.5. K has the halving property.



7
7
8
 
 
r
e
v
i
s
i
o
n
:
2
0
1
1
-
0
5
-
0
5
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
1
-
0
5
-
0
8
 
 

SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 17

Proof. We set k(half(c)) = k′(nor0(c), k(c)) ≥ k(c) with a function k′(x, y) as in
1.6(4). Then we have that norf (half(c)) = f(nor0(i(c), η(c),pos(c)), k(half (c))) ≥
norf (c)

2 , by Definition 1.6(4).
If c′ is an i-creature and norf (i, η(c′),pos(c′), k(half(c)) > 0 then

norf (i(c′), η(c′),pos(c′)), k(c)) = f(nor0(i(c′), η(c′),pos(c′)), k(c))

≥ f(nor0(i(c′), η(c′),pos(c′)), k(half(c)))

+f(nor0(i(c), η(c),pos(c)), k(half(c)))

≥ 1 +
norf (c)

2
− 1 ≥ norf (c)

2
.

⊣

Definition 3.6. Let ν0, ν1 ∈ spec and let p ∈ Q. We say ν0 is isomorphic
to ν1 over T<α if there is some injective partial function f : T → T such that
x <T y iff f(x) <T f(y) and dom(ν0) ∪ T<α ⊆ dom(f) and f ↾ T<α = id and
f [dom(ν0)] = dom(ν1) and ν0(x) = ν1(f(x)) for all x ∈ dom(ν0).

Fact 3.7. For each α < ω1, there are only countably many isomorphism types
for η ∈ spec over T<α.

In the following two claims nor means nor1 or norf . Both work, since the
coordinate k(cs,̺) for s = p, q, r and various ̺ is never changed in the construc-
tions in the proofs of Claims ref3.8 and 3.9, so that (3.2) holds for all variants.
Note that norf is used in the definition of ≤n, that is Def. 2.6.

Claim 3.8. (3.8.A in the notes) Suppose that p0 ∈ Q is smooth and that m < ω
and that τ

˜
is a Q-name of a natural number. Let N ≺ H(χ) and let N∩ω1 = δ∗.

Let τ
˜
∈ N be a QT-name of an ordinal.

Let ⊞q,ℓ,̺,f abbreviate the following statement:

(i) ̺ ∈ q[ℓ], and

(ii) |dom(f)| < n2,i(cq,̺)/(2 nor0(cq,̺)),

(iii) if there is a smooth r ≥ q with rt(r) = ̺ ∪ f and nor(cr,σ) ≥ m + 1 for

every σ ∈ dom(r) and r forces a value to τ
˜
, then q〈̺〉 forces a value to

τ
˜
.

Then there is a q ∈ Q such that

(a) p0 ≤m q,

(b) q is smooth and α(q) = δ∗,

(c) If f ∈ specT and dom(f) ∩ δ∗ = ∅ then for infinitely many ℓ ∈ ω we

have ∀̺ ∈ q[ℓ] ⊞q,ℓ,̺,f .

Proof. Let 〈fi : i ∈ ω〉 list the possible types over T<δ∗ of an f ∈ specT such
that dom(f) ∩ δ∗ = ∅ such that each type appears infinitely often.

Let 〈αi : i < ω〉 be an increasing sequence of ordinals that converges to δ∗.
We choose (ℓi, pi) by induction on i with the following properties:

(1) pi ∈ Q ∩ N , τ ∈ N0 ≺ N ,
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18 HEIKE MILDENBERGER AND SAHARON SHELAH

(2) ℓi < ℓi+1, α(pi) ≥ αi, pi is smooth,

(3) p0 = p and pi ≤m+i pi+1,

(4) ∀ℓ ≥ ℓi∀̺ ∈ p
[ℓ]
i nor(cpi,̺) ≥ m + i + 8,

(5) for any η ∈ p
[ℓi]
i and ν ∈ p

[ℓi+1]
i , ν >pi

η the property (α)i,η,ν or (β)i,η,ν

holds, again this is an abbreviation for many properties of η and ν:

(α)i,η,ν There are only boundedly many γ ∈ δ∗ such that: There are
f ′
0 ∈ N and a smooth r0 ∈ N , r0 ≥ pi such that rt(r0) = ν ∪ f ′

0
and f ′

0 and fi realise the same type over T<α(pi), dom(f ′
0) ∩

γ = ∅, and r0 and forces a value to τ and for all ̺ ∈ dom(r0),
nor(cr0,̺) ≥ m + i + 1 and |f ′

0| ≤ n2,i(cpi,ν)/(2 nor(cpi,ν)). Then

we have p
〈ν〉
i+1 = p

〈ν〉
i and we let ν ′

0 = ν.

(β)i,η,ν Not (α)i,η,ν . Then

(∀ν ′
k ∈ p

[ℓi+1]
i+1 )((ν ′

k >pi+1 η ∧ prpi+1,pi
(ν ′

k) = ν) →

p
〈ν′

k
〉

i+1 forces a value to τ
˜
.

We show that there is such a sequence 〈pi : i < ω〉. Assume we are given

pi. Then we choose ℓi such that (∀̺ ∈ p
[≥ℓi]
i )(nor(cpi,̺) ≥ m + i + 8) and for

every η ∈ p
[ℓi]
i and ν >pi

η, ν ∈ p
[ℓi+1]
i , we proceed as in case (α)i,η,ν or in case

(β)i,η,ν . In case (α)i,η,ν there is nothing to do, so let us assume that η, ν fall
under case (β)i,η,ν .

We construct a preliminary part of p′i+1 that is defined by defining (p′i+1)
〈ν′

k
〉

along a front {ν ′
k : ν > η, ν ∈ p

[ℓi+1]
i , ((α)i,η,ν and k = 0 and ν ′

0 = ν) or ((β)i,η,ν

and k = 0, . . . , 2m+i+1 − 1 and ν ′
k exists)}. In the stronger condition pi+1,

the place of ν in <pi
will be taken by a large finite number of ν ′

k = ν ∪ f ′
k, k

sufficiently large, in the order <pi+1 such that prpi+1,pi
(ν ′

k) = ν for any k and

prpi+1,pi
((p′i+1)

〈ν′

k
〉) = p

〈ν〉
i ..

Explanation: Note, that we are allowed to lengthen roots ν of the p
〈ν〉
i to ν ′

k

and can still get

(3.1) p
〈η〉
i+1 ≥m p

〈η〉
i .

Of course we will only have p
〈ν′

k
〉

i+1 ≥ p
〈ν〉
i , not even with ≥0. However we get

(3.1) we must be careful: nor0(cpi+1,η) might drop (also down to 0) unless we
lengthen the ν in many ways to ν ′

k and possibly use Claim 1.8.

By the case assumption, there are f ′
k, 1 ≤ k < ω, with the following proper-

ties

(p1) f ′
k and fi have the same type over T<α(pi),

(p2) dom(f ′
k) ∩ αk+1 = ∅,

(p3) f ′
k ∈ N ,

(p4) rk ∈ N forces a value to τ
˜
, rk is smooth,
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 19

(p5) rt(rk) = ν ∪ f ′
k,

(p6) for all ̺ ∈ dom(r0), nor(cr0,̺) ≥ m + i + 1.

By a fact on uncountably many disjoint finite subsets in an Aronszajn tree,
applied in N , we can have additionally

(p7) and such that for k 6= k′ any t ∈ dom(f ′
k) and any t′ ∈ dom(f ′

k′) are
≤T-incomparable.

Then we pick for each k < ω some f ′
k and rk and let ν ′

k := ν ∪ f ′
k ∈ (p′i+1)

[ℓi+1]

and (p′i+1)
〈ν′

k
〉 = rk and prpi+1,pi

(ν ′
k) = ν. This ends (β)i,η,ν . We use only

k = 0, . . . , 2m+i+8.

Thereafter we take a smooth p
〈ν′

k
〉

i+1 ≥m (p′i+1)
〈ν′

k
〉 for k = 0 in case (α)i,β,ν or

for k = 0, . . . , 2m+i+8 in case (β)i,η,ν , such that there is α′
i+1 ∈ [αi+1, δ∗) such

that for all ν ′
k, α(p

〈ν′

k
〉

i+1 ) = α′
i+1. Gluing all the members of

{p〈ν
′

k
〉

i+1 : (k < 2m+i+8 in case (β)i,η,ν , k = 0 in case (α)i,η,ν),

ν ∈ p
[ℓi+1]
i , ν >pi

η, η ∈ p
[ℓ]
i }

together in a natural way finally gives pi+1 with α(pi+1) = α′
i+1.

Now by Claim 1.8,

(3.2) nor(cpi+1,η) ≥ nor(cpi,η) − 1 and pi+1 ≥m+i pi.

Hence there is a sequence 〈pi : i < ω〉 with the properties (1) to (5). We let q
be the fusion of the pi.

We show that q is as desired as in the claim: Let f be given. We take ℓ0

such that for ̺ ∈ q[≥ℓ0] in ⊞i,ℓ,̺,f the second condition holds. Then we assume

that from some ℓ′ ≥ ℓ0 onwards for all ℓ ≥ ℓ′, for some ̺ ∈ qℓ, ⊞q,ℓ,̺,f fails.
Then in some construction step f appears as fi and |fi| fulfils (ii) of not only
of ⊞q,ℓ,̺,f but also of ⊞q,ℓ,η,f for η being the direct <q-predecessor of ̺. Since
by the failure of ⊞q,ℓ,̺,f for f exists an r as in the premise of the claim, also
for fi there exists an r′ ∈ N , we take for r′ as in (iii) of ⊞. Also since f is
above δ∗, within N there are cofinally many γ < δ∗ such that there is a copy
fi of fi with dom(f ′

i) ∩ γ = ∅. So, in the inductive construction we continued
as (β)i,η,ρ. However, the construction ensures that from this step ℓi onwards,

for all ν ′ ∈ p
[ℓi+1]
i+1 with ν ′ >pi+1 η, p

〈ν′〉
i+1 forces a value to τ

˜
and hence also q〈ν

′〉

forces a value to τ
˜
. So ̺ is one of the ν ′, and this shows that ⊞q,ℓ̺,f did not

fail. ⊣

The property in (b) in the next claim is a version of “continuous reading of
names” that implies that Q is ωω bounding.

Claim 3.9. Suppose that p0 ∈ Q is smooth and that m < ω and that τ
˜

is a
Q-name of a natural number. Then there is a q ∈ Q such that

(a) p0 ≤m q,

(b) for some ℓ ∈ ω we have that for every η ∈ q[ℓ] the condition q〈η〉 forces
a value to τ

˜
.
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20 HEIKE MILDENBERGER AND SAHARON SHELAH

Proof. Let N ≺ H(χ) be such that QT, p, τ
˜
∈ N . We take p′0 ≥m+1 p0 in the

role of q from the previous claim applied to N , δ∗ = N ∩ ω1 and τ
˜
∈ N and p0.

Then we define for k ∈ ω,

Xτ (p
′
0, k,m) =

{

ρ : ρ ∈
⋃

n≥k

(p′0)
[n] ∧ (∃s)

(

p〈ρ〉 ≤0 s ∧ (s forces a value to τ
˜
) ∧ (∀ν ∈ T s)(nor0(cs,ν) ≥ m + 1)

)}

.

For m̃ < ω, r, s ∈ Q, η ∈ dom(r), we denote the following property:

r〈η〉 ≤0 s ∧
∀ν(η ⊆ ν ∈ dom(s) → nor0(cs,ν) ≥ m̃ + 1) ∧
(s forces a value to τ

˜
).

(∗)m̃,η
r,s

Note that p[ℓ] ⊆ X(p′0, k,m) implies ∀η ∈ (p′0)
[ℓ](∃s)(∗)m,η

p0,s.

Choose

(1) k such that ρ ∈ (p′0)
[≥k] → norf (cp0,ρ) > m + 2.

(2) q ≥m+1 p′0 is chosen as in Claim 3.3 applied to p′0, the front (p′0)
[k] and

X = dom(p′0) \ X(p′0, k,m + 1) which is downwards closed.

We claim that ∀∞ℓ∀η ∈ q[ℓ]q〈η〉 forces a value to τ . Note that p′0 has with
respect to p0 the properties from the previous claim, and also q has these
properties and for η such that (∀̺ ∈ q〈η〉)(nor(cq,η) ≥ m + 1), also q〈η〉 has the
properties of the conclusion of the previous claim.

First case: In 3.3(a) we get ∀ℓq[ℓ] ⊆ X. We show that this does not happen.

Suppose η ∈ dom(q) is such that (∀̺ ∈ dom(q〈η〉)(nor(cq,̺) ≥ m + 1). Then, by

the definition of X, q〈η〉 does not force a value to τ . However, α(p′0) = α(q) =

α(q〈η〉) = δ∗ = N ∩ ω1. We take any r ≥ q〈η〉 that forces a value to τ . Without
loss of generality we can assume that for all ̺ ∈ dom(r), nor(cr,̺) ≥ m + 1.
Then f := rt(r))\η has dom(f)∩δ∗ = ∅ by Fact 2.5 (3). We take ℓ so large that

(ii) in ∀η ∈ q[ℓ]⊞q,ℓ,η,f holds. Then since q〈η〉 has the properties of the previous

claim we get there are infinitely many ℓ such that such that (∀η ∈ q[ℓ])(⊞q,ℓ,η,f ).

So we have q[ℓ] 6⊆ X.

Second case: In Claim 3.3(a) we get (∀∞ℓ)(qℓ ∩X = ∅). By the definition of
X(p′0, k,m) = dom(p′0) \ X we are done. ⊣

Conclusion 3.10. QT is a proper ωω-bounding forcing that specialises the
Aronszajn tree T.

Checking that the coordinate k(c) was only used in the halving property
gives:

Conclusion 3.11. All the results, with the exception of the halving property,
hold for QT that is built like QT but with k(c) = 1 for all c. Then nor1 coincides
with norf for f(n, k) = lg(n

k
).

Corollary 3.12. It is consistent relative to ZFC that there are no Souslin trees
and d = ℵ1 and 2ω = ℵ2.
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SPECIALISING ARONSZAJN TREES BY COUNTABLE APPROXIMATIONS 21

Proof. The preservation theorems for properness and ωω-bounding allow us to
iterate forcings Q = QT with countable support, for various T. Starting form a
ground model with 2ℵ1 = ℵ2 we can successively specialise all Aronszajn trees
in the ground model and in all intermediate models of the iteration and we can
interweave other ωω-bounding proper iterands. By the preservation theorem
for ωω-bounding [9, Chapter 6] we thus get a model where all Aronszajn trees
are special and d = ℵ1 and 2ω = ℵ2. ⊣

Since ♣ and CH together imply ♦ (see [9, Fact 7.3]), SH and ♣ together
imply 2ω ≥ ℵ2. So our forcing is at least an attempt in the direction of showing
that ♣ together with all Aronszajn trees are special is consistent relative to
ZFC.
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