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1 Introduction

The systematic investigation of countable universal graphs with “forbidden”
subgraphs was initiated in [13], followed by [12]. If C is a finite connected
graph, then a graph G is C-free if it contains no subgraph isomorphic to
C. A countable C-free graph G is weakly universal if every countable C-free
graph is isomorphic to a subgraph of G, and strongly universal if every such
graph is isomorphic to an induced subgraph of G. Such universal graphs,
in either sense, are rare. Graph theorists tend to use the term “universal”
in the weak sense, while model theorists tend to use it in the strong sense.
We will use the term in the graph-theoretical sense here: “universal” means
“weakly universal”, though we sometimes include the adverb for emphasis.
Similarly, while model theorists may sometimes use the term “subgraph” for
“induced subgraph,” we avoid such usage here.

We deal here with the problem of determining the finite connected con-
straint graphs C for which there is a countable universal C-free graph. We
introduce a new inductive method and use it to settle the case in which C is
a tree, confirming a long-standing conjecture of Tallgren. The existence of
such a countable universal graph says something about the class of all finite
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2 Forbidden subtrees

C-free graphs, and something about C itself, and the problem ultimately is
to determine what, exactly, it does say.

This has been partially elucidated in [2]. Associated to any constraint
graph C there is a natural notion of algebraic closure: loosely speaking, a
vertex is in the algebraic closure of a given set if the number of vertices of
the same type must be finite in any C-free graph. For example, if C is a star
consisting of a vertex with a set of neighbors, so that the C-free graphs are
those with a fixed bound on the vertex degrees, the algebraic closure of a
set is simply the union of its connected components. For another example,
if we consider P -free graphs where P is a path of length 3 (thus, of order
4), then one may get a universal P -free graph by taking the disjoint union
of infinitely many triangles and infinitely many stars of infinite degree, in
which case the algebraic closure of a vertex will consist of that vertex alone
if its degree is infinite, or of the vertex and its neighbors if the vertex has
finite degree (as do all the vertices in this case, with the exception of the
centers of the stars). In general, an algebraically closed set of vertices will
contain all neighbors of any of its vertices which are of finite degree, but
may contain other vertices as well.

In general, if the algebraic closure of a set is the union of the algebraic
closures of its elements, we say that the operation is unary. This is usually
not the case: if for example C is a circuit of length 4, then the associated
algebraic closure operation is generated by a (partial) binary operation:
adjoin the unique common neighbor of any pair of points, if it exists; and
iterate. At the opposite extreme, the algebraic closure operation may be
trivial: for example, if C is a complete graph then the algebraic closure of a
set is the set itself.

Now it turns out that the following three conditions are intimately re-
lated at both a theoretical and empirical level.

1. The algebraic closure operation associated to C is (uniformly) locally
finite in the sense that the algebraic closure of a set of size n in any C-
free graph is finite (and then necessarily bounded in size by a function
of n).

2. There is a strongly universal C-free graph.

3. There is a weakly universal C-free graph.

These conditions are successively weaker, and not much different in prac-
tice. We know of no case which separates the second from the third condi-
tion, but there are trivial examples falling under the last two cases and not
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Gregory Cherlin and Saharon Shelah 3

the first: for graphs of maximal vertex degree 2 there is a universal graph
made up of infinitely many cycles of all lengths and infinitely many two-way
infinite paths. (Throughout, all cycles and paths are simple: that is, paths
are trees of maximal vertex degree at most two, possibly infinite, and cycles
are finite connected regular graphs of degree two.)

As the algebraic closure of a single vertex is its connected component,
local finiteness fails, but what happens in this case is that the algebraic
closure operation is very tightly structured. More generally, the same phe-
nomenon occurs, and the situation as a whole is very much the same, if the
constraint graph is a near-path, that is a tree which is not a path, but is
obtained by attaching one edge with one additional vertex to a path.

Our goal is to arrive at a more concrete understanding of the exceptional
constraints allowing a weakly universal C-free graph. It makes good sense to
state the problem in full generality as follows: is there an effective procedure
to decide whether a given finite constraint C allows a corresponding universal
(countable) graph?

The problem is very much open and has been attacked from two direc-
tions. Some encoding results are known which aim in the direction of a
proof of undecidability. But the bulk of the research, like our present line,
aims in the opposite direction, developing general tools to settle problems
of this type: indeed, it is plausible at this stage that it may be possible to
work out the list of exceptional constraints C allowing a universal graph in
a completely explicit way. This would be the strongest form of a positive
solution to the decision problem, though “softer” approaches are also avail-
able. While the condition of local finiteness is essentially a halting problem
for a specific computation, the computations in question tend in the vast
majority of cases to diverge.

The present paper has two goals: to present a simple inductive style
of argument which suggests that if the list of exceptional “favorable” con-
straints is in fact as simple as we are suggesting it should be, then we should
be able to prove that fact, and to buttress this claim by establishing Tall-
gren’s Tree Conjecture. While we do not have a conjectured list of favorable
constraints C in general, in the case of trees Tallgren conjectured the sim-
ple answer for this case explicitly many years ago. One might expect that
knowing the answer would be the major ingredient in finding a proof, and
as far as that goes it probably is, but nonetheless the question has remained
open, and it seems to need our inductive method in order to be reduced to
a finite number of individually treatable minimal cases.

The result is as follows.
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4 Forbidden subtrees

Theorem 1 (Tree Conjecture) If T is a finite tree, then the following
are equivalent.

1. There is a weakly universal T -free graph.

2. There is a strongly universal T -free graph.

3. T is a path or a near-path.

We remark that the algebraic closure operation associated to a path is locally
finite, as follows from the relatively explicit analysis of the models given in
[12]; this can also be seen using the analysis of the algebraic closure operation
given in [2], which gives less explicit information about the structure of
models. On the other hand, as we have indicated, near-paths fall into the
exceptional class, behaving much like the star of order four. They may
indeed exhaust the exceptional class for which on the one hand the associated
algebraic closure operation is not locally finite, while on the other hand there
is an associated universal graph.

While all of this might suggest that only the most obvious examples of
universal graphs can exist, this is not so. Komjáth showed, unexpectedly,
that the 2-bouquet formed by joining two triangles over a common vertex
provides another constraint graph B allowing a (strongly) universal B-free
graph [11]; more generally, 2-bouquets Bm,n formed by joining complete
graphs Km and Kn over a single common vertex have been thoroughly ana-
lyzed in [7]: there is a (weakly or strongly) universal Bm,n-free graph if and
only if the parameters satisfy the following conditions:

min(m,n) ≤ 5; (m,n) 6= (5, 5)

This is visibly a delicate condition, and requires a close combinatorial anal-
ysis to achieve. Examples of this type continue to hold open the possibility
that the final list may be more delicate than anything we have seen to date.

There has been prior work on the case of tree constraints. First, taking
a path or a near-path as forbidden subgraph does allow a universal graph
[12, 7].

In the other direction, the nonexistence of universal graphs has been
treated in the following cases: (1) arrows, which are trees consisting of a
path with two more edges adjoined to either endpoint, a case treated in [10];
(2) trees with a unique vertex of maximal degree d ≥ 4, which is moreover
adjacent to a leaf, treated in [9]; and (3) “bushy” trees, that is trees with
no vertex of degree 2, treated in [3]. Of these, the case treated in [9] now
seems the most suggestive. Indeed, we will show that by combining the case



8
5
0
 
 
r
e
v
i
s
i
o
n
:
2
0
0
6
-
0
5
-
2
4
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
6
-
0
5
-
2
8
 
 

Gregory Cherlin and Saharon Shelah 5

treated in [9] with a simple inductive idea, we deduce that for trees C having
a unique vertex of maximal degree d ≥ 4, there is no strongly universal C-
free graph. The argument is prototypical for the general problem.

What we do here is motivated to a degree by a false conjecture in [2],
the Monotonicity Conjecture: if a constraint C allows a universal graph (in
either sense) then for any induced subgraph C0 of C, the tighter constraint
C0 also allows a universal graph. It turns out that the close analysis of 2-
bouquets B(m,n) refutes this, as the graph B(5, 5) is an induced subgraph
of B(5, 6) and the latter allows a strongly universal graph while the former
does not allow a weakly universal graph. But there is enough truth to
the conjecture to make it useful: if one passes to an induced subgraph by
the operation of pruning introduced here (removing certain 2-blocks), the
monotonicity principle is valid. So after explaining this, in taking up the Tree
Conjecture we will deal with critical trees, which by definition are the trees
which are not paths or near-paths, but become paths or near-paths when
pruned—which, incidentally, is nothing but the removal of leaves in this
case. The reader can see for himself that the structure of these trees is very
simple. What we need to prove is that (a) the algebraic closure operation is
not locally finite in these cases; (b) this leads to the nonexistence of strongly
or weakly universal T -free graphs in all cases. Now (a) is easier than (b) and
is a prerequisite for the latter, and the constructions used to accomplish (a)
serve as templates for the more delicate constructions used to accomplish
(b). In fact there are three layers of constructions. We found it fairly easy to
decorate the constructions used in case (a) to refute the existence of strongly
universal T -free graphs for T a critical tree T , and rather troublesome to
convert the latter into refutations in the weakly universal case, which is
the problem which was originally posed. Naturally we suppress all of these
intermediate steps except in some illustrative cases. The result is that one
will see various “bells and whistles” in the constructions, and arguments
that to a certain extent the graphs that interest us are maximal in the sense
that an embedding into a larger T -free graph does not create new edges.
This is not literally the case: it would be more accurate to say that certain
critical vertices acquire no new vertices, and even this overstates the matter.

We make one further remark about these constructions. With the ex-
ception of the first cases treated (called monarchy and stardom), these con-
structions do not leap to mind; perhaps with better insight they should, and
in any case as they are all variations on one theme this theme can be added
to the toolbox for future reuse. But at one point we doubted the truth of
the Tree Conjecture, and computed the algebraic closure operator for the
case of a specific tree on 14 vertices, the “most likely” counterexample to
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6 Forbidden subtrees

the conjecture. This turned out to be so tightly constrained that it only
allowed one type of construction, which is the one used here throughout.
Similarly, in working with bouquets, it is doubtful that one would find the
construction used to refute the existence of a universal B(5, 5)-graph on an
ad hoc basis, but again one computes the behavior of the algebraic closure
operator (expecting local finiteness, in fact) and the relevant construction
simply appears. In the case of bouquets, where there are many cases of
local finiteness, one can actually see these computations in [7], where they
are necessary for the main results. Here they can and should be suppressed,
as what interests us are the necessary constructions. But as the paper rep-
resents unfinished business, indeed merely the initial step of what could be
a very long process, these methodological points should be noted.

Furthermore, we have drastically oversimplified our discussion in one cru-
cial respect. All of these problems make equally good sense—more sense,
in fact—when the constraint C is replaced by a finite set C of finite, con-
nected, constraint graphs. Some things become clearer in the process: the
case of complete constraint graphs generalizes to the case of sets C closed
under homomorphism, where the common feature is that the algebraic clo-
sure operation is trivial: acl(A) = A for all A. Furthermore examples of
mixed type occur: one may take any constraint C for which the algebraic
closure operator is locally finite, combine it with any further finite set of
constraints closed under homomorphism, without altering the algebraic clo-
sure operator. These phenomena remain invisible when one considers only
single constraints, and a number of the more general examples are exceed-
ingly natural (universal graphs omitting all cycles of odd order up to some
fixed bound; or universal graphs omitting a path and any further set of
constraints).

In this context, the pruning operation makes equally good sense, and the
corresponding monotonicity principle is valid. The decision problem makes
more sense in that context, and is equally open. But it is only at this level of
generality that encoding arguments make sense, so that one can envision a
“soft” proof of undecidability. At the same time, the possibility of a complete
“list” of favorable constraint sets is viable. All known examples consist
of a combination of some very special constraints with a set closed under
homomorphism. Whether this merely reflects our inexperience remains to
be seen. In any case, one can define a notion of “critical set” in general:
practically speaking, this would be a set which after pruning produces a
known example allowing a universal graph. In general, by determining the
critical sets which allow universal graphs, and are not in the database of
known examples, and iterating, one could arrive at the correct answer in
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Gregory Cherlin and Saharon Shelah 7

general, together with a proof of it. It will be clear from our treatment here
of an initial special case arising in the case of a single constraint that this is a
large task. But the work of [8], for example, is encouraging. It follows from
the arguments given there that a finite set C of 2-connected graphs allows a
universal C-free graph if and only if the set is closed under homomorphism.
Since any graph is built up in a reasonable way from trees and 2-connected
graphs, we are off to a decent start.

It would also be interesting to pass on quickly to the case of a finite set
of trees. This may be entirely reasonable.

. . . . . .

The paper is organized as follows.

In §2, we discuss the structural analysis of a general finite connected
graph C as a “tree of blocks” (or 2-connected components), a standard topic
of graph theory which has a great deal to do with the practical analysis
of universality problems, and we introduce the new idea which allows an
inductive analysis of universality problems according to the complexity of
the underlying tree. Quite generally, universality problems can be reduced
by this method to canonical “minimal” cases, which we call “critical.” Here
the constraint C can be any finite connected graph, or in fact any finite set
of finite connected graphs. For our applications here, we will take C to be
a tree in later sections.

In §3 we show that that the Tree Conjecture holds for trees with a unique
vertex of maximal degree. The method of §2 reduces this to the case treated
in [9], and this provides a nice illustration of the force of the reduction, as
well as disposing of a case that is best treated in isolation. This serves as a
template for more elaborate constructions.

In the following sections we prove the Tree Conjecture by making a very
coarse division of the critical cases into subcases according to the maximal
vertex degree and the structure of the “external” vertices of maximal degree
(those nearest the leaves).

We make little mention of algebraic closure in the remainder of the paper,
apart from an occasional observation. While the ability to compute this op-
eration is important when investigating a new example, it would contribute
little or nothing to the exposition. But the notion will nonetheless be quite
visible in all of our constructions, in the form of infinite paths of very tightly
linked elements. If we were only interested in the issue of local finiteness
we could shorten both our constructions and our analysis considerably, and
also reduce the number of distinct cases considered.
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8 Forbidden subtrees

Note that all graphs dealt with here are finite or countable. We may
mention their countability for emphasis, on occasion.

There are many other universality problems involving infinite forbid-
den subgraphs, infinite sets of finite forbidden subgraphs, and uncountable
graphs, but none of our methods apply in such cases, except possibly to the
case of infinite sets of finite forbidden subgraphs, (which includes such nat-
ural cases as graphs without circuits) where at the least new and mysterious
phenomena arise, and the decidability problem is ill-posed.

2 Pruning trees, and other graphs

Our main objective in this section is to give a general inductive method
for treating universality problems involving a finite set of finite connected
constraints. It is based on the decomposition of a graph into blocks, or 2-
connected components, and the underlying tree structure that results. First,
we recall the definitions, which are standard.

Let C be a graph, which more often than not will be taken to be con-
nected and nontrivial. We will assume in any case that C contains no isolated
vertices: every vertex lies on an edge. Define an equivalence relation on the
edge set E(C) as follows. First, for e, f ∈ E(C) write e ∼ f if e and f are
either equal or lie on a (simple) cycle in C. Then extend this relation to
an equivalence relation ≈, the transitive closure of ∼. A block of C is the
graph induced on the set of vertices lying on the edges in a single equivalence
class in E(C); this can consist of two vertices lying on a single edge. Blocks
are 2-connected, that is they remain connected after deletion of any vertex.
Now a pair of blocks intersects in at most one vertex, and we associate to
the graph C its reduction C̃ whose vertices are the blocks of C, as well as
the “cut” vertices common to more than one block, with edges (v,B) and
(B, v), where v is a cut vertex belonging to the block B. The underlying
structure of C̃ is a forest, and as we will be taking C to be connected, the
reduction C̃ is even a tree. We call this the underlying tree of C. We believe
this analysis is highly relevant to our problem of universality. In fact, we
believe the following.

Conjecture 1 (Solidity Conjecture) If there is a C-free universal graph
(in either the weak or strong sense), then the blocks of C are complete.

We call such a graph solid. One could conjecture in general that the
algebraic closure operation should be unary. For the case of one constraint
this becomes the solidity conjecture, but for the case of multiple constraints
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Gregory Cherlin and Saharon Shelah 9

we do not know its precise content in graph theoretic terms. For example if
C is the class of all trees of order n + 1 then the algebraic closure operation
is unary, and locally finite, since each connected component of the graph
has order at most n.

Conjecture 2 (Reduction Conjecture) If there is a C-free universal graph
(in either of the two senses), then there is a C̃-free universal graph, where
C̃ is the underlying tree of C.

This is an instance of the ill-fated Monotonicity Conjecture discussed in
the introduction, which will be partially rehabilitated in the present section.
But it lacks any theoretical support, and is merely plausible (and testable,
fortunately).

Combining this with the Tree Conjecture, one gets a fairly precise sense
of what is expected, namely that beyond Komjáth’s 2-bouquet, similar bou-
quets, and some further substantial generalizations of that example, the class
of exceptional constraints allowing universal graphs (weakly or strongly)
should run out fairly soon. In the background there is also the expectation,
as noted earlier, that a constraint allowing a weakly universal graph also
allows a strongly universal one, though again not for any theoretical reason.

We move on from idle conjecture to something more rigorous.

Definition 2.1 Let C be a connected graph consisting of more than one
block.

1. A pair (B, u), where B is a block and u ∈ V (B), is called a pointed
block.

2. A pointed block (B, u) is an attached leaf of the graph C if there is a
block B′ of C which represents a leaf in the underlying tree of C, and
a vertex u′ ∈ B′ belonging to another block of C, such that the pointed
block (B′, u′) is isomorphic to (B, u).

3. A minimal attached leaf of C is an attached leaf (B, u) such that there
is no embedding of any other attached leaf (B1, u1) into (B, u) as a
proper subgraph (that is, such an embedding must be an isomorphism).

Observe that in the above, any block B of C which represents a leaf of
C̃ in fact meets exactly one other block of C and hence has a unique vertex
of attachment. Furthermore, any such pointed block containing a minimal
number of edges will be a minimal attached leaf, and similarly there are
minimal attached leaves among those with a minimal number of vertices.
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10 Forbidden subtrees

What we wish to consider are the operations of pruning or attaching
leaves of a particular minimal type, which we give in a slightly more general
form.

Definition 2.2 Let C be a finite connected graph, C a finite set of finite
connected graphs, G an arbitrary (in practice, countable) graph, and (B, u)
a pointed block.

1. C− is the graph obtained from C by pruning (B, u): this means, for
every attached leaf (B ′, u′) which can be embedded isomorphically into
(B, u), we delete V (B ′) \ {u′}, and take the induced graph on the re-
maining vertices. Note that vertices lying in more than one block re-
main.

2. G◦ is the graph induced by G on the set of those vertices v of G such
that G contains infinitely many copies of (B, u), disjoint over u, with
u identified with v.

3. G+ is the graph obtained from G by freely attaching infinitely many
disjoint copies of (B, u) to each vertex v of G, with u identified with
v.

4. For sets C of constraints, C− is the set of pruned graphs C− for C ∈ C.

If greater precision is needed, we may write C−(B, u), C−(B, u), G◦(B, u),
and G+(B, u) instead.

Now we come to the point.

Proposition 2.3 Let C be a finite set of finite connected graphs and suppose
there is a C-free graph which is universal, either in the weak or strong sense.
Let (B, u) be an attached leaf of some graph C in C, and C− = C−(B, u)
the result of pruning. Then there is a universal C−-free graph (in the same
sense). In fact, if G is a universal C-free graph, then G◦ = G◦(B, u) is a
universal C−-free graph.

Proof. We have C, (B, u), G, and C−, G◦ as described, and we observe
first that G◦ is C−-free. As we have accumulated a number of definitions at
this point, we will walk through this point.

Suppose toward a contradiction that G◦ contains a graph C− as a sub-
graph, where C ∈ C. In G, every vertex v of C− lies on infinitely many
disjoint copies of (B, u) with v identified with u. Therefore we can extend
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Gregory Cherlin and Saharon Shelah 11

the given embedding of C− into G◦ to an embedding of C into G by map-
ping each pruned block (B ′, u′) of C into G over u′, with the extended map
still 1-1, as it is only necessary to avoid finitely many vertices at each stage.
Thus we find that C embeds into G, and we have the desired contradiction.

Now let Γ be C−-free and consider Γ+ = Γ+(B, u). Then we claim

(1) Γ+ is C-free

Indeed, in any embedding of some C ∈ C into Γ+ as a subgraph, C will
map into a single connected component, and each block of C will map into
a block of that component. The blocks of C− which do not correspond to
leaves of the associated tree C̃ go into Γ; and the blocks of C− which do
correspond to leaves of C̃ also go into Γ, as none of them embeds into (B, u)
over the attaching vertex. So an embedding of C into Γ+ would induce an
embedding of C− into Γ, and (1) follows.

Now Γ+ must embed in G, by (1), either as a subgraph or as an induced
graph, as the case may be. Under such an embedding, Γ ⊆ [Γ+]◦ will embed
into G◦, either as a subgraph or as an induced graph, correspondingly. Our
claim follows. ¤

In view of the importance of this result for our analysis, we make the
following definition in the case of a single constraint.

Definition 2.4 A finite connected graph C is critical if the underlying tree
C̃ is neither a path nor a near-path, but for any type of attached leaf of
C, the tree C̃− associated with the corresponding pruned graph is a path or
near-path.

Corollary 2.5 Suppose that C is a finite connected graph whose underlying
tree C̃ is neither a path nor a near-path, and that there is a weakly or strongly
universal C-free graph. Then there is an induced subgraph C ′ of C, which
is critical, for which, correspondingly, a weakly or strongly universal C ′-free
graph exists.

For the proof, one prunes C repeatedly until it becomes critical.

We have conjectured that there are no graphs with the properties of the
Corollary; and we see that it suffices to consider critical ones. We prove the
Tree Conjecture in this framework by considering critical trees. In this case
attached leaves are essentially just leaves, or rather edges connecting a leaf
to its point of attachment, and pruning amounts to the removal of the leaves
(or to put it another way, shortening all the external branches).
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12 Forbidden subtrees

3 Monarchy and Stardom

In the present section we will prove the following.

Theorem 2 Let T be a tree with a unique vertex of maximal degree. Then
the following are equivalent.

1. There is a strongly universal T -free graph.

2. There is a weakly universal T -free graph.

3. The tree T is a path or near-path.

A further equivalence would be: algebraic closures of points are either
finite, or are two-way infinite paths without additional edges. But as we
have remarked, there is no need to bring in the notion of algebraic closure
explicitly in such cases.

The implication (3 ⇒ 1) requires argument, and is treated in [7]. This
has a completely different character from anything we do here, lying on the
positive side; all of our work here fills in the gap on the negative side. We
need to show (¬3 ⇒ ¬1).

We distinguish two cases. Let d be the maximal vertex degree in the
tree T . Then either d ≥ 4 or d = 3. One might expect this distinction to
be significant, since the case d = 3 includes the case of a near-tree, which
at some point has to be singled out as an exception, but there are other
reasons for the case distinction as well.

In the present section, what will be important is the behavior of a regular
tree with vertex degree d − 1, and more precisely of its approximations,
namely regular graphs of vertex degree d − 1 and large girth. There is
certainly a distinction to be observed here between the case d = 3 and
d ≥ 4. Later on, the issue will be somewhat different. We will need to
construct infinite graphs from finite pieces while controlling the vertices of
degree d, and it is difficult to avoid introducing new vertices of degree 3.

While this case distinction is not always essential, it tends to play a role,
and the case d = 3 is the more complicated of the two. On the other hand,
as we work with critical trees there is some compensation in the form of
improved control of the structure of the tree in this case.

3.1 Monarchs

We begin with the generic case, d ≥ 4, and while dealing with this case we
will encounter all the issues that arise in any of the cases, as well as most of
the strategies for dealing with them.
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Gregory Cherlin and Saharon Shelah 13

Proposition 3.1 Let T be a tree with a unique vertex of maximal degree d,
with d ≥ 4. Then there is no weakly universal T -free graph.

Proof. Suppose toward a contradiction that T is a counterexample of
minimal order. Then there is a weakly universal T -free graph, and hence for
the graph T ′ derived from T by pruning (removal of its leaves) there is also
a universal T ′-free graph (§2). Now if T ′ also has a vertex of degree d, then
this violates the choice of T as a minimal counterexample. So the vertex v
of degree d in T must have at least one leaf as a neighbor in T .

Now this turns out to be precisely the situation considered in [9]: a tree
with a unique vertex v of maximal degree d, which is adjacent to a leaf v ′,
and with d ≥ 4. ¤

Let us expand on this, as the same type of construction and analysis
is needed in general with a host of minor complications. The following
construction applies in the critical case of [9].

Let Γ be a regular tree of degree d−1, or more generally a regular graph
of degree d − 1 which is tree-like in the sense that the girth is large (larger
than 2n with n = |T |).

As Γ is regular of degree d − 1 it is T -free (this part of the argument
blows up considerably as soon as we leave the domain of monarchy), and we
may vary the construction of Γ, and in particular the cycle lengths occurring
in Γ, to give 2ℵ0 graphs of this type. Here (and only here) we exploit the
hypothesis d − 1 > 2.

The key property is the following.

If Γ is a subgraph of a T -free graph G, then Γ is a connected
component of G, and is an induced subgraph.

(*)

We will check this. Another way to phrase this claim is that the vertices
of Γ can acquire no new neighbors. If our aim is to refute only strong
universality, then most of this argument drops out of the picture, along
with any preparations which may have been made for it. There are no such
preparations in the present case, but usually there will be.

It is immediate that Γ is a connected component of G, because as soon as
one adjoins a new neighbor u′ to a vertex u in Γ, which is not already a vertex
of Γ, one gets an embedding of T into the extended graph by identifying v
with u, a leaf adjacent to v with u′, and the rest of T with a suitable part
of Γ, which locally (near u) looks like a regular tree of degree d − 1.

Similarly, there can be no new edge between vertices v, w whose distance
in Γ is greater than n = |T |. Local connections require more attention; this
is also a characteristic feature of the more complicated constructions later.
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14 Forbidden subtrees

If we adjoin a new edge (v, w) between two nonadjacent vertices of Γ
which lie at distance at most n, then we may embed T into the resulting
graph as follows. Let P be the path linking v to w in Γ, and let v ′′ be
the neighbor of v on P . Then v′′ may play the role of v′, and the part of
Γ remaining after deleting the component of Γ \ {v, w} containing v ′′, and
with the edge (v, w) adjoined, again will be regular of degree d−1, and girth
greater than n, so the remainder of T can be embedded over v, v ′′.

Now it is impossible that all of these graphs Γ could occur inside a single
countable graph among its connected components, so no countable weakly
universal C-free graph exists in this case.

For such constructions we require T -free graphs to which the adjunction
of a single edge will in many cases produce an embedding of T , without
having a detailed knowledge of the structure of T . In general the main
mechanism for keeping the necessary control involves paying attention to
the distribution of vertices of degree d in Γ (as there are none in this case,
the distribution is particularly transparent), and building up the minimal
vertex degrees to d − 1. On the other hand the idea of making the graph
closely resemble a tree will have to be severely curtailed in general, and
instead by considering critical trees we will find we need much less control
of Γ to ensure the necessary embeddings become available. Fortunately we
do not need to prevent the addition of arbitrary edges: it will be sufficient
if we can recover some invariants of Γ once we know the restriction of the
embedding of Γ to a suitable finite set. When Γ is a connected component
of the ambient graph, we can recover Γ itself from the image of any vertex,
but we need much less than that.

3.2 Stardom

The method of the previous section clearly will not work with d = 3. So we
now deal separately with this case, reducing to the critical case and making
use of a construction that looks closely at the structure of the constraint tree.
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Gregory Cherlin and Saharon Shelah 15

This is very reasonable, since we still need to distinguish the exceptional
cases.

We will refer to vertices of degree at least 3 in a tree as branch vertices.

Definition 3.2

1. A star is a tree with a unique branch vertex, called its center.

2. For n ≥ 1 and d1 ≥ . . . ≥ dn ≥ 1, the tree S(d1, . . . , dn) is the star
formed by attaching paths of length d1, . . . , dn to a central vertex.

We will always take n ≥ 3 here, to get a proper star. In this case the star
has a well-defined center and the maximal vertex degree is n. Near-paths
are stars S(d1, d2, 1). Stars with n ≥ 4 have been dealt with in the preceding
subsection.

Proposition 3.3 If S = S(d1, . . . , dn) is a star and is not a near-path, then
there is no weakly universal countable S-free graph.

Proof. Since the case n ≥ 4 is covered by the previous Proposition, we
will take n = 3, and we will also take S critical in the sense of §2, which
means that we take

d3 = 2,

so that pruning produces a near-path with the same center.
Let H0 and H1 be the following graphs. First, fix two vertices u0, u1.

To form H0, adjoin two common neighbors v0, v1 to u0 and u1, with v0 and
v1 adjacent; this is K4 with one edge deleted. To form H1, adjoin infinitely
many common neighbors vi to u0 and u1, and add an edge (u0, u1), with no
further adjacencies.

Now for ε ∈ 2Z a bit string, form a graph Γε as follows. Begin with an
infinite independent set A of vertices ai (i ∈ Z). For each i, attach to the
pair ai, ai+1 a copy of Hε(i) with ai and ai+1 corresponding to u0 and u1.
Then Γε is S(2, 2, 2)-free and in particular S-free.

Now we have to think about “decoding” Γε when it is embedded in a
larger S-free graph as a subgraph. As usual this involves getting some control
over at least some of the additional edges adjoined in such an extension.
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16 Forbidden subtrees

Define a relation R(u, v) on the vertices of any graph G by the following
condition: u, v lie in a copy of H0 or H1, with u and v playing the roles
of u0 and u1 respectively. By construction successive pairs (ai, ai+1) satisfy
this relation in any graph G into which Γ embeds. We must show that this
relation is not much affected by embedding into a larger S-free graph. Our
claim is as follows.

If Γε ⊆ G and G is S-free, then for each vertex ai ∈ V (Γε),
and each v ∈ V (G), if R(ai, v) holds then v = ai±1.

(1)

Let P be a path in Γε containing all ai, with dP (ai, ai+1) = 2 for all i.

Now either ai and v have infinitely many common neighbors, or ai and
v play the roles of u0 and u1 in H0 (or both).

If v has infinitely many neighbors, then v must lie on the path P , as
otherwise we may embed S into the extension of Γ by one of the new edges
attached to v. But there is some freedom in the choice of the path P , and if
v cannot be pushed off it by altering the path, then v must in fact be some
aj . Now it is easy to see that if |j − i| > 1 then there is an embedding of S
into G, a contradiction.

So v has finite degree in G and thus ai and v must play the role of u0

and u1 in H0. So they have common neighbors w,w′ which are adjacent.

If w ∈ A, that is w = aj for some j, then ai and aj are adjacent in G,
and easily j = i±1. It follows easily that w and w′ are not both in A. So we
may assume that w is not in A, and choose P so that w is not on P . Then
v must be on P . If v = aj for some j, then again by inspection j = i ± 1 as
claimed. So we may suppose that v is not in A, but lies on P , and that P
cannot be chosen to avoid both v and w. This means that v and w are the
common neighbors of some pair (aj , aj+1), and are the only such common
neighbors, as otherwise the path P could still be moved. But w ′ is adjacent
to v and w, hence by considering aj , aj+1 we see that w′ is also forced onto
P , and hence must be ak for some k. However, looked at from the point of
view of ak, this is also impossible: ak becomes the center of a copy of S.

So (1) holds. We can now deduce the nonexistence of a weakly universal
S-free graph. Suppose toward a contradiction that G is a weakly universal
S-free graph, and, of course, countable. For each ε choose an embedding
fε of Γε into G. Choose a pair ε, ε′ for which these embeddings agree on
the successive vertices a0, a1 in A. It follows from (1) that the restriction of
fε to A coincides with the restriction of fε′ to A. But for some i, we have
ε(i) 6= ε′(i), and thus the vertices v0, v1 in G which correspond to ai, ai+1
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Gregory Cherlin and Saharon Shelah 17

in both Γε and in Γε′ must occur on copies of both H0 and H1 in G. This
immediately provides an embedding of S into G, and a contradiction. ¤

The final argument is typical and will occur in some form in all cases. As
long as the essential invariant ε of Γ can be recovered from the embedding
(after fixing some points to get rid of shifts and reflections along A), we
can argue in this fashion. On the other hand, if we are dealing with strong
universality, there would be little to check at this point. Still, even when
dealing with induced subgraphs one has to check for example that the rela-
tion R(ai, v) is not satisfied by new elements of G, and indeed without this
one would not even know that the algebraic closure operation is nontrivial.
So in this decoding phase, the issues are similar regardless whether we deal
with local finiteness, strong universality, or weak universality, though the
degree of control needed to effect the decoding varies considerably.

4 Toward the Tree Conjecture

Our goal now is the following.

Theorem 3 If T is a finite tree with maximal vertex degree d ≥ 3, and if
T has more than one vertex of degree d, then there is no weakly universal
T -free graph.

In view of the result of the previous section, it suffices to prove this
theorem in the critical case. So we record it in this form.

Theorem 3′ If T is a critical finite tree with maximal vertex degree d ≥ 3,
and if T has more than one vertex of degree d, then there is no weakly
universal T -free graph.

Recall that in the critical case the pruned tree T ′ is either a path or a
near-path.

4.1 A special case

We first prove a considerably weaker result in which the basic construction
can be seen most simply, and without invoking the criticality hypothesis.

Proposition 4.1 Let T be a tree with maximal vertex degree d ≥ 5, and
suppose that every vertex of degree d is adjacent to a leaf of T . Then there
is no strongly universal T -free graph.
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18 Forbidden subtrees

We describe the construction of an uncountable family of countable T -
free graphs, and show that they cannot all be simultaneously embedded into
a T -free countable graph. There are three phases to this argument: (a) Con-
struction; (b) T -freeness; (c) Decoding (i.e., analysis of the image of such a
graph under embedding into a larger T -free graph). The assumption that
d ≥ 5 simplifies the construction, and the fact that we deal with strong uni-
versality simplifies the decoding process by limiting the class of embeddings
considered. The arguments for T -freeness amount to saying that the metric
structure induced by T on its vertices of degree d does not embed into the
metric structure induced by our graphs on their vertices of degree d or more,
and is typical of the analysis in general.

The extra hypothesis on the vertices of degree d is much stronger than
what we actually require below, and much weaker than what one has if one
restricts attention to critical trees. Some form of this condition is helpful in
stage (c).

Definition 4.2

1. V1(T ) is the set of vertices of degree d in T , construed as a metric space
with the induced metric. From this one can recover the tree structure
induced on the convex hull of this set in T .

2. If v ∈ T , then a v-component of T is a connected component of the
graph resulting from deletion of v in T .

3. A vertex v in V1(T ) is an external vertex of maximal degree if it is
a leaf in the convex hull of V1(T ) in T . Equivalently, at most one
v-component of T contains vertices of degree d.

For the proof of the Proposition we may assume that there are at least
two vertices in T of maximal degree, as otherwise we apply Theorem 2. All
we really require for the proof of this proposition is a single external vertex
of degree d adjacent to a leaf.

Construction 1 Let v1 be an external vertex of T of maximal degree and
let C be the v1-component of T containing all other vertices of T of maximal
degree. Let H be the graph induced by T on C ∪ {v1}.

Let P be a (d−2)-regular 2-connected graph of very large girth. For each
vertex u ∈ P , attach a copy Hu of H to u with u corresponding to v1. Call
the resulting graph ΓP

0 . For any vertex u of degree less than d − 1 in ΓP
0 ,

raise its degree to d − 1 by adjoining suitable trees (regular of degree d − 1
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Gregory Cherlin and Saharon Shelah 19

except at the root, where the degree is d − 1 − deg(u)). Call the resulting
graph ΓP .

Lemma 4.3 The graph ΓP is T -free.

Proof. Let V1(Γ
P ) denote the set of vertices of ΓP of degree at least d

construed as a metric space with the induced metric. These vertices in fact
have degree exactly d and lie in the subgraphs Hu, with V1(Hu) isometric to
V1(T )\{v1}. It will suffice to show that there is no embedding of V1(T ) into
V1(Γ

P ) as metric spaces which is semicontractive in the sense that distances
do not increase. Note that this metric structure is the same in ΓP

0 and in
ΓP , so for the rest of this argument one may as well think in terms of ΓP

0 .

Call a subspace A of V1(T ) isolated if it satisfies the following condition:

For every subspace A0 of V1(T ) isometric with A and ev-
ery embedding f of V1(T ) into V1(Γ

P ), the image f(A0) is
contained in some single V1(Hu).

Iso

A better term might be “indecomposable” but we wish to emphasize here
that the subgraph P is avoided, something which will be less clear in sub-
sequent constructions.

Now if there are no such embeddings f then V1(T ) itself is isolated, but if
there are any such embeddings then V1(T ) is not isolated. So let us assume
there are such embeddings and let A be an isolated subspace of V1(T ) of
maximal order. By our assumption A 6= V1(T ), and as points are isolated,
A is nonempty.

Choose a pair (B, v) with B a subspace of V1(T ) isometric with A, and
with v ∈ V1(T ) \ B, and furthermore with

δ = d(f(v), f(B))

minimized over all such pairs, and all semicontractive embeddings f of V1(T )
into V1(Γ

P ). By the maximality of A, B ′ = B ∪ {v} is not isolated, and
thus there is an embedding f : V1(T ) → V1(Γ

P ) such that the image f(B ′)
meets at least two distinct sets of the form V1(Hu) with u ∈ P . But f(B)
is contained in one such set V1(Hu), and thus f(v) is contained in another.
Now let B̃ be the subspace of V1(T ) corresponding to f(B) under the identi-
fication of H with Hu, and observe that B̃ is isometric with A, that v1 /∈ B̃,
and that d(f(v1), f(B̃)) ≤ d(v1, B̃) = d(u, f(B)) < d(f(v), f(B)), the latter
point in view of the structure of the metric on ΓP . So d(f(v1), f(B̃)) < δ,
contradicting our choice of δ as minimal. ¤
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20 Forbidden subtrees

In later arguments we will use some of this metric terminology while
formulating the main argument directly in terms of graph embeddings. We
simply wished to emphasize here that the obstruction really is captured by
the metric structure on the vertices of high degree. But the argument in
general will depend a little more on the graph structure, particularly near
vertices of P .

The second question to take up is a kind of rigidity (or decoding) for ΓP

when considered as an induced subgraph of a general T -free graph.

Lemma 4.4 Let G be a T -free graph containing ΓP as an induced subgraph.
Then for any vertex u ∈ P , the neighbors of u in G are its neighbors in ΓP .

Proof. Here we recall the assumption that the girth of P is large, and thus
the local structure of P near the vertex u is exactly that of a (d− 2)-regular
tree. We also use the assumption that v1 has a neighbor which is a leaf.

What we need to show is the following: the graph ΓP
u,v obtained by

adjoining one new neighbor v to u contains a copy of the tree T . One begins
the construction of a suitable embedding by taking the map identifying H
and Hu, in which v1 corresponds to u. Now some leaf v′

1 adjacent to v1 may
correspond to v. It remains to embed the remaining d − 2 v1-components
of T into ΓP , making use of P and some of the trees attached at the end of
the construction.

Now each of the remaining (d − 2) v1-components of ΓP contains a tree
closely resembling a (d − 1)-regular tree (except for its root, adjacent to v1,
whose degree in the component is one less); any cycles will be the cycles of
large girth allowed in P . So it is easy to see that there is no obstruction to
the completion of our embedding. ¤

Our two lemmas prove the proposition. This is a general principle; let
us check it in this case.
Proof of Proposition 4.1. Suppose toward a contradiction that G is a
countable strongly universal T -free graph. Consider embeddings fP : ΓP →
G. We have uncountably many isomorphism types of P available, as we
may control the cycle lengths that appear. So there must be at least two
nonisomorphic graphs P,Q whose images fP (P ) and fQ(Q) meet in a vertex
u.

Now consider the subgraph G0 of G induced on the vertices of degree ex-
actly d−1 in G. This contains f(P ) and f(Q), by our lemma. In particular
the connected component of u in G0 contains f(P ) and f(Q). Now observe
that the connected component Gu of u in G0 is contained in f(ΓP ). Oth-
erwise, we would have an edge v, v′ ∈ G, with v in f(ΓP ) and v′ /∈ f(ΓP ),
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Gregory Cherlin and Saharon Shelah 21

and with v of degree (d − 1) in G. But v is already of degree at least d − 1
in ΓP and thus v′ ∈ f(ΓP ), a contradiction.

So Gu is contained in both f(ΓP ) and f(ΓQ). Now the only nontrivial
block in f(ΓP ) is f(P ) and similarly for Q, so f(P ) = f(Q) and as these
are induced subgraphs of G, the graphs P and Q must be isomorphic, a
contradiction.

To put the matter briefly, our second lemma proves that P is recoverable
from finite data, and any countable graph contains only countably many
candidates for such data, so if we have uncountably many candidates for
P then can be no universal graph (strongly or weakly, depending on the
strength of the recoverability lemma).

We can see that this argument is going to require significant adaptation
as we remove the simplifying hypotheses. For d = 4 the graph P becomes a
path (this is why we call it P , actually) and for d = 3 we will again use a
path P , but we will have to look considerably farther into the structure of T
to find a suitable way to extend P without creating a copy of T . The most
extreme case was treated earlier: the case of stars. There the construction
looks very little like the one just given, though the path P is still visible.

In the decoding phase most of the weight was borne above by the fact
that we dealt only with strong universality. So in most cases we will have to
modify the construction to “block” the adjunction of at least some potential
new edges to our graphs Γ.

The method used in the proof of this proposition lies at the core of most
of our subsequent constructions and proofs.

Criticality will be important to ensure an adequate supply of leaves, and
it also simplifies the embedding argument made in the decoding phase. In
the critical case the embedding argument in the proof of our decoding lemma
would work in ΓP

0 as well as in ΓP , but on the other hand the full decoding
argument was only given in the proof of the proposition and this argument
actually needs ΓP rather than ΓP

0 , so the saving is not very great here.

In some delicate cases criticality may also help in checking that our
graphs Γ are T -free. Most of our constructions place additional vertices of
degree d on the graph corresponding to P here, so the analysis must become
more precise.

4.2 Amalgamation and the parameter `

Before entering into a detailed consideration of how the foregoing construc-
tion may be adapted to deal with the question of weak universality, we may
consider some general points that are relevant to the decoding process and
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22 Forbidden subtrees

give some indication of what additional structural features of the constraint
tree T are relevant in general. This leads to a certain proliferation of cases,
handled by a unified method but with considerable variation from case to
case.

One such parameter, and an important one, is the maximal degree d.
The case d = 4 turns out not to be much more troublesome, in comparison
with d ≥ 5. While P is just a 2-way infinite path in this case it turns
out that there are some variations available in the “attachment” procedure
that passes from P to ΓP and we can again arrive at uncountably many
variations on each theme. Ultimately the same will apply when d = 3 but
not so simply.

But there is a second parameter which comes into play in the decoding
phase. When our graph Γ embeds into a larger T -free graph G it may
acquire new edges between its own vertices, and this “noise” threatens to
make recovery of Γ from G impossible. However, what will be true is that
the vertices of P will remain of finite degree, and that just as we considered
the vertices of degree d − 1 in the previous subsection, consideration of the
vertices of finite degree is generally useful.

The critical observation is the following: if T̂ is the result of amalga-
mating two copies, or even infinitely many copies, freely over the vertex
set V1(T ) then V1(T̂ ) = V1(T ) as a metric space (but here V1(T̂ ) means all
vertices of degree at least d, not exactly d).

Thinking back to the “attachment graph” H of the previous subsection,
if Ĥ is the corresponding subgraph of T̂ , then this suggests the idea of using
Ĥ in place of H and going on as before. This would be sound apart from one
fatal flaw: all the vertices along P are likely to acquire infinite degree in the
process. This makes it extremely likely that T will embed in the graph so
constructed, and also makes the recovery of P highly improbable. In short,
everything needed is destroyed.

There is one case in which this flaw is not actually present: if the external
vertex v1 of degree d is adjacent to a vertex v0 of degree d then v1 will have
no new neighbors in Ĥ. Really what we are doing in this case is working
with the subgraph H0 of H obtained by deleting v1 and the corresponding
amalgam Ĥ0, then attaching Ĥ0 to v1 by an edge.

In general, we must consider the parameter

` = d(v1, v0)

where v0 is the closest vertex of degree d to v1. We want to treat the part
of H based at v0 as the “attachment graph, ” and take further pains to deal
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Gregory Cherlin and Saharon Shelah 23

with the path from v1 to v0, which we think of as potentially running along
P . It turns out that the relevant case division is as follows: ` ≥ 3; ` = 2;
` = 1 with the first two cases similar and the last of a different character.

Again, once one enters into this kind of more precise construction, the
structure of the tree T between v0 and v1 plays a major role; as the pruned
tree T ′ will be a path or nearpath one hopes that the corresponding part
of T ′ will be just a path, though a few exceptional configurations must be
treated separately.

So our case division comes out something like the following.

I ` ≥ 2:

A ` ≥ 3; B ` = 2.

II ` = 1:

A d ≥ 4; B d = 3 (with various subcases).

III Left-over nearpaths

A d ≥ 4; B d = 3.

We will ultimately list the cases differently for reasons of convenience,
but the logical structure is properly reflected above. The full list of cases
actually used is recapitulated at the end.

5 Case I: ` ≥ 2

We take up the proof of Theorem 3′. We deal with an external vertex v1

of maximal degree, and a closest vertex v0 of maximal degree, with ` =
d(v0, v1).

5.1 Case IA: d ≥ 4, ` ≥ 3

T has a vertex v0 of maximal degree d ≥ 4 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and ` = d(v0, v1) ≥ 3. Either T ′ is a
path, or else T ′ is a near-path whose center does not
lie in the v0-component C.

Case IA

We allow v0 to be the center of T ′.
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24 Forbidden subtrees

Construction 2 Let H = T \ C. Let P be a (d − 1) regular graph of large
girth, and let ΓP be the result of adjoining a vertex b adjacent to all vertices
of P and then attaching a copy Hb of H with b corresponding to v0

Lemma 5.1 ΓP is T -free.

Proof. Since the number of vertices of degree d in T is greater than the
number of vertices in Hb which have degree at least d in ΓP , any embedding
f of T into ΓP has to carry at least one vertex of degree d into P .

If exactly one vertex u of degree d in T corresponds to a vertex of of P ,
then b must also correspond to a vertex of degree d in T under the embedding
f . Now the vertex f(u) ∈ P has degree exactly d in ΓP and hence b must be
one of the neighbors of u in f(T ). As d(u, b) = 1 it follows that the diameter
of the set of vertices of degree d in f(T ) is less than its diameter in T , so
this is not an isomorphism.

Thus there are at least two vertices u, v of degree d in T whose images
under f lie on P . Again, the vertex b must occur as a neighbor of u and
v in the image f(T ) and therefore d(u, v) = 2. Since ` ≥ 3 there must be
other vertices of degree d in T (or it would be enough for our purposes to
assume this, if ` = 2). It follows easily that T must be a nearpath with
center corresponding to b. Then it is easy to see that the diameter of the set
of vertices of degree d in T is greater than the diameter of the corresponding
set in f(T ), a contradiction. ¤

Lemma 5.2 Suppose that G is a T -free graph containing ΓP and that u is
a vertex of P . Then any neighbor v of u in G is either a neighbor of u on
P , or a vertex of Hb.

Proof. In view of the structure of T ′, v1 is adjacent to a leaf of T . If
v /∈ ΓP then we look for an embedding of T into G in which u represents v1,
v represents such a leaf, and Hb represents H with b corresponding to v0.
The path from v0 to v1 can run along P . As P has locally the structure of
a (d − 1)-regular tree, the extension to the remainder of T is possible.

If v ∈ ΓP then we may suppose v ∈ P . Suppose that v is far from u in
the metric on P . Then we proceed as in the case when v is not in ΓP . Now
suppose v is close to u, and the girth of P is large relative to the distance
d(u, v). Then there is a unique shortest path L from v to u. Let u′ be the
neighbor of u on L. Consider the graph obtained from P by deleting the
rest of L (between u′ and v) and adjoining the edge (u, v). If P had been a
(d−1)-regular tree then this new graph would also be a (d−1)-regular tree,
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Gregory Cherlin and Saharon Shelah 25

but in fact it is a (d − 1)-regular graph of high girth. In any case, using u′

to represent a leaf adjacent to u we may again proceed as in the first case
to embed T into G. ¤

Proposition 5.3 In Case IA there is no (countable) universal T -free graph.

Proof. Otherwise we find ourselves considering embeddings f : ΓP → G,
g : ΓQ → G with P and Q nonisomorphic, and with the images f [HP

b ] and

g[HQ
b ] identical, and also f(P ) meets g(Q). Now we look at the graph G0

obtained by deleting f [HbP ]. In this graph, f(P ) and g(Q) are connected
components, and the induced structure from G0 is the original structure
on P or Q. As f(P ) meets g(Q), the images coincide and the graphs are
isomorphic. ¤

5.2 Case IB: d = 3, ` ≥ 3

T has a vertex v0 of maximal degree d = 3 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and ` = d(v0, v1) ≥ 3. Either T ′ is a
path, or else T ′ is a near-path whose center is not v1.

Case IB

Construction 3 Take an infinite path P and partition it into successive
(alternating) finite intervals Pi, Qi for i ∈ Z of lengths pi, qi respectively,
satisfying the following conditions.

1. pi ≥ 3` − 3

2. qi = `

Let C be the v0-component of T containing v1 and H0 = T \C. Let H be
the graph obtained by amalgamating two copies of H 0 freely over the vertices
of H0 of degree d in T (this includes v0), and adjoining additional vertices
to bring up the degree of any vertex in V1(H) to ∞.

Adjoin vertices bi adjacent to all vertices in Pi, for all i, and attach a
copy Hi of H to bi with bi corresponding to v0. Call the result Γ = Γε where
ε is the sequence (pi)i∈Z.

Lemma 5.4 Γ is T -free.



8
5
0
 
 
r
e
v
i
s
i
o
n
:
2
0
0
6
-
0
5
-
2
4
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
6
-
0
5
-
2
8
 
 

26 Forbidden subtrees

Proof. Let Xi be the set of vertices in Pi ∪ Hi of degree at least d in Γ,
and let Yi be the set of vertices of Hi of degree at least d in Γ.

Call a subspace A of V1(T ) indecomposable if under every embedding of
T into Γ, the image of any subspace of V1(T ) isometric with A lies in one
set Xi; call A isolated if every such image lies in one set Yi.

We will write V1 for V1(T ) throughout.

There is a nonempty isolated metric subspace of V1.(1)

Consider a geodesic path P ∗ = (p0, . . . , pn) in V1 of maximal length
subject to the condition d(pi, pi+1) ≤ ` for i < n, and among all such
maximize d(p0, p1) + d(pn−1, pn).

We claim that this geodesic path is isolated. First, as the Hi are widely
separated (qi = `) this path is indecomposable.

Now consider any A ⊆ V1 isometric to P ∗ and embedded into Xi by an
embedding f of T into Γ. We claim that f [A] lies in Yi. If not, writing
A = (a0, . . . , an) we have u = f(ai) ∈ Pi for some i.

Now u has degree d in Γ and hence the neighbors of ai in T map onto
the neighbors of u in Γ, including bi. So any vertices of A which map into
Pi share a common neighbor in T , and hence lie at distance 2 in T . As A
is a geodesic path, and corresponds to points on a path in T , there are at
most two such points in A.

If there are two such points in A then as bi lies between their images, the
other vertices of A map into Pi rather than Hi. But as this is impossible,
we find that |A| = 2 in this case, and as d(a0, a1) is maximized, that

` = 2

as well, contradicting our current assumptions.
So a unique point of A maps into Pi. Then the other points of A map

into Hi and are linked to u by a path through bi. In particular u must
correspond to an endpoint of A. We may suppose u = f(an). Now the
path (f(a0), . . . , f(an−1)) corresponds to a path (a′

0, . . . , a
′
n−1) in T \C, and

d(a′n−1, v0) = d(an−1, bi) < d(an−1, u) ≤ `. Hence if a′
n−1 6= v0, this path

may be lengthened to a path (a′
0, . . . , a

′
n−1, v0, v1) satisfying our conditions

and contradicting the maximality of n. We conclude that a′
n−1 = v0. But

then the path (a′
0, . . . , a

′
n−1 = v0, v1) satisfies our conditions with an increase

in the distance between the last two vertices, again contradicting maximality.
This last contradiction completes the proof of (1).



8
5
0
 
 
r
e
v
i
s
i
o
n
:
2
0
0
6
-
0
5
-
2
4
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
6
-
0
5
-
2
8
 
 

Gregory Cherlin and Saharon Shelah 27

Now we consider a subspace A ⊆ V1 which is isolated, and maximal.
One possibility is that A = V1, but as |V1| > |V1(H)|, this would mean that
there are no embeddings of T into Γ, as we claim. So for the remainder of
the argument we suppose that there are such embeddings, and we aim at a
contradiction.

We claim that there is some subspace A′ of V1 isometric to A, and some
embedding f of T into Γ such that for some i we have

(2) bi ∈ f [A′]

We choose a pair A′ ⊆ V1 and v ∈ V1 \ A′ so that A′ is isometric to A
and d(v,A′) is minimized, and we consider the space B = A′ ∪ {v} inside
V1. By our choices of A, this is not isolated. Take B ′ = A′′ ∪ {v′} isometric
to B inside V1 so that there is an embedding f of T into Γ for which f [B ′]
does not go into any Hi. As A′ is isolated, f [A′′] goes into some Hi, and by
hypothesis f(v′) /∈ Hi, so d(bi, A

′′) < d(v′, A′′). By the choice of v′, we must
have bi ∈ f [A′′] and thus (2) is achieved.

Now we repeat the general thrust of the first part of the argument. We
consider a geodesic path P ∗ = (a0, . . . , an) which can be attached to A′ at
the point u0 corresponding to bi in f [A′], so that with the natural metric
the extension A∗ = A′ ⊕u0

P ∗ is isometric with a subspace of V1, and so
that d(ai, ai+1) ≤ ` for all i < n, and we first maximize n, then maximize
d(an−1, an). By condition (2) one possibility is to take P ∗ = (v0, v1) with v0

corresponding to some point u0 in A′, so |A∗| > |A′|.
By the maximality of A′, the space A∗ cannot be isolated. It is certainly

indecomposable since A′ is indecomposable, in view of the metric structure
of A∗ and Γ. So there is an embedding f of T into Γ taking a copy of A∗

(which we continue to call A∗) into Xi for some i, but not into Hi. Here
A′ goes into Hi and the geodesic path P ∗ does not, though the endpoint a0

does. Arguing as in the first instance we see that one end of P ∗ goes into
Pi and the rest of A∗ goes into Hi. But then we adjust P ∗ as before and
obtain a final contradiction: if bi is not in the image of P ∗ we lengthen the
path P ∗, while if bi is in the image of P ∗ we move an farther away.

Retracing our steps from this contradiction, we see that in fact the max-
imal isolated space A must be V1, and thus Γ is T -free. ¤

We can now enter the decoding phase.

Lemma 5.5 If Γ is contained in the T -free graph G, then for any vertex u
of P we have the following.

1. The degree of u in G is finite.
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28 Forbidden subtrees

2. Any neighbor of u of finite degree in G lies on P , and is one of the
neighbors of u in Γ.

3. If i is chosen so that d(u, Pi) is minimal, then any neighbor of u in G
off P lies in Hi.

Proof. As d = 3 the v0-component containing v1 consists of a path with
one edge adjoined at v1.

Suppose (u, v) is an edge with u ∈ P , v ∈ G and v /∈ Γ. Then we embed
T into G with u corresponding to v1 and v corresponding to a leaf of T
adjacent to v1. It suffices to notice that if i is chosen to minimize d(u, Pi)
then there is a path of length ` from u to bi, and bi can play the role of v0.
The same applies if v ∈ Hj with j 6= i. It remains to consider vertices of
finite degree in Hi and vertices on P .

Now as Hi is obtained by free amalgamation of two copies of H 0 over the
vertices of degree d, and the vertices originally of degree d are transformed
into vertices of infinite degree, the vertices of finite degree in Hi may be
treated just like vertices outside Γ.

Suppose therefore that v ∈ P . Then we must consider the possibility
that v lies along our intended path L from u to bi. If u /∈ Pi then we may
substitute for L a path beginning with (u, v). The main point to consider is
the possibility u, v ∈ Pi, but u, v are nonadjacent.

Then after deleting u, v from Pi there remain pi−2 ≥ (3`−5) > 3(`−2)
vertices, and at least one of the three resulting subintervals in Pi contains at
least `− 1 vertices. Furthermore as the roles of u and v are now symmetric,
we may suppose that u is an endpoint of such an interval. As we have a path
of length ` from u to bi which does not pass through v, we may take u, bi to
correspond to v1, v0 respectively, and use v to represent a leaf adjacent to
v1. One may also use an additional vertex of Pi to represent a leaf adjacent
to bi as

pi ≥ 3` − 3 > ` + 1

(For ` = 2 one would just add this inequality as a restriction on pi, but there
are other difficulties in that case.)

This proves the lemma in all cases. ¤

Proposition 5.6 In Case IB there is no (countable) universal T -free graph.

Proof. If G is a countable universal T -free graph we can find embeddings
f : Γ → G and f ′ : Γ′ → G with Γ = Γε, Γ′ = Γε′ nonisomorphic and with
f(P ) meeting f ′(P ′), where P ′ is the copy of P associated with Γ′.
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Gregory Cherlin and Saharon Shelah 29

We look at the graph G0 induced by G on its vertices of finite degree.
This contains f(P ) and f ′(P ′). Furthermore the connected component of
their intersection coincides with both, as an induced subgraph. So the path
f(P ) = f ′(P ′) is an induced subgraph of G. Call this path P G.

Now we consider the following relation R(a, b) in G:

a, b are vertices of P G with a common neighbor in G which is not in PG

Writing a = f(a0) and b = f(b0) with a0, b0 ∈ P , choose i and j to minimize
d(a0, Pi) and d(b0, Pj) respectively. By our lemma, if R(a, b) holds in G then
i = j (and in particular i, j are uniquely determined).

Now consider the equivalence relation generated by the relation R on
PG. If A is an equivalence class with representative a = f(a0), and i is
chosen to minimize d(a0, Pi), then A is contained in the image of the set
{v : d(v, Pi) ≤ `/2}. Furthermore A either contains the image of Pi or is
disjoint from it. If we consider equivalence classes of order at least 3` − 3,
these will contain the corresponding set f(Pi) as otherwise the size of A
would be bounded by ` < 3` − 3. So we can now identify the equivalence
classes containing the f(Pi). These must also be the equivalence classes
containing the f ′(P ′

i ) and thus one finds |pi − p′i| ≤ `, up to a shift or
and possible reflection of indices. By restricting the allowed sequences (pi)
somewhat one may ensure that this forces pi = p′i for all i, and thus a
contradiction. ¤

5.3 Case IC: ` = 2

T has a vertex v0 of maximal degree d ≥ 3 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and ` = d(v0, v1) = 2. Either T ′ is a
path, or else T ′ is a near-path whose center is not v1.

Case IC

Construction 4 Let H0 be T \C and let H1 be the amalgam of two copies
of H0 over the set V1(H

0) of vertices in H0 corresponding to vertices of
degree d in T . Extend H1 freely so as to raise the degree of vertices of
degree at least d to ∞, and to raise all vertex degrees to at least d − 1. Call
the result H.

Let P be either a (d − 1)-regular graph of large girth, if d > 3, or else a
two-way infinite path, if d = 3, and suppose that there is a family of paths
Pi contained in P , of order pi, satisfying

1. pi = 2 or 3 all i;
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30 Forbidden subtrees

2. Every vertex of P is either on some Pi or adjacent to one of its vertices;

3. No two vertices on distinct paths Pi, Pj are adjacent.

Attach to each interval Pi a vertex bi adjacent to its vertices, and attach
a copy Hi of H to bi with bi playing the role of v0.

Call the resulting graph Γ.

Remark 5.7 One has uncountably many possibilities for the structure of P
if d ≥ 4, and for the sequence pi if d = 3.

Let us verify this in case d ≥ 4. In this case first choose a path P ∗

and intervals Pi on P meeting our conditions. Then add edges to P ∗ whose
endpoints lie outside all the Pi, keeping the girth high, and raising the vertex
degrees to d − 1.

Lemma 5.8 Γ is T -free.

Proof. This is the usual metric argument. We will sketch the main points.
We begin by considering a maximal geodesic path A = (a0, . . . , an) em-

bedding into V1 = V1(T ) with successive distances at most `, and suitably
maximized. We have n ≥ 1 by the case assumption.

We claim that this path is isolated relative to Γ in our usual sense.
Note that as pi ≤ 3 and the vertices of Pi have degree d, with a common

neighbor bi, no embedding of T into Γ can carry two vertices of degree d into
the same interval Pi. So as in the proof of Lemma 5.4 it follows that the path
A is isolated, and after that the argument is relatively formal. One considers
a maximal isolated subspace B of V1(T ) which may be supposed proper, and
one finds that there must be some embedding in which some bi is in the image
of an isometric copy of B, after which one can attach another such geodesic
path to B and arrive at a contradiction; the gap between distinct intervals
Pi becomes relevant again when the geodesic path argument is repeated at
the end. ¤

Lemma 5.9 Let Γ be embedded in the T -free graph G. Then any vertex
u ∈ P is of finite degree in G, and its neighbors in G of finite degree are
exactly its neighbors in P .

Proof. Suppose first that (u, v) is an edge of G and v does not occur in Γ.
Then u will play the role of v1 in T , with v an adjacent leaf. One easily finds
a path of length 2 connecting u to some bi, which will play the role of v0,
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Gregory Cherlin and Saharon Shelah 31

and one extends this to an embedding of T into Γ, with Hi absorbing T \C
while the component C itself, apart from one leaf attached to v1, embeds
into P .

The same construction applies whenever the vertex v is not needed to
complete the embedding of T into Γ, and in particular only finitely many
vertices v require attention, so the vertices of P certainly continue to have
finite degree.

We now need to consider only the case in which v is in Γ and has finite
degree (in G, and in particular in Γ). If v ∈ H1 then v /∈ V1(H

0) and hence
by the amalgamation process used to construct H 1 such a choice of v cannot
block anything. It is also possible that v lies in Hi but off H1, but this is
essentially the same situation; indeed, we could have extended H 0 before
amalgamating, and then H would be just the result of the final amalgam!

So all that really concerns us is the possibility that v is on P . But as
we have seen previously, we can delete most of the path from u to v along
P , just retaining the neighbor v′ of u along that path, and then v′ acts as a
“new” vertex with respect to the revised version of P . ¤

Proposition 5.10 In Case IC, there is no weakly universal T -free graph.

Proof. We need to show that we can recover information, either about the
sequence (pi) or the structure of P (if d ≥ 4), from an embedding of Γ into a
larger T -free graph G, given the image of a vertex in P . For any u ∈ P , the
neighbors of u of finite degree in G are its neighbors in P , and thus at least
the graph P can be recovered from G. If d ≥ 4 there is sufficient flexibility
in the structure of P to complete the argument.

Suppose therefore that d = 3, and the induced structure on P is an
ordinary two-way infinite path. We must decode some information about
the numbers pi. Consider the graph P ∗ on the path P whose edges are the
edges of P whose endpoints have a common neighbor in G. Then vertices
adjacent in Γ to distinct intervals Pi, Pj are not adjacent in P ∗, and each
nontrivial connected component of P ∗ consists of an interval Pi with possibly
one or both of its neighbors on P adjoined.

If one looks at a long interval L in P , one can use P ∗ to count accu-
rately the number of intervals Pi which meet L, and the number of vertices
involved, and find the average value of pi over the interval. This is sufficient
to discriminate between substantially different parameter sequences, taken
to be constant over long intervals. ¤



8
5
0
 
 
r
e
v
i
s
i
o
n
:
2
0
0
6
-
0
5
-
2
4
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
6
-
0
5
-
2
8
 
 

32 Forbidden subtrees

6 Case II: ` = 1, d ≥ 4

In this case we have an external vertex of maximal degree adjacent to another
vertex of maximal degree.

6.1 ` = 1, d ≥ 5

T has a vertex v0 of maximal degree d ≥ 5 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and v0, v1 are adjacent. Either T ′ is a
path, or T ′ is a near-path whose center does not lie
in the v0-component C.

Case IIA

This case is essentially the same as the illustrative example treated in
Proposition 4.1.

Construction 5 Let H0 = T \C and let H1 be the amalgam of two copies
of H0 with over its vertices of degree d in T . Adjoin vertices adjacent to the
vertices of degree at least d in H1 in order to make their degrees infinite.
This yields an attachment graph H.

Take a two-way infinite path P and attach a copy Hi of H to a neighbor
bi of each vertex ai ∈ P , with bi playing the role of v0.

Finally, bring up the vertex degrees along P to exactly d − 1 (initially
these are of degree 3, and d > 4). Do this by adding additional edges to P ,
but keep the girth of the graph induced on P very large.

The result is called Γ.

Lemma 6.1 Γ is T -free.

Proof. As there are no vertices of degree d on P , the notions of indecom-
posability and isolation coincide in this case.

Take a maximal indecomposable subspace A of V1. If A 6= V1, take a
pair A′, v with A′ isometric to A and contained in V1, v ∈ V1 \ A′, and
d(v,A′) minimized. Let A1 = A′ ∪ {v} and as A1 is decomposable take an
isometric copy A′

1 = A′′ ∪ {v′} of A1 in V1 and an embedding f : T → Γ
which witnesses this. Then f [A′′] will be contained in some Hi and f(v′)
will lie in a different Hj, and farther than bi. By the minimality of d(v′, A′′)
we have bi in the image of A′′. Pulling this back into T , we have an isometric
copy A∗ of A in T \ C containing v0. So A∗ ∪ {v1} is also a subspace of V1,
and as A∗ is indecomposable and v1 is adjacent to a vertex of A∗, A∗ ∪ {v1}
is also indecomposable. This however contradicts the maximality of A.
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Thus A = V1 is indecomposable. However |V1(T )| = |V1(H)| + 1 and
thus V1(T ) cannot embed in a copy of H. So there are no such embeddings,
and Γ is T -free. ¤

Lemma 6.2 Let G be a T -free graph containing Γ, and u ∈ P . Then any
neighbor v of u of finite degree in G is on P , and is a neighbor of u in Γ.

Proof. Once the vertex u acquires degree d, we extend to the neighboring
copy of Hi and a path along P , together with suitable neighbors (all distinct
by our restriction on the girth).

If v lies in the copy Hi of H associated with u, and has finite degree, then
it is a vertex duplicated in the construction of H 1 (or one of the additional
neighboring vertices added at the end, which present no problems). Such a
vertex cannot block the embedding of T .

There remains the possibility that the vertex v lies on P and is not a
neighbor of u in P . Then as in the proof of Proposition 4.1 we use the
neighbor of u on the path toward v to represent a leaf adjacent to v1, and
use the additional edge (u, v) to replace P by a similar (d−1)-regular graph
of large girth. ¤

Proposition 6.3 In Case IIA there is no weakly universal T -free graph.

Proof. Given a T -free graph extending Γ and the image of a point in P
we recover the set P and the graph induced on it by G, which is the same
as the graph induced on P by Γ. As d > 4 there is some latitude in the
structure of this graph (in particular, in the lengths of circuits in the graph)
and thus we can recover uncountably many different invariants. ¤

6.2 ` = 1, d = 4

T has a vertex v0 of maximal degree d = 4 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and v0, v1 are adjacent. Either T ′ is a
path, or T ′ is a near-path whose center does not lie
in the v0-component C.

Case IIB

Construction 6 We vary the preceding construction. With the same at-
tachment graph H, we take an infinite path P and divide it into consecutive
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34 Forbidden subtrees

intervals Pi of length pi = 1 or 2, where furthermore pi = 1 with rare, and
widely spaced, exceptions.

The vertex bi is attached to the interval Pi and the graph Hi is appended
to it. There is no final decoration phase since d = 4 and all vertices of P
have degree d − 1 = 3 already. The only variability is in the sequence (pi).

This is T -free as before; any sequence (pi) with pi = 1 or 2 would be
suitable at this stage, as the duplication of the neighbor of bi on P has no
substantial effect.

Lemma 6.4 If G is a T -free graph containing Γ and u ∈ P , then u has
finite degree in G, and every neighbor v of u of finite degree in G is on P .

Proof. The “widely spaced” condition on the pi is used here.

The argument goes as before except that one should pay some attention
to vertices u lying on or near an interval Pi of length 2, as the neighbor u′ of
u in Pi may be unsuitable for our purposes, having degree d− 1 but sharing
a neighbor with u. As the v0-component C may continue on past v1, and
the next vertex after v1 may have degree d−1, this constrains us to working
on P on one definite side of u.

If the vertex v lies on P on this preferred side of u, but beyond the
neighbor of u according to Γ, it potentially blocks the embeddding of T .
But then we can use the neighbor of u on that side to represent a leaf of T
and take a path through u, v and along P to complete the construction. ¤

Proposition 6.5 In Case IIB there is no weakly universal T -free graph.

Proof. The path P is recoverable and has no extra structure. Adjacent
points belonging to distinct intervals Pi can have no common neighbors,
as there are then two attachment graphs Hi available and the common
neighbor could lie in at most one of them. Therefore the intervals Pi and
the numbers pi are also visible in any T -free graph containing Γ = Γε, and
the usual argument applies. ¤

7 Case III: ` = 1, d = 3

Since we now deal with the case d = 3 all branch vertices of T have maximal
degree. These cases require a slightly finer consideration of the structure of
T , bringing in the location of a third branch vertex, assuming there is one.
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7.1 A special case

T contains exactly two branch vertices v0 and v1,
which are adjacent, and of degree 3.

Case IIIA

Construction 7 Take a two-way infinite path P and divide it into intervals
Pi, Qi which are alternately of length pi = 3 and qi = 1 or 2. Adjoin a
common neighbor bi to each interval Pi. Call the result Γ.

Proposition 7.1 In case IIIA, there is no weakly universal T -free graph.

Proof. The graph Γ is T -free, and under any embedding into a larger
T -free graph G, Γ will be a connected component of G. Hence no countable
T -free graph contains all possible variants of Γ. ¤

This is important, because we need to move somewhat further away from
near-paths before we can make suitable constructions of any generality.

7.2 Three adjacent branch vertices

Here is one case which is sufficiently far from the near-path case to be
handled uniformly.

The maximal vertex degree is 3. T contains a se-
quence of three adjacent branch vertices v1, v0, v2

with v1 external and adjacent to a leaf. Some v0-
component of T is a path attached to v0.

Case IIIB

Construction 8 Call the v0-components of T C,C1, C2 where vi ∈ Ci for
i = 1, 2. By hypothesis C is a path. Let H be the graph obtained from C2

by freely amalgamating infinitely many copies of C2 over the subset V1(C2)
consisting of its branch vertices in T .

Take an infinite path P partitioned into intervals Pi, Qi of lengths pi = 2
or 3 and qi = 1 and adjoin a vertex bi adjacent to the vertices of Pi. Attach
a copy Hi of H to bi with bi playing the role of v2. This yields Γ.

Lemma 7.2 Γ is T -free.

Proof. Let P ∗ be a path of maximal length consisting of adjacent branch
vertices of T . We claim that P ∗ is isolated with respect to embeddings of T
into Γ. Certainly P ∗ is indecomposable, and for any of embedding of T into
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36 Forbidden subtrees

Γ which takes a vertex a of P ∗ into Pi, as these vertices have degree 3 and
a common neighbor, only one of them can be in f [P ∗]. Hence a must be an
endpoint of P ∗ and its neighbor b in P ∗ must correspond to bi. In particular
if P0 is the path with a deleted, then f [P0] is a path in Hi terminating at bi,
which corresponds to a path of adjacent branch vertices in C2 terminating
at v2. Such a path can be extended by v0, v1 and contradicts the maximality
of the length of P ∗. So P ∗ is isolated.

Now let A be a maximal isolated subspace of V1 = V1(T ). Assuming
that there is in fact some embedding of T into Γ, then A 6= V1, and then on
formal grounds as we have seen in earlier arguments, there is an embedding
of T into Γ which carries an isometric copy of A, which we will continue to
call A, into some Hi with bi included in the image. But then looking at this
inside T it gives an isometric copy of A, say A′, containing v2 but not v0.
So consider the longest path P̃ consisting of adjacent vertices which can be
attached to the metric space A at the corresponding vertex v, subject to the
restriction that the extended space A ⊕v P̃ with its natural metric embeds
into V1. This is visibly indecomposable and easily seen to be isolated by
the same sort of analysis with which we began. This then contradicts the
maximality of A and completes the analysis. ¤

Lemma 7.3 For any T -free graph G containing Γ, and any vertex u ∈ P ,
the degree of u is finite in G, and the neighbors of u of finite degree in G
and in Γ coincide. If u ∈ Qi for some i then its neighbors in G are on P .

Proof. Let us first see how to embed T in G if u has a neighbor v not in
Γ. We take u′ adjacent to u and lying in one of the Pi. We use the sequence
bi, u

′, u to represent the sequence v2, v0, v1. The graph Hi disposes of any
need to think about the component C2. There is room for the path C on
the far side of u′ along P . The vertex v reperesents a leaf adjacent to v1,
and the rest of T consists of a path attached to v1, which can lie along P .

From this it follows that the vertices of P have finite degree in G. Now
suppose v is a neighbor of u of finite degree in G, and in particular v is a
vertex of Γ. As usual if v ∈ Hi then this does nothing. So we may suppose
v ∈ P , and v is nonadjacent to u.

If v and u′ lie on opposite sides of u then we use the neighbor of u on the
side of v to represent a leaf adjacent to v1, and use the continuation of the
path (u, v) along P to complete the embedding with no further interference.

If u is on Qi for some i then there are two choices for u′ so we can fall
directly into the previous case, and the analysis applies to any neighbor v
of u in this case.
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So we may suppose u is on Pi. If v and u′ are on the same side of
u, the only obstruction arises if v is adjacent to u′. If v ∈ Qi±1 we can
interchange u and v, so there remains only the case in which v, u′, u are the
three points of some Pi. In this case we may take bi, v, u to represent the
sequence v2, v0, v1 and use u′ as a neighbor of u. ¤

Proposition 7.4 In Case IIIB there is no weakly universal T -free graph.

Proof. It follows at once from the preceding lemma that in any T -free
graph G containing one of our graphs Γ, we can recover P as well as enough
information about the neighbors of P to determine the sequence (pi) up to
reflection and translation from an element of P . So the customary argument
applies. ¤

Under the assumption that T ′ is a path we have seen that we may suppose
that external branch vertices are adjacent to branch vertices. With the last
two cases out of the way there must be at least four branch vertices, with
each outer pair adjacent.

7.3 Two adjacent branch vertices, ` ≥ 3

The maximal vertex degree is 3. T contains a se-
quence of three successive branch vertices v0, v1, v

′
1

with v′1 external and adjacent to a leaf, v1 adjacent
to v′1, and ` = d(v0, v1) ≥ 3, where v0 is the closest
branch vertex to v1 other than v′1. Either the pruned
tree T ′ is a path, or a near-path with the center not in
the v0-component containing v1. All external branch
vertices of T are adjacent to branch vertices.

Case IIIC

Construction 9 Let v2 be the vertex lying between v1 and v0 at distance 2
from v1. Let C be the v2-component of T containing v1. Let H be the result
of amalgamating infinitely many copies of T \C over the set consisting of its
branch vertices together with the path from v2 to v0, extended to give each
vertex strictly between v2 and v0 infinite degree.

Take a path P broken into intervals Pi, Qi of lengths pi = 3 and qi = 1
or 2. Adjoin a vertex bi adjacent to the vertices of Pi, adjoin a vertex c
adjacent to all bi, and attach H to c with c playing the role of v2. Call the
result Γ.

Lemma 7.5 Γ is T -free.
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38 Forbidden subtrees

Proof. We look first at how an adjacent pair of branch vertices can be
embedded into Γ. Consider a subtree of Γ consisting of two adjacent branch
vertices v, v′ of degree three with their neighbors.

Suppose v ∈ P . Then v ∈ Pi for some i and by inspection v′ = bi, with
c belonging to the subtree as one of the neighbors of v ′.

Now consider an embedding of T into Γ and more particularly the images
of a pair of branch vertices consisting of an external branch vertex and its
neighboring branch vertex. If all such images miss P , then the diameter of
the convex hull in T of the branch vertices is larger than the diameter of the
graph into which they can embed.

Similarly if one of these pairs of adjacent branch vertices maps to vbi

with v ∈ Pi and the other pair maps into H, the diameter is still slightly
too small as the distance from v0 (in H) to bi is ` − 1.

Finally if both pairs of adjacent branch vertices correspond to pairs of
the form vbi and v′bj then c occurs in the embedding as a neighbor of both
bi and bj and the whole tree has only four branch vertices, with the interior
pair lying at distance ` = 2, which contradicts our case hypothesis. ¤

Lemma 7.6 For any T -free graph G containing Γ, and u ∈ P , the neighbors
of u of finite degree in G are its neighbors in P , and possibly a vertex bi if
u is either in Pi, or else in Qi or Qi−1 and adjacent to a vertex of Pi, with
qi = 2 or qi−1 = 2 respectively.

Proof. Bearing in mind that any pair of vertices on P with one in Pi and
the other adjacent to it are candidates for the role of v1 and v′1 respectively
in an embedding of T , we see first that we cannot adjoin any new vertices as
neighbors of u, secondly that the vertices in H which are of finite degree are
not available to serve as neighbors as they were duplicated in the amalgama-
tion process, and thirdly that for qi = 1 as there are two vertices adjacent
to u and lying in Pi or Pi+1 respectively, there can be no new neighbors
of u in that case. Of course if u ∈ Qi or Qi−1 with qi = 2 our statement
allows for bi as a new neighbor and the only other vertex which would be a
plausible candidate for a new neighbor of u would be the next vertex beyond
the immediate neighbor of u, but in that case this new neighbor of u in Pi

could serve as an alternate candidate to play the role of v1.
After all this there remains the possibility that u ∈ Pi and that u has

a new neighbor along P , not already adjacent to it in Γ—notably, u and
this new neighbor could be endpoints of Pi. However here one uses the new
neighbor of u in the role of v′1 and the old neighbor of u in Pi represents a
leaf in the embedding. ¤
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Proposition 7.7 In Case IIIC there is no weakly universal T -free graph.

Proof. We have freedom in the choice of the qi and so we need only check
that we have possibilities for decoding.

Given an embedding of Γ into a T -free graph G we look at the graph G0

induced on vertices of finite degree in G and then we look at the graph G1

induced on vertices of degree at most three in G0.

The vertices of P occur on a path in G1. Their neighbors in G1 consist
of P and those vertices bi which are of finite degree in G and have no
neighbors in G of finite degree other than those in Pi. In particular the
connected component of G1 containing P is a subgraph of Γ. One cannot
necessarily recover the path P itself since the midpoint of Pi and bi have
similar properties, but we claim that we may recover the sequence qi, which
is sufficient.

The 2-connected blocks of G1 consist of certain edges of P together with
the induced subgraph on Pi∪{bi} whenever bi ∈ V (G1). In the latter case the
endpoints of Pi can be recovered from the 2-block. Let Q be the subgraph of
P obtained by deleting those vertices occurring as the midpoint of an interval
Pi for which bi ∈ V (G1). Then the graph Q can be recovered from G1, with
those pairs consisting of endpoints of some interval Pi distinguished. From
this one can recover the sequence (pi) (up to shift and reflection). ¤

7.4 Two adjacent branch vertices, ` = 3

The maximal vertex degree is 3. T contains a se-
quence of three successive branch vertices v0, v1, v

′
1

with v′1 external and adjacent to a leaf, v1 adjacent
to v′1, and ` = d(v0, v1) = 2, where v0 is the clos-
est branch vertex to v1 other than v′1. Either the
pruned tree T ′ is a path, and both external branch
vertices of T are adjacent to branch verticesm, or it is
a near-path with the center not in the v0-component
containing v1.

Case IIID

In most cases the construction for the previous case will work. With
` = 2, the vertex c in the previous construction becomes identified with v0.

But in the proof that Γ is T -free, we may encounter an exception precisely
in the case when the external vertices correspond to vertices of Pi, Pj for
some i, j and their neighbors correspond to bi, bj . In this case c = v0 occurs
as a common neighbor of both and the structure of the tree is determined:
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40 Forbidden subtrees

it has exactly four branch vertices separated by one vertex of degree 2. The
only uncertain point concerns the precise lengths of the paths emanating
from the external path vertices.

Since the previous construction definitely fails in this case we use a vari-
ant.

Construction 10 Suppose T is as described (four branch vertices, adjacent
in pairs, separated by one vertex of degree 2). Take a two-way infinite path
P divided into intervals Pi, Qi of lengths pi = 2 and qi = 1 respectively.
Attach vertices bi adjacent to the vertices of Pi.

Attach a path (bi, ci, c
′
i) to each bi and attach an infinite family of infinite

rays to each of the vertices ci, c
′
i (really what interests us is to have two

infinite rays at c′i and to ensure that the vertices ci, c′i have infinite degree).
Now take a maximal subset S of Z containing no adjacent pairs in Z; in

other words, if S is arranged as a sequence (ni : i ∈ Z) then ni+1−ni is 2 or
3 for all i. Note that there are many such sets. Give each vertex bi (i ∈ S)
infinite degree.

Call the result Γ.

Lemma 7.8 Γ is T -free.

Proof. Consider subtrees of Γ consisting of two adjacent branch vertices
and their neighbors. Such a tree either has its branch vertices off P entirely,
or has branch vertices of the form v, bi with v ∈ Pi and i ∈ S.

As the distance (in Z) between distinct elements of S is greater than 1,
the distance between such pairs in Γ is greater than 2, unless they lie in the
part of Γ attached to a single Pi. But here the diameter is too small. ¤

Lemma 7.9 For any T -free graph G containing Γ, and u ∈ P , the neighbors
of u in G of finite degree are its neighbors in P together with bi if u ∈ Pi

and i /∈ S.

Proof. Observe that bi has finite degree if i /∈ S since for some adjacent
j = i ± 1 we have j ∈ S and it follows easily that giving bi infinite degree
produces an embedding of T .

The rest is clear by inspection; adjoining a new vertex as a neighbor of
u produces an embedding of T into Γ directly, and as usual there are no
serious candidates of finite degree in Γ. ¤

Lemma 7.10 For any T -free graph G containing Γ, and u = bi, with i /∈ S,
the neighbors of u in G of finite degree are its neighbors in P .
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Proof. Taking j = i ± 1 in S, so that bj has infinite degree, then as
noted in the previous argument adjoining a new neighbor of bi would give
an embedding of T directly involving bi and bj .

Therefore the only new neighbors which bi might acquire are those lying
along the image of this embedding. Now the embedding passes in part along
rays which have been duplicated and since these rays have been duplicated
none of their elements can be a neighbor of bi. The remaining elements in the
image of the embedding either have infinite degree or lie on P and therefore
are either irrelevant or excluded already in the previous lemma. ¤

Proposition 7.11 In Case IIID there is no weakly universal T -free graph.

Proof. The path P with its neighbors bi (i ∈ S) can be recovered from
any T -free graph containing Γ together with one vertex of P , so the set S
can be determined up to a shift (or exactly if two specific vertices of P are
fixed).

As usual there are uncountably many possibilities for Γ and only count-
ably many realized in any particular countable graph. ¤

8 The Tree Conjecture

8.1 Taking stock

We review the analysis from the very beginning. A minimal counterexample
T to the Tree Conjecture will have the following properties.

1. T is neither a path nor a near-path.

2. The pruned tree T ′ is a path or a near-path

Let d be the maximal vertex degree. Then d ≥ 3. If there is a unique
vertex of degree d then Theorem 2 applies. So we suppose the contrary.

3. There are at least two vertices in T of degree d.

Suppose first

A T ′ is a path.

Let v0, v1 be a pair of vertices of degree d with v1 external and with v0

the closest vertex of degree d to v1. Let ` = d(v0, v1).
If ` ≥ 2 then one of Cases IA-C applies. Hence we suppose
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42 Forbidden subtrees

A1. Any external vertex of maximal degree is adjacent to a vertex of max-
imal degree.

Then if d ≥ 4 one of Cases IIA-B applies. So we suppose

A2. d = 3.

Then the four cases IIIA to IIID cover the remaining possibilities, case
IIIA when there are exactly two branch vertices and one of Cases IIIB, IIIC,
IIID otherwise.

Now suppose

B T ′ is a near-path with center v∗.

One can adapt the foregoing to this case, more or less, by treating v∗
as if it has degree d. But let us first isolate the cases not already explicitly
covered by our constructions.

First, suppose

B1 There is an external vertex of degree d which is not adjacent to v∗.

Let C be a v∗-component containing a vertex of degree d not adjacent to v∗,
and let Ĉ be the induced subgraph of T on C with the vertex v∗ adjoined.

If there are two nonadjacent vertices of degree d in Ĉ then one of the
foregoing cases applies. Otherwise, considering the vertices of degree d in Ĉ
together with v∗ we have one of the following possibilities:

B1.1 There is a unique vertex v1 of degree d in Ĉ, at distance ` ≥ 2 from
v∗.

B1.2 There are two adjacent vertices v1, v
′
1 of degree d in Ĉ.

In either case, if v∗ has degree d, with d ≥ 4, we will fall into one of our
cases with v0 = v∗. We need to adapt our constructions when v∗ does not
have degree d.

The effect of this is that in each case we need to reexamine the proof
that the resulting graph is T -free.

We will discuss these cases further below.
We have also the following possibility to consider.

B2 T ′ is a near-path with center v∗. Every vertex of degree d other than
v∗ is adjacent to v∗.

Here v∗ may or may not have degree d itself.
This case escapes from those treated earlier and must be handled sepa-

rately.
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8.2 The case d = 3

It will be convenient to clear away the case in which the maximal degree d
is 3. In particular in this case the center v∗ has degree d.

If some external branch vertex has distance at least 2 from the closest
branch vertex in T then Case I or II applies. So we may suppose that every
external branch vertex is adjacent to a branch vertex.

If some v∗-component C of T contains at least two branch vertices then
taking v′1 the external branch vertex of C, v1 the neighboring branch vertex,
and v0 the next branch vertex in T , that is either the next one in C or v∗
itself, we fall into Case IIIB, IIIC, or IIID.

So we may suppose that

(∗) All branch vertices other than v∗ are adjacent to v∗.

T ′ is a near-path, d = 3, and there are exactly two
branch vertices in T , namely the center v∗, and an
adjacent vertex v1.

Case IVA

This case is highly reminiscent of Case IIIA, and we may adapt that
construction as follows.

Construction 11 Take a two-way infinite path P and divide it into inter-
vals Pi, Qi which are alternately of lengths pi = 4 and qi = 1 or 2. Adjoin a
common neighbor bi to each interval Pi. Call the result Γ.

Lemma 8.1 Γ is T -free

Proof. Consider any subgraph of Γ containing two adjacent branch ver-
tices. These must be of the form u, bi with u ∈ Pi. Suppose that this graph
is part of a subgraph of Γ isomorphic with T . Then either u or bi corre-
sponds to v∗ and hence is an endpoint of three disjoint paths of length 2.
The vertex bi as well as any endpoint of Pi has this property, but the three
paths involved must completely cover Pi and bi. So if the other vertex is
to represent a branch point of the subgraph, it cannot be bi. Thus bi must
play the role of v∗ and then the three paths must embed in such a way as
to cover the neighbors of both endpoints of Pi as well and again u cannot
be a branch vertex of the image. ¤

Lemma 8.2 If Γ ⊆ G and G is T -free, then the graph induced on V (Γ)
by G is a connected component of G, and consists of Γ with any additional
edges (u, v) involving vertices u, v ∈ P at distance 2, of the following types:
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44 Forbidden subtrees

1. For some qi = 2, if u ∈ Qi is adjacent to u′ ∈ Pi±1 then possibly (u, v)
is an edge, with v the neighbor of u′ in Pi±1.

2. Two vertices of some Pi at distance 2 (one an endpoint, one an interior
point) may be adjacent.

Proof. First we exclude edges between Γ and G \ Γ. If (u, v) is an edge
with u ∈ Γ and v /∈ Γ we look for an embedding of T into Γ in which u plays
the role of v1, and we need to select an appropriate vertex to play the role
of v∗.

If u is adjacent to an endpoint u′ of Pi then u′ can play the role of v∗,
though there are two cases to be distinguished here: u = bi or u ∈ P . We
leave further inspection of this case to the reader.

Now suppose u is not adjacent to an endpoint of Pi. Then u is an
endpoint of Pi itself, and bi can play the role of v∗.

So the graph G0 induced on the vertices of Γ by G is a connected com-
ponent of G and the question remains as to its precise structure.

Suppose first that (bi, v) is an edge in G but not in Γ. Then easily v ∈ P
and since v /∈ Pi we can take v to play the role of v∗ and bi to play the role
of v1, taking as leaf adjacent to bi an interior vertex of Pi lying on the side
away from v.

So the only edges that come into consideration are edges (u, v) joining
vertices of P . If d(u, v) ≥ 3 and u ∈ Pi then we let u play the role of v1 with
bi representing a leaf adjacent to u, and v may play the role of v∗.

If d(u, v) ≥ 3 and u ∈ Qi with u adjacent to u′ ∈ Pi±1 then we let u play
the role of v∗ with u′, bi representing a path attached to u and with v in the
role of v1.

So we have

u, v ∈ P ; d(u, v) = 2

Now if u ∈ Qi and qi = 1 then easily as u is adjacent to endpoints in
Pi−1 and Pi+1, there can be no new neighbors of u in P .

If u ∈ Qi with qi = 2 is adjacent to u′ in Pi+1 then there can be no edge
(u, v) with v the endpoint of Pi closest to u, as then v could play the role
of v1 and bi could play the role of v∗.

So for u ∈ Qi we have only the case mentioned in the statement of the
lemma. ¤

Proposition 8.3 In case IVA, there is no weakly universal T -free graph.
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Proof. One needs to decode some information from an embedding of Γ
into a T -free graph G. This can be simplified by taking qi = 1 over large
intervals of fixed size, with occasional values of qi = 2 inserted optionally at
regular intervals.

Let G0 be the graph induced on V (Γ) by G. Viewing G0 as a collection
of 2-connected blocks which are connected in a tree structure, we see that
the 2-connected blocks have approximately the same vertices as they do in
Γ, with some possible variation involving Qi when qi = 2. The vertices with
four neighbors in their 2-block are the bi and possibly some interior vertices
of Pi.

Most of the nontrivial 2-connected blocks have order 5, and their points
of attachment are the endpoints of the intervals Pi. The exceptions may
occur when qi = 2 and these occurrences will be signalled either by the
presence of a 2-connected block of order 6, or by two successive 2-connected
blocks with a gap of size 2. From this rudimentary analysis one cannot
recover the exact placement of the exceptional values of qi, but one can
localize it with an error of ±1, which is good enough. ¤

The next case to consider would have T ′ a near-path, exactly three
branch vertices consisting of the center v∗ and two neighbors of v∗, but
Case IIIB covers this one.

So in fact there is just one more case with d = 3.

T ′ is a near-path, d = 3, and there are exactly four
branch vertices in T , namely the center v∗, and three
adjacent vertices v1, v2, v3, in distinct v∗-components.
We may suppose that v3 is adjacent to two leaves (and
the same may possibly apply to one or both of v1, v2).

Case IVB

Construction 12 Begin with a two-way infinite path P divided into inter-
vals Pi, Qi of lengths pi = 6 and qi = 1 or 0. Attach a vertex bi adjacent to
the vertices of Pi and if Qi contains a vertex, give it infinite degree. Call
the result Γ.

Lemma 8.4 Γ is T -free

Proof. Consider the subgraph Γ0 of Γ with the same vertices, and with
edges between any pair of vertices u, v of Γ which lie in a subgraph of Γ
for which u, v are adjacent branch vertices of degree 3 with no common
neighbor. Then all the edges containing bi in Γ are retained, but the only
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46 Forbidden subtrees

edges along P which are retained are the ones involving a vertex of some
Qi, and the vertices of Qi have degree 2 in Γ0.

Under an embedding of T into Γ, v∗ must correspond to a vertex of degree
at least 3 in Γ0, thus a vertex bi for some i. But there is no such embedding
as one of the three branch vertices neighboring v∗ must correspond to an
interior point of Pi, so that together with its neighbors this v∗-component
requires at least 3 vertices of Pi, and each of the others requires at least 2
vertices of Pi. ¤

Lemma 8.5 If Γ is contained in the T -free graph G, and if G0,Γ0 are the
subgraphs of G induced on the branch vertices of G and of Γ respectively,
then Γ0 is a connected component of G0.

Proof. The vertices of Γ0 are the vertices of P together with the vertices
bi.

We claim first

(1) There is no edge (u, v) in G with u ∈ Pi, v /∈ Γ0

We may suppose that u is the first, second, or third vertex of Pi. If u is the
first or third vertex then we embed T into Γ with bi playing the role of v∗
and with the extra vertex v playing the role of a leaf attached to one of its
neighbors. If u is the second vertex of Pi we let the first vertex of Pi play
the role of v∗. So (1) holds.

Now we claim

There is no edge (u, v) in G with u ∈ Qi, v /∈ Γ0, and v a
branch vertex of G

(2)

Let u, u′, u′′ be three neighbors of v in G. We attempt to embed T into G
with u playing the role of v∗. This can be blocked if u′ or u′′ lies on P or
coincides with bi or bi+1. Suppose therefore that u′ is of one of these two
forms.

If u′ = bi+1 then we may let bi+1 play the role of v∗ with u′ as one of its
neighboring branch vertices. This could only be blocked by having u′′ ∈ P
in which case u′′ ∈ Qj for some j. In this case u′′ could play the role of v∗
instead. Similarly the case u′ = bi may be excluded.

So we may suppose that the vertices u′, u′′ which lie in Γ lie in P , and
in each such case in some Qj. Furthermore we may suppose that among
those vertices of u, u′, u′′ lying on P , u is the first in order. Then we use u
to represent v∗, getting a contradiction. So (2) holds.
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So our lemma is proved as far as edges involving vertices of P are con-
cerned. Suppose finally that (u, v) is an edge with u = bi for some i and v a
branch vertex of G not in Γ0. Let u′, u′′ be additional neighbors of v. By the
cases already treated, these vertices do not lie on P . It is then easy to embed
T into G with bi playing the role of v∗, arriving at a contradiction. ¤

Lemma 8.6 If Γ is contained in the T -free graph G, and Γ0 is the graph
induced on the branch vertices of Γ by G, then any edge (u, v) of Γ0 which
is not an edge of Γ involves two vertices of P , at distance at most 3, and of
one of the following two forms.

1. u or v is in Qi for some i;

2. u and v are in successive intervals Pi−1, Pi, with qi = 0, and adjacent
to endpoints of these intervals; d(u, v) = 3.

Proof. First, one may eliminate the possibility u = bi, as a new edge of
this type leads to an embedding of T into G with bi playing the role of v∗.
So we may suppose u, v ∈ P .

Now suppose d(u, v) ≥ 4 where all distances will be measured in P . Then
we let u play the role of v∗ and we let the neighbor u′ of u along P in the
direction of v play the role of a branch vertex adjacent to v∗, whose further
neighbors are leaves of T . As d(u, v) ≥ 4 this embedding can be completed
to an embedding of T .

If u is an endpoint of Pi, say a left endpoint, and v lies farther to the left
along P , embed T into G with bi representing v∗ and with the immediate
neighbor of u to its left representing a leaf adjacent to u.

If v lies to the right of P , and at distance at most 3, then let u play the
role of v∗ with v an adjacent branch vertex. Here bi will also play the role
of an adjacent branch vertex.

In the remaining cases, we may choose notation so that u is adjacent to
an endpoint u′ of Pi for some i. Leaving aside the cases mentioned in the
statement of the lemma, we may suppose v ∈ Pi as well. We let u′ represent
v∗ and u represents a branch vertex adjacent to u′ with a neighbor on P
and v as its adjacent leaves. ¤

Proposition 8.7 In case IVB, there is no weakly universal T -free graph.

Proof. If Γ is contained in a T -free graph G then the graph Γ0 induced
on the branch vertices of Γ by G can be recovered from one of its vertices.
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48 Forbidden subtrees

We examine the vertices of degree 6 in Γ0. These include the vertices bi,
and for these vertices the graph induced on its neighbors is connected.

If qi = 1 and u is the unique vertex of Qi, then u can have a maximum
of 6 neighbors in Γ0, which would then be all of its neighbors in P up to
distance 3. In this case the graph induced on the neighbors of u in Γ0 is
disconnected.

If u lies in some interval Pi, then in addition to its 3 neighbors in Γ, there
can be at most one more in Γ0. So these do not come into consideration.

As we may distinguish the bi by the structure of the graph induced on
their neighbors, we can also recognize the path P and the intervals Pi, which
remain paths in Γ0. While Γ0 may have some additional edges we can then
detect the vertices in Qj for qj = 1, as well as their locations relative to the
Pi. ¤

8.3 The case d ≥ 4

T ′ is a near-path with center v∗. If the degree of v∗ is d, or if one of the
v∗-components of T contains two vertices of degree d, then one of the cases
I, II applies.

So we suppose

1. deg(v∗) < d.

2. Each v∗-component of T contains at most one vertex of degree d.

As we have disposed of the case in which there is a unique vertex of
degree d in T , there are either two or three vertices of degree d.

T ′ is a near-path, d ≥ 4, and there are exactly two
vertices v0, v1 of degree d in T , lying in distinct v∗-
components.

Case IVC

If d(v0, v1) = 2 then Case IC applies, so we suppose ` = d(v0, v1) ≥ 3.

Construction 13 Take a (d − 1)-regular tree P and find disjoint intervals
Pi in P of lengths pi ≥ 3` − 3 such that every vertex of P not in one of the
Pi lies at distance less than ` from at least two of the intervals Pi, but no
vertices of distinct Pi, Pj lie at distance less than ` of each other.

This is done inductively. At each stage finitely many intervals Pi have
been selected, no two at distance less than `, so that the subgraph induced on
the vertices within distance `− 1 of some Pi is connected. Then a vertex at
minimal distance ` from some Pi is selected and put into a new interval Pi.
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With some housekeeping one may ensure that the whole tree P is exhausted
by this process. For any vertex v of P which is not in the Pi, there is a first
stage at which v falls within distance `−1 of one of the Pi, and at that stage
v lies outside the convex hull of the Pi selected up to that point. Consider
the tree Tv rooted at v obtained by deleting the v-component of P containing
the convex hull of the Pi. If the distance from v to the nearest Pi (so far
chosen) is k, then the vertices of Tv lying at distance ` from the closest Pi

are those at distance ` − k from v. As the construction proceeds, and new
intervals Pi are selected, one of two things will occur. Possibly the distance
from v to the nearest Pi will be diminished at some point, in which case v is
close to at least two such intervals. In the contrary case, the distances of the
vertices in Tv to the nearest Pi will also be unaltered until one of them, lying
at distance ` from the nearest Pi and at distance `− k from v, is selected as
an endpoint of a new interval Pi, at which point v will lie within `− 1 of at
least two such intervals.

Now adjoin a vertex bi adjacent to the vertices of Pi for each i, and
attach to bi infinitely many (d − 1)-regular trees—but with its root of degree
(d − 2), so that after attachment to bi the degree of the root is also (d − 1).

Call the result Γ.

Lemma 8.8 The graph Γ is T -free.

Proof. The only vertices of degree d in Γ are the bi and the vertices in the
intervals Pi. As these are widely spaced, the only way to embed T into Γ is
to send the two vertices of degree d into Pi ∪ {bi} for some i.

The vertices of Pi have degree d and a common neighbor, so at most
one of these vertices can serve as the image of a vertex of degree d in T .
Therefore the two images must be of the form bi, u with u ∈ Pi. But then the
edge (u, bi) is not in the image, and u cannot have degree d in the image. ¤

Lemma 8.9 If Γ is contained in a T -free graph G, then

1. The vertices of P have finite degree in G, and their neighbors all lie
in Γ.

2. For u ∈ P , the neighbors of u of finite degree in G are its neighbors in
P .

Proof. First, if one adjoins an edge (u, v) linking a vertex u ∈ P to a
vertex v /∈ Γ, then T embeds into the extended graph by finding a path of
length ` along P to some bi. Note that in view of the structure of T the
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50 Forbidden subtrees

vertices of degree d have at least one adjacent leaf, so the new vertex v can
serve to represent one such leaf, u can represent a vertex of degree d, and bi

can represent the other vertex of degree d. As there are only two vertices of
degree d in T , the embedding may be completed.

The same applies if the vertex v lies in one of the trees attached to a bi.
So we may suppose that v lies on P or among the vertices bi, and not too
far from u. So the first point follows.

If we now require v to have finite degree then we are no longer concerned
with the bi, and we may suppose v ∈ P .

Now if v is not adjacent to u in P there are various possibilities. Let
us fix a leaf ṽ adjacent to v0 and an embedding of T \ ṽ into Γ taking one
vertex of degree d to u and the other to some bi. We can extend this to an
embedding of T into G unless v lies either on the path from u to bi along P ,
or in the remaining part of the neighborhood of u in Γ used to embed the
other v0-components of T .

In the second case, we can examine the path from u to v along P and use
the neighbor u′ of u along this path to represent ṽ, and the tree originating
with the edge from u through v and continuing along P to replace the u-
component of P containing u′.

So suppose that v lies along the path L from u to a neighbor of bi in
Pi, of length ` − 1. One or both of the vertices u, v may lie in the interval
Pi. Removing such vertices, Pi is divided into at most three intervals, of
total length at least 3`−5, and hence one of these intervals contains at least
` − 1 vertices. Such an interval may or may not be separated from u by
v. If it is not separated, we can make use of it and possibly other vertices
of P to find a path of length ` from u to bi avoiding v, and complete the
construction. If it is separated, we can make use of the edge (u, v) to find a
suitable replacement path, and use the neighbor of u on P in the direction
of v as a representative for the leaf ṽ. ¤

Proposition 8.10 In case IVC, there is no weakly universal T -free graph.

Proof. We have considerable latitude in the choice of the size pi of Pi.
It suffices to decode the set of pi involved in the construction after Γ is
embedded into a T -free graph G (whereas the “sequence” is not that well-
defined at this point).

By the preceding lemma, we can recover the graph structure on P from
one of its vertices, in G. We would like to recover the intervals Pi by con-
sidering vertices of P with a common neighbor in G lying at the root of
an infinite system of (d − 1)-regular trees. By the preceding lemma this
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common neighbor would have to lie in Γ and it only be some bi. So we have
to deal with the possibility that a vertex u outside the interval Pi might be
connected to bi. But then by our construction, this vertex would lie within
(`−1) of some second interval Pj , leading to an embedding of T into G. ¤

Finally we come to the case of three vertices of maximal degree, with
the center v∗ of lower degree. At least one of these three vertices must be
adjacent to v∗. We can unify the treatment of these cases, but we prefer to
first treat the case in which all vertices of degree d are adjacent to v∗, and
then discuss the modification of our construction suitable for other cases.

T ′ is a near-path, d ≥ 4, and there are three vertices
v0, v1, v2 of degree d in T , all of which are adjacent
to v∗.

Case IVD

Construction 14 Let C1, C2 be the v∗-components of T containing v1, v2

respectively. Let H be the graph obtained by amalgamating the induced graph
on {v∗} ∪ C1 ∪ C2 with itself over the vertices v∗, v1, v2 and then giving
v1, v2, v∗ infinitely many new neighbors.

Take a two-way infinite path P partitioned into intervals Pi of lengths
pi = 1 or 2. Adjoin a vertex bi adjacent to each vertex of Pi, and attach H
to bi with bi playing the role of v∗.

Raise the degrees of the vertices on P to d−1 by adding additional edges
between pair on P , keeping the girth of the induced graph on P extremely
large (it will resemble a (d − 2)-regular tree locally).

Then take any remaining vertices of degree less than d − 1 and attach
trees to them so as to raise all such vertex degrees up to d − 1.

Call the result Γ.

Lemma 8.11 The graph Γ is T -free.

Proof. There are no vertices with three neighbors of degree d. ¤

Lemma 8.12 If Γ is contained in a T -free graph G then the vertices of P
have finite order in G, and if u ∈ P then the neighbors v of u of finite order
in G are its neighbors in P .

Proof. A vertex u ∈ P can have no new neighbor v in G \ Γ as this
immediately produces an embedding of T into Γ.
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52 Forbidden subtrees

If u ∈ Pi then the only candidates for a vertex v ∈ Γ which could serve
as a new neighbor without producing an embedding of T into Γ are the
vertices adjacent to bi which correspond to v1 or v2, and these have infinite
degree in Γ. So the vertices of P have finite degree, and if we restrict our
attention to neighbors of finite degree then there are none available other
than the (d − 1) neighbors we have already selected. ¤

Proposition 8.13 In case IVD, there is no weakly universal T -free graph.

Proof. If Γ is contained in the T -free graph G then we can recover the
graph P from G and one vertex of P . Now if d ≥ 5 there is enough variability
in the structure of P itself to yield the desired conclusion, so we may suppose
that d = 4 and P is a path.

If a pair (u, u′) of vertices of P has a common neighbor, then that neigh-
bor is not on P and could only be some bi or some vertex adjacent to bi,
and then only if u, u′ ∈ Pi. Thus the sets Pi can be recovered, and thus the
sequence pi can be recovered up to a shift and reversal. ¤

T ′ is a near-path, d ≥ 4, and there are three vertices
v0, v1, v2 of degree d in T , in distinct v∗-components
of T .

Case IVD′

Construction 15 We proceed much as in the previous case but with a dif-
ferent treatment for the v∗-components Ci containing vi nonadjacent to v∗
(i = 1 or 2, possibly): these components we allow to be freely amalgamated
over v∗ (without fixing the vertex vi). Otherwise, we proceed as in the pre-
vious construction.

Call the result Γ.

Lemma 8.14 The graph Γ is T -free.

Proof. If v∗ is adjacent to n vertices of degree d in T , where 1 ≤ n ≤ 3,
then no vertex of Γ is adjacent to more than n − 1 vertices of degree d. ¤

This is actually the main point, since we have loosened the construction
of H in a way that in other contexts could easily lead to a violation of this
first step.

The rest of the analysis is as before since the construction of H is if
anything even freer than it was in the previous case.

Proposition 8.15 In case IVD′, there is no weakly universal T -free graph.
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With this, the proof of Theorem 3′ is complete, and thus also the proof
of Theorem 3. Together with Theorem 2 this gives the full Tree Conjecture.

We believe that these methods can be applied to the complete iden-
tification of all finite connected graphs C for which there is a countable
universal (weakly or strongly) C-free graph, in part because we expect the
list of exceptional C allowing such a universal graph to be fairly limited. In
particular we now think it quite likely that this problem is decidable in the
case of a single constraint, and very possibly more generally.

Based on the results of [7] it would appear that the “generic” case cor-
responds roughly to the case in which there is some block of order at least
6, and that the nongeneric case is therefore inconveniently complicated.

We remark that a proof of decidability for the case of a single constraint
may be achievable without actually working through all the critical cases.
Once the set of unsolved cases is reduced to a well-quasiordered set relative
to the “pruning” relation, one knows that the remaining minimal cases not
allowing a universal graph form a finite set, and the problem is therefore al-
gorithmically decidable. This style of argument does not necessarily provide
any further indication as to what the relevant finite subset might be, any
bound on its size, or a fortiori any explicit algorithms. We hope to return
to this topic.

9 List of cases

9.1 Paths and some near-paths

` ≥ 2Case I

T has a vertex v0 of maximal degree d ≥ 4 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and ` = d(v0, v1) ≥ 3. Either T ′ is a
path, or else T ′ is a near-path whose center does not
lie in the v0-component C.

Case IA

T has a vertex v0 of maximal degree d = 3 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and ` = d(v0, v1) ≥ 3. Either T ′ is a
path, or else T ′ is a near-path whose center does not
lie in the v0-component C.

Case IB
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54 Forbidden subtrees

T has a vertex v0 of maximal degree d such that some
v0-component C of T contains a unique vertex v1 of
degree d, and ` = d(v0, v1) = 2. Either T ′ is a path,
or else T ′ is a near-path whose center is not v1.

Case IC

` = 1Case II

T has a vertex v0 of maximal degree d ≥ 5 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and v0, v1 are adjacent. Either T ′ is a
path, or T ′ is a near-path whose center does not lie
in the v0-component C.

Case IIA

T has a vertex v0 of maximal degree d = 4 such that
some v0-component C of T contains a unique vertex
v1 of degree d, and v0, v1 are adjacent. Either T ′ is a
path, or T ′ is a near-path whose center does not lie
in the v0-component C.

Case IIB

T ′ is a path and T contains exactly two branch ver-
tices v0 and v1, which are adjacent, and of degree
3.

Case IIIA

The maximal vertex degree is 3. T contains a se-
quence of three adjacent branch vertices v1, v0, v2

with v1 external and adjacent to a leaf. Some v0-
component of T is a path.

Case IIIB

The maximal vertex degree is 3. T contains a se-
quence of three successive branch vertices v0, v1, v

′
1

with v′1 external and adjacent to a leaf, v1 adjacent
to v′1, and ` = d(v0, v1) ≥ 3, where v0 is the closest
branch vertex to v1 other than v′1. Either the pruned
tree T ′ is a path, with both external branch vertices
of T are adjacent to branch vertices. or a near-path
with the center not in the v0-component containing
v1.

Case IIIC
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The maximal vertex degree is 3. T contains a se-
quence of three successive branch vertices v0, v1, v

′
1

with v′1 external and adjacent to a leaf, v1 adjacent
to v′1, and ` = d(v0, v1) = 2, where v0 is the closest
branch vertex to v1 other than v′1. Either the pruned
tree T ′ is a path, and both external branch vertices of
T are adjacent to branch vertices, or it is a near-path
with the center not in the v0-component containing
v1.

Case IIID

9.2 The remaining near-paths

T ′ is a near-path, d = 3, and there are exactly two
branch vertices in T , namely the center v∗, and an
adjacent vertex v1.

Case IVA

T ′ is a near-path, d = 3, and there are exactly four
branch vertices in T , namely the center v∗, and three
adjacent vertices v1, v2, v3, in distinct v∗-components.
We may suppose that v3 is adjacent to two leaves (and
the same may possibly apply to one or both of v1, v2).

Case IVB

T ′ is a near-path, d ≥ 4, and there are exactly two
vertices v0, v1 of degree d in T , lying in distinct v∗-
components.

Case IVC

T ′ is a near-path, d ≥ 4, and there are three vertices
v0, v1, v2 of degree d in T , and all are adjacent to v∗.

Case IVD

T ′ is a near-path, d ≥ 4, and there are three vertices
v0, v1, v2 of degree d in T , in distinct v∗-components
of T .

Case IVD′
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