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Filtration-equivalent ℵ1-separable abelian groups of

cardinality ℵ1

Saharon Shelah and Lutz Strüngmann

Abstract. We show that it is consistent with ordinary set theory ZFC and

the generalized continuum hypothesis that there exist two ℵ1-separable abelian

groups of cardinality ℵ1 which are filtration-equivalent and one is a Whitehead

group but the other is not. This solves one of the open problems from [EkMe].

Introduction

An ℵ1-separable abelian group is an abelian group G such that every countable

subgroup is contained in a free direct summand of G. This property is apparently

stronger than the property of being strongly ℵ1-free; however, the two properties

coincide for groups of cardinality at most ℵ1 in models of Martin’s Axiom (MA)

and the negation of the continuum hypothesis (¬CH). Over the years the vari-

ety and abundance of ℵ1-separable groups obtained by various constructions has

demonstrated the failure of certain attempts to classify ℵ1-separable groups of car-

dinality ℵ1. In brief, one can say that positive results towards classification can

be given assuming MA+¬CH and negative results are obtained assuming CH or

even the axiom of constructibility V = L. A good survey is for instance [EkMe,

Chapter VIII].

There are four principal methods of constructing ℵ1-free groups: as the union of

an ascending chain of countable free groups; in terms of generators and relations;
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2 SAHARON SHELAH AND LUTZ STRÜNGMANN

as a subgroup of a divisible group; and as a pure subgroup of Zω1 . In the study of

ℵ1-separable groups it turned out to be helpful to consider the concept of filtration-

equivalence, a relation between two ℵ1-separable groups. Recall that two groups

A and B of cardinality ℵ1 are called filtration-equivalent if they have filtrations

{Aν : ν ∈ ω1} and {Bν : ν ∈ ω1} respectively such that for all ν ∈ ω1, there is

an isomorphism Φν : Aν → Bν satisfying Φν [Aµ] = Bµ for all µ ≤ ν. Such an

isomorphism is called level-preserving. Note that it is not required that Φτ extends

Φν when τ ≥ ν and note also that filtration-equivalent groups A and B are also

quotient-equivalent, i.e. for all ν ∈ ω1 we have Aν+1/Aν ∼= Bν+1/Bν .

Under the hypothesis of Martin’s Axiom the notion of filtration-equivalence rep-

resents the end of the search; more precisely, assuming MA + ¬CH , filtration-

equivalent ℵ1-separable groups are isomorphic. Assuming even the proper forcing

axiom (PFA) every ℵ1-separable group (of cardinality ℵ1) is of a special standard

form. However, in L there exist non-isomorphic ℵ1-separable groups of cardinality

ℵ1 which are filtration-equivalent.

In [EkMe, Open problems on the structure of Ext Nr.6] (see also [Ek]) Eklof

and Mekler asked whether or not it is consistent with ZFC that there exist two

filtration-equivalent ℵ1-separable groups of cardinality ℵ1 such that one is a White-

head group and the other is not. Recall that a Whitehead group is an abelian

group G satisfying Ext(G,Z) = 0. The class of Whitehead groups is closed under

direct sums and subgroups and contains the class of free abelian groups. However,

the question whether all Whitehead groups are free is undecidable in ZFC as was

shown by the first author in [Sh1], [Sh2]. Similarly, we shall show in this paper

that the answer to the question by Eklof and Mekler is affirmative even assuming

GCH .

All groups are abelian and notation is in accordance with [Fu] and [EkMe]. For

further details on ℵ1-separable groups and set theory we refer to [EkMe].

The Construction

Using special ladder systems we construct ℵ1-separable abelian groups of cardinal-

ity ℵ1 with a prescribed Γ-invariant. The construction is similar to the one given
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FILTRATION-EQUIVALENT ℵ1-SEPARABLE ABELIAN GROUPS OF CARDINALITY ℵ1 3

in [EkMe, Chapter XIII, Section 0].

Throughout this paper let S ⊆ ω1 be a stationary and co-stationary subset of ω1.

Since lim(ω1) is a closed and unbounded subset of ω1 we may assume without loss

of generality that S consists of limit ordinals of cofinality ω only. We shall further

require that ω2 divides δ for every δ ∈ S. We recall the definition of a ladder and

a ladder system.

Definition 1.1. We use the following notions:

(i) A ladder on δ ∈ S is a strictly increasing sequence ηδ = {ηδ(n) : n ∈ ω}

of non-limit ordinals less than δ which is cofinal in δ, i.e. sup{ηδ(n) :

n ∈ ω} = δ.

(ii) The ladder ηδ is a special ladder if there exists a sequence 0 < kηδ

0 <

kηδ

1 < · · · < kηδ
n < · · · of natural numbers such that

(a) ηδ(k
ηδ
n + i) + ω = ηδ(k

ηδ
n + j) + ω for all i, j < kηδ

n+1 − kηδ
n ;

(b) ηδ(k
ηδ
n ) + ω < ηδ(k

ηδ

n+1).

for all n ∈ ω.

Note that the existence of S and certain ladders on S is well-known. However, any

limit ordinal δ of the form δ = α + ω obviously does not allow the existence of a

special ladder. This is the reason why we have required that ω2 divides δ for every

δ ∈ S, and hence no δ ∈ S can be of the form δ = α + ω. For δ ∈ S all ladders

are special but we will continue to use the word special because this concept makes

sense also if δ is not a multiple of ω2.

Example 1.2. The following are natural examples of the ladders η on δ:

(i) Let kηn = 2n for all n ∈ ω. Then η is special if and only if

η(2n) + ω = η(2n+ 1) + ω < η(2n+ 2);

(ii) Let kηn = n for all n ∈ ω. Then η is special if and only if

η(n) + ω < η(n+ 1).

For δ ∈ S we let ∆δ be the set of all special ladders on δ.

We now collect ladder systems containing special ladders.
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4 SAHARON SHELAH AND LUTZ STRÜNGMANN

Definition 1.3. A system η̄ = 〈ηδ : δ ∈ S〉 of (special) ladders is called a (special)

ladder system on S.

We put

E = {η̄ : η̄ is a special ladder system}.

For later use we also define

Eα = {η̄α : η̄ ∈ E, η̄α = 〈ηδ : δ ∈ S ∩ α〉}

for α < ω1. On the set of special ladders we define the ω-range function as follows:

rd(η) = 〈η(kηn) + ω : n ∈ ω〉 .

Note that rd(η) determines all values of η(n) + ω (n ∈ ω) since the ladder η

is special. Moreover, if η̄ ∈ E, then put rd(η̄) = 〈rd(ηδ) : δ ∈ S〉 and similarly

rdα(η̄) = rdα(η̄α) = 〈rd(ηδ) : δ ∈ S ∩ α〉 for α < ω1.

Using the special ladder systems we can now define our desired groups. Let η̄ ∈ E

be a special ladder system and put kδn = kηδ
n for all δ ∈ S and n ∈ ω. Moreover, let

tδn = kδn+1 − kδn for all n ∈ ω. We define a Q-module

F =
⊕

β<ω1

xβQ ⊕
⊕

δ∈S,n∈ω

yδ,nQ

freely generated (as a vectorspace) by the independent elements xβ (β < ω1) and

yδ,n (δ ∈ S, n ∈ ω). Our desired group will be constructed as a subgroup of F .

Therefore, given a group G ⊆ F , we define a canonical ℵ1-filtration of G by letting

Gα = 〈G ∩ ({xβ : β < α+ ω} ∪ {yδ,n : δ ∈ S ∩ α, n ∈ ω})〉
∗
⊆ G

for α < ω1. Here 〈· · · 〉
∗

denotes the purification of 〈· · · 〉in G. Then {Gα : α < ω1}

is an increasing chain of pure subgroups of G such that G =
⋃

α<ω1

Gα. However,

the chain is not continuous since for instance Gω 6=
⋃

n∈ω

Gn but this is not needed

in the sequel and we will still call it a filtration. For simplicity let yδ = yδ,0 for

δ ∈ S. Let ψ : ω → ω be a fixed function with ψ(n) 6= 0 for all n ∈ ω and choose

integers aδ,nl for l < tδn such that gcd(aδ,nl : l < tδn) = 1 for all n ∈ ω and δ ∈ S. We
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FILTRATION-EQUIVALENT ℵ1-SEPARABLE ABELIAN GROUPS OF CARDINALITY ℵ1 5

define elements zδ,n ∈ F via

(1.1) zδ,n =

n−1
∏

i=0

1

ψ(i)
yδ +

n−1
∑

i=0

n−1
∏

j=i

1

ψ(j)





∑

l<tδi

aδ,il xηδ(kδ
i +l)





for δ ∈ S and n ∈ ω. Furthermore we put zδ,0 = yδ and let ā =
〈

aδ,nl : l < tδn, n ∈ ω, δ ∈ S
〉

.

Let Gψ,āη̄ = 〈xβ , zδ,n : β < ω1, δ ∈ S, n ∈ ω〉 ⊆ F . Then easy calculations show that

the generating relations satisfied by the generators of Gψ,āη̄ are

(1.2) ψ(n)zδ,n+1 = zδ,n +
∑

l<tδn

aδ,nl xηδ(kδ
n+l)

for δ ∈ S and n ∈ ω.

Lemma 1.4. Let Gψ,āη̄ = 〈xβ , zδ,n : β < ω1, δ ∈ S, n ∈ ω〉 ⊆ F be as above. Then

Gψ,āη̄ admits a free presentation of the form

0 → Y → X → Gψ,āη̄ → 0

where X is the free group X =
⊕

β<ω1

Zxβ ⊕
⊕

δ∈S,n∈ω

Zzδ,n and Y is the subgroup of

X generated by the elements ψ(n)zδ,n+1 − zδ,n −
∑

l<tδn
aδ,nl xηδ(kδ

n+l) for δ ∈ S and

n ∈ ω.

Proof. That the elements ψ(n)zδ,n+1 − zδ,n −
∑

l<tδn
aδ,nl xηδ(kδ

n+l) for δ ∈ S

and n ∈ ω are in the kernel Y is clear and that they generate Y is easily established

and therefore left to the reader. �

To simplify notation we shall omit in the sequel the superscript (ψ, ā) since the

function ψ and the vector ā of integers will always be clear from the context.

However, the reader should keep in mind that for every ladder system η̄ the group

Gη̄ = Gψ,āη̄ always depends on the additional parameters ψ and ā. We consider

Example 1.2 again.

Example 1.5. The following hold:

(i) Let η̄ be a special ladder system consisting of special ladders as defined

in Example 1.2 (i) and choose aδ,n0 = 1, aδ,n1 = −1 for all δ ∈ S and
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6 SAHARON SHELAH AND LUTZ STRÜNGMANN

n ∈ ω. Then Gη̄ satisfies the following relations

ψ(n)zδ,n+1 = zδ,n + xηδ(2n) − xηδ(2n+1)

(ii) Let η̄ be a special ladder system consisting of special ladders as defined

in Example 1.2 (ii) and choose aδ,n0 = 1 for all δ ∈ S and n ∈ ω. Then

Gη̄ satisfies the following relations

ψ(n)zδ,n+1 = zδ,n + xηδ(n)

We now prove some properties of the constructed groups Gη̄.

Lemma 1.6. Let η̄ ∈ E. Then the group Gη̄ is a torsion-free ℵ1-separable abelian

group of size ℵ1 with Γ(Gη̄) = S̃.

Proof. Let η̄ ∈ E be a special ladder system. Clearly the group Gη̄ is a

torsion-free group of cardinality ℵ1. We first prove that Gη̄ is ℵ1-free. Therefore,

let H be a finite rank subgroup of Gη̄. Then there exists a finite subset

T ⊆ {xβ : β < ω1} ∪ {zδ,n : δ ∈ S, n ∈ ω}

such that

H ⊆ 〈t : t ∈ T 〉
∗
⊆ Gη̄.

Let TS = {δ ∈ S : zδ,n ∈ T for some n ∈ ω}. We can enlarge T (not changing TS)

so that there exists an integer m such that

• for δ ∈ TS we have zδ,n ∈ T if and only if n ≤ m;

• for yδ = zδ,0 ∈ T we have xηδ(n) ∈ T if and only if n < kδm+1.

Then using equation (1.2) it is not hard to see that 〈t : t ∈ T 〉
∗

is freely generated

by the elements {zδ,m : yδ ∈ T } ∪ {xηδ(n) : n < kδm+1, yδ ∈ T }. Thus H is free and

therefore Gη̄ is ℵ1-free.

It remains to prove that Gη̄ is ℵ1-separable. Therefore let {Gαη̄ : α < ω1} be

the canonical ℵ1-filtration of Gη̄. We shall now define for all ν 6∈ S a projection

πν : Gη̄ → Gνη̄ such that πν ↾Gν
η̄
= id ↾Gν

η̄
. Let ν 6∈ S be given. For every µ ≥ ν + ω

let πν(xµ) = 0; for δ ∈ S with δ > ν let nδ be maximal with ηδ(k
δ
nδ

) < ν. Hence

ηδ(k
δ
nδ

+ i) < ν + ω for all i < tδnδ
and ηδ(k

δ
nδ+1) > ν + ω. Let πν(zδ,n) = 0 for all
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FILTRATION-EQUIVALENT ℵ1-SEPARABLE ABELIAN GROUPS OF CARDINALITY ℵ1 7

n ≥ nδ. Moreover, put

πν(yδ) = −

nδ−1
∑

i=0

i−1
∏

j=0

ψ(j + 1)
∑

l<tδi

aδ,il xηδ(kδ
i +l)

and finally

πν(zδ,n) = −

nδ−1
∑

i=n

i−1
∏

j=n

ψ(j + 1)
∑

l<tδi

aδ,il xηδ(kδ
i +l)

for all n < nδ. Letting πν ↾Gν
η̄
= id ↾Gν

η̄
it is now straightforward to check that πν is

a well-defined homomorphism as claimed using equation (1.2). Finally, Γ(Gη̄) = S̃

follows immediately by an easy checking that Gν+1
η̄ /Gνη̄ is not free for ν ∈ S. �

We now prove that a special ladder system is sufficiently separated.

Lemma 1.7. Let η̄ ∈ E and α < ω1. Then there exists a sequence of integers

〈mδ : δ ∈ S ∩ α〉 such that the sets {ηδ(k
δ
n) + ω : n ≥ mδ} (δ ∈ S ∩ α) are pairwise

disjoint. In particular, the sets {ηδ(k
δ
n + i) : n ≥ mδ, i < tδn} (δ ∈ S ∩ α) are

pairwise disjoint.

Proof. Let η̄ ∈ E and α < ω1 be given. Since α is countable we may enu-

merate S ∩ α by ω, say S ∩ α = {δk : k ∈ ω}. We shall now define inductively the

sequence 〈mδk
: k ∈ ω〉 such that for every k ∈ ω the sets

(1.3) {ηδj
(kδj
n ) + ω : n ≥ mδj

} (j ≤ k) are pairwise disjoint.

We start with k = 1, hence ηδ0 and ηδ1 are given. In order to carry on the induction

we shall prove a stronger result. Let mδ0 be fixed but arbitrary. We claim that

there is mδ1 such that (1.3) holds for k = 1. Assume first that δ0 < δ1. Since

S ⊆ lim(ω1) and ω2|δ for all δ ∈ S we obtain δ1 > δ0 + ω. Hence it is easy to see

that mδ1 exists such that (1.3) is satisfied for k = 1 because ηδ1 is a ladder with

sup(Im(ηδ1)) = δ1.

Assume δ1 < δ0, then δ0 > δ1 + ω. Thus there is m′
δ1

such that {ηδ0(k
δ0
n ) + ω :

n ≥ m′
δ1
} and {ηδ1(k

δ1
n ) + ω : n ≥ m′

δ1
} are disjoint. Increasing m′

δ1
sufficiently we

obtain mδ1 ≥ m′
δ1

such that (1.3) holds.

The inductive step is now immediate. Given k such that mδ0 ,mδ1 , · · · ,mδk−1
sat-

isfy (1.3) we obtain integers sj for j < k such that {ηδj
(k
δj
n ) + ω : n ≥ mδj

}
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8 SAHARON SHELAH AND LUTZ STRÜNGMANN

and {ηδk
(kδk
n ) + ω : n ≥ sj} are pairwise disjoint for every j < k. Choosing

mδk
= max{sj : j < k} we satisfy (1.3). �

Note that Lemma 1.7 can give the same sequence of integers for different η̄, ν̄ ∈ E

if rd(η̄) = rd(ν̄). Nevertheless, the next lemma shows that special ladder systems

η̄, ν̄ ∈ E with rd(η̄) = rd(ν̄) do not overlap very much.

Lemma 1.8. Let η̄, ν̄ ∈ E and α < ω1 such that rd(η̄) = rd(ν̄). Moreover, let

〈mδ : δ ∈ S ∩ α〉 be the sequence from Lemma 1.7. If ηδ(k
ηδ
n + j) = νδ′(k

νδ′

m + i) for

some n ≥ mδ, m ≥ mδ′ , and i < t
νδ′

m , j < tνδ
n . Then δ = δ′ and m = n.

Proof. Assume that ηδ(k
ηδ
n + j) = νδ′(k

νδ′

m + i) for some n ≥ mδ, m ≥ mδ′ ,

and i < t
νδ′

m , j < tνδ
n . Then

ηδ(k
ηδ
n + j) + ω = ηδ(k

ηδ
n ) + ω = νδ′(k

νδ′

m + i) + ω = νδ′(k
νδ′

m ) + ω = ηδ′(k
ηδ′

m ) + ω

since rd(η̄) = rd(ν̄). Thus δ = δ′ by Lemma 1.7. Moreover, m = n follows since ηδ

is a special ladder. �

Recall that two groups A and B of cardinality ℵ1 are called filtration-equivalent if

they have filtrations {Aν : ν ∈ ω1} and {Bν : ν ∈ ω1} respectively such that for

all ν ∈ ω1, there is an isomorphism Φν : Aν → Bν satisfying Φν [Aµ] = Bµ for all

µ ≤ ν. Such an isomorphism is called level-preserving. Note that we do not require

that Φτ extends Φν when τ ≥ ν and note that filtration-equivalent groups A and

B are also quotient-equivalent, i.e. for all ν ∈ ω1 we have Aν+1/Aν ∼= Bν+1/Bν .

Proposition 1.9. Let η̄, ν̄ ∈ E such that rd(η̄) = rd(ν̄). Then the groups Gη̄ and

Gν̄ are filtration-equivalent.

Proof. Let η̄ and ν̄ be given. By construction we have

Gη̄ = 〈xβ , zδ,n : β < ω1, δ ∈ S, n ∈ ω〉

and

Gν̄ = 〈xβ , wδ,n : β < ω1, δ ∈ S, n ∈ ω〉

such that the elements zδ,n and wδ,n (δ ∈ S, n ∈ ω) are defined as in (1.1) for

η̄ and ν̄ respectively. Hence, the generating relations satisfied in Gη̄ and Gν̄ are
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FILTRATION-EQUIVALENT ℵ1-SEPARABLE ABELIAN GROUPS OF CARDINALITY ℵ1 9

the relations in equation (1.2) (see Lemma 1.4). Since filtration-equivalence is a

transitive property it suffices to prove the result when Gη̄ is of the simplest form

(kηδ
n = n, tηδ

n = 1, aηδ,n
0 = 1), and hence

ψ(n)zδ,n+1 = zδ,n + xηδ(n)

and

ψ(n)wδ,n+1 = wδ,n +
∑

l<tδn

aδ,nl xνδ(kδ
n+l).

Note that the parameters kδn, tδn and aδ,nl depend on νδ. Moreover, we shall assume

for simplicity and without loss of generality that aδ,n0 = 1 for every δ ∈ S, n ∈ ω

since gcd(aδ,nl : l < tδn) = 1. Hence we may replace the basis element xνδ(kδ
n) by the

new basis element
∑

l<tδn
aδ,nl xνδ(kδ

n+l).

Let Gη̄ =
⋃

α<ω1

Gαη̄ and Gν̄ =
⋃

α<ω1

Gαν̄ be the canonical ℵ1-filtrations of Gη̄ and Gν̄

respectively. For each α < ω1 we now define a level-preserving isomorphism from

Gαη̄ onto Gαν̄ . Let α < ω1 be fixed. Since by assumption rd(η̄) = rd(ν̄) we may

choose a sequence 〈mδ : δ ∈ S ∩ α〉 as in Lemma 1.7 for η̄ and ν̄ simultaneously.

Let π̂ : Gαη̄ → Gαν̄ be defined via

• π̂(xηδ(n)) =
∑

l<tδn
aδ,nl xνδ(kδ

n+l) for all n ≥ mδ, δ ∈ S ∩ α

• π̂(xνδ(kδ
n)) = xηδ(n) for all n ≥ mδ, δ ∈ S ∩ α if ηδ(n) 6= νδ(k

δ
n)

• π̂(xβ) = xβ for every β < α+ ω otherwise and

• π̂(zδ,n) = wδ,n for all n ≥ mδ, δ ∈ S ∩ α.

Recursively we may define π̂(zδ,n) for n < mδ (δ ∈ S ∩ α) using the definition of π̂

on xβ (β < α+ ω) and on zδ,mδ
. By the choice of the sequence 〈mδ : δ ∈ S ∩ α〉 it

is now easy to see that π̂ is a level preserving isomorphism from Gαη̄ onto Gαν̄ and

hence the groups Gη̄ and Gν̄ are filtration-equivalent. �

2. The Consistency Result

From now on we let ψ : ω → ω be given by ψ(n) = n! with the convention that

0! = 1. In order to force that the group Gη̄ is a Whitehead group we recall the

definition of the uniformization property.

Definition 2.1. If λ is a cardinal and η̄ is a ladder system on S we say that η̄

has λ–uniformization if for every family {cδ : δ ∈ S} of colorings cδ : ω → λ, there
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10 SAHARON SHELAH AND LUTZ STRÜNGMANN

exist Ψ : ω1 → λ and Ψ∗ : S → ω such that Ψ(ηδ(n)) = cδ(n) for all n ≥ Ψ∗(δ) and

δ ∈ S.

The following lemma is by now standard (compare [EkMe, Chapter XIII, Proposi-

tion 0.2]). However, the construction in [EkMe, Chapter XIII, Section 0] is slightly

different from our construction since xηδ(k
ηδ
n +i) (i < tηδ

n ) appear in equation (1.2)

at the same time. Therefore, we give the adjusted proof of the next lemma in a

particular case for the convenience of the reader. However, we shall only apply it

for η̄ of the simplest form as in Example 1.5 (ii).

Lemma 2.2. If η̄ is a ladder system which has ℵ0-uniformization, then the group

Gη̄ satisfies Ext(Gη̄, N) = 0 for every countable abelian group N . If η̄ has 2-

uniformization then Gη̄ is a Whitehead group.

Proof. Let N be a countable abelian group. For simplicity we shall assume

the setting of Example 1.5(i). The general proof is similiar. By construction we

may regard Gη̄ as the quotient P/Q of the free group P =
⊕

β<ℵ1

xβZ⊕
⊕

δ∈S,n∈ω

zδ,nZ

and its subgroup Q generated by the elements

gδ,n = n!zδ,n+1 − zδ,n − xηδ(2n+1) + xηδ(2n)

for δ ∈ S and n ∈ ω. In order to show that Ext(Gη̄, N) = 0 it therefore suffices to

prove that every homomorphism ϕ : Q → N has an extension ϕ̃ : P → N . Thus

let ϕ ∈ Hom(Q,N) be given. We fix a bijection b : N → ℵ0 and define cδ : ω → ω

for δ ∈ S as follows: Let n ∈ ω and put

cδ(2n) = b(ϕ(gδ,n)) and cδ(2n+ 1) = b(2ϕ(gδ,n)).

By the uniformization property there exists f : ω1 → ω such that for all δ ∈ S

there exists kδ ∈ ω such that

cδ(n) = f(ηδ(n)) for all n > kδ.

We define ϕ̃ : P → N as follows: Let α < ω1

• If α = ηδ(n) for some δ ∈ S and n > kδ then put ϕ̃(xα) = b−1(f(α));

note that α 6∈ S;

• If α 6∈ S and α 6= ηδ(n) for any δ ∈ S and n > kδ then put ϕ̃(xα) = 0;

• if α ∈ S and 2n > kα then put ϕ̃(zα,n) = 0;
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• if α ∈ S and 2n ≤ kα then we define ϕ̃(zα,n) inductively and distinguish

the following four cases:

– if ηα(2n) = ηδ(k) for some k > kδ and ηα(2n+ 1) = ηδ′ (k
′) for some

k′ > kδ′ then put

ϕ̃(zα,n) = b−1(f(ηα(2n+ 1))) − b−1(f(ηα(2n))) − ϕ(gα,n) + n!ϕ̃(zα,n+1);

– if ηα(2n) = ηδ(k) for some k > kδ but ηα(2n + 1) 6= ηδ′(k
′) for all

k′ > kδ′ and δ′ ∈ S then put

ϕ̃(zα,n) = −b−1(f(ηα(2n))) − ϕ(gα,n) + n!ϕ̃(zα,n+1);

– if ηα(2n) 6= ηδ(k) for all k > kδ and δ ∈ S but ηα(2n+ 1) = ηδ′(k
′)

for some k′ > kδ′ then put

ϕ̃(zα,n) = b−1(f(ηα(2n+ 1))) − ϕ(gα,n) + n!ϕ̃(zα,n+1);

– if ηα(2n) 6= ηδ(k) for all k > kδ and δ ∈ S and also ηα(2n + 1) 6=

ηδ′ (k
′) for all k′ > kδ′ and δ′ ∈ S then put

ϕ̃(zα,n) = −ϕ(gα,n) + n!ϕ̃(zα,n+1).

It now remains to show that ϕ̃ is an extension of ϕ, and hence satisfies ϕ̃(gα,n) =

ϕ(gα,n) for all α ∈ S and n ∈ ω. Clearly we have

ϕ̃(gα,n) = n!ϕ̃(zα,n+1) − ϕ̃(zα,n) − ϕ̃(xηα(2n)) + ϕ̃(xηα(2n+1)).

If α ∈ S and 2n > kα then

ϕ̃(xηα(2n)) = b−1(f(ηα(2n))) = b−1(cα(2n)) = ϕ(gα,n)

and similarly ϕ̃(xηα(2n+1)) = 2ϕ(gα,n). Furthermore, ϕ̃(zα,n) = ϕ̃(zα,n+1) = 0 and

hence

ϕ̃(gα,n) = −ϕ(gα,n) + 2ϕ(gα,n) = ϕ(gα,n).

All other cases can be checked similarly by easy calculations and are therefore left

to the reader.

The second statement follows similarly using [EkMe, Chapter XIII, Lemma 0.3] �
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12 SAHARON SHELAH AND LUTZ STRÜNGMANN

Similarly, we can prove the next result which is essentially [EkMe, Chapter XIII,

Proposition 0.6]. Recall that a ladder system η̄ is called tree-like if ηδ(n) = ηδ′(m)

for some δ, δ′ ∈ S and n,m ∈ ω implies m = n and ηδ(k) = ηδ′(k) for all k ≤ n.

Lemma 2.3. Let η̄ be a special tree-like ladder system. If Gη̄ satisfies Ext(Gη̄,Z
(ω)) =

0, then η̄ has ℵ0-uniformization. Similarly, if Gη̄ is a Whitehead group, then η̄ has

2-uniformization.

Proof. As in the proof of Lemma 2.2 we shall assume for simplicity the setting

of Example 1.5 and let Gη̄ = P/Q. Let {anmj : n,m, j ∈ ω} be a basis of Z(ω).

Given an ω-coloring {cδ : δ ∈ S} define ϕ : Q→ Z(ω) by

ϕ(gδ,n) = ancδ(2n+1)cδ(2n+2).

By hypothesis there exists an extension of ϕ to ϕ̃ : P → Z(ω). Define Ψ∗(δ) to be

the least integer n′ > 4 such that

ϕ(zδ,0) ∈ 〈almj : l < n′,m, j ∈ ω〉 .

It suffices to show that if ηδ(k) = ηγ(k) where k ≥ Ψ∗(δ),Ψ∗(γ) then cδ(k) =

cγ(k). In this case Ψ(ηδ(k))) = cδ(k) when k ≥ Ψ∗(δ) is as required. Thus let

k ≥ Ψ∗(δ),Ψ∗(γ) and ηδ(k) = ηγ(k). Then k = 2n + 1 or 2n + 2 for some n

with 2 ≤ n ∈ ω. Let ϕ̃′ be the composition of ϕ̃ with the projection of Z(ω) onto

〈akmj : m, j ∈ ω〉. Then

ϕ̃′(zδ,0) = ϕ̃′(zγ,0) = 0.

Since η̄ is tree-like we have xηδ(s) = xηγ (s) for all s ≤ k. Using this and the fact

that ϕ̃′(gδ,n′) = ϕ̃′(gγ,n′) = 0 for all n′ < k we can show by induction that

ϕ̃′(zδ,n) = ϕ̃′(zγ,n).

Hence

ancδ(2n+1)cδ(2n+2)−ancγ(2n+1)cγ(2n+2) = ϕ(gδ,n)−ϕ(gγ,n) = n!(ϕ̃′(zγ,n+1)−ϕ̃
′(zδ,n+1).

Therefore n! divides ancδ(2n+1)cδ(2n+2) − ancγ(2n+1)cγ(2n+2); so ancδ(2n+1)cδ(2n+2)

must equal ancγ(2n+1)cγ(2n+2) since they are basis elements and hence cδ(k) = cγ(k)

since either k = 2n+ 1 or k = 2n+ 2.

The second statement follows similarly with the appropriate adjustments and [EkMe,
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Chapter XIII, Proposition 0.6]. �

We are now ready to prove the main theorem. Therefore let ν̄ be a special ladder

system and c̄ = 〈cδ : ω → {0, 1}|δ ∈ S〉 a sequence of colorings. We define a group

Hν̄,c̄ as follows. Similar to the group Gν̄ constructed in the previous section we let

F ′ be the Q-module

F ′ = ŵQ ⊕
⊕

α<ω1

x̂αQ ⊕
⊕

δ∈S,n∈ω

y′δ,nQ

and Hν̄,c̄ be the subgroup of F ′ generated by

Hν̄,c̄ = 〈ŵ, x̂β , ẑδ,n : β < ω1, δ ∈ S, n ∈ ω〉 ⊆∗ F
′,

where the ẑδ,n are chosen subject to the relations

n!ẑδ,n+1 = ẑδ,n +
∑

i<tδn

aδ,nl x̂νδ(kδ
n+i) + cδ(n)ŵ

for δ ∈ S and n ∈ ω. We define a natural mapping hν̄,c̄ : Hν̄,c̄ → Gν̄ via

• hν̄,c̄(x̂β) = xβ for all β < ω1;

• hν̄,c̄(ẑδ,n) = zδ,n for all δ ∈ S and n ∈ ω;

• hν̄,c̄(ŵ) = 0.

Obviously, the kernel of hν̄,c̄ is isomorphic to Z, in fact ker(hν̄,c̄) = ŵZ. Thus hν̄,c̄

induces a short exact sequence

(E) 0 −→ Z −→ Hν̄,c̄ −→ Gν̄ −→ 0.

As for Gν̄ we also define a filtration for Hν̄,c̄ by letting

Hα
ν̄,c̄ =

〈

Hν̄,c̄ ∩ ({ω̂, x̂β : β < α+ ω} ∪ {y′δ,n : δ ∈ S ∩ α, n ∈ ω})
〉

∗
⊆ Hν̄,c̄

for α < ω1.

The idea for proving the main theorem is to build an extension model of ZFC in

which GCH holds and in which we can force two special ladder systems η̄ and ν̄

with rd(η̄) = rd(ν̄) such that η̄ has the 2-uniformization property, and hence Gη̄ is a

Whitehead group but at the same time we force a coloring c̄ such that the sequence

(E) does not split, and hence Gν̄ is not a Whitehead group. For notational reasons

we call a special ladder system of the simplest form as in Example 1.5 (ii) a simple

special ladder system.
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14 SAHARON SHELAH AND LUTZ STRÜNGMANN

Theorem 2.4. There exists a model of ZFC in which GCH holds and for some

special ladder systems η̄, ν̄ ∈ E with rd(η̄) = rd(ν̄), the group Gη̄ is a Whitehead

group, but Gν̄ is not.

Proof. Essentially the proof is given in [Sh2] (see also [Sh1] and [Sh3]).

Therefore we only recall the basic steps of the proof. Suppose we start with a

ground model V in which GCH holds. Let η̄ be a (special) ladder system. It was

shown in [Sh1, Theorem 1.1] that there exists a forcing notion (P,≤) such that:

• |P | = ℵ2, P satisfies the ℵ2-chain condition and adds no new sequences

of length ω; hence, if V satisfies GCH , then also the extension model V P

satisfies GCH ;

• every stationary set remains stationary in V P ;

• η̄ has the 2-uniformization property (even the ℵ0-uniformization property

(see [Sh1, Theorem 2.1])).

The forcing notion (P,≤) was obtained by a countable support iteration (of length

ℵ2); at each step using a basic forcing extension and taking inverse limits at stages

of cofinality ℵ0. We briefly recall the basic step to be iterated. Let c̄ = 〈cδ : δ ∈ S〉

be a system of colors which has to be uniformized. Here each cδ : ω → 2. Define

Pc̄ as the set of all functions f such that

(i) f : α→ 2 for some α < ω1;

(ii) for all δ ≤ α, δ ∈ S there is nδ such that f(ηδ(m)) = cδ(m) for allm ≥ nδ.

Pc̄ is ordered naturally and it is easy to see that the set Dα = {f ∈ Pc̄ : α ⊆

Dom(f)} is dense for every α < ω1 and hence a generic filter will give the desired

uniformizing Ψ.

Now, assume that V � GCH is given. We shall define a countable support iteration

Q̄ =

〈

Pα,
·

Qα : α < ω2

〉

as follows: We start with an initial forcing (compare also

[EkSh]).

Definition 2.5. Let P0 consist of all triples 〈η̄, ν̄, c̄〉 such that for some α < ω1 we

have

• η̄, ν̄ ∈ Eα are special ladder systems on S ∩ α

• η̄ is simple



8
5
5
 
 
r
e
v
i
s
i
o
n
:
2
0
0
9
-
1
1
-
1
8
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
0
9
-
1
1
-
1
9
 
 

FILTRATION-EQUIVALENT ℵ1-SEPARABLE ABELIAN GROUPS OF CARDINALITY ℵ1 15

• c̄ = 〈cδ : ω → 2 | δ ∈ S ∩ α〉

• rdα(η̄) = rdα(ν̄).

We may think of the conditions in P0 as partial special ladder systems on S ∩ α

for some α < ω1 and a corresponding partial coloring. It is easy to check that a

P0-generic filter G gives a pair of special ladder systems η̄, ν̄ on S (in the extension

model V [G]) with the same ω-range and a global coloring c̄. Moreover, η̄ will be sim-

ple. Let ˜̄η, ˜̄ν and ˜̄c, c̃δ be the corresponding P0-names which are defined naturally.

Note that P0 is ω-closed and satisfies the ℵ2-chain condition, so GCH holds in V [G]

since it holds in V . Applying the forcing described above to V ′ = V [G] we can force

that in (V ′)P the ladder system ˜̄η has the 2-uniformization property and hence the

group G˜̄η is a Whitehead group. Here, we let P =

〈

Pα,
·

Qα : 1 ≤ α < ω2

〉

, hence

in V Q̄ = (V ′)P the generalized continuum hypothesis holds. We have to show that

the group G˜̄ν is not a Whitehead group. As indicated this shall be done by showing

that the sequence (E) cannot be forced to split.

For the sake of contradiction assume that (E) splits. Hence for some p ∈ Q̄ we have

p  “f˜̄ν,˜̄c ∈ Hom(G˜̄ν , H˜̄ν,˜̄c) is a right inverse of h˜̄ν,˜̄c.”

Since Q̄ satisfies the ℵ2 chain condition we can replace Q̄ by Pα for some α < ω2.

For an infinite cardinal κ let H(κ) be the class of sets hereditarily of cardinality

< κ, i.e. H(κ) = {X : |TC(X)| < κ} where TC(X) is the transitive closure of the

set X . As in [Sh2] there is an elementary submodel N ≺ (H(ℵ2), ε) such that

• |N | = ℵ0;

• p, f˜̄ν,˜̄c ∈ N0;

• N =
⋃

n∈ω Nn with Nn ≺ (H(ℵ2), ε) elementary submodels such that

Nn ∈ Nn+1.

We let δ = N ∩ ω1 ∈ S and δn = Nn ∩ ω1 for n ∈ ω. Note that δ can be chosen

from S because the set of δ’s that can be obtained from N ’s is a club and therefore

meets the stationary set S. Choose η′δ such that η′δ(n) ∈ [δn, δn+1] for all n ∈ ω

and η′δ is simple and special.

As in [Sh1, Lemma 1.8] and [Sh2, Theorem 2.1] (see also [EkSh]) we define in-

ductively a sequence of finite sets of conditions in the following way:

In stage n let η′δ(n) = γ. We have a finite tree 〈pnt : t ∈ Tn〉 ∈ Nn+1 of conditions
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16 SAHARON SHELAH AND LUTZ STRÜNGMANN

and let kδn+1 = kδn + |max(Tn)| + 1. Moreover, if t ∈ max(Tn), then

pnt forces a value to f˜̄ν,˜̄c ↾G ˜̄ν↾γ+ω
.

We now choose νδ(k
δ
n + i) in [γ, γ + ω] for i < tδn so that νδ becomes special and

rd(η′δ) = rd(νδ). We have that, if t ∈ max(Tn), then

pnt  “f˜̄ν,˜̄c(xνδ(kδ
n+i)) − x̂νδ(kδ

n+i) = ŵb̃t,n,i”

for every i < tδn. By linear algebra we may choose aδ,nl for l < tδn such that

gcd(aδ,nl : l < tδn) = 1 and if t ∈ max(Tn), then

pnt  “
∑

i<tδn

aδ,ni b̃t,n,i = 0”.

Finally, we choose cδ(n) arbitrarily. In the inverse limit we hence obtain a triple

〈η̄′, ν̄′, c̄′〉 which we may increase to 〈η̄′ 〈η′δ〉 , ν̄
′ 〈νδ〉 , c̄

′ 〈cδ〉〉. Now we can find p∗ ∈

Pα above pnt for some t ∈ max(Tn) and all n ∈ ω. Note that the cδ was chosen

arbitrarily, so there are 2ℵ0 possible choices for the same νδ.

Now assume that G is a generic filter containing the condition p∗. Then ẑδ,0 −

f˜̄ν,˜̄c(zδ,0) ∈ ŵZ. Moreover,

n!fν̄,c̄(zδ,n+1) = fν̄,c̄(zδ,n) +
∑

i<tδn

aδ,ni fν̄,c̄(xνδ(kδ
n+i))

for every n ∈ ω. Similarly, we have

n!ẑδ,n+1 = ẑδ,n +
∑

i<tδn

aδ,ni x̂νδ(kδ
n+i) + cδ(n)ŵ.

Subtracting the two equations yields

n!(fν̄,c̄(zδ,n+1)−ẑδ,n+1) = (fν̄,c̄(zδ,n)−ẑδ,n)+
∑

i<tδn

aδ,ni (fν̄,c̄(xνδ(kδ
n+i))−x̂νδ(kδ

n+i))−cδ(n)ŵ.

But by our choice we have

∑

i<tδn

aδ,ni (fν̄,c̄(xνδ(kδ
n+i)) − x̂νδ(kδ

n+i)) =
∑

i<tδn

aδ,ni bt,n,i = 0.

Therefore, we get

(2.1) n!(fν̄,c̄(zδ,n+1) − ẑδ,n+1) = (fν̄,c̄(zδ,n) − ẑδ,n) − cδ(n)ŵ ∈ Zŵ.
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Since Z is countable there exist generic filters G1 and G2 (and corresponding triples

(η̄1, ν̄1, c̄1) and (η̄2, ν̄2, c̄2)) such that c1δ 6= c2δ , ν
1
δ = ν2

δ = νδ but

ẑδ,0 − fν̄1,c̄1(zδ,0) = ẑδ,0 − fν̄2,c̄2(zδ,0) ∈ Zŵ.

Let n be minimal such that c1δ(n) 6= c2δ(n). Then an easy induction using equation

(2.1) shows that

fν̄1,c̄1(z
1
δ,l) − ẑ1

δ,l = fν̄2,c̄2(z
2
δ,l) − ẑ2

δ,l ∈ Zŵ

for every l ≤ n. Note that ẑδ,i depends on Gi (i = 1, 2). We finally calculate

n!(fν̄1,c̄1(z
1
δ,n+1) − ẑ1

δ,n+1) − n!(fν̄2,c̄2(z
2
δ,n+1) − ẑ2

δ,n+1)

= (fν̄1,c̄1(z
1
δ,n) − ẑ1

δ,n) − (fν̄2,c̄2(z
2
δ,n) − ẑ2

δ,n) + (c1δ(n) − c2δ(n))ŵ.

By equation (2.1) we conclude

n!(fν̄1,c̄1(z
1
δ,n+1) − ẑ1

δ,n+1) − n!(fν̄2,c̄2(z
2
δ,n+1) − ẑ2

δ,n+1) = (c1δ(n) − c2δ(n))ŵ.

However, the left side is divisible by 2 but the right side is ŵ or −ŵ, hence not

divisible by 2 - a contradiction. Note that all the differences are elements of the

pure subgroup ŵZ by equation (2.1). Hence the above calculations take place in

ŵZ which is in the ground model, although the elements we are talking about come

from different (incompatible) extension models. Thus the sequence (E) cannot be

forced to split and this finishes the proof. �

At this point we would like to remark that it is not clear if the special ladder system

ˆ̄η in the above proof is still simple?

Corollary 2.6. It is consistent with ZFC and GCH that there exist two filtration-

equivalent ℵ1-separable abelian groups of cardinality ℵ1 such that one is Whitehead

and the other is not.

Proof. Applying Theorem 2.4 to a model V of GCH we get an extension

model of V in which there exist abelian groups Gη̄ and Gν̄ for η̄, ν̄ ∈ E such that

Gη̄ is a Whitehead group but Gν̄ is not. Since rd(η̄) = rd(ν̄) we deduce that Gη̄

and Gν̄ are filtration-equivalent by Proposition 1.9. �
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