STRONGLY DEPENDENT THEORIES
SH863

Saharon Shelah
The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel
Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA

Abstract. We further investigate the class of models of a strongly dependent (first order complete) theory T, continuing [Sh 715], [Sh 783] and related works. Those are properties (= classes) somewhat parallel to superstability among stable theory, though are different from it even for stable theories. We show equivalence of some of their definitions, investigate relevant ranks and give some examples, e.g. the first order theory of the p-adics is strongly dependent. The most notable result is: if $|A| + |T| \leq \mu, I \subseteq C$ and $|I| \geq \beth |T| + (\mu)$ then some $J \subseteq I$ of cardinality μ^+ is an indiscernible sequence over A.

This research was supported by the Israel Science Foundation
I would like to thank Alice Leonhardt for the beautiful typing.
First Typed - 04/May/12
Latest Revision - 2017/April/25

Typeset by AMSTeX
§0 Introduction, pg.4-7

§1 Strong dependent: basic variant, pg.8-27

[We define $\kappa_{\text{ict}}(T)$ and strongly dependent (= strongly dependent $\equiv \kappa_{\text{ict}}(T) = \aleph_0$), (1.2), note preservation passing from T to T^{eq}, preservation under interpretation (1.4), equivalence of some versions of “$\bar{\varphi}$ witness $\kappa < \kappa_{\text{ict}}(T)$” (1.5), and we deduce that without loss of generality $m = 1$ in (1.7). An observation (1.10) will help to prove the equivalence of some variants. To some extent, indiscernible sequences can replace an element and this is noted in 1.8, 1.9 dealing with the variant $\kappa_{\text{icu}}(T)$. We end with some examples, in particular (as promised in [Sh 783]) the first order theory of the p-adic is strongly dependent and this holds for similar fields and for some ordered abelian groups expanded by subgroups. Also there is a (natural) strongly stable not strongly stable T.]

§2 Cutting indiscernible sequence and strongly $^{\ell}$, pg.28-41

[We give equivalent conditions to strongly dependent by cutting indiscernibles (2.1) and recall the parallel result for T dependent. Then we define $\kappa_{\text{ict,2}}(T)$ (in 2.3) and show that it always almost is equal to $\kappa_{\text{ict}}(T)$ in 2.8. The exceptional case is “T is strongly dependent but not strongly dependent” for which we give equivalent conditions (2.3 and 2.10.)]

§3 Ranks, pg.42-51

[We define $M_0 \leq_A M_1, M_0 \leq_{A,p} M_2$ (in 3.2) and observe some basic properties in 3.3. Then in 3.5 for most $\ell = 1, \ldots, 12$ we define $<_{\ell}, <_{\ell}^{\text{at}}, <_{\ell}^{\text{pr}}, \leq_{\ell}$, explicit Δ-splitting and last but not least the ranks $\text{dp-rk}_{\Delta,\ell}(t)$. Easy properties are in 3.7, the equivalence of “rank is infinite”, is $\geq |T|^{+}$, T is strongly dependent in 3.7 and more basic properties in 3.9. We then add more cases ($\ell > 12$) to the main definition in order to deal with (version of) strongly dependent and then have parallel claims.]

§4 Existence of indiscernibles, pg.52-55

[We prove that if $\mu \geq |A| + |T|$ and $a_\alpha \in ^m \mathfrak{C}$ for $\alpha < \mathfrak{D}_\mu^+$ then for some $u \subseteq \mathfrak{D}_\mu^+$ of cardinality μ^+, $\langle a_\alpha : \alpha \in u \rangle$ is indiscernible over A.]
§5 Concluding Remarks, pg.56-86

[We consider shortly several further relatives of strongly dependent.

(A) Ranks for dependent theories, pg.56
We redefine explicitly Δ-splitting and d-$\text{rk}_{\Delta,\ell}$ for more cases, i.e. more ℓ's and for the case of finite Δ's in a way fitting dependent T (in 5.9), point out the basic equivalence (in 5.9), consider a variant (5.11) and questions (5.10, 5.12).

(B) Minimal theories (or types), pg.62
We consider minimality, i.e., some candidates are parallel to \aleph_0-stable theories which are minimal. It is hoped that some such definition will throw light on the place of o-minimal theories. We also consider content minimality of types.

(C) Local ranks for super dependent and indiscernibility, pg.64
We deal with local ranks, giving a wide family parallel to superstable and then define some ranks parallel to those in §3.

(D) Strongly 2^3 stable fields, pg.67
We comment on strongly 2^3 dependent/stable fields. In particular for every infinite non-algebraically closed field K, $\text{Th}(\mathfrak{A})$ is not strongly 2^3 stable.

(E) Strongly 2^3 dependent, pg.70
We introduce strong $(3,\ast)$ dependent/stable theories and remark on them. This is related to dimension

(F) Representability and strongly k dependent, pg.72
We define and comment on representability and $\langle \bar{b}_t : t \in I \rangle$ being indiscernible for $I \in \mathfrak{I}$.

(G) strongly 3^3 stable and primely regular, pg.76 types.
We prove the density of primely regular types (for strongly 3^3 stable T) and we comment how definable groups help.

(H) T is n-dependent, pg.85
We consider strengthenings n-independent of “T is independent”.]

(863)
Our motivation is trying to solve the equations “x/dependent = superstable/stable” (e.g. among complete first order theories). In [Sh 783, §3] mainly two approximate solutions are suggested: strongly\(\ell\) dependent for \(\ell = 1, 2\); here we try to investigate them not relying on [Sh 783, §3]. We define \(\kappa_{ict}(T)\) generalizing \(\kappa(T)\), the definition has the form “\(\kappa < \kappa_{ict}(T)\) iff there is a sequence \(\langle \varphi_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle\) of formulas such that ...”.

Now \(T\) is strongly dependent (= strongly\(1\) dependent) iff \(\kappa_{ict}(T) = \aleph_0\); prototypical examples are: the theory of dense linear orders, the theory of real closed fields, the model completion of the theory of trees (or trees with levels), and the theory of the \(p\)-adic fields (and related fields with valuations). (The last one is strongly\(1\) not strongly\(2\) dependent, see 1.17.)

For \(T\) superstable, if \(\langle \bar{a}_t : t \in I \rangle\) is an indiscernible set over \(A\) and \(C\) is finite then for some finite \(I^* \subseteq I\), \(\langle \bar{a}_t : t \in I \setminus I^* \rangle\) is indiscernible over \(A \cup C\); moreover over \(A \cup C \cup \{\bar{a}_t : t \in I^*\}\). In §2 we investigate the parallel here, when \(I\) is a linear order, complete for simplicity (see more and history in [Sh 950, §(1C),1.37]). But we get two versions: strongly\(\ell\) dependent \(\ell = 1, 2\) according to whether we like to generalize the first version of the statement above or the “moreover”.

Next, in §3, we define and investigate rank, not of types but of related objects \(\tau = (p, M, A)\) where, e.g. \(p \in S^m(M \cup A)\); but there are several variants. For some of them we prove “\(T\) is strongly dependent iff the rank is always \(< \infty\) iff the rank is bounded by some \(\gamma < |T|^+\).” We first deal with the ranks related to “strongly\(1\) dependent” and then for the ones related to “strongly\(2\) dependent”.

Further, serious evidence for those ranks being of interest is in §4 where we use them to get indiscernibles. Recall that if \(T\) is stable, \(|A| \leq \lambda = |T|, a_\alpha \in C\) for \(\alpha < \mu := \lambda^+\) then for some stationary \(S \subseteq \mu, \langle a_\alpha : \alpha \in S \rangle\) is indiscernible over \(A, |S| = \mu\), we can write this as \(\lambda \rightarrow (\lambda)^{<\omega}_{\mu^+}\). We can get similar theorems from set theoretic assumptions: e.g. \(\mu\) a measurable cardinal, very interesting and important but not for the present model theoretic investigation.

We may wonder: Can we classify first order theories by \(\lambda \rightarrow_T (\mu)_\kappa\), as was asked by Grossberg and the author (see on this question [Sh 702, 2.9-2.20]). A positive answer appears in [Sh 197], but under a very strong assumption on \(T\): not only \(T\) is dependent but every subsets \(P_1, \ldots, P_n\) of \(|M|\) the theory Th\((M, P_1, \ldots, P_n)\) is dependent, i.e., being dependent is preserved by monadic expansions.

Here we prove that if \(T\) is strongly stable and \(\mu \geq |T|\) then \(\beth_{\mu^+} \rightarrow_T (\mu^+)_{\mu^+}^{<\omega}\). We certainly hope for a better result (using \(\beth_n(|T|)\)) for some fix \(n\) or even \((2^{\mu^+})\) and weaker assumptions, say “\(T\) is dependent” (or less) instead “\(T\) is strongly dependent”. But still it seems worthwhile to prove 4.1 particularly having waited so long for something.
Let strongly ℓ stable mean strongly ℓ' dependent and stable. As it happens (for T), being superstable implies strong 2 stable implies strong 1 stable but the inverses fail. So strongly ℓ dependent does not really solve the equation we have started with. However, this is not necessarily bad, the notion “strongly ℓ stable” seems interesting in its own right; this applies to the further variants.

We give a “simplest” example of a theory T which is strongly 1 stable and not strongly 2 stable in the end of §1 as well as prove that the (theories of the) p-adic field is strongly stable (for any prime p) as well as similar enough fields.

In §5 we comment on some further properties and ranks. Such further properties hopefully will be crucial in [Sh:F705], if it materializes; it tries to deal mainly with K^{or}-representable theories and contain other beginning as well. We comment on ranks parallel to those in §3 suitable for all dependent theories.

We further try to look at theories of fields. Also we deal with the search for families of dependent theories T which are unstable but “minimal”, much more well behaved. For many years it seems quite bothering that we do not know how to define o-minimality as naturally arising from a parallel to stability theory rather than as an analog to minimal theories or generalizes examples related to the theory of the field of the reals and its expansions. Of course, the answer may be a somewhat larger class. This motivates Firstenberg-Shelah [FiSh:E50] (on Th(\mathbb{R}), specifically on “perpendicularly is simple”), and some definitions in §5. Another approach to this question is of Onshuus in his very illuminating works on th-forking [On0x1] and [On0x2].

A result from [Sh 783, §3,§4] used in [FiSh:E50] says that

0.1 Claim. Assume T is strongly 2 dependent

(a) if G is a definable group in \mathcal{C}_T and h is a definable endomorphism of G with finite kernels then h is almost onto G, i.e., the index $(G: \text{Rang}(h))$ is finite

(b) it is not the case that: there are definable (with parameters) subset $\varphi(\mathcal{C}, \bar{a}_1)$ of \mathcal{C}, an equivalence relation $E_{\bar{a}_2} = E(x, y, \bar{a}_2)$ on $\varphi(\mathcal{C}, \bar{a}_1)$ with infinitely many equivalence classes and $\vartheta(x, y, z, \bar{a}_3)$ such that $E(c, c, \bar{a}_2) \Rightarrow \vartheta(x, y, c, \bar{a}_3)$ is a one-to-one function from (a co-finite subset of) $\varphi(\mathcal{C}, \bar{a}_1)$ into $c/E_{\bar{a}_2}$.

We continue investigating dependent theories in [Sh:900], [Sh 877], [Sh:906], more recently [Sh:950] and Kaplan-Shelah [KpSh:946], [KpSh:975] and concerning definable groups in [Sh 876], [Sh 886] and Kaplan-Shelah [KpSh:993].

We thank Moran Cohen, Itay Kaplan, Aviv Tatarski and a referee for pointing out deficiencies.
0.2 Notation. 1) Let φ^t be φ if $t = 1$ or $t = \text{true}$ and $\neg\varphi$ if $t = 0$ or $t = \text{false}$.

2) $S^\alpha(A, M)$ is the set of complete types over A in M (i.e. finitely satisfiable in M) in the free variables $\langle x_i : i < \alpha \rangle$.
1.1 Convention. 1) T is complete first order fixed.
2) $\mathfrak{C} = \mathfrak{C}_T$ a monster model for T.

Recall, see [Sh 783]:

1.2 Definition. 1) $\kappa_{ict}(T) = \kappa_{ict,1}(T)$ is the minimal κ such that for no $\bar{\varphi} = \langle \varphi_i(x, y_i) : i < \kappa \rangle$ is $\Gamma_\lambda = \Gamma_\lambda^{\bar{\varphi}}$ consistent with T for some (\equiv every) λ where $\ell g(x) = m, \ell g(y_i) = \ell g(y_i)$ and

$$\Gamma_\lambda = \{ \varphi_i(x_\eta, y_{\alpha}^i)_{i(\eta(i) = \alpha)} : \eta \in \kappa \lambda, \alpha < \lambda \text{ and } i < \kappa \}.$$

1A) We say that $\bar{\varphi} = \langle \varphi_i(x, y_i) : i < \kappa \rangle$ witness $\kappa < \kappa_{ict}(T)$ (with $m = \ell g(x)$) when it is as in part (1).
2) T is strongly dependent (or strongly\(^1\) dependent) when $\kappa_{ict}(T) = \aleph_0$.

Easy (or see [Sh 783]):

1.3 Observation. If T is strongly dependent then T is dependent.

1.4 Observation. 1) $\kappa_{ict}(T^{eq}) = \kappa_{ict}(T)$.
2) If $T_\ell = \text{Th}(M_\ell)$ for $\ell = 1, 2$ then $\kappa_{ict}(T_1) \leq \kappa_{ict}(T_2)$ when:

\begin{itemize}
 \item[(*)] M_1 is (first order) interpretable\(^1\) in M_2.
\end{itemize}

3) If $T' = \text{Th}(\mathfrak{C}, c)_{c \in A}$ then $\kappa_{ict}(T') = \kappa_{ict}(T)$.
4) If M is the disjoint sum of M_1, M_2 (or the product) and $\text{Th}(M_1), \text{Th}(M_2)$ are dependent then so is $\text{Th}(M)$; so M_1, M_2, M has the same vocabulary.
5) In Definition 1.2, for some $\lambda, \Gamma_\lambda^{\bar{\varphi}}$ is consistent with T iff for every $\lambda, \Gamma_\lambda^{\bar{\varphi}}$ is consistent with T.

Remark. 1) Concerning Part (4) for “strongly dependent”, see Cohen-Shelah [CoSh:E65, §4].

Proof. Easy. \hfill $\square_{1.4}

\footnote{\text{this includes } M_1 = (M_2)^n}
1.5 Observation. Let \(\ell g(\bar{x}) = m; \bar{\varphi} = \langle \varphi_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle \) and let \(\bar{\varphi}' = \langle \varphi'_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle \) where \(\varphi'_i(\bar{x}, \bar{y}_i) = [\varphi_i(\bar{x}, \bar{y}_i) \land \neg \varphi_i(\bar{x}, \bar{y}_i)] \) and let \(\bar{\varphi}'' = \langle \varphi''_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle \) where \(\varphi''_i(\bar{x}, \bar{y}_i) = [\varphi_i(\bar{x}, \bar{y}_i) \equiv \neg \varphi_i(\bar{x}, \bar{y}_i)] \). Then \(\odot^1_{\bar{\varphi}} \Rightarrow \odot^2_{\bar{\varphi}} \Leftrightarrow \odot^3_{\bar{\varphi}} \Leftrightarrow (\exists \eta \in \kappa^2) \odot^2_{\bar{\varphi}[\eta]} \Leftrightarrow (\exists \eta \in \kappa^2) \odot^3_{\bar{\varphi}[\eta]} \Leftrightarrow (\exists \eta \in \kappa^2) \odot^4_{\bar{\varphi}[\eta]} \Leftrightarrow (\exists \eta \in \kappa^2) \odot^5_{\bar{\varphi}[\eta]} \) where \(\bar{\varphi}[\eta] = \langle \varphi_i(\bar{x}, \bar{y}_i)^{(\eta(i))} : i < \kappa \rangle \) and

\[\delta^1_{\bar{\varphi}} \bar{\varphi} \text{ witness } \kappa < \kappa_{\text{int}}(T) \]

\[\delta^2_{\bar{\varphi}} \text{ we can find } \langle \bar{a}_k : k < \omega, i < \kappa \rangle \text{ in } \mathcal{C} \text{ such that } \ell g(\bar{a}_k) = \ell g(\bar{y}_i), \langle \bar{a}_k : k < \omega \rangle \text{ is indiscernible over } \bigcup \{ \bar{a}_k : j < \kappa, j \neq i, k < \omega \} \text{ for each } i < \kappa \text{ and } \{ \varphi_i(\bar{x}, \bar{a}_k) \land \neg \varphi_i(\bar{x}, \bar{a}_i) : i < \kappa \} \text{ is consistent, i.e. finitely satisfiable in } \mathcal{C} \]

\[\delta^3_{\bar{\varphi}} \] like \(\delta^2_{\bar{\varphi}} \) but in the end

\[\{ \varphi_i(\bar{x}, \bar{a}_k) \equiv \neg \varphi_i(\bar{x}, \bar{a}_i) : i < \kappa \} \text{ is consistent}. \]

1.6 Remark. 1) We could have added the indiscernibility condition to \(\odot^1_{\bar{\varphi}} \), i.e., to 1.2(1) as this variant is equivalent to \(\odot^1_{\bar{\varphi}} \).

2) Similarly we could have omitted the indiscernibility condition in \(\odot^2_{\bar{\varphi}} \) but demand in the end: “if \(k_i < \ell_i < \omega \) for \(i < \kappa \) then \(\{ \varphi_i(\bar{x}, \bar{a}_{k_i}) \land \neg \varphi_i(\bar{x}, \bar{a}_i) : i < \kappa \} \) is consistent” and get an equivalent condition.

3) Similarly we could have omitted the indiscernibility condition in \(\odot^3_{\bar{\varphi}} \) but demand in the end “if \(k_i < \ell_i < \omega \) for \(i < \kappa \) then \(\{ \varphi_i(\bar{x}, \bar{a}_{k_i}) \equiv \neg \varphi_i(\bar{x}, \bar{a}_i) : i < \kappa \} \) is consistent” and get an equivalent condition.

4) We could add \(\odot^3_{\bar{\varphi}} \Leftrightarrow \odot^1_{\bar{\varphi}'} \).

5) In \(\odot^2_{\bar{\varphi}}, \odot^3_{\bar{\varphi}} \) (and the variants above) we can replace \(\omega \) by any \(\lambda \), see 1.7).

6) What about \(\odot^2_{\bar{\varphi}} \Rightarrow \odot^1_{\bar{\varphi}'} ? \) We shall now describe a model whose theory is a counterexample to this implication. We define a model \(M \) with \(\tau_M = \{ P, P_i, R_i : i < \kappa \}, P \) a unary predicate, \(P_i \) a unary predicate, \(R_i \) a binary predicate as follows:

\[(a) \text{ } |M| \text{ the universe of } M \text{ is } (\kappa \times \mathbb{Q}) \cup ^\kappa \mathbb{Q} \]

\[(b) \text{ } P^M = \mathbb{Q} \]

\[(c) \text{ } P_i^M = \{ i \} \times \mathbb{Q} \]

\[(d) \text{ } R_i^M = \{ (\eta, (i, q)) : \eta \in ^\kappa \mathbb{Q}, q \in \mathbb{Q} \text{ and } \mathbb{Q} \models \eta(i) \geq q \} \]

\[(e) \text{ } \varphi_i(x, y) = P(x) \land P_i(y) \land R_i(x, y) \text{ for } i < \kappa. \]

Now

\[(a) \text{ Why (for } \text{Th}(M) \text{) do we have } \odot^2_{\bar{\varphi}}? \]

For \(i < \kappa, k < \omega \) let \(a^i_k = (i, k) \in P^M \) recalling \(\omega \subseteq \mathbb{Q} \).

Easily \(\langle a^i_k : k < \omega, i < \kappa \rangle \) are as required in \(\odot^2_{\bar{\varphi}} \). E.g. the unique \(\eta \in ^\kappa \mathbb{Q} \) realizing
the type. Also for each } i < \kappa \text{, the sequence } \langle a^j_i : k < \omega \rangle \text{ is indiscernible over } \{ a^j_m : j < \kappa, j \neq i \text{ and } m < \omega \}.

Why? Because for every automorphism } \pi \text{ of the rational order } (\mathbb{Q}, <) \text{, for the given } i < \kappa \text{ we can define a function } \hat{\pi}_i \text{ with domain } M \text{ by}

\[(*)_1 \text{ for } j < \kappa \text{ and } q \in \mathbb{Q} \text{ we let } \hat{\pi}_i((j, q)) \text{ be } (j, q) \text{ if } j \neq i \text{ and } (j, \pi(q)) \text{ if } j = i \]

\[(*)_2 \text{ for } \eta, \nu \in \mathcal{X} \mathbb{Q} \text{ we have } \hat{\pi}_i(\eta) = \nu \text{ iff } (\forall j < \kappa)(j \neq i \Rightarrow \eta(j) = \nu(j)) \text{ and } \nu(i) = \pi_i(\eta(i)).\]

So } \hat{\pi}_i \text{ is an automorphism of } M \text{ over } \bigcup_{j \neq i} P^M_j \text{ which includes the function } \{(a^j_i, a^j_{\pi(q)}): q \in \mathbb{Q}\}

\[(\beta) \text{ Why (for } \text{Th}(M)), \text{ we do not have } \oplus^1_{\phi}\]

\[\text{Why? Because } M \models (\forall y_1, y_2)[P_i(y_1) \land P_i(y_2) \land y_1 \neq y_2 \rightarrow \bigvee_{\ell=1}^2 (\forall x)(\varphi_i(x, y_\ell) \land P(x) \rightarrow \varphi_i(x, y_{3-\ell}))] \]

\[(\gamma) T \text{ is dependent.}
\text{Why? Left to the reader (use restriction to any finite } \tau \subseteq \tau_M.\]

Proof. The following series of implications clearly suffices.

\(\oplus^1_{\phi} \Rightarrow \oplus^2_{\phi}\) (hence in particular \(\oplus^2_{\phi'} \Rightarrow \oplus^3_{\phi'}\) and \(\oplus^2_{\phi^\prime \prime} \Rightarrow \oplus^3_{\phi^\prime \prime}\)).

Trivial; read the definitions.

\(\oplus^3_{\phi} \Rightarrow \oplus^2_{\phi}\) (hence in particular \(\oplus^3_{\phi'} \Rightarrow \oplus^3_{\phi'}\) and \(\oplus^2_{\phi^\prime \prime} \Rightarrow \oplus^3_{\phi^\prime \prime}\)).

By compactness, for the dense linear order } \mathbb{R} \text{ we can find } a^i_t : i < \kappa, t \in \mathbb{R} \text{ such that for each } i < \kappa \text{ the sequence } \langle a^i_t : t \in \mathbb{R} \rangle \text{ indiscernible over } \bigcup\{a^i_j : j \neq i, j < \kappa, s \in \mathbb{R} \} \text{ and for any } s_0 < s_1 \text{ the set } \{\varphi_i(\bar{x}, a^i_{s_0}) \equiv \neg \varphi_i(\bar{x}, a^i_{s_1}) : i < \kappa \} \text{ is consistent, say realized by } \bar{c} = \bar{c}_{s_0, s_1}. \text{ Now let } u = \{i < \kappa : \mathbb{C} \models \varphi_i(\bar{c}, a^i_{s_0})\} \text{ and for } n < \omega \text{ define } b^i_n \text{ as } a^i_{s_0+n(s_1-s_0)} \text{ if } i \in u \text{ and as } a^i_{s_1-n(s_1-s_0)} \text{ if } i \in \kappa \setminus u. \text{ Now } \langle b^i_n : n < \omega, i < \kappa \rangle \text{ exemplifies } \oplus^2_{\phi}.\]
hence by the above \(\otimes^2 \Rightarrow \otimes^2 \) and \(\otimes^3 \Rightarrow \otimes^3 \).

Let \(\langle \bar{a}^i_\alpha : \alpha < \omega, i < \kappa \rangle \) witness \(\otimes^3 \) and \(\bar{c} \) realizes \(\varphi_1(\bar{x}, a^i_0) \land \neg \varphi_4(\bar{x}, \bar{a}^i_0) : i < \kappa \) \(\land \). Without loss of generality \(a^i_1 \) is well defined for every \(t \in \mathbb{Z} \) not just \(t \in \omega \), (and \(i < \kappa \), and \(\langle a^i_k : t \in \mathbb{Z} \rangle \) is an indiscernible sequence over \(\{a^i_j : j \in \kappa \setminus \{i\} \} \) and \(s \in \mathbb{Z} \). Also without loss of generality for each \(i < \kappa, \langle \bar{a}^i_\alpha : \alpha \in [2, \omega) \rangle \) as well as \(\langle \bar{a}^i \bar{a}^j : n \in \omega \rangle \) are indiscernible sequences over \(\bigcup \{ a^i_j : j < \kappa, j \neq i \text{ and } t \in \mathbb{Z} \bigcup \{c\} \bigcup \{ \}

For \(t \in \mathbb{Z}, i < \kappa \) let \(b^i_0 = \bar{a}^i_{2s} \bar{a}^i_{2s+1} \), so \(\mathcal{C} \models \varphi_1[\bar{c}, b^i_0] \) (as this just means \(\mathcal{C} \models \varphi_1(\bar{c}, a^i_0) \land \neg \varphi_4(\bar{c}, a^i_1) \)) and \(\mathcal{C} \models \neg \varphi_4(\bar{c}, b^i_1) \) when \(s \in \mathbb{Z} \setminus \{0\} \) (as the sequences \(\bar{c} \bar{a}^i_{2s} \) and \(\bar{c} \bar{a}^i_{2s+1} \) realize the same type). So \(\langle \bar{b}^i_\alpha : \alpha < \omega, i < \kappa \rangle \) witness \(\otimes^4 \).

\(\otimes^3 \) \(\Rightarrow \otimes^3 \).

Read the definitions.

\(\otimes^3 \) \(\Rightarrow \otimes^3 \).

As in the proof of \(\otimes^2 \Rightarrow \otimes^1 \); but we elaborate: let \(\langle \bar{a}^i_\alpha : \alpha < \omega, i < \kappa \rangle \) witness \(\otimes^3 \), noting \(\varphi'' = (\varphi'_i(\bar{x}, \bar{a}^i_0), \bar{y}^i_1) : i < \kappa \) where \(\ell(g(\bar{y}^i_1)) = \ell(g(\bar{y}^i_0)) \). Let \(\bar{c} \) realize \(\langle \varphi''(\bar{x}, a^i_0, b^i_0) : i < \kappa \rangle \). Without loss of generality for each \(i < \kappa \) the sequence \(\langle a^i_\alpha \cdot b^i_\alpha : 2 < \alpha < \omega \rangle \) is indiscernible over \(\bigcup \{ a^i_j : j \in \kappa \setminus \{i\} \} \) and \(\alpha < \omega \) \(\cup \). By this extra indiscernibility assumption for each \(i < \kappa \) we can find \(\ell_0(i), \ell_1(i) \in \{0, 1\} \) such that \(n \geq 2 \Rightarrow \mathcal{C} \models \varphi_i[\bar{c}, \bar{a}^i_0]^{\ell_0(i)} \land \varphi_i[\bar{c}, \bar{b}^i_0]^{\ell_1(i)} \). By the choice of \(\bar{c} \) we have \(\mathcal{C} \models \varphi''(\bar{c}, \bar{a}^i_0, \bar{b}^i_0) : \varphi''(\bar{c}, \bar{a}^i_0, \bar{b}^i_1) \). Hence by the choice of \(\varphi'' \), we cannot have \(\mathcal{C} \models \varphi_i[\bar{c}, \bar{a}^i_0]^{\ell_0(i)} \land \varphi_i[\bar{c}, \bar{a}^i_0]^{\ell_1(i)} \land \varphi_i[\bar{c}, \bar{a}^i_1]^{\ell_0(i)} \land \varphi_i[\bar{c}, \bar{b}^i_1]^{\ell_1(i)} \).

Hence there are \(\ell_0(i), \ell_4(i) \in \{0, 1\} \) such that

- \(\ell_4(i) = 0 \Rightarrow \mathcal{C} \models \varphi_i[\bar{c}, \bar{a}^i_0]^{1-\ell_4(i)} \)
- \(\ell_4(i) = 1 \Rightarrow \mathcal{C} \models \varphi_i[\bar{c}, \bar{b}^i_0]^{1-\ell_4(i)} \).

Lastly choose \(\eta = \langle 1 - \ell_4(i) : i < \kappa \rangle \) and we choose \(\langle d^i_\alpha : \alpha < \omega, i < \kappa \rangle \) as follows:

- if \(\ell_4(i) = 0 \) and \(n = 0 \) then \(\bar{d}^i_n = \bar{a}^i_{\ell_4(i)} \)
- if \(\ell_4(i) = 0 \) and \(n > 0 \) then \(\bar{d}^i_n = \bar{a}^i_{1+n} \)
- if \(\ell_4(i) = 1 \) and \(n = 0 \) then \(\bar{d}^i_n = \bar{b}^i_{\ell_4(i)} \)
- if \(\ell_4(i) = 1 \) and \(n > 0 \) then \(\bar{d}^i_n = \bar{b}^i_{1+n} \).

Now check that \(\langle \bar{d}^i_\alpha : \alpha < \omega, i < \kappa \rangle \) witness \(\otimes^1 \).

\(\otimes^3 \) \(\Rightarrow \otimes^3 \) are equivalent where \(\eta \in \kappa \).

Why? Because the formula \(\langle \varphi_i(\bar{x}, \bar{a}^i_0) \equiv \neg \varphi_i(\bar{x}, \bar{a}^i_1) \rangle \) is equivalent to \(\langle \varphi_i(\bar{x}, a^i_0)^{\eta(i)} \equiv \neg \varphi_i(\bar{x}, \bar{a}^i_1)^{\eta(i)} \rangle \).
1.7 Observation. 1) In Definition 1.2 without loss of generality \(m(= \ell g(\bar{x})) \) is 1. 2) For any \(\kappa \) we have: \(\kappa < \kappa_{ct}(T) \) for some infinite linear order \(I_1 \) (for \(i < \kappa \)) and \(\langle \bar{a}_i^j : t \in I_i, i < \kappa \rangle \) such that \(\langle \bar{a}_i^j : t \in I_i \rangle \) is indiscernible over \(\cup \{ \bar{a}_s^j : s \in I_j \} \) and \(j \neq i, j < \kappa \} \cup A \) and finite \(C \), for \(\kappa \) ordinals \(i < \kappa \), the sequence \(\langle \bar{a}_i^j : t \in I_i \rangle \) is not indiscernible over \(A \cup C \).

3) In 1.5, for any \(\lambda(\geq \aleph_0) \) from the statement \(\otimes^2_{\bar{\varphi}} \) we get an equivalent one if we replace \(\omega \) by \(\lambda \); similarly for \(\otimes^3_{\bar{\varphi}} \).

Proof. 1) For some \(m \), there is \(\bar{\varphi} = \langle \varphi_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle, \ell g(\bar{x}) = m \) witnessing \(\kappa < \kappa_{ct}(T) \); without loss of generality \(m \) is minimal. Fixing \(\bar{\varphi} \) by 1.5 we know that \(\otimes^2_{\bar{\varphi}} \) from that observation 1.5 hold. Let \(\langle \bar{a}_i^\alpha : i < \kappa, \alpha < \lambda \rangle \) exemplify \(\otimes^2_{\bar{\varphi}} \) with \(\lambda \) instead \(\omega \) and let \(\bar{c} = \langle c_i : i < m \rangle \) realize \(\varphi_i(\bar{x}, \bar{a}_0^i) \land \neg \varphi_i(\bar{x}, \bar{a}_1^i) : i < \kappa \).

Case 1: For some \(u \subseteq \kappa \setminus \{ \alpha < \lambda \} \) is not indiscernible over \(\cup \{ \bar{a}_i^\alpha : j \in \kappa \setminus \{i\} \} \cup \{ c_{m-1} \} \).

In this case for \(i \in \kappa \setminus u \) let \(\psi_i(\bar{x}', \bar{y}_i') := \varphi_i(\bar{x} \upharpoonright (m - 1), \bar{x}_m \downarrow \bar{y}_i) \) and \(\bar{\psi} = \langle \psi_i(\bar{x}', \bar{y}_i') : i \in \kappa \setminus u \rangle \) and \(\bar{b}_\alpha = \langle c_{m-1} \rangle \uparrow \bar{a}_\alpha \) for \(\alpha < \lambda, i \in \kappa \setminus u \) and \(\bar{\varphi} = \langle \psi_i(\bar{x}', \bar{y}_i') : i \in \kappa \setminus u \rangle \). Now \(\langle \bar{b}_\alpha : \alpha < \lambda, i \in \kappa \setminus u \rangle \) witness that (abusing our notation) \(\otimes^3_{\bar{\varphi}} \) holds (the consistency is exemplified by \(\bar{c} \upharpoonright (m - 1) \)), hence (in the notation of 1.5) \(\otimes^1_{\bar{\psi}[v]} \) holds for some \(\eta \in \kappa \setminus u \) contradiction to the minimality of \(m \).

Case 2: Not Case 1.

We choose \(v_\zeta \) by induction on \(\zeta < \kappa \) such that

\[\boxtimes_\zeta \]

(\(v_\zeta \subseteq \kappa \setminus \{ v_\varepsilon : \varepsilon < \zeta \} \))

(b) \(v_\zeta \) is finite

(c) for some \(i \in v_\zeta \), \(\langle \bar{a}_\alpha^i : \alpha < \lambda \rangle \) is not indiscernible over

\[\cup \{ \bar{a}_\beta^j : j \in v_\zeta \setminus \{i\}, \beta < \lambda \} \cup \{ c_{m-1} \} \]

(d) under (a) + (b) + (c), \(|v_\zeta| \) is minimal.

In the induction step, the set \(u_\zeta = \cup \{ v_\varepsilon : \varepsilon < \zeta \} \) cannot exemplify case 1, so for some ordinal \(i(\zeta) \in \kappa \setminus u_\zeta \) the sequence \(\langle \bar{a}_\alpha^{i(\zeta)} : \alpha < \lambda \rangle \) is not indiscernible over \(\cup \{ \bar{a}_\beta^j : j \in \kappa \setminus u_\zeta \setminus \{i(\zeta)\}, \beta < \lambda \} \cup \{ c_{m-1} \} \), so by the finite character of indiscernibility, there is a finite \(v \subseteq \kappa \setminus u_\zeta \setminus \{i(\zeta)\} \) such that \(\langle \bar{a}_\alpha^{i(\zeta)} : \alpha < \lambda \rangle \) is not indiscernible over \(\cup \{ \bar{a}_\beta^j : j \in v, \beta < \lambda \} \cup \{ c_{m-1} \} \). So \(v' = \{ i(\zeta) \} \cup v \) satisfies (a) + (b) + (c) hence some finite \(v_\zeta \subseteq \kappa \setminus u_\zeta \) satisfies clauses (a), (b), (c) and (d).

Having carried the induction let \(i_*(\zeta) \in v_\zeta \) exemplify clause (c). We can find a sequence \(\bar{d}_\zeta \) from \(\cup \{ \bar{a}_\beta^j : j \in v_\zeta \setminus \{i_*(\zeta)\} \} \) and \(\beta < \lambda \) such that \(\langle \bar{a}_\alpha^{i_*(\zeta)} : \alpha < \lambda \rangle \) is not indiscernible over \(\langle \bar{c}_{m-1} \rangle \bar{d}_\zeta \).
Also we can find $n(\zeta) < \omega$ and ordinals $\beta, \gamma, \delta, \epsilon < \zeta, \zeta, \zeta, \zeta$ such that the sequences $\vec{a}_{\beta,1,0}^{i(\zeta)} \cdots \vec{a}_{\beta,1,n(\zeta)}^{i(\zeta)}$ and $\vec{a}_{\beta,2,0}^{i(\zeta)} \cdots \vec{a}_{\beta,2,n(\zeta)}^{i(\zeta)}$ realize different types over c_{m-1}.

Now we consider $\vec{a}_{\beta}^{i(\zeta)} \cdots \vec{a}_{\beta}^{i(\zeta)}$ where $\beta := \max\{\beta, \gamma, \delta, \epsilon + 1\}$, so renaming without loss of generality $\beta, 1, n(\zeta) - 1 < \beta, 2, 0$. Omitting some $\vec{a}_{\beta}^{i(\zeta)}$s without loss of generality $\beta, 1, m = \beta, 2, m = n(\zeta) + m$ for $m < n(\zeta)$.

Now we define $\vec{b}_{\beta}^{i(\zeta)} := \vec{a}_{\beta,n(\zeta),\beta}^{i(\zeta)} \cdots \vec{a}_{\beta,n(\zeta) + n(\zeta) - 1}^{i(\zeta)}$ for $\beta < \lambda, \zeta < \kappa$.

By the indiscernibility of $\langle \vec{a}_{\alpha}^{i(\zeta)} : \gamma < \lambda \rangle$ over $\vec{a}_{\beta} \cup \bigcup\{\vec{a}_{\beta} : j \in \kappa \setminus \nu_{\zeta}, \beta < \lambda\} \subseteq \bigcup\{\vec{a}_{\beta} : j \in \kappa \setminus \nu_{\zeta}, \beta < \lambda\}$ we can deduce that $\langle \vec{b}_{\beta}^{i(\zeta)} : \beta < \lambda \rangle$ is an indiscernible sequence over $\bigcup\{\vec{b}_{\beta}^{i(\zeta)} : \beta < \lambda\}$.

So $\langle \vec{b}_{\alpha}^{i(\zeta)} : \alpha < \omega, \zeta < \kappa \rangle$ and $\bar{\varphi} = \langle \vec{a}_{\beta}^{i(\zeta)} : \zeta < \kappa \rangle$ satisfy the demands on $\langle \vec{a}_{\beta}^{i(\zeta)} : \beta < \lambda, \zeta < \kappa \rangle$ in $\Theta_{\varphi} \cdot \Theta_{\varphi} \cdot \Theta_{\varphi} \cdot \Theta_{\varphi}$ for $m = 1$ (by 1.5’s notation), so by 1.5 also $\Theta_{\varphi}^{\eta(n)}$ holds for some $n < \kappa$ so we are done.

2) If $\bar{\varphi}$ is as in (1) then we say that it witnesses $\kappa < \kappa_{\text{icu}}(T)$.

3) T is strongly dependent if $\kappa_{\text{icu}}(T) = \aleph_0$.

A relative of $\kappa_{\text{icu}}(T)$ is

1.8 Definition. 1) $\kappa_{\text{icu}}(T) = \kappa_{\text{icu},1}(T)$ is the minimal κ such that for no $m < \omega$ and $\bar{\varphi} = \langle \vec{a}_{\beta,0}^{i(\zeta)} : i < \kappa \rangle$ with $\ell g(\vec{a}_{\beta}) = m \times n_i$ can we find $\vec{a}_{\alpha}^{i(\zeta)} \in \ell g(\vec{a}_{\beta}) \cdot \vec{c}$ for $\alpha < \lambda, i < \kappa$ and $\vec{c}_{\eta,n} \in \Theta_{\varphi}^{\eta(n)}$ for $\eta < \kappa$ such that:

(a) $\langle \vec{c}_{\eta,n} : n < \omega \rangle$ is an indiscernible sequence over $\bigcup\{\vec{a}_{\alpha}^{i(\zeta)} : \alpha < \lambda, i < \kappa\}$

(b) for each $\eta < \kappa, \alpha < \lambda$ and $i < \kappa$ we have $\vec{c}_{\eta}(\vec{c}_{\eta,0}^{i(\zeta)} \cdots \vec{c}_{\eta,n-1}^{i(\zeta)}, \vec{a}_{\alpha}^{i(\zeta)}) \in \Theta_{\varphi}^{\eta(n)}(\alpha = \eta(i))$.

2) If $\bar{\varphi}$ is as in (1) then we say that it witnesses $\kappa < \kappa_{\text{icu}}(T)$.

3) T is strongly dependent if $\kappa_{\text{icu}}(T) = \aleph_0$.

1.9 Claim. 1) $\kappa_{\text{icu}}(T) \geq \kappa_{\text{icu}}(T)$.

2) If $\text{cf}(\kappa) > \aleph_0$ then $\kappa_{\text{icu}}(T) > \kappa$ if and only if $\kappa_{\text{icu}}(T) > \kappa$.

3) The parallels of 1.4, 1.5, 1.7(2) hold2.

2and of course more than 1.7(2), using an indiscernible sequence of m_*-tuples, for any $m_* < \omega$.

(863) SAHARON SHELAH
Proof. 1) Trivial.
2) As in the proof of 1.7.
3) Similar.

* * *

To translate statement on several indiscernible sequences to one (e.g. in 2.1) notes:

1.10 Observation. Assume that for each \(\alpha < \kappa \), \(I_\alpha \) is an infinite linear order, the sequence \(\langle \bar{a}_t : t \in I_\alpha \rangle \) is indiscernible over \(A \cup \{ a_t : t \in I_\beta \} \) and for notational simplicity \(I_\alpha : \alpha < \kappa \) are pairwise disjoint and let \(I = \sum \{ I_\alpha : \alpha < \kappa \} = I_\alpha \Rightarrow \ell_2(\bar{a}_t) = \zeta(\alpha) \) and lastly for \(\alpha \leq \kappa \) we let \(\xi(\alpha) = \sum \{ \zeta(\beta) : \beta < \alpha \} \).

Then there is \(\langle \bar{b}_t : t \in I \rangle \) such that

(a) \(\ell_2(\bar{b}_t) = \xi(\kappa) \)
(b) \(\langle \bar{b}_t : t \in I \rangle \) is an indiscernible sequence over \(A \)
(c) \(\ell_2(\bar{b}_t) = \xi(\kappa) \)
(d) \(\langle \bar{b}_t : t \in I \rangle \) is indiscernible over \(A \cup C \)

Proof. Straightforward. E.g.,

Without loss of generality \(I_\alpha : \alpha < \kappa \) are pairwise disjoint and let \(I = \sum \{ I_\alpha : \alpha < \kappa \} \).

We can find \(\bar{b}_t \in \zeta(\alpha) \) for \(t \in I, \alpha < \kappa \) such that: if \(n < \omega, \alpha_0 < \ldots < \alpha_n - 1 < \kappa, t_0 \leq s_0 < \ldots < t_{k_1 - 1} \) and \(s_0 \leq I_{\alpha} \) then the sequence \(\langle b_{t_0}^{\alpha 0}, \ldots, b_{t_0}^{\alpha k_0 - 1}, \ldots, b_{t_{k_1 - 1}}^{\alpha 0}, \ldots, b_{t_{k_1 - 1}}^{\alpha k_0 - 1} \rangle \) realizes the same type as the sequence \(\langle a_{s_0}^{\alpha 0}, \ldots, a_{s_0}^{\alpha k_0 - 1}, \ldots, a_{s_1}^{\alpha 0}, \ldots, a_{s_1}^{\alpha k_0 - 1}, \ldots, a_{s_2}^{\alpha 0}, \ldots, a_{s_2}^{\alpha k_0 - 1}, \ldots \rangle \) this is possible by compactness. Using an automorphism of \(E \) without loss of generality \(t \in I_\alpha \Rightarrow \bar{b}_t = a_t^\alpha \). Now for \(t \in I \) let \(a_t^\alpha = \langle a_0^\alpha, a_1^\alpha, \ldots \rangle \) \(0 < \kappa \).
Clauses (a)+(b)+(c) trivially hold and clauses (d),(e),(f) follows. \(\square_{1.10}\)

\[
\begin{align*}
\ast & \quad \ast & \quad \ast \\
\end{align*}
\]

In the following we consider “natural” examples which are strongly dependent, see more in 2.5.

1.11 Claim. 1) Assume \(T\) is a complete first order theory of an ordered abelian group expanded by some individual constants and some unary predicates \(P_i(i < i(\ast))\) which are subgroups and \(T\) has elimination of quantifiers.

\(T\) is strongly dependent iff we cannot find \(i_n < i(\ast)\) and \(i_n \in \mathbb{Z}\{0\}\) for \(n < \omega\) such that:

\[
\begin{align*}
\ast & \quad \text{we can find } b_{n,\ell} \in C \text{ for } n, \ell < \omega \text{ such that} \\
(a) & \quad \ell_1 < \ell_2 \Rightarrow i_n(b_{n,\ell_2} - b_{n,\ell_1}) \notin P_{i_n}^C \\
(b) & \quad \text{for every } \eta \in \omega \omega \text{ there is } c_\eta \text{ such that } c_\eta - b_{n,\eta(n)} \in P_{i_n}^C \text{ for } n < \omega.
\end{align*}
\]

2) Let \(M = (\mathbb{Z}, +, -, 0, 1, <, P_n)\) where \(P_n = \{na : a \in \mathbb{Z}\}\) so we know that \(T = \text{Th}(M)\) has elimination of quantifiers. \(\text{Then } T\) is strongly dependent hence \(\text{Th}(\mathbb{Z}, +, -, 0, <)\) is strongly dependent.

1.12 Remark. 1) This generalizes the parallel theorem for super stable abelian groups.

2) Note, if \(G\) is the ordered abelian group with sets of elements \(\mathbb{Z}[x]\), addition of \(\mathbb{Z}[x]\) and \(p(x) > 0\) iff the leading coefficient is \(> 0\), in \(\mathbb{Z}, P_n\) as above (so definable), then \(\text{Th}(G)\) is not strongly dependent using \(P_n\) for \(n\) a power of prime.

3) On elimination of quantifiers for ordered abelian groups, see Gurevich [Gu77].

Proof. 1) The main point is the if direction. We use the criterion from 2.1(2),(4) below. So let \(\langle \tilde{a}_t : t \in I \rangle\) be an infinite indiscernible sequence and \(c \in C\) (with \(\tilde{a}_t\) not necessarily finite). Without loss of generality \(C \models \text{“}c > 0\text{“}\) and \(\tilde{a}_t = \langle a_{t,\alpha} : \alpha < \alpha(\ast)\rangle\) list the members of \(M_t\), a model and even a \(|T|^+\)-saturated model, (see 2.1(4)) and let \(p_t = \text{tp}(c, M_t)\).

Note that

\[
\ast_1 \text{ if } a_{s,i} = a_{t,j} \text{ and } s \neq t \text{ then } \langle a_{r,i} : r \in I \rangle \text{ is constant.}
\]
Obviously without loss of generality $c \not\in \cup\{M_t : t \in I\}$ but \mathcal{C} is torsion free (as an abelian group because it is ordered) hence:

$$(*)_2 \ t \in \mathbb{Z}\{0\} \Rightarrow uc \not\in \cup\{M_t : t \in I\}$$

$$(*)_3 \ \text{for } t \in I, a \in M_t \ \text{and } i \in \mathbb{Z}\{0\} \ \text{let } \eta_t^i \in i^{(*)} + 2 \ \text{be such that} \ [\eta_t^i(i^{(*)}) = \ 1 \Leftrightarrow uc > a] \ \text{and for } i < i^{(*)}, [\eta_t^i(i) = 1 \Leftrightarrow uc - a \in P_t]^c$$

$$(*)_4 \ \text{for } t \in I \ \text{and } a \in M_t \ \text{let} \ p_a := \bigcup_{i \in \mathbb{Z}\{0\}} (p_a^i \cup q_a^i) \ \text{where}^3 p_a^i(x) := \{ ix \neq a, (ix > a)\eta_t^i(i^{(*)}) \} \ \text{and} \ q_a^i(x) := \{ P_1(ix - a)\eta_t^i(i) : i < i^{(*)} \}.$$

Now

$\square_0 \ \text{for } t \in \mathbb{Z}\{0\} \ \text{and } \alpha < \alpha^* \ \text{let } P_\alpha = \{ t \in I : a_{t,\alpha} < uc \}$

$\square_1 \ \langle u_{-1}, u_0, u_1 \rangle \ \text{is a partition of } \alpha^* \ \text{where} \ \langle u_{-1}, u_0, u_1 \rangle = \langle \alpha < \alpha^* : \text{for every } s < I \ \text{we have } \mathcal{C} \models a_{t,\alpha} < a_{s,\alpha} \rangle \ \text{and} \ \langle u_{-1}, u_0, u_1 \rangle = \langle \alpha < \alpha^* : \text{for every } s < I \ \text{we have } \mathcal{C} \models a_{s,\alpha} = a_{t,\alpha} \rangle \ \text{and} \ \langle u_{-1}, u_0, u_1 \rangle = \langle \alpha < \alpha^* : \text{for every } s < I \ \text{we have } \mathcal{C} \models a_{s,\alpha} < a_{t,\alpha} \rangle$

$\square_2 \ \text{if } t \in \mathbb{Z}\{0\} \ \text{then} \ \langle u_{-1}, u_0, u_1 \rangle \ \text{is a partition of } \alpha^* \ \text{where} \ \langle u_{-1}, u_0, u_1 \rangle = \langle \alpha < \alpha^* : \text{for every } s < I \ \text{we have } \mathcal{C} \models a_{t,\alpha} < uc \rangle$

$\square_3 \ \text{let } P_\alpha = \{ t \in I : a_{t,\alpha} < uc \}$

$\square_4 \ \text{for } t \in I \ \text{and } a \in M_t \ \text{let} \ p_a := \bigcup_{i \in \mathbb{Z}\{0\}} (p_a^i \cup q_a^i) \ \text{where}^3 p_a^i(x) := \{ ix \neq a, (ix > a)\eta_t^i(i^{(*)}) \} \ \text{and} \ q_a^i(x) := \{ P_1(ix - a)\eta_t^i(i) : i < i^{(*)} \}$.

[Why? Recall $<_\mathcal{C}$ is a linear order. So for each $t \in \mathbb{Z}\{0\}, \alpha \in u_1$ by the definition of u_1 the set $I_\alpha^t := \{ t \in I : a_{t,\alpha} < uc \}$ is an initial segment of I, also $t \in I \setminus I_\alpha^t \Rightarrow uc <^{\mathcal{C}} a_{t,\alpha}$ as $c \not\in \cup\{M_s : s \in I\}$ by $(*)_2$.

Now suppose $\alpha, \beta \in u_1$ and $|I_\beta^t \setminus I_\alpha^t| > 1$ and $I_\alpha^t, I_\beta^t \not\in \{\emptyset, I\}$ then choose $t_1 < t_2$ from $I_\beta^t \setminus I_\alpha^t$ and $t_0 < t_1, t_3 \in I_\beta^t$. As I_α^t, I_β^t are initial segments and $t_0 < t_1 < t_2 < t_3$, necessarily $\mathcal{C} \models \{ a_{t_0,\alpha} < uc < a_{t_1,\alpha} \land a_{t_2,\beta} < uc < a_{t_3,\beta} \}$. If $a_{t_1,\alpha} \leq^{\mathcal{C}} a_{t_2,\beta}$ we can deduce a contradiction ($\mathcal{C} \models \{ uc < a_{t_1,\alpha} \leq a_{t_2,\beta} < uc \}$). Otherwise by the indiscernibility of the sequence $\langle a_{t,\alpha}, a_{t,\beta} : t \in I \rangle$ we get $\mathcal{C} \models a_{t_3,\beta} < a_{t_0,\alpha}$ and a similar contradiction. So $|I_\beta^t \setminus I_\alpha^t| \leq 1$.

So $I_\alpha^t, I_\beta^t \not\in \{\emptyset, I\} \Rightarrow |I_\beta^t \setminus I_\alpha^t| \leq 1$ and by symmetry $|I_\alpha^t \setminus I_\beta^t| \leq 1$. So $|I_\alpha^t : \alpha \in u_1\} \setminus \{\emptyset, I\}| \leq 2$, i.e. clause (d) of \square_2 holds; the other clauses should be clear.]

Now clearly

\[\text{recall that } \varphi^1 = \varphi, \varphi^0 = \neg \varphi\]
if $\alpha, \beta < \alpha(\ast), \iota \in \mathbb{Z}\backslash\{0\}$ and $a_{t,\alpha} = -a_{t,\beta}$ (for some equivalently for every $t \in I$) then:

(a) $(\alpha \in u_1) \equiv (\beta \in u_{-1})$
(b) $((\iota c) < a_{t,\alpha}) \equiv (a_{t,\beta} < ((-\iota)c))$ recalling $\iota c, (-\iota)c \notin \bigcup_{t \in I} M_t$
(c) $I^\iota_{\alpha} = I \backslash I^\iota_{\beta}$.

Also

if ι_1, ι_2 are from \{1, 2, ...\} and $\iota_1 a_{t,\alpha} = \iota_2 a_{t,\beta}$ then

(a) $[\alpha \in u_{-1} \equiv \beta \in u_{-1}], [\alpha \in u_0 \equiv \beta \in u_0]$ and $[\alpha \in u_1 \equiv \beta \in u_1]$
(b) $(t \in I^{\iota_2}_{\alpha}) \leftrightarrow (t \in I^{\iota_1}_{\beta})$ hence $I^{\iota_2}_{\alpha} = I^{\iota_1}_{\beta}$.

[Why? Clause (a) is obvious. For clause (b) note that $t \in I^{\iota_2}_{\alpha} \Leftrightarrow a_{t,\alpha} < \iota_2 c \Leftrightarrow \iota_1 a_{t,\alpha} < \iota_1(\iota_2 c) \Leftrightarrow \iota_2 a_{t,\beta} < \iota_2(\iota_1 c) \Leftrightarrow a_{t,\beta} < \iota_1 c \Leftrightarrow t \in I^{\iota_1}_{\beta}$.]

By symmetry, i.e. by \Box_3 clearly \Box_5 the statement (d) in \Box_2 holds also replacing $\alpha \in u_1$ by $\alpha \in u_{-1}$.

Obviously

\Box_6 if $\alpha \in u_0$ then $I^\iota_{\alpha} \in \{\emptyset, I\}.$

Together

$\Box_7 \{I^\iota_{\alpha} : \alpha < \alpha(\ast) \text{ and } \iota \in \mathbb{Z}\backslash\{0\}\}\backslash\{\emptyset, I\}$ hence has ≤ 4 members.

[Why? Obvious but we elaborate. Recall $\alpha(\ast)$ is the disjoint union of $u_{-1}, u_0, u_1.$ Now the $\alpha \in u_0$ contribute to the set in \Box_7 no member by \Box_6. The $\alpha \in u_1$ contributes at most two I^ι_{α}’s by \Box_2. Lastly, the $\alpha \in u_{-1}$ contributes at most two I^ι_{α}’s by \Box_5. Together the set has $\leq 2 + 0 + 2 = 4$ members.]

Hence

\otimes_0 there are initial segments J_{ℓ} of I for $\ell < \ell(\ast) \leq 4$ such that: if s, t belongs to I and $\ell < \ell(\ast) \Rightarrow [s \in J_{\ell} \equiv t \in J_{\ell}] \text{ then } \eta_{a_{t,\alpha}}(i(\ast)) = \eta_{a_{s,\alpha}}(i(\ast)).$

[Why? By the above and the definition of $\eta_{a_{t,\alpha}}(i(\ast))$ we are done.]

\otimes_1 for each $t \in I$ we have $\cup\{p_{\alpha}(x) : \alpha \in M_t\} \vdash p_t(x)$.

[Why? Use the elimination of quantifiers and the closure properties of
M_t. That is, every formula in $p_t(x)$ is equivalent to a Boolean combination of quantifier free formulas. So it suffices to deal with the cases $\varphi(x, \bar{a}) \in p_t(x)$ which is atomic or negation of atomic and x appear. As for $b_1, b_2 \in \mathcal{C}$ exactly one of the possibilities $b_1 < b_2, b_1 = b_2, b_2 < b_1$ holds and by symmetry, it suffices to deal with $\sigma_1(x, \bar{a}) > \sigma_2(x, \bar{a}), \sigma_1(x, \bar{a}) = \sigma_2(x, \bar{a}), P_t(\sigma(x, \bar{a})), \neg P_t(\sigma(x, \bar{a}))$ where $\sigma(x, \bar{y}), \sigma_1(x, \bar{y}), \sigma_2(x, \bar{y})$ are terms in $\mathbb{L}(\tau_T)$. As we can subtract, it suffices to deal with $\sigma(x, \bar{a}) > 0, \sigma(x, \bar{a}) = 0, P_t(\sigma(x, \bar{a})), \neg P_t(\sigma(x, \bar{a}))$. By linear algebra as M_t is closed under the operations, without loss of generality $\sigma(x, \bar{a}) = \iota x - a_{t,\alpha}$ for some $\iota \in \mathbb{Z}$ and $\alpha < \alpha^*$, and without loss of generality $\iota \neq 0$. The case $\varphi(x) = (\iota x - a_{t,\alpha} = 0) \in p(x)$ implies $c \in M_t$ (as M is torsion free) which we assume does not hold. In the case $\varphi(x, \bar{a}) = (\iota x - a_{t,\alpha} > 0)$ use $p^t_{a_{t,\alpha}}(x)$, in the case $\varphi(x, \bar{a}) = P_t(\iota x - a_{t,\alpha})$ or $\varphi(x, \bar{a}) = \neg P_t(\iota x - a_{t,\alpha})$ use $\eta^t_{a_{t,\alpha}}(x)$ for $\eta^t_{a_{t,\alpha}}(i)$.

\(\oplus_2\) if $\iota \in \mathbb{Z}\setminus\{0\}, n < \omega$ and $a_0, \ldots, a_{n-1} \in M_t$ then for some $a \in M_t$ we have $\ell < n \land i < i(*) \land \eta^t_{a}(i) = 1 \Rightarrow \eta^t_{a}(i) = 1$

[Why? Let $a' \in M_t$ realize $p_t \upharpoonright \{a_0, \ldots, a_{n-1}\}$, exist as M_t was chosen as $|T|^+$-saturated; less is necessary. Now $\iota c - \iota \ell \in P^c_t \Rightarrow \iota a' - \iota \ell \in P^c_t \Rightarrow (\iota c - \iota a') = ((\iota c - \iota a) - (\iota a' - \iota \ell)) \in P^c_t$ and let $a := a'.]

\(\oplus_3\) assume $\iota \in \mathbb{Z}\setminus\{0\}, i < i(*)$, $\alpha < \alpha^*$, $s_1 < s_2$ and $t \in I \setminus \{s_1, s_2\}$ then:

(a) if $\eta^t_{a_{s_1,\alpha}}(i) = 1$ and $\eta^t_{a_{s_2,\alpha}}(i) = 0$ then $\eta^t_{a_{t,\alpha}}(i) = 0$

(b) if $\eta^t_{a_{s_1,\alpha}}(i) = 0$ and $\eta^t_{a_{s_2,\alpha}}(i) = 1$ then $\eta^t_{a_{t,\alpha}}(i) = 0$.

[Why? As we can invert the order of I it is enough to prove clause (a). By the choice of $a \mapsto \eta^t_{a}$ we have $\iota c - a_{s_1,\alpha} \in P^c_t, \iota c - a_{s_2,\alpha} \notin P^c_t$ hence $a_{s_1,\alpha} - a_{s_2,\alpha} \notin P^c_t$ hence also $a_{s_2,\alpha} - a_{s_1,\alpha} \notin P^c_t$. By the indiscernibility we have $a_{t,\alpha} - a_{s_1,\alpha} \notin P^c_t$ and as $\iota c - a_{s_1,\alpha} \in P^c_t$ we can deduce $\iota c - a_{t,\alpha} \notin P^c_t$ hence $\eta^t_{a_{t,\alpha}}(i) = 0$. So we are done.]

\(\oplus_4\) for each $\iota \in \mathbb{Z}\setminus\{0\}, i < i(*)$ and $\alpha < \alpha^*$ the set $I^t_{i,\alpha} := \{t : \eta^t_{a_{t,\alpha}}(i) = 1\}$ is \emptyset, I or a singleton.

[Why? By \oplus_3.]

\(\oplus_5\) if $I^t_{i,\alpha} = \bigcup\{I^t_{i,\alpha} : t \in \mathbb{Z}\setminus\{0\}, i < i(*)\}, i < i(*)$, $\alpha < \alpha^*$ and $I^t_{i,\alpha}$ is a singleton} is infinite then (possibly inverting I) we can find $t_n \in I$ and $\beta_n < \alpha^*, t_n \in \mathbb{Z}\setminus\{0\}$ and $i_n < i(*)$ for $n < \omega$ such that

(a) $t \in I$ then $[t_n c - a_{t,\beta_n} \in P^c_{t_n}] \Leftrightarrow t = t_n$ for every $n < \omega$

(b) \(\langle a_{t,\beta_n} - a_{s,\beta_n} : s \neq t \in I \rangle\) are pairwise not equal mod $P^c_{t_n}$

(c) $t_n < t_{n+1}$ for $n < \omega$.

[Why? Should be clear.]
if $I_*=\bigcup\{I_{t,\alpha}: t\in \mathbb{Z}\setminus\{0\}, \alpha<\alpha^*, i<i(\ast)\} and I^t_{t,\alpha}$ is a singleton} is finite and $J_\ell(\ell<\ell(\ast)\leq 4)$ are as in \otimes_0, then $\text{tp}(\bar{a}_s, \{c\}) = \text{tp}(\bar{a}_t, \{c\})$ whenever $(s,t\in I\setminus I_*) \wedge \bigwedge_{\ell<\ell(\ast)} (s\in J_\ell \iff t\in J_\ell)$ recalling \bar{a}_t list the elements of M_t.

[Why? By \otimes_4 and \otimes_1 (and \otimes_0) recalling the choice of p_n in $(\ast)_4$.]

Assume $c, \langle \bar{a}_t: t\in I \rangle$ exemplify T is not strongly dependent then I_* cannot be finite (by \otimes_6) hence I_* is infinite so by \otimes_5 we can find $((t_n, \beta_n, i_n, n): n<\omega)$ as there. That is, for $n<\omega, \ell<\omega$ let $b_{n,\ell} := a_{t_n,\beta_n}$. So

\[\otimes_7 \quad t_n c - b_{n,\ell} \in P^c_n \iff t_n c - a_{t_n,\beta_n} \in P^c_n \quad \text{iff} \quad t_\ell = t_n \quad \text{iff} \quad \ell = n \]

\otimes_8 if $\ell_1<\ell_2$ then $b_{n,\ell_2} - b_{n,\ell_2} \notin P^c_{n,\ell}$.

[Why? By clause (b) of \otimes_5.]

Now

\otimes_9 if $\eta \in \omega \omega$ is increasing then there $c_\eta \in \mathcal{C}$ such that $n<\omega \Rightarrow t_n c_\eta - b_{n,\eta(n)} \in P^c_{n,\eta}$.

[Why? As $\langle \bar{a}_t: t\in I \rangle$ is an indiscernible sequence, there is an automorphism $f = f_\eta$ of \mathcal{C} which maps \bar{a}_{t_n} to $\bar{a}_{t_n(n)}$ for $t\in I$ so $f_\eta(b_{n,n}) = b_{n,n(n)}$. Hence $c_\eta = f_\eta(c)$ satisfies $n<\omega \Rightarrow t_n f(c) - b_{n,\eta(n)} \in P^c_{n,\eta}$.]

Now $\langle b_{n,\ell}: n, \ell<\omega \rangle$ almost satisfies (\ast) of 1.11. Clause (a) holds by \otimes_8 and clause (b) holds for all increasing $\eta \in \omega \omega$. By compactness we can find $\langle b'_{n,\ell}: n, \ell<\omega \rangle$ satisfying (a) + (b) of (\ast) of 1.11.

[Why? Let $\Gamma = \{P_n(t_n x_n y_n, n_\eta(n)): \eta \in \omega \omega, n<\omega\} \cup \{P_n(t_n x_{n,\ell_1} x_{n,\ell_2}) : n<\omega, \ell_1<\ell_2<\omega\}$. If Γ is satisfied in \mathcal{C} we are done, otherwise there is a finite inconsistent $\Gamma' \subseteq \Gamma$, let n_\ast be such that: if $y_{n,\ell}$ appear in Γ' then $n, \ell<n_\ast$. But the assignment $y_{n,\ell} \leftrightarrow b_{n_n,\ell} + b_{n_\ast,\ell}$ for $n<n_\ast, \ell<n_\ast$ exemplified that Γ' is realized, so we have proved half of the claim. The other direction should be clear, too.]

2) The first assertion (on T) holds by part (1); the second holds as the set of terms $\{0, 1, 2, \ldots, n-1\}$ is provably a set of representatives for \mathbb{Z}/P_n which is finite. $\square_{1.11}$

1.13 Example: $\text{Th}(M)$ is not strongly stable when M satisfies:

(a) has universe $\omega \mathbb{Q}$

(b) is an abelian group as a power of $(\mathbb{Q}, +)$,

(c) $P^M_n = \{f \in M : f(n) = 0\}$, a subgroup.

We now consider the p-adic fields and more generally valued fields.
1.14 Definition. 1) We define a valued field M as one in the Denef-Pas language, i.e., a model M such that:

(a) the elements of M are of three sorts:

(α) the field P_0^M which (as usual) we call K^M, so $K = K^M$ is the field of M and has universe P_0^M so we have appropriate individual constants (for 0, 1), and the field operations (including the inverse which is partial)

(β) the residue field P_1^M which (as usual) is called k^M, so $k = k^M$ is a field with universe P_1^M so with the appropriate 0, 1 and field operations

(γ) the valuation ordered abelian group P_2^M which (as usual) we call $Γ^M$, so $Γ = Γ^M$ is an ordered abelian group with universe P_2^M so with 0, addition, subtraction and the order

(b) the functions (and individual constants) of $K^M, k^M, Γ^M$ and the order of $Γ^N$ (actually mentioned in clause (a))

(c) $val^M : K^M \to Γ^M$, the valuation

(d) $ac^M : K^M \to k^M$, the function giving the “leading coefficient” (when as in natural cases the members of K are power series)

(e) of course, satisfying the sentences saying that the following hold:

(α) $Γ^M$ is an ordered abelian group

(β) k is a field

(γ) K is a field

(δ) val, ac satisfies the natural demands.

1A) Above we replace “language” by ω-language when: in clause (b), i.e. (a)(γ), $Γ^M$ has $1_Γ$ (the minimal positive elements) and we replace (d) by

\[(d_\omega) \quad ac^M_n : K^M \to k^M \text{ satisfies: } \bigwedge_{\ell < n} ac^M_\ell(x) = ac^M_k(y) \Rightarrow val^M(x - y) > val^n(x) + n. \]

2) We say that such M (or $Th(M)$) has elimination of the field quantifier when: every first order formula (in the language of $Th(M)$) is equivalent to a Boolean combination of atomic formulas, formulas about k^M (i.e., all variable, free and bounded vary on P_1^M) and formulas about $Γ^M$; note this definition requires clause (d) in part (1).

It is well known that (on 1.15,1.16 see, e.g. [Pa90], [CLR06]).
1.15 Claim. 1) Assume Γ is a divisible ordered abelian group and k is a perfect field of characteristic zero. Let K be the field of power series for (Γ, k), i.e. $\{f : f \in \Gamma k$ and $\text{supp}(f)$ is well ordered) where $\text{supp}(f) = \{s \in \Gamma : f(s) \neq 0_k\}$. Then the model defined by (K, Γ, k) has elimination of the field quantifiers. 2) For p prime, we can consider the p-adic field as a valued field in the Denef-Pas ω-language and its first order theory has elimination of the field quantifiers (this version of the p-adics and the original one are (first-order) bi-interpretable; note that the field k here is finite and formulas speaking on Γ which is the ordered abelian group \mathbb{Z} are well understood).

We will actually be interested only in valuation fields M with elimination of the field quantifiers. It is well known that

1.16 Claim. Assume $\mathcal{E} = \mathcal{E}_T$ is a (monster, i.e. quite saturated) valued field in the Denef-Pas language (or in the ω-language) with elimination of the field quantifiers. If $M < \mathcal{E}$ then

(a) it satisfies the cellular decomposition of Denef which implies4: if $p \in S^1(M)$ and $P_0(x) \in p$ then p is equivalent to $p^* := \cup\{p^*_c : c \in P_0^M\}$ where $p^*_c = p^*_c, 1 \cup p^*_c, 2$ and $p^*_c, 1 = \{\varphi(\text{val}(x-c), \bar{d}) \in p : \varphi(x, \bar{y})$ is a formula speaking on Γ^M only so $\bar{d} \subseteq \Gamma^M, c \in P_0^M\}$ and $p^*_c, 2 = \{\varphi(\text{ac}(x-c), \bar{d}) \in p : \varphi$ speaks on k^M only$\}$ but for the ω-language we should allow $\varphi(\text{ac}_0(x-c), \ldots, \text{ac}_n(x-c), \bar{d})$ for some $n < \omega$.

(b) if $p \in S^1(M), P_0(x) \in p$ and $c_1, c_2 \in P_0^M$ and $\text{val}^M(x-c_1) < \Gamma^M \text{val}^M(x-c_2)$ belongs to $p(x)$ then $p^*_c(x) \vdash p^*_c, 1(x)$ and even $\{\text{val}(x-c_1) < \text{val}(x-c_2)\} \vdash p^*_c, 2(x)$.

(c) for $\bar{c} \in \omega^>(k^M)$, the type $\text{tp}(\bar{c}, 0, k^M)$ determines $\text{tp}(\bar{c}, 0, M)$ and similarly for Γ^M.

1.17 Claim. 1) The first order theory T of the p-adic field is strongly dependent. 2) For the theory T' of a valued field \overline{F} which has elimination of the field quantifier we have:

T is strongly dependent iff the theory of the valued ordered group and the theory of the residue fields of \overline{F} are strongly dependent.

3) Like (2) when we use the ω-language and we assume k^M is finite.

4note: $p \in S^1(A, M), A \subseteq M$ is a little more complicated
1.18 Remark. 1) In 1.17 we really get that T is strongly dependent over the residue field + the valuation ordered abelian group.

2) We had asked in a preliminary version of [Sh:783,§3]: show that the theory of the p-adic field is strongly dependent. Udi Hrushovski has noted that the criterion (St)$_2$ presented there (and repeated in 0.1 here from [Sh 783, 3.10=ss.6]) apply so T is not strongly$_2$ dependent. Namely take the following equivalence relation E on \mathbb{Z}_p: $\text{val}(x - y) \geq \text{val}(c)$, where c is some fixed element with infinite valuation. Given x, the map $y \mapsto (x + cy)$ is a bijection between \mathbb{Z}_p and the class x/E.

3) By [Sh 783, §3], the theory of real closed fields, i.e. $\text{Th}(\mathbb{R})$ is strongly dependent. Onshuus shows that also the theory of the field of the reals is not strongly$_2$ dependent (e.g. though Claim [Sh 783, 3.10=ss.6] does not apply but its proof works using pairwise not too near \bar{b}'s, in general just an uncountable set of \bar{b}'s).

4) See more in §5.

Of course,

1.19 Observation. 1) For a field K, $\text{Th}(K)$ being strongly dependent is preserved by finite extensions in the field theoretic sense by 1.4(2).

2) In 1.17, if we use the ω-language and k^N is infinite, the theory is not strongly dependent.

We shall now prove 1.17

Proof. 1) Recall that by 1.11(2), the theory of the valued group (which is an ordered abelian group) is strongly dependent, and this trivially holds for the residue field being finite. So by 1.15(2) we can apply part (3).

2) We consider the models of T as having three sorts: P^M_0 the field, P^M_1 the ordered abelian group (like value of valuations) and P^M_2 the residue field.

Let

$\square_1 \ (a) \ I$ be an infinite linear order, without loss of generality complete and dense (and with no extremal members),

(b) $\langle a_t : t \in I \rangle$ an indiscernible sequence, $a_t \in ^\omega \mathcal{C}$ and let $c \in \mathcal{C}$

(a singleton!)

and we shall prove

\square_2 for some finite $J \subseteq I$ we have: if $s, t \in I \setminus J$ and $(\forall r \in J)(r <_I s \equiv r <_I t)$

then a_s, a_t realizes the same type over $\{c\}$.

This suffices by 2.1 and as there by 2.1(4) without loss of generality
$\sqcap_3 \bar{a}_t = \langle a_{t,i} : i < \alpha \rangle$ list the elements of an elementary submodel M_t of $\mathcal{C} = \mathcal{C}_T$ (we may assume M_t is \aleph_1-saturated; alternatively we could have assumed that it is quite complete).

Easily it follows that it suffices to prove (by the L.S.T. argument but not used)

\sqcap_2' for every countable $u \subseteq \alpha$ there is a finite $J \subseteq I$ which is O.K. for $\langle \bar{a}_t \upharpoonright u : t \in I \rangle$.

Let $f_{t,s}$ be the mapping $a_{s,i} \mapsto a_{t,i}$ for $i < \alpha$; clearly it is an isomorphism from M_s onto M_t.

Now

$\sqcap_4 p_t = \text{tp}(c, M_t)$ so $(p_t)_a^{[s]}$ for $a \in M_t$ is well defined in 1.16(a).

The case $P_2(x) \in \bigcap_t p_t$ is easy and the case $P_1(x) \in \bigcap_t p_t$ is easy, too, by an assumption (and clause (c) of 1.16), so we can assume $P_0(x) \in \bigcap_t p_t(x)$.

Let $\mathcal{U} = \{ i < \alpha : a_{s,i} \in P_0^\mathcal{C} \text{ for every } (\equiv \text{ some}) s \in I \}$.

Now for every $i \in \mathcal{U}$

$(*)^1_i$ the function $(s, t) \mapsto \text{val}^\mathcal{C}(a_{t,i} - a_{s,i})$ for $s <_I t$ satisfies one of the following:

Case (a)1_i: it is constant

Case (b)1_i: it depends just on s and is a strictly monotonic (increasing, by $<_\Gamma$) function of s

Case (c)1_i: it depends just on t and is a strictly monotonic (decreasing, by $<_\Gamma$) function of t.

[Why? This follows by inspection or see the proof of $(*)^2_{i,j}$ below.]

For $\ell = -1, 0, 1$ let $\mathcal{U}_\ell := \{ i \in \mathcal{U} : \text{if } \ell = 0, 1, -1 \text{ then case (a)1_i, (b)1_i, (c)1_i respectively of } (*)^1_i \text{ holds} \}$ so $(\mathcal{U}_{-1}, \mathcal{U}_0, \mathcal{U}_1)$ is a partition of \mathcal{U}.

For $i, j \in \mathcal{U}_1$ we shall prove more than

$(*)^2_{i,j}$ we have $i, j \in \mathcal{U}_1$ and the function $(s, t) \mapsto \text{val}^\mathcal{C}(a_{t,j} - a_{s,i})$ for $s <_I t$ satisfies one of the following:

Case (a)$^2_{i,j}$: $\text{val}^\mathcal{C}(a_{t,j} - a_{s,i})$ is constant

Case (b)$^2_{i,j}$: $\text{val}^\mathcal{C}(a_{t,j} - a_{s,i})$ depends only on s and is a monotonic (increasing) function of s and is equal to $\text{val}^\mathcal{C}(a_{s_1,i} - a_{s,i})$ when $s <_I s_1$

Case (c)$^2_{i,j}$: $\text{val}^\mathcal{C}(a_{t,j} - a_{s,i})$ depends only on t and is a monotonic (increasing) function of t and is equal to $\text{val}^\mathcal{C}(a_{t,j} - a_{t_1,j})$ when $t <_I t_1$.
[Why \((*)^2_{i,j}\) holds? In this case we give full checking.

First, assume: for some (equivalently every) \(t \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : s \text{ satisfies } s < t \rangle\) is \(<_\Gamma\)-decreasing with \(s\) recalling that we have assumed \(I\) is a linear order with neither first nor last element. Choose \(s_1 < _I s_2 < _I t\) so by the present assumption we have \(<\text{val}^e(a_{t,j} - a_{s_2,i}) < _\Gamma \text{ val}^e(a_{t,j} - a_{s_1,i})\) hence \(\text{val}^e((a_{t,j} - a_{s_2,i}) - (a_{t,j} - a_{s_1,i})) = \text{val}^e(a_{t,j} - a_{s_2,i})\) which means \(\text{val}^e(a_{t,j} - a_{s_2,i}) = \text{val}^e(-(a_{s_2,i} - a_{s_1,i})) = \text{val}^e(a_{s_2,i} - a_{s_1,i})\). So in the right side \(t\) does not appear, in the left side \(s_1\) does not appear, hence by the equality the left side, \(\text{val}^e(a_{t,j} - a_{s_2,i})\), does not depend on \(t\) and the right side, \(\text{val}^e(a_{s_2,i} - a_{s_1,i})\) does not depend on \(s_1\) but as \(i \in \mathbb{Z}_j\) it does not depend on \(s_2\). Together by the indiscernibility for \(s < _I t\) we have \(\text{val}^e(a_{t,i} - a_{s,i})\) is constant, i.e. case \((a)_{i,j}^2\) holds. So we can from now on assume: for each \(t \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : s \text{ satisfies } s < _I t \rangle\) is constant or for each \(t \in I\) it is \(<_\Gamma\)-increasing with \(s\).

Second, assume: for some (equivalently every) \(s \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : t \text{ satisfies } s < _I t \rangle\) is \(<_\Gamma\)-decreasing with \(t\). As in “first” we can show that case \((a)_{i,j}^2\) holds. So from now on we can assume that for every \(s \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : t \text{ satisfies } s < _I t \rangle\) is constant or for every \(s \in I\) the sequence is \(<_\Gamma\)-increasing with \(s\).

Third, assume: for some (equivalently every) \(t \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : s \text{ satisfies } s < _I t \rangle\) is constant. This implies that \(s < _I t \Rightarrow \text{val}^e(a_{t,j} - a_{s,i}) = e_t\) for some \(e_t = \langle e_t : t \in I \rangle\). If for some (equivalently every) \(s \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : t \text{ satisfies } s < _I t \rangle\) is constant then clearly case \((a)_{i,j}^2\) holds so we can assume this fails so by the end of “second” this sequence is \(<_\Gamma\)-increasing hence \(<\langle e_t : t \in I \rangle\) is \(<_\Gamma\)-increasing. So most of the requirements in case \((c)_{i,j}^2\) holds; still we have to show that \(t < _I t_1 \Rightarrow \text{val}(a_{t_1,j} - a_{t_1,j}) = e_t\).

Let \(s < _I t < _I t_1\), we know that \(e_t < _\Gamma e_{t_1}\), which means that \(\text{val}^e(a_{t,j} - a_{s,i}) < _\Gamma \text{ val}^e(a_{t_1,j} - a_{s,i})\). This implies that \(\text{val}^e(((a_{t,j} - a_{s,i}) - (a_{t_1,j} - a_{s,i})) = \text{val}^e(a_{t,j} - a_{s,i})\) which means that \(\text{val}^e(a_{t,j} - a_{t_1,j}) = \text{val}^e(a_{t,j} - a_{s,i}) = e_t\) as required; so case \((c)_{i,j}^2\) and we are done (if “Third...” holds).

Fourth, assume that for some (equivalently every) \(s \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : t \text{ satisfies } s < _I t \rangle\) is constant, then we proceed as in “third” getting case \((b)_{i,j}^2\) instead of case \((c)_{i,j}^2\).

So assume that none of the above occurs, hence for every (equivalently some) \(t \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : s \text{ satisfies } s < _I t \rangle\) is \(<_\Gamma\)-increasing (with \(s\), by “first”...and “third” above) and for every (equivalently some) \(s \in I\) the sequence \(<\text{val}^e(a_{t,j} - a_{s,i}) : t \text{ satisfies } s < _I t \rangle\) is \(<_\Gamma\>-increasing (with \(t\), by “second” and “fourth” above).

Hence we have \(s < _I t_1 < _I t_2 \Rightarrow \text{val}^e(a_{t_1,j} - a_{s,i}) < _\Gamma \text{ val}^e(a_{t_2,j} - a_{s,i}) \Rightarrow \text{val}^e(a_{t_1,j} - a_{s,i}) = \text{val}^e((a_{t_2,j} - a_{s,i}) - (a_{t_1,j} - a_{s,i})) = \text{val}^e(a_{t_2,j} - a_{t_1,j})\) hence \(\text{val}^e(a_{t_1,j} - a_{s,i})\) does not depend on \(s\) as \(s\) does not appear on the left side, but,
see above, it is \(<_\Gamma\) -increasing with \(s\), contradiction. So we have finished proving
\((\ast)_i^3\).

\((\ast)_i^3\) for each \(i \in \mathcal{U}_1\), for some \(t_i^* \in \{-\infty\} \cup I \cup \{+\infty\}\) we have:

\((a)_i^3\) \(\text{val}^\varepsilon(c - a_{s,i}) = \text{val}^\varepsilon(a_{t,i} - a_{s,i})\) when \(s < I < t\) and \(s \in I_{<t_i^*}\)

\((b)_i^3\) \(\langle \text{val}^\varepsilon(c - a_{s,i}) : s \in I_{>t_i^*} \rangle\) is constant and if \(r \in I_{>t_i^*}\) and \(s < I < t\) are from \(I_{>t_i^*}\) then \(\text{val}^\varepsilon(c - a_{r,i}) < \text{val}^\varepsilon(a_{t,i} - a_{s,i})\)

\((c)_i^3\) \(\text{ac}^\varepsilon(c - a_{s,i}) = \text{ac}^\varepsilon(a_{t,i} - a_{s,i})\) when \(s < I < t\) and \(s \in I_{<t_i^*}\)

\((d)_i^3\) \(\langle \text{ac}^\varepsilon(c - a_{s,i}) : s \in I_{>t_i^*} \rangle\) is constant.

[Why? Recall the definition of \(\mathcal{U}_1\) which appeared just after \((\ast)_i^1\) recalling that we are assuming \(I\) is a complete linear order, see \(\Box_1(a)\).]

\((\ast)_4\) the set \(J_1 = \{t_i^* : i \in \mathcal{U}_1\}\) has at most one member in \(I\).

[Why? Otherwise we can find \(i, j\) from \(\mathcal{U}_1\) such that \(t_i^* \neq t_j^*\) are from \(I\). Now apply \((\ast)_i^2 + (\ast)_j^3\).

So without loss of generality \((\ast)_5\) \(J_1\) is empty.

[Why? If not let \(J_0 = \{t_s\}\) and we can get it is enough to prove the claim for \(I_{<t_s}\) and for \(I_{>t_s}\).]

Now

\[\Box_1 \text{ if } i \in \mathcal{U}_1 \text{ and } t_i^* = \infty \text{ then for every } s_0 < I < s_1 < I < s_2 < I < s_3 \text{ we have} \]

\[(a) \{ \text{val}^\varepsilon(x - a_{s_3,i}) > \text{val}^\varepsilon(a_{s_2,i}a - a_{s_1,i}) \} \dashv p_{s_0,i}^{[s]} \text{ and} \]

\[(b) \text{ } c \text{ satisfies the formula in the left side; on } p_{s_0,i}^{[s]}, \text{ see } \Box_4.\]

[Why? By clause (b) of 1.16 and \((\ast)_i^3\) and reflect.]

Hence

\[\Box_2 \text{ if } \mathcal{V}_i = \{i \in \mathcal{V}_1 : t_i^* = \infty\} \text{ then } \exists \mathcal{V}_i\]

where for \(\mathcal{W} \subseteq \mathcal{U}\) we let

\[\Box_\mathcal{W} \text{ if } s < I \text{ then } \Box_\mathcal{W}^{s,t} \text{ where for } \mathcal{U}' \subseteq \mathcal{W}:\]

\[\Box_\mathcal{W}^{s,t}, \mathcal{W}' \subseteq \alpha, s, t \in I \text{ and } f_{s,t} \text{ maps } \cup\{p_{s,i}^{[s]} : i \in \mathcal{W}'\} \text{ onto } \cup\{p_{t,i}^{[s]} : i \in \mathcal{W}'\}.\]
[Why? Should be clear.] Hence

\[\mathbb{H}_4 \text{ if for every } i \in \mathcal{U}_1 \text{ satisfying } t_i^* = -\infty \text{ there is } j \text{ as in the assumption of } \mathbb{H}_3 \text{ then } \square_{\mathcal{W}_2} \text{ holds for } \mathcal{W}_2 = \{ i \in \mathcal{U}_1 : t_i^* = -\infty \}. \]

[Why? As in \(\mathbb{H}_2 \).] Consider the assumption

\[\mathbb{H}_5 \text{ the hypothesis of } \mathbb{H}_4 \text{ fails and let } j(*) \in \mathcal{U}_1 \text{ exemplify this (so in particular } t_{j(*)}^* = -\infty). \text{ Let } \mathcal{W}_3 = \{ i \in \mathcal{U}_1 : t_i^* = -\infty \text{ and } \mathrm{val}^\mathcal{E}(c - a_{s,j(*)}) > \mathrm{val}^\mathcal{E}(c - a_{s,i}) \text{ for any } s,t \in I \} \text{ and } \mathcal{W}_4 = \{ i \in \mathcal{U}_1 : t_i^* = -\infty \text{ and } i \notin \mathcal{W}_3 \} \text{ so } j(*) \in \mathcal{W}_4 \]

\[\mathbb{H}_6 \text{ if } \mathbb{H}_5 \text{ then } \square_{\mathcal{W}_5}. \]

[Why? Similarly to the proof of \(\mathbb{H}_2 \)]

\[\mathbb{H}_7 \text{ if } \mathbb{H}_5 \text{ then } \]

1. \(\langle \mathrm{val}^\mathcal{E}(c - a_{s,j}) : s \in I \text{ and } j \in \mathcal{W}_4 \rangle \) is constant
2. \(\mathrm{val}^\mathcal{E}(c - a_{r,j(*)}) <_r \mathrm{val}^\mathcal{E}(a_{t,i} - a_{s,i}) \) hence \((p_s)^{[s]}_{a_{s,j(*)}} \vdash (p_s)^{[s]}_{a_{s,i}} \) when \(i \in \mathcal{W}_4 \) and \(s <_I t \wedge r \in I \)
3. for some finite \(J_1 \subseteq I \) we have: if \(s,t \in J_1 \text{ and } (\forall r \in J_1)(s <_I s \equiv r <_I t) \) then tp(\(\mathrm{val}^\mathcal{E}(c - a_{s,j(*)}) \), \(M_s \)) = \(f_s,t(tp(\mathrm{val}^\mathcal{E}(c - a_{t,j(*)}), M_t)) \)
4. for some finite \(J_2 \subseteq I \) we have: if \(s,t \in I \setminus J_2 \text{ and } (\forall r \in J_2)(r <_I s \equiv r <_I t) \) then tp(\(\mathrm{ac}^\mathcal{E}(c - a_{s,j(*)}) \), \(M_s \)) = \(f_{s,t}(tp(\mathrm{ac}^\mathcal{E}(c - a_{t,j(*)}), M_t)) \)
5. for some finite \(J_3 \subseteq I \) we have: if \(s,t \in I \setminus J_3 \text{ and } (\forall r \in J)(r <_I s \equiv r <_I t) \) then \(\square^*_{\mathcal{W}_4} \)

[Why? Let \(i \in \mathcal{W}_4 \); so \(i \in \mathcal{W}_2 \), hence \(i \in \mathcal{U}_1 \), which means that case (b) of (\(s \))\text{ holds, so for each } t \in I \text{ the sequence } \langle \mathrm{val}^\mathcal{E}(c - a_{s,i}) : s \in I \text{ and } j \in \mathcal{W}_4 \rangle \text{ is } <_r \text{-increasing. Also as } i \in \mathcal{W}_2 \text{ clearly } t_i^* = -\infty \text{ hence by } (s)\text{ we have } \langle \mathrm{val}^\mathcal{E}(c - a_{s,i}) : s \in I \rangle \text{ is constant, call it } e_i. \text{ All this apply to } j(*), \text{ too. Now as } i \in \mathcal{W}_4 \text{ we know that for some } s_1,t_1 \in I \text{ we have } \mathrm{val}^\mathcal{E}(c - a_{s_1,j(*)}) \leq_\Gamma
\[\text{val}^E(c - a_{t_1,i}), \text{i.e. } e_{j(*)} \leq_E c_i.\] By the choice of \(j(*)\) for every \(j \in \mathcal{W}_1\) such that \(t_j^* = -\infty\), i.e. for every \(j \in \mathcal{W}_2\) for some (equivalently every) \(s, t \in I\) we have \(\text{val}^E(c - a_{s,j}) \leq \text{val}^E(c - a_{t,j(*)})\). In particular this holds for \(j = i\), hence for some \(s_2, t_2 \in I\) we have \(\text{val}^E(c - a_{s_2,i}) \leq \text{val}^E(c - a_{t_2,j(*)})\), i.e \(e_i \leq_E e_{j(*)}\) so together with the previous sentence, \(e_i = e_{j(*)}\), so clause (a) of \(\Xi_1\) holds. Also, the first phrase in clause (b) is easy (using \((*)^3_i^2(b)^3\)

\[\Xi_8\text{ for some finite } J \subseteq I, \text{ if } s, t \in I \setminus J \text{ and } (\forall r \in J) (r <_I s \equiv r <_I t) \text{ then } \Xi_{a,t}^s_i.\]

[Why? If the hypothesis of \(\Xi_3\) holds let \(J = \emptyset\) and if it fails (so \(\Xi_5, \Xi_6, \Xi_7\) apply), let \(J\) be as in \(\Xi_7(d), (e)\), so it partitions \(I\) to finitely many intervals. It is enough to prove \(\Xi_{a,t}^s_i^j\) for several \(\mathcal{W} \subseteq \mathcal{W}_1\) which covers \(\mathcal{W}_1\). Now by \(\Xi_2\) this holds for \(\mathcal{W}_1 = \{i \in \mathcal{W}_1 : t_i^* = \infty\}\). If the assumption of \(\Xi_3\) holds we get the same for \(\mathcal{W}_2 \) by \(\Xi_4\) and if it fails we get it for \(\mathcal{W}_3 \) by \(\Xi_6\) and for \(\mathcal{W}_4\) by \(\Xi_7(e)\) and the choice of \(J\). Using \(\mathcal{W}_1 = \mathcal{W}_1 \cup \mathcal{W}_2, \mathcal{W}_2 = \mathcal{W}_3 \cup \mathcal{W}_4\) we are done.]

As we can replace \(I\) by its inverse

\[\Xi_9\text{ for some finite } J \subseteq I \text{ if } s, t \in I \setminus J \text{ and } (\forall r) (r <_I s \equiv r <_I t) \text{ then } \Xi_{a,t}^s_i.\]

So we are left with \(\mathcal{W}_0\). For \(i \in \mathcal{W}_0\) let \(e_{0,i} = \text{val}(a_{t,i} - a_{s,i})\) for \(s <_I t\), well defined by the definition of \(\mathcal{W}_0\). Let \(\mathcal{W}_5 := \{i \in \mathcal{W}_0: \text{for every (equivalently some) } s \neq t \in I, \text{val}^E(c - a_{s,i}) < \text{val}(a_{t,i} - a_{s,i})\}\) and let \(\mathcal{W}_6 := \mathcal{W}_0 \setminus \mathcal{W}_5\).

Obviously

\[\Xi_{10}\text{ we have } \Xi_{\mathcal{W}_5}.\]

Easily

\[\Xi_{11}\text{ if } i, j \in \mathcal{W}_6\text{ then case (a)}^2_i^j, \text{ of } (*)^2_i^j\text{ holds.} \]

[Why? By \((*)^2_i^j\) and as \(i, j \in \mathcal{W}_6 \Rightarrow (**)^1_i(a)^1_i + (**)^1_j(a)^1_j\)]

\[\Xi_{12}\text{ if } i, j \in \mathcal{W}_6\text{ and } s \neq t \in I \text{ then } \text{val}^E(a_{t,j} - a_{s,i}) = e_{0,i}.\]

[Why? As \(\mathcal{W}_6 = \mathcal{W}_0 \setminus \mathcal{W}_5.\)]

Hence

\[\Xi_{13}\text{ } (e_{0,i} : i \in \mathcal{W}_6) \text{ is constant, call the constant value } e_* \text{ so } s \neq t \in I \wedge i, j \in \mathcal{W}_6 \Rightarrow \text{val}^E(a_{t,j} - a_{s,i}) = e_*.\]
Easily

\[\text{for every } i \in \mathcal{W}_6 \text{ the set } I_{i,c} := \{ s \in I : \text{val}^\varepsilon(c - a_{s,i}) > e_*\} \text{ has at most one member}\]

\[\text{let } \mathcal{W}_7 := \{ i \in \mathcal{W}_6 : I_{i,c} \neq \emptyset \} \text{ and let } \{ t_{i}^{**} \} = I_{i,c} \text{ for } i \in \mathcal{W}_7\]

\[\text{if } i,j \in \mathcal{W}_7 \text{ then } t_{i}^{**} = t_{j}^{**}.\]

[Why? Otherwise without loss of generality \(t_{i}^{**} < t_{j}^{**} \) and let \(t \in I \) be such that \(t_{i}^{**} < t \wedge t_{j}^{**} < t \), now \(\text{val}^\varepsilon(c - a_{t_{i}^{**},j}) > \text{val}^\varepsilon(a_{t,i} - a_{t_{i}^{**},i}) = e_* \) and \(\text{val}^\varepsilon(c - a_{t_{j}^{**},j}) > \text{val}^\varepsilon(a_{t,j} - a_{t_{j}^{**},j}) = e_* \) hence \(e_* < \text{val}^\varepsilon((c - a_{t_{i}^{**},i}) - (c - a_{t_{j}^{**},j})) = \text{val}^\varepsilon(a_{t_{j}^{**},j} - a_{t_{i}^{**},i}) \) but the last one is \(e_* \) by \(\text{Lemma } 12 \), contradiction.]

\[\text{without loss of generality } \mathcal{W}_7 = \emptyset.\]

[Why? E.g. as otherwise we can prove separately for \(I_{<t_{i}^{**}} \) and for \(I_{>t_{i}^{**}} \) for any \(i \in \mathcal{W}_7 \).]

\[\text{if } i,j \in \mathcal{W}_6 \text{ and } s \neq t \in I \text{ then } \text{ac}^\varepsilon(c - a_{t,j}) - \text{ac}^\varepsilon(c - a_{s,i}) = \text{ac}^\varepsilon(a_{s,i} - a_{t,j}).\]

[Why? As \(\text{val}^\varepsilon(c - a_{t,j}) \), \(\text{val}^\varepsilon(c - a_{s,i}) \) and \(\text{val}^\varepsilon(c_{s,i} - (c_{t,j})) \) are all equal to \(e_* \).]

The rest should be clear.

3) For the \(\omega \)-language: the proof is similar. \(\square \)
§2 Cutting indiscernible sequence and strongly $^+$ dependent

2.1 Observation. 1) The following conditions on T are equivalent, for $\alpha \geq \omega$

(a) T is strongly dependent, i.e., $\aleph_0 = \kappa_{\text{ict}}(T)$

(b)$_\alpha$ if I is an infinite linear order, α is an ordinal, $\bar{a}_t \in ^aC$ for $t \in I$, $I = \langle \bar{a}_t : t \in I \rangle$ is an indiscernible sequence and $C \subseteq C$ is finite, then there is a convex equivalence relation E on I with finitely many equivalence classes such that $sEt \Rightarrow \text{tp}(\bar{a}_s, C) = \text{tp}(\bar{a}_t, C)$

(c)$_\alpha$ if $I = \langle \bar{a}_t : t \in I \rangle$ is as above and $C \subseteq C$ is finite then there is a convex equivalence relation E on I with finitely many equivalence classes such that: if $s \in I$ then $\langle \bar{a}_t : t \in (s/E) \rangle$ is an indiscernible sequence over C.

2) We can add to the list in (1)

(b)$_\alpha'$ like (b)$_\alpha$ but C a singleton

(c)$_\alpha'$ like (c)$_\alpha$ but the set C is a singleton.

3) We can in part (1),(2) clauses (c)$_\alpha$, (b)$_\alpha$, (b)$_\alpha'$, (c)$_\alpha'$ restrict ourselves to well order I.

4) In parts (1),(2),(3), given $\kappa = \kappa^{<\theta}, \theta > |T|$, in clauses (b)$_\kappa$, (c)$_\kappa$ and their parallels we can add that “\bar{a}_α is the universe of a θ-saturated model”; moreover we allow I to be:

(i) $I = \langle \bar{a}_u : u \in [I]^{<\aleph_0} \rangle$ is indiscernible over A (see Definition 5.45(2))

(ii) $\bar{a}_{\{t\}} = \bar{a}_t$,

(iii) each \bar{a}_t is the universe of a θ-saturated model

(iv) for some infinite linear orders I_{-1}, I_1 and some $I' = \langle \bar{a}'_u : u \in [I_{-1} + I_1]^{<\aleph_0} \rangle$ indiscernible over $A = \text{Rang}(\bar{a}_\emptyset)$ we have:

(\alpha) $u \in [I]^{<\aleph_0} \Rightarrow \bar{a}'_u = \bar{a}_u$

(\beta) for every $B \subseteq A$ of cardinality $< \theta$, every subtype of the type of $\langle \bar{a}_u : u \in [I_{-1} + I_1]^{<\aleph_0} \rangle$ over $\langle \bar{a}_u : u \in [I]^{<\aleph_0} \rangle$ of cardinality $< \theta$ is realized in A (we can use only A and $\langle \bar{a}_t : t \in I \rangle$, of course).

Remark. 1) Note that 2.8 below says more for the cases $\kappa_{\text{ict}}(T) > \aleph_0$ so no point to deal with it here.

2) We can in 2.1 add in (b)$_\alpha$, (c)$_\alpha$, (b)$_\alpha'$, (c)$_\alpha'$ “over a fixed A” by 1.4(3).

3) By 1.10 we can translate this to the case of a family of indiscernible sequences.
Proof. 1) Let $\kappa = \omega$ (to serve in the proof of a subsequence observation).

$\neg(a) \Rightarrow \neg(b)_{\alpha}$

Let $\lambda > \aleph_0$, as in the proof of 1.5, because we are assuming $\neg(a)$, there are $\bar{\varphi} = \langle \varphi_i(x, y) : i < \kappa \rangle$ and $\langle \bar{a}_i^\alpha : i < \omega, \alpha < \lambda \rangle$ witnessing \otimes^2_{φ} from there.

For $\alpha < \lambda$ let $\bar{a}_\alpha^\alpha \in \mathcal{C}$ be the concatenation of $\langle \bar{a}_i^\alpha : i < \kappa \rangle$, necessary $\bar{a}_0^\alpha \neq \bar{a}_1^\alpha$ so we have $\ell g(\bar{a}_i^\alpha) \geq 1$ hence \bar{a}_i^α it has length κ.

Let $\eta = \langle \omega n : n < \omega \rangle$ and \bar{b}^* realizes $\{ \varphi_n(x, \bar{a}_{\omega n}^n) \wedge \neg \varphi_n(x, \bar{a}_{\omega n+1}^n) : n < \omega \}$.

So for each n, $\text{tp}(\bar{a}_{\omega n}^n, \bar{b}^*) \neq \text{tp}(\bar{a}_{\omega n+1}^n, \bar{b}^*)$ hence $\text{tp}(\bar{a}_{\omega n}^n, \bar{b}^*) \neq \text{tp}(\bar{a}_{\omega n+1}^n, \bar{b}^*)$.

So any convex equivalence relation on λ as required (i.e. such that $\alpha E_\beta \Rightarrow \text{tp}(\bar{a}_\alpha^*, \bar{b}^*) = \text{tp}(\bar{a}_\beta^*, \bar{b}^*)$) satisfies $n < \omega \Rightarrow \neg(\omega n)E(\omega n + 1)$; it certainly shows $\neg(b)_{\alpha}$.

$\neg(b)_{\alpha} \Rightarrow \neg(c)_{\alpha}$

Trivial.

$\neg(c)_{\alpha} \Rightarrow \neg(a)$

Let $\bar{a}_t : t \in I$ and C exemplify $\neg(c)_{\alpha}$, and assume toward contradiction that (a) holds. Without loss of generality I is a dense linear order (so with neither first nor last element) and is complete and let \bar{c} list C.

So

(*) for no convex equivalence relation E on I with finitely many equivalence classes do we have $s \in I \Rightarrow \langle \bar{a}_t : t \in (s/E) \rangle$ is an indiscernible sequence over C.

We now choose $(E_n, I_n, \Delta_n, J_n)$ by induction on n such that

$\otimes^2 (a)$ E_n is a convex equivalence relation on I such that each equivalence class is dense (so with no extreme member!) or is a singleton

(b) Δ_n is a finite set of formulas (each of the form $\varphi(x_0, \ldots, x_{m-1}, y)$, $\ell g(\bar{x}_0) = \alpha$, for some $m, \ell g(y) = \ell g(\bar{c})$)

(c) $I_0 = I, E_0$ is the equality, $\Delta_0 = \emptyset$

(d) I_{n+1} is one of the equivalence classes of E_n and is infinite

(e) Δ_{n+1} is a finite set of formulas such that $\langle \bar{a}_t : t \in I_{n+1} \rangle$ is not Δ_{n+1}-indiscernible over C

(f) $E_{n+1} \upharpoonright I_{n+1}$ is a convex equivalence relation with finitely many classes, each dense (no extreme member) or singleton, if J is an infinite equivalence class of $E_{n+1} \upharpoonright I_{n+1}$ then $\langle \bar{a}_t : t \in J \rangle$ is Δ_{n+1}-indiscernible over C and
There is no problem to carry the induction as \(T \) is dependent (see 2.2(1) below which says more or see [Sh 715, 3.4+Def 3.3]).

For \(n > 0, E_n \upharpoonright I_n \) is an equivalence relation on \(I_n \) with finitely many equivalence classes, each convex; so as \(I \) is a complete linear order clearly

\[(∗)_1 \text{ for each } n > 0 \text{ there are } t^n_1 < \ldots < t^n_{k(n)−1} \text{ from } I_n \text{ such that } s_1 \in I_n \land s_2 \in I_n \Rightarrow [s_1E_n s_2 \equiv (∀k)(s_1 < t^n_k \equiv s_2 < t^n_k \land s_1 > t^n_k \equiv s_2 > t^n_k)].\]

As \(n > 0 \Rightarrow E_n \not\equiv E_{n−1} \) clearly

\[(∗)_2 k(n) \geq 2 \text{ and } |I_n/E_n| = 2k(n) − 1\]

\[(∗)_3 \{I_{n,ℓ} : ℓ < k(n)\} \cup \{t^n_ℓ : 0 < ℓ < k(n)\} \text{ are the equivalence classes of } E_n \upharpoonright I_n;\]

where

\[(∗)_4 \text{ for non-zero } n < ω, ℓ < k(i) \text{ we define } I_{n,ℓ}:\]

if \(0 < ℓ < k(n) − 1 \) then \(I_{n,ℓ} = (t^n_ℓ, t^n_{ℓ+1})_{I_n} \)

if \(ℓ = 0 \) then \(I_{n,ℓ} = (−∞, t^n_ℓ)_{I_n} \)

if \(ℓ = k(n) − 1 \) then \(I_{n,ℓ} = (t^n_ℓ, ∞)_{I_n}.\)

As (see end of clause (f))) we cannot omit any \(t^n_ℓ(ℓ < k(n)) \) and transitivity of equality of types clearly

\[(∗)_5 \text{ for each } ℓ < k(n) − 1 \text{ for some } m \text{ and } φ = φ(x_0, \ldots, x_{m−1}, y) ∈ Δ_n \text{ there are } s_0 < ℓ < \ldots < s_{m−1} \text{ from } I_{n,ℓ} \text{ and } s′_0 < ℓ < \ldots < s′_{m−1} \text{ from } I_{n,ℓ∪}\{t^n_{ℓ+1}\}∪I_{n,ℓ+1}\]

such that \(C \models φ[α_{s_0}, \ldots, ̄c] \equiv ¬φ[α_{s′_0}, \ldots, ̄c]. \)

Hence easily

\[(∗)_6 J ∈ \{I_{n,ℓ} : ℓ < k(n)\} \iff J \text{ is a maximal open convex subset of } I_n \text{ such that } \langle α_t : t ∈ J \rangle \text{ is } Δ_n\text{-indiscernible over } C.\]

By clause (h) and \((∗)_6\)

\[(∗)_7 \text{ if } k(n) < 4 \text{ and } ℓ < k(n) \text{ then } \langle α_t : t ∈ I_{n,ℓ} \rangle \text{ is an indiscernible sequence over } C\]

\[(∗)_8 \text{ if } k(n) < 4 \text{ then for at most one } m > n \text{ do we have } I_m ⊆ I_n.\]
Note that

\[(*)_9 \; m < n \Rightarrow I_n \subseteq I_m \lor I_n \cap I_m = 0.\]

Case 1: There is an infinite \(u \subseteq \omega \) such that \(\langle I_n : n \in u \rangle \) are pairwise disjoint.

For each \(n \in u \) we can find \(\bar{c}_n \in \omega > C \) and \(k_n < \omega \) (no connection to \(k(n) \) from above!) and \(\varphi(x_0, \ldots, x_{k_n-1}, y) \in \Delta_n \) such that \(\langle \bar{a}_t : t \in I_n \rangle \) is not \(\varphi_n(x_0, \ldots, x_{k_n-1}, \bar{c}) \)-indiscernible (so \(\ell g(\bar{a}_t) = \alpha \)). So we can find \(t_{n,0}^t < \ldots < t_{n,k_n-1}^t \) in \(I_n \) for \(\ell = 1, 2 \)

such that \(\models \varphi_n[\bar{a}_{t_{n,0}^t}, \ldots, \bar{a}_{t_{n,k_n-1}^t}, \bar{c}_n]^{\text{if}(\ell=2)} \). By minor changes in \(\Delta_n, \varphi_n \), without loss of generality \(\bar{c}_n \) is without repetitions hence without loss of generality \(n < \omega \Rightarrow \bar{c}_n = \bar{c}_* \).

Without loss of generality \(\Delta_n \) is closed under negation and without loss of generality \(t_{n,k_n-1}^1 \ll t_{n,0}^2 \). We can choose \(t_{n,k_n}^m \in I_n(m < \omega, m \notin \{1, 2\}, k < k_n) \) such that for every \(m < \omega, k < k_n \) we have \(t_{n,k}^m < I t_{n,k+1}^m, t_{n,k_n-1}^m < I t_{n,0}^m \); let \(\bar{a}_{n,m}^k = \bar{a}_{n,0}^m \ldots \bar{a}_{n,k_n-1}^m \) and let \(\bar{x} = (x_i : i < \ell g(\bar{c}_*)) \). So for every \(\eta \in \omega \) the type \(\{ \neg \varphi_n(\bar{a}_{n,\eta(n)}^*, \bar{x}) \land \varphi_n(\bar{a}_{n,\eta(n)+1}^*, \bar{x}) : n < \omega \} \) is consistent. This is enough for showing \(\kappa_{\text{cut}}(T) > \aleph_0 \).

Case 2: There is an infinite \(u \subseteq \omega \) such that \(\langle I_n : n \in u \rangle \) is decreasing.

For each \(n \in u, E_n \mid I_n \) has an infinite equivalence class \(J_n \) (so \(J_n \subseteq I_n \)) such that \(n < m \land \{n, m\} \subseteq u \Rightarrow I_m \subseteq J_n \). By \((*)_9\) clearly for each \(n \in u, k(n) \geq 4 \) hence we can find \(\ell(n) < k(n) \) such that \(I'_n = \{I_{n,\ell(n)} \cup \{t_{\ell,n}^n\} \cup I_{n,\ell(n)+1} : n \in u \} \) is disjoint to \(J_m \). Now \(\langle I'_n : n \in u \rangle \) are pairwise disjoint and we continue as in Case 1.

By Ramsey theorem at least one of the two cases occurs so we are done.

2) By induction on \(|C| \).
3) Again using Ramsey Theorem.
4) Easy by now. \(\square_{2.1} \)

Recall

2.2 Observation. 1) Assume that \(T \) is dependent, \(\langle \bar{a}_t : t \in I \rangle \) is an indiscernible sequence, \(\Delta \) a finite set of formulas, \(C \subseteq C \) finite. Then for some convex equivalence relation \(E \) on \(I \) with finitely many equivalence classes, each equivalence class in an infinite open convex set or is a singleton such that for every \(s \in I, \langle \bar{a}_t : t \in s/E \rangle \) is an \(\Delta \)-indiscernible sequence over \(\cup\{\bar{a}_t : t \in I \setminus (s/E)\} \cup C \).

2) If \(I \) is dense and complete there is the least fine such \(E \). In fact for \(J \) an open convex subset of \(I \) we have: \(J \) is an \(E \)-equivalence class iff \(J \) is a maximal open convex subset of \(I \) such that \(\langle \bar{a}_t : t \in J \rangle \) is \(\Delta \)-indiscernible over \(C \cup \{\bar{a}_t : t \in I \setminus J\} \).

3) Assume \(I \) is dense (with no extreme elements) and complete. Then there are \(t_1 <_I \ldots < t_{k-1} \) such that stipulating \(t_0 = -\infty, t_k = \infty, I_\ell = (t_\ell, t_{\ell+1})I \), we have
2.4 Observation. If \(\ell \in \{1, \ldots, k - 1\} \) and \(t^- \prec_I t^+ \), then \(\langle a_t : t \in (t^-, t^+)I \rangle \) is not \(\Delta \)-indiscernible over \(C \).

Proof. 1) See clause (b) of [Sh 715, Claim 3.2].
2), 3) Done inside the proof of 2.1 and see proof of 2.10.

2.3 Definition. 1) We say that \(\bar{\varphi} = \langle \varphi_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle \) witness \(\kappa < \kappa_{ict,2}(T) \) when there are a sequence \(\langle \bar{a}_{i,\alpha} : \alpha < \lambda, i < \kappa \rangle \) and \(\langle \bar{b}_i : i < \kappa \rangle \) such that

(a) \(\langle \bar{a}_{i,\alpha} : \alpha < \lambda \rangle \) is an indiscernible sequence over \(\cup \{ \bar{a}_{j,\beta} : j \in \kappa \setminus \{i\} \} \) and \(\beta < \lambda \) for each \(i < \kappa \)

(b) \(\bar{b}_i \subseteq \cup \{ \bar{a}_{j,\alpha} : j < i, \alpha < \lambda \} \)

(c) \(p = \{ \varphi_i(\bar{x}, \bar{a}_{i,0}^{-1}\bar{b}_i), \neg\varphi_i(\bar{x}, \bar{a}_{i,1}^{-1}\bar{b}_i) : i < \kappa \} \) is consistent (= finitely satisfiable in \(\mathcal{C} \)).

2) \(\kappa_{ict,2}(T) \) is the first \(\kappa \) such that there is no witness for \(\kappa < \kappa_{ict,2}(T) \).
3) \(T \) is strongly\(^2\) dependent (or strongly\(^+\) dependent) if \(\kappa_{ict,2}(T) = \aleph_0 \).
4) \(T \) is strongly\(^2\) stable if it is strongly\(^2\) dependent and stable.

2.4 Observation. If \(M \) is a valued field in the sense of Definition and \(|\Gamma^M| > 1 \) then \(T := \text{Th}(M) \) is not strongly\(^2\) dependent.

Proof. Let \(a \in \Gamma^M \) be positive, \(\varphi_0(x, a) := (\text{val}(x) \geq a), E(x, y, a) := (\text{val}(x, y) \geq 2a) \) and \(F(x, y) = x^2 + y \) (squaring in \(K^M \)). Now for \(b \in \varphi_0(M, \bar{a}) \), the function \(F(-, b) \) is \((\leq 2)\)-to-1 function from \(\varphi_0(M, a) \) to \(b/E \). So we can apply [Sh 783, §4].

Alternatively let \(a_n \in \Gamma^M, a_n <_{\Gamma^M} a_{n+1} \) for \(n < \omega \) be such that there are \(b_{n,\alpha} \in K^M \) for \(\alpha < \omega \) such that \(\alpha < \beta < \omega \Rightarrow a_{n+1} > \text{val}^M(b_{n,\alpha} - b_{n,\beta}) > a_n \) and \(\text{val}(b_{n,\alpha}) > a_n \). Without loss of generality for each \(n < \omega \) the sequence \(\langle b_{n,\alpha} : \alpha < \omega \rangle \) is indiscernible over \(\{ b_{n,\alpha_1} : n_1 \in \omega \setminus \{n\}, \alpha < \omega \} \cup \{ a_{n_1} : n_1 < \omega \} \). Now for \(\eta \in \omega \) clearly \(p_\eta = \{ \text{val}(x - \Sigma\{ a_{m,\eta(m)} : m < n \}) > a_n : n < \omega \} \), it is consistent, and we have an example.

Note that the definition of strongly\(^2\) dependent here (in 2.3) is equivalent to the one in [Sh 783, 3.7](1) by (a) \(\Leftrightarrow \) (e) of Claim 2.9 below.

The following example shows that there is a difference even among the stable \(T \).

2.5 Example: There is a strongly\(^1\) stable not strongly\(^2\) stable \(T \) (see Definition 2.3).
Proof. Fix \(\lambda \) large enough. Let \(\mathbb{F} \) be a field, let \(V \) be a vector space over \(\mathbb{F} \) of infinite dimension, let \(\langle V_n : n < \omega \rangle \) be a decreasing sequence of subspaces of \(V \) with \(V_n/V_{n+1} \) having infinite dimension \(\lambda \) and \(V_0 = V \) and \(V_\omega = \cap \{ V_n : n < \omega \} \) have dimension \(\lambda \). Let \(\langle x^\alpha_\omega + V_{n+1} : \alpha < \lambda \rangle \) be a basis of \(V_n/V_{n+1} \) and let \(\langle x^{\omega,t}_\alpha : t \in \mathbb{Z} \text{ and } \alpha < \lambda \rangle \) be a basis of \(V_\omega \). Let \(M = M_\lambda \) be the following model:

(a) universe: \(V \)
(b) individual constants: \(0 \)
(c) the vector space operations: \(x + y, x - y \) and \(cx \) for \(c \in \mathbb{F} \)
(d) functions: \(F^1_1 \), a linear unary function satisfying: \(F^1_1(x^n_\alpha) = x^{n+1}_\alpha, F^1_1(x^{\omega,t}_\alpha) = x^{\omega,t+1}_\alpha \)
(e) \(F^2_2 \), a linear unary function satisfying:
\[
F^2_2(x^0_\alpha) = x^0_\alpha, F^2_2(x^{n+1}_\alpha) = x^n_\alpha \text{ and } F^2_2(x^{\omega,t}_\alpha) = x^{\omega,t-1}_\alpha
\]
(f) predicates: \(P^n_M = V_n \) so \(P_n \) unary

Now

\((*)_0\) for any models \(M_1, M_2 \) of \(\text{Th}(M_\lambda) \) with uncountable \(\cap \{ P^M_\ell : n < \omega \} \) for \(\ell = 1, 2 \), the set \(\mathcal{F} \) exemplifies \(M_1, M_2 \) are \(\mathbb{L}_{\infty, \aleph_0} \)-equivalent where:

- \(\mathcal{F} \) is the family of partial isomorphisms \(f \) from \(M_1 \) into \(M_2 \) such that
 for some \(n, \langle N_i : i < n \text{ or } i = \omega \rangle \) we have:
 (a) \(\text{Dom}(f) = \bigoplus_{i < n} N_i \oplus N_\omega \)
 (b) \(N_i \subseteq P^M_1 \) is a subspace when \(i < n \text{ or } i = \omega \)
 (c) \(N_i \) is of finite dimension
 (d) (\(\alpha \)) \(N_i \cap P^M_{i+1} = \{0\} \) and \(i = j + 1 \geq n \Rightarrow N_i = F^M_1(N_j) \) for \(i < n \)
 (\(\beta \)) \(N_i \cap \bigoplus_{m > 0} N_{i,m} = \{0\} \) when \(i = 0 \) and we let \(N_{i,0} = N_i, N_{i,m+1} = F^M_2(N_{i,m}) \) for \(m < \omega \)
 (e) similar conditions (in \(M_2 \) instead \(M_1 \)) on \(N'_i = f(N_i) \) for \(i < n \text{ or } i = \omega \)

[Why? Think.]

\((*)_1\) \(T = \text{Th}(M_\lambda) \) has elimination of quantifiers
[Why? Easy in \((*)_0\).]

Hence

\((*)_2\) \(T \) does not depend on \(\lambda \)
\((*)_3\) \(T \) is stable.
Why? As if N_1 is \aleph_1-saturated, then $N_1 \prec N_2$, so $\{tp(a,N_1,N_2) : a \in C\}$ has cardinality $\leq \|N_1\|^{\aleph_0}$ by $(*)_0$.

Now

$(*)_4$ T is not strongly dependent.

Why? By 0.1. Alternatively, define a term $\sigma_n(y)$ by induction on $n :
\sigma_0(y) = y, \sigma_{n+1}(y) = F_1(\sigma_n(y))$, and for $\eta \in \omega \lambda$ increasing let

$$p_\eta(y) = \{P_1(y - \sigma_0(x^0_{\eta(0)})), P_2(y - \sigma_0(x^0_{\eta(0)}) - \sigma_1(x^1_{\eta(1)})), \ldots, P_n(y - \Sigma\{\sigma_\ell(x^\ell_{\eta(\ell)}) : \ell < n\}) \}.$$

Clearly each p_η is finitely satisfiable in M_λ. Easily this proves that T is not strongly stable.

So it remains to prove

$(*)_5$ T is strongly stable.

Why this holds? We work in $\mathfrak{C} = \mathfrak{C}_T$. Let $\lambda \geq (2^\kappa)^+$ be large enough and $\kappa = \kappa^{\aleph_0}$. We shall prove $\kappa_{ct}(T) = \aleph_0$ by the variant of $(b)'_0$ from 2.1(3), this suffices. Let $\langle \bar{a}_\alpha : \alpha < \lambda \rangle$ be an indiscernible sequence over a set A such that $\ell g(\bar{a}_\alpha) \leq \kappa$. By 1.10 without loss of generality each \bar{a}_α enumerate the set of elements of an elementary submodel N_α of \mathfrak{C} which include A and is \aleph_1-saturated.

Without loss of generality ($I \cap Z = \emptyset$ and):

□ 1 for some $\bar{a}'_n (n \in \mathbb{Z})$ we have

(a) $A \supseteq cl(A' \cup \{\bar{a}'_i : i \in \mathbb{Z}\})$
(b) $\langle \bar{a}'_i : t \in \mathbb{Z}, t < 0 \rangle \setminus \langle \bar{a}_\alpha : \alpha < \lambda \rangle \setminus \langle \bar{a}'_n : t \in \mathbb{Z}, t \geq 0 \rangle$ is an indiscernible sequence over A'
(c) $\langle \bar{a}_\alpha : \alpha < \lambda \rangle \setminus \langle A \rangle$ is linearly independent over A'
(d) A is the universe of N
(e) N is \aleph_1-saturated
(f) $N \cap N_\alpha$ is \aleph_1-saturated (and does not depend on α).

Hence by $(*)_0$

□ 2 (a) $\alpha \neq \beta$ and $a_{\alpha,i} = a_{\beta,j} \Rightarrow a_{\alpha,i} = a_{\beta,i} \in A$
(b) if $u \subseteq \lambda$ then $cl(\cup\{\bar{a}_\alpha : \alpha \in u\} \cup A)$ is $\prec \mathfrak{C}$
(c) if $u \subseteq \lambda$ is finite we get an \aleph_1-saturated model (not really used).
There is for some finite. Neither case 1 nor case 2 (less is needed).

Case 3

(Why? Similarly to \(\square_3 \)) and \(\square_1(b) \). Also in Case (a): \(a = b \Rightarrow a = b' \) and in case (b): \(a - b \in P_n^e \Rightarrow a - b' \in P_n^e \).

\[\square_4 \text{ if } a_\ell \in cl(\{N_\alpha : \alpha \in u_\ell \} \cup A) \text{ and } u_\ell \subseteq \lambda \text{ for } \ell = 1, 2 \text{ then:} \]

\(\square_4 \) if \(a_\ell \in cl(\{N_\alpha : \alpha \in u_\ell \} \cup A) \) and \(u_\ell \subseteq \lambda \) for \(\ell = 1, 2 \) then:

(a) if \(a_1 = a_2 \) then for some \(b \in cl(\{N_\alpha : \alpha \in u_1 \cap u_2 \} \cup A) \) we have \(a_1 - b = a_2 - b \in A \).

(b) if \(a_1 - a_2 \in P_n^e \) then for some \(b \in cl(\{N_\alpha : \alpha \in u_1 \cap u_2 \} \cup A) \) and \(c \in A \) we have \(a_2 - b - c \in P_n^e \) and \(a_2 - b - c \in P_n^e \).

\[\square_4 \] if \(a_\ell \in cl(\{N_\alpha : \alpha \in u_\ell \} \cup A) \) and \(u_\ell \subseteq \lambda \) for \(\ell = 1, 2 \) then:

(a) if \(a_1 = a_2 \) then for some \(b \in cl(\{N_\alpha : \alpha \in u_1 \cap u_2 \} \cup A) \) we have \(a_1 - b = a_2 - b \in A \).

(b) if \(a_1 - a_2 \in P_n^e \) then for some \(b \in cl(\{N_\alpha : \alpha \in u_1 \cap u_2 \} \cup A) \) and \(c \in A \) we have \(a_2 - b - c \in P_n^e \) and \(a_2 - b - c \in P_n^e \).

Now let \(c \in \mathfrak{C} \), the proof splits to cases.

Case 1: \(c \in cl(\{ \bar{a}_\beta : \beta < \lambda \} \cup A) \).

So for some finite \(u \subseteq \lambda, c \in cl(\{ \bar{a}_\beta : \beta \in u \}) \), easily \(\langle \bar{a}_\beta : \beta \in \lambda \setminus u \rangle \) is an indiscernible set over \(A \cup \{c\} \), and we are done.

Case 2: For some finite \(u \subseteq \lambda \), for every \(n \) for some \(c_n \in cl(\{ \bar{a}_\beta : \beta \in u \} \cup A) \) we have \(c - c_n \in P_n^M \) (but not case 1).

Clearly \(u \) is as required. (In fact, easily \(cl(\{ \bar{a}_\beta : \beta \in u \} \cup A) \) is \(\aleph_1 \)-saturated (as \(u \) is finite, by \(\square_2(c) \)) hence there is \(c^* \in cl(\{ \bar{a}_\beta : \beta \in u \} \cup A) \) such that \(n < \omega \Rightarrow c^* - c_n \in P_n^M \).

Case 3: Neither case 1 nor case 2 (less is needed).

Let \(n(1) < \omega \) be maximal such that for some \(c_{n(1)} \in A \) we have \(c - c_{n(1)} \in P_{n(1)}^M \) (for \(n = 0 \) every \(c' \in A \) is O.K.; by not Case 2 such \(n(1) \) exists).

Subcase 3A: There is \(n(2) \in (n(1), \omega) \) and \(c_{n(2)} \in cl(\{ \bar{a}_\beta : \beta < \lambda \} \cup A) \) such that \(c - c_{n(2)} \in P_{n(2)}^M \).

Let \(u \) be a finite subset of \(\lambda \) such that \(c_{n(2)} \in cl(\{ \bar{a}_\beta : \beta \in u \} \cup A) \), now \(u \) is as required (by \(\square_3 + \square_4 \) above).
Subcase 3B: Not subcase 3A.
Choose \(u = \emptyset \) works because neither case 1, nor case 2 hold with \(u = \emptyset \) and subcase 3A fails.

\[\square_{2.5} \]

2.6 Remark. We can prove a claim parallel to 1.11, i.e. replacing strong dependent by strongly\(^2\) dependent.

2.7 Claim. 1) \(\kappa_{\text{ict},2}(T_{\text{eq}}) = \kappa_{\text{ict},2}(T) \).
2) If \(T_\ell = \text{Th}(M_\ell) \) for \(\ell = 1,2 \) then \(\kappa_{\text{ict},2}(T_1) \geq \kappa_{\text{ict},2}(T_2) \) when:

\[(\ast) \text{ } M_1 \text{ is (first order) interpretable in } M_2. \]

3) If \(T' = \text{Th}(\mathfrak{C}, c), c \in A \) then \(\kappa_{\text{ict},2}(T') = \kappa_{\text{ict},2}(T) \).
4) If \(M \) is the disjoint sum of \(M_1, M_2 \) (or the product) and \(\text{Th}(M_1), \text{Th}(M_2) \) are strongly\(^2\) dependent then so is \(\text{Th}(M) \).

Proof. Similar to 1.11. \[\square_{2.7} \]

Now \(\kappa_{\text{ict}}(T) \) is very close to being equal to \(\kappa_{\text{ict},2}(T) \).

2.8 Claim. 1) If \(\kappa = \kappa_{\text{ict},2}(T) \neq \kappa_{\text{ict}}(T) \) then:

(a) \(\kappa_{\text{ict},2}(T) = \aleph_1 \land \kappa_{\text{ict}}(T) = \aleph_0 \)

(b) there is an indiscernible sequence \(\langle \bar{a}_t : t \in I \rangle \) with \(\bar{a}_t \in \omega \mathfrak{C} \) and \(c \in \mathfrak{C}, I \) is dense complete linear order for clarity, such that

\[(\ast) \text{ for no finite } u \subseteq I \text{ do we have: if } J \text{ is a convex subset of } I \text{ disjoint to } u \text{ then } \langle \bar{a}_t : t \in J \rangle \text{ is an indiscernible sequence over } \cup \{ \bar{a}_t : t \in I \setminus J \} \cup \{c\}. \]

2) If \(T \) is strongly\(^+\) dependent then \(T \) is strongly dependent.
3) In the definition of \(\kappa_{\text{ict},2}(T) \), without loss of generality \(m = 1 \).

Proof. 1) We use Observation 1.5. Obviously \(\kappa_{\text{ict}}(T) \leq \kappa_{\text{ict},2}(T) \), the rest is proved together with 2.10 below.
2) Easy.
3) Similar to the proof of 1.7 or better to use 2.10(1),(2). \[\square_{2.8} \]
2.9 Claim. The following conditions on T are equivalent:

(a) $\kappa_{\text{ict}, 2}(T) > \aleph_0$

(b) we can find A and an indiscernible sequence $\langle \bar{a}_t : t \in I \rangle$ over A satisfying $\bar{a}_t \in \omega^* \mathcal{C}$ and $t_n \in I$ increasing with n and $\bar{c} \in \omega > \mathcal{C}$ such that for every n

\[t_n < I \quad t \Rightarrow \text{tp}(\bar{a}_{t_n}, A \cup \bar{c} \cup \{ \bar{a}_{t_m} : m < n \}) \neq \text{tp}(\bar{a}_t, A \cup \bar{c} \cup \{ \bar{a}_{t_m} : m < n \}) \]

(c) similarly to (b) but $t_n < I \quad t \Rightarrow \text{tp}(\bar{a}_{t_m}, A \cup \bar{c} \cup \{ \bar{a}_s : s < I \quad t_n \}) \neq \text{tp}(\bar{a}_t, A \cup \bar{c} \cup \{ \bar{a}_s : s < I \quad t_n \})$

(d) we can find A and a sequence $\langle \bar{a}_t^n : t \in I_n \rangle, I_n$ an infinite linear order such that $\langle \bar{a}_t^n : t \in I_n \rangle$ is indiscernible over $A \cup \{ \bar{a}_m^n : m \neq n, m < \omega, t \in I_n \}$ and for some $\bar{c} \in \omega > \mathcal{C}$ for each $n, \langle \bar{a}_t^n : t \in I_n \rangle$ is not indiscernible over $A \cup \bar{c} \cup \{ \bar{a}_t^n : t \in I_m, m < n \}$

(e) we can find a sequence $\langle \varphi_n(x, \bar{y}_n, \ldots, \bar{y}_0) : n < \omega \rangle$ and $\langle \bar{a}_\alpha^n : \alpha < \lambda, n < \omega \rangle$ such that: for every $\eta \in \omega \lambda$ the set $p_\eta = \{ \varphi_n(\bar{x}, \bar{a}_\alpha^n, \bar{a}_{\eta(n)-1}^n, \ldots, \bar{a}_{\eta(0)}^n) : n < \omega, \alpha < \lambda \}$ is consistent.

Proof. Should be clear from the proof of 2.1 (more 2.3).

\[\Box_{2.9}\]

2.10 Observation. 1) For any κ and $\zeta \geq \kappa$ we have $(d) \iff (c)_\zeta \iff (b)_\zeta \iff (a)$; if in addition we assume $\neg (\aleph_0 = \kappa_{\text{ict}}(T) < \kappa = \aleph_1 = \kappa_{\text{ict}, 2}(T))$ then we have also $(c)_\zeta \iff (b)_\zeta$ so all the following conditions on T are equivalent:

(a) $\kappa \geq \kappa_{\text{ict}}(T)$

(b) if $\langle \bar{a}_t : t \in I \rangle$ is an indiscernible sequence, I a linear order, $\bar{a}_t \in \mathcal{C}$ and $C \subseteq \mathcal{C}$ is finite then for some set \mathcal{P} of $< \kappa$ initial segments of I we have:

(\ast) if $s, t \in I$ and $(\forall J \in \mathcal{P})(s \in J \equiv t \in J)$ then \bar{a}_s, \bar{a}_t realizes the same type over C (if I is complete this means: for some $J \subseteq I$ of cardinality $< \kappa$, if $s, t \in I$ realizes the same quantifier free type over J in I then \bar{a}_s, \bar{a}_t realizes the same type over C)

(c) like (b) but strengthening the conclusion to: if $n < \omega, s_0 < I \ldots < I \quad s_{n-1}, t_0 < I \ldots < I \quad t_n$ and $(\forall \ell < n)(\forall k < n)(\forall J \in \mathcal{P})[s_\ell \in J = t_k \in J]$ then $\bar{a}_{s_0} \ldots \bar{a}_{s_{n-1}}$ and $\bar{a}_{t_0} \ldots \bar{a}_{t_{n-1}}$ realize the same type over C

(d) $\kappa \geq \kappa_{\text{ict}, 2}(T)$.

2) We can in clauses $(b)_\zeta, (c)_\zeta$ add $|C| = 1$ and/or demand I is well ordered (for the last use 1.10).
Proof. We shall prove various implications which together obviously suffice (for 2.10 and 2.8(1) and 2.8(3)).

\(\neg (a) \Rightarrow \neg (b)\).

Let \(\lambda \geq \kappa\). As in the proof of 1.5 there are \(\varphi = \langle \varphi_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle, m = \ell g(\bar{x})\) and \(\langle \bar{a}^\alpha_i : i < \kappa, \alpha < \lambda \rangle\) exemplifying \(\bigoplus^2_\varphi\) from 1.5, so necessarily \(\bar{a}^\alpha_i\) is non-empty. Recall that \(\ell g(\bar{a}^\alpha_i)\) is finite for \(i < \kappa, \alpha < \lambda\) and without loss of generality \(\zeta \geq \kappa^2\).

Let \(\bar{a}^\alpha_0 \in \mathcal{C}\) be \(\bar{a}^0_\alpha \cdot \bar{a}^1_\alpha \cdot \ldots \bar{a}^\alpha_\alpha\) were \(\bar{a}^\alpha_\alpha\) has length \(\zeta - \Sigma_{\ell < \kappa} \ell g(\bar{a}^\alpha_\ell)\) and is constantly the first member of \(\bar{a}^\alpha_\alpha\). Let \(\bar{c}\) realize \(p = \{ \varphi_i(\bar{x}, \bar{a}_{2i}) \wedge \neg \varphi_i(\bar{x}, \bar{a}_{2i+1}) : i < \kappa \}\).

Easily \(\bar{c}\) (or pedantically \(\text{Rang}(\bar{c})\)) and \(\langle \bar{a}^\alpha_\alpha : \alpha < \lambda \rangle\) exemplifies \(\neg (b)\).

\((a) \Rightarrow (b)\).

If \(\kappa = \aleph_0\), this holds by 2.1(1); in general, this holds by the proof of 2.1(1) and this is why there we use \(\kappa\).

\(\neg (b) \Rightarrow \neg (c)\).

Obvious.

\(\neg (a) \Rightarrow \neg (d)\).

The witness for \(\neg (a)\) is a witness for \(\neg (d)\).

\(\neg (d) \Rightarrow \neg (c)\).

Let \(\langle \varphi_i(\bar{x}, \bar{y}_i) : i < \kappa \rangle\) witness \(\neg (d)\), i.e., witness \(\kappa < \kappa_{\text{ict}, 2}(T)\), so there are \(\langle \bar{a}^\alpha_i : \alpha < \lambda, i < \kappa \rangle\) and \(\langle \bar{b}^j_i : i < \kappa \rangle\) satisfying clauses \((a),(b),(c)\) of Definition 2.3. By Observation 1.10 we can find an indiscernible sequence \(\langle \bar{a}^\alpha_i : \alpha < \lambda \times \kappa \rangle\), \(\ell g(\bar{a}^\alpha_i) = \zeta^\alpha\) where \(\zeta^\alpha := \Sigma \{ \ell g(\bar{y}_i) : i < j \}\) such that \(i < \kappa \wedge \alpha < \lambda \Rightarrow \bar{a}^\alpha_i \cong [\zeta^\alpha, \zeta^\alpha + 1) = \bar{a}^\alpha_i\).

Now \(\langle \bar{a}^\alpha_i : \alpha < \lambda \times \kappa \rangle\), \(\bar{c}\) witness \(\neg (c)\), because if \(\mathcal{P}\) is as required in \(\xi(c)\) then easily \((\forall i < \kappa)(\exists J \in \mathcal{P})(J \cap [\lambda_i, \lambda_i + \lambda]) \notin \{\emptyset, [\lambda_i, \lambda_i + \lambda]\}\), hence \(|\mathcal{P}| \geq \kappa\). Now clearly \(\zeta^\alpha \leq \zeta\) hence repeating the first element \((\zeta - \kappa)\) times we get \(\langle \bar{b}^j_i : \alpha < \lambda \kappa \rangle\) which together with \(c\) exemplify \(\neg (c)\).

It is enough to prove

\((\ast)\) assume \(\neg (c)\) then

\((i)\) \(\neg (d)\)

\((ii)\) \(\neg (a)\) except possibly when \((a) + (b)\) of 2.8(1) holds, in particular \(\aleph_0 = \kappa_{\text{ict}}(T) < \kappa = \aleph_1 = \kappa_{\text{ict}, 2}(T)\).

Toward this we can assume that

\(\exists T\) is dependent and \(C, \langle \bar{a}_t : t \in I \rangle\) form a witness to \(\neg (c)\).
Let \(\bar{c} \) list \(C \) without repetitions and without loss of generality \(I \) is a dense complete linear order (so with no extreme elements). Let \(\ell g(\bar{x}_\ell) = \zeta \) for \(\ell < \omega \) be pairwise disjoint with no repetitions, of course, \(\ell g(y) = \ell g(\bar{c}) < \omega \) (pairwise disjoint) and let \(\bar{\varphi} = \langle \varphi_i = \varphi_i(\bar{x}_0, \ldots, \bar{x}_{n(i)-1}, \bar{y}) : i < |T| \rangle \) list all such formulas in \(L(\tau_T) \). For each \(i < |T| \) by 2.2(1), (2) there are \(m(i) < \omega \) and \(t_{i,1} \ldots < t_{i,m(i)-1} \) as there and \(m(i) \) is minimal, so stipulating \(t_{i,0} = -\infty, t_{i,m(i)} = \infty \) we have:

\[
(*_1) \text{ if } \nu_1 < \nu_2 < \ldots < \nu_{m(i)-1} \text{ and } \nu'_1 < \nu'_2 < \ldots < \nu'_{m(i)-1} \text{ and } \nu'_1, \nu'_2 \text{ realize the same quantifier free type over } \{t_{i,1}, \ldots, t_{i,m(i)-1}\} \text{ in the linear order } I \text{ for each } \ell < m(i) \text{ then } C \models “\varphi_i[\bar{a}_{\nu'_1}, \ldots, \bar{a}_{\nu'_{m(i)-1}}, \bar{c}] \equiv \varphi_i[\bar{a}_{\nu'^1}, \ldots, \bar{a}_{\nu'^{m(i)-1}}, \bar{c}].”
\]

For each \(i < |T| \), for each \(\ell \in \{1, \ldots, m(i)\} \) we can find \(w_{i,\ell} \) such that

\[
(*_2) (a) \quad w_{i,\ell} \subseteq I \setminus \{t_{i,\ell}\}
(b) \quad w_{i,\ell} \text{ is finite}
(c) \quad \text{if } \nu_1 < t_{i,\ell,1} < t_{i,\ell,2} \text{ then } C \models \langle \bar{a}_{t_{i,\ell,1}}, \bar{a}_{t_{i,\ell,2}}, \bar{c} \rangle \text{ is not } \{\varphi_i\}-\text{indiscernible over } C \cup \{\bar{a}_t : t \in w_i\}.
\]

Moreover for some \(n_i^* < n(i) \)

\[\pi_i : \{0, \ldots, n(i) - 1\} \to \{0, \ldots, m(i) - 1\} \]

- \(\pi_i(0) = n_i^* \)
- \(\pi(n) = n \) otherwise

\[(*_3) (a) \quad \text{if } s_1 < t_{i,\ell,1} < t_{i,\ell,2} \text{ then } C \models \langle \bar{a}_{s_1}, \bar{a}_{s_2}, \bar{c} \rangle \text{ is not } \{\varphi_i\}-\text{indiscernible over } C \cup \{\bar{a}_t : t \in w_i\}.
\]

Then for some \(\ell' \in (s_1, s_1) \) we have \(C \models \langle \bar{a}_{t'_{i,\ell',1}}, \bar{a}_{t'_{i,\ell',2}}, \bar{a}_{t^*, n(i)-1}, \bar{c} \rangle \equiv \neg \varphi_i[\bar{a}_{t_{i,\ell,1}}, \bar{a}_{t_{i,\ell,2}}, \bar{c}] \).

If the set \(\{t_{i,k} : i < |T|, k = 1, \ldots, m(i) - 1\} \) has cardinality \(< \kappa \) we are done, so assume that

\[(*_3) \quad \langle \ell : i < |T| \text{ and } \ell \in \{1, m(i)\} \rangle \text{ has cardinality } \geq \kappa.
\]

\textbf{Case 1: } \(\kappa > \aleph_0 \) (so we have to prove \(\neg(a) \)).

By Hajnal free subset theorem and by \((*_3)\) there is \(u_0 \subseteq |T| \) of order type \(\kappa \) such that \(i \in u_0 \implies \{t_{i,\ell} : \ell = 1, \ldots, m(i) - 1\} \not\subseteq \{t_{j,\ell} : j \in u_0 \setminus \{i\} \text{ and } \ell = 1, \ldots, m(j) - 1\} \cup \bigcup \{w_{i,\ell} : j \in u \setminus \{i\} \text{ and } \ell \in \{1, m(i)\}\} \).

There are \(u \subseteq u_\ell \) of cardinality \(\kappa \) and a sequence \(\langle \ell(i) : i \in u \rangle, 0 < \ell(i) < m(i) \) such that \(\langle t_{i,\ell(i)} : i \in u \rangle \) is with no repetitions and disjoint to \(\{t_{i,\ell} : i \in u \text{ and } \ell \not\in \ell(i)\} \cup \bigcup \{w_{i,\ell(i)} : i \in u\} \). We shall now prove \(\kappa < \kappa_{\text{tr}}(T) \), this gives \(\neg(a), \neg(d) \) so it suffices.
Clearly by 1.5 it suffices to show (λ any cardinality ≥ ℵ₀ we can easily change the \(a_\alpha^i \)'s to have finite length, preserving (a) + (b) below)

\[\square_u \] for \(i \in u, \alpha < \lambda \) and set \(A \) such that

(a) \(\langle a_\alpha^i : \alpha < \lambda \rangle \) is an indiscernible sequence over \(\cup \{ a_\beta^j : j \in u, j \neq i, \alpha < \lambda \} \cup A \)

(b) \(\langle a_\alpha^i : \alpha < \lambda \rangle \) is not \(\{ \varphi_i \} \)-indiscernible over \(A \cup \bar{c} \).

By compactness it suffices to prove \(\square_v \) for any finite \(v \subseteq u \) and \(\lambda = \aleph_0 \); also we can replace \(\lambda \) by any infinite linear order.

We can find \(\langle (s_{1,i}, s_{2,i}) : i \in v \rangle \) such that

(a) \(s_{1,i} <_I t_{i, \ell(i)} <_I s_{2,i} \) (for \(i \in v \))

(⋆) \(s_{1,i, s_{2,i}} \) is disjoint to \(\cup \{ (s_{1,j}, s_{2,j}) : j \in v \setminus \{ i \} \} \cup \{ w_{j, \ell(j)} : j \in v \} \).

So \(\langle a_t^i : t \in (s_{1,j}, s_{2,j}) \rangle) : j \in v \rangle \) and choosing \(A = \cup \{ a_t : t \in w_{i, \ell(i)}, i \in v \} \) are as required above. So we are done.

Case 2: \(\kappa = \aleph_0 \) so we have to prove \(\neg(d) \) and clause (iii) of (⋆) and (for proving part (2) of the present 2.10) that without loss of generality \(|C| = 1 \).

We can find \(A \) and \(u \)

\[\square^1 \]

(a) \(A \subseteq C \)

(b) \(u \subseteq I \) is finite

(c) \(n < \omega \) and \(t_0^i \subsetneq_1 \ldots \subsetneq_1 t_\ell_{n-1} \) for \(\ell = 1, 2 \) and

\[(\forall k < n)(\forall s \in u)(t_k^1 = s \equiv t_k^2 = s \land t_k^1 \subsetneq I s \equiv t_k^2 \subsetneq I s) \text{ then} \]

\[\bar{a}_{t_0^\ell} \ldots \bar{a}_{t_{n-1}^\ell} \bar{a}_{t_2^1} \ldots \bar{a}_{t_{n-1}^1} \text{ realize the same type over } A \]

(d) \(A', u' \) satisfies (a)+(b)+(c) then \(|A'| \leq |A| \).

This is possible because \(C \) is finite and the empty set satisfies clauses (a),(b),(c) for \(A \) by our present assumption \(A \neq C \), so let \(c \in C \setminus A \). Now we try to choose \((i_k, \ell_k, w_k) \) by induction on \(k < \omega \)

\[\odot \]

(a) \(i_k < \kappa \)

(b) \(1 \leq \ell_k \leq m(i) - 1 \)

(c) \(t_{i_k, \ell_k} \subseteq I \setminus w_k \)

(d) \(w_k \subseteq u \cup w_0 \cup \ldots \cup w_{k-1} \cup \{ t_{i_0, k_0}, \ldots, t_{i_{k-1}, \ell_{k-1}} \} \)

(e) \(w_k \subseteq \set{t_{i_k, \ell_k}} \) is finite

(f) \(s' \subsetneq I t_{i_k, \ell_k} <_I s'' \) then \(\langle \bar{a}_t : t \in (s', s'') \rangle \) is not indiscernible over \(\{ \bar{a}_s : s \in w_k \} \cup \{ c \} \), moreover the parallel of (⋆) \(_2(c) \) holds.
If we are stuck in k then $w_{k-1} \in [I]^{<\aleph_0}$ when $k > 0$, u when $k = 0$ show that $\langle \bar{a}_t : t \in I \rangle, A \cup \{c\}$ contradict the choice of A recalling we are assuming $\neg(c)_\zeta$. If we succeed then we prove as in Case 1 that $\kappa_{ict,2}(\text{Th}(\mathfrak{C}, a)_{a \in A}) > \aleph_0$ so by 1.4 we get $\kappa_{ict,2}(T) > \aleph_0$ so we have proved clause (d) of the claim, completing the proof of 2.10; also clearly (b) of the claim holds hence we complete also the proof of 2.8.

\[\Box \] 2.10

2.11 Conclusion. T is strongly\(^2\) dependent by Definition 2.3 iff T is strongly\(^2\) dependent by [Sh 783, §3.3.7] which means we say T is strongly\(^2\) (or strongly\(^+\)) dependent when: if $\langle \bar{a}_t : t \in I \rangle$ is an indiscernible sequence over A, $t \in I \Rightarrow \ell g(\bar{a}_t) = \alpha$ and $\bar{b} \in \omega^\omega(\mathfrak{C})$ then we can divide I to finitely many convex sets $\langle I_\ell : \ell < k \rangle$ such that for each ℓ the sequence $\langle \bar{a}_t : t \in I_\ell \rangle$ is an indiscernible sequence over $\{\bar{a}_s : s \in I \setminus I_\ell\} \cup A \cup \bar{b}$.

* * *

Discussion: Now we define “T is strongly\(^2\)^{*} dependent”, parallely to 1.8, 1.9 from the end of §1.

2.12 Definition. 1) $\kappa_{icu,2}(T)$ is the minimal κ such that for no $m < \omega$ and $\bar{\varphi} = \langle \varphi_i(\bar{x}_i, \bar{y}_i) : i < \kappa \rangle$ with $\ell g(\bar{x}_i) = m \times n_i$ can we find $\bar{a}_\alpha^i \in \ell g(\bar{y}_i)\mathfrak{C}$ for $\alpha < \lambda, i < \kappa$ and $\bar{c}_{\eta,n} \in m\mathfrak{C}$ for $\eta \in \kappa\lambda$ such that:

 (a) $\langle \bar{c}_{\eta,n} : n < \omega \rangle$ is an indiscernible sequence over $\cup\{\bar{a}_\alpha^i : \alpha < \lambda, i < \kappa\}$

 (b) for each $\eta \in \kappa\lambda$ and $i < \kappa$ we have $\mathfrak{C} \models \varphi_i(\bar{c}_{\eta,0} \ldots \bar{c}_{\eta,n_i-1}, \bar{a}_\alpha^i)_{i \equiv (\alpha = \eta(i))}$.

2) If $\bar{\varphi}$ is as in (1) then we say that it witnesses $\kappa < \kappa_{icu,2}(T)$.

3) T is strongly\(^1\)^{*} dependent if $\kappa_{icu}(T) = \aleph_0$.

2.13 Claim. 1) $\kappa_{icu,2}(T) \leq \kappa_{ict,2}(T)$.

2) If $cf(\kappa) > \aleph_0$ then $\kappa_{icu,2}(T) > \kappa \leftrightarrow \kappa_{ict,2}(T) > \kappa$.

3) The parallel of 1.4, 1.5, 1.7(2) holds.
§3 Ranks

§3A Rank for strongly dependent T

3.1 Explanation/Thesis:

(a) For stable theories we normally consider not just a model M (and say a type in it, but all its elementary extensions; we analyze them together

(b) for dependent theories we should be more liberal, allowing to replace M by $N^{[a]}$ when $M \prec N \prec N_1, \bar{a} \in \ell g(a)(N_1)$, $(N^{[a]}$ is the expansion of N by restrictions of relation in N_1 definable with parameters from \bar{a})

(c) this motivates some of the ranks below.

Such ranks relate to strongly\(^1\) dependent, they have relatives for strongly\(^2\) dependent.

Note that we can represent the $\bar{r} \in K\ell, m$ (and ranks) close to [Sh 783, §1] particularly $\ell = 9$.

3.2 Definition. 1) Let $M_0 \leq_A M_1$ for $M_0, M_1 \prec \mathcal{C}$ and $A \subseteq \mathcal{C}$ means that:

(a) $M_0 \subseteq M_1$ (equivalently $M_0 \prec M_1$)

(b) for every $\bar{b} \in M_1$, the type $tp(\bar{b}, M_0 \cup A)$ is f.s. (= finitely satisfiable) in M_0.

2) Let $M_0 \leq_{A,p} M_1$ for $M_0, M_1 \prec \mathcal{C}, A \subseteq \mathcal{C}$ and $p \in S^{<\omega}(M_1 \cup A)$ or just p is a $<\omega$-type over $M_1 \cup A$ means that

(a) $M_0 \subseteq M_1$

(b) if $\bar{b} \in M_1, c \in M_0, \bar{a}_1 \in A, \bar{a}_2 \in A, \mathcal{C} \models \varphi_1[\bar{b}, \bar{a}_1, \bar{c}]$ and $\varphi_2(\bar{x}, \bar{b}, \bar{a}_2, \bar{c}) \in p$ or is just a (finite) conjunction of members of p (e.g. empty) then for some $\bar{b}' \in M_0$ we have $\mathcal{C} \models \varphi_1[\bar{b}', \bar{a}_1, \bar{c}]$ and $\varphi_2(\bar{x}, \bar{b}', \bar{a}_2, \bar{c}) \in p$ or just is a finite conjunction of members of p.

3.3 Observation. 1) $M_0 \leq_{A,p} M_1$ implies $M_0 \leq_A M_1$.

2) If $p = \text{tp}(\bar{b}, M_1 \cup A) \in S^m(M_1 \cup A)$ then $M_0 \leq_{A,p} M_1$ iff $M_1 \leq_{A, \delta} M_0$

3) If $M_0 \leq_A M_1 \leq_A M_2$ then $M_0 \leq_A M_2$.

4) If $M_0 \leq_{A,p}(M_1 \cup A)$ $M_1 \leq_{A,p} M_2$ then $M_0 \leq_{A,p} M_2$.

5) If the sequences $(M_{1, \alpha} : \alpha \leq \delta), (A_\alpha : \alpha \leq \delta)$ are increasing continuous, δ a limit ordinal and $M_0 \leq_{A, \alpha} M_{1, \alpha}$ for $\alpha < \delta$ then $M_0 \leq_{A, \delta} M_{1, \delta}$. Similarly using $<_{A, \alpha, p, \alpha}$.

6) If $M_1 \subseteq M_2$ and p is an m-type over $M_1 \cup A$ then $M_1 \leq_A M_2 \iff M_1 \leq_{A, p} M_2$.

Proof. Of course, $M_0 \subseteq M_1 \subseteq M_2$ using clause 3.2(2)(a) for the assumption, hence $M_0 \subseteq M_2$, i.e., clause 3.2(a) of the desired conclusion holds. To prove that also clause 3.2(2)(b) of the desired conclusion holds assume $b \subseteq M_2, \bar{c} \subseteq M_0, \bar{a}_1 \subseteq A_1, \bar{a}_2 \subseteq A$ are finite such that $\mathcal{C} \models \varphi_1[\bar{b}, \bar{a}_1, \bar{c}]$ and $\varphi_2(\bar{x}, \bar{b}, \bar{a}_2, \bar{c})$ is a finite conjunction of members of $p(\bar{x})$. As we are assuming $M_1 \leq A, p M_A$ there is $\bar{b}' \in \ell g(M_i)$ such that $\mathcal{C} \models \varphi_1[\bar{b}', \bar{a}_1, \bar{c}]$ and $\varphi_2(\bar{x}, \bar{b}', \bar{a}_2, \bar{c})$ is a finite conjunction of members of p, but $\bar{b}' \bar{a}_2 \bar{c} \subseteq M_1 \cup A$. Now use “$M_0 < A, p M_1$” with $\bar{b}', \bar{c}, \bar{a}_1, \bar{a}_2$ to get the desired conclusion.

3.4 Discussion: 1) Note that the ranks defined below are related to [Sh 783, §1]. An alternative presentation (for $\ell \in \{3, 6, 9, 12\}$) is that we define M_A as $(M, a)_{a \in A}$ and $T_A = \text{Th}(\mathcal{C}, a)_{a \in A}$ and we consider $p \in S(M_A)$ and in the definition of ranks to extend A and p we use appropriate $q \in S(N_B), M_A \prec N_A, A \subseteq B$. Originally we present here many variants, but now we present only two ($\ell = 8, 9$), retaining the others in §(5A).

2) We may change the definition, each time retaining from p only one formula with little change in the claims.

3) We can define $\bar{x} \in K_{\ell, m}$ such that it has also $N^\bar{x}$ where $M^\bar{x} \subseteq N^\bar{x}(< \mathcal{C}_T)$ and:

(A) change the definition of $\bar{x} \leq_\ell \bar{y}$ to:

(a) $N^\bar{y} \subseteq N^\bar{x}$
(b) $A^\bar{x} \subseteq A^\bar{y} \subseteq A^\bar{x} \cup N^\bar{x}$
(c) $M^\bar{x} \subseteq M^\bar{y} \subseteq N^\bar{x}$
(d) $p^\bar{y} \subseteq p^\bar{x}$

(B) change “\bar{y} explicitly $\bar{\Delta}$-split ℓ-strongly over \bar{r}” according to and replacing in Definition 3.5(4) or Definition 5.1(4) clauses $(e), (e)'$ the type $p^\bar{y}$ by the type $p^\bar{x}$

(C) dp-rk$^m_{\bar{\Delta}, \ell}$ is changed accordingly.

So now dp-rk$^m_{\bar{\Delta}}$ may be any ordinal so 3.7 may fail, but the result in §4 becomes stronger covering also some models of non-strongly dependent T.

3.5 Definition. 1) For $\ell = 8, 9$ let

$$K_{m, \ell} = \{ \bar{x} : \bar{x} = (p, M, A), M \text{ a model } < \mathcal{C}_T, A \subseteq \mathcal{C}_T, p \in S^m(M \cup A) \text{ and if } \ell = 9 \text{ then } p \text{ is finitely satisfiable in } M \}.$$
If $m = 1$ we may omit it.

For $r \in K_{m,\ell}$ let $r = (p^r, M^r, A^r) = (p[r], M[r], A[r])$ and $m = m(r)$ recalling p^r is an m-type.

2) For $r \in K_{m,\ell}$ let N_r be M^r expanded by $R_{\varphi(x,y,a)} = \{b \in \ell^{\varphi}(y)M : \varphi(x,\bar b, a) \in p\}$ for $\varphi(x,y,\bar z) \in \mathbb{L}(\tau_T), a \in \ell^{\varphi}(z)A$ and $R_{\varphi(y,a)} = \{b \in \ell^{\varphi}(y)M : \mathcal{C} \models \varphi(\bar b, a)\}$ for $\varphi(\bar y, a) \in \mathbb{L}(\tau_T), a \in \ell^{\varphi}(y)\mathcal{C}$; let $\tau_y = \tau_{N_y}$.

2A) In part (1) and (2): if we omit p we mean $p = \text{tp}(\text{<},M \cup A)$ so we can write N_A, a τ_A-model so in this case $p = \{\varphi(\bar b, a) : b \in M, a \in M \land \mathcal{C} \models \varphi(\bar b, a)\}$.

3) For $r, \eta \in K_{m,\ell}$ let

(\alpha) $r \leq_{\text{pr}} \eta$ means that $r, \eta \in K_{m,\ell}$ and

(a) $A^r = A^\eta$
(b) $M^r \leq_{A[r]} M^\eta$
(c) $p^r \subseteq p^\eta$
(d) $M^r \leq_{A[r], p[r]} M^\eta$

(\beta) $r \leq \eta$ means that for some n and $\langle r_k : k \leq n \rangle, r_k \leq_{\text{at}} r_{k+1}$ for $k < n$ and

$r, \eta = (r_0, r_n)$

where:

(\gamma) $r \leq_{\text{at}} \eta$ iff $(r, \eta \in K_{m,\ell}$ and for some $r' \in K_{m,\ell}$ we have

(a) $r \leq_{\text{pr}} r'$
(b) $A^r \subseteq A^\eta \subseteq A^r \cup M^{r'}$
(c) $M^\eta \subseteq M^{r'}$
(d) $p^\eta = p^{r'} \upharpoonright (M^\eta \cup A^\eta)$.

4) For $r, \eta \in K_{m,\ell}$ we say that η explicitly Δ-splits ℓ-strongly over r when: $\Delta = (\Delta_1, \Delta_2), \Delta_1, \Delta_2 \subseteq \mathbb{L}(\tau_T)$ and for some r' and $\varphi(\bar x, \bar y) \in \Delta_2$ we have clauses (a),(b),(c),(d) of part (3)(\gamma) and

(e) there are $\bar b, \bar a$ such that

(\alpha) $\bar a = \langle \bar a_i : i < \omega + 1 \rangle$ is Δ_1-indiscernible over $A^r \cup M^\eta$
(\beta) $A^\eta \setminus A^r = \cup \{\bar a_i : i < \omega\}$; yes ω not $\omega + 1$ (note that ― $A^\eta \setminus A^r = "$ and not “$A^\eta \setminus A^r \supseteq \" as we use it in (e)(\gamma) in the proof of 3.7)
(\gamma) $\bar a_i \in M^{r'}$ for $i < \omega + 1$ and $\bar b \in \omega^>(A^r)$
(\delta) $\varphi(\bar x, \bar a_i \bar b) \land \neg \varphi(\bar x, \bar a_i \bar b)$ belongs to $p^{r'}$ for $k < \omega$.

5) We define $\text{dp-rk}^m_{\Delta, \ell} : K_{m, \ell} \to \text{Ord} \cup \{\infty\}$ by

(a) $\text{dp-rk}^m_{\Delta, \ell}(\bar{r}) \geq 0$ always

(b) $\text{dp-rk}^m_{\Delta, \ell}(\bar{r}) \geq \alpha + 1$ iff there is $\eta \in K_{m, \ell}$ which explicitly Δ-splits ℓ-strongly over \bar{r} and $\text{dp-rk}_{\Delta, \ell}(\eta) \geq \alpha$

(c) $\text{dp-rk}^m_{\Delta, \ell}(\bar{r}) \geq \delta$ iff $\text{dp-rk}^m_{\Delta, \ell}(\bar{r}) \geq \alpha$ for every $\alpha < \delta$ when δ is a limit ordinal.

Clearly well defined. We may omit m from dp-rk as \bar{r} determines it.

6) Let $\text{dp-rk}^m_{\Delta, \ell}(T) = \cup \{\text{dp-rk}^m_{\Delta, \ell}(\bar{r}) : \bar{r} \in K_{m, \ell}\}$; if $m = 1$ we may omit it.

7) If $\Delta_1 = \Delta_2 = \Delta$ we may write Δ instead of (Δ_1, Δ_2). If $\Delta = \text{L}(\tau_T)$ then we may omit it.

Remark. There are obvious monotonicity and inequalities.

3.6 Observation. 1) \leq_{pr}^ℓ is a partial order on $K_{m, \ell}$.

2) $K_{m,9} \subseteq K_{m,8}$.

3) If $\bar{r}, \eta \in K_{m,9}$ then $\bar{r} \leq_{pr}^8 \eta$ iff $\bar{r} \leq_{pr}^9 \eta$.

4) If $\bar{r}, \eta \in K_{m,9}$ then $\bar{r} \leq_{st}^8 \eta$ iff $\bar{r} \leq_{st}^9 \eta$.

5) If $\bar{r}, \eta \in K_{m,9}$ then η explicitly Δ-splits 8-strongly over \bar{r} iff η explicitly Δ-splits 9-strongly over \bar{r}.

6) If $\bar{r} \in K_{m,9}$ then $\text{dp-rk}^m_{\Delta,9}(\bar{r}) \leq \text{dp-rk}^m_{\Delta,8}(\bar{r})$.

7) If $\bar{a} \in m^\mathcal{C}$ and $\bar{r} = (\text{tp}(\bar{a}, M \cup A), M, A)$ then $\bar{r} \in K_{m,8}$.

8) In part (7) if $\text{tp}(\bar{a}, M \cup A)$ is finitely satisfiable in M then also $\eta \in K_{m,9}$.

9) If $\bar{r} \in K_{m, \ell}$ and $\kappa > \aleph_0$ then there is $\eta \in K_{m, \ell}$ such that $\bar{r} \leq_{pr}^\ell \eta$ and M^η is κ-saturated, moreover $M^\eta_{\text{A}[\eta], p[\eta]}$ is κ-saturated (hence in Definition 3.2(4) without loss of generality $M^\tau\bar{r}$ is $(|M^\tau| \cup A^\tau|^-)$-saturated).

Proof. Easy. E.g.

9) Let $\bar{a} \in m^\mathcal{C}$ realize ϕ and let $N < \mathcal{C}$ include $M^\tau \cup A^\tau$ and \bar{a}. Let N_1^+ be N expanded by $P^{N^+} = |M|$ and let N_2^+ be a κ-saturated elementary extension of N_1^+, so without loss of generality $N_2 := N_1^+ \upharpoonright \tau_T$ is $< \mathcal{C}$. Now define η by $M^\eta = N_2 \upharpoonright P^{N_2}, A^\eta = A, p^\eta = \text{tp}(\bar{a}, M^\eta) = \text{tp}(\bar{a}, M^\eta, N_2)$, easily η is as required.

3.7 Claim. 1) For each $\ell = 8,9$ we have $\text{dp-rk}_\ell(T) = \infty$ iff $\text{dp-rk}_\ell(T) \geq |T|^+$ iff $\kappa_{\text{ict}}(T) > \aleph_0$.

2) For each $m \in [1, \omega)$, similarly using $\text{dp-rk}^m_\ell(T)$, hence the properties do not depend on such m.

3.8 Remark. In the implications in the proof we allow more cases of ℓ.

Proof. Part (2) has the same proof as part (1) when we recall 1.7(1).

$\kappa_{\text{ict}}(T) > \aleph_0$ implies $\text{dp-rk}_\ell(T) = \infty$

By the assumption there is a sequence $\bar{\varphi} = \langle \varphi_n(x, \bar{y}_n) : n < \omega \rangle$ exemplifying $\aleph_0 < \kappa_{\text{ict}}(T)$. Let $\lambda > \aleph_0$ and I be $\lambda \times \mathbb{Z}$ ordered lexicographically and let $I_\alpha = \{ \alpha \} \times \mathbb{Z}$ and $I_{\geq \alpha} = [\alpha, \lambda) \times \mathbb{Z}$. As in 1.5 by Ramsey theorem and compactness we can find $\langle \bar{a}_t^n : t \in I, n < \omega \rangle$ (in \mathcal{C}_T) such that

1. $\ell g(\bar{a}_n^m) = \ell g(\bar{y}_n)$
2. $\langle \bar{a}_t^n : t \in I \rangle$ is an indiscernible sequence over $\cup \{ \bar{a}_t^n : m < \omega, m \neq n$ and $t \in I \}$
3. For every $\eta \in \omega I, p_\eta = \{ \varphi_n(x, \bar{a}_t^n)^{\varphi(n(n)=t)} : n < \omega, t \in I \}$ is consistent (i.e., finitely satisfiable in \mathcal{C}).

Choose a complete $T_1 \supseteq T$ with Skolem functions and $M^* \models T_1$ expanding \mathcal{C} be such that in it $\langle \bar{a}_n^m : t \in I, n < \omega \rangle$ satisfies \otimes also in M^*; exists by Ramsey theorem. Let M^*_n be the Skolem hull in M^* of $\cup \{ \bar{a}_t^n : m < \omega, t \in I_1 \}$ for \otimes holds as $\langle \bar{a}_t^n : t \in I_2 \rangle$ is an indiscernible sequence over $M^*_{n+1} \cup \{ \bar{a}_t^n : m < n, t \in I_1 \}$ and $M_n = M^*_n \models \tau(T)$. So we have $M_n < \mathcal{C}$ which includes $\{ \bar{a}_t^n : t \in I, m \in [n, \omega) \}$ such that $M_{n+1} < M_n$ and $\langle \bar{a}_t^n : t \in I_{\geq n} \rangle$ is an indiscernible sequence over $M_{n+1} \cup \{ \bar{a}_t^n : m < n, t \in I_1 \}$ hence $\langle \bar{a}_t^n : t \in I_2 \rangle$ is an indiscernible sequence over $M_{n+1} \cup A_n$; the indiscernibility holds even in M^* where $A_n = \{ \bar{a}_t^n : m < n$ and $t \in I_1 \}$. We delay the case $\ell = 9$. Let $\eta \in \omega I$ be chosen as: $\langle (2, i) : i \in \omega \rangle$. Let $p \in \text{S}(M_0)$ be such that it includes p_η.

Lastly, let $\mathfrak{r}_n = \mathfrak{r}_n = (p_n, M_n, A_n)$ where $p_n = p \models (A_n \cup M_n)$. By 3.6(7) clearly $\mathfrak{r}_n \in K_\ell$.

It is enough to show that $\text{dp-rk}_\ell(\mathfrak{r}_n) < \infty \Rightarrow$ $\text{dp-rk}_\ell(\mathfrak{r}_n) >$ $\text{dp-rk}_\ell(\mathfrak{r}_{n+1})$ as by the ordinals being well ordered this implies that $\text{dp-rk}_\ell(\mathfrak{r}_n) = \infty$ for every n. By Definition 3.5(4) clause (b) it is enough to show (fixing $n < \omega$) that \mathfrak{r}_{n+1} explicitly split ℓ-strongly over \mathfrak{r}_n using $\langle \bar{a}_n^{(i, 1)} : i < \omega \rangle \upharpoonright \langle \bar{a}_n^{(2, 1)} \rangle$. To show this, see Definition 3.5(4) we use $\mathfrak{r}_n' := \mathfrak{r}_n$, clearly $\mathfrak{r}_n \leq_{\text{pr}} \mathfrak{r}_n'$ as $\mathfrak{r}_n' = \mathfrak{r}_n \in K_\ell$ so clause (a) of Definition 3.5(3)(c) holds. Also $A^{\mathfrak{r}_n} \subseteq A^{\mathfrak{r}_{n+1}} \subseteq A^{\mathfrak{r}_n} \cup M^{\mathfrak{r}_n}$ as $A^{\mathfrak{r}_{n+1}} = A^{\mathfrak{r}_n} \cup \{ \bar{a}_t^n : t \in I_1 \}$ and $\cup \{ \bar{a}_t^n : t \in I_1 \} \subseteq M^{\mathfrak{r}_n}$ so clause (b) of Definition 3.5(3)(c) holds. Also $M^{\mathfrak{r}_{n+1}} \subseteq M^{\mathfrak{r}_n}$ and $\mathfrak{p}^{\mathfrak{r}_{n+1}} \supseteq \mathfrak{p}^{\mathfrak{r}_n} \upharpoonright (A^{\mathfrak{r}_n} \cup M^{\mathfrak{r}_{n+1}})$ and even $\mathfrak{p}^{\mathfrak{r}_{n+1}} = \mathfrak{p}^{\mathfrak{r}_n} \upharpoonright (A^{\mathfrak{r}_{n+1}} \cup M^{\mathfrak{r}_{n+1}})$ holds trivially so also clause (c),(d) of Definition 3.5(3)(c) holds.

Lastly, $\neg \varphi_n(x, \bar{a}_n^{(i, 1)})$ for $i < \omega, \varphi_n(x, \bar{a}_n^{(2, 1)})$ belongs to p_η hence to $p^{\mathfrak{r}_{n+1}}$ hence by renaming also clause (c) from Definition 3.5(4) holds. So we are done.

We are left with the case $\ell = 9$. For the proof above to work we need just that $p(\in \text{S}(M_0))$ satisfies $n < \omega \Rightarrow p \models (M_n \cup A_n)$ is finitely satisfiable in M_n. Toward this
without loss of generality for each n there is a function symbol $F_n \in \tau(M^*)$ such that: if $\eta \in {}^n I$ then $c_\eta := F_n^M(\bar{a}_0^{(0)}, \ldots, \bar{a}_{n-1}^{(n-1)})$ realizes $\{\varphi_m(x, \bar{a}_t^m)^{i(t(\eta(n)))}_n : m < n$ and $\alpha < \lambda$, so F_n has arity $\Sigma \{fg(\bar{y}_m) : m < n\}$.

Let D be a uniform ultrafilter on ω and let $c_\omega \in \mathcal{C}$ realize $p^* = \{\psi(x, \bar{b}) : \bar{b} \subseteq M_0, \psi(x, \bar{y}) \in \mathbb{L} \tau_M \cdot \} \text{ and } \{n : \mathcal{C} \models \psi(c_{\eta|n}, \bar{b}) \} \in D\}$, so clearly $p = tp(c_\omega, M_0, \mathcal{C}) \in S(M_0)$ extends $\{\varphi_n(x, \bar{a}_t^m)^{i(t(\eta(n)))}_n : n < \omega$ and $t \in I\}$. So we have just to check that $p_n = p \upharpoonright (A_n \cup M_n)$ is finitely satisfiable in M_n, so let $\vartheta(\bar{x}, \bar{b}) \in p_n$, so we can find $k(*) < \omega(\subseteq \mathbb{Z})$ such that \bar{b} is included in the Skolem hull $M^*_{n,k(*)}$ of $\cup \{\bar{a}_i^m : m < n$ and $a \in \mathbb{Z} \land a < k(*)\}$ $\cup \{\bar{a}_i^m : m \in [n, \omega), t \in I\}$ inside M^*.

Let $\nu \in \omega \lambda$ be defined by

$$\nu(m) = \eta(m) \text{ for } m \in [n, \omega)$$

$$\nu(m) = (1, k(*) + m) \text{ for } m < n.$$

By the indiscernibility:

$$(*)_1 \text{ for every } n, \mathcal{C} \models \psi(c_{\eta|n}, \bar{b}) \equiv \psi(c_{\nu|n}, \bar{b})$$

and by the choice of p

$$(*)_2 \{n : \mathcal{C} \models \psi(c_{\eta|n}, \bar{b})\} \text{ is infinite.}$$

But clearly

$$(*)_3 \text{ } c_{\eta|m} \in M_n \text{ for } m < \omega.$$

Together we are done.

$dp-rk_\ell(T) = \infty \Rightarrow dp-rk_\ell(T) > |T|^+:

\text{Trivial.}$

dp-rk_\ell(T) > |T|^+ \Rightarrow \kappa_{\eta_0}(T) > \kappa_\lambda:$

We choose by induction on n sequences $\bar{\varphi}^n$ and $\langle a^n_\alpha : \alpha < |T|^+ \rangle, \langle a^n_{\alpha,A^n_\alpha} : \alpha < |T|^+ \rangle$ such that:

$\oplus_n (a) \quad \bar{\varphi}^n = \langle \varphi_m(x, \bar{y}_m) : m < n \rangle$; that is $\bar{\varphi}^n = \langle \varphi_m^n(x, \bar{y}_m^n) : m < n \rangle$ and $\varphi_m^n(x, \bar{y}_m^n) = \varphi_{m+1}^{n+1}(x, \bar{y}_{m+1}^{n+1})$ for $m < n$ so we call it $\bar{\varphi}_m(x, \bar{y}_m)$

$\oplus_n (b) \quad \bar{t}^\ell_\alpha \in K_\ell$ and $dp-rk_\ell(\bar{t}^\ell_\alpha) \geq \alpha$

$\oplus_n (c) \quad \bar{a}_\alpha^m = \langle a_{\alpha,k}^{n,m} : k < \omega, m < n \rangle$ where the sequence $\bar{a}_{\alpha,k}^{n,m}$ is from $A_\alpha^{n,m}$.

$\oplus_n (d) \quad \text{for each } \alpha < |T|^+ \text{ and } m < n \text{ the sequence } \langle \bar{a}_{\alpha,k}^{n,m} : k < \omega \rangle \text{ is indiscernible over } \cup \{\bar{a}_{\alpha,k}^{n,i} : i < n, i \neq m, k < \omega\} \cup M^\alpha \cup A_\alpha^n$
(e) we have \(\bar{b}_{\alpha}^{n,m} \subseteq A_{\alpha}^n = \bigcup \{ a_{\alpha,k}^{n,i} : i < m, k < \omega \} \cup A_{\alpha}^n \) for \(m < n \) such that:

if \(\eta \in \omega \) and \(m < n \Rightarrow \bar{b}_{\alpha}^{n,m} \subseteq \bigcup \{ a_{\alpha,k}^{n,i} : i < m, k < \eta(i) \} \cup A_{\alpha}^n \)

then \((p_{\gamma}^n \upharpoonright M_{\gamma}^n) \cup \{ \neg \phi_m(\bar{a}_{\alpha,\eta(m)}^{n,m}, \bar{b}_{\alpha,m}^{n,m}) : m < n \} \) is finitely satisfiable in \(\mathcal{C} \).

For \(n = 0 \) this is trivial by the assumption \(\text{rk-dp}_\ell(T) \geq |T|^+ \) see Definition 3.5(6) (and 3.5(7)).

For \(n + 1 \), for every \(\alpha < |T|^+ \), (as \(\text{rk-dp}_\ell(T_{n+1}) > \alpha \) by Definition 3.5(5)) we can find \(\bar{a}_{\alpha}^n, \bar{b}_{\alpha}^n, \phi_\alpha^n(x, \bar{y}_\alpha), \langle \bar{a}_{\alpha,k}^n : k < \omega \rangle \) such that Definition 3.5(4) is satisfied with \(\langle m_{\alpha+1}, \bar{a}_{\alpha}^n, \phi_\alpha^n(x, \bar{y}_\alpha), \langle \bar{a}_{\alpha,k}^n : k < \omega \rangle \rangle \) there standing for \((\bar{r}, \bar{r}', \eta, \phi(x, \bar{y}), \langle \bar{a}_{k} : k < \omega \rangle) \) there such that \(\text{rk-dp}_\ell(\eta) \geq \alpha \) and we also have \(\bar{a}_{\alpha,k}^n, \bar{b}_{\alpha,k}^n \) here standing for \(a_{\alpha}^{n,k}, b_{\alpha,k}^{n,k} \). So for some formula \(\phi_n(x, \bar{y}_n) \) the set \(S_n = \{ \alpha < |T|^+ : \phi_n^n(x, \bar{y}_n) = \phi_n(x, \bar{y}_n) \} \) is unbounded in \(|T|^+ \), so \(\phi_n^{n+1} \) is well defined so clause (a) of \(\otimes_{n+1} \) holds.

For \(\alpha < |T|^+ \) let \(\beta_\alpha(\alpha) = \text{Min}(S_n \setminus \alpha) \) and let \(r_{\alpha}^{n+1} = \psi_\beta(\alpha) \) so clause (b) of \(\otimes_{n+1} \) holds. Let \(\langle \bar{a}_{\alpha,k}^{n+1,m} : k < \omega \rangle \) be \(\langle a_{\alpha,k}^{n,m} : k < \omega \rangle \) if \(m < n \) and \(\langle a_{\alpha,k}^{n,m} : k < \omega \rangle \) if \(m = n \) and let \(A_{\alpha}^{n+1} = A_{\beta(\alpha)+1}^{n+1} \) so clauses (c) + (d) from \(\otimes_{n+1} \) holds. Also we let \(\bar{b}_{\alpha}^{n+1,m} \) is \(\bar{b}_{\alpha}^{n,m} \) if \(m < n \) and is \(\bar{b}_{\alpha}^{n,m} \) if \(m = n \). Next we check clause (e) of \(\otimes_{n+1} \).

Let \(\eta \in n+1 \) be as required in sub-clause (γ) of clause (e) of \(\otimes_{n+1} \) and let \(\gamma \) be any member of \(S \). By the induction hypothesis

\[
(p_{\gamma}^{n+1} \upharpoonright M_{\gamma}^{n+1}) \cup \{ \neg \phi(x, \bar{a}_{\gamma,\eta(m)}^{n,m}, \bar{b}_{\gamma,m}^{n,m}) \wedge \phi(x, \bar{a}_{\gamma,\eta(m)+1}^{n,m}, \bar{b}_{\gamma,m}^{n,m}) : m < n \}
\]

is finitely satisfiable in \(\mathcal{C} \).

By clause (d) of 3.5(3)(a) it follows that

\[
(p_{\gamma}^n \upharpoonright M_{\gamma}^{n}) \cup \{ \neg \phi(x, \bar{a}_{\gamma,\eta(m)}^{n,m}, \bar{b}_{\gamma,m}^{n,m}) \wedge \phi(x, \bar{a}_{\gamma,\eta(m)+1}^{n,m}, \bar{b}_{\gamma,m}^{n,m}) : m < n \}
\]

is finitely satisfiable in \(\mathcal{C} \) (i.e. we use \(M_{\gamma}^{n+1} \leq A_{\beta(\gamma)+1}^{n} \) \(\mathcal{M}_{\beta(\gamma)}^{n} \) \(M_{\gamma}^{n} \) which suffice; we use freely the indiscernibility).

Hence, by monotonicity, the set

\[
(p_{\gamma}^n \upharpoonright (M_{\gamma}^{n} \cup \{ \bar{a}_{\gamma,k}^{n+1,m} : k \leq \eta(n) \text{ or } k = \omega \}) \cup A_{\gamma+1}^n)
\]

\[
\cup \{ \phi(x, \bar{x}_{\gamma,\eta(m)+1}^{n+1,m}, \bar{b}_{\gamma,m}^{n,m}) \wedge \neg \phi(x, \bar{a}_{\gamma,\eta(m)+1}^{n+1,m}, \bar{b}_{\gamma,m}^{n,m}) : m < n \}
\]

is finitely satisfiable in \(\mathcal{C} \).
is finitely satisfiable in \(\mathcal{C} \).

Similarly

\[
(p^{\mathfrak{A}_{\mathcal{C}}}^{\gamma} \cup (M_{\mathfrak{A}}^{\eta}) \cup \{ \varphi(x, \overline{a}_{\gamma, \eta(n)}, \overline{b}_{\gamma}^{n+1,m}) \land \overline{\varphi}(x, \overline{a}_{\gamma, \omega}^{n+1,m}) \} \\
\cup \{ \overline{\varphi}(x, \overline{a}_{\gamma, \eta(m)}, \overline{b}_{\gamma}^{n+1,m}) \land \varphi(x, \overline{a}_{\gamma, \eta(m+1)}, \overline{b}_{\gamma}^{n+1,m}) : m < n \}
\]

is finitely satisfiable in \(\mathcal{C} \).

But \(\overline{a}_{\gamma, \omega}^{n+1,m}, \overline{a}_{\gamma, \eta(n)+1}^{n+1,m} \) realize the same type over a set including all the relevant elements so we can above replace the first \((\overline{a}_{\gamma, \omega}^{n+1,m}) \) by the second \((\overline{a}_{\gamma, \eta(n)+1}^{n+1,m}) \) so we are done proving clause (e) of \(\otimes_{n+1} \).

Having carried the induction it suffices to show that \(\overline{\varphi} = \langle \varphi_n(x, \overline{y}_n) : n < \omega \rangle \) exemplifies that \(\kappa_{\mathcal{C}}(T) > \aleph_0 \); for this it suffices to prove the assertion \(\otimes_{\mathfrak{A}} \) from 1.5(1). By compactness it suffices for each \(n \) to find \(\langle \overline{a}_{k,m}^{n,m} : k < \omega \rangle \) for \(m < n \) in \(\mathcal{C} \) such that \(\ell g(\overline{a}_{k,m}^{n,m}) = \ell g(\overline{y}_n), \langle \overline{a}_{k,m}^{n,m} : k < \omega, i < n, i \neq m \rangle \) for each \(m < n \) and \(\mathcal{C} \models (\exists x) [\bigwedge_{m<n}(\varphi(x, \overline{a}_{0,m}^{n,m}) \land \overline{\varphi}(x, \overline{a}_{1,m}^{n,m})] \).

We choose \(\overline{a}_{k,m}^{n,m} = \overline{a}_{\alpha, k^*(s)+k}^{\alpha, m} \) where \(k(*) \) is large enough such that \(\cup\{\overline{b}_{\alpha, m}^{\alpha, m} : m < n \} \subseteq \cup\{\overline{a}_{\alpha, m}^{\alpha, m} : m < n \} \) and \(k(*) \) is large enough such that \(\forall \gamma, \eta, \omega \) so we have \(\mathcal{C} \models (\exists x) [\bigwedge_{m<n}(\varphi(x, \overline{a}_{0,m}^{n,m}) \land \overline{\varphi}(x, \overline{a}_{1,m}^{n,m})] \).

3.9 Observation. 1) If \(\mathfrak{r} \in K_\ell \) and \(|\mathcal{T}| + |\mathcal{A}| \leq \mu < |\mathcal{M}| \) then for some \(M_0 < M_\mathfrak{A} \) we have \(|M_0| = \mu \) and for every \(\eta \leq \ell \mathfrak{r} \) satisfying \(M_0 \subseteq M_\mathfrak{A} \) we have \(\text{dp-rk}_\ell(\mathfrak{r}) = \text{dp-rk}_\ell(\mathfrak{r}) \).

1A) If \(\text{dp-rk}_\ell(\mathfrak{r}) < \infty \) then it is \(|\mathcal{T}|^+ \). Similarly \(\text{dp-rk}_\ell(T) \), (with \((|\mathcal{T}|^+)^+ \) this is easier).

1B) If \(\text{dp-rk}_\ell(\mathfrak{r}) < \infty \) then it is \(|\Delta_1 \cup \Delta_2|^+ + \aleph_1 \).

2) If \(\mathfrak{r} \leq \ell \mathfrak{r} \mathfrak{r} \eta \) then \(\text{dp-rk}_\ell(\mathfrak{r}) \leq \text{dp-rk}_\ell(\eta) \).

3) If \(\mathfrak{r} \leq \ell \mathfrak{r} \mathfrak{r} \eta \) and \(\mathfrak{j} \) explicitly splits \(\ell \)-strongly over \(\eta \) then \(\mathfrak{j} \) explicitly splits \(\ell \)-strongly over \(\mathfrak{r} \).

4) The previous parts hold for \(m > 1 \), too.

Proof. 1) We do not need a really close look at the rank for this. First, fix an ordinal \(\zeta \).

We can choose a vocabulary \(\tau_{\zeta, \alpha, m} \) of cardinality \(|\mathcal{A}| + |\mathfrak{r}| + |\mathcal{T}| \) such that:

\(\forall \mathfrak{A} \) for any set \(\mathcal{A} \) fixing a sequence \(\overline{a} = \langle a_{\beta} : \beta < \alpha \rangle \) listing the elements of \(\mathcal{A} \), \(M < \mathcal{C} \) and \(p \in \mathcal{S}^m(M \cup \{a_{\beta} : \beta < \alpha \}), M_{\mathcal{A}, p} \) or more exactly \(M_{\mathfrak{A}, p} \) is a \(\tau_{\zeta, \alpha, m} \)-model;
we let

\(\odot_2 \) (a) \(ds(\zeta) = \{ \eta : \eta \) a decreasing sequence of ordinals \(< \zeta \} \)

(b) \(\Gamma_\zeta = \{ u : u \) is a subset of \(ds(\zeta) \) closed under initial segments \(\} \)

(c) \(\Gamma_\infty = \bigcup \{ \Gamma_\zeta : \zeta \) an ordinal \(\} \)

(d) for \(u \in \Gamma_\zeta \) let \(\Xi_n = \{ \vec{\varphi} : \vec{\varphi} \) has the form \(\langle \varphi_n(\vec{x}, \vec{y}_n) : \eta \in u \rangle \) where

\[\vec{x} = \langle x_\ell : \ell < m \rangle, \varphi_\eta(\vec{x}, \vec{y}_n) \in \mathcal{L}(\tau_T) \] \(\} \) and

\(\odot_3 \) there are functions \(\Phi_{\alpha,m} \) for \(m < \omega, \alpha \) an ordinal, satisfying

(a) \(\) if \(u \in \Gamma_\infty, \alpha \in \text{Ord} \) and \(\vec{\varphi} \in \Xi_n \), then \(\Phi_{\alpha,m}(u) \) is a set of first order sentences

(b) \(\Phi_{\alpha,m}(u) \) is a set of first order sentences

(c) \(\) if \(\tau \in K_m, \ell \) and \(\vec{a} = (a_\beta : \beta < \alpha) \) list \(A^\tau \) then \(dp\text{-}\text{rk}_\ell(\tau) \geq \zeta \) iff

\(\text{Th}(M_{\vec{a}, \ell}) \cup \Phi_{\alpha,m}(\vec{\varphi}) \) is consistent for some \(\vec{\varphi} \in \Xi_n \)

(d) \(\) if \(\vec{\varphi}, \vec{\psi} \) are isomorphic (see below) then \(\Phi_{\alpha,m}(\vec{\varphi}) \) is consistent iff \(\Phi_{\alpha,m}(\vec{\psi}) \) is; where

[Why \(\odot_3 ? \) just reflects on the definition.]

\(\odot_4 \) We say \(\vec{\varphi} = \langle \varphi_n(\vec{x}, \vec{y}_n) : \eta \in u \rangle, \vec{\psi} = \langle \psi_\eta(\vec{x}, \vec{z}_\eta) : \eta \in v \rangle \) are isomorphic when there is a one to one mapping function \(h \) from \(u \) onto \(v \) preserving lengths, being initial segments and its negation such that \(\varphi_\eta(\vec{x}, \vec{y}_n) = \psi_{\eta}(\vec{x}, \vec{z}_\eta) \)

for \(\eta \in u \).

Now if \(\zeta = dp\text{-}\text{rk}_\ell(\tau) \) has cardinality \(\leq \mu \) (e.g. \(\zeta < |T|^+ \)) part (1) should be clear. In the remaining case if \(\mu \geq |T|^+ \) by (1A) we are done and otherwise use the implicit characterization of \(\infty = dp\text{-}\text{rk}_\ell(\tau) \).

1A) Now the proof is similar to the third part of the proof of 3.7(1) and is standard. We choose by induction on \(n \) a formula \(\varphi_n(\vec{x}, \vec{y}_n) < |T|^+ \) for some decreasing sequence \(\eta_{m,\alpha} \) of ordinals \(> \alpha \) of length \(n \), we have

\(\bigcirc \) \(\Phi_{n,\alpha}(\vec{\varphi}^n) \) is consistent with \(\text{Th}(M_{\vec{a}, \ell}[\varphi_n[\vec{r}_n]]) \) where \(\text{Dom}(\vec{\varphi}^{\alpha,\eta}) = \{ \eta_{m,\alpha} \mid \ell \leq n \} \) and \(\varphi_{n,\alpha,\eta,\ell}(\vec{x}, \vec{y}_{\eta,\alpha,\ell}) = \varphi_\ell(\vec{x}, \vec{y}_\ell) \) for \(\ell < n \).

The induction should be clear and clearly is enough.

1B) Similarly.

2) We prove by induction on the ordinal \(\zeta \) that \(dp\text{-}\text{rk}_\ell(\eta) \geq \zeta \Rightarrow dp\text{-}\text{rk}_\ell(\tau) \geq \zeta \).

For \(\zeta = 0 \) this is trivial and for \(\zeta \) a limit ordinal this is obvious. For \(\zeta \) successor order let \(\zeta = \xi + 1 \) so there is \(\zeta \in K_\ell \) which explicitly splits \(\ell \)-strongly over \(\eta \) by part (3) and the definition of \(dp\text{-}\text{rk}_\ell \) we are done.
3) Easy as \leq^ℓ is transitive.
4) Similarly. $\Box_{3.9}$

* * *

§(3B) Ranks for strongly dependent T:

We now deal with a relative of Definition 3.5 relevant for “strongly dependent”.

3.10 Definition. 1) For $\ell \in \{14, 15\}$ we define $K_{m,\ell} = K_{m,\ell-6}$ (and if $m = 1$ we may omit it and $\leq^\ell_{pr} = \leq^\ell_{at} = \leq^\ell$).

2) For $\bar{x}, \bar{y} \in K_{m,\ell}$ we say that \bar{y} explicitly $\bar{\Delta}$-split ℓ-strongly over \bar{x} when: $\bar{\Delta} = (\Delta, \bar{\Delta}, \Delta, \Delta_2) \subseteq L(\tau_T)$ and for some \bar{x}' and $\varphi(\bar{x}, \bar{y}) \in \Delta_2$ with $\ell g(\bar{x}) = m$ we have clauses (a),(b),(c),(d) of clause (γ) of Definition 3.5(3) and

$$(e)'$$ there are \bar{b}, \bar{a} such that

$$(\alpha) \bar{a} = \langle \bar{a}_i : i < \omega \rangle$$ is Δ_1-indiscernible over $A^f \cup M^\eta$

$$(\beta) A^\eta \supseteq A^f \cup \{\bar{a}_i : i < \omega\}$$

$$(\gamma) \bar{b} \subseteq A^f$$ and $\bar{a}_i \in M^f$ for $i < \omega$

$$(\delta) \varphi(\bar{x}, \bar{a}_0 \hat{\bar{b}}) \land \neg \varphi(\bar{x}, \bar{a}_1 \hat{\bar{b}}) \in p^f.'$$

3) $dp-rk^m_{\ell}(T) = \cup \{dp-rk_{\ell}(\bar{x}) + 1 : \bar{x} \in K_{\ell}\}$.

4) If $\Delta_1 = \Delta = \Delta_2$ we may write Δ instead of $\bar{\Delta}$ and if $\Delta = L(\tau_T)$ we may omit Δ. Lastly, if $m = 1$ we may omit it.

Similarly to 3.6.

3.11 Observation. 1) If $\bar{x}, \eta \in K_{15}$ then “η explicitly $\bar{\Delta}$-split 15-strongly over \bar{x}” iff “η explicitly $\bar{\Delta}$-split 14-strongly over \bar{x}”.

2) If $\bar{x} \in K_{m,15}$ then $dp-rk^m_{\Delta,15}(\bar{x}) \leq dp-rk^m_{\Delta,14}(\bar{x})$.

Proof. Easy by the definition.

3.12 Claim. 1) For $\ell = 14$ we have $dp-rk_{\ell}(T) = \infty$ iff $dp-rk_{\ell}(T) = |T|^+$ iff $\kappa_{ic_{t,2}}(T) > \aleph_0$.

2) For each $m \in [1, \omega)$ similarly using $dp-rk^m_{\ell}(T)$.

3) The parallel of 3.9 holds (for $\ell = 14, 15$).

Proof. 1) $\kappa_{ic_{t,2}}(T) > \aleph_0$ implies $dp-rk_{\ell}(T) = \infty$.
As in the proof of 3.7.
\[
dp-rk_\ell(T) = \infty \Rightarrow dp-rk_\ell(T) \geq |T|^+ \text{ for any } \ell.
\]

Trivial.
\[
dp-rk_\ell(T) \geq |T|^+ \Rightarrow \kappa_{\text{ict},2}(T).
\]

We repeat the proof of the parallel statement in 3.7, and we choose \(\bar{b} \) but not \(\bar{a}_{n+1,n}^\alpha \).

2) By part (1) and 2.8(3).

3) Similar proof. \(\Box_{3.12} \)
§4 Existence of indiscernibles

Now we arrive to our main result.

4.1 Theorem. 1) Assume

(a) \(\ell \in \{8, 9\} \)
(b) \(\infty > \xi(*) = \text{dp-rk}^m_\ell(T) \) so \(\xi(*) < |T|^+ \)
(c) \(\lambda_* = \sum_{2 \times (\xi(*) + 1)}(\mu) \)
(d) \(\bar{a}_\alpha \in \mathcal{C}_T \) for \(\alpha < \lambda^+_* \), \(\ell g(\bar{a}_\alpha) = m \)
(e) \(A \subseteq \mathcal{C}_T, |A| + |T| \leq \mu \).

Then for some \(u \in [\lambda^+_*|T|^+] \), the sequence \(\langle \bar{a}_\alpha : \alpha \in u \rangle \) is an indiscernible sequence over \(A \).

2) If \(T \) is strongly dependent, then for some \(\xi(*) < |T|^+ \) part (1) holds, i.e., if clauses (c),(d),(e) from there holds then the conclusion there holds.

4.2 Remark. 0) This works for \(\ell = 14, 15, 17, 18 \), too, see §(5A).
1) A theorem in this direction is natural as small dp-rk points to definability and if the relevant types increases with the index and are definable say over the first model then it follows that the sequence is indiscernible.
2) The \(\sum_{2 \times (\xi(*) + 1)}(\mu) \) is more than needed, we can use \(\lambda^+_* \) where we define \(\lambda_\xi = \mu + \sum \{ 2^{\lambda_\xi} : \xi < \zeta \} \) by induction on \(\zeta \).
3) We may like to have a one-model version of this theorem. This will be dealt with elsewhere.

Proof. Clearly \(x \in K_{m, \ell} \Rightarrow p^\ell \in S^m(A^\ell \cup M^\ell) \) and we shall use clause (e) of Definition 3.5(4).

By 3.6(6), it is enough to prove this for \(\ell = 9 \), but the proof is somewhat simpler for \(\ell = 8 \), so we carry the proof for \(\ell = 8 \) but say what more is needed for \(\ell = 9 \).

We prove by induction on the ordinal \(\zeta \) that (note that the \(M_\alpha \)'s are increasing but not necessarily the \(p_\alpha \)'s; this is not an essential point as by decreasing somewhat the cardinals we can regain it):

\(\langle * \rangle_\zeta \) if the sequence \(I = \langle \bar{a}_\alpha : \alpha < \lambda^+ \rangle \) satisfies \(\mathcal{E}_\zeta \) below then for some \(u \in [\lambda^ +|T|^+] \) the sequence \(\langle \bar{a}_\alpha : \alpha \in u \rangle \) is an indiscernible sequence over \(A \) where (below, the 2 is an overkill, in particular for successor of successor, but for limit \(\zeta \) we “catch our tail”):

\(\langle * \rangle_\zeta \) if the sequence \(I = \langle \bar{a}_\alpha : \alpha < \lambda^+ \rangle \) satisfies \(\mathcal{E}_\zeta \) below then for some \(u \in [\lambda^ +|T|^+] \) the sequence \(\langle \bar{a}_\alpha : \alpha \in u \rangle \) is an indiscernible sequence over \(A \) where (below, the 2 is an overkill, in particular for successor of successor, but for limit \(\zeta \) we “catch our tail”):
\(\exists \xi \) there are \(\lambda, B, \bar{M}, \bar{p} \) such that

(a) \(\lambda = \lambda_2^{2\xi+1}(\mu)\) for every \(\xi < \zeta\)
(b) \(\bar{M} = \langle M_\alpha : \alpha < \lambda^+ \rangle\) and \(M_\alpha < \mathcal{C}_T\) is increasing continuous (with \(\alpha\))
(c) \(M_\alpha\) has cardinality \(\leq \lambda\)
(d) \(\bar{a}_\alpha \in m(M^{\alpha+1})\) for \(\alpha < \lambda^+\)
(e) \(p_\alpha = \text{tp}(\bar{a}_\alpha, M_\alpha \cup A \cup B)\)
(f) \(B \subseteq \mathcal{C}, |B| \leq \aleph_0\)
(g) \(\tau_\alpha = (p_\alpha, M_\alpha, A \cup B)\) belongs to \(K_{\alpha, \ell}\) and satisfies \(\text{dp-rk}_{\ell}^m(\tau_\alpha < \zeta)\).

Why is this enough? We apply (*) for the case \(\zeta = \zeta(\ast)\) so \(\lambda = \lambda_s\) and we choose \(M_\alpha < \mathcal{C}\) of cardinality \(\lambda\) by induction on \(\alpha < \lambda^+\) such that \(M_\alpha\) is increasing continuous, \(\{\bar{a}_\beta : \beta < \alpha\} \subseteq M_\alpha\).

If \(\ell = 8\) fine; if \(\ell = 9\) it seemed that we have a problem with clause (g). That is in checking \(\tau_\alpha \in K_{\alpha, \ell}\) we have to show that "\(p_\alpha\) is finitely satisfiable in \(M_\alpha\)". But this is not a serious one: in this case note that for some club \(E\) of \(\lambda^+\), for every \(\alpha \in E\) the type we have \(\text{tp}(a_\alpha, M_\alpha \cup A \cup B)\) is finitely satisfiable in \(M_\alpha\). So letting \(M'_\alpha = M_{\alpha'}\), \(a'_\alpha = \bar{a}_\alpha\) when \(\alpha < \lambda^+, \alpha' \in E\) and \(\text{otp}(C \cap \alpha') = \alpha\) and similarly \(p'_\alpha = \text{tp}(a'_\alpha, M_\alpha, \mathcal{C})\) we can use \(\langle (a'_\alpha, M'_\alpha, p'_\alpha) : \alpha < \lambda^+\rangle\) so we are done.

So let us carry the induction; arriving to \(\zeta\) we let \(\theta_\ell = \sum_{\xi < \zeta} \theta_\ell\), for \(\ell < 3\); note that \(\theta^{\ell+1}_\ell = \theta_\ell\) and \(\lambda^{\theta_\ell} = \lambda\). Let \(\chi\) be large enough and let \(\mathfrak{B} < (\mathcal{H}(\chi), \in, <\chi, \mu)\) be of cardinality \(\lambda\) such that \(\mathcal{C}, \bar{M}, \bar{p}, \bar{a}, B, A\) belongs to \(\mathfrak{B}\) and \(\lambda + 1 \subseteq \mathfrak{B}\) and \(Y \subseteq \mathfrak{B} \wedge |Y| \leq \theta_2 \wedge \lambda|Y| = \lambda \Rightarrow Y \in \mathfrak{B}\). Let \(\delta(\ast) = \mathfrak{B} \cap \lambda^+\) so without loss of generality \(\text{cf}(\delta(\ast))\) satisfies \(\lambda^{\text{cf}(\delta(\ast))} > \lambda\). Let \(\zeta^* = \text{dp-rk}(\delta(\ast), M_{\delta(\ast)}, A \cup B)\) and \(\theta = \theta_1\), hence \(\lambda = \lambda^{\theta^+}\). We try by induction on \(\varepsilon \leq \theta^+ + \theta^+\) to choose \((N_{\alpha_\varepsilon}, \alpha_\varepsilon)\) such that

\(\mathfrak{B}_\varepsilon\)

(a) \(\alpha_\varepsilon < \delta(\ast)\) is increasing with \(\varepsilon\)
(b) \(N_{\varepsilon} <_{A \cup B, p_{\delta(\ast)}} M_{\delta(\ast)}\) is increasing continuous with \(\varepsilon\)
(c) \(N_{\varepsilon}\) has cardinality \(\theta\)
(d) \(\xi < \varepsilon \Rightarrow a_{\alpha_\xi} \in N_{\alpha_\varepsilon}\)
(e) \(\bar{a}_{\alpha_\varepsilon}\) realizes \(p_{\delta(\ast)} \upharpoonright (N_{\alpha_\varepsilon} \cup A \cup B)\)
(f) if \(p_{\delta(\ast)}\) splits over \(N_{\xi} \cup A \cup B\) then \(p_{\delta(\ast)} \upharpoonright (N_{\alpha_{\xi+1}} \cup A \cup B)\) splits over \(N_{\xi} \cup A \cup B\)
(g) \((p_{\alpha_\varepsilon} \upharpoonright (N_{\alpha_\varepsilon} \cup A \cup B), N_{\alpha_\varepsilon}, A \cup B) < \text{pr} (p_{\delta(\ast)}, M_{\delta(\ast)}, A \cup B)\) and they (have to) have the same \(\text{dp-rk}\)
(h) \(N_{\varepsilon} \subseteq M_{\alpha_\varepsilon}\) (but not used).
Clearly we can carry the definition. Now the proof splits to two cases.

Case 1: For $\xi = \theta^+, p_\alpha(\ast)$ does not split over $N_{\alpha_\epsilon} \cup A \cup B$.

By clause (e) of \otimes_ϵ clearly $\epsilon \in [\xi, \xi + \theta^+)$ implies $\text{tp}(\bar{a}_\alpha, N_{\epsilon} \cup A \cup B)$ does not split over $N_{\alpha_\epsilon} \cup A \cup B$ and increases with ϵ. As $\langle N_{\xi + \epsilon} : \epsilon < \theta \rangle$ is increasing and $\bar{a}_\alpha \in N_{\epsilon + 1}$ it follows that $\text{tp}(\bar{a}_\alpha, N_{\theta^+} \cup \{\bar{a}_\beta : \beta \in [\theta^+, \epsilon)\} \cup A \cup B)$ does not split over $N_{\theta^+} \cup A \cup B$. Hence by [Sh:c, I, §2] that the sequence $\langle \bar{a}_\alpha : j \in [\xi, \xi + \theta^+) \rangle$ is an indiscernible sequence over $N_{\alpha_\epsilon} \cup A \cup B$ so as $M^+ \leq \theta^+$ we are done.

Case 2: For $\xi = \theta^+, p_\delta(\ast)$ splits over $N_{\alpha_\epsilon} \cup A \cup B$.

So we can find $\varphi(x, \bar{y}) \in L(\tau_T)$ and $\bar{b}, \bar{c} \in \ell_\theta(\bar{y})(M_{\delta(\ast)} \cup A \cup B)$ realizing the same type over $N_{\alpha_\epsilon} \cup A \cup B$ and $\varphi(x, \bar{b}), \neg \varphi(x, \bar{c}) \in p_{\delta(\ast)}$. So without loss of generality $\bar{b} = \bar{b}' \vec{d}, \bar{c} = \bar{c}' \vec{d}$ where $\vec{d} \in \omega^+(A \cup B)$ and $\bar{b}', \bar{c}' \in m(\ast)(M_{\delta(\ast)})$ for some $m(\ast)$. As $N_{\alpha_\epsilon} \not\leq_{A \cup B} M_{\delta(\ast)}$ (see clause (b) of \otimes_ϵ) clearly there is D, an ultrafilter on $m(\ast)(N_{\epsilon})$ such that $\text{Av}(N_{\epsilon} \cup A \cup B, D) = \text{tp}(\bar{b}', N_{\epsilon} \cup A \cup B) = \text{tp}(\bar{c}', N_{\epsilon} \cup A \cup B)$.

Without loss of generality $\{\bar{b}' \in m(\ast)(N_{\alpha_\epsilon}) : \neg \varphi(x, \bar{b}', \vec{d})\in p_{\delta(\ast)}\}$ belongs to D, as otherwise we can replace $\varphi, \bar{b}', \bar{c}'$ by $\neg \varphi, \bar{c}', \bar{b}'$.

Let $M_\ast = (M_{\delta(\ast)} \cup A \cup B(\bar{a}_\alpha))$ and let $M^+ \preceq \mathfrak{C}$ be such that $M_{\delta(\ast)} \subseteq M^+$ and moreover $(M_\ast \cup A \cup B(\bar{a}_\alpha)) \sim M^+_{(M_\ast \cup A \cup B)}$ and the latter is λ^+-saturated. Clearly letting $p_\ast' = (\text{tp}(\bar{a}_\alpha, M^+ \cup A \cup B)$ and $\bar{r}_{\delta(\ast)} = (p_\ast', M^+_{(M_\ast \cup A \cup B)$ we have $\bar{r}_{\delta(\ast)} \preceq \text{pr}_{\delta(\ast)} \bar{r}_{\delta(\ast)}$. Note that $\epsilon < \xi \Rightarrow (p_{\alpha_\epsilon} \downarrow (N_{\alpha_\epsilon} \cup A \cup B), N_{\alpha_\epsilon}, A \cup B) \preceq_{\text{pr}} \bar{r}_{\delta(\ast)}$.

We can find $\langle \bar{b}_\alpha : \alpha < \omega + \omega \rangle$ such that $\bar{b}_\alpha \in m(\ast)(M^+)$ realizes $\text{Av}(N_{\alpha_\epsilon} \cup A \cup B \cup \{\bar{b}_\beta : \beta < \alpha\}, D)$ and without loss of generality $\bar{b}_\omega = \bar{b}'$.

We would like to apply the induction hypothesis to $\zeta' = \text{dp-rk}(\bar{r}_{\delta(\ast)})$, so let

\[\boxdot (a) \quad \lambda' = \theta\]
\[(b) \quad a'_\epsilon = a_\alpha \text{ for } \epsilon < \theta^+\]
\[(c) \quad M'_\epsilon = N_{\epsilon}\]
\[(d) \quad p'_\epsilon = \text{tp}(a_\alpha, N_{\epsilon})\]
\[(e) \quad B' = B \cup \{\bar{b}_\alpha : \alpha < \omega + \omega\}\]
\[(f) \quad A' = A.\]

We can apply the induction hypothesis to ζ', i.e., use $(\ast)_\zeta'$ for some $\mu' \subseteq \theta^+$ of cardinality μ^+ the sequence $\langle a'_\epsilon : \epsilon \in \mu' \rangle$ is indiscernible over A, hence the set $u := \{a_\epsilon : \epsilon \in \mu'\}$ has cardinality μ^+ and the sequence $\langle a_\alpha : \alpha \in u \rangle$ is indiscernible over A so we are done.

But we have to check that the demands from $\otimes_{\zeta'}$ holds (for θ^+) $\bar{M}' = (M'_\epsilon : \epsilon < \theta^+), \bar{p}' = (p'_\epsilon : \epsilon < \theta^+)$.

(863)
Clause (a): As $\theta = \beth_{2 \times \zeta^* + 1}(\mu)$ clearly for every $\xi < \zeta^*$ we have $\theta = \theta^{2 \times (\xi + 1)}$ hence $\theta = \theta^{2 \times (\xi + 1)}$.

Clause (b): By $\oplus_\varepsilon(b), \tilde{M}$ is increasing continuous.

Clause (c): By $\oplus_\varepsilon(c)$.

Clause (d): By $\oplus_\varepsilon(d)$.

Clause (e): By the choice of p'_ε.

Clause (f): By the choice of B'.

Clause (g): Clearly $x'_\varepsilon \in K_{m,\ell}$, but why do we have $\text{dp-rk}(x'_\varepsilon) < \zeta^*$? This is equivalent to $\text{dp-rk}(x'_\varepsilon) < \text{dp-rk}(x_{\delta(*)})$.

Recall $x_{\delta(*)} \leq_{pr} x_{\delta(*)}$ and x'_ε explicitly split ℓ-strongly over $x_{\delta(*)}$, hence by the definition of dp-rk we get $\text{dp-rk}(x'_\varepsilon) < \text{dp-rk}(x_{\delta(*)})$.

What about the finitely satisfiable of p' when $\ell = 9$? for some club E of $\theta^+, \varepsilon \in E \Rightarrow \text{tp}(\bar{a}_{\alpha_\varepsilon}, N_{\alpha_\varepsilon} \cup A \cup B')$ is finitely satisfiability in N_{α_ε}.

2) By 3.7, $\text{dp-rk}^m(T) < |T|^+$ for $\ell = 8$, so we can apply part (1). □
§5 Concluding Remarks

We comment on some things here which we intend to continue elsewhere so the various parts ((A),(B),...) are not so connected.

(A) Ranks for dependent theories:

We note some generalizations of §3, so Definition 3.5 is replaced by

5.1 Definition. 1) For \(\ell = 1, 2, 3, 4, 5, 6, 8, 9, 11, 12 \) (but not 7,10), let

\[
K_{m,\ell} = \{ \mathfrak{r} : \mathfrak{r} = (p, M, A), M \text{ a model } \prec C_T, A \subseteq C_T, \\
\text{if } \ell \in \{1,4\} \text{ then } p \in S^m(M), \text{ if } \ell \notin \{1,4\} \text{ then } \\
p \in S^m(M \cup A) \text{ and if } \ell = 3, 6, 9, 12 \text{ then } \\
p \text{ is finitely satisfiable in } M \}.
\]

If \(m = 1 \) we may omit it.

For \(\mathfrak{r} \in K_{m,\ell} \) let \(\mathfrak{r} = (p^\mathfrak{r}, M^\mathfrak{r}, A^\mathfrak{r}) = (p[\mathfrak{r}], M[\mathfrak{r}], A[\mathfrak{r}]) \) and \(m = m(\mathfrak{r}) \) recalling \(p^\mathfrak{r} \) is an \(m \)-type.

2) For \(\mathfrak{r} \in K_{m,\ell} \) let \(N_{\mathfrak{r}} \) be \(M \) expanded by \(R_{\varphi(\bar{x},\bar{y},\bar{a})} = \{ \bar{b} \in \ell g(\bar{y}) M : \varphi(\bar{x},\bar{b},\bar{a}) \in p \} \)

for \(\varphi(\bar{x},\bar{y},\bar{z}) \in L(\tau_T) \), \(\bar{a} \in \ell g(\bar{z}) A \) and \(\ell = 1, 4 \Rightarrow \bar{a} =<> \) and \(R_{\varphi(\bar{y},\bar{a})} = \{ \bar{b} \in \ell g(\bar{y}) M : \mathfrak{C} \models \varphi[\bar{b},\bar{a}] \} \); let \(\tau_{\mathfrak{r}} = \tau_{N_{\mathfrak{r}}} \).

2A) If we omit \(p \) we mean \(p = \text{tp}(<>; M \cup A) \) so we can write \(N_A \), a \(\tau_A \)-model so in this case \(p = \{ \varphi(\bar{b},\bar{a}) : \bar{b} \in M, \bar{a} \in M \) and \(\mathfrak{C} \models \varphi[\bar{b},\bar{a}] \} \).

3) For \(\mathfrak{r}, \mathfrak{\eta} \in K_{m,\ell} \)

\[
(\alpha) \; \mathfrak{r} \preceq^{\mathfrak{r}} \mathfrak{\eta} \text{ means that } \mathfrak{r}, \mathfrak{\eta} \in K_{m,\ell} \text{ and} \\
\hspace{1cm} (a) \; A^\mathfrak{r} = A^\mathfrak{\eta} \\
\hspace{1cm} (b) \; M^\mathfrak{r} \preceq_{A[\mathfrak{r}]} M^\mathfrak{\eta} \\
\hspace{1cm} (c) \; p^\mathfrak{r} \preceq p^\mathfrak{\eta} \\
\hspace{1cm} (d) \; \text{if } \ell = 1, 2, 3, 8, 9 \text{ then } M^\mathfrak{r} \leq_{A[\mathfrak{r}], p[\mathfrak{r}]} M^\mathfrak{\eta} \text{ (for } \ell = 1 \text{ this follows from} \\
\hspace{4cm} \text{clause (b)} \})
\]

\[
(\beta) \; \mathfrak{r} \preceq^\mathfrak{\eta} \mathfrak{\eta} \text{ means that for some } n \text{ and } \langle \mathfrak{r}_k : k \leq n \rangle, \mathfrak{r}_k \preceq^\mathfrak{\eta} \mathfrak{r}_{k+1} \text{ for } k < n \text{ and} \\
\hspace{1cm} (\mathfrak{r}, \mathfrak{\eta}) = (\mathfrak{r}_0, \mathfrak{r}_n) \\
\hspace{1cm} \text{where} \\
(\gamma) \; \mathfrak{r} \preceq^\mathfrak{\eta} \mathfrak{\eta} \text{ iff } \mathfrak{r}, \mathfrak{\eta} \in K_{m,\ell} \text{ and} \text{ for some } \mathfrak{r}' \in K_{m,\ell} \text{ we have} \\
\hspace{1cm} (a) \; \mathfrak{r} \preceq^\mathfrak{r} \mathfrak{r}'
\]

(863)
(b) \(A^f \subseteq A^g \subseteq A^f \cup M^f \)
(c) \(M^g \subseteq M^f \)
(d) \(p^g \supseteq p^f \upharpoonright (A^f \cup M^g) \) so \(\ell \in \{1, 4\} \Rightarrow p^g = p^f \upharpoonright M^g \) and \(\ell \notin \{1, 4\} \Rightarrow p^g = p^f \upharpoonright (M^g \cup A^g) \).

4) For \(x, y \in K_{m, \ell} \) we say that \(y \) explicitly \(\Delta \)-splits \(\ell \)-strongly over \(x \) when: \(\Delta = (\Delta_1, \Delta_2), \Delta_1, \Delta_2 \subseteq \mathbb{L}(\tau_T) \) and for some \(\ell' \) and \(\varphi(x, y) \in \Delta_2 \) we have clauses (a),(b),(c),(d) of part (3)(4) and

(e) when \(\ell \in \{1, 2, 3, 4, 5, 6\} \), in \(A^g \) there is a \(\Delta_1 \)-indiscernible sequence \(\langle a_k : k < \omega \rangle \) over \(A^f \cup M^g \) such that \(a_k \in \omega > (M^f) \) and \(\varphi(x, a_0), \neg \varphi(x, a_1) \in p^f' \) and \(a_i \subseteq A^g \) for \(k < \omega \)

(e') when \(\ell = 8, 9, 11, 12 \) there are \(b, a \) such that

(\(\alpha \)) \(a = \langle a_i : i < \omega + 1 \rangle \) is \(\Delta_1 \)-indiscernible over \(A^f \cup M^g \)

(\(\beta \)) \(A^g \setminus A^f = \{ a_i : i < \omega \} \); yes \(\omega \) not \(\omega + 1 \)!

(note that “\(A^f = \)” and not “\(A^g \setminus A^f \supseteq \)” as we use it in (e) in the proof of 3.7)

(\(\gamma \)) \(b \subseteq A^f \) and \(a_i \in M^f \) for \(i < \omega + 1 \)

(\(\delta \)) \(\varphi(x, a_k \upharpoonright b) \land \neg \varphi(x, a_\omega \upharpoonright b) \) belongs\(^5\) to \(p^f' \) for \(k < \omega \).

5) We define \(\text{dp-rk}^{m}_{\Delta, \ell} : K_{m, \ell} \rightarrow \text{Ord} \cup \{\infty\} \) by

(a) \(\text{dp-rk}^{m}_{\Delta, \ell}(x) \geq 0 \) always

(b) \(\text{dp-rk}^{m}_{\Delta, \ell}(x) \geq \alpha + 1 \) iff there is \(y \in K_{m, \ell} \) which explicitly \(\Delta \)-splits \(\ell \)-strongly over \(x \) and \(\text{dp-rk}_{\Delta, \ell}(y) \geq \alpha \)

(c) \(\text{dp-rk}^{m}_{\Delta, \ell}(x) \geq \delta \) iff \(\text{dp-rk}^{m}_{\Delta, \ell}(y) \geq \alpha \) for every \(\alpha < \delta \) when \(\delta \) is a limit ordinal.

Clearly well defined. We may omit \(m \) from \(\text{dp-rk} \) as \(x \) determines it.

6) Let \(\text{dp-rk}^{m}_{\Delta, \ell}(T) = \cup \{ \text{dp-rk}_{\Delta, \ell}(x) : x \in K_{m, \ell} \} \); if \(m = 1 \) we may omit it.

7) If \(\Delta_1 = \Delta_2 = \Delta \) we may write \(\Delta \) instead of \((\Delta_1, \Delta_2) \). If \(\Delta = \mathbb{L}(\tau_T) \) then we may omit it.

8) For \(x \in K_{m, \ell} \) let \(x^{[\ell]} = (p^x \upharpoonright M^f, M^f, A^f) \).

So Observation 3.6 is replaced by

\(^5\) this explains why \(\ell = 7, 10 \) are missing
5.2 Observation. 1) \leq^ℓ is a partial order on K^ℓ.
2) $K_{m,\ell(1)} \subseteq K_{m,\ell(2)}$ when $\ell(1), \ell(2) \in \{1, 2, 3, 4, 5, 6, 8, 9, 11, 12\}$ and $\ell(1) \in \{1, 4\} \Leftrightarrow \ell(2) \in \{1, 4\}$ and $\ell(2) \in \{3, 6, 9, 12\} \Rightarrow \ell(1) \in \{3, 6, 9, 12\}$.

2A) $K_{m,\ell(1)} \subseteq \{r^s : r \in K_{m,\ell(2)}\}$ when $\ell(1) \in \{1, 4\}, \ell(2) \in \{1, \ldots, 6, 8, 9, 11, 12\}$.

2B) In (2A) equality holds if $x(\ell(1), \ell(2)) \in \{(1, 2), (1, 3), (4, 5), (4, 6)\}$.

3) $r \leq^\ell_{pr} \eta \Rightarrow r \leq^\ell_{pr} \eta$ when $(\ell(1), \ell(2))$ is as in parts (2) and $\ell(2) \in \{2, 3, 8, 9\} \Rightarrow \ell(1) \in \{2, 3, 8, 9\}$.

3B) $r \leq^\ell_{pr} \eta \Rightarrow r \leq^\ell_{pr} \eta^s$ when the pair $(\ell(1), \ell(2))$ is as in (2B).

4) $r \leq^\ell_{at} \eta \Rightarrow r \leq^\ell_{at} \eta$ when $(\ell(1), \ell(2))$ are as in part (3) (hence (2)).

4B) $r \leq^\ell_{at} \eta \Rightarrow r \leq^\ell_{at} \eta$ if $(\ell(1), \ell(2))$ are as in part (2A).

5) η explicitly Δ-splits $\ell(1)$-strongly over r implies η explicitly Δ-splits $\ell(2)$-strongly over r when the pair $(\ell(1), \ell(2))$ is as in parts (2), (3) and $\ell(1) \in \{1, 2, 3, 4, 5, 6\} \Rightarrow \ell(2) \in \{1, 2, 3, 4, 5, 6\}$.

6) Assume $(\ell(1), \ell(2))$ is as in parts (2), (3), (5). If $r \in K_{m,\ell(1)}$ then $dp-rk^m_{\Delta,\ell(1)}(r) \leq dp-rk^m_{\Delta,\ell(2)}(r)$; i.e.,

\[
\{\ell(1), \ell(2)\} \in \{(3, 2), (2, 5), (3, 5), (6, 5), (3, 6)\} \cup \{(9, 8), (8, 11), (9, 11), (12, 11), (9, 12)\}.
\]

7) Assume $\bar{a} \in m^C$ and $\eta = (tp(\bar{a}, M \cup A), M, A)$ and $r = (tp(\bar{a}, M \cup A), M, A)$.

Then

(a) $r^s = \eta^s$
(b) $r \in K_{m,1} \cap K_{m,4}$
(c) $\eta \in K_{m,2} \cap K_{m,5} \cap K_{m,8} \cap K_{m,11}$
(d) if $tp(\bar{a}, M \cup A)$ is finitely satisfiable in M then also $\eta \in K_{m,3} \cap K_{m,6} \cap K_{m,9} \cap K_{m,12}$.

8) If $r \in K_{m,\ell(2)}$ then $dp-rk^m_{\ell(2)}(r^s) \leq dp-rk^m_{\ell(2)}(r)$ when the pair $(\ell(1), \ell(2))$ is as in part (2A).

9) If $r \in K_{m,\ell}$ and $\kappa > \aleph_0$ then there is $\eta \in K_{m,\ell}$ such that $r \leq^\ell_{pr} \eta$ and M^η is κ-saturated, moreover $M^\eta_{A[n],x[n]}$ is κ-saturated (hence in Definition 3.2(4) without loss of generality M^{r^s} is $(|M^s \cup A|^+)\text{-saturated}$).

5.3 Claim. In 3.7 we can allow $\ell = 1, 2, 5$ (in addition to $\ell = 8, 9$).

Proof. Similar but:

$k_{\text{inc}}(T) > \aleph_0$ implies $dp-rk^{t}(T) = D$ when $\ell \in \{1, 2, 4, 5, 8, 9, 11, 12\}$:

(A) Let $A_n = \{a^m_t : m < n, t \in I_2\}$ if $\ell < 7$ and if $\ell > 7, A_n = \{a^m_t : m < n$ and $t \in I_1\}$.

((863) revision: 2017-04-25)
(B) “\(\tau_{n+1} \) explicitly split \(\ell \)-strongly over \(\tau_n \)” using \(\langle a_{(2,n+i)}^n : i < \omega \rangle \) if \(\ell < 7 \) and \(\langle a_{(1,i)}^n : i < \omega \rangle \langle \overline{a}_{(2,n)}^n \rangle \) if \(\ell > 7 \).

(C) Similarly in “Lastly...”: Lastly, if \(\ell < 7, \varphi_n(x, \overline{a}_{(1,n)}^n) \), \(\neg \varphi_n(x, \overline{a}_{(1,n+1)}^n) \) belongs to \(p_n^{\tau_n} \) and even \(p_n^{\tau_{n+1}} \) and if \(\ell > 7, \varphi_n(x, \overline{a}_{(1,n)}^n) \) for \(n < \omega, \neg \varphi_n(x, \overline{a}_{(2,n)}^n) \) belongs to \(p_n \) hence to \(p_n^{\tau_n+1} \) hence by renaming also clause (e) or (e') from Definition 3.5(4) holds. So we are done.

\[
dpRK(\alpha) > |\tau^+| \Rightarrow \kappa_\nu(\alpha) > \aleph_0 \quad \text{when } \ell = 1, 2, 3, 5, 6, 8, 9
\]

(D) In \(\otimes_n(e) \) we use

(E) (\(\alpha \)) if \(\ell \in \{2, 3, 5, 6\} \) and \(m < n, k < \omega \) then \(\varphi_m(x, \overline{a}_{\alpha,k}^n) \in p_n^{\tau_n} \)

\[
\iff k = 0 \text{ hence } \neg \varphi_m(x, \overline{a}_{\alpha,k}^n) \in p_n^{\tau_n}
\]

\[
\iff k \neq 0 \text{ for } k < 2
\]

(\(\beta \)) if \(\ell = 1 \) then \(p_n^{\tau_n} \cup \{ \varphi_m(x, \overline{a}_{\alpha,k}^n) : i(k) = 0 : m < n, k < 2 \} \) is consistent

(\(\gamma \)) if \(\ell = 8, 9 \) we also have \(\overline{b}_{\alpha,m}^n \subseteq A_{\alpha}^n = \bigcup \{ \overline{a}_{\alpha,k}^n : i < m, k < \omega \} \bigcup A_{\alpha}^n \) for \(m < n \) such that: if \(\eta \in n\omega \) and \(m < n \Rightarrow \overline{b}_{\alpha,m}^n \subseteq \bigcup \{ \overline{a}_{\alpha,k}^n : i < m, k < \eta(i) \} \bigcup A_{\alpha}^n \) then

\[
(p_n^{\tau_n} \upharpoonright M_{\alpha}^n) \bigcup \{ \varphi_m(x, \overline{a}_{\alpha,\eta(n)+1}^n, \overline{b}_{\alpha}^n) : m < n \} \text{ is finitely satisfiable in } \mathfrak{c}.
\]

(F) In checking clause (e) of \(\otimes_{n+1} \)

Case \(\ell = 1 \): We know that \(p_n^{\tau_{n+1}} \cup \{ \varphi_m(x, \overline{a}_{\alpha,k}^n) : i(k) = 0 : m < n, k < 2 \} \) is consistent. As \(\tau_{n+1} \leq \tau_n \leq \tau_{n+1} \) by clause (a)(d) of Definition 3.5(3) we know that \(\alpha_{n+1} := p_n^{\tau_n} \cup \{ \varphi_m(x, \overline{a}_{\alpha,k+1}^n) : i(k) = 0 : m < n, k < 2 \} \) is consistent. But \(\varphi_n(x, \overline{a}_{\alpha,k+1}^n) = \varphi_n(x, \overline{a}_{\alpha,k}^n) \in q_{\alpha}^{n+1} \) for \(k < 2, m < n \) and \(m, \alpha_{\alpha,k}^n, \alpha_{\alpha,k+1}^n \) such that: if \(k < 2, m < n \) and \(\varphi_n(x, \overline{a}_{\alpha,k+1}^n) : m, \alpha_{\alpha,k}^n \) such that: if \(k < 2, m < n \) and \(p_n^{\tau_{n+1}} \subseteq p_{\alpha}^{\tau_{n+1}}) \) then \(p_n^{\tau_{n+1}} \cup \{ \varphi(x, \overline{a}_{\alpha,k}^n) : i(k) = 0 : m < n, k < 2 \} \) being a subset of \(q_{\alpha}^{n+1} \)

Case 2: \(\ell \in \{2, 3, 5, 6\} \).

Straight.

Case 3: \(\ell \in \{8, 9\} \).
5.5 Definition. In Definition 3.10 we allow \(\ell = 17, 18 \).

5.6 Observation. 1) If "\(y \) explicitly \(\bar{\Delta} \)-split \(\ell(1) \)-strongly over \(x \)" then "\(y \) explicitly \(\bar{\Delta} \)-split \(\ell(2) \)-strongly over \(x \)" when \((\ell(1), \ell(2)) \in \{(15, 14), (14, 17), (18, 17), (15, 18)\} \cup \{((\ell, \ell + 12) : \ell = 2, 3, 5, 6}\).
2) If \(x \in K_{m, \ell(1)} \) then \(\text{dp-rk}^m_{\bar{\Delta}, \ell(1)}(x) \leq \text{dp-rk}^m_{\bar{\Delta}, \ell(2)}(x) \) when \((\ell(1), \ell(2)) \) is as above.

Proof. Easy by the definition.

5.7 Claim. 1) In 3.12(3) we allow \(\ell = 17, 18 \).
2) "\(\text{dp-rk}_\ell(T) \geq |T|^+ \Rightarrow \kappa_{\text{ict}}(T) \geq \aleph_1 \)" we allow \(\ell = 14, 15, 17, 18 \).

5.8 Theorem. In 4.1 we can allow

\[(a) \ \ell \in \{8, 9, 11, 12\} \text{ and even } \ell \in \{14, 15, 17, 18\}. \]

Proof. Similar to 4.1. \(\square_{5.8} \)

We can try to use ranks as in §3 for \(T \) which are just dependent. In this case it is natural to revise the definition of the rank to make it more "finitary", say in Definition 3.5(4), clause (e),(e)' replace \(\langle \bar{a}_k : k < \omega \rangle \) by a finite long enough sequence.

Meanwhile just note that

5.9 Claim. Let \(\ell = 1, 2, 3, 5, 6 \) [and even \(\ell = 14, 15, 17, 18 \)]. For any finite \(\Delta \subseteq \mathbb{L}(\tau_T) \) we have: for every finite \(\Delta_1, \text{rk}_{\Delta_1, \Delta, \ell}(T) = \infty \) iff for every finite \(\Delta_1, \text{rk}_{\Delta_1, \Delta, \ell}(T) \geq \omega \) iff some \(\varphi(x, \bar{y}) \in \Delta \) has the independence property.

Proof. Similar proof to 3.7, 5.3.

Let \(\langle \bar{a}_\alpha : \alpha < \omega \rangle \subseteq M \) be indiscernible.

Let \(\varphi(\bar{x}, \bar{a}_0), \neg \varphi(\bar{x}, \bar{a}_1) \in p \) exemplify "\(p \) splits strongly over \(A_\varepsilon = \bigcup \{M_\alpha \leq \varepsilon \} \cup A \cup B \) so \(\text{tp}(\bar{a}_0, A_\varepsilon) = \text{tp}(\bar{a}_1, A_\varepsilon) \). Let \(A^+ = A \cup \bar{a}_0 \cup \bar{a}_1 \) and we find \(u \subseteq \{\alpha_\varepsilon : \varepsilon < \theta^+_1\} \) as required

\[(\ast) \text{ there is } N^+ \prec M, \|N^*\| \leq \theta \text{ such that } N^* \prec N \prec M \Rightarrow \text{dp-rk}(A, p \upharpoonright (N^* \cup A), N^*) = \text{dp-rk}(A, p, M). \] \(\square_{5.9} \)
5.10 Question: 1) Can such local ranks help us prove some weak versions of “every
p \in S_{\varphi}(M) is definable”? (Of course, the first problem is to define such “weak
definability”: see [Sh 783, §1]).
2) Does this help for indiscernible sequences?

5.11 Definition. We define \(K^x_{m,\ell} \) and \(dx\text{-rk}_{\Delta,\ell}^n \) for \(x = \{p, c, q\} \) as follows:

(A) for \(x = p \): as in Definition 3.5(4),(5), 5.1(4),(5)
(B) for \(x = c \): as in Definition 3.5(4),(5), 5.1(4),(5) but we demand that in
clause (e),(e)' of part (4) that \(\{\varphi(x,\bar{a}_n) : n < \omega\} \) is contradictory
(C) for \(x = q \): as in Definition 3.5(4),(5), 5.1(4),(5) but clauses (e),(e)' of part
(4) we have \(\bar{a}_\alpha \) from \(A^g \) for \(\alpha < \omega + \omega \) such that
\(\{\varphi(x,\bar{a}_\alpha)^{\mathbb{H}(\alpha<\omega)} : \alpha < \omega + \omega\} \subseteq p^\ell \) and in (e') we have \(\bar{a}_n \) from \(A^g \) and
\(a_{\omega+n} \) from \(M^\ell \).

In details:

(e) when \(\ell \in \{1, 2, 3, 4, 5, 6\} \), in \(A^g \) there is a \(\Delta_1 \)-indiscernible sequence \(\langle \bar{a}_k \mid k < \omega \rangle \) over \(A^f \cup M^g \) such that \(\bar{a}_k \in \omega> (M^\ell) \) for \(\alpha < \omega \) and \(\varphi(\bar{x}, \bar{a}_k), \neg\varphi(\bar{x}, \bar{a}_{\omega+k}) \in p^\ell \) and \(\bar{a}_k, \bar{a}_{\omega+k} \subseteq A^g \) for \(k < \omega \)

(e)' when \(\ell \in \{8, 9, 11, 12\} \) there are \(\bar{b}, \bar{a} \) such that
(\(\alpha\) \(\bar{a} = \langle \bar{a}_i \mid i < \omega + \omega \rangle \) is \(\Delta_1 \)-indiscernible over \(A^f \cup M^g \)
(\(\beta\) \(A^g \supseteq A^f \cup \{\bar{a}_i : i < \omega + \omega\} \)
(\(\gamma\) \(\bar{b} \subseteq A^f \) and \(\bar{a}_i \in M^\ell \) for \(i < \omega + \omega \)
(\(\delta\) \(\varphi(\bar{x}, \bar{a}_k \hat{\bar{b}}) \land \neg\varphi(\bar{x}, \bar{a}_\omega \hat{\bar{b}}) \) belongs\(^6 \) to \(p^\ell \) for \(k < \omega \).]

5.12 Question: Does Definition 5.11 help concerning question 5.10?

5.13 Discussion: We can immitate §3 with dc-rk or dq-rk instead of dp-rk and use
appropriate relatives of \(\kappa_{ict}(T) \). But compare with §4.

* * *

(B) Minimal theories (or types):

It is natural to look for the parallel of minimal theories (see end of the introduction).

A subsequent work of E. Firstenberg and the author [FiSh:E50], using [Sh 757],
(see better [Sh:E63]) considered a generalization of “uni-dimensional stable \(T \).”
The generalization says (see 5.22(1))

\(^6\)this explains why \(\ell = 7, 10 \) are missing
5.14 Definition. 1) T is uni-dp-dimensional when: (T is a dependent theory and) if I, J are infinite non-trivial indiscernible sequences of singletons, then I, J have finite distance, see below or I and J^* does recalling J^* is the inverse of J (i.e. we invert the order).

2) (From [Sh:93]) for indiscernibles sequences I, J over A we say that they are immediate A-neighbours if $I + J$ is an indiscernible sequence over A or $J + I$ is an indiscernible sequence over A. They have distance $\leq n$ if there are I_0, \ldots, I_n such that $I = I_0, J = I_n$ and $I_\ell, I_{\ell+1}$ are immediate A-neighbors (so indiscernible over A) for $\ell < n$. They are neighbors if they have distance $\leq n$ for some n.

3) If I is an infinite indiscernible sequence over A then $C_A(I) = \cup \{ I' : I', I$ have finite A-distance $\}$.

Discussion: Note that for $\text{Th}(\mathbb{Q}, <)$, the first order theory of the rational order, any two increasing infinite sequences of elements are of distance 2. If we forget above to have the “or I, J^* of finite distance”, we shall get two classes up to the relevant equivalence.

5.15 Problem: 1) Does uni-dp-dimensional theories have a dimension theory?

2) Can we characterize them?

3) If $p \in S^m(A)$, is there an indiscernible sequence $I \subseteq p(\mathfrak{C})$ based on A?, i.e. such that $\{ F(C_A(I)) : F$ an automorphism of \mathfrak{C} over $A \}$ has cardinality $< \mathfrak{C}$ (equivalently $\leq 2^{\mid T \mid + \mid A \mid}$) as is the case for simple theories.

We can try another generalization.

5.16 Hypothesis. (till 5.23) Let ℓ be as in Definition 3.5, 5.1.

5.17 Definition. T is dp$^\ell$-minimal when $\text{dp-rk}^\ell(\tau) \leq 1$ for every $\tau \in K_\ell$, i.e. $K_{m,\ell}$ for $m = 1$.

5.18 Remark. For this property, T and T^{eq} may differ. Probably if we add only finitely many sorts, the “finite rank, i.e., dp-rk$^\ell(\tau) < n^* < \omega$ for every $\tau \in K_\ell$” is preserved.

5.19 Observation. T is dp$^\ell$-minimal when: for every infinite indiscernible sequence $\langle \bar{a}_t : t \in I \rangle, I$ complete, $\bar{a}_t \in ^a \mathfrak{C}$ and element $c \in \mathfrak{C}$ there is $\{ t \} \subseteq I$ as in 2.1 (i.e., a singleton or the empty set if you like) when $\ell \leq 12$, and as in 2.9 when $\ell \in \{ 14, \ldots \}$.

\text{we may prefer the local version: for every finite } \Delta \subseteq L(\tau_T) \text{ and finite } A' \subseteq A \text{ (or } A' = A) \text{ there are } I', J' \text{ realizing the } \Delta \text{-type over } A' \text{ of } I, J \text{ respectively such that } I', J' \text{ are (infinite) indiscernible sequences over } A' \text{ (or } A) \text{ and has distance over } A'.\]
Proof. Should be clear. □

5.20 Claim. 1) For \(\ell = 1, 2 \) we have \(T \) is \(dp^\ell \)-minimal \textit{when}: there are no \(\langle \bar{a}_n^i : n < \omega \rangle \) and \(\varphi_i(x, \bar{y}_i) \) such that

(a) for \(i = 1, 2 \), \(\langle \bar{a}_n^i : n < \omega \rangle \) is an indiscernible sequence over \(\cup \{ \bar{a}_n^{3-i} : n < \omega \} \)

(b) for some \(b \in \mathcal{C} \) we have

\[
| = \varphi_1(b, \bar{a}_1^1) \land \neg \varphi_2(b, \bar{a}_1^1) \land \varphi_2(b, \bar{a}_1^2) \land \neg \varphi_2(b, \bar{a}_1^2).
\]

2) Similarly for \(rk-dp^\ell(x) \leq n(\omega) \), i.e. if we replace \(1 \) by \(n \) in Definition 5.17.

Proof. Straight.

5.21 Problem: 1) Are \(dp^\ell \)-minimal theories \(T \) similar to o-minimal theories?

2) Characterize the \(dp^\ell \)-minimal theories of fields.

3) What are the implications between “\(dp^\ell \)-minimal” for the various \(\ell \).

4) Above also for uni-dp-dimensionality.

5.22 Claim. 1) For \(\ell = 1, 2 \) the theory \(Th(\mathbb{R}) \), the theory of real closed field is \(dp^\ell \)-minimal; similarly for any o-minimal theory.

2) \(Th(\mathbb{R}) \) is \(dp^\ell \)-minimal for \(\ell = 1, 2 \), similarly for any o-minimal theory.

3) For prime \(p \), the first order theory of the \(p \)-adic field is \(dp^1 \)-minimal.

Proof. 1) As in [FiSh:E50].

2) Repeat the proof in [Sh 783, 3.3](6).

3) By the proof of 1.17. □

5.23 Remark. If \(T \) is a theory of valued fields with elimination of field quantifier, see Definition 1.14(1),(2), and \(k^{\text{e}_T} \) is infinite this fails. But, if \(\Gamma^{\text{e}_T}, k^{\text{e}_T} \) are \(dp^1 \)-minimal then the \(dp \)-rk for \(T \) are \(\leq 2 \).

Another direction is:

5.24 Definition. 1) We say that a type \(p(\bar{x}) \) is content minimal \textit{when}:

(a) \(p(\bar{x}) \) is not algebraic

(b) if \(q(\bar{x}) \) extends \(p(\bar{x}) \) and is not algebraic then \(\Phi_{q(\bar{x})} = \Phi_{p(\bar{x})} \), see below.
2) $\Phi_{p(\vec{x})} = \{\varphi(\bar{x}_0, \ldots, \bar{x}_{n-1}) : \{p(\bar{x}_\ell) : \ell < n\} \cup \{\varphi(\bar{x}_1, \ldots, \bar{x}_n)\}\}$ is consistent, (see [Sh:93]).

5.25 Question: Can we define reasonable dimension for such types, at least for T dependent or even strongly dependent?

*(C) Local ranks for super dependent and indiscernibles:

Note that the original motivation of introducing “strongly dependent” in [Sh 783] was to solve the equation: $X/\text{dependent} = \text{superstable/stable}$. However (the various variants) of strongly dependent, when restricted to the family of stable theories, gives classes which seem to me interesting but are not the class of superstable T. So the original question remains open. Now returning to the search for “super-dependent” we may consider another generalization of super stable.

5.26 Definition. 1) We define $\text{lc-rk}^m(p, \lambda) = \text{lc-rk}^0(m) - \text{rk}^m(p, \lambda)$ for types p which belongs to $S^m_\Delta(A)$ for some $A(\subseteq \mathcal{C})$ and finite $\Delta(\subseteq \mathbb{L}(\tau_T))$.

It is an ordinal or infinity and

(a) $\text{lc-rk}^m(p, \lambda) \geq 0$ always

(b) $\text{lc-rk}^m(p, \lambda) \geq \alpha + 1$ if every $\mu < \lambda$ there are finite $\Delta_1 \supseteq \Delta$ and pairwise distinct $q_i \in S^m_{\Delta_1}(A)$ extending p such that $i < 1 + \mu \Rightarrow \text{lc-rk}^m(q_i, \lambda) \geq \beta$

(c) $\text{lc-rk}^m(p, \lambda) \geq \delta, \delta$ a limit ordinal if $\text{lc-rk}^m(p) \geq \alpha$ for every $\alpha < \delta$.

2) For $p \in S^m(A)$ let $^8 \text{lc-rk}^m(p, \lambda)$ be $\min\{\text{lc-rk}^m(p, \lambda) : \Delta \subseteq \mathbb{L}(\tau_T)\}$ finite.

3) Let $\text{lc-rk}^m(T, \lambda) = \cup\{\text{lc-rk}^m(p, \lambda) + 1 : p \in S^m(A), A \subset \mathcal{C}\}$.

4) If we omit λ we mean $\lambda = |T|^+$.

5.27 Discussion: There are other variants and they are naturally connected to the existence of indiscernibles (for subsets of $m\mathcal{C}$, concerning subsets of $|T|\mathcal{C}$), probably representability is also relevant (maybe see [Sh:F705], [CoSh:E65], check).

5.28 Claim. 1) The following conditions on T are equivalent (for all $\lambda > |T|^+$):

(a) λ for every A and $p \in S^m_\Delta(A)$ we have $\text{lc-rk}^m(p, \lambda) < \infty$

(b) λ for some $\alpha^* < |T|^+$ for every A and $p \in S^m_\Delta(A)$ we have $\text{lc-rk}^m(p, \lambda) < \alpha^*$

8Easily, if $\Delta_1 \subseteq \Delta_2 \subseteq \mathbb{L}(\tau_T)$ are finite and $p_2 \in S^m_\Delta(A)$ and $p_1 = p_2 \upharpoonright \Delta_1$ then $\text{lc-rk}^m(p_1) \geq \text{lc-rk}^m(p_2)$. So $\text{lc-rk}^m(p, \lambda)$ is well defined.
2) Similarly restricting ourselves to $A = |M|$.

Proof. Easy. \(\square_{5.28}\)

Closely related is

5.29 Definition. 1) We define $\text{lc}_1 - \text{rk}^m(p, \lambda)$ for types $p \in S^m(A)$ for $A \subseteq \mathcal{C}$ as an ordinal or infinitely by:

(a) $\text{lc}_1 - \text{rk}^m(p, \lambda) \geq 0$ always

(b) $\text{lc}_1 - \text{rk}^m(p, \lambda) \geq \alpha = \beta + 1$ iff for every $\mu < \lambda$ and finite $\Delta \subseteq L(\tau_T)$ we can find pairwise distinct $q_i \in S^m(A)$ for $i < 1 + \mu$ such that $p \upharpoonright \Delta \subseteq q_i$ and $\text{lc}_1 - \text{rk}^m(q_i, \lambda) \geq \beta$

(c) $\text{lc}_1 - \text{rk}^m(p, \lambda) \geq \delta$ a limit ordinal iff $\text{lc}_1 - \text{rk}^m(p) \geq \alpha$ for every $\alpha < \delta$.

2) If $\lambda = \beth_2(|T|)^+$ we may omit it.

5.30 Claim. 1) The following conditions on T are equivalent when $\mu > \lambda = \beth_2(|T|)^+$

(a) \(\mu\) for every A and $p \in S^m(A)$ we have $\text{lc}_1 - \text{rk}^m(p, \mu) < \infty$

(b) \(\mu\) for some $\alpha^* < (\beth_2(|T|)^+)$ for every A and $p \in S^m(A)$ we have $\text{lc}_1 - \text{rk}^m(p, \mu) < \alpha^*$

(c) \(\lambda\) for no A do we have a non-empty set $\mathcal{P} \subseteq S^m(A)$ such that for every $p \in \mathcal{P}$ and finite $\Delta \subseteq L(\tau_T)$ for some finite Δ_1 the set $\{q \upharpoonright \Delta_1 : q \in \mathcal{P}$ and $q \upharpoonright \Delta = p \upharpoonright \Delta\}$ has cardinality $\geq \lambda$

(d) \(\lambda\) letting $\Xi = \cup\{\Xi_n : n < \omega\}$, $\Xi_n = \{\vec{A} : \vec{A}$ is a sequence of length n of finite sets of formulas $\varphi(x, y) \in L(\tau_+), \ell g(\vec{x}) = m\}$ there is no $\langle \Delta_{\vec{A}} : \vec{A} \in \Xi \rangle$ where $\Delta_{\vec{A}}$ is a finite set of formulas such that: for every λ we can find A and $\langle p_{\vec{A}, \eta} : \vec{A} \in \Xi$ and $\eta \in \ell g(\vec{A}) \lambda \rangle$ such that:

(α) $p_{\vec{A}, \eta} \in S^m(A)$

(β) if $\vec{A} \in \Xi_n, \eta \in n\lambda$ and $\vec{A}' = \vec{A} \upharpoonright (\Lambda_n) \in \Xi_{n+1}$, then $p_{\vec{A}', \eta}^{<\alpha} \upharpoonright \Lambda_n = p_{\vec{A}, \eta} \upharpoonright \Lambda_n$ for $\alpha < \lambda$ and $\langle p_{\vec{A}', \eta}^{<\alpha} \upharpoonright \Delta_{\vec{A}'} : \alpha < \lambda \rangle$ are pairwise distinct
(e) for some \(\langle \Delta_\lambda : \tilde{A} \in \Xi \rangle \) as above the set \(T \cup \Gamma_\lambda \) is inconsistent where \(\Gamma \) is non-empty and:

(a) if \(\tilde{A} = \Xi_{n+1}, \eta \in n+1\lambda \) and \(\varphi(\bar{x}, \bar{y}) \in \Lambda_n \) then \((\forall \bar{y})[\bigwedge_{\ell<\ell_g(\bar{y})} P(y_\ell) \to \]
\(\langle \varphi(\bar{x}_{\lambda, \eta}, \bar{y}) \equiv \varphi(\bar{x}_{\lambda|n, n|n}, \bar{y}) \rangle \]
(\(b \)) if \(\tilde{A} \in \Xi_{n+1}, \eta \in n\lambda \) and \(\alpha < \beta < \lambda \), then \(\bigvee_{\varphi(x, \bar{y}) \in \Delta_{\tilde{A}}} (\exists \bar{y}) \bigwedge_{\ell<\ell_g(\bar{y})} P(y_\ell) \wedge \)
\(\langle \varphi(x_{\lambda, \eta^\prime_\beta}, : \bar{y}) \equiv \neg \varphi(\bar{x}_{\lambda, \eta^\prime_\beta}, \bar{y}) \rangle \)

2) Similarly restricting ourselves to the cases \(A = |M| \), i.e. \(A \) is the universe of some \(M \prec \mathcal{C} \).

Remark. See [Sh 893, Th.2.16=z35].

Proof.

\(\neg (b) \mu \Rightarrow \neg (d) \lambda \)

Let \(\beta_* = \lambda \); so as we are assuming \(\neg (b) \mu \) clearly we can choose

(*)_1 \(A \subseteq \mathcal{C} \) and \(p \in S^m(A) \) such that \(\text{lc}_1\text{-rk}^n(p, \mu) \geq \beta_* \).

Now

(*)_2 there is \(\mathcal{T}^1_0 \) such that:

(A) if \(\eta \in \mathcal{T}_0 \) then

(a) \(\eta \) is a finite sequence

(b) if \(4\ell < \ell_g(\eta) \) then \(\eta(4\ell) \) is \(p_{\eta, \ell} \in S^m(A) \)

(c) if \(4\ell + 1 < \ell_g(\eta) \) then \(\eta(4\ell + 1) \) is an ordinal \(\beta_{\eta, \ell} \)

(d) if \(4\ell + 2 < \ell_g(\eta) \) then \(\eta(4\ell + 2) \) is a finite subset of \(\mathbb{L}(T_\tau) \)

(e) if \(4\ell + 3 < \ell_g(\eta) \) then \(\eta(4\ell + 3) \) is \(\alpha_{\eta, \ell} \) an ordinal < \(\lambda \)

such that:

(f) \(\langle \beta_{\eta, \ell} : 4\ell + 1 < \ell_g(\eta) \rangle \) is a decreasing sequence of ordinals < \(\beta_* \)

(g) if \(4\ell + 4 < \ell_g(\eta) \) then \(p_{\eta, \ell} \upharpoonright \Lambda_{\eta, \ell} = p_{\eta, \ell+1} \upharpoonright \Lambda_{\eta, \ell} \)

(h) if \(4\ell + 4 < \ell_g(\eta) \) then \(\text{lc}_1\text{-rk}^m(p_{\eta, \ell+1}) \geq \beta_{\eta, \ell} \) so \(\text{lc}_1\text{-rk}^m(p_{\eta, \ell}) \)
> \beta_{\eta,\ell}

(B) if \eta \in \mathcal{T}_0 and \ell g(\eta) = \ell + 2 then there is a sequence \langle p_{\eta,\alpha} : \alpha < \mu \rangle such that

(a) \eta^*(\alpha, p_{\eta,\alpha}) \in \mathcal{F} for \alpha < \lambda so p_{\eta,\alpha} \in S^m(A)

(b) \langle p_{\eta,\alpha} : \alpha < \lambda \rangle is without repetition.

[Why is this possible? We choose \mathcal{T}_0 = \{ \eta \in \mathcal{T}^* : \ell g(\eta) = \eta \} by induction on n. Let \mathcal{T}_0^0 = \{ () \} and \mathcal{T}_1 = \{ (\eta) \}.

If \langle \mathcal{T}_m^0 : m \leq n \rangle has been defined, n = 4\ell + \iota \geq 2 with \iota \in \{ 1, \ldots, 4 \} we choose \mathcal{T}_{n+1} as follows:

- if \iota = 1 let \mathcal{T}_{n+1}^0 = \{ \eta^* (\beta) : \beta < \beta_* \text{ and } (\forall m) (m < \ell g(\eta) \land m = 1 \mod 4 \Rightarrow \beta < \eta(m)) \}

- if \iota = 2 let \mathcal{T}_{n+1}^0 = \{ \eta^* (\Lambda) : \Lambda \subseteq \{ \varphi(\bar{x}_m, \bar{y}) : \varphi \in \mathbb{L}(\tau_T) \} \text{ is finite} \}

- if \iota = 3 let \mathcal{T}_{n+1}^0 = \{ \eta^* (\alpha) : \alpha < \lambda \}

- if \iota = 4 and \eta \in \mathcal{T}_{n-1}^0 then noting \lc_{1-rk^m}(p_{\eta,\ell}) > \beta_{\eta,\ell} by the definition of \lc_{1-rk^m}(p_{\eta,\ell}) there is \langle p_{\eta^1(n-1),\alpha} : \alpha < \lambda \rangle as required in (B) and we let \mathcal{T}_{n+1}^0 = \{ \eta^* (p_{\eta,\alpha}) : \eta \in \mathcal{T}_{n-1}^0, \alpha < \lambda \}.

Easily we are done.]

(*)_3 if \eta \in \mathcal{T}_0, \ell g(\eta) = 3\ell + 3 then we choose (\Delta, W_\eta) such that

(a) \Delta \eta \subseteq \{ \varphi(\bar{x}_m, \bar{y}) : \varphi \in \mathbb{L}(\tau_T) \} \text{ is finite}

(b) \eta \subseteq \lambda of cardinality \lambda

(c) \langle p_{\eta,\alpha} : \Delta \alpha : \alpha \in w_\eta \rangle \text{ is with no repetitions.}

[Why? As \alpha < \lambda \Rightarrow |\alpha|^{|T|} < \lambda and \lambda is regular.]

(*)_4 let \mathcal{F}_1 = \{ \eta \in \mathcal{F}_0 : \text{ if } 3\ell + 3 < \ell g(\eta) \text{ then } \eta (3\ell + 3) \in w_{\eta^1(3\ell+3)} \}. So

(*)_5 the pair (\mathcal{F}_1, \mathcal{D}_1) satisfies

(a) \mathcal{F}_1 is a sub-tree of \mathcal{F} so () \in \mathcal{F}_1

(b) if \eta \in \mathcal{F}_1, \ell g(\eta) \neq 3 \mod 4 then suc_{\mathcal{F}_1}(\eta) = suc_{\mathcal{F}_0}(n)

(c) if \eta \in \mathcal{F}_1, \ell g(\eta) = 3 \mod 4 then suc_{\mathcal{F}_2}(\eta) has cardinality \lambda and \nabla W_\eta^* = \{ \alpha < \lambda : \eta^* (\alpha) \in \mathcal{F}_1 \} \text{ is of cardinality } \lambda, \text{ so } p_{\eta,\alpha} \in S^m(A) \text{ is well defined.}
(d) \(\bar{\Delta}_2 = \langle \Delta_{2,\eta} : \eta \in \mathcal{F}_1, \ell g(\eta) = 3 \mod 4 \rangle \)

(e) \(\Delta_{1,\eta} \) is a finite subset of \(\{ \varphi(\bar{x}_m, \bar{y}) : \varphi \in L(\tau_T) \} \)

(f) if \(\eta \in \mathcal{F}_1, \ell g(\eta) = 2\ell + 3 \) then \(\{ p_{\eta,\alpha} \mid \Delta_\eta : \alpha \in w_\eta^* \} \) is with no repetitions.

Now (on pits, partially idealized trees see [Sh 893, Def.2.15=z32]).

\((*)_6\) let \(i_1 = (\mathcal{F}_1, I_{i_1}) \) where

(a) \(\mathcal{F}_i \) is \(\mathcal{F}_i^* \) from \((*)_2\)

(b) \(I_{i_1} = \langle I_{i,\eta} : \eta \in \mathcal{F}_i \rangle \) where

(c) \(\mathcal{F}_1 = \mathcal{F}_i = \{ \eta \in \mathcal{F}^* : \ell g(\eta) \neq 2 \mod 4 \} \)

(d) \(I_{i_1,\eta} \) is:

(\(\alpha\)) \(\{ A \subseteq \text{suc} \mathcal{F}_1(\eta) : |A| < \lambda \} \) if \(\ell g(\eta) = 3 \mod 4 \)

(\(\beta\)) \(\{ \text{suc} \mathcal{F}_1(\eta) \} \) if \(\ell g(\eta) = 0, 1 \mod 4 \).

\((*)_7\) \(i_1 \) is a pit (partially idealized tree) which is \(\mu \)-complete

\((*)_8\) we define a coloring \(i \) of \(\mathcal{F}_1 \) as follows: \(c(\eta) \) is \(\Delta_{2,\eta} \) when well defined, \(\emptyset \) otherwise

\((*)_9\) \(c \) is a coloring of \(\mathcal{F}_2 \) by \(\leq |T| \) colours.

[Why? Think.]

\((*)_{10}\) assumptions (a)-(e) of [Sh 893, Th.2.16=z35] holds with \((i_1, \lambda, |T|, |T|, c, \beta_*, \beta_*) \) here standing for \((i_1, \lambda, \theta, \kappa, \gamma_1, \gamma_2) \) there.

[Why? Note \(2^{|T|} = 2^{|T|} < \lambda, \beta_* = (2^{|T|})^+ = 2^{|T|}^+ \) is regular.]

\((*)_{11}\) there is \(i_2 = (\mathcal{F}_2, I_2) \) so \(\mathcal{F}_2 \) is a subtree of \(\mathcal{F}_1 \) such that \((\mathcal{F}_2 = \mathcal{F}_1 \cap \mathcal{F}_2) \) and \(\langle \Delta_\Lambda : \Lambda \in \Xi \rangle \) such that

(a) \((\mathcal{F}_1, \mathcal{F}_1) \leq (\mathcal{F}_2, \mathcal{F}_2) \)

(b) \(D_{i_2}(rt_{i_2}) \supseteq \beta_* \)

(c) \(\eta \in \mathcal{F}_2 \Rightarrow c(\eta) = \Delta_{\eta(4\ell + 2) : \ell \leq \ell g(\eta)/4} \).
Now check that \(\neg (d)_{\lambda} \) holds.
\[
\neg (d)_{\lambda} \iff \neg (e)_{\lambda}:
\]
Easy.
\[
\neg (d)_{\lambda} \Rightarrow \neg (e)_{\lambda}:
\]
Obvious.
\[
\neg (e)_{\lambda} \Rightarrow \neg (a)_{\mu}:
\]
We prove by induction on the ordinal \(\alpha \) then
\[
(*)_{\alpha} \quad \text{if } p \in P \text{ then } \text{lc}_{1}-\text{rk}^{m}(p) \geq \alpha.
\]
\[
\neg (a)_{\mu} \Rightarrow \neg (b)_{\mu}:
\]
Obvious. \(\square \)

5.31 Definition. 1) We define \(\text{lc}_{2}-\text{rk}^{m}(p, \lambda), \text{lc}_{3}-\text{rk}^{m}(p, \lambda) \) like \(\text{lc}_{0}-\text{rk}^{m}(p, \lambda), \text{lc}_{1}-\text{rk}^{m}(p, \lambda) \) respectively replacing “\(\Delta \subseteq L(\tau_{T}) \) is finite” by “\(\Delta \subseteq L(\tau_{T}) \) and \(\text{arity}(\Delta) < \omega \)” where.
2) arity(\(\varphi \)) = the number of free variables of \(\varphi \), \(\text{arity}(\Delta) = \sup\{\text{arity}(\varphi) : \varphi \in \Delta\} \) (if we use the objects \(\varphi(\bar{x}) \) we may use \(\text{arity}(\varphi(\bar{x})) = \ell g(\bar{x}) \)).

5.32 Claim. The parallel of 5.28, 5.30 for Definition 5.31.

Remark. Particularly the rank \(\text{lc}_{3} - \text{rk}^{m} \) seems related to the existence of indiscernibility, i.e.

5.33 Conjecture: 1) Assume, \(\text{lc}_{\ell}-\text{rk}^{m}(T) < \infty \) for some \(\ell \leq 3 \). We can prove (in ZFC!) that for every cardinal \(\mu \) for some \(\lambda \) we have \(\lambda \rightarrow (\mu)_{T} \).
2) Moreover \(\lambda \) is not too large, say is \((\beth_{\omega+1})(\mu + |T|)^{+} \) (or just \(< \beth(2^{\mu})^{+} \)).

\[
\ast \quad \ast \quad \ast
\]

(D) STRONGLY2 STABLE FIELDS

A reasonable aim is to generalize the characterization of the superstable complete theories of fields. Macintyre [Ma71] proved that every infinite field whose first order theory is \(\aleph\text{0}-\text{stable}, \) is algebraically closed. Cherlin [Ch78] proves that every infinite division ring whose first order theory in superstable is commutative, i.e. is a field
so algebraically closed. Cherlin-Shelah [ChSh 115] prove “any superstable theory $\text{Th}(K)$, K an infinite field is the theory of algebraically closed fields” (and this is true even for division rings). More generally we would like to replace stable by dependent and/or superstable by strongly dependent or at least strongly2 stable (or other variant).

Of course, for strongly dependent we should allow at least the following cases (in addition to the algebraically closed fields): the first order theory of the real field (not problematic as is the only one with finite non-trivial Galois groups), the p-adic field for any prime p and the first order theories covered by 1.17(2), i.e. $\text{Th}(K^p)$ for such F.

So

5.34 Conjecture.

(a) if K is an infinite field and $T = \text{Th}(K)$ is strongly2 dependent (i.e., $\kappa_{\text{ict},2}(T) = \aleph_0$) then K is an algebraically closed field (not strongly!!),

(b) similarly for division rings,

(c) if K is an infinite field and $T = \text{Th}(K)$ is strongly1 dependent then K is finite or algebraically closed or real closed or elementary equivalent to K^p for some F as in 1.17(2) (like the p-adics) or a finite algebraic extension of such a field,

(d) similarly to (c) for division rings.

Of course it is even better to answer 5.35(1):

5.35 Question: 1) Characterize the fields with dependent first order theory.

2) At least “strongly dependent” (or another variant see (E),(F) below).

3) Suppose M is an ordered field and $T = \text{Th}(M)$ is dependent (or strongly dependent). Can we characterize?

Remark. But we do not know this even for stability.

So adopting strongly dependent as our context we look what we can do.

5.36 Claim. For a dependent T and group G interpreted in the monster model \mathfrak{C} of T; for every $\varphi(x, \bar{y}) \in \mathbb{L}(\tau_T)$ there is $n_\varphi < \omega$ such that if α is finite $\langle \bar{a}_i : i < \alpha \rangle$ is such that $G \cap \varphi(\mathfrak{C}, \bar{a}_i)$ is a subgroup of G then their intersection is the intersection of some $\leq n_\varphi$ of them.

Remark. If T is stable this holds also for infinite α by the Baldwin-Saxl [BaSx76] theorem.
Proof. See [KpSh:993].

5.37 Claim. If the complete theory T is strongly dependent then “finite kernel implies almost surjectivity” which means that if in C, G is a definable group, π a definable homomorphism from G into G with finite kernel then $(G : \text{Rang}(\pi))$ is finite.

Proof. By a general result from [Sh 783, 3.8=tex.ss.4.5] quoted here as 0.1. □

5.38 Claim. Being strongly dependent is preserved under interpretation.

Proof. By 1.4, 2.7. □

Hence the proof in [ChSh 115] works “except” the part on “translating the connectivity”, which rely on ranks not available here.

However, if T is stable this is fine hence we deduce that we have

5.39 Conclusion. If K is an infinite field and Th(K) is strongly stable then T is algebraically closed.

5.40 Claim. Let p be a prime. T is not strongly dependent when: T is the theory of differentially closed fields of characteristic p or T is the theory of some separably closed fields of characteristic p which is not algebraically closed.

Proof. The second case implies the first because if $\tau_1 \subseteq \tau_1, T_2$ a complete $\mathbb{L}(\tau_2)$-theory which is strongly dependent then so is $T_1 = T_2 \cap \mathbb{L}(\tau_1)$. So let M be a \aleph_1-saturated separably closed field of characteristic p which is not algebraically closed. Let $\varphi_n(x) = (\exists y)(y^p^n = x)$ and $p_n(x) = \{\varphi_n(x) : n < \omega\}$ and let xE_ny mean $\varphi_n(x - y)$, so E_n^M is an equivalent relation.

Let $\langle a_\alpha : \alpha < \omega_1 \rangle$ be an indiscernible set such that $\alpha < \beta < \omega_1 \Rightarrow a_\beta - a_\alpha \notin \varphi_1(M)$.

Let $\psi_n(x, y_0, y_1, \ldots, y_{n-1}) = (\exists z)[\varphi_n(z) \land x = y_0 + y_1^p + \ldots + y_{n-1}^p + z]$.

Now by our understanding of Th(M)

\begin{itemize}
 \item \(a\) if $b_\ell \in M$ for $\ell < n$ then $M \models (\exists x)\psi_n(x, b_0, \ldots, b_{n-1})$
 \item \(b\) in M we have $\psi_{n+1}(x, y_0, \ldots, y_n) \vdash \psi_n(x, y_0, \ldots, y_{n-1})$
 \item \(c\) in M we have, if $\psi_n(b, a_{\alpha_0}, \ldots, a_{\alpha_{n-1}}) \land \psi_n(b, a_{\beta_0}, \ldots, a_{\beta_{n-1}})$ then $\bigwedge_{\ell < n} \alpha_\ell = \beta_\ell$.
\end{itemize}
5.41 Definition. 1) T is strongly\(^3\) dependent if $\kappa_{\text{ict},3}(T) = \aleph_0$ (see below).
2) $\kappa_{\text{ict},3}(T)$ is the first κ such that the following\(^9\) holds if (A) then (B) where:

(A) if γ is an ordinal, $\bar{a}_\alpha \in \gamma(M_{\alpha+1})$ for $\alpha < \delta$, $\langle \bar{a}_\alpha : \alpha \in [\beta, \delta) \rangle$ is an indiscernible sequence over M_β for $\beta < \delta$ and $\beta_1 < \beta_2$ implies $M_{\beta_1} < M_{\beta_2} < \mathcal{C}$ and $\bar{c} \in \omega^\omega \mathcal{C}$ and $\text{cf}(\delta) \geq \kappa$ such that:

- if $n < \omega$ and $\alpha_0 < \ldots < \alpha_{n-1} < \kappa$ for $\ell = 1, 2, \alpha_1,i < \alpha_{2,i}$ for $i < n$ and $b^1 \in M_{\alpha_1,n}^\omega$ then there is $b^2 \in M_{\alpha_2,n}(?)$ such that $\bar{a}_{\alpha_1,0} \cdots \bar{a}_{\alpha_{n-1},0} \bar{b}^1$

and $\bar{a}_{\alpha_{2,0}} \cdots \bar{a}_{\alpha_{2,n}} \bar{b}^2$ realize the same type

\(^9\)we may consider replacing δ by a linear order and ask for $< \kappa$ cuts

(E) On strongly\(^3\) dependent:

It is still not clear which versions of strong dependent (or stable) will be most interesting. Another reasonable version is strongly\(^3\) dependent and see more below. It has parallel properties and is natural. Hopefully at least some of those versions allows us to generalize weight (see [Sh:c, V, §3]); we intend to return to it elsewhere. Meanwhile note:
(B) for some $\beta < \kappa$, $\langle \bar{a}_\alpha : \alpha \in [\beta, \delta) \rangle$ is an indiscernible sequence over $M_\beta \cup \bar{c}$.

3) We say T is strongly $^\ell$ stable if T is strongly $^\ell$ dependent and is stable.

4) We define $\kappa_{\text{ict},3,\ast}(T)$ and strongly 3,* dependent and strongly 3,* stable as in the parallel cases (see Definition 1.8, 2.12), i.e., above we replace \bar{c} by $\langle \bar{c}_n : n < \omega \rangle$ indiscernible over $\cup \{ M_\beta : \beta < \delta \}$.

5.42 Claim. 1) If T is strongly $^{\ell+1}$ dependent then T is strongly $^\ell$ dependent for $\ell = 1, 2$.

2) T is strongly $^\ell$ dependent iff T^{eq} is; moreover $\kappa_{\text{ict},\ell}(T) = \kappa_{\text{ict},\ell}(T^{\text{eq}})$.

3) If T_1 is interpretable in T_2 then $\kappa_{\text{ict},\ell}(T_1) \leq \kappa_{\text{ict},\ell}(T_2)$.

4) If $T_2 = \text{Th}(\mathfrak{B}_{M, MA})$, see [Sh 783, §1] and $T_1 = \text{Th}(M)$ then $\kappa_{\text{ict},\ell}(T_2) = \kappa_{\text{ict},\ell}(T_1)$.

5) T is not strongly 3 dependent if we can find $\bar{\varphi} = \langle \varphi_n(\bar{x}_0, \bar{x}_1, \bar{y}_n) : n < \omega \rangle$, $m = \ell g(\bar{x}_0)$ and for any infinite linear order I we can find an indiscernible sequence $\langle \bar{a}_t, \bar{b}_t : t \in I, \eta \in \omega > I \text{ increasing} \rangle$, see Definition 5.45 below such that for any increasing sequence $\eta \in \omega I$, the set $\{ \varphi_n(\bar{x}_0, \bar{a}_s, \bar{b}_t[n])^{\text{iff}(s=\eta(n))} : n < \omega$ and $\eta(n-1) < s \in I \text{ if } n > 0 \}$ of formulas is consistent (or use just $s = \eta(n), \eta(n) + 1$ or $\eta(n) \leq I s$, does not matter).

6) The parallel of parts (1)-(5) hold with strongly 3,* instead of strongly 3. In particular, (parallel to part (5)), we have T is not strongly 3,* dependent if we can find $\bar{\varphi} = \langle \varphi_n(\bar{x}_0, \ldots, \bar{x}_k(n), \bar{y}_n) : n < \omega \rangle$, $m = \ell g(\bar{x})$ and for any infinite linear order I we can find an indiscernible sequence $\langle \bar{a}_t, \bar{b}_n : t \in I, \eta \in \omega > I \text{ increasing} \rangle$, see 5.45 such that for any increasing $\eta \in \omega I$, $\{ \varphi(\bar{x}_0, \bar{a}_s, \bar{b}_t[n])^{\text{iff}(s=\eta(n))} : n < \omega$ and $\eta(n-1) < s \in I \text{ if } n > 0 \} \cup \{ \psi(\bar{x}_{i_0}, \ldots, \bar{x}_{i_{m-1}}, \bar{c}) = \psi(\bar{x}_{j_0}, \ldots, \bar{x}_{j_{m-1}}, \bar{c}) : m < \omega, i_0 < \ldots < i_{m-1} < \omega, j_0 < \ldots < j_{m-1} < \omega$ and $\bar{c} \subseteq \bigcup \{ \bar{a}_s, \bar{b}_\rho : s \in I, \rho \in \omega > I \text{ increasing} \} \}$ is consistent.

Proof. 1)-4). Easy.

5),6) Easy, see [Sh:F918]. □

Recall this definition applies to stable T, (i.e. Definition 5.41(3)).

5.43 Observation. The theory T is strongly 3 stable iff T is stable and we cannot find $\langle M_n : n < \omega \rangle, \bar{c} \in \omega > \mathfrak{c}$ and $\bar{a}_n \in \omega(M_{n+1})$ such that:

(a) M_n is $F_{k_n}^{\omega}$-saturated
(b) M_{n+1} is $F_{k_n}^{\omega}$-prime over $M_n \cup \bar{a}_n$
(c) $\text{tp}(\bar{a}_n, M_n)$ does not fork over M_0
(d) $\text{tp}(\bar{c}, M_n \cup \bar{a}_n)$ forks over M_n.

5.44 Conjecture For strongly\(^3\) stable \(T\) we have dimension theory (including weight) close to the one for superstable theories (as in [Sh:c, V]), we may try to deal with it in [Sh 839]; related to \(\S 5\)(G) below.

(F) Representability and strongly\(^4\) dependent:

In [Sh 897] we deal with \(T\) being fat or lean. We say a class \(K\) of models is fat when for every ordinal \(\alpha\) there are a regular cardinal \(\lambda\) and non-isomorphic models \(M,N \in K_\lambda\) which are \(\text{EF}_{\alpha,\lambda}^+\) equivalent where \(\text{EF}_{\alpha,\lambda}^+\) is a strong version of “the isomorphism player has a winning strategy in a strong version of the Ehrenf
cce Frässé game of length \(\lambda\)”.

We prove there, that consistently if \(T\) is not strongly stable and \(T_1 \supseteq T\), then \(\text{PC}(T_1,T)\) is fat (in a work in preparation [Sh:F918] we show that it suffices to assume “\(T\) is not strongly\(^4\)-stable”; see below). Cohen-Shelah [CoSh:919] deals with the stable case.

In [Sh:F705], a work under preparation, we hope to deal with representability. The weakest form (for \(k\) a class of index models, e.g. linear order) is: an e.g. first order \(T\) is weakly \(k\)-represented when for every model \(M\) of \(T\) and say finite set \(\Delta \subseteq \mathbb{L}(\tau_T)\) we can find an index model \(I \in \mathfrak{F}\) and sequence \(\langle \bar{a}_t : t \in I \rangle\) of finite sequences from \(M^\mathfrak{C}\) (or just singletons) which is \(\Delta\)-indiscernible, i.e., see below, such that \(|M| \subseteq \{a_t : t \in I\}\).

This is a parallel to stable and superstable when we play with essentially the arity of the functions of \(\mathfrak{F}\) and the size of \(\Delta\)’s considered. The thesis is that \(T\) is stable iff it, essentially can be represented for essentially \(\mathfrak{F}\) the class of sets and parallel representability for \(\mathfrak{F}\) derived for order characterize versions of the class of dependent theories. We also define \(\mathfrak{F}\)-forking, i.e. replace linear orders other index set. Meanwhile [CoSh:919] fulfill those hopes for stable \(T\), but [KpSh:975] show that for general dependent \(T\) those hopes fail.

We define

5.45 Definition. 1) For any structure \(I\) we say that \(\langle \bar{a}_t : t \in I \rangle\) is indiscernible (in \(\mathfrak{C}\) over \(A\)) when: \(\ell g(\bar{a}_t)\) depends only on the quantifier type of \(t\) in \(I\) and:

if \(n < \omega\) and \(\bar{s} = \langle s_0, s_1, \ldots, s_{n-1}\rangle, \bar{t} = \langle t_0, \ldots, t_{n-1}\rangle\) realize the same quantifier-free type in \(I\) then \(\bar{a}_t := \bar{a}_{t_0} \ldots \tilde{\bar{a}}_{t_{n-1}}\) and \(\bar{a}_s = \bar{a}_{s_0} \ldots \tilde{\bar{a}}_{s_{n-1}}\) realize the same type (over \(A\)) in \(\mathfrak{C}\).

2) We say that \(\langle \bar{b}_u : u \in |I|^{<\omega} \rangle\) is indiscernible (in \(\mathfrak{C}\)) (over \(A\)) similarly:

if \(n < \omega, w_0, \ldots, w_{m-1} \subseteq \{0, \ldots, n-1\}\) and \(\bar{s} = \langle s_\ell : \ell < n\rangle, \bar{t} = \langle t_\ell : \ell < n\rangle\) realize the same quantifier-free types in \(I\) and \(u_\ell = \{s_k : k \in w_\ell\}, v_\ell = \{t_k : k \in w_\ell\}\) then \(\bar{a}_{w_0} \ldots \tilde{\bar{a}}_{w_{n-1}}, \bar{a}_{v_0} \ldots \tilde{\bar{a}}_{v_{n-1}}\) realize the same type in \(\mathfrak{C}\) (over \(A\)).
3) We may use incr($<\omega, I$) instead of $[I]^{<\aleph_0}$ where incr(αI) = incr$_\alpha(I)$ = incr(α, I) = $\{\rho : \rho$ is an increasing sequence of length α of members of $I\}$; we can use $<\alpha$ or $\leq\alpha$; clearly the difference between incr($<\omega, I$) and $[I]^{<\aleph_0}$ is notational only (when we have order).

5.46 Definition. 1) We say that the m-type $p(\bar{x})$ does (Δ, n)-ict divide over A (or (Δ, n)-ict1 divide over A) when there are an indiscernible sequence $\langle \bar{a}_t : t \in I \rangle, I$ an infinite linear order and $s_0 < t_0 < t_1 < t_2 < \ldots < t_{n-1} < t_{n-1}$ such that

\[\otimes_1 p(\bar{x}) \vdash \text{"}tp_\Delta(\bar{x}^{\bar{a}_{s_t}}, A) \neq tp_\Delta(\bar{x}^{\bar{a}_{t_{t'}}}, A)\text{"} \] for $\ell < n$.

2) We say that the m-type $p(\bar{x})$ does (Δ, n)-ict2-divide over A when above we replace \otimes_1 by:

\[\otimes_2 p(\bar{x}) \vdash \text{"}tp_\Delta(\bar{x}^{\bar{a}_{s_t}}, A) \neq tp_\Delta(\bar{x}^{\bar{a}_{t_{t'}}}, A)\text{"} \] for $\ell < n$.

3) We say that the m-type $p(\bar{x})$ does (Δ, n)-ict3-divide over A when above ($\langle \bar{a}_t : t \in I \cup \text{inc}(<n, I)\rangle$ is indiscernible over A and we replace \otimes_1 by

\[\otimes_3 p(\bar{x}) \vdash \text{"}tp_\Delta(\bar{x}^{\bar{a}_{s_t}}, A) \neq tp_\Delta(\bar{x}^{\bar{a}_{t_{t'}}}, A)\text{"} \] for $\ell < n$.

4) We say that the m-type $p(\bar{x})$ does (Δ, n)-ict4-divide over A when there are $n^* < \omega$ and sequence $\langle \bar{a}_\eta : \eta \in \text{inc}(\leq n^*, I)\rangle$ indiscernible over A such that (where Comp(I) is the completion of the linear order I):

- if \bar{c} realizes $p(\bar{x})$ then for no set $J \subseteq \text{comp}(I)$ with $\leq n$ members, the sequence $\langle \bar{a}_\eta : \eta \in \text{inc}(\leq n^*, I^+)\rangle$ is Δ-indiscernible over A where $I^+ = (I, P_t)_{t \in J}$ and $P_t := \{s \in I : s < t\}$. Note that if T is stable, we can equivalently require $J \subseteq I$ and use $P_t = \{t\}$.

5) For $k \in \{1, 2, 3, 4\}$ we say that the m-type $p(\bar{x})$ does (Δ, n)-ictk-fork over A when for some sequence $\langle \psi_\ell(\bar{x}, \bar{a}_t) : \ell < \ell(\bar{x}) < \omega \rangle$ we have

\[(a) \ p(\bar{x}) \vdash \bigvee_{\ell < \ell(\bar{x})} \psi_\ell(\bar{x}, \bar{a}_t) \]

\[(b) \ \psi_\ell(\bar{x}, \bar{a}_t) \text{ does } (\Delta, n)-\text{ict}^k\text{-divide over } A. \]

If $k = 1$ we may omit it, if $\Delta = \mathbb{L}(\tau_T)$ we may omit it.

6) We define $\text{ict}^k - \text{rk}^m(p)$, an ordinal or ∞, as follows (easily well defined): $\text{ict}^k - \text{rk}^m(p) \geq \alpha$ iff p is an m-type and for every finite $q \subseteq p$, finite $A \subseteq \text{Dom}(p)$ and $n < \omega$ and $\beta < \alpha$ there is an m-type r extending q which $(\mathbb{L}(\tau_T), n) - \text{ict}^k$-forks
over A with $\text{ict}^k \cdot \text{rk}^m(r) \geq \beta$. If $\text{ict}^k \cdot \text{rk}^m(r) \not\geq \beta + 1$; and we say that n (and q) witnesses this when the demand above for this n fails. If $n + 1$ is the minimal witness let $n = \text{ict}^k - \text{wg}^n(r)$.

7) $\kappa^m_{k,\text{ict}}(T)$ is the first $\kappa \geq \aleph_0$ such that for every $p \in S^m(B)$, $B \subseteq \mathfrak{C}$ there is a set $A \subseteq B$ of cardinality $< \kappa$ such that p does not ict^k-fork over A. Omitting m means for some $m < \omega$; note that we write $\kappa^m_{k,\text{ict}}(T)$ to distinguish it from Definition 2.3 of $\kappa^m_{\text{ict},2}$.

8) T is strongly k dependent [stable] if $\kappa^m_{k,\text{ict}}(T) = \aleph_0$ [and T is stable].

9) We define $\kappa^m_{k,\text{ict},*}(T)$ parallely i.e., now $p(\bar{x})$ is the type of an indiscernible sequence of m-tuples and T is strongly $k,*$ dependent [stable] if it is dependent [stable] and $\kappa^m_{k,\text{ict},*}(T) = \aleph_0$.

5.47 Claim. 1) For dependent T, the following conditions are equivalent:

(a) $\kappa^m_{4,\text{ict}}(T) > \aleph_0$, see Definition 5.46(4),(7),(9)

(b) there are $m, \langle (\Delta_\ell, n_\ell) : \ell < \omega \rangle, I, J$ such that

(i) $\Delta_\ell \subseteq L(T)$ finite and $n_\ell < \omega$ and $n_\ell > \ell$ for $\ell < \omega$

(ii) I is an infinite linear order with increasing ω-sequence of members

(iii) $J = \langle \bar{a}_\rho : \rho \in \text{inc}_\omega(I) \rangle$ is an indiscernible sequence with $\bar{a}_\rho \in \omega \mathfrak{C}$

(iv) for $\eta \in \omega$ I an increasing sequence, for some $\bar{c}_\ell \in m \mathfrak{C}(\ell < \omega)$ we have:

(i) $\langle \bar{c}_\ell : \ell < \omega \rangle$ is an indiscernible sequence over

$\cup \{ \bar{a}_\rho : \rho \in \text{inc}(I, < \omega) \}$

(ii) if J is the completion of the linear order I then for no finite $J_0 \subseteq J$ do we have: if $n < \omega$ and $\rho_0, \ldots, \rho_{n-1} \in \text{inc}(I, < \omega)$ for $\ell = 1, 2$ are such that $\rho_0^1 \ldots \rho_{n-1}^1$ and $\rho_0^2 \ldots \rho_{n-1}^2$ realize the same quantifier free type over J_0 in J

and $\ell g(\rho_0^1) = \ell g(\rho_0^2)$ for $m < n$ then

$\bar{a} \rho_0^1 \cdots \bar{a} \rho_{n-1}^1, \bar{a} \rho_0^2 \cdots \bar{a} \rho_{n-1}^2$ realize the same Δ_ℓ-type over $\cup \{ \bar{c}_\ell : \ell < \omega \}$ in \mathfrak{C}

(c) the natural rank is always $< \infty$.

2) For dependent T the following conditions are equivalent

(a) $\kappa^m_{4,\text{ict}}(T) > \aleph_0$

(b) like (b) is part (1) only $\langle \bar{c}_\ell : \ell < \omega \rangle$ is replaced by one m-tuple \bar{c}

(c) $\text{ict}^4 - \text{rk}^m(\bar{x} = \bar{x}) = \infty$

(d) $\text{ict}^4 - \text{rk}^m(\bar{x} = \bar{x}) \geq |T|^+$.

(863)
3) Similarly (just simpler) for \(k = 1, 2, 3 \) instead of 4.

Proof. Straight, but for part 2 see details Cohen-Shelah [CoSh:E65, §2]. □

5.48 Question: 1) Can we characterize the \(T \) such that the \(\text{ict}^k \)-rk\(^1\) rank of the formula \(x = x \) is 1?
2) Do we have \(\text{ict}^\ell \text{-rk}^m(\bar{x} = \bar{x}) = \infty \) iff \(\text{ict}^\ell \text{-rk}^1(x = x) = \infty \), i.e. can we in part (2) say that the properties do not depend on \(m \)?

Now

5.49 Observation. 1) For \(k = 1, 2, 3 \) if \(p(\bar{x}) \) does \((\Delta, n)\)-ict\(^k\) fork over \(A \) then \(p(\bar{x}) \) does \((\Delta, n)\)-ict\(^{k+1}\) forks over \(A \).
2) If \(T \) is strongly \(k+1 \) dependent/stable then \(T \) is strongly \(k \) dependent/stable.
3) For \(k \in \{1, 2, 3, 4\} \) if \(T \) is strongly \(k \) dependent/stable then \(T \) is strongly \(k \) dependent/stable; if \(T_1 \) is interpretable in \(T_2 \) and \(T_2 \) is strongly \(k \) dependent/stable then so is \(T_1 \).
4) Assume \(T \) is stable. If \(p \in S^m(B) \) does not fork over \(A \subseteq B \) then \(\text{ict}^k \text{-rk}^m(p) = \text{ict}^k - \text{rk}^m(p \upharpoonright A) \).

Remark. 1) Also the natural inequalities concerning \(\text{ict}^k \text{-rk}^n(-) \) follows by 5.49(1).
2) The parallel of 5.49 holds for types of indiscernible sequences over \(A \) (as in \(K_{4, \text{ict}, +}^m \)).

Proof. Straight; details on the proof of part (3) for \(k = 1 \), see [CoSh:E65, §11,§12]. □

5.50 Example: 1) There is a stable NDOP, NOTOP, not multi-dimensional, countable complete theory which is not strongly\(^2\) dependent.
2) \(T = \text{Th}(\omega_1(Z_2), E_n)_{n<\omega} \) is as above where \(Z_2 = Z/2Z \) as an additive group, \(E_n = \{(\eta, \nu) : \eta, \nu \in \omega_1(Z_2) \text{ are such that } \eta \upharpoonright (\omega n) = \nu \upharpoonright (\omega n)\}. \)
3) As in part (1) but \(T \) is not strongly dependent.

Remark. This is [Sh 897, 0.2=0z.5]. It shows that the theorem there adds more cases.

Proof. 1) By part (2).
2) So let \(M_0 \) be the additive group \((\omega_1(Z_2), +) \) where + is coordinatewise addition.
and for $\alpha \leq \omega$ let $M_\alpha = (\omega_1(\mathbb{Z}_2), P_n)_{n<\alpha}$, where $P_n = \{ \eta \in \omega_1(\mathbb{Z}_2) : \eta \upharpoonright (\omega n) \}$ is constantly zero and $E_n = \{ (\eta, \nu) : \eta, \nu \in \omega_1(\mathbb{Z}_2) \text{ are such that } \eta \upharpoonright (\omega n) = \nu \upharpoonright (\omega n) \}$ and $M'_\alpha = (\omega_1(\mathbb{Z}_2), E_n)_{n<\alpha}$. So M'_α, M_α are bi-interpretable, so we shall use M_α.

Let $T = \text{Th}(M_\omega)$ and let $T_\alpha = \text{Th}(M_\alpha)$. So for a model N of T_α is just an abelian group in which every element has order 2, with distinguished subgraph P^N_n for $n < \alpha$ so a vector space over the field \mathbb{Z}_2 and P^M_ω decrease with n.

T is stable:
For $n < \omega$, a model of T_n is determined by finitely many dimensions: $(P^N_k : P^N_{k+1})$ for $k < n$ (where E^N_0 is interpreted as the equality), so T_n is superstable not multi-dimensional.

Hence T necessarily is stable.

T is strongly dependent not strongly\(^2\) dependent:
As in 2.5.

T is not multi-dimensional:
If N is an \aleph_1-saturated model of T then it is determined by the following dimension as vector spaces over \mathbb{Z}_2, for $n < \omega$

\[(*)_1 P^N_n / P^N_{n+1} \]
\[(*)_2 \bigcap_{n<\omega} P^N_n. \]

Each corresponds to a regular type (in C^T_{eq}).

T has NDOP:
Follows from non-multi-dimensionality.

T has NOTOP:
Assume $N_\ell \prec C_T$ is \aleph_1-saturated, $N_0 \prec N_\ell$ for $\ell = 0, 1, 2$ such that tp(N_1, N_2) does not fork over N_0. Let A be the subgroup of C generated by $N_1 \cup N_2$ and let $N_3 = C_T \restriction A$. Easily $N_3 \prec C_T$, moreover N_3 is \aleph_1-saturated.

By [Sh:c, XII] this suffices.

3) Expand M_α by $Q_m = \{ \eta \in \omega_1(\mathbb{Z}_2) : \eta \upharpoonright [\omega m, \omega m + \omega) \text{ is constantly zero} \}$ for $m < n$.

(G) strong\(^3\) stable and primely minimal types

5.51 Hypothesis. T is stable (during §5(G)).
5.52 Definition. \([T\ \text{stable}]\) We say \(p \in S^\alpha(A)\) is primely regular (usually \(\alpha < \omega\)) when: if \(\kappa > |T| + |\alpha|\) is a regular cardinal, the model \(M\) is \(\kappa\)-saturated, the type \(tp(\bar{a}, M)\) is parallel to \(p\) (or just a stationarization of it) and \(N\) is \(\kappa\)-prime over \(M + \bar{a}\) and \(\bar{b} \subseteq ^{\kappa>}N\setminus^{\kappa>}M\) then \(tp(\bar{a}, M + \bar{b})\) is \(\kappa\)-isolated, equivalently\(^{10}\) \(N\) is \(\kappa\)-prime over \(M + \bar{b}\).

5.53 Claim. 1) Definition 5.52 to equivalent to: there are \(\kappa, M, \bar{a}, N\) as there.

2) We can in part (1) replace \(\kappa > |T| + |\alpha|\) regular, \(\kappa\)-prime" by \(\text{cf}(\kappa) \geq \kappa(T), F^a_\kappa\)-prime" respectively.

Proof. Straight. \(\square_{5.53}\)

Now (recalling Definition 5.41 and Observation 5.43).

5.54 Claim. \([T\ \text{is strongly}_{\beta_3}\ \text{stable}]\)

If \(\text{cf}(\kappa) \geq \kappa_r(T)\) and \(M < N\) are \(F^a_\kappa\)-saturated then for some \(a \in N \setminus M\) the type \(tp(a, M)\) is primely regular.

Proof. The reader can note that by easy manipulations without loss of generality \(\kappa = \text{cf}(\kappa) > |T|\); in fact, by this we can use tp instead of stp, etc.

Let \(\alpha_* = \min \{\text{ict}^3 - \text{rk}(tp(a, M)) : a \in N \setminus M\}\) and let \(a \in N \setminus M\) and \(\varphi_*(x, \bar{d}_*) \in tp(a, M)\) be such that \(\alpha_* = \text{ict}^3 - \text{rk}(\{\varphi_*(x, \bar{d}_*)\})\).

We try to choose \(N_\ell, a_\ell, B_\ell\) by induction on \(\ell < \omega\) such that

\begin{enumerate}
 \item \((a)\) \(M < N_\ell < N\) and \(a_\ell \in N_\ell \setminus M\)
 \item \((b)\) \(N_\ell\) is \(F^a_\kappa\)-primary over \(M + a_\ell\) and \(a_0 = a\)
 \item \((c)\) if \(\ell = m + 1\) then
 \begin{enumerate}
 \item \((a)\) \(N_\ell < N_m\) and \(tp(a_m, M + a_\ell)\) is not \(F^a_\kappa\)-isolated
 \item \((\beta)\) \(N_m\) is \(F^a_\kappa\)-primary over \(N_\ell + a_m\)
 \item \((\gamma)\) \(N_\ell\) is \(F^a_\kappa\)-constructible over \(N_{\ell+1} + a_0\).
 \end{enumerate}
 \item \((d)(\alpha)\) \(B_\ell \subseteq N_\ell\)
 \item \((\beta)\) \(a_\ell \in B_\ell\)
 \item \((\gamma)\) \(|B_\ell| < \kappa\)
 \item \((\delta)\) every \(F^a_\kappa\)-isolated type \(q \in S^{<\omega}(M \cup B_\ell)\) has no extension in \(S^{<\omega}(M \cup \bigcup\{B_m : m \leq \ell\})\) which forks over \(M \cup B_\ell\)
 \item \((\varepsilon)\) \(B_\ell\) is \(F^a_\kappa\)-atomic over \(M + a_\ell\).
\end{enumerate}

\(^{10}\)because \(N\) is \(\kappa\)-prime over \(M + \bar{a} + \bar{c}\) whenever \(\bar{c} \in ^{\kappa>}N\)
Let \((N_\ell, a_\ell)\) be defined iff \(\ell < 1 + \ell(*) \leq \omega\), clearly \(\ell(*) \geq 0\).

\[\mathbb{X}_1 \text{ if } \ell(*) < \omega \text{ then } \text{tp}(a_\ell(*) , M) \text{ is primely regular.} \]

[Why? If not, then for some \(b \in N_\ell(*) \setminus M\) we have \(\text{tp}(a_\ell(*) , M + b)\) is not \(\mathbf{F}_k^a\)-isolated.

We try to choose \(\bar{b}_\varepsilon\) by induction on \(\varepsilon < \kappa\) such that

\[
\begin{align*}
(\mathbb{X}_{1,1}) \ (\alpha) & \quad \bar{b}_0 = \langle b \rangle \\
(\beta) & \quad \bar{b}_\varepsilon \in \omega^>(N_\ell(*)) \\
(\gamma) & \quad \text{tp}(\bar{b}_\varepsilon , M \cup \{\beta_\zeta \colon \zeta < \varepsilon \} \cup \{ b \}) \text{ is } \mathbf{F}_k^a\text{-isolated} \\
(\delta) & \quad \text{tp}(\bar{b}_\varepsilon , M \cup \{\beta_\zeta \colon \zeta < \varepsilon \} \cup \{ b , a_\ell , \ldots , a_\ell(*) \}) \text{ is } \mathbf{F}_k^a\text{-isolated for } k = \ell(*) , \ldots , 0 \\
(\varepsilon) & \quad \text{tp}(\bar{a} , M \cup \{\beta_\zeta \colon \zeta < \varepsilon \}) \text{ forks over } M \cup \{\beta_\zeta \colon \zeta < \varepsilon \} \text{ for some } \bar{a} \in \omega^>(B_\ell(*)) \text{ when } \varepsilon > 0.
\end{align*}
\]

We are stuck for some \(\varepsilon(*) < \kappa\) because \(|B_\ell(*)| < \kappa\) and let \(B' = \cup\{\bar{b}_\varepsilon \colon \varepsilon < \varepsilon(*)\}\).

Now we can find an \(\mathbf{F}_k^a\)-saturated \(N'\) which is \(\mathbf{F}_k^a\)-constructible over \(M + B'\) and \(\mathbf{F}_k^a\)-saturated \(N''\) which is \(\mathbf{F}_k^a\)-constructible over \(N' \cup B_\ell(*)\).

By the choice of \(B'\), the model \(N'\) is \(\mathbf{F}_k^a\)-constructible also over \(M \cup B_\ell(*) \cup B'\) (by the same construction) hence \(N''\) is \(\mathbf{F}_k^a\)-constructible over \(M + B_\ell(*) + B'\).

Clearly \(N''\) is \(\mathbf{F}_k^a\)-prime over \(M + B_\ell(*) + B'\) and \(N_\ell(*)\) is \(\mathbf{F}_k^a\)-prime over \(M + B_\ell(*) + B'\) (as \(B' \subset N_\ell(*)\), see clause \((\beta)\) above and \(B'\) has cardinality \(< \kappa\)). So there is an isomorphism \(f\) from \(N''\) onto \(N_\ell(*)\) over \(M \cup B_\ell(*) \cup B\). Renaming without loss of generality \(f = \text{id}_{N''}\) so \(N'' = N_\ell(*)\).

Lastly, we shall show that \((N' , b , B')\) is a legal choice for \((N_\ell(*) +1 , a_\ell(*) +1 , B_\ell(*) +1)\).

Why? The non-obvious clauses are \((c)(\beta) , (\gamma)\) and \((d)\) of \(\mathbb{X}_{1,1}^{a_\ell(*) +1}\).

First, for clause \((d)\) obviously \(B' \supseteq |N'| , b \in N'\) and \(|B'| < \kappa\), so \((d)(\alpha) , (\beta) , (\gamma)\) hold and clause \((d)(\varepsilon)\) holds by the clause \((\mathbb{X}_{1,1})(\gamma)\). As for \((d)(\delta)\) assume \(q \in \mathbb{S}^{<\omega}(M \cup B')\) is \(\mathbf{F}_k^a\)-isolated let \(\bar{c} \in \omega^>(N')\) realize \(q\), and let \(B_0 \subseteq M \cup B'\) be of cardinality \(< \kappa\) such that \(\text{stp}(\bar{c} , B_0) = \text{stp}(\bar{c} , M \cup B')\).

Now we have \(\text{stp}(\bar{c} , M \cup B_\ell(*) \cup B') = \text{stp}(\bar{c} , M \cup B_\ell(*) \cup B')\) as otherwise we can find \(\bar{c}_\ell\) in \(\mathcal{C}\) realizing \(\text{stp}(\bar{c} , B_0)\) hence \(\text{stp}(\bar{c} , M \cup B')\) for \(\ell = 1 , 2\) such that \(\text{stp}(\bar{c}_1 , M \cup B_\ell(*) \cup B') \neq \text{stp}(\bar{c}_2 , M \cup B_\ell(*) \cup B')\); so for some finite \(\bar{a} \subseteq B_\ell(*) , \bar{d} \subseteq M\) we have \(\text{stp}(\bar{c} , \bar{d} \cup \bar{a} \cup B') \neq \text{stp}(\bar{c}_2 , \bar{d} \cup \bar{a} \cup B')\).

Now without loss of generality \(\bar{c}_1 , \bar{c}_2\) are from \(N_\ell(*)\) contradicting the choice of \(\varepsilon(*)\).

Let \(\bar{b}\) list \(B'\) without repetitions, so by the induction hypothesis \(\text{stp}(\bar{b} , \bar{c} , M \cup B_\ell(*) \cup B) = \text{stp}(\bar{b} , \bar{c} , M \cup B_0 \cup \ldots \cup B_\ell(*)\) hence \(\text{stp}(\bar{c} , M \cup B_\ell(*) \cup \bar{b}) = \text{stp}(\bar{c} , M \cup B_0 \cup \ldots \cup B_\ell(*) \cup \bar{b})\) so by the choice of \(\bar{b}\) and the previous sentence really clause \((d)(\delta)\) holds for the choice of \((N_\ell(*) +1 , a_\ell(*) +1 , B_\ell(*) +1)\) above.

Second, concerning clause \((c)(\beta)\) of \(\mathbb{X}_{1,1}^{a_\ell(*) +1}\), by the sentence after the choices of \(B'\), \(N'\) above, we know that \(N'\) is \(\mathbf{F}_k^a\)-constructively over \(M \cup B_\ell(*) \cup B'\) so clearly
stp(N', M ∪ B') ⊣ stp(N', M ∪ B' ∪ a(ℓ(*) \cup N(ell))) hence stp(B(ell(*) \cup M ∪ B') ⊣ stp(B(ell(*) \cup N'), so easily stp(B(ell(*) \cup M ∪ B' ∪ a(ell)) ⊣ stp(B(ell(*) \cup N').

Now B(ell*) \cup B' is F^a_\kappa-atomic over M ∪ \{a(ell*) \} being ⊆ N(ell*) recalling \exists_{ell(*)}(b) holds; hence B(ell*) is F^a_\kappa-atomic over M ∪ B' \cup \{a(ell*) \} hence by the previous sentence B(ell*) is F^a_\kappa-atomic over N' + a(ell*) but |B(ell*)| < \kappa hence it is F^a_\kappa-constructible over N' + a(ell*) . As N' is F^a_\kappa-constructible over B(ell* \cup N' by its choice, (and a(ell*) ∈ B(ell*) by \exists_{ell(*)}(d)(\beta)) , clearly N'' is also F^a_\kappa-constructible over N' \cup \{a(ell*) \} as required in (c)(\beta).

Clause \exists_{ell}(e)(\gamma) means that N(ell*) = N'' is F^a_\kappa-constructible over N' + a(ell* . Now N(ell*) = N'' is F^a_\kappa-constructible over B(ell*) ∪ N' and a ∈ \omega^>(N(ell*)) implies stp(\bar{a}, B(ell*) \cup N') ⊣ stp(\bar{a}, B(ell*) \cup N'), hence by monotonicity stp(\bar{a}, B(ell*) \cup N') ⊣ stp(\bar{a}, a_0 + B(ell*) + N'), so by the same construction, N(ell*) = N'' is F^a_\kappa-constructible over a_0 + B(ell*) + N' . As B(ell*) ⊆ N(ell* , |B(ell*)| < \kappa it is enough to show that B(ell*) is F^a_\kappa-atomic over a_0 + N' and this is proved as in the proof of clause \exists_{ell(*)}(d)(\delta) above. So indeed (N', b, B') is a legal choice for (N(ell*)+1, a(ell*)+1, B(ell)+1). But this contradicts the choice of (\ell(*) , so we have finished proving \exists_{ell} .]

\exists_{2} if \ell = m + 1 < 1 + \ell(*) then tp(a_m, N_\ell) is not orthogonal to M.

[Why? Toward contradiction assume tp(a_m, N_\ell) \perp M. So we can find A_\ell ⊆ N_\ell of cardinality < \kappa such that tp(a_0, a_m, N_\ell) is stationary, tp(a_0, a_m, N_\ell) does not fork over A_\ell and tp(A_\ell, M) does not fork over C_\ell := A_\ell \cap M and tp(A_\ell, C_\ell) is stationary and a_\ell ∈ A_\ell and (recalling N_\ell is F^a_\kappa-primary over M + a_\ell) we have stp(A_\ell, C_\ell + a_\ell) ⊣ stp(A_\ell, M + a_\ell); it follows that tp(M, A_\ell) does not fork over C_\ell. As tp(a_m, M + A_\ell) is parallel to tp(a_m, N_\ell) and to tp(a_m, A_\ell) and tp(a_m, N_\ell) \perp M is assumed we get that all three types are orthogonal to M. It follows that stp(a_m, A_\ell) ⊣ stp(a_m, M + A_\ell) but recall a_\ell ∈ A_\ell so stp(a_m, A_\ell) ⊣ stp(a_m, M + a_\ell). As |A_\ell| < \kappa this implies that tp(a_m, M + A_\ell) is F^a_\kappa-isolated. But recall stp(A_\ell, C_\ell + a_\ell) = stp(A_\ell, (A_\ell \cap M) + a_\ell) ⊣ stp(A_\ell, M + a_\ell). Together stp(a_m + A_\ell, C_\ell + a_\ell) ⊣ stp(a_m + A_\ell, M + a_\ell) hence tp(a_m + A_\ell, M + a_\ell) is F^a_\kappa-isolated, contradicting \exists_{ell}(c)(\alpha).]

To complete the proof by \exists_{1} it suffices to show \ell(*) < \omega, so toward contradiction assume:

\exists_{3} \ell(*) = \omega.

As we are assuming \exists_{3}, we can find \langle N^+_\ell : \ell < \ell(*) = \omega \rangle such that

1 (a) N^+_\ell \prec N^+_\ell
 (b) N^+_\ell is saturated, e. g. of cardinality \|N^+_\ell\|\|T\|
 (c) N^+_\ell+1 \prec N^+_\ell
 (d) tp(N^+_\ell, N) does not fork over N^+_\ell
 (e) \langle N^+_\ell, c \rangle_{c \in N^+_\ell \cup N^+_\ell+1} is saturated.
[Why? Let $\lambda = \|N\|^{|T|}$. We can choose N^+_{ℓ} by induction on ℓ. For $\ell = 0$ it is obvious so let $\ell = m + 1$. First, we choose N'_{ℓ} of cardinality λ such that $N_{\ell} \prec N'_{\ell}$ and $(N'_{\ell}, c)_{c \in N_{\ell}}$ is saturated. Without loss of generality $\text{tp}(N'_{\ell}, N_{\ell+1})$ does not fork over N_{ℓ}. Second, choose N'_m of cardinality λ such that $N_m \cup N'_{\ell} \subseteq N'_m$ and $(N'_m, c)_{c \in N_m \cup N'_{\ell}}$ is saturated.

Lastly, by the uniqueness of saturated model there is an isomorphism f_ℓ from N'_m onto N_m over N_m and let $N_\ell = f_\ell(N'_m).$

Next for $\ell < \ell(*)$ we can find I_ℓ such that

$\odot_2 \begin{align*}
\circ_2 (a) & \quad I_\ell \subseteq N^+_\ell \setminus N^+_{\ell+1} \\
& \quad (b) \quad I_\ell \text{ is independent over } (N^+_{\ell+1}, M), \\
& \quad \quad \quad \text{(i.e. } c \in I_\ell \Rightarrow \text{tp}(c, N^+_{\ell+1}) \text{ does not fork over } M \text{ and } I_\ell \text{ is independent over } N^+_{\ell+1}) \\
& \quad (c) \quad \text{tp}(N^+_\ell, N^+_{\ell+1} \cup I_\ell) \text{ is almost orthogonal to } M \\
& \quad (d) \quad \text{if } c \in I_\ell \text{ then either } c \in \varphi_*(C, d_\ast) \text{ or } \text{tp}(c, M) \text{ is orthogonal to } \\
& \quad \quad \quad \varphi_*(x, d_\ast), \text{i.e. to every } q \in S(M) \text{ to which } \varphi_*(x, d_\ast) \text{ belongs} \\
& \quad (e) \quad \text{if } q \in S(N^+_{\ell+1}) \text{ does not fork over } M \text{ and } \varphi_*(x, d_\ast) \in q \text{ or } q \text{ is} \\
& \quad \quad \quad \text{orthogonal to } \varphi_*(x, d_\ast) \text{ then the set } \{c \in I_\ell : c \text{ realizes } q\} \text{ has cardinality } \|N_\ell\| \\
& \quad (f) \quad \text{we let } I'_\ell = I_\ell \cap \varphi_*(C, d_\ast).
\end{align*}$$

[Why possible? As $(N^+_\ell, c)_{c \in N^+_{\ell+1}}$ is saturated.]

Now for $\ell < \ell(*)$

$\odot_3 \quad I_\ell$ is not independent over $(N^+_{\ell+1} + a, N^+_{\ell+1})$.

[Why? Recall $a = a_0$. Assume toward contradiction that

\begin{align*}
(\ast)_{3.1} & \quad I_\ell \text{ is independent over } (N^+_{\ell+1} + a, N^+_{\ell+1}).
\end{align*}$

As by clause (b) of \odot_2 we have $\text{tp}(I_\ell, N^+_{\ell+1})$ does not fork over M, it follows that I_ℓ is independent over $(N^+_{\ell+1} + a, M)$. Also by $(\ast)_{3.1}$ we know that $\text{tp}(a, N^+_{\ell+1} \cup I_\ell)$ does not fork over $N^+_{\ell+1}$. Also $\text{tp}(a, N^+_{\ell+1})$ does not fork over $N^+_{\ell+1}$ (because $a \in N$ and $\text{tp}(N^+_{\ell+1}, N)$ does not fork over $N^+_{\ell+1}$ by $\odot_1(d)$), together it follows that

\begin{align*}
(\ast)_{3.2} & \quad \text{tp}(a, N^+_{\ell+1} \cup I_\ell) \text{ does not fork over } N^+_{\ell+1}.
\end{align*}$

Recall that $\text{tp}(N_\ell, N^+_{\ell+1})$ does not fork over $N^+_{\ell+1}$ (by $\odot_1(d)$ because $N_\ell \prec N$ using symmetry) and $\text{tp}(a, N_\ell \cup N^+_{\ell+1})$ does not fork over N_ℓ similarly hence $\text{tp}(N^+_{\ell+1}, a) \cup N^+_{\ell+1}$ does not fork over $N^+_{\ell+1}$, hence

\begin{align*}
(\ast)_{3.3} & \quad \text{tp}(N_\ell, N^+_{\ell+1} + a) \text{ does not fork over } N^+_{\ell+1} + a.
\end{align*}
Recall N_ℓ is \mathbf{F}_κ^a-constructible over $N_{\ell+1} + a$ (by $\boxplus_{\ell+1}(c)(\gamma)$), N_ℓ is \mathbf{F}_κ^a-saturated and $\text{tp}(N_{\ell+1}^+, N_\ell + a)$ does not fork over $N_{\ell+1}$ clearly

\[(*)_{3.4} \text{ N_ℓ is also \mathbf{F}_κ^a-constructible over $N_{\ell+1}^+ + a$ (even by the same construction).} \]

As $\text{tp}(a, N_{\ell+1}^+ + I_\ell)$ does not fork over $N_{\ell+1}$ and $N_{\ell+1}^+$ is \mathbf{F}_κ^a-saturated, it follows that

\[(*)_{3.5} \text{ $\text{tp}(N_\ell, N_{\ell+1}^+ + I_\ell)$ does not fork over $N_{\ell+1}^+$ hence over $N_{\ell+1}$}. \]

But by \odot_2 clause (c), for every $\bar{d} \in \omega^>(N_{\ell+1}^+)$ the type $\text{tp}(\bar{d}, N_{\ell+1}^+ + I_\ell)$ is almost orthogonal to M hence recalling $N_\ell \subseteq N_{\ell+1}^+$,

\[(*)_{3.6} \text{ $\text{tp}(N_\ell, N_{\ell+1}^+ + I_\ell)$ is almost orthogonal to M (this does not depend on $\odot_{3.1} - \odot_{3.5}$ so can be used later).} \]

Hence by $(*)_{3.5} + (*)_{3.6}$ we have

\[(*)_{3.7} \text{ $\text{tp}(N_\ell, N_{\ell+1})$ is almost orthogonal to M.} \]

But $N_{\ell+1}$ is \mathbf{F}_κ^a-saturated so this implies

\[(*)_{3.8} \text{ $\text{tp}(N_\ell, N_{\ell+1})$ is orthogonal to M.} \]

But by $\boxdot_\ell(b)$

\[(*)_{3.9} \text{ $a_\ell \in N_\ell$.} \]

But by \boxtimes_2 we have

\[(*)_{3.10} \text{ $\text{tp}(a_\ell, N_{\ell+1})$ is not orthogonal to M.} \]

Together $(*)_{3.8} + (*)_{3.9} + (*)_{3.10}$ give a contradiction, so $(*)_{3.1}$ fails hence \odot_3 holds.

Now (recalling clause (f) of \odot_2)

\[\odot_4 \text{ I'_ℓ is not independent over $(N_{\ell+1}^+ + a, N_{\ell+1}^+)$}. \]

[Why? By $\odot_3 +$ clauses (b)+(d) of \odot_2 recalling that $a \in \varphi_*(\mathcal{C}, \bar{d}_*)$ by the choice of a in the beginning of the proof of 5.54.]

\[\odot_5 \text{ for each } n, \text{ tp}(a, N_n^+) \text{ does } (L(\tau_T), n)\text{-ict}^3\text{-fork over } M. \]

[Why? By 5.55 below with $I_\ell, N_{n-\ell}^+$ here standing for $I_{n-\ell-1}, N_\ell$ there, clause (d) there holding by \odot_3 here. M, A there standing for M, M here, clause (a),(b),(c) there holds by $(*)_{3.6}$ here (recalling that $(*)_{3.6}$ does not depend on $\odot_{3.1} - \odot_{3.5}$).

\[\odot_6 \text{ $\alpha_* > \text{ict}^3 - \text{rk}(\text{tp}(a, N_n^+))$ for every } n < \omega. \]
STRONGLY DEPENDENT THEORIES SH863

[Why? By the choice of $\varphi_*(x, d_*)$, a, α_* in the beginning of the proof we have $\alpha^* = \text{ict}^3 - \text{rk}(\text{tp}(a, M))$ and by \odot_5 and the definition of $\text{ict}^3 - \text{rk}(-)$ this follows.]

\odot_7 for each n, $\text{tp}(a, N^+_{n+1})$ is not orthogonal to M.

[Why? By $\odot_2(b) + \odot_4$.]

Hence we can find $q \in S(M)$ such that, for any n:

\odot_8 (a) some automorphism of \mathfrak{C} over d_* maps $\text{tp}(a, N_n)$ to a type parallel to q

(b) $\text{ict}^3 - \text{rk}(q) < \alpha_*$

(c) q and $\text{tp}(a, N_{n+1})$ are not orthogonal

(d) if $q' \subseteq q, |q'| < \kappa$ then $q'(N) \not\subseteq M$

[actually clause (d) follows by (c)].

This contradicts the choice of α_*; so $\ell(*) < \omega$ and so we are done. $\square_5.54$

5.55 Claim. Assume T is stable. A sufficient condition for “$\text{tp}(a, N_n)$ does $(\Delta, n) - \text{ict}^3$-divide over A” is:

\oplus (a) $\langle N_\ell : \ell \leq n \rangle$ is \prec-increasing

(b) $A \subseteq M \prec N_0$

(c) $I_\ell \subseteq N_{\ell+1} \setminus N_\ell$ is independent over (N_ℓ, M) for $\ell < n$

(d) $\text{tp}(a, N_\ell \cup I_\ell)$ forks over $N_{\ell+1}$

(e) $\text{tp}(N_{\ell+1}, N_\ell + I_\ell)$ is almost orthogonal to M.

Proof. Left to the reader noting that $\langle I_\ell : \ell < n \rangle$ are pairwise disjoint (by clauses (a) + (c)) and $\cup \{I_\ell : \ell < n\}$ is independent. $\square_5.55$

5.56 Remark. 1) We may give more details on the last proof and intend to continue the investigation of the theory of regular types (in order to get good theory of weight) in this context somewhere else.

2) We can use essentially 5.55 to define a variant of the rank for stable theory. So 5.55 can be written to use it and so 5.57 connect the two ranks.
5.57 Claim. Assume $k \in \{3, 4\}$ and $ict^k - \text{rk}(T) < \infty$, see Definition 5.46(6).

If $\text{cf}(\kappa) \geq |T|^{+}$ or less and $M \prec N$ are κ-saturated then for some $a, \varphi(x, \bar{a}), n^*$ we have:

- (a) $a \in N \setminus M$
- (b) if T is stable, the type $p = \text{tp}(a, M)$ is primely regular
- (c) $\bar{a} \in \omega > M$ and $\varphi(x, \bar{a}) \in p$
- (d) $\omega \times (\text{wict}^k - \text{rk}(\varphi(x, \bar{a}))) + (\text{ict}^k - \text{wg}(\varphi(x, \bar{a})))$ is minimal.

Proof. We choose $a, \varphi_*(x, \bar{d}_*), \alpha, n_*$ such that

- (a) $a \in N \setminus M$
- (b) $\bar{d}_* \subseteq M$
- (c) $\mathcal{C} = \varphi[a, \bar{d}_*]$
- (d) $\alpha = \text{ict}^k - \text{rk}(\{\varphi_*(x, \bar{d}_*)\})$
- (e) under clauses (a)-(d), the ordinal α is minimal
- (f) n_* witness $\alpha + 1 \not< \text{ict}^k - \text{rk}(\{\varphi(x, \bar{d}_*)\})$
- (g) under clauses (a)-(f) the number $n_*(< \omega)$ is minimal.

Clearly there are such $a, \varphi_*(x, \bar{c}), \alpha$ and n_*. Then we try to choose (N_ℓ, a_ℓ) by induction on $\ell < \omega$ such that \mathbb{B}_ℓ from the proof of 5.54 holds. But now we can prove similarly that $\ell(*) \leq n_*$. But still $\text{tp}(a, N_{\ell(*)})$ is not orthogonal to M.

[Why? We can choose $N_0^+, \ldots, N_{\ell(*)}^+, I_0, \ldots, I_{\ell(*)-1}$ as in $\odot 2 + \odot 3$ in the proof of 5.53 and prove $\odot 3$ there which implies the statement above. As $\varphi_*(x, \bar{d}_*) \in \text{tp}(a, N_{\ell(*)})$ it follows that $\varphi(N_{\ell(*)}, \bar{c}) \not\subseteq M$ and any $a' \in \varphi(N_{\ell(*)}, \bar{c}) \setminus M$ is as required.] This is enough. $\Box_{5.57}$

Similarly to Definition 5.46.

5.58 Definition. Let T be stable.

1) For an m-type $p(\bar{x})$ we define $\text{sict}^3 \cdot \text{rk}^m(p(\bar{x}))$ as an ordinal or ∞ by defining when $\text{sict}^3 \cdot \text{rk}^m(p(\bar{x})) \geq \alpha$ for an ordinal α by induction on p

- $(*)_{p(\bar{x})}^\alpha$ $\text{sict}^3 \cdot \text{rk}^m(p(\bar{x})) \geq \alpha$ iff for every $\beta < \alpha$ and finite $q(\bar{x}) \subseteq p(x)$ and $n < \omega$ we have

- $(**)_{q(\bar{x})}^{\alpha, n}$ we can find $\langle M_\ell : \ell \leq n \rangle, \langle I_\ell : \ell < n \rangle$ and \bar{a}
 - (a) $M_\ell \prec \mathcal{C}$ is $F_{\kappa_1(T)}^a$-saturated
 - (b) $M_\ell \prec M_\ell + 1$
(c) $q(\bar{x})$ is an m-type over M_0

(d) \bar{a} realizes $q(\bar{x})$ and $\beta \leq \text{sict}^3 - \text{rk}(\text{tp}(\bar{a}, M_0)) \geq \beta$

(e) $I_\ell \subseteq \omega^>(M_{\ell+1})$ is independent over (M_ℓ, M_0)

(f) I_ℓ is not independent over $(M_\ell + \bar{a}, M_0)$ (clearly without loss of generality I_ℓ is a singleton).

2) If $\text{sict}^3\text{-rk}^m(p(\bar{x})) = \alpha < \infty$ then we let $\text{sict}^3\text{-wg}^m(p(\bar{x}))$ be the maximal n such that for every finite $q(\bar{x}) \subseteq p(\bar{x})$ we have $(**)_{q(\bar{x})}^\alpha\,n$.

3) Above instead $\text{sict}^3\text{-rk}(\text{tp}(\bar{a}, A))$ we may write $\text{sict}^3\text{-rk}^m(\bar{a}, A)$; similarly for $\text{sict}^3\text{-wg}^m(\bar{a}, A)$; if $m = 1$ we may omit it.

5.59 Claim. 1) T is strongly$_3$ stable iff T is stable and $\text{sict}^3\text{-rk}^m(p(\bar{x})) < \infty$ for every m-type $p(\bar{x})$.

2) For every type $p(\bar{x})$ there is a finite $q(\bar{x}) \subseteq p(\bar{x})$ such that $(\text{sict}^3\text{-rk}(p(\bar{x})), \text{sict}^3\text{-wg}(p(\bar{x})) = \text{sict}^3 - \text{rk}(q(\bar{x})), \text{sict}^3\text{-wg}(q(\bar{x})))$.

3) If $p(\bar{x}) \vdash q(\bar{x})$ then $\text{sict}^3\text{-rk}(p(\bar{x})) \leq \text{sict}^3\text{-rk}(q(\bar{x}))$ and if equality holds then $\text{sict}^3\text{-wg}(p(\bar{x})) \leq \text{sict}^3\text{-wg}(q(\bar{x}))$.

4) (T stable) If $p(\bar{x}), q(\bar{x})$ are stationary parallel types, then $\text{sict}^3\text{-rk}^m(q(\bar{x}))$, etc. If \bar{a}_1, \bar{a}_1 realizes $p \in S^m(A)$ then $\text{sict}^3\text{-rk}^m(\text{stp}(\bar{a}_1, A)) = \text{sict}^3\text{-rk}^m(\text{stp}(\bar{a}_2, A))$. Similarly for $\text{sict}^3\text{-wg}^m$. Also automorphisms of \mathcal{C} preserve $\text{sict}^3\text{-rk}^m$ and $\text{sict}^3\text{-wg}$.

5.60 Claim. $p(\bar{x})$ does (Δ, n)-ict3 forks over A for every n when:

\begin{enumerate}
\item (a) G is a definable group over A (in \mathcal{C})
\item (b) $b \in G$ realizes a generic type of G from $S(A)$ as was proved to exist in [Sh 783, 4.11], or T stable
\item (c) $p(\bar{x}) \in S^{<\omega}(A + b)$ forks over A.
\end{enumerate}

Remark. We may have said it in §5(F).

Proof of 5.60. Straight.

5.61 Conclusion.: Assume T is strongly$_3$ dependent.

If G is a type-definable group in \mathcal{C}_T then there is no decreasing sequence $(G_n : n < \omega)$ of subgroups of G such that $(G_n : G_{n+1}) = \kappa$ for every n.
5.62 Remark. 1) In 5.60 we can replace “ict³” by “ict⁴” and also by suitable variants for stable theories.
2) Similarly in 5.61.

(H) T is n-dependent

On related problems and background see [Sh 702, 2.9-2.20], (but, concerning indiscernibility, it speaks on finite tuples, i.e. $\alpha < \omega$ in 5.71, which affect the definitions and the picture). On a consequence of “T is 2-dependent” for definable subgroups in \mathfrak{C} (and more, e.g. concerning 5.64), see [Sh 886].

5.63 Definition. 1) A (complete first order) theory T is n-independent when clause $(a)^n$ in 5.64 below holds.
2) The negation isn'-dependent.

5.64 Problem Sort out the relationships between the following candidates for “T is n-independent” (T is order order complete, also we can fix φ; omitting m we mean 1)

(a)$_m^n$ some $\varphi (\bar{x}, \bar{y}_0, \bar{y}_1, \ldots , \bar{y}_{n-1})$ is n-independent, i.e. $(a)_m^n$ for some m

(b)$_m^n$ there is an indiscernible sequence $\langle \bar{a}_\alpha : \alpha < \lambda \rangle , \varphi = \varphi (\bar{x}, \bar{y}_0, \ldots , \bar{y}_{n-1})$, $m = \ell g(\bar{x}) , \ell g(\bar{y}_0) = \ell g(\bar{a}_0) \ldots \ell g(\bar{x})$ such that:

if $k < n$ and $\langle R_\ell : \ell < \ell(\ast) \rangle$ is a finite sequence of k-place relations on λ then for some sequence $t, s \in _n \lambda$ realizing the same quantifier free type in $\langle \lambda, <, R_0, R_1, \ldots , R_{\ell(\ast)} \rangle$ we have $\mathfrak{C} = \varphi [b, \bar{a}_{s_0}, \ldots , \bar{a}_{s_{n-1}}]

(c)$_m^n$ for some $\varphi = \varphi (\bar{x}, \bar{y}_0, \ldots , \bar{y}_{n-1})$,

\begin{align*}
\ell g(\bar{x}) = m, & \text{ for every } j \in [1, \omega) \text{, for infinitely many } k \text{ there are } \bar{a}_i^\ell \in \ell g(\bar{y}) \mathfrak{C} \text{ for } i < k, \ell < n \text{ such that } |\{ p \cap \{ \varphi (\bar{x}, \bar{a}_0^t, \ldots , \bar{a}_{n-1}^t) : i \ell < k \text{ for } \ell < n \} : p \in S^n (\cup \{ \bar{a}_i^\ell : \ell < n, i < k \})\} | \geq 2^{k^n - 1} \times m. \\
\end{align*}

Remark. We can phrase $(b)_m^n , (c)_m^n$ as alternative definitions of “$\varphi (\bar{x}, \bar{y}_0, \ldots , \bar{y}_{n-1})$ is n-independent”. So in $(b)_m^n$ better to have n indiscernible sequences.

5.65 Observation. If $\varphi (\bar{x}, \bar{y}_0, \ldots , \bar{y}_{n-1})$ satisfies clause $(a)^n$ then it satisfies a strong form of clause $(c)^n$ (for every k and the number is $\geq 2^{k^n}$.)
Remark. Clearly Observation 5.65 can be read as a sufficient condition for being n-dependent, e.g.

5.66 **Conclusion.** T is n-dependent when: for every m, ℓ and finite $\Delta \subseteq \mathbb{L}(\tau_T)$ for infinitely many $k < \omega$ we have $|A| \leq k \Rightarrow |S^m_\Delta(A)| < 2^{(k/\ell)^n}$.

5.67 **Question:**
1) Can we get clause (a) from clause (c)?
2) Can we use it to prove $(a)^m_n \equiv (a)^n_m$?

5.68 **Observation.** In 5.64, if clause (a) then clause (b).

5.69 **Question:** Does (b) imply (a)?

5.70 **Claim.** If T satisfies $(a)^n$ for every n then: if $\lambda \rightarrow (\mu)^2_\omega$ then $\lambda \rightarrow_T (\mu)_{\aleph_0}$ where

5.71 **Definition.** We say that $\lambda \rightarrow_T (\mu)_\alpha$ when: if $\bar{a}_i \in \alpha(C_T)$ for $i < \lambda$ then for some $\mathcal{W} \in [\lambda]^{\theta}$ the sequence $\langle \bar{a}_i : i \in \mathcal{W} \rangle$ is an indiscernible sequence in C_T.

Remark. 1) Note that for $\alpha < \omega$ this property behaves differently.
2) Of course, if $\theta = 2^{|\alpha| + |T|}$ and $\lambda \rightarrow (\mu)^2_\omega$ then $\lambda \rightarrow_T (\mu)_{\alpha}$.
3) See on the non-2-independent T and definable groups in [Sh 886].

5.72 **Conjecture.** Assume $\neg(a)^n$ (or another variant of n-dependent). Then ZFC $\vdash \forall \alpha \forall \mu \exists \lambda (\lambda \rightarrow_T (\mu)_{\alpha})$.

5.73 **Question:** Can we phrase and prove a generalization of the type-decomposition theorems for dependent theories ([Sh:900]) to n-dependent theories T, e.g. when $(\lambda^+_{\ell+1}) = \lambda_{\ell+1}$ for $\ell < n$, $\mathcal{B}_\ell < (\mathcal{H}(\kappa^+), \in, <_{\kappa^+})$ has cardinality λ_ℓ, $[\mathcal{B}_{\ell+1}]^\lambda_\ell \subseteq \mathcal{B}_\ell$, $\{C_T, \mathcal{B}_{\ell+1}, \ldots, \mathcal{B}_n\} \in \mathcal{B}_\ell$.

(863)
REFERENCES.

[Sh:F918] Saharon Shelah. Theories with EF-Equivalent Non-Isomorphic Models II.

