WHEN FIRST ORDER T HAS LIMIT MODELS

SH868

SAHARON SHELAH

Abstract. We to a large extent sort out when does a (first order complete theory) T have a superlimit model in a cardinal λ. Also we deal with related notions of being limit.

Date: March 8, 2013.
1991 Mathematics Subject Classification. MSC Primary 03C45; Secondary: 03C55.

Key words and phrases. model theory, classification theory, limit modes.

The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 710/07). I would like to thank Alice Leonhardt for the beautiful typing. First Typed - 04/June/23. Paper 868 in the author list of publications.

1
§0 Introduction, pg.3
[We give background and the basic definitions. We then present existence results for stable T which have models which are saturated or closed to being saturated.]

§1 On countable superstable not \aleph_0-stable, pg.8
[Consistently $2^{\aleph_1} \geq \aleph_2$ and some such (complete first order) T has a superlimit (non-saturated) model of cardinality \aleph_1. This shows that we cannot prove a non-existence result fully complementary to Lemma 0.9.]

§2 A strictly stable consistent example, pg.10
[Consistently $\aleph_1 < 2^{\aleph_0}$ and some countable stable not superstable T, has a (non-saturated) model of cardinality \aleph_1 which satisfies some relatives of being superlimit.]

§3 On the non-existence of limit models, pg.14
[The proofs here are in ZFC. If T is unstable it has no superlimit models of cardinality λ when $\lambda \geq \aleph_1 + |T|$. For unsuperstable T we have similar results but with “few” exceptional cardinals λ on which we do not know: $\lambda < \lambda^{\aleph_0}$ which are $< \beth_\omega$. Lastly, if T is superstable and $\lambda \geq |T| + 2^{|T|}$ then T has a superlimit model of cardinality λ iff $|D(T)| \leq \lambda$ iff T has a saturated model. Lastly, we get weaker results on weaker relatives of superlimit.]
§0A Background and Content

Recall that ([Sh:c, Ch.III]). If T is (first order complete and) superstable then for $\lambda \geq 2^{|T|}$, T has a saturated model M of cardinality λ and moreover

(*) if $\{M_\alpha : \alpha < \delta\}$ is \prec-increasing, δ a limit ordinal $< \lambda^+$ and $\alpha < \delta \Rightarrow M_\alpha \cong M$ then $\cup\{M_\alpha : \alpha < \delta\}$ is isomorphic to M.

When investigating categoricity of an a.e.c. (abstract elementary classes) $t = (K_t, \leq_t)$, the following property turns out to be central: M is \leq_t-universal model of cardinality λ with the property (*) above (called superlimit) - possibly with addition parameter $\kappa = \text{cf}(\kappa) \leq \lambda$ (or stationary $S \subseteq \lambda^+$): we also consider some relatives, mainly limit, weakly limit and strongly limit. Those notions were suggested for a.e.c. in [Sh:88, 3.1] or see the revised version [Sh:88r, 3.3] and see [Sh:h] or here in 0.7. But though coming from investigating non-elementary classes, they are meaningful for elementary classes and here we try to investigate them for elementary classes.

Recall that for a first order complete T, we know $\{\lambda : T$ has a saturated model of T of cardinality $\lambda\}$, that is, it is $\{\lambda : \lambda^{<\lambda} \geq |D(T)|$ or T is stable in $\lambda\}$, on the definitions of $D(T)$ and other notions see §0B below. What if we replace saturated by superlimit (or some relative)? Let $EC_\lambda(T)$ be the class of models M of T of cardinality λ.

If there is a saturated $M \in EC_\lambda(T)$ we have considerable knowledge on the existence of limit model for cardinal λ, this was as mentioned in [Sh:88r, 3.6] by [Sh:c], see 0.9(1),(2). E.g. for superstable T in $\lambda \geq 2^{|T|}$ there is a superlimit model (the saturated one). It seems a natural question on [Sh:88r, 3.6] whether it exhausts the possibilities of $(\lambda, *)$-superlimit and (λ, κ)-superlimit models for elementary classes.

Clearly the cases of the existence of such models of a (first order complete) theory T where there are no saturated (or special) models are rare, because even the weakest version of Definition [Sh:88, 3.1] $= [Sh:88r, 3.3]$ or here Definition 0.7 for λ implies that T has a universal model of cardinality λ, which is rare (see Kojman Shelah [KjSh:409] which includes earlier history and recently Djamonza [Mirar]).

So the main question seems to be whether there are such cases at all. We naturally look at some of the previous cases of consistency of the existence of a universal model (for $\lambda < \lambda^{<\lambda}$), i.e., those for $\lambda = \aleph_1$.

E.g. a sufficient condition for some versions is the existence of $T' \supseteq T$ of cardinality λ such that $PC(T', T)$ is categorical in λ, see 0.4(3). By [Sh:100] we have consistency results for such T_1 so naturally we first deal with the consistency results from [Sh:100]. In §1 we deal with the case of the countable superstable T_0 from [Sh:100] which is not \aleph_0-stable. By [Sh:100] consistently $\aleph_1 < 2^{\aleph_0}$ and for some $T_0' \supseteq T_0$ of cardinality \aleph_1, $PC(T_0', T_0)$ is categorical in \aleph_1. We use this to get the consistency of T_0 has a superlimit model of cardinality \aleph_1 and $\aleph_1 < 2^{\aleph_0}$.

In §2 we prove that for some stable not superstable countable T_1 we have a parallel but weaker result. We relook at the old consistency results of “some $PC(T_1', T_1), [T_1'] = \aleph_1 > |T_1|$, is categorical in \aleph_1” from [Sh:100]. From this we deduce that in this universe, T_1 has a strongly (\aleph_1, \aleph_0)-limit model.
It is a reasonable thought that we can similarly have a consistency result on the
to theory of linear order, but this is still not clear.

In §3 we show that if T has a superlimit model in $\lambda \geq |T| + \aleph_1$ then T is stable and T is superstable except possibly under some severe restrictions on the cardinal λ (i.e., $\lambda < \beth_\omega$ and $\lambda < \lambda^{\aleph_0}$). We then prove some restrictions on the existence of some (weaker) relatives.

Summing up our results on the strongest notion, superlimit, by 1.1 + 3.1 we have:

Conclusion 0.1. Assume $\lambda \geq |T| + \beth_\omega$. Then T has a superlimit model of cardinality λ iff T is superstable and $\lambda \geq |D(T)|$.

In subsequent work we shall show that for some unstable T (e.g. the theory of linear orders), if $\lambda = \lambda^{<\lambda} > \kappa = \text{cf}(\kappa)$, then T has a medium (λ, κ)-limit model, whereas if T has the independence property even weak (λ, κ)-limit models do not exist; see [Sh:877] and more in [Sh:900], [Sh:906], [Sh:950], [Sh:F1054].

We thank Alex Usvyatsov for urging us to resolve the question of the superlimit case and John Baldwin for comments and complaints.

§0.1 Basic Definitions

Notation 0.2. 1) Let T denote a complete first order theory which has infinite models but T_1, T', etc. are not necessarily complete.

2) Let M, N denote models, $|M|$ the universe of M and $\|M\|$ its cardinality and $M < N$ means M is an elementary submodel of N.

3) Let $\tau_T = \tau(T), \tau_M = \tau(M)$ be the vocabulary of T, M respectively.

4) Let $M \models \"\varphi[\bar{a}]\"$ means that the model M satisfies $\varphi[\bar{a}]$ iff the statement stat is true (or is 1 rather than 0)).

Definition 0.3. 1) For $\bar{a} \in \omega^{|M|}$ and $B \subseteq M$ let $\text{tp}(\bar{a}, B, M) = \{\varphi(x, \bar{b}) : \varphi = \varphi(x, \bar{b}) \in L(\tau_M), \bar{b} \in g(\bar{a})B \text{ and } M \models \varphi[\bar{a}, \bar{b}]\}$.

2) Let $D(T) = \{\text{tp}(\bar{a}, \emptyset, M) : M \text{ a model of } T \text{ and } \bar{a} \text{ a finite sequence from } M\}$.

3) If $A \subseteq M$ then $S^m(A, M) = \{\text{tp}(\bar{a}, A, N) : M < N \text{ and } a \in \ell_m N\}$, if $m = 1$ we may omit it.

4) A model M is λ-saturated when: if $A \subseteq M, |A| < \lambda$ and $p \in S(A, M)$ then p is realized by some $a \in M$, i.e. $p \subseteq \text{tp}(a, A, M)$; if $\lambda = \|M\|$ we may omit it.

5) A model M is special when letting $\lambda = \|M\|$, there is an increasing sequence $\langle \lambda_i : i < \text{cf}(\lambda) \rangle$ of cardinals with limit λ and a \prec-increasing sequence $\langle M_i : i < \text{cf}(\lambda) \rangle$ of models with union M such that M_{i+1} is λ_i-saturated of cardinality λ_{i+1} for $i < \text{cf}(\lambda)$.

Definition 0.4. 1) For any T let $\text{EC}(T) = \{M : M \text{ is a } \tau_T \text{-model of } T\}$.

2) $\text{EC}_\lambda(T) = \{M \in \text{EC}(T) : M \text{ is of cardinality } \lambda\}$.

3) For $T \subseteq T'$ let $PC(T', T) = \{M \upharpoonright \tau_T : M \text{ is model of } T'\}$

$PC_\lambda(T', T) = \{M \in PC(T', T) : M \text{ is of cardinality } \lambda\}$.

4) We say M is λ-universal for T_1 when it is a model of T_1 and every $N \in \text{EC}(T)$ can be elementarily embedded into M; if $T_1 = \text{Th}(M)$ we may omit it.

5) We say $M \in \text{EC}(T)$ is universal when it is λ-universal for $\lambda = \|M\|$.
We are here mainly interested in

Definition 0.5. Given T and $M \in \text{EC}_\lambda(T)$ we say that M is a superlimit or λ-superlimit model when: M is universal and if $\delta < \lambda^+$ is a limit ordinal, $(M_\alpha : \alpha \leq \delta)$ is \prec-increasing continuous, and M_α is isomorphic to M for every $\alpha < \delta$ then M_δ is isomorphic to M.

Remark 0.6. Concerning the following definition we shall use strongly limit in 2.14(1), medium limit in 2.14(2).

Definition 0.7. Let λ be a cardinal $\geq |T|$. For parts 3) - 7) but not 8), for simplifying the presentation we assume the axiom of global choice and F is a class function; alternatively restrict yourself to models with universe an ordinal $\in [\lambda, \lambda^+)$.

1) For non-empty $\Theta \subseteq \{ \mu : \aleph_0 \leq \mu < \lambda \text{ and } \mu \text{ is regular \} }$ and $M \in \text{EC}_\lambda(T)$ we say that M is a (λ, Θ)-superlimit when: M is universal and if $(M_i : i \leq \mu)$ is \prec-increasing, $M_i \cong M$ for $i < \mu$ and $\mu \in \Theta$ then $\cup\{M_i : i < \mu\} \cong M$.

2) If Θ is a singleton, say $\Theta = \{ \theta \}$, we may say that M is (λ, θ)-superlimit.

3) Let $S \subseteq \lambda^+$ be stationary. A model $M \in \text{EC}_\lambda(T)$ is called S-strongly limit or (λ, S)-strongly limit when for some function: $F : \text{EC}_\lambda(T) \rightarrow \text{EC}_\lambda(T)$ we have:

(a) for $N \in \text{EC}_\lambda(T)$ we have $N \prec F(N)$

(b) if $\delta \in S$ is a limit ordinal and $(M_i : i < \delta)$ is a \prec-increasing continuous sequence \(^1\) in $\text{EC}_\lambda(T)$ and $i < \delta \Rightarrow F(M_{i+1}) \prec M_{i+2}$, then $M \cong \cup\{M_i : i < \delta\}$.

4) Let $S \subseteq \lambda^+$ be stationary. $M \in \text{EC}_\lambda(T)$ is called S-limit or (λ, S)-limit if for some function $F : \text{EC}_\lambda(T) \rightarrow \text{EC}_\lambda(T)$ we have:

(a) for every $N \in \text{EC}_\lambda(T)$ we have $N \prec F(N)$

(b) if $(M_i : i < \lambda^+)$ is a \prec-increasing continuous sequence of members of $\text{EC}_\lambda(T)$ such that $F(M_{i+1}) \prec M_{i+2}$ for $i < \lambda^+$ then for some closed unbounded \(^2\) subset C of λ^+,

$$\delta \in S \cap C \Rightarrow M_\delta \cong M.$$

5) We define \(^3\) “S-weakly limit”, “S-medium limit” like “S-limit”, “S-strongly limit” respectively by demanding that the domain of F is the family of \prec-increasing continuous sequence of members of $\text{EC}_\lambda(T)$ of length $< \lambda^+$ and replacing “$F(M_{i+1}) \prec M_{i+2}$” by “$M_{i+1} \cong F(\langle M_j : j \leq i+1 \rangle) \prec M_{i+2}$”.

6) If $S = \lambda^+$ then we may omit S (in parts (3), (4), (5)).

7) For non-empty $\Theta \subseteq \{ \mu : \mu \leq \lambda \text{ and } \mu \text{ is regular \} }$, M is (λ, Θ)-strongly limit \(^4\) if M is $\{ \delta < \lambda^+: cf(\delta) \in \Theta \}$-strongly limit. Similarly for the other notions. If we do not write λ we mean $\lambda = \|M\|$.

\(^1\)no loss if we add $M_{i+1} \cong M$, so this simplifies the demand on F, i.e., only $F(M')$ for $M' \cong M$ is required

\(^2\)alternatively, we can use as a parameter a filter on λ^+ extending the co-bounded filter

\(^3\)Note that M is (λ, S)-strongly limit iff M is $(\langle \lambda, cf(\delta) : \delta \in S \rangle)$-strongly limit.

\(^4\)in [Sh:88t] we consider: we replace “limit” by “limit” if $F(M_{i+1}) \prec M_{i+2}$; “$M_{i+1} \prec F(\langle M_j : j \leq i+1 \rangle) \prec M_{i+2}$” are replaced by “$F(M_i) \prec M_{i+1}$”, “$M_i \prec F(\langle M_j : j \leq i \rangle) \prec M_{i+1}$” respectively. But $(\text{EC}(T), \prec)$ has amalgamation.
8) We say that $M \in K_\lambda$ is invariantly strong limit when in part (3), F is just a subset of $\{(M,N)/ \equiv : M \prec N \text{ are from } EC_\lambda(T)\}$ and in clause (b) of part (3) we replace “$F(M_{i+1}) \prec M_{i+2}$” by “$(\exists N)(M_{i+1} \prec N \prec M_{i+2} \land ((M,N)/ \equiv) \in F)$”. But abusing notation we still write $N = F(M)$ instead $((M,N)/ \equiv) \in F$. Similarly with the other notions, so we use the isomorphism type of $M^{-}\langle N \rangle$ for “weakly limit” and “medium limit”.

9) In the definitions above we may say “F witness M is ...”

\{y.5c\} Observation 0.8. 1) Assume F_1, F_2 are as above and $F_1(N) \prec F_2(N)$ (or $F_1(\bar{N}) \prec F_2(\bar{N})$) whenever defined. If F_1 is a witness then so is F_2.

2) All versions of limit models implies being a universal model in $EC_\lambda(T)$.

\{y.6\} 3) The Obvious implications diagram: For non-empty $\Theta \subseteq \{\theta : \theta \text{ is regular } \leq \lambda\}$ and stationary $S_1 \subseteq \{\theta \prec \lambda^+ : cf(\theta) \in \Theta\}$:

\[
superlimit = (\lambda, \{\mu : \mu \leq \lambda \text{ regular}\})\text{-superlimit} \\
\downarrow \\
(\lambda, \Theta)\text{-superlimit} \\
\downarrow \\
S_1\text{-strongly limit} \\
\downarrow \\
S_1\text{-medium limit,} \\
\downarrow \\
S_1\text{-limit} \\
\downarrow \\
S_1\text{-weakly limit.}
\]

\{y.7\} Lemma 0.9. Let T be a first order complete theory.

1) If λ is regular, M a saturated model of T of cardinality λ, then M is (λ, λ)-superlimit.

2) If T is stable, and M is a saturated model of T of cardinality $\lambda \geq \aleph_1 + |T|$ and $\Theta = \{\mu : \kappa(T) \leq \mu \leq \lambda \text{ and } \mu \text{ is regular}\}$, then M is (λ, Θ)-superlimit (on $\kappa(T)$)-see [Sh:c, III, §3].

3) If T is stable in λ and $\kappa = cf(\kappa) \leq \lambda$ then T has an invariantly strongly (λ, κ)-limit model.

\{y.8\} Remark 0.10. Concerning 0.9(2), note that by [Sh:c] if λ is singular or just $\lambda < \lambda^\lambda$ and T has a saturated model of cardinality λ then T is stable (even stable in λ) and $cf(\lambda) \geq \kappa(T)$.

Proof. 1) Let M_i be a λ-saturated model of T of cardinality λ for $i < \lambda$ and $\langle M_i : i < \lambda \rangle$ is \prec-increasing and $M_\lambda = \bigcup_{i < \lambda} M_i$. Now for every $A \subseteq M_\lambda$ of cardinality $< \lambda$ there is $i < \lambda$ such that $A \subseteq M_i$ hence every $p \in S(A, M_\lambda)$ is realized in M_i hence in M_λ hence clearly M_λ is λ-saturated. Remembering the uniqueness of a λ-saturated model of T of cardinality λ we finish.

2) Use [Sh:c, III, 3.11]: if M_i is a λ-saturated model of T, $\langle M_i : i < \delta \rangle$ increasing $cf(\delta) \geq \kappa(T)$ then $\bigcup_{i < \delta} M_i$ is λ-saturated.

3) Let $K_{\lambda, \kappa} = \{\bar{M} : \bar{M} = \langle M_i : i \leq \kappa \rangle \text{ is } (\prec, \subseteq)\text{-increasing continuous, } M_i \in EC_\lambda(T) \text{ and } (M_{i+2}, e)_{i \in M_{i+1}} \text{ is saturated for every } i < \kappa\}$. Clearly $\bar{M}, \bar{N} \in K_{\lambda, \kappa} \Rightarrow M_\kappa \equiv
N_{κ}. Also for every $M \in EC_{\lambda}(T)$ there is N such that $M \prec N$ and $(N,c) \in E_M$ is saturated, as also $Th((M,c) \in E_M)$ is stable in λ; so there is an invariant $F : EC_{\lambda}(T) \to EC_{\lambda}(T)$ such that $M \prec F(M)$ and $(F(M),c) \in E_M$ is saturated; such F witness the desired conclusion. $\square_{0.9}$

Definition 0.11.

0) For regular $\kappa < \lambda$ let $S_{\theta}^\lambda = \{ \delta < \lambda : cf(\delta) = \lambda \}$.

1) For a regular uncountable cardinal λ let $I[\lambda] = \{ S \subseteq \lambda : \text{some pair } (E,\vec{a}) \}

2) We say that (E,\vec{u}) is a witness for $S \in I[\lambda]$ iff:

 (a) E is a club of the regular cardinal λ

 (b) $\vec{u} = \langle u_\alpha : \alpha < \lambda \rangle$, $u_\alpha \subseteq \alpha$ and $\beta \in u_\alpha \Rightarrow u_\beta = \beta \cap u_\alpha$

 (c) for every $\delta \in E \cap S$, u_δ is an unbounded subset of δ of order-type $cf(\delta)$ (and δ is a limit ordinal).

By [Sh:420, §1]

Claim 0.12. If $\kappa^+ < \lambda$ and κ,λ are regular then some stationary $S \subseteq \{ \delta < \lambda : cf(\delta) = \kappa \}$ belongs to $I[\lambda]$.

By [Sh:108]

Claim 0.13. If $\lambda = \mu^+, \theta = cf(\theta) \leq cf(\mu)$ and $\alpha < \mu \Rightarrow |\alpha|^{<\theta} \leq \mu$ then $S_{\theta}^\lambda \in I[\lambda]$.
1. ON SUPERSTABLE NOT \aleph_0-STABLE T

We first note that superstable T tend to have superlimit models.

Claim 1.1. Assume T is superstable and $\lambda \geq |T| + 2^{\aleph_0}$. Then T has a superlimit model of cardinality λ iff T has a saturated model of cardinality λ. Moreover, T has a universal model of cardinality λ iff $\lambda \geq |D(T)|$.

Proof. By [Sh:c, III, §5] we know that T is stable in λ iff $\lambda \geq |D(T)|$. Now if $|T| \leq \lambda < |D(T)|$ trivially there is no universal model of T of cardinality λ hence no saturated model and no superlimit model, etc., recalling 0.8(2). If $\lambda \geq |D(T)|$, then T is stable in λ hence has a saturated model of cardinality λ by [Sh:c, III] (hence universal) and the class of λ-saturated models of T is closed under increasing elementary chains by [Sh:c, III] so we are done. \(\square_{1.1} \)

The following are the prototypical theories which we shall consider.

Definition 1.2.
1) $T_0 = \text{Th}(\mathbb{N})$ when $\eta E_0 \nu \iff \eta | n = \nu | n$.
2) $T_1 = \text{Th}(\omega_1, E_0)_{n<\omega}$ where $\eta E_0 \nu \iff \eta | n = \nu | n$.
3) $T_2 = \text{Th}(\mathbb{R}, <)$.

Recall

Observation 1.3.
0) T_0 is a countable complete first order theory for $\ell = 0, 1, 2$.
1) T_0 is superstable not \aleph_0-stable.
2) T_1 is strictly stable, that is, stable but not superstable.
3) T_2 is unstable.
4) T_2 has elimination of quantifiers for $\ell = 0, 1, 2$.

Claim 1.4. It is consistent with ZFC that $\aleph_1 < 2^{\aleph_0}$ and some $M \in EC_{\aleph_1}(T_0)$ is a superlimit model.

Proof. By [Sh:100], for notational simplicity we start with $V = L$.

So T_0 is defined in 1.2(1) and it is the T from Theorem [Sh:100, 1.1] and let S be the set of $\eta \in (\omega)^{\omega_1}$ as the following theory:

@1 (i) T_0, or just for each n the sentence saying E_n is an equivalence relation with 2^n equivalence classes, each E_n equivalence class divided to two by E_n+1, E_n+1 refine E_n, E_0 is trivial

(ii) the sentences saying that

(a) for every x, the function $z \mapsto F(x, z)$ is one-to-one and

(b) $xE_n(F(x, z))$ for each $n < \omega$

(iii) $E_n(\eta, \nu)\mathcal{H}(\eta[n = \nu]|n)$ for $\eta, \nu \in S$.

In [Sh:100] it is proved that in some forcing\(^5\) extension L^P of L, P an \aleph_2-c.c. proper forcing of cardinality \aleph_2, in $V = L^P$, the class $PC(T_0, T_0) = \{M | \pi_0 : M$ is a τ-model of $T'\}$ is categorical in \aleph_1.

However, letting M^* be any model from $PC(T_0, T_0)$ of cardinality \aleph_1, it is easy to see that (in $V = L^P$):

@2 the following conditions on M are equivalent

(a) M is isomorphic to M^*

\(^5\) We can replace L by any V_0 which satisfies $2^{\aleph_0} = \aleph_1, 2^{\aleph_1} = \aleph_2$.\n
(b) $M \in \text{PC}(T', T_0)$
(c) (α) M is a model of T_0 of cardinality \aleph_1
(β) M^* can be elementarily embedded into M
(γ) for every $a \in M$ the set $\cap\{a/E^M_n : n < \omega\}$ has cardinality \aleph_1.

But
⊕₃ every model M_1 of T of cardinality $\leq \aleph_1$ has a proper elementary extension to a model satisfying (c), i.e., (α), (β), (γ) of ⊕₂ above
⊕₄ if $\langle M_\alpha : \alpha < \delta \rangle$ is an increasing chain of models satisfying (c) of ⊕₂ and $\delta < \omega_2$ then also $\cup\{M_\alpha : \alpha < \delta\}$ does.

Together we are done. □₁₄

Naturally we ask

Question 1.5. What occurs to T_0 for $\lambda > \aleph_1$ but $\lambda < 2^{\aleph_0}$? {0.1.3}

Question 1.6. Does the theory T_2 of linear order consistently have an (\aleph_1, \aleph_0)-superlimit? (or only strongly limit?) but see §3. {0.1}

Question 1.7. What is the answer for T when T is countable superstable not \aleph_0-stable and $D(T)$ countable for $\aleph_1 < 2^{\aleph_0}$ for $\aleph_2 < 2^{\aleph_0}$?

So by the above for some such T, in some universe, for \aleph_1 the answer is yes, there is a superlimit.
2. A Strictly Stable Consistent Example

We now look at models of T_1 (redefined below) in cardinality \aleph_1; recall

Definition 2.1. $T_1 = \text{Th}(\omega(\omega_1), E_n)_{n<\omega}$ where $E_n = \{ (\eta, \nu) : \eta, \nu \in \omega(\omega_1) \text{ and } \eta \upharpoonright n = \nu \upharpoonright n \}$.

Remark 2.2.

(a) Note that T_1 has elimination of quantifiers.

(b) If $\lambda = \Sigma \{ \lambda_n : n < \omega \}$ and $\lambda_n = \lambda^{\aleph_n}_n$, then T_1 has a (λ, \aleph_0)-superlimit model in λ (see 2.15).

Definition/Claim 2.3. 1) Any model of T_1 of cardinality λ is isomorphic to $M_{A,h} := \langle \{ (\eta, \epsilon) : \eta \in A, \epsilon < h(\eta) \} ; E_n \rangle_{n<\omega}$ for some $A \subseteq \omega\lambda$ and $h : \omega\lambda \rightarrow \text{Car} \cap \lambda^+$ \{0\} where $(\eta_1, \epsilon_1)E_n(\eta_2, \epsilon_2) \iff \eta_1 \upharpoonright n = \eta_2 \upharpoonright n$, pedantically we should write $E^{M_{A,h}}_n = E_n\lvert M_{A,h} \rangle$.

2) We write M_A for $M_{A,h}$ when A is as above and $h : A \rightarrow \{ |A| \}$, so constantly $|A|$ when A is infinite.

3) For $A \subseteq \omega\lambda$ and h as above the model $M_{A,h}$ is a model of T_1 if A is non-empty and $(\forall \eta \in A)(\forall n < \omega)(\exists \nu \in A) (|\nu| = n \wedge \nu(n) \neq \eta(n))$.

4) Above $M_{A,h}$ has cardinality λ iff $\Sigma \{ h(\eta) : \eta \in A \} = \lambda$.

Definition 2.4. 1) We say that A is a (T_1, λ)-witness when

(a) $A \subseteq \omega\lambda$ has cardinality λ

(b) if $B_1, B_2 \subseteq \omega\lambda$ are (T_1, A)-big (see below) of cardinality λ then $(B_1 \uplus \omega\lambda, A)$ is isomorphic to $(B_2 \uplus \omega\lambda, A)$.

2) A set $B \subseteq \omega\lambda$ is called (T_1, A)-big when it is $(\lambda, \lambda) - (T_1, A)$-big; see below.

3) B is $(\mu, \lambda) - (T_1, A)$-big means: $B \subseteq \omega\lambda, |B| = |A| = \mu$ and for every $\eta \in \omega\lambda$ there is an isomorphism f from $(\omega\lambda, \prec)$ onto $(\{ \nu : \nu \in \omega\lambda \}, \prec)$ mapping A into $\{ \nu : \eta \prec \nu \in B \}$.

4) $A \subseteq \omega(\omega_1)$ is \aleph_1-suitable when

(a) $|A| = \aleph_1$

(b) for a club of $\delta < \omega_1, A \cap \omega\delta$ is everywhere not meagre in the space $\omega\delta$, i.e., for every $\eta \in \omega\delta$ the set $\{ \nu \in A \cap \omega\delta : \eta \prec \nu \}$ is a non-meagre subset of $\omega\delta$ (that is what really is used in [Sh:100]).

Claim 2.5. It is consistent with ZFC that $2^{\aleph_0} > \aleph_1 + \text{there is a } (T_1, \aleph_1)-\text{witness;}\text{ moreover every } \aleph_1\text{-suitable set is a } (T_1, \aleph_1)-\text{witness.}$

Proof. By [Sh:100, §2].

Remark 2.6. The witness does not give rise to an (\aleph_1, \aleph_0)-limit model, as for the union of any “fast enough” \prec-increasing ω-chain of members of EC$\aleph_1(T_1)$, the relevant sets are meagre.

Definition 2.7. Let A be a (T_1, λ)-witness. We define $K_{T_1,A}^1$ as the family of $M = (|M|, <^M, P^M_\alpha)_{\alpha \leq \omega}$ such that:

(a) $(|M|, <^M)$ is a tree with $(\omega + 1)$ levels

(b) P^M_α is the α-th level; let $P^M_{<\omega} = \bigcup \{ P^M_n : n < \omega \}$
\(M \) is isomorphic to \(M^1_B \) for some \(B \subseteq \omega \lambda \) of cardinality \(\lambda \) where \(M^1_B \) is defined by \(|M^1_B| = (\omega^\omega \lambda) \cup B, T^n_{M^1_B} = \omega \lambda, P_\omega^{M^1_B} = B \) and \(<M^1_B = <]|M^1_B| \), i.e., being an initial segment

(\(\delta \)) moreover \(B \) is such that some \(f \) satisfies:

(\(a \)) \(f : \omega^\omega \lambda \to \omega \) and \(f(\langle \rangle) = 0 \) for simplicity

(\(b \)) \(\eta \leq \nu \in \omega^\omega \lambda \Rightarrow f(\eta) \leq f(\nu) \)

(\(c \)) if \(\eta \in B \) then \(\langle f(\eta \downharpoonright n) : n < \omega \rangle \) is eventually constant

(\(d \)) if \(\eta \in \omega^\omega \lambda \) then \(\{ \nu \in \omega^\omega \lambda : \eta \leq \nu \in B \) and \(m < \omega \Rightarrow f(\eta \downharpoonright (\nu \upharpoonright m)) = f(\eta) \} \) is \((T_1, A) \)-big

(\(e \)) for \(\eta \in \omega^\omega \lambda \) and \(n \in \{ f(\eta), \omega \} \) for \(\lambda \) ordinals \(\alpha < \lambda \), we have \(f(\eta \downharpoonright \langle \alpha \rangle) = n \).

Claim 2.8. [The Global Axiom of Choice] If \(A \) is a \((T_1, N_1)\)-witness then

(\(a \)) \(K_{T_1, A}^1 \neq \emptyset \)

(\(b \)) any two members of \(K_{T_1, A}^1 \) are isomorphic

(\(c \)) there is a function \(F \) from \(K_{T_1, A}^1 \) to itself (up to isomorphism, i.e., \((M, F(M)) \) is defined only up to isomorphism) satisfying \(M \subseteq F(M) \) such that \(K_{T_1, A}^1 \) is closed under increasing unions of sequence \(\langle M_n : n < \omega \rangle \) such that \(F(M_n) \subseteq M_{n+1} \).

Proof. Clause (a): Trivial.

Clause (b): By the definition of “\(A \) is a \((T_1, N_1)\)-witness” and of \(K_{T_1, A}^1 \).

Clause (c):

We choose \(F \) such that

(\(\circ \)) if \(M \in K_{T_1, A}^1 \) then \(M \subseteq F(M) \in K_{T_1, A}^1 \) and for every \(k < \omega \) and \(a \in P^M_k \), the set \(\{ b \in F^M(a) : a < F(M), b \) and \(b \notin M \} \) has cardinality \(N_1 \).

Assume \(M = \cup\{ M_n : n < \omega \} \) where \(\langle M_n : n < \omega \rangle \) is \(\subseteq \)-increasing, \(M_n \in K_{T_1, A}^1, F(M_n) \subseteq M_{n+1} \). Clearly \(M \) is as required in the beginning of Definition 2.7, that is, satisfies clauses (\(a \)), (\(\beta \)), (\(\gamma \)) there. To prove clause (\(\delta \)), we define \(f : P^M_{\omega} \to \omega \) by \(f(a) = \text{Min}\{ n : a \in M_n \} \). Pendentically, \(F \) is defined only up to isomorphism.

So we are done. \(\square_{2.8} \)

Claim 2.9. [The Global Axiom of Choice]

If \(A \) is a \((T_1, \lambda)\)-witness then

(\(a \)) \(K_{T_1, A}^1 \neq \emptyset \)

(\(b \)) any two members of \(K_{T_1, A}^1 \) are isomorphic

(\(c \)) if \(M_n \in K_{T_1, A}^1 \) and \(n < \omega \Rightarrow M_n \subseteq M_{n+1} \) then \(M := \cup\{ M_n : n < \omega \} \in K_{T_1, A}^1 \).

Remark 2.10. If we omit clause (\(b \)), we can weaken the demand on the set \(A \).
Proof. Assume $M = \cup\{M_n : n < \omega\}, M_n \subseteq M_{n+1}, M_n \in K^1_{T_1,A}$ and f_n witnesses $M_n \in K^1_{T_1,A}$. Clearly M satisfies clauses (a), (β), (γ) from Definition 2.7, we just have to find a witness f as in clause (δ) there.

For each $a \in M$ let $n(a) = \operatorname{Min}\{n : a \in M_n\}$, clearly if $M \models "a < b < c"$ then $n(a) \leq n(b)$ and $n(a) = n(c) \Rightarrow n(a) = n(b)$. Let $g_n : M \rightarrow M$ be defined by:

$$g_n(a) = b \text{ if } b \leq^M a, b \in M_n \text{ and } b \leq^M \text{-maximal under those restrictions; clearly it is well defined. Now we define } f'_n : M \rightarrow \omega \text{ by induction on } n < \omega \text{ such that } m < n \Rightarrow f'_m \subseteq f'_n, \text{ as follows. }$$

If $n = 0$ let $f'_n = f_n$.

If $n = m + 1$ and $a \in M_n$ we let $f'_{n}(a)$ be $f'_{m}(a)$ if $a \in M_m$ and be $(f_n(a) - f_n(g_m(a))) + f'_m(g_m(a)) + 1$ if $a \in M_n \setminus M_m$. Clearly $f := \cup\{f'_n : n < \omega\}$ is a function from M to ω, $a \leq^M b \Rightarrow f(a) \leq f(b)$, and for any $a \in M$ the set $\{b \in M : a \leq^M b \text{ and } f(b) = f(a)\}$ is equal to $\{b \in M(a) : f_n(a)(a) = f_n(a)(b) \text{ and } a \leq^M b\}$.

So we are done. \(\square\)

Definition 2.11. Let A be a (T_1, λ)-witness. We define $K^2_{T_1,A}$ as in Definition 2.7 but f is constant zero.

Claim 2.12. [The Global Axiom of Choice] If A is a (T_1, \mathfrak{N}_1)-witness then

(a) $K^2_{T_1,A} \neq \emptyset$

(b) any two members of $K^2_{T_1,A}$ are isomorphic

(c) there is a function F from $\bigcup\{\alpha + 2 : K^{\alpha + 2}_{T_1,A} \} : \alpha < \omega_1\}$ to $K^2_{T_1,A}$ which satisfies:

- (α) $M = \langle M_i : i \leq \alpha + 1\rangle$ is an \prec-increasing sequence of models of T then $M_{\alpha + 1} \subseteq F(M) \in K^2_{T_1,A}$

- (β) the union of any increasing ω_1-sequence $M = \langle M_\alpha : \alpha < \omega_1\rangle$ of members of $K^2_{T_1,A}$ belongs to $K^2_{T_1,A}$ when $\omega_1 = \sup\{\alpha : F(M + (\alpha + 2)) \subseteq M_{\alpha + 2}\}$ and is a well defined embedding of M_α into $M_{\alpha + 2}\}$.

Remark 2.13. Instead of the global axiom of choice, we can restrict the models to have universe a subset of λ^+ (or just a set of ordinals).

Proof. Clause (a): Easy.

Clause (b): By the definition.

Clause (c): Let $\langle \mathcal{U}_\varepsilon : \varepsilon < \omega_1\rangle$ be an increasing sequence of subsets of ω_1 with union ω_1 such that $\varepsilon < \omega_1 \Rightarrow |\mathcal{U}_\varepsilon| \cup \bigcup_{\varepsilon < \varepsilon} |\mathcal{U}_\varepsilon| = \aleph_1$. Let $M^* \in K^2_{T_1,A}$ be such that $\omega^*(\omega_1) \subseteq |M^*| \subseteq \omega^*(\omega_1)$ and $M^*_\varepsilon = M^* \upharpoonright \omega^*(\mathcal{U}_\varepsilon)$ belongs to $K^2_{T_1,A}$ for every $\varepsilon < \omega_1$.

We choose a pair (F, f) of functions with domain $\{M : \bar{M} \text{ an increasing sequence of members of } K^2_{T_1,A} \text{ of length } < \omega_1\}$ such that:

(a) $F(M)$ is an extension of $\cup\{M_i : i < \ell g(M)\}$ from $K^2_{T_1,A}$

(b) $f(M)$ is an embedding from $M^*_{\ell g(M)}$ into $F(M)$

(γ) if $M^\ell = \langle M_\alpha : \alpha < \alpha_1\rangle$ for $\ell = 1, 2$ and $\alpha_1 < \alpha_2, M^1 = M^2 \upharpoonright \alpha_1$ and $F(M^1) \subseteq M_{\alpha_1}$ then $f(M^1) \subseteq f(M^2)$

(δ) if $a \in F(M)$ and $n < \omega$ then for some $b \in M^*_{\ell g(M)}$ we have $F(M) \models aE_n(f(M)(b))$.
Now check. □_{2.12} \{s1.7\}

Conclusion 2.14. Assume there is a \((T_1, \aleph_1)\)-witness (see Definition 2.4) for the first-order complete theory \(T_1\) from 2.1:

1) \(T_1\) has an \((\aleph_1, \aleph_1)\)-strongly limit model.
2) \(T_1\) has an \((\aleph_1, \aleph_1)\)-medium limit model.
3) \(T_1\) has a \((\aleph_1, \aleph_0)\)-superlimit model.

Proof.
1) By 2.8 the reduction of problems on \((EC(T_1), \preceq)\) to \(K_{T_1,A}\) (which is easy) is exactly as in [Sh:100]. □_{2.12} \{s1.5\}
2) By 2.12. □_{2.14} \{s1.5.1\} \{s1.11\}
3) Like part (1) using claim 2.9. □_{2.14}

Claim 2.15. If \(\lambda = \sum\{\lambda_n : n < \omega\}\) and \(\lambda_n = \lambda_{n+1}\), then \(T_1\) has a \((\lambda, \aleph_0)\)-superlimit model in \(\lambda\).

Proof. Let \(M_n\) be the model \(M_{A_n, h_n}\) where \(A_n = \omega(\lambda_n)\) and \(h_n : A_n \to \lambda_n^+\) is constantly \(\lambda_n\).

Clearly

\((*)_1\) \(M_n\) is a saturated model of \(T_1\) of cardinality \(\lambda_n\)
\((*)_2\) \(M_n \preceq M_{n+1}\)
\((*)_3\) \(M_\omega = \bigcup\{M_n : n < \omega\}\) is a special model of \(T_1\) of cardinality \(\lambda\).

The main point:

\((*)_4\) \(M_\omega\) is \((\lambda, \aleph_0)\)-superlimit model of \(T_1\).

Why? Toward this assume

\((a)\) \(N_n\) is isomorphic to \(M_n\) say \(f_n : M_\omega \to N_n\) is such isomorphic
\((b)\) \(N_n \preceq N_{n+1}\) for \(n < \omega\).

Let \(N_\omega = \bigcup\{N_n : n < \omega\}\) and we should prove \(N_\omega \cong M_\omega\), so just \(N_\omega\) is a special model of \(T_1\) of cardinality \(\lambda\) suffice.

Let \(N'_n = N_\omega(\bigcup\{f_n(M_k) : k \leq n\})\). Easily \(N'_n \preceq N'_{n+1} \preceq N_\omega\) and \(\bigcup\{N'_n : n < \omega\} = N_\omega\) and \(\|N'_n\| = \lambda_n\). So it suffices to prove that \(N'_n\) is saturated and by direct inspection shows this. □_{2.15}
ON NON-EXISTENCE OF LIMIT MODELS

Naturally we assume that non-existence of superlimit models for unstable T is easier to prove. For other versions we need to look more. We first show that for $\lambda \geq |T|+\aleph_1$, if T is unstable then it does not have a superlimit model of cardinality λ and if T is unsuperstable, we show this for “most” cardinals λ. On “Φ proper for K_ω or K_ω^*”, see [Shc, VII] or [Sh:E50] or hopefully some day [Sh:III]. We assume some knowledge on stability.

CLAIM 3.1. 1) If T is unstable, $\lambda \geq |T|+\aleph_1$, then T has no superlimit model of cardinality λ.

2) If T is stable not superstable and $\lambda \geq |T|+\beth_\omega$ or $\lambda = \lambda^{\aleph_0} \geq |T|$ then T has no superlimit model of cardinality λ.

Remark 3.2. 1) We assume some knowledge on EM models for linear orders I and members of K_ω as index models, see, e.g. [Sh:c, VII].

2) We use the following definition in the proof, as well as a result from [Sh:c, VII].

DEFINITION 3.3. For cardinals $\lambda > \kappa$ let $\lambda^{[\kappa]}$ be the minimal μ such that for some, equivalently for every set A of cardinality λ there is $\mathcal{P}_A \subseteq [A]^{\leq \kappa} = \{B \subseteq A : |B| \leq \kappa\}$ of cardinality λ such that any $B \in [\lambda]^{\leq \kappa}$ is the union of $< \kappa$ members of \mathcal{P}_A.

Proof. 1) Towards a contradiction assume M^* is a superlimit model of T of cardinality λ. As T is unstable we can find $m, \varphi(x, \hat{y})$ such that

$$\varphi(x, \hat{y}) \in L_{\tau(T)}$$

linearly orders some infinite $I \subseteq \mathcal{M}$, $\mathcal{M} \models T$ so $\ell g(x) = \ell g(\hat{y}) = m$.

We can find a Φ which is proper for linear orders (see [Shc, VII]) and $F_\ell (\ell < m)$ such that $F_\ell \in \tau \setminus \tau_T$ is a unary function symbol for $\ell < m$, $\tau_T \subseteq \tau(\Phi)$ and for every linear order I, $EM(I, \Phi)$ has Skolem functions and its τ_T-reduct $EM_{\tau(T)}(I, \Phi)$ is a model of T of cardinality $|T|+|I|$ and $\tau(\Phi)$ is of cardinality $|T|+\aleph_1$ and $\langle a_s : s \in I \rangle$ is the Skeleton of $EM(I, \Phi)$, that is, it is an indiscernible sequence in $EM(I, \Phi)$ and $EM(I, \Phi)$ is the Skolem hull of $\{a_s : s \in I\}$, and letting $a_s = (F_\ell(a_s) : \ell < m)$ in $EM(I, \Phi)$ we have $EM_{\tau(T)}(I, \Phi) \models \varphi(a_s, \bar{a}_s^{[\ell < \tau]}$ for $s, t \in I$.

Next we can find Φ_n (for $n < \omega$) such that:

- (a) Φ_n is proper for linear order and $\Phi_0 = \Phi$
- (b) $EM_{\tau(T)}(I, \Phi_n) \prec EM_{\tau(T)}(I, \Phi_{n+1})$ for every linear order I and $n < \omega$; moreover
- $(b)^+$ $\tau(\Phi_n) \subseteq \tau(\Phi_{n+1})$ and $EM(I, \Phi_n) \prec EM_{\tau(T)}(I, \Phi_{n+1})$ for every $n < \omega$ and linear order I
- (c) if $|I| \leq n$ then $EM_{\tau(T)}(I, \Phi_n) = EM_{\tau(T)}(I, \Phi_{n+1})$ and $EM_{\tau(T)}(I, \Phi_n) \cong M^*$
- (d) $|\tau(\Phi_n)| = \lambda$.

This is easy. Let Φ_ω be the limit of $\langle \Phi_n : n < \omega \rangle$, i.e. $\tau(\Phi_\omega) = \cup \{\tau(\Phi_n) : n < \omega\}$ and if $k < \omega$ then $EM_{\tau(T)}(I, \Phi_\omega) = \cup \{EM_{\tau(T)}(I, \Phi_n) : n \in [k, \omega)\}$. So as M^* is a superlimit model, for any linear order I of cardinality λ, $EM_{\tau(T)}(I, \Phi_\omega)$ is the direct limit of $(EM_{\tau(T)}(J, \Phi_n) : J \subseteq I$ finite), each isomorphic to M^*, so as we have assumed that M^* is a superlimit model it follows that $EM_{\tau(T)}(I, \Phi_\omega)$ is isomorphic
to M^*. But by [Sh:300, III] or [Sh:E59] which may eventually be [Sh:c, III] there are 2^λ many pairwise non-isomorphic models of this form varying I on the linear orders of cardinality λ, contradiction.

2) First assume $\lambda = \lambda^{\aleph_0}$. Let $\tau \subseteq \tau^T$ be countable such that $T'' = T \cap L(\tau)$ is not superstable. Clearly if M^* is (λ, \aleph_0)-limit model then $M^* \upharpoonright \tau'$ is not \aleph_1-saturated. [Why? As in [Sh:a, Ch.VI, 2] \{\lambda\} orders of cardinality λ.

Also not fork over \aleph_0 is some \bar{a} but by [Sh:c, VIII], or see [Sh:E59] assuming $\alpha < \beta < \mu$:

Hence by [Sh:c, VIII], or see [Sh:E59] assuming M^* is a universal model of T of cardinality λ:

@1 there is Φ such that

(a) Φ is proper for $K^{\tau^T}_I$, $\tau^T \subseteq \tau(\Phi)$, $|\tau(\Phi)| = \lambda \geq |T| + \aleph_0$

(b) for $I \subseteq \tau^T$, $EM(\tau, I, \Phi)$ is a model of T and $I \subseteq J \Rightarrow EM(I, \Phi) \prec EM(J, \Phi)$

(c) for some two-place function symbol F if for $I \in K^{\tau^T}_I$ and $\eta \in P^I$, I a subtruct of $\tau^*\lambda$ for transparency we let $I_{\eta, n} = \{F(a_n, a_{\eta}) : \nu \in I\}$ then $EM(\tau, I_{\eta, n}) = EM(\tau, I_{\eta, n})$ if $\eta \in \eta_n \in \nu_n$.

Also

@2 if Φ_1 satisfies (a),(b),(c) of @1 and M is a universal model of T then there is Φ_2 satisfying (a),(b),(c) of @2 and $\Phi_1 \prec \Phi_2$ see @3(a) and for every finitely generated $J \in K^{\tau^T}_I$, see @3(b) below, there is $M' \equiv M$ such that $EM(\tau, (\phi_1) \prec M' \prec EM(\tau, (\phi_2)$

@3 (a) we say $\Phi_1 \preceq \Phi_2$ when $\tau(\phi_1) \subseteq \tau(\phi_2)$ and $J \in K^{\tau^T}_I \Rightarrow EM(J, \phi_1) \prec EM(J, \phi_2)$

(b) we say $J \subseteq I$ is finitely generated if it has the form $\{\eta_\ell : \ell < n\} \cup \{\rho : \text{for some } n, \ell \text{ we have } \rho \in P^I_n \text{ and } \rho < \eta_\ell\}$ for some $\eta_0, \ldots, \eta_{n-1} \in P^I_n$

@4 if $M \in EC_3(T)$ is superlimit (or just weakly S-limit, $S \subseteq \lambda^+$ stationary) then there is Φ as in @1 above such that $EM(\tau, (\phi_1) \equiv M$ for every finitely generated $J \in K^{\tau^T}_I$

@5 we fix Φ as in @4 for $M \in EC_3(T)$ superlimit.
Hence (mainly by clause (b) of $\oplus_{2,1}$ and $\oplus_{2,4}$ as in the proof of part (1))

\oplus_3 if $I \in K^{\omega}_{\kappa}$ has cardinality $\leq \lambda$ then $\text{EM}_{\tau}(\Phi)(I, \Phi)$ is isomorphic to M^*.

Now by [Sh:460], we can find regular uncountable $\kappa < \beth_\omega$ such that $\lambda = \lambda[\kappa]$, see Definition 3.3.

Let $S = \{ \delta < \kappa : \text{cf}(\delta) = \aleph_0 \}$ and $\eta = \langle \eta_\delta : \delta \in S \rangle$ be such that η_δ an increasing sequence of length ω with limit δ.

For a model M of T let $\text{OB}_\eta(M) = \{ a : a = \langle a_\eta, \alpha : \delta \in W \text{ and } \alpha < \kappa \rangle, W \subseteq S \}
\text{ and in }$ M they are as in $\oplus_1(b), (d)$.

For $a \in \text{OB}_\eta(M)$ let $W[a]$ be W as above and let
\[
\Xi(a, M) = \{ \eta \in \omega_\kappa : \text{ there is an indiscernible set}
\]
\[
I = \{ a, \alpha : \alpha < \kappa \} \text{ in } M \text{ such that for every } n
\]
\[
\text{ for some } \delta \in W[a], \eta \upharpoonright n = \eta_\delta \upharpoonright n \text{ and}
\]
\[
\text{Av}_{\Delta_\alpha}(M, I) = \text{Av}_{\Delta_\alpha}(M, \{ a_\eta, \alpha : \alpha < \kappa \}).
\]

Clearly

\oplus_4

(a) if $M \prec N$ then $\text{OB}_\eta(M) \subseteq \text{OB}_\eta(N)$

(b) if $M \prec N$ and $a \in \text{OB}_\eta(M)$ then $\Xi(a, M) \subseteq \Xi(a, N)$.

Now by the choice of κ it should be clear that

\oplus_5 if $M \models T$ is of cardinality λ then we can find an elementary extension N of M of cardinality λ such that for every $a \in \text{OB}_\eta(M)$ with $W[a]$ a stationary subset of κ, for some stationary $W'' \subseteq W[a]$ the set $\Xi[a, N]$ includes $\{ \eta \in \omega_\kappa : (\forall n)(\exists \delta \in W'')(\eta \upharpoonright n = \eta_\delta \upharpoonright n) \}$, (moreover we can even find $\varepsilon^* < \kappa$ and $W_\varepsilon \subseteq W$ for $\varepsilon < \varepsilon^*$ satisfying $W[a] = \cup \{ W_\varepsilon : \varepsilon < \varepsilon^* \}$

\oplus_6 we can find $M \in \text{EC}_\lambda(T)$ isomorphic to M^* such that for every $a \in \text{OB}_\eta(M)$ with $W[a]$ a stationary subset of κ, we can find a stationary subset W'' of $W[a]$ such that the set $\Xi[a, M]$ includes $\{ \eta \in \omega_\mu : (\forall n)(\exists \delta \in W''')(\eta \upharpoonright n = \eta_\delta \upharpoonright n) \}.$

[Why? We choose (M_i, N_i) for $i < \kappa^+$ such that

(a) $M_i \in \text{EC}_\lambda(T)$ is \prec-increasing continuous

(a) M_{i+1} is isomorphic to M^*

(a) $M_i \prec N_i \prec M_{i+1}$

(a) (M_i, N_i) are like (M, N) in \oplus_5.

Now $M = \cup \{ M_i : i < \kappa^+ \}$ is as required.

Now the model M is isomorphic to M^* as M^* is superlimit.]

Now the model from \oplus_6 is not isomorphic to $M' = \text{EM}_{\tau}(\Phi)(\omega^\kappa \cup \{ \eta_\delta : \delta \in S \}, \Phi)$ where Φ is from $\oplus_{2.1}$. But $M' \cong M^*$ by \oplus_3.

Together we are done.

$\square_{3.1}$

The following claim says in particular that if some not unreasonable pcf conjectures holds, the conclusion holds for every $\lambda \geq 2^{\aleph_0}$.
Claim 3.4. Assume T is stable not superstable, $\lambda \geq |T|$ and $\lambda \geq \kappa = \text{cf}(\kappa) > \aleph_0$.
1) T has no (λ, κ)-superlimit model provided that $\kappa = \text{cf}(\kappa) > \aleph_0, \lambda \geq \kappa^{\aleph_0}$ and $\lambda = \bigcup D(\lambda) := \text{Min}\{ |\mathcal{P}| : \mathcal{P} \subseteq [\lambda]^{\kappa} \}$ and for every $f : \kappa \rightarrow \lambda$ for some $u \in \mathcal{P}$ we have $\{ \alpha < \kappa : f(\alpha) \in u \} \in D^+$, where D is a normal filter on κ to which $\{ \delta < \kappa : \text{cf}(\delta) = \aleph_0 \}$ belongs.

2) Similarly if $\lambda \geq 2^{\aleph_0}$ and letting $J_0 = \{ u \subseteq \kappa : |u| \leq \aleph_0 \}$, $J_1 = \{ u \subseteq \kappa : u \cap S_\kappa^{\aleph_0} \text{ non-stationary} \}$ we have $\lambda = \bigcup_{J_0,J_1}(\lambda) := \text{Min}\{ |\mathcal{P}| : \mathcal{P} \subseteq [\lambda]^{\aleph_0} \}$, if $u \in J_1$, $f : (\kappa \setminus u) \rightarrow \lambda$ then for some countable infinite $w \subseteq \kappa(u)$ and $v \in \mathcal{P}$, $\text{Rang}(f|w) \subseteq v$.

Proof. Like 3.1(2).

Claim 3.5. 1) Assume T is unstable and $\lambda \geq |T| + \beth_\omega$. Then for at most one regular $\kappa \leq \lambda$ does T have a weakly (λ, κ)-limit model and even a weakly (λ, S)-limit model for some stationary $S \subseteq S_\kappa^\kappa$.

2) Assume T is un-stable and $\lambda \geq |T| + \beth_\omega(\kappa_2)$ and $\kappa_1 = \aleph_0 < \kappa_2 = \text{cf}(\kappa_2)$. Then T has no model which is a weak (λ, S)-limit where $S \subseteq \kappa$ and $S \cap S_\kappa^{\aleph_0}$ is stationary for $\ell = 1, 2$.

Proof. 1) Assume $\kappa_1 \neq \kappa_2$ form a counterexample. Let $\kappa < \beth_\omega$ be regular large enough such that $\lambda = \lambda^{[\kappa]}$, see Definition 3.3 and $\kappa \notin \{ \kappa_1, \kappa_2 \}$. Let $m, \varphi(\bar{x}, \bar{y})$ be as in the proof of 3.1

\[(+) \text{ if } M \in E\mathcal{C}_\lambda(\ell) \text{ then there is } N \text{ such that} \]
\[(a) N \in E\mathcal{C}_\lambda(\ell) \]
\[(b) M \prec N \]
\[(c) \text{ if } \bar{a} = \langle a_i : i < \kappa \rangle \in \kappa^\kappa M \text{ for } \alpha < \kappa \text{ then for some } \mathcal{U} \subseteq [\kappa]^\kappa \text{ for every uniform ultrafilter } D \text{ on } \kappa \text{ to which } \mathcal{U} \text{ belongs there is } \bar{a}_D \in \kappa^N \text{ such that } \text{tp}(\bar{a}_D, N, N) = \text{Av}(\bar{a}/D, M) = \{ \psi(\bar{x}, \bar{c}) : \psi(\bar{x}, \bar{z}) \in \mathbb{L}(\tau_\ell), \bar{c} \in \ell^\varphi(\bar{x})M \text{ and } \{ \alpha < \kappa : N \models \psi[\bar{a}_\alpha, \bar{c}] \in D \} \}. \]

Similarly

\[\mathbb{B}_1 \text{ for every function } F \text{ with domain } \{ M : M \text{ an } \prec \text{-increasing sequence of models of } T \text{ of length } < \lambda^+ \text{ each with universe } \in \lambda^+ \} \text{ such that } M_i \prec F(M) \text{ for } i < \ell \mathcal{G}(\bar{M}) \text{ and } F(M) \text{ has universe } \in \lambda^+ \text{ there is a sequence } \langle M_\varepsilon : \varepsilon < \lambda^+ \rangle \text{ obeying } F \text{ such that: for every } \varepsilon < \lambda^+ \text{ and } \bar{a} \in \kappa^\kappa(M_\varepsilon) \text{ for } \alpha < \kappa, \text{ there is } \mathcal{U} \subseteq [\kappa]^\kappa \text{ such that for every ultrafilter } D \text{ on } \kappa \text{ to which } \mathcal{U} \text{ belongs, for every } \zeta \in (\varepsilon, \lambda^+) \text{ there is } \bar{a}_{D,\varepsilon} \in \kappa^{M_{\zeta+1}} \text{ realizing } \text{Av}(\bar{a}/D, M_\zeta) \text{ in } M_{\zeta+1}. \]

Hence

\[\mathbb{B}_2 \text{ for } (M_\alpha : \alpha < \lambda^+) \text{ as in } \mathbb{B}_1 \text{ for every limit } \delta < \lambda^+ \text{ of cofinality } \neq \kappa \text{ for every } \bar{a} = \langle a_i : i < \kappa \rangle \in \kappa^\kappa(M_\delta), \text{ there is } \mathcal{U} \subseteq [\kappa]^\kappa \text{ such that for every ultrafilter } D \text{ on } \kappa \text{ to which } \mathcal{U} \text{ belongs, there is a sequence } \langle b_\varepsilon : \varepsilon < \text{cf}(\delta) \rangle \in \mathcal{E}(\delta)(\kappa^\kappa(M_\delta)) \text{ such that for every } \psi(\bar{x}, \bar{z}) \in \mathbb{L}(\tau_\gamma) \text{ and } \bar{c} \in \ell^\varphi(\bar{x})M_\delta \text{ for every } \varepsilon < \text{cf}(\delta) \text{ large enough, } M_\delta \models \psi[b_\varepsilon, \bar{c}] \text{ iff } \psi(\bar{x}, \bar{c}) \in \text{Av}(\bar{a}/D, M_\delta). \]

The rest should be clear.

2) Combine the above and the proof of 3.1(2).
REVIEWS

[Sh:88r] Saharon Shelah, Abstract elementary classes near \aleph_1, Chapter I. 0705.4137. arxiv:0705.4137.

E-mail address: shelah@math.huji.ac.il

URL: http://shelah.logic.at