THE ERDÖS-RADO ARROW FOR SINGULAR

SAHARON SHELAH

Abstract. We prove that if $\text{cf}(\lambda) > \aleph_0$ and $2^{\text{cf}(\lambda)} < \lambda$ then $\lambda \rightarrow (\lambda, \omega + 1)^2$ in ZFC.

Key words and phrases. set theory, partition calculus.

First typed: August 2005

Research supported by the United States-Israel Binational Science Foundation. Publication 881.
0. INTRODUCTION

For regular uncountable \(\kappa \), the Erdös-Dushnik-Miller theorem, Theorem 11.3 of [1], states that \(\kappa \rightarrow (\kappa, \omega + 1)^2 \). For singular cardinals, \(\kappa \), they were only able to obtain the weaker result, Theorem 11.1 of [1], that \(\kappa \rightarrow (\kappa, \omega + 1)^2 \). It is not hard to see that if \(\text{cf}(\kappa) = \omega \) then \(\kappa \nrightarrow (\kappa, \omega + 1)^2 \). If \(\text{cf}(\kappa) > \omega \) and \(\kappa \) is a strong limit cardinal, then it follows from the General Canonization Lemma, Lemma 28.1 in [1], that \(\kappa \rightarrow (\kappa, \omega + 1)^2 \). Question 11.4 of [1] is whether this holds without the assumption that \(\kappa \) is a strong limit cardinal, e.g., whether, in ZFC,

\[(1) \; \aleph_1 \rightarrow (\aleph_1, \omega + 1)^2.\]

In [5] it was proved that \(\aleph_0 < \kappa = \text{cf}(\lambda) \) and \(2^\kappa < \lambda \) then \(\kappa \rightarrow (\lambda, \omega + 1)^2 \) if \(2^\text{cf}(\lambda) < \lambda \) and there is a nice filter on \(\kappa \), (see [3, Ch.V]; follows from suitable failures of SCH). Also proved there are consistency results when \(2^\text{cf}(\lambda) = \lambda \).

Here continuing [5] but not relying on it, we eliminate the extra assumption, i.e., we prove (in ZFC)

Theorem 0.1. If \(\aleph_0 < \kappa = \text{cf}(\lambda) \) and \(2^\kappa < \lambda \) then \(\kappa \rightarrow (\lambda, \omega + 1)^2 \).

Before starting the proof, let us recall the well known definition:

Definition 0.2. Let \(D \) be an \(\aleph_1 \)-complete filter on \(Y \), and \(f \in Y^{\text{Ord}} \), and \(\alpha \in \text{Ord} \cup \{ \infty \} \).

We define when \(\text{rk}_D(f) = \alpha \) by induction on \(\alpha \) (it is well known that \(\text{rk}_D(f) < \infty \)):

\[(*) \; \text{rk}_D(f) = \alpha \; \text{iff} \; \beta < \alpha \Rightarrow \text{rk}_D(f) \neq \beta, \; \text{and for every} \; g \in Y^{\text{Ord}} \; \text{satisfying} \; g <_D f, \; \text{there is} \; \beta < \alpha \; \text{such that} \; \text{rk}_D(g) = \beta.\]

Notice that we will use normal filters on \(\kappa = \text{cf}(\kappa) > \aleph_0 \), so the demand of \(\aleph_1 \)-completeness in the definition, holds for us.

Recall also

Definition 0.3. Assume \(Y, D, f \) are as in definition 0.2.

\[J[f, D] = \{ Z \subseteq Y : Y \setminus Z \in D \; \text{or} \; \text{rk}_{D+(Y \setminus Z)}(f) > \text{rk}_D(f) \} \]

Lastly, we quote the next claim (the definition 0.3 and claim are from [2], and explicitly [4](5.8(2), 5.9)):

Claim 0.4. Assume \(\kappa > \aleph_0 \) is realized, and \(D \) is a \(\kappa \)-complete (a normal) filter on \(Y \).

Then \(J[f, D] \) is a \(\kappa \)-complete (a normal) ideal on \(Y \) disjoint to \(D \) for any \(f \in Y^{\text{Ord}} \).
1. The proof

In this section we prove Theorem 0.1 of the Introduction, which, for convenience, we now restate.

Theorem 1.1. If $\aleph_0 < \kappa = \text{cf}(\lambda)$, $2^\kappa < \lambda$ then $\lambda \rightarrow (\lambda, \omega + 1)^2$.

Proof.

Stage A We know that $\aleph_0 < \kappa = \text{cf}(\lambda) < \lambda$, $2^\kappa < \lambda$ We will show that $\lambda \rightarrow (\lambda, \omega + 1)^2$.

So, towards a contradiction, suppose that

$$(*)_1 c : [\lambda]^2 \rightarrow \{\text{red}, \text{green}\}$$

but has no red set of cardinality λ and no green set of order type $\omega + 1$.

Choose $\bar{\lambda}$ such that:

$$(*)_2 \bar{\lambda} = (\lambda_i : i < \kappa)$$

is increasing and continuous with limit λ, and for $i = 0$ or i a successor ordinal, λ_i is a successor cardinal. We also let $\Delta_0 = \lambda_0$ and for $i < \kappa$, $\Delta_{i+1} = [\lambda_i, \lambda_{i+1})$. For $\alpha < \lambda$ we will let $i(\alpha)$ be the unique $i < \kappa$ such that $\alpha \in \Delta_i$.

We can clearly assume, in addition, that

$$(*)_3 \lambda_0 > 2^\kappa, \text{ for } i < \kappa, \lambda_{i+1} \geq \lambda_i^{++}, \text{ and that each } \Delta_i \text{ is homogeneously red for } c.$$

The last is justified by the Erdős-Dushnik-Miller theorem for λ_{i+1}, i.e., as $\lambda_{i+1} \rightarrow (\lambda_{i+1}, \omega + 1)^2$ because λ_{i+1} is regular.

Stage B: For $0 < i < \kappa$, we define Seq_i to be $\{\langle \alpha_0, ..., \alpha_{n-1} : i(\alpha_0) < ... < i(\alpha_{n-1}), i \rangle \}$.

For $i < \kappa$ and $\langle \alpha_0, ..., \alpha_{n-1} = \bar{\alpha} \rangle \in \text{Seq}_i$ we say $\bar{\alpha} \in T^\chi$ iff $\{\alpha_0, ..., \alpha_{n-1}, \chi\}$ is homogeneously green for c. Note that an infinite increasing branch in T^χ violates the non-existence of a green set of order type $\omega + 1$, so,

$$(*)_4 T^\chi \text{ is well-founded, that is we cannot find } \eta_0 < \eta_1 < ... < \eta_n \triangleq ...$$

Therefore the following definition of a rank function, rk^χ, on Seq_i can be carried out.

If $\eta \in \text{Seq}_i \setminus T^\chi$ then $\text{rk}^\chi(\eta) = -1$. We define $\text{rk}^\chi : \text{Seq}_i \rightarrow \text{Ord} \cup \{-1\}$ as follows by induction on the ordinal ξ, we have $\text{rk}^\chi(\bar{\alpha}) = \xi$ iff for all $\epsilon < \xi$, $\text{rk}^\chi(\bar{\alpha})$ was not defined as ϵ but there is β such that $\text{rk}^\chi(\bar{\alpha} \setminus \langle \beta \rangle) \geq \epsilon$.

Of course, if ξ is a successor ordinal, it is enough to check for $\epsilon = \xi - 1$, and for limit ordinals, δ, if for all $\xi < \delta$, $\text{rk}^\chi(\bar{\alpha}) \geq \xi$, then $\text{rk}^\chi(\bar{\alpha}) \geq \delta$.

In fact, it is clear that the range of rk^χ is a proper initial segment of μ^+_i, where $\mu_i := \text{card}(\bigcup \{\Delta_\epsilon : \epsilon < i\})$, and so, in particular, the range of rk^χ has cardinality at most λ_i. Note that $\lambda_{i+1} \geq \lambda_i^{++} > \mu^+_i$.

Now we can choose B_i, an end-segment of Δ_i such that for all $\bar{\alpha} \in \text{Seq}_i$ and all $0 \leq \gamma < \mu^+_i$, if there is $\zeta \in B_i$ such that $\text{rk}^\chi(\bar{\alpha}) = \gamma$, then there are λ_{i+1} such ζ-s.

Recall that Δ_i and therefore also B_i are of order type λ_{i+1}, which is a successor cardinal $> \mu^+_i > |\text{Seq}_i|$ hence such B_i exists. Everything is now in place for the main definition.
Stage C: \((\bar{\alpha}, Z, D, f) \in K\) iff

1. \(D\) is a normal filter on \(\kappa\),
2. \(f : \kappa \to \text{Ord}\),
3. \(Z \in D\)
4. for some \(0 < i < \kappa\) we have \(\bar{\alpha} \in \text{Seq}_i\) and \(Z\) is disjoint to \(i + 1\) and for every \(j \in Z\) (hence \(j > i\)) there is \(\zeta \in B_j\) such that \(rk^C(\bar{\alpha}) = f(j)\)

(since, in particular, \(\bar{\alpha} \in T\zeta\)).

Stage D: Note that \(K \neq \emptyset\), since if we choose \(\zeta_j \in B_j\), for \(j < \kappa\), take \(Z = \kappa \setminus \{0\}\), \(\bar{\alpha}\) the empty sequence, choose \(D\) to be any normal filter on \(\kappa\) and define \(f\) by \(f(j) = rk^C(\bar{\alpha})\), then \((\bar{\alpha}, Z, D, f) \in K\).

Now clearly by 0.2, among the quadruples \((\bar{\alpha}, Z, D, f) \in K\), there is one with \(rk_D(f)\) minimal. So, fix one such quadruple, and denote it by \((\bar{\alpha}^*, Z^*, D^*, f^*)\). Let \(D^*_1\) be the filter on \(\kappa\) dual to \(J[f^*, D^*]\), so by claim 0.4 it is a normal filter on \(\kappa\) extending \(D^*\).

For \(j \in Z^*\), set \(C_j = \{\zeta \in B_j : rk^C(\bar{\alpha}^*) = f^*(j)\}\). Thus by the choice of \(B_j\) we know that \(\text{card}(C_j) = \lambda_{j+1}\), and for every \(\zeta \in C_j\) the set \((\text{Rang}(\bar{\alpha}^*) \cup \{\zeta\})\) is homogeneously green under the colouring \(c\). Now: suppose \(j \in Z^*\). For every \(Y \in Z^* \setminus (j + 1)\) and \(\zeta \in C_j\), let \(C^+_Y(\zeta) = \{\xi \in C_Y : c(\{\zeta, \xi\}) = \text{green}\}\).

Also, let \(Z^+(\zeta) = \{Y \in Z^* \setminus (j + 1) : \text{card}(C^+_Y(\zeta)) = \lambda_{Y+1}\}\).

Stage E: For \(j \in Z^*\) and \(\zeta \in C_j\), let \(Y(\zeta) = Z^* \setminus Z^+(\zeta)\). Since \(\lambda_0 > 2^\kappa\) and \(\lambda_{j+1} > \lambda_0\) is regular, for each \(j \in Z^*\) there are \(Y = Y_j \subseteq \kappa\) and \(C_j' \subseteq C_j\) with \(\text{card}(C_j') = \lambda_{j+1}\) such that \(\zeta \in C_j' \Rightarrow Y(\zeta) = Y_j\).

Let \(\hat{Z} = \{j \in Z^* : Y_j \in D^*_1\}\). Now the proof split to two cases.

Case 1: \(\hat{Z} \neq \emptyset\) mod \(D^*_1\)

Define \(Y^* = \{\bar{\zeta} \in \hat{Z} : \text{for every } i \in \hat{Z} \cap j, \text{we have } j \in Y_i\}\). Notice that \(Y^*\) is the intersection of \(\hat{Z}\) with the diagonal intersection of \(\kappa\) sets from \(D^*_1\)

(since \(i \in \hat{Z} \Rightarrow Y_i \in D^*_1\)), hence (by the normality of \(D^*_1\)) \(Y^* \neq \emptyset\) mod \(D^*_1\).

But then, as we will see soon, by shrinking the \(C_j'\) for \(j \in Y^*\), we can get a homogeneous red set of cardinality \(\lambda\), which is contrary to the assumption toward contradiction.

We define \(\bar{C}_j\) for \(j \in Y^*\) by induction on \(j\) such that \(\bar{C}_j\) is a subset of \(C_j'\) of cardinality \(\lambda_{j+1}\). Now, for \(j \in Y^*\), let \(\bar{C}_j\) be the set of \(\xi \in C_j'\) such that for every \(i \in Y^* \cap j\) and every \(\zeta \in \bar{C}_i\) we have \(\xi \notin C^+_Y(\zeta)\). So, in fact, \(\bar{C}_j\) has cardinality \(\lambda_{j+1}\) as it is the result of removing < \(\lambda_{j+1}\) elements from \(C_j'\) where \(|C_j'| = \lambda_{j+1}\) by its choice. Indeed, the number of such pairs \((i, \zeta)\) is \(\leq \lambda_j\) and: for \(i \in Y^* \cap j\) and \(\zeta \in \bar{C}_i:\

(a) \(j \in Y_i\) [Why? by the definition of \(Y^*\) as \(j \in Y^*\)]
(b) \(\zeta \in C'_j\) [Why? as \(\zeta \in \bar{C}_i\) and \(\bar{C}_i \subseteq C'_j\) by the induction hypothesis]
(c) \(Y(\zeta) = Y_i\) [Why? as by (b) we have \(\zeta \in C'_j\) and the choice of \(C'_j\)]
(d) \(j \in Y(\zeta)\) [Why? by (a)+(c)]
(e) \(j \notin Z^+(\zeta)\) [Why? by (d) and the choice of \(Y(\zeta)\) as \(Z^* \setminus Z^+(\zeta)\)]
(f) \(C_j^+ (\zeta) \) has cardinality \(< \lambda_{j+1} \) [Why? by (e) and the choice of \(Z^+(\zeta) \), as \(j \in \hat{Z} \subseteq Z^+ \)].

So \(\hat{C}_j \) is a well defined subset of \(C_j' \) of cardinality \(\lambda_{j+1} \) for every \(j \in Y^* \).

But then, clearly the union of the \(\hat{C}_j \) for \(j \in Y^* \), call it \(\hat{C} \) satisfies:

(a) it has cardinality \(\lambda \) [as \(j \in Y^* \Rightarrow |\hat{C}_j| = \lambda_{j+1} \) and \(\sup (Y^*) = \kappa \) as \(Y^* \neq \emptyset \mod D_1^* \)]

(b) \(c[|\hat{C}_j|^2 \) is constantly red [as we are assuming (**3)]

(\(\gamma \)) if \(i < j \) are from \(Y^* \) and \(\zeta \in \hat{C}_i, \xi \in \hat{C}_j \) then \(c\{\zeta, \xi\} = \text{red} \) [as \(\xi \notin C_j^+(\zeta) \)]

So \(\hat{C} \) has cardinality \(\lambda \) and is homogeneously red. This concludes the proof in the case \(\hat{Z} \neq 0 \mod D_1^* \)

Case 2: \(\hat{Z} = 0 \mod D_1^* \).

In that case there are \(i \in Z^*, \beta \in C_i \) such that \(Z^+(\beta) \neq 0 \mod D_1^* \) [Why? well, \(Z^* \in D^* \subseteq D_1^* \) and \(\hat{Z} = 0 \mod D_1^* \), hence \(Z^* \setminus \hat{Z} \neq \emptyset \).

Choose \(i \in Z^* \setminus \hat{Z} \). By the definition of \(\hat{Z}, Y_i \notin D_1^* \). So, if \(\beta \in C_i' \) then \(Y(\beta) = Y_i \notin D_1^* \) and choose \(\beta \in C_i' \), so \(Y(\beta) \notin D_1^* \) hence by the definition of \(Y(\beta) \) we have \(Z^* \setminus Z^+(\beta) = Y(\beta) \notin D_1^* \). Since \(Z^* \in D_1^* \), we conclude that \(Z^+(\beta) \neq 0 \mod D_1^* \).

Let \(\alpha' = \alpha^* \setminus (\beta), Z' = Z^+(\beta), D' = D^* + Z' \), it is a normal filter by the previous sentence as \(D^* \subseteq D_1^* \) and lastly we define \(f' \in \text{"Ord} \)

(a) if \(j \in Z' \) then \(f'(j) = \text{Min}\{\text{rk}(\alpha') : \gamma \in C_j^+(\beta) \subseteq B_j\} \)

(b) otherwise \(f'(j) = 0 \)

Clearly

(\(\alpha' \), \(Z', D', f' \)) \(\in K \), and

(\(\beta \)) \(f' <_{D'} f^* \)

[Why? as \(Z' \in D' \) and if \(j \in Z' \) then for some \(\gamma \in C_j^+(\beta) \) we have \(f'(j) = \text{rk}(\alpha') = \text{rk}(\alpha^* \setminus (\beta)) \) which by the definition of \(\text{rk} \) is \(\leq \text{rk}(\alpha^*) = f^*(j) \), recalling (4) from stage C.]

hence

(\(\gamma \)) \(\text{rk}_{D'}(f') < \text{rk}_{D^*}(f^*) \)

[Why? see Definition 0.2].

(0.2)

But \(\text{rk}_{D'}(f^*) = \text{rk}_{D^*}(f^*) \) as \(Z' = Z^+(\beta) \neq 0 \mod D_1^* \) by the definition of \(D_1^* \) as extending the filter dual to \(J[f^*, D^*] \), see Definition 0.3. Hence \(\text{rk}_{D'}(f') < \) \(\text{rk}_{D^*}(f^*) \), so we get a contradiction to the choice of \((\alpha^*, Z^*, D^*, f^*) \).

Clearly at least one of the two cases holds, so we are done. \(\square \)
REFERENCES

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA

E-mail address: shelah@math.huji.ac.il
URL: http://www.math.rutgers.edu/~shelah