DEFINABLE GROUPS FOR DEPENDENT AND 2-DEPENDENT THEORIES

SH886

SAHARON SHELAH

Abstract. Let T be a (first order complete) dependent theory, \mathcal{C} a $\bar{\kappa}$-saturated model of T and G a definable subgroup which is abelian. Among subgroups of bounded index which are the union of $<\bar{\kappa}$ type-definable subsets there is a minimal one, i.e. their intersection has bounded index. See history in [Sh:876]. We then deal with definable groups for 2-dependent theories, a wider class of first order theories proving that for many pairs (M, N) of models, the minimal bounded subgroup definable over $M \cup N$ is the intersection of the minimal ones for M and for N.

Date: June 9, 2017.
1991 Mathematics Subject Classification. Primary 03E17; Secondary: 03E05, 03E50.
Key words and phrases. Model theory, groups, classification theory, dependent theories.

The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 242/03). I would like to thank Alice Leonhardt for the beautiful typing. First Typed - 05/Dec/15.
0. Introduction

Assume that T is a dependent (complete first order) theory, \mathcal{C} is a $\bar{\kappa}$-saturated model of T (a monster), G is a type-definable (in \mathcal{C}) group in \mathcal{C} (of course we consider only types of cardinality $< \bar{\kappa}$).

A subgroup H of G is called bounded if the index $(G : H)$ is $< \bar{\kappa}$. By [Sh:876], we know that among $H_{tb} = \{H : H$ is a type-definable subgroup of G of bounded, i.e. with index $< \bar{\kappa}\}$ there is a minimal one.

But what occurs for $H_{ståh} = \{H : H$ is a union-type-definable (see below) subgroup of G of bounded, i.e. $< \bar{\kappa}$ index\}? is there a minimal one? Our main result is a partial positive answer: if G is an abelian group then in $H_{ståh}$ there is a minimal one.

We call $C \subseteq \mathcal{C}$ union-type-definable (over A) when for some sequence $\langle p_i(x) : i < \alpha \rangle$ we have $\alpha < \bar{\kappa}$, each $p_i(x)$ is a type (over A; of course A is of cardinality $< \bar{\kappa}$) and $C = \bigcup \{p_i(\mathcal{C}) : i < \alpha \}$ where $p_i(\mathcal{C}) = \{b \in \mathcal{C} : b$ realizes $p_i(\mathcal{C})\}$; this is equivalent to being $L_{\infty,\kappa}$-definable in \mathcal{C} for some $\kappa \leq \bar{\kappa}$.

In Definition 2.4 we recall the definition of 2-dependent T (where T is 2-independent when some $\langle \varphi(x, b_m, c_n) : m, n < \omega \rangle$ is an independent sequence of formulas); see [Sh:863, §5 (H)]. Though a reasonable definition, can we say anything interesting on it? Well, we prove the following result related to [Sh:876].

Let G_A be the minimal type-definable over A subgroup of G, for suitable κ; as we fix A it always exists. Theorem 2.12 says that if M is κ-saturated and $|B| < \kappa$ then $G_{M \cup B}$ can be represented as $G_M \cap G_{A \cup B}$ for some $A \subseteq M$ of cardinality $< \kappa$.

So though this does not prove “2-dependent is a dividing line”, it seems enough for showing it is an interesting property.

The first theorem on this line for T stable is of Baldwin-Saxl [BS76]. Recently Hrushovski, Peterzil and Pillay [HPP05] investigated definable groups, α-minimality and measures; an earlier work on dependent theories is [Sh:715]; and on definable subgroups in α-minimal T is Berarducci, Otero, Peterzil and Pillay [BOPP05] where the existence of the minimal type-definable bounded index theorem and more results are proved for α-minimal theories.

A natural question was whether there is a minimal type-definable bounded subgroup, when T is dependent. Assuming more (existence of measure) on the group, related suitably to the family of definable sets, this was proved in the original version of Hrushovski-Peterzil-Pillay [HPP05]. Then [Sh:876] proves this for every dependent theory and definable group. (The final version of their paper [HPP05] includes an exposition of the proof of [Sh:876].)

Recent works of the author on dependent theories are [Sh:783] (see §3,§4 on groups) [Sh:863] (e.g. the first order theory of the p-adics is strongly dependent but not strongly dependent, see end of §1; on strongly dependent fields see §5) and [Sh:900] and later [Sh:950].

Hrushovski has pointed out the following application of §2 to Cherlin-Hrushovski [ChHr03]. They deal with complete first order theories T with few λ-complete 4-types such that every finite subset of T has a finite model. Now from the classification of finite simple groups several (first order) properties of such theories were deduced. From them they get back information on automorphism groups of finite structures. An interesting gain of this investigation is that if looked at this as a round trip from classification of finite simple groups to such T’s, we get uniform bounds for some of the existence results in the classification of finite simple groups.
Note that they deal with the case the finite field is fixed, while the vector space over it varies. This is related to the properties being preserved by reducts (and interpretations) of first order theories hence we get the uniform bounds. Now by the present work some of those first order properties of such T's which they proved using finite simple groups, are redundant in the sense that they follow from the others though originally it was non-trivial to prove them. Why? Because (the relevant first order theories are 2-dependent by Observation 2.7 and so) Theorem 2.12 can be applied. More specifically, the main point is a version of modularity that looking at an expansion of $M = (V, B)$, where V is a vector space over a fixed finite field F, B a bilinear map from V to F, M an ultraproduct of finite structures, for suitable $M_0 \prec M_\ell \prec M$ for $\ell = 1, 2, acl(M_1 \cup M_2) = \{a_1 + a_2 : a_1 \in M_1, a_2 \in M_2\}$.

This raises further questions.

We thank Itay Kaplan for pointing out many many things which should be corrected and the referee for suggestions to make the paper shorter and more user-friendly.

The reader may ask

Question 0.1. Is the notion of 2-independent and more generally n-independent first order theory interesting?

In my view they certainly are. Why?

(A) Their definition is simple and natural.

True this is a statement easy to argue about, hard to convince about, you may say it is a matter of personal taste. But we can look at history: earlier cases in which the author suggest such notions proving something on them. True, the interest in the (failure of the) strict order property (see [Sh:12]; [Sh:702, §5], Kikyo-Shelah [KkSh:748], Shelah-Usvyatsov, [ShUs:789]) and n-NSOP relatives (see [Sh:500, §2], Dzamonja-Shelah [DjSh:692], Shelah-Usvyatsov [ShUs:844]) have not so far been proved to skeptics. But other cases looked for a non-trivial number of years to be in a similar situation but eventually become quite popular: stable and superstable ([Sh:2]), the independence property itself ([Sh:12]), and a more strict version of the (failure of the) strict order property = simple theory (= failure of the tree property).

(B) The theory of such classes is not empty; we prove in §2 that “the minimal bounded subgroup of G over A” behaves nicely. A skeptical reader suggests that to justify our interest we have to point out “natural examples”, i.e. from other branches of mathematics. We object to this, just as we object to a parallel view on mathematics as a whole. In both cases applications are a strong argument for and desirable, but not a necessary condition. In fact such cases were not present in the author first works on the notions mentioned above.

Moreover the connection to Chelin-Hrushovski [CH03] already showed such connection.

In any case there are such examples, generally if in $\mathcal{C} = \mathcal{C}_T$ we can define a field K and vector spaces V_1, V_2, V_3 over it (or just abelian groups) and a bilinear mapping $F : V_1 \times V_2 \to V_3$, then in the non-degenerated case the formulas $\{F(x, b) = 0 : b \in V_2\}$ form an infinite family of independent formulas. As bilinear maps appear in many examples, it makes sense even to a reasonable skeptic to look for a (real) parallel to the class of stable theories including them and 2-dependent is the most natural one.
Claim 0.2. \(\lceil T \text{ dependent} \rceil \\
Assume

(a) \(G \) is a \(\theta^* \)-definable semi-group with cancellation
(b) \(q(x,a) \) is a type, \(q(\mathcal{C},a) \) a sub-semi-group of \(G \)
(c) for \(a' \) realizing \(tp(\bar{a},A^*) \) let set \((a') = \{ b : \text{for some } a,c \in q(\mathcal{C},a') \text{ we have } abc \in q(\mathcal{C},a') \} \); (note that if \(G \) is a group, \(q(\mathcal{C},a) \) a sub-group then set \((a') = q(\mathcal{C},a) \))

then we can find \(q^* \) and \(\langle \bar{a}_i : i < \alpha \rangle \) and \(B \) such that:

(a) \(\alpha < \lambda^+ \) where \(\lambda = |T| + \ell g(\bar{a}) \)
(b) \(tp(\bar{a}_i,A^*) = tp(\bar{a},A^*) \) hence \(q(\mathcal{C},\bar{a}_i) \) a sub-semi-group of \(G \)
(c) \(q^*(x) = \bigcup \{ q(x,\bar{a}_i) : i < \alpha \} \)
(d) \(B \subseteq \bigcup_{i<\alpha} q(G,\bar{a}_i) \subseteq G \) and \(|B| \leq |\alpha| \); in fact, \(B \subseteq \bigcup_{i \in \alpha \setminus \{i\}} q(G,\bar{a}_i) \)
(e) if \(a' \) realizes \(tp(\bar{a},A^*) \) and \(B \subseteq q(\mathcal{C},a') \) then \(q^*(\mathcal{C}) \subseteq set(a') \).

Remark 0.3. This was part of \(\lceil \text{Sh:876} \rceil \), but it was claimed that it seems to be wrong: Note that we do not require \(^\ast B \subseteq q^*(\mathcal{C}) \). The following example may clarify the claim.

Let \(T \) be the theory of \((\mathbb{Q},+,-,0,1)\) say, and \(G \) the monster model. Let \(a \) be infinitesimal, namely it realizes \(p(x) := \{ 0 < x < 1/n : n = 1,2,3,\ldots \} \). Let \(q(x,a) \) say that \(|x| < a/n \) for \(n = 1,2,\ldots \). Then for any set \(A \subseteq p(\mathcal{C}) \) (of cardinality \(\leq \lambda \)) and set \(B \) (of cardinality \(\leq \lambda \)) contained in \(q(\mathcal{C},a') \) for all \(a' \in A \), there is by compactness some \(d \) realizing \(p(x) \) such that \(d/n > b \) for all \(b \in B \) and \(n = 1,2,\ldots \) and \(d < a'/n \) for all \(a' \in A \) and \(n = 1,2,\ldots \). However, what (e) of 0.2 says is: if \(a' \) realizes \(p(x) \) (i.e. \(a' \) infinitesimal) and \(B \subseteq q(\mathcal{C},a') \), i.e. \(b \in B \wedge n < \omega \Rightarrow |b| < a'/n \) then \(q^*(\mathcal{C}) \subseteq q(\mathcal{C},a') \) so if \(a \in B \) this holds.

Proof. We try to choose \(a_\alpha,b_\alpha \) by induction on \(\alpha < (|T|^{\aleph_0})^+ \) such that:

\(\circ \) (a) \(a_\alpha \) realizes \(tp(\bar{a},A^*) \)
(b) \(b_\alpha \notin q(\mathcal{C},a_\alpha) \) and \(b_\alpha \in G \) and moreover \(a,c \in q(\mathcal{C},a_\alpha) \Rightarrow \) \(ab\bar{c} \notin q(\mathcal{C},a_\alpha) \), i.e. \(b_\alpha \notin set(a_\alpha) \)
(c) \(b_\alpha \) realizes \(q(x,a_\beta) \) for \(\beta < \alpha \)
(d) \(b_\beta \) realizes \(q(x,a_\alpha) \) for \(\beta < \alpha \).

First, if we are stuck at some \(\alpha < (|T|^{\aleph_0})^+ \) then the desired result is exemplified by \(\langle \bar{a}_i : i < \alpha \rangle \) and \(B := \{ b_i : i < \alpha \} \). Note that if \(\alpha \geq 1 \) then \(B \subseteq \bigcup_{i \in \alpha \setminus \{i\}} q(\mathcal{C},a_i) \) and \(\alpha = 0 \) then \(B = \emptyset \).

Second, if we succeed we get contradiction similarly to the proof in \(\lceil \text{Sh:876, \S1} \rceil \) but we elaborate; let \(\bar{y} = (y_i : i < \ell g(\bar{a})) \). Let \(\varphi_\alpha(x,y) \in q(x,a_\alpha) \) be such that \(\mathcal{C} \models \neg \varphi_\alpha(b_\alpha,a_\alpha) \), exists by clause (b) of \(\circ \). The number of possible \(\varphi_\alpha(x,a_\alpha) \) is \(\leq \lambda \), hence for some \(\varphi_\alpha(x,y) \in \mathbb{L}(\tau_T) \) the set \(W := \{ \alpha < \lambda^+ : \varphi_\alpha(x,y) = \varphi_\alpha(x,y) \} \) is a set of cardinality \(\lambda^+ \), so it is enough to prove that for every finite non-empty \(w \subseteq W \) there is \(b_w \in \bigcap \{ \varphi_\alpha(\mathcal{C},a_\alpha) : \alpha \in W \setminus w \} \cap \bigcap \{ \varphi_\alpha(\mathcal{C},a_\alpha) : \alpha \in w \setminus \{\max(w),\min(w)\} \}. \)
Now letting $\alpha_0 < \ldots < \alpha_n$ list w, we can choose $b_w := b_{\alpha_0} \ldots b_{\alpha_n}$ (the product). Now on the one hand, $b_w \in \varphi_\ast(C, \bar{a}_w)$ for $\alpha \in W \setminus w$ because $\varphi_\ast(C, \bar{a}_\alpha)$ by the choice of φ_\ast is closed under products and $\ell < n \Rightarrow b_{\alpha_\ell} \in \varphi_\ast(C, \bar{a}_\alpha)$. On the other hand if $\ell = 1, \ldots, n - 1$ and $b_u \in \varphi_\ast(C, \bar{a}_u)$ by the “moreover” in clause (b) of ⊛ we are done. \hfill \Box_{0,2}
1. \(L_{\infty,\kappa}(\tau_T)\)-definable subgroups of bounded index

The main result of this section is Theorem 1.12: if the monster model \(\mathcal{C}\) is \(\kappa\)-saturated, \(T = Th(\mathcal{C})\) is dependent, \(G\) is a definable abelian group over \(A_\ast, |A_\ast| < \kappa\) then \(H_\ast = \cap\{H : H \text{ is a union-type-definable }^1 \text{ subgroup of } G \text{ of bounded index, i.e. } < \kappa\}\) then \(H_\ast\) is a union-type-definable over \(A_\ast\) and has index \(\leq 2^{|T| + |A_\ast|}\). As usual \(\kappa\) is strongly inaccessible (strong limit of large enough cofinality such that \((\mathcal{H}(\kappa), \in) \prec_\kappa (\mathbb{V}, \in)\) some \(n\) large enough is enough).

\{h.0\}

Context 1.1.

(a) \(\mathcal{C}\) is a monster (\(\kappa\)-saturated) model of the complete first order theory \(T\) (we assume \(\kappa\) is strongly inaccessible > \(|T|\); this just for convenience, we do not really need to assume there is such cardinal)

(b) \(p_\ast(x)\) is a type and \((x, y) \mapsto x * y, x \mapsto x^{-1}\) and \(c_G\) are first order definable (in \(\mathcal{C}\)) two-place function, one place function and element (with parameters \(\subseteq \text{ Dom}(p_\ast)\) for simplicity) such that their restriction to \(p_\ast(\mathcal{C})\) gives it a group structure which we denote by \(G = G^\mathcal{C}_{p_\ast}\). Let \(\text{ Dom}(p_\ast) = A_\ast\); we may write \(ab\) instead of \(a * b\). When the group is Abelian we may use the additive notation.

\{h.1\}

Notation 1.2. For an \(m\)-type \(p(\bar{x})\) let \(p(B) = \{\bar{b} \in \ell_{p(\bar{x})}B : \bar{b} \text{ realizes } p(\bar{x})\}\), so if \(p = p(x)\) then we stipulate \(p(\mathcal{C}) \subseteq \mathcal{C}\). For a set \(P\) of < \(\kappa\) of \(m\)-types let \(P(B) = \cup\{p(B) : p \in P\}\).

\{h.4\}

Definition 1.3. For any \(\alpha < \kappa\) and sequence \(\bar{a} \in {}^\alpha \mathcal{C}\) and \(n < \omega\) we define \(q^\beta_\alpha(x) = q^{\beta_\alpha}_A(x)\) where

(a) \(\Gamma_\beta = \{\varphi(x, \bar{a}) : \varphi \in L(\tau_T)\}\) and

(b) for \(\Gamma_1, \Gamma_2\) sets of formulas (possibly with parameters) with one free variable \(x\) we let:

\[
q^{\beta_\alpha}_{\Gamma_1, \Gamma_2}(x) =: \{\exists y_0, \ldots, y_{2n-1}\} \bigwedge_{\ell < 2n} \psi(y_\ell) \wedge \bigwedge_{\ell < m} (\varphi_k(y_{2\ell}, \bar{a}) \equiv \varphi_k(y_{2\ell+1}, \bar{a})) \wedge x = (y_0^{-1} * y_1) * \cdots * (y_{2n-2}^{-1} * y_{2n-1}) ;
\]

(c) if \(\Gamma_1 \subseteq p_\ast\) we may omit it. If \(\Gamma_2 = \Gamma_\beta\) and \(\Gamma_1 \subseteq p_\ast\) we may write \(q^{\alpha}_A\) instead of \(q^{\beta_\alpha}_A\).

Remark 1.4. We have used \(x = w(y_0^{-1}y_1, y_2^{-1}y_3, \ldots, y_{2n-2}^{-1}y_{2n-1})\) with \(w(x_0, \ldots, x_{n-1})\) the “word” \(x_0 \ldots x_{n-1}\); but we may replace \(x_0x_1 \ldots x_{n-1}\) by any group word \(w(x_0, \ldots, x_{n-1})\) and then may write \(q^{\alpha}_{\Gamma_1, \Gamma_2}(x), q^{\alpha}_{\beta_\alpha}(x)\) instead of \(q^{\beta_\alpha}_{\Gamma_1, \Gamma_2}, q^{\beta_\alpha}_{\alpha}(x)\) respectively. Of course, the subgroup of \(G\) generated by \(q^{\alpha}_A(\mathcal{C})\) includes \(q^{\alpha}_A(\mathcal{C})\) for any non-trivial group word \(w\).

\(^1\)recall that this means: is of the form \(\cup\{p_i(\mathcal{C}) : i < i_\ast\}\) where for some \(A \subseteq \mathcal{C}\) of cardinality < \(\kappa\), each \(p_i\) is a type over \(A\).
Observation 1.5. For $n < \omega$ and $\alpha \in \alpha \mathcal{C}$ as above

1. $q^n_\alpha(x)$ is a 1-type
2. $q^n_\alpha(\mathcal{C}) = \{c_0, \ldots, c_{n-1} : \text{there are } d_\ell \in p_\epsilon(\mathcal{C}) \text{ for } \ell < 2n \text{ such that } c_\ell = d_{2\ell}^{-1}d_{2\ell+1} \text{ and } d_{2\ell}, d_{2\ell+1} \text{ realize the same type over } \bar{a} \text{ for every } \ell < n\}$
3. q^1_α is equal to $|T| + N_0 + |fg(\bar{a})| + |p_\epsilon(x)|$
4. $q^n_\alpha = \bigcup \{q^n_{\alpha u} : u \subseteq fg(\bar{a}) \text{ finite}\}$
5. $q^n_\alpha = \bigcup \{q^n_{\alpha 1}, \Gamma_1 \subseteq \Gamma \text{ finite}\}$

Proof. Straightforward. \hfill \Box_{1.5}

Observation 1.6. 1) $cG \in q^n_\alpha(\mathcal{C}) \subseteq q^{n+1}_\alpha(\mathcal{C})$.
2) $q^n_\alpha(\mathcal{C})$ is closed under $(-)^{-1}$ and cG belongs to it if $a \in q^n_\alpha(\mathcal{C})$ then $a^{-1} \in q^n_\alpha(\mathcal{C})$.
3) If $a_\ell \in q^{k(\ell)}_\alpha(\mathcal{C})$ for $\ell = 1, 2$ then $a_1 + a_2 \in q^{k(1)+k(2)}_\alpha(\mathcal{C})$.
4) $\bigcup \{q^n_\alpha(\mathcal{C}) : n < \omega\}$ is a subgroup of G.
5) We have $q^n_\alpha(\mathcal{C}) \supseteq q^m_\alpha(\mathcal{C})$ when $n \leq m < \omega$ and $Rang(\bar{a}) \subseteq Rang(b)$.

Proof. Easy. \hfill \Box_{1.6}

Observation 1.7. 1) If $\bar{a}_\ell \in \alpha(\mathcal{C})$ for $\ell = 1, 2$ and $Rang(\bar{a}_1) \subseteq Rang(\bar{a}_2)$ then $q^n_{\bar{a}_1} \succ q^n_{\bar{a}_2}$.
2) Assume $n < \omega$ and $H = p(\mathcal{C})$ is a subgroup of G of bounded index (i.e. $(G : H) < \kappa$) and $\alpha < \kappa, \bar{a} \in \alpha \mathcal{C}$ has representatives from each left H-coset and $Rang(\bar{a})$ include A_α. If $p(x)$ is a 1-type $\supseteq p_\epsilon(x)$ which is over $Rang(\bar{a}) = M \in \mathcal{C}$ and $p(\mathcal{C}) = H$ then $q^n_{\bar{a}}(x) \succ p(x)$.
3) In part (1) if P is a set of G-types $\supseteq p_\epsilon(x)$ which are over $Rang(\bar{a}) = M \in \mathcal{C}$ and $P(\mathcal{C}) = H$ then $q^n_{\bar{a}}(\mathcal{C}) \subseteq H$.
4) If $\bar{a} \in \alpha \mathcal{C}$ so $\alpha < \kappa$ then we have $\bigcup_{k<\omega} q^k_{\bar{a}}(\mathcal{C})$ is a union-type definable subgroup of G of bounded index, in fact of index $\leq 2^{[\mathcal{C}]+[\alpha]}$.
5) If H is union-type-definable over \bar{a} where $\bar{a} \in \alpha \mathcal{C}, \alpha = fg(\bar{g}) < \kappa$ and H is a subgroup of G with bounded index, then $(G : H) \leq 2^{[\mathcal{C}]+[\alpha]}$.

Claim 1.8. Any subgroup of G which is union-type-definable (so using all together $< \kappa$ parameters) and is of bounded index (in G, bounded means $< \kappa$) contains a subgroup of the form $\bigcup_{n} q^n_{\bar{a}}(\mathcal{C})$ for some $\bar{a} \in \kappa^+ \mathcal{C}$ such that $A_\alpha \subseteq \mathcal{R}(\bar{a})$.

Proof. Let $\langle a_{2,i} : i < \iota(\bar{a})\rangle$ be a set of representatives of the left cosets of H in G. Let \bar{a}_1 be such that $H = \bigcup_i p_i(\mathcal{C}), p_i(x)$ a type over \bar{a}_1 and let $\bar{a}_2 = \bar{a}_1 \succ (a_{2,i} : i < \iota(\bar{a})\rangle)$. Clearly if $a, b \in G$ realize the same type over \bar{a}_2 then $ab^{-1} \in H$.

By applying 1.6. and 1.7(1) we are done. \hfill \Box_{1.8}

Main Claim 1.9. Assume T is dependent and G is Abelian. If $k(1) + 2 < k(2) < \omega$ and $\alpha < \kappa$, then there are $\lambda < \kappa$ and $\bar{a}_\alpha \in \alpha \mathcal{C}$ for $\varepsilon < \lambda$ such that for every $\bar{a} \in \alpha \mathcal{C}$ satisfying $A_\varepsilon \subseteq \mathcal{R}(\bar{a})$ we have $\cap \{q^n_{\bar{a}_\varepsilon} : \varepsilon < \lambda\} \subseteq q^n_{\bar{a}_\alpha}(\mathcal{C})$, i.e. $\bigcup_{\varepsilon < \lambda} q^n_{\bar{a}_\varepsilon} \succ q^n_{\bar{a}_\alpha}$. \hfill \Box_{1.20}

Remark 1.10. 1) We may choose λ and \bar{a}_ε for $\varepsilon < \lambda$ independently of $k(1), k(2)$.
2) The proof says that $\lambda = 2^{[\mathcal{C}]+[\alpha]+[A_\alpha]}$ is enough.
Question 1.11. Is G abelian or the subgroup abelian necessary?

Proof. Stage A: Let $\lambda := (2^{2^{\aleph_0}} + |\mathcal{T}| + |\mathcal{A}_e|)$, and assume that the desired conclusion fails for λ.

Stage B: As this fails, we can find $\langle a_\xi, c_\xi : \varepsilon < \lambda^+ \rangle$ such that:

(a) $a_\xi \in \mathfrak{a}_e$ and $A_e \subseteq \text{Rang}(a_\xi)$

(b) $c_\xi \in \bigcap \{ q_\eta^{k(1)}(\mathcal{C}) : \zeta < \varepsilon \} \subseteq G$ equivalently $c_\xi \in q_\eta^{k(1)}(\mathcal{C})$ for $\zeta < \varepsilon$

(c) $c_\xi \notin q_\eta^{k(2)}(\mathcal{C})$.

[Why? Choose (a_ξ, c_ξ) by induction on $\varepsilon < \lambda^+$.]

Stage C: Without loss of generality $\langle a_\xi, c_\xi : \varepsilon < \lambda^+ \rangle$ is an indiscernible sequence over A_e.

[Why? We first use Erdős-Rado theorem to replace clause (c) by

$$(c') c_\xi \in \langle \bigwedge_{k<m} \varphi_\varepsilon(\mathcal{C}, a_\xi) \rangle$$

and then use Ramsey theorem (and compactness, i.e. saturation of \mathcal{C}).]

Stage D: For $\varepsilon < \lambda^+$ let $c'_\xi = c_\xi^{e_\varepsilon} * c_{2e+1}$ and let $a'_\xi = a_{2e}$ and for any finite $u \subseteq \lambda^+$ let $c'_u = c'_0 * \ldots * c'_{m-1}$ whenever $\varepsilon_0 < \varepsilon_1 < \ldots < \varepsilon_{m-1}$ list u.

Stage E: If $u \subseteq \lambda^+$ is finite and $\varepsilon \in \lambda^+ \setminus u$ then c'_u realizes $q_\eta^{k(2)}$.

[Why? As G is abelian, using additive notation $c'_u = \sum c_{2i+1} : \zeta \in u \} = \sum c_{2i} : \zeta \in u$. By the indiscernibility the sequences $(c_{2i+1} : \zeta \in u), (c_{2i} : \zeta \in u)$ realize the same type over $a'_\xi = a_{2e}$ as $\varepsilon \notin u$, (noting the specific sequences we use) hence $\sum c_{2i+1} : \zeta \in u$ and $\sum c_{2i} : \zeta \in u$ are members of G realizing the same type over $a'_\xi = a_{2e}$ hence $c'_u \in q_\eta^{k(2)}$. So the conclusion is clear.]

Stage F: There is a finite sequence $\bar{\vartheta} = \langle \vartheta_\ell(x, \bar{y}) : \ell < \ell(*) \rangle$ of formulas, $\ell_\vartheta(\bar{y}) = \alpha$ and $\varphi = \langle \varphi_\ell(x, \bar{y}) : i < i(*) \rangle$, $\varphi_\ell(x, \bar{y}) \in p_\ell(x)$ for $i < \ell(*) < \omega$, $\bar{y} \subseteq A_e$ such that: for $\varepsilon < \lambda^+$, for $d_0, \ldots, d_{2k(2)-1} \in \bigcap \varphi_\ell(\mathcal{C}, b)$, do we have $c_{2k} = c_{2k}^{e_*} * \ldots * c_{2k-1}^{e_*}$ for some $e_* < i(*)$.

\begin{align*}
\sum_{\ell < k(2)} ((-d_{2\ell}) + d_{2\ell+1}) \land \ell < \ell(*) \land k < k(2) \Rightarrow \mathcal{C} \models \vartheta_\ell(d_{2k}, a_\xi) \equiv \vartheta_\ell(d_{2k+1}, a_\xi),
\end{align*}

in other words $c_{2k} \notin \vartheta^{(*)}(\mathcal{C}, a'_\xi)$ where $\vartheta^{(*)}(x, a'_\xi) \in q_\eta(\vartheta^{(*)}(x, a'_\xi), \ell < \ell(*) \rangle(\mathcal{C})$ says the above, i.e. is $\neg \exists (z_{2k}, z_{2k+1}) \langle \bigwedge_{k < k(2)} \varphi_\ell(z_{2k}, b) \rangle \land \bigwedge_{\ell < k(2)} \vartheta_\ell(z_{2k+1}, a'_\xi) \equiv \vartheta_\ell(z_{2k+1}, a'_\xi)$.]

[Why? Because $c_{2k} \notin \eta^{k(2)}(\mathcal{C})$, see (c) of stage (B). By compactness, we can choose finitely many formulas; by the indiscernibility their choice does not depend on ε, see stage (C).]

Stage G: If $u \subseteq \lambda^+$ is finite and $\varepsilon \in u$ then $c'_u \notin \eta^{k(*)}(\mathcal{C}, a'_\xi)$ for any $k(*) \leq k(2) - 1 - k(1)$.

[Why? Because

\begin{align*}
(a) \quad c'_u = \sum \{ c'_\xi : \zeta \in u \}\setminus \varepsilon \} - c_{2\varepsilon} + c_{2\varepsilon+1}
\end{align*}

hence

\begin{align*}
(b) \quad c_{2\varepsilon} = \sum \{ c'_\xi : \zeta \in u \}, \varepsilon + c_{2\varepsilon+1} - c'_u
\end{align*}
(c) \(\Sigma \{ c'_\zeta : \zeta \in u \setminus \{ \varepsilon \} \} \subseteq q_{k}^{(1)}(\{ \vartheta(x, a'_\zeta) : \ell < \ell(\zeta) \})(C) \).

[Why? As in stage E.]

(d) \(c_{2_\varepsilon} + 1 \in q_{a_{2_\varepsilon}}^{k(1)}(C) \subseteq q_{\vartheta(x, a'_\zeta)}^{k(1)}(\{ \vartheta(x, a'_\zeta) : \ell < \ell(\zeta) \})(C) \).

[Why? First, the membership by clause (b) of Stage B. Second, the inclusion by monotonicity as \(a'_\zeta = a_{2_\varepsilon} \).

(e) \(c_{2_\varepsilon} \notin q_{k}^{(2)}(\{ \vartheta(x, a'_\zeta) : \ell < \ell(\zeta) \})(C) \); moreover, \(c_{2_\varepsilon} \notin \vartheta^*(C, a_{2_\varepsilon}) = \vartheta^*(C, a'_\zeta) \).

[Why? By Stage F.]

Now consider the right side in clause (b).

The first summand is from \(q_{k}^{1}(\vartheta(x, a'_\zeta) : \ell < \ell(\zeta)) \)(C) by clause (c).

The second summand is from \(q_{k}^{(1)}(\vartheta(x, a'_\zeta) : \ell < \ell(\zeta)) \)(C) by clause (d).

For awhile assume \(c'_u \in \vartheta^*(C, \tilde{a}'_u) \) so \((-c'_u) \in q_{k}^{(1)}(\vartheta(x, a'_\zeta) : \ell < \ell(\zeta)) \)(C) then by 1.6(3) and the previous two sentences we deduce \(\Sigma \{ c'_\zeta : \zeta \in u \setminus \{ \varepsilon \} \} + c_{2_\varepsilon} + 1 + (-c'_u) \in q_{k}^{(1)+1+k(1)}(\vartheta(x, a'_\zeta) : \ell < \ell(\zeta)) \)(C) which by clause (b) means \(c_{2_\varepsilon} \in q_{k}^{(1)+1+k(1)}(\vartheta(x, a'_\zeta) : \ell < \ell(\zeta)) \)(C). Now by the assumption of the stage we have \(k(2) \geq k(1) + 1 + k(1) \) but \(q_{k}^{(1)}(C) \) does \(\subseteq \)-increase with \(n \) hence from the previous sentence we get a contradiction to clause (e). So necessarily \(c'_u \notin \vartheta^*(C, \tilde{a}_u) \), the desired conclusion of this stage.]

Stage H: Let \(k(*) := k(2) - 1 - k(1) \).

By Stages (E)+(G) we have: for finite \(u \subseteq \lambda^+, c'_u \) realizes \(q_{\vartheta(x, a'_\zeta) : \ell < \ell(\zeta)}^{k(*)} \)(C) iff \(\varepsilon \in u \) iff \(C = \vartheta^*(c'_u, a'_\zeta) \). So \(\vartheta^*(x, y) \in L(\tau_T) \) has the independence property, contradiction. \(\square_{1.9} \) \(\{h.24\} \)

Theorem 1.12. Assume \(T \) is dependent and \(G \) is Abelian. There is \(P \subseteq S(A_\tau) \) such that:

(a) \(P(C) := \cup \{ p(C) : p \in P \} \) is a subgroup of \(G \) of bounded index, i.e. \((G : P(C)) < \bar{k} \).

(b) \((G : P(G)) \leq 2\#A_\tau + |T| + \aleph_0 \).

(c) \(P(C) \) is minimal, i.e., if \(\alpha < \bar{k}, \tilde{a} \in C, P(C, \tilde{a}) \) is a subgroup of \(G \) then \(P(C, \tilde{a}) \) is of bounded index iff \(P(C, \tilde{a}) \geq P(C) \).

Proof.

Note:

\(\oplus_1 \) there is \(P \subseteq S(A_\tau) \) such that \(P(C) \) is a subgroup of \(G \) of bounded index.

[Why? Use \(P = \{ p \in S(A_\tau) : p_{\alpha} \subseteq p \} \} \).

\(\oplus_2 \) the family of \(P \)'s as in \(\oplus_1 \) is closed under intersection.

[Why? As \(\bar{k} \) is strongly inaccessible or just \(\text{cf}(\bar{k}) > 2^{|A_\tau| + |T| + \aleph_1} \geq 2(|P| : P \subseteq S(A_\tau)) \) hence the product of \(\leq 2^{|A_\tau| + |T| + \aleph_0} \) cardinals \(< \bar{k} \) is \(< \bar{k} \).

\(\oplus_3 \) Let \(P^* = \cap \{ P \subseteq S(A_\tau) : P(C) \) is a subgroup of a bounded index \(\} \).

We shall show that \(P^* \) is as required.

So by \(\oplus_2 + \oplus_3 \)
Clause (a) holds, i.e. $P^* \subseteq S(A_\alpha)$ and $P^*(\mathfrak{C})$ is a subgroup of G of bounded index.

Clause (b), i.e. $(G: P^*(\mathfrak{C})) \leq 2^{|A_\alpha| + |\mathcal{T}| + n_\alpha}$.

[Why? Follows from 1.7(5).]

Recall

If $1 \leq k < \omega$ and P is a set one-types (of cardinality $< \bar{\kappa}$) and $P(\mathfrak{C})$ a subgroup of G of bounded index then $q^{k}_{\bar{a}}(\mathfrak{C}) \subseteq P(\mathfrak{C})$ for some $\bar{a} \in \mathfrak{a}^\mathfrak{C}$ for some $\alpha < \kappa$.

[Why? See above 1.8.]

Fix $\alpha < \bar{\kappa}$ and we shall prove that:

- If $\bar{a}^* \in \mathfrak{a}^\mathfrak{C}, A_* \subseteq \text{Rang}(\bar{a}_*)$ and $P_{\bar{a}^*} := \{ p \in S(\bar{a}^*) : p \text{ extend } q^n_{\bar{a}^*} \text{ for some } n \}$, so $P_{\bar{a}^*}(\mathfrak{C}) = \bigcup_{n<\omega} q^n_{\bar{a}^*}(\mathfrak{C})$ is a subgroup of G of bounded index then $P^*(\mathfrak{C}) \subseteq P_{\bar{a}^*}(\mathfrak{C})$.

This clearly suffices by \otimes_4, \otimes_5 and \otimes_6, i.e. \otimes means that clause (c) of the conclusion holds by \otimes_6.

Now comes the real point:

For $k < \omega$ we can choose $\lambda_k < \bar{\kappa}$ and $\langle \bar{a}_k^\varepsilon : \varepsilon < \lambda_k \rangle$ such that:

- $\bar{a}_k^\varepsilon \in \mathfrak{a}^\mathfrak{C}$ for $\varepsilon < \lambda_k$
- For every $\bar{a} \in \mathfrak{a}^\mathfrak{C}$ we have $(\bigcup_{\varepsilon < \lambda_k} q^n_{\bar{a}^\varepsilon}) \vdash q^{k+3}_{\bar{a}}$.

[Why is there such a sequence? By the main claim 1.9 so actually $\lambda_k = (2^{2^{|T|+|A_\alpha|+|\mathfrak{g}(\bar{a}^*)|}})$ suffice by the proof of 1.9.]

Define

- $X_k := \bigcap \{ q^n_{\bar{a}^\varepsilon}(\mathfrak{C}) : \varepsilon < \lambda_k \}$
- $Y_k := \bigcap \{ q^n_{\bar{a}}(\mathfrak{C}) : \bar{a} \in \mathfrak{a}^\mathfrak{C} \}$.

Then:

- $Y_k \subseteq X_k$.
- $X_k \subseteq Y_{k+3}$.
- $\bigcup_{k<\omega} X_k = \bigcup_{k<\omega} Y_k$.
- $Y_k = P_k(\mathfrak{C})$ for some $P_k \subseteq S(A_\alpha)$.

[Why? As any automorphism F of \mathfrak{C} over A_α maps Y_k onto itself as it maps $q^n_{\bar{a}}(\mathfrak{C})$ to $q^n_{F(\bar{a})}(\mathfrak{C})$.]

- $\bigcup_{k<\omega} Y_k$ is $(\bigcup_{k<\omega} P_k) (\mathfrak{C})$.

Why? As any automorphism F of \mathfrak{C} over A_α maps Y_k onto itself as it maps $q^n_{\bar{a}}(\mathfrak{C})$ to $q^n_{F(\bar{a})}(\mathfrak{C})$.]
[Why? By ⊗_{11}.]

⊗_{13} \bigcup_{k<\omega} X_k is a subgroup of G of bounded index.

[Why? By 1.6(3) + 1.7(4).]

Recall \(P_a \) is from \(\Box \) above.

⊗_{14} Y_k \subseteq P_a(\mathcal{C}).

[Why? By the definition of \(Y_k \) and ⊗_{7} we have \(Y_k \subseteq g^k_{P_a^*}(\mathcal{C}) \subseteq P^*_a(\mathcal{C}) \).]

Let us sum up and prove \(\Box \) thus finishing: \(P^*_a(\mathcal{C}) \) include \(\bigcup_{k<\omega} Y_k \) by ⊗_{14} and \(\bigcup_{k<\omega} Y_k \) is equal to \(\bigcup_{k<\omega} X_k \) by ⊗_{10}, and is equal to \((\bigcup_{k<\omega} P_k)(\mathcal{C}) \) by ⊗_{12}. Hence by ⊗_{13} we know that \((\bigcup_{k<\omega} P_k)(\mathcal{C}) \) is a subgroup of G of bounded index, hence by the definition of \(P^* \) in ⊗_{3} we know that \(\bigcup_{k<\omega} P_k \subseteq P^* \). Hence \((\bigcup_{k<\omega} P_k)(\mathcal{C}) \) includes \(P^*(\mathcal{C}) \). So \(P^*_a(\mathcal{C}) \supseteq \bigcup_{k<\omega} Y_k = (\bigcup_{k<\omega} P_k)(\mathcal{C}) \supseteq P^*(\mathcal{C}) \) as required in \(\Box \).

So we have proved \(\Box \) hence has proved the conclusion. \(\square_{1.12} \)
We try to see what, from 2-dependence of T, we can deduce on definable groups. On n-dependent T see [Sh:863, §5 (H)].

Hypothesis 2.1.

(a) T be first order complete, $\mathcal{C} = \mathcal{C}_T$

(b) G is a type definable group over A_*, i.e. for some 1-type p_*, G has a set of elements $p_*(\mathcal{C})$ and the functions $(x, y) \mapsto xy, x \mapsto x^{-1}, e_G$ which are definable over $A_* = \text{Dom}(p_*)$; this is irrelevant for 2.4 - 2.10.

Definition 2.2. For a set $B \subseteq \mathcal{C}$ let

(a) $R_B = \{q : q = q(x) \text{ is a 1-type over } B \text{ and } G_q \text{ a subgroup of } G \text{ of index } < \kappa\}$ where

(b) $G_q = G[q] = \{a \in G : a \text{ realizes } q\} = (p_* \cup q)(\mathcal{C})$

(c) $q_B = q[B] = \{q : q \in R_B\}$ and $G_B = q_B(\mathcal{C}) \cap G$ and, of course

(d) $R_\kappa = R_{\text{Rang}(\kappa)}$ and $q_\kappa = q_{\text{Rang}(\kappa)}$ and $G_\kappa = G_{\text{Rang}(\kappa)}$

Observation 2.3. 1) $q_B = \cup \{q_\beta : \beta \in \omega \geq B\} = \{q \in R_B : q \text{ countable}\}$.

2) q_κ is \subseteq-maximal in R_κ.

3) $G_B = \cap \{G_q : q \in R_B\} = \{G_q : q \in R_B \text{ is countable}\}$ and is \subseteq-minimal in $\{G_q : q \in R_B\}$.

4) If $q \in R_B$ and $q' \subseteq q$ is countable then we can find a sequence $(\psi_n(x, a) : n < \omega)$ of finite conjunctions of members of q such that:

(a) $p_*(x) \cup \{\psi_n(x, a) : n < \omega\} \vdash q'(x)$

(b) $\psi_{n+1}(x, a) \vdash \psi_n(x, a)$

(c) $\bar{a} \in \omega \geq B$, (for notational simplicity we allow it to be infinite)

(d) $p_*(x) \cup p_*(y) \cup \{\psi_{n+1}(x, a), \psi_{n+1}(y, a)\} \vdash \psi_n(xy, a) \land \psi_n(x^{-1}, a) \land \psi_n(x, a)$.

5) In part (4), if we allow $\psi_n(x, \bar{a}_n)$ to be a finite conjunction of members of $q \cup p_*$ (e.g. if $p_* \subset q$ then) we can omit p_* in clauses (a), (b) so $\bigcap_{n<\omega} \psi_n(\mathcal{C}, a)$ is a group.

6) There is a countable $p'(x) \subseteq p_*(x)$ such that $p'(\mathcal{C})$ is a group under the definable functions $(x, y) \mapsto xy, x \mapsto x^{-1}, e_G$, moreover there is a sequence $(\psi_n(x, a) : n < \omega)$ of finite conjunctions of members of $p_*(x)$ such that:

(a) $\bigwedge_{\ell \leq 2} \psi_0(x_\ell, a) \vdash (x_0 x_1) x_2 = x_0 (x_1 x_2) \land x_0 e_G = e_G x_0 = x_0 \land x_0 x_0^{-1} = x_0^{-1} x_0 = e_G$, (implicitly this means that $x_0 x_1, (x_0 x_1) x_2, x_1 x_2, x_0 (x_1, x_2)$ and x_0^{-1} are well defined)

(b) $\psi_{n+1}(x, a) \vdash \psi_n(x)$

(c) $\psi_{n+1}(x, a) \land \psi_{n+1}(y, a) \vdash \psi_n(xy, a) \land \psi_n(x^{-1}, a) \land \psi_n(xy^{-1}, a)$.

Proof. Obvious and as in [Sh:876].

Definition 2.4. 1) We say T is 2-independent when we can find an independent sequence of formulas of the form $(\varphi(\bar{x}, \bar{b}_n, \bar{c}_n) : n, m < \omega)$ in $\mathcal{C} = \mathcal{C}_T$ or just in some model of T.

2) T is 1/2-dependent (or “T is 2-dependent”) means the negation of 2-independent (see [Sh:863, §5 (H)]).
3) We say \(\varphi(\bar{x}, \bar{y}_0, \ldots, \bar{y}_{n-1}) \) is \(n \)-independent (for \(T \)) when in \(\mathcal{C}_T \) we can, for each \(\lambda < \kappa \), find \(\bar{a}_\alpha \in \ell(g(y)) \mathcal{C}_T \) for \(\alpha < \lambda, \ell < n \) such that the sequence
\[
\langle \varphi(\bar{x}, a_0^{\eta(0)}, \ldots, a_{n-1}^{\eta(n-1)}) : \eta \in n_\lambda \rangle
\]
is an independent sequence of formulas.

4) \(T \) is \(n \)-independent when some formula \(\varphi(\bar{x}, \bar{y}_0, \bar{y}_1, \ldots, \bar{y}_{n-1}) \) is \(n \)-independent.

5) \(T \) is \((1/n)\)-dependent (or \(T \) is \(n \)-dependent) when it is not \(n \)-independent.

Remark 2.5. 1) In fact \(T \) is \(n \)-independent iff some \(\varphi(\bar{x}, \bar{y}_0, \ldots, \bar{y}_{n-1}) \) is \(n \)-independent (for \(T \)). We shall write it down in 2.6 below.

2) So \(1 \)-independent means independent.

Claim 2.6. 1) For a complete first order theory \(T \), there is a \(2 \)-independent formula \(\varphi(\bar{x}, \bar{y}, \bar{z}) \) in \(T \) iff \(T \) is \(2 \)-dependent, i.e. for some \(m \geq 1 \) there is a \(2 \)-independent formula \(\varphi(\bar{x}_m, \bar{y}_m, \bar{z}) \) with \(\bar{x}_m = \{ x_\ell : \ell < m \} \) iff this holds for every \(m \geq 1 \).

2) Similarly for \(k \)-independent.

3) Moreover, if the formula \(\varphi(\bar{x}_m, \bar{y}_0, \ldots, \bar{y}_{k-1}) \) is \(k \)-independent, then for some \(n < m \) and \(\{ b_i : i < m, i \neq m \} \) the formula \(\varphi = \varphi(b_0, \ldots, b_{n-1}, x, b_{n+1}, \ldots, b_{m-1}, \bar{y}_0, \ldots, \bar{y}_{k-1}) \) is \(k \)-independent.

Proof. 1) By (2).

2) Easily the third statement implies the second, obviously the first statement implies the third as trivially we can add dummy variables. For the “second implies the first” direction we prove it by induction on \(m \); so assume \(k < \omega \), \(\bar{x}_m = \{ x_\ell : \ell < m \} \) and the formula \(\varphi(\bar{x}_m, \bar{y}_0, \ldots, \bar{y}_{k-1}) \) is \(k \)-independent.

Let \(\ell(g(\bar{y})) = \sum_{\ell=1}^k \ell \), of course, without loss of generality \(m > 1 \). This means that in \(\mathcal{C}_T \) we have \(\bar{a}_{\ell,i} \in \ell(g(\bar{y})) \mathcal{C}_T \) for \(\ell < k, i < \omega \) such that the sequence \(\langle \varphi(\bar{x}_m, a_{0,\eta(0)}, \ldots, a_{k-1,\eta(k-1)}) : \eta \in k_\omega \rangle \) of formulas is independent. Let \(\text{inc}_n(\omega) = \{ \eta \in n_\omega : \eta \text{ increasing} \} \), similarly \(\text{inc}_{<n}(\omega) \).

So for any \(R \subseteq \text{inc}_k(\omega) \) there is \(\bar{b}_R \in \mathcal{C}_T \) such that \(\mathcal{C} = \varphi(\bar{b}_R, a_{0,\eta(0)}, \ldots, a_{k-1,\eta(k-1)}) \models (\eta \in R) \) for \(\eta \in \text{inc}_n(\omega) \).

As we can add dummy variables without loss of generality \(\bar{a}_{\ell,i} = \bar{a}_i \), i.e. it does not depend on \(\ell \) and also \(\bar{a}_i : i < \omega \) is an indiscernible sequence.

Let \(R \subseteq \text{inc}_n(\omega) \) be random enough.\(^2\)

For \(\eta \in \text{inc}_{<n}(\omega) \), let \(\bar{a}_0 = a_{\eta(0)} \cdot \bar{a}_{\eta(1)} \cdot \ldots \cdot \bar{a}_{\eta(k-1)} \).

We say \(u_1, u_2 \subseteq \omega \) are \(R_\ast \)-similar if \(|u_1| = |u_2| \) and the one-to-one order preserving function \(h \) from \(u_1 \) onto \(u_1 \) is an isomorphism from \((u_1, R \ast | u_1) \) onto \((u_2, R \ast | u_2) \).

Let \(I \) be the model \((\omega, <, R_\ast)\).

Without loss of generality (by Nesselbril-Rodl theorem see e.g. [GRS90]; on such uses see [Sh:59, Ch.III,§1] = [Sh:E59], in particular [Sh:E59, 1.26])

\((*)_1\) in \(\mathcal{C} \), the sequence \(\langle \bar{a}_t : t \in I \rangle \) is indiscernible above \(b_{R_\ast} \), which means \n\((*)_2\) if \(j < \omega \) and \(\eta_\ell \in \text{inc}_j(\omega), u_\ell = \text{Rang}(\eta_\ell) \) for \(\ell = 1, 2 \) and \(u_1, u_2 \) are \(R_\ast \)-similar then \(\bar{a}_{u_1}, \bar{a}_{u_2} \) realizes the same type in \(\mathcal{C} \) over \(b_{R_\ast} \).

Let \(b_{R_\ast} = \bar{b}_1 \cdot \bar{b}_2 \) where \(\ell(g(\bar{b}_1)) < m, \ell(g(\bar{b}_2)) < m \).

So by \((*)_1\) we have

\(^2\)which means that e.g. choose a countable \(N \prec (\mathcal{H}(\mathcal{N}_1), \in) \) and \(R_\ast \) does not belong to any null Borel subset of \(\mathcal{P}(\text{inc}(\omega)) \); the probability space is defined by considering \(R_\ast \) as the random subset and the events “\(\eta \in R_\ast \)” for \(\eta \in \text{inc}_n(\omega) \) are independent, each of probability 1/2.
\(\ast\)_3 if \(\eta \in \text{inc}_k(\omega)\) then the value \(\text{tp}(\bar{a}_\eta, \bar{b}_2, \mathcal{C})\) depends just on truth value of \(\eta \in R_*\).

First, assume \(\{\text{tp}(\bar{a}_\eta, \bar{b}_2, \mathcal{C}) : \eta \in \text{inc}_k(\omega)\}\) is constant, then letting \(x' = x \upharpoonright \ell g(\bar{b}_1)\) the formula \(\varphi(x', \bar{b}_2, \bar{y}_0, \ldots, \bar{y}_{k-1})\) is \(k\)-independent when \((\bar{a}_i : i < \omega)\) is indiscernible over \(\bar{b}_2\); pedantically the formula \(\varphi(x', (\bar{y}_1, \ldots, \bar{y}_{k-1}), \bar{y}_1, \ldots, \bar{y}_{k-1})\) is (the restriction to increasing sequences is not serious, see 2.7(4) below), so by the induction hypothesis we are done.

If \((\bar{a}_i : i < \omega)\) is not an indiscernible sequence over \(\bar{b}_0\), then let \(n\) be minimal such that we can choose \(i_0 < \ldots < i_{n-1} < \omega, j_0 < \ldots < j_{n-1} < \omega\) we have \(\text{tp}(\bar{a}_{i_0}, \ldots, \bar{a}_{i_{n-1}}, \bar{b}_2) \neq \text{tp}(\bar{a}_{j_0}, \ldots, \bar{a}_{j_{n-1}}, \bar{b}_2)\). By \((\ast)_2\) the sets \(\{i_\ell : \ell < n\}, \{j_\ell : \ell < n\}\) are not \(R_*\)-similar. Without loss of generality there is a unique \(v \in [n]^k\) such that \((i_\ell : \ell \in v) \in R_* \iff (j_\ell : \ell \in v) \notin R_*\). Now playing with indiscernible and using \(\bar{b}_2, (\bar{a}_i : i < n, i \in v)\) as parameters we can finish.

Second assume that \(\{\text{tp}(\bar{a}_\eta, \bar{b}_2, \mathcal{C}) : \eta \in \text{inc}_k(\omega)\}\) is not constant, by \((\ast)_1\) equivalently \((\ast)_2\) this means that there is a formula \(\psi(\bar{x}_\ell, \bar{y}_0, \ldots, \bar{y}_{k-1})\) such that:

\[\ast\] if \(\eta \in \text{inc}_k(\omega)\) then \(\mathcal{C} \models \psi[\bar{b}_2, \bar{a}_{\eta(0)}, \ldots, \bar{a}_{\eta(k-1)}]\) iff \(\eta \in R_*\).

This also suffices by \((\bar{a}_i : i < \omega)\) being an indiscernible sequence.

3) As in part (2). \(\Box_{2.6}\)

\{nd.17\}

Observation 2.7. 1) \(T\) is \(k\)-dependent when for every \(m, \ell\) and \(\varphi(\bar{x}_m, \bar{y}) \in L(\mathcal{T})\) for infinitely many \(n < \omega\) we have \(|A| \leq n \Rightarrow |S_m^\omega(\varphi(\bar{x}_m, \bar{y})) (A)| < 2^{n/\ell}\). 2) In fact we can restrict ourselves to \(m = 1\) and/or we can replace \(\{\varphi(\bar{x}_m, \bar{y})\}\) by \(\Delta = \{\varphi(\bar{x}_m, \bar{y}_\ell) : \ell < \ell_*\}\). 3) For any \(k, T\) is \(k\)-independent if \(T^\omega\) is \(k\)-independent.

3A) \(T\) is not \(k\)-independent when for every \(\varphi(\bar{x}, \bar{y}_0, \ldots, \bar{y}_{k-1}) \in L(\mathcal{C}_T^\omega)\), for infinitely many \(n\) we have \(A \subseteq \mathcal{C}_T^\omega \land |A| \leq kn \Rightarrow |S_{\varphi(\bar{x}, \bar{y}_0, \ldots, \bar{y}_{k-1})} (A)| < 2^n\).

4) In Definition 2.4(3) we can restrict ourselves to “increasing \(\eta\)”, similarly in 2.4(1).

In fact, \(\varphi(\bar{x}, \bar{y}_0, \ldots, \bar{y}_{k-1})\) is \(k\)-independent if for every \(n\) there are \(\bar{a}_\ell, m \in \mathcal{F}(\bar{h}_1) \mathcal{C}\) for \(m < n, \ell < k\) such that \(\varphi(\bar{x}, \bar{a}_{\eta(0)}, \ldots, \bar{a}_{k-1, \eta(k-1)}) : \eta \in \text{inc}_k(n)\) is an independent sequence of formulas.

Proof. 1) Straightforward and see [Sh:863, §5 (G)].

2) Similarly using 2.6 above.

3) Easy by the definition.

3A) By parts (1),(2).

4) It is enough to prove the second sentence; for every \(n\) we first find \((\bar{a}_{\ell, m} : m < nk, \ell < k)\) as guaranteed there (for \(nk\)). Now let \(\bar{a}_{\ell, m} = \bar{a}_{\ell, m+n}\) so \((\bar{a}_{\ell, m} : m < n, \ell < k)\) are as required in 2.4(3) for \(\lambda = n\). By compactness equivalently, by “\(\mathcal{C}\) is \(\kappa\)-saturated” we are done. \(\Box_{2.7}\)

\{dt.23\}

Example 2.8. Let \(k \geq 1\), a natural \(k\)-independent but \(1/(k+1)\)-dependent theory, as simple as possible, is the model completion of the following theory (so for \(k = 1\) this is a \((1/2)\)-dependent, independent \(T\)):

- \((A)\) the vocabulary is \(P_\ell (\ell < k + 1)\), unary predicates
- \(R\), a \((k + 1)\)-place predicate
DEFINABLE GROUPS FOR DEPENDENT AND 2-DEPENDENT THEORIES

(B) \(M \) a model of \(T \) if:
(a) \(\{ P_M^\ell : \ell \leq k \} \) is a partition of \(|M| \)
(b) \(R_M \subseteq \{(a_0, \ldots, a_k) : a_\ell \in P_M^\ell \text{ for } \ell = 0, \ldots, k \} \).

[Note first that clearly the model completion exists and has elimination of quantifiers. Second, the formula \(R(x, y_0, \ldots, y_{k-1}) \) exemplifies that \(T_k \) is \(k \)-independent. Third, \(T \) is \(1/(k + 1) \)-independent by 2.7(1) and the elimination of quantifiers.]

Example 2.9. Let \(T_n \) be the theory with the vocabulary \(\{ R \} \), \(R \) is \(n \)-place predicate such that \(T \) is saying \(R \) is symmetric and irrellexive (i.e. \(\forall_{i<j<n} x_i = x_j \Rightarrow \neg R(x_0, \ldots, x_{n-1}) \) and \(\bigwedge_{\pi} R(x_{\pi(0)}, \ldots, x_{\pi(n-1)}) \equiv R(x_{\pi(0)}, \ldots, x_{\pi(n-1)}) \) for permutations \(\pi \) of \(\{0, \ldots, n-1\} \).

Let \(T_n \) be the model completion of \(n \). Then \(T_n \) is \((n - 1) \)-independent but not \(n \)-independent (for not \(n \)-independent use 2.7(1)).

Example 2.10. Any theory \(T \) of an infinite Boolean algebras is (independent, moreover) \(k \)-independent for every \(k \).

[Why? Let for simplicity \(k = 2 \). Let \(\varphi(x, y) := (y \cap z \leq x) \). Now for any \(n \), let \(B \) be a Boolean sub-algebra of \(C_T \) with pairwise disjoint non-zero elements \(\langle a_{i,j} : i, j < n \rangle \) and let \(b_i := \bigcup \{a_{i,j} : j < n \} \) and \(c_j := \bigcup \{a_{i,j} : i < n \} \). Now \(\langle \varphi(x, b_i, c_j) : i, j < n \rangle \) are independent because for \(u \subseteq n \times n \) the element \(a_u := \bigcup \{a_{i,j} : (i, j) \in u \} \) realizes the type \(\{ (\varphi(x, b_i, c_j))^{U(i,j) \in u} : (i, j) \in u \} \). For \(n > 2 \) we use \(\varphi(x, y_0, y_1, \ldots, y_{n-1}) = (y_0 \cap y_1 \cap \ldots \cap y_{n-1}) \leq x^2 \).

Now comes the property concerning the definable group \(G \) which interests us.

Definition 2.11. We say that \(G \) has \(\kappa \)-based bounded subgroups when: for every \(\kappa \)-saturated \(M \prec \mathcal{C} \) which include \(A_\kappa \) (hence \(p_\kappa \subseteq q_M \) and \(b \in \omega^\kappa \mathcal{C} \) there is \(r \in R_M, b \) of cardinality \(< \kappa \) such that \(q_{M, b} \) is equivalent to \(q_M \cup r \) (equivalently \(q_M \cup r \models q_{M, b} \)), see Definition 2.2.

The main result here is

Theorem 2.12. If \(T \) is 1/2-dependent and \(\kappa = \bigcup \{ |T| + |p_\kappa| \}^+ \) or just \(\kappa = \bigcup \{ |T| + |p_\kappa| \}^+ \) (and \(G \) is as in \ref{2.1}) then \(G \) has \(\kappa \)-based bounded subgroups.

Proof. Assume not and let \(\theta = \kappa_0 \). Let \(M \) and \(b \in \omega^\kappa \mathcal{C} \) form a counter-example. Then we choose the triple \(\langle r_\alpha, c_\alpha, d_\alpha \rangle \) by induction on \(\alpha < \kappa \) such that:

\[
\begin{align*}
\otimes_1 (a) & \quad c_\alpha \in \omega^\kappa M \\
(b) & \quad r_\alpha = r_\alpha(x, c_\alpha, b) = \{ \psi_\alpha^n(x, c_\alpha, b) : n < \omega \} \in R_{c_\alpha, b}, \text{ see } 2.2 \\
(c) & \quad d_\alpha \in G_{c_\alpha, b} \text{ or just (which follows) } d_\alpha \in G_{c_\beta} \text{ for } \beta < \alpha \\
(d) & \quad d_\alpha \notin G_{c_\alpha} \text{ moreover without loss of generality } \mathcal{C} \models \neg \psi_0^n(d_\alpha, c_\alpha, b), \text{ see } 2.2 \\
(e) & \quad d_\alpha \in q_M(\mathcal{C}) \\
(f) & \quad \{ \psi_{n+1}^\alpha(x, c_\alpha, b), \psi_{n+1}^\alpha(y, c_\alpha, b) \} \\
\vdash & \quad \psi_0^n(xy, c_\alpha, b) \land \psi_0^n(x^{-1}, c_\alpha, b) \land \psi_0^n(xy^{-1}, c_\alpha, b).
\end{align*}
\]

[Why can we? By the assumption toward contradiction.]

Now as \(cf(\kappa) > |T|^{\kappa_0} \) without loss of generality

\[
\otimes_2 (a) \quad \psi_\alpha^n = \psi_n \text{ for } \alpha < \kappa.
\]

Of course
\[\odot_3 \ (G : G_{r_n}) \leq 2^{\aleph_0}. \]

[Why? Otherwise let \(a_\varepsilon \in G \) for \(\varepsilon < (2^{\aleph_0})^+ \) be such that \(\langle a_\varepsilon G_{r_n} : \varepsilon < (2^{\aleph_0})^+ \rangle \) is without repetition. For each \(\varepsilon < \zeta < (2^{\aleph_0})^+ \) let \(n_{\varepsilon, \zeta} \) be the minimal \(n \) such that \(\exists \varepsilon \psi_n(a_\varepsilon^{-1}a_\zeta, \varepsilon, b) \), so by Erdős-Rado theorem for some \(n(*) \) and infinite \(\mathcal{U} \subseteq (2^{\aleph_0})^+ \) we have \(n_{\varepsilon, \zeta} = n(*) \) for \(\varepsilon < \zeta \) from \(\mathcal{U} \). By compactness we can find \(a_\varepsilon \in G \) for \(\varepsilon < \kappa \) such that \(\varepsilon < \zeta < \kappa \Rightarrow \exists \varepsilon \psi_n(a_\varepsilon^{-1}a_\zeta, \varepsilon, b) \), contradiction to \((G : G_{r_n}) < \kappa \).]

\[\odot_4 \text{ there is } \mathcal{U} \subseteq [\kappa]^\delta \text{ such that: if } \alpha < \beta < \gamma \text{ are from } \mathcal{U} \text{ then } d_\alpha^{-1}d_\beta \in G_{r_\gamma}. \]

[Why? For each \(\alpha < \kappa \) let \(\langle a_\alpha G_{r_n} : \varepsilon < \varepsilon_\alpha \leq 2^{\aleph_0} \rangle \) be a partition of \(G \). For \(\alpha < \beta < \kappa \) let \(\varepsilon = \varepsilon_{\alpha, \beta} \) be such that \(d_\alpha \in a_{\varepsilon, \beta} G_{r_\gamma} \). As \(\kappa \rightarrow (\theta)_{2^{\aleph_0}}^\delta \) because \(2^\kappa \rightarrow \langle \omega \rangle_{2^{\aleph_0}}^\delta \) clearly, for some \(\mathcal{U} \subseteq [\kappa]^\delta \) and \(\varepsilon, \beta < 2^{\aleph_0} \) we have: if \(\alpha < \beta \) are from \(\mathcal{U} \) then \(\varepsilon_{\alpha, \beta} = \varepsilon_\beta \). So if \(\alpha < \beta < \gamma \) are from \(\mathcal{U} \) then \(d_\alpha \in a_{\varepsilon_{\alpha, \beta}} G_{r_\gamma} \) and \(\beta \in a_{\varepsilon_{\alpha, \beta}, \gamma} G_{r_\gamma}, \) so \(a_\alpha = a_{\varepsilon_{\alpha, \beta}, \gamma} \) and \(\beta = a_{\varepsilon_{\alpha, \beta}, \gamma} a_2 \) for some \(a_1, a_2 \in G_{r_\gamma} \) hence \((d_\alpha^{-1}d_\beta) = (a_1^{-1}a_2, a_{\varepsilon_{\alpha, \beta}, \gamma} a_2 = (a_1^{-1}a_2) G_{r_\gamma} \).

\[\odot_5 \text{ Without loss of generality for } \alpha, \beta < \theta \text{ we have } d_\alpha \in G_{r_\beta} \Rightarrow \alpha \neq \beta. \]

[Why? Let \(\mathcal{U} \) be as in \(\odot_4 \). Without loss of generality \(\text{otp}(\mathcal{U}) = \theta \) and let \(\langle \alpha_\varepsilon : \varepsilon < \theta \rangle \) list \(\mathcal{U} \) in increasing order; let \(d'_{\alpha} = d_{\alpha, 2}^{-1}d_{\alpha, 2+1} \) and let \(r'_{\alpha} = r'_{\alpha}(x, c_{\alpha, 2}, b) = r_{\alpha, 2}(x, c_{\alpha, 2}, b) \).

So if \(\zeta < \varepsilon < \theta \) then \(d'_{\alpha, 2}^{-1}d_{\alpha, 2+1} \in G_{r_{\alpha, 2}} \) by \(\odot_1(c) \) hence \(d'_{\alpha, 2}^{-1}d_{\alpha, 2+1} \in G_{r_{\alpha, 2}} = G_{r'_{\alpha}} \). Also if \(\varepsilon < \zeta < \theta \) then \(d'_{\alpha, 2}^{-1}d_{\alpha, 2+1} \in G_{r_{\alpha, 2}} = G_{r'_{\alpha}} \) by \(\odot_4 \).

Also, if \(\varepsilon = \zeta \) then \(d_{\alpha, 2+1} \in G_{r_{\alpha, 2}} \) by \(\odot_1(c) \) and \(d_{\alpha, 2} \notin G_{r_{\alpha, 2}} \) by \(\odot_1(d) \) hence \(d'_{\alpha, 2}^{-1}d_{\alpha, 2+1} \notin G_{r_{\alpha, 2}} = G_{r'_{\alpha}} \). Of course, \(d_{\alpha, 2}, d_{\alpha, 2+1} \in G_{U(\varepsilon_{\beta, \alpha, 2})} \) hence \(d'_{\alpha} = d'_{\alpha, 2}^{-1}d_{\alpha, 2+1} \in G_{U(\varepsilon_{\beta, \alpha, 2})} \).

Moreover \(d'_{\alpha} \notin \psi_1(\mathcal{C}, c_{\alpha, 2}, b) \) as otherwise we recall that \(d_{\alpha, 2} = d_{\alpha, 2+1}(d'_{\alpha})^{-1} \) and \(d_{\alpha, 2+1} \in r_{\alpha, 2}(\mathcal{C}, c_{\alpha, 2}, b) \subseteq \psi_1(\mathcal{C}, c_{\alpha, 2}, b) \) and, we are now assuming \(d'_{\alpha} \notin \psi_1(\mathcal{C}, c_{\alpha, 2}, b) \) together by \(\odot_1(f) \) we have \(d_{\alpha, 2} \notin \psi_1(\mathcal{C}, c_{\alpha, 2}, b) \), contradiction to \(\odot_1(d) \). So letting \(\psi_n = \psi_{n+1} \), clearly renaming we are done as we shall not use \(\alpha \geq \theta \).]

Now by induction on \(\varepsilon < \kappa \) we choose \(A_\varepsilon, b_\varepsilon, (a_\varepsilon, \alpha : \alpha < \theta) \) from the model \(M \) such that:

\[\odot_6 \ (a) \ b_\varepsilon^{-1}(a_\varepsilon, \alpha : \alpha < \theta) \text{ realizes } \text{tp}(b^{-1}d_\varepsilon : \alpha < \theta, A_\varepsilon) \]

\[(b) \ A_\varepsilon = U \{ \bar{c}_\alpha : \alpha < \theta \} \cup \bigcup \{ b_\varepsilon, d_\alpha, \alpha : \alpha < \theta \text{ and } \zeta < \varepsilon \} \cup A_* \]

[Why possible? Because \(M \) is \(\kappa \)-saturated, see Definition 2.11.]

For \(\alpha < \theta, \varepsilon < \kappa, \) let \(r_{\alpha, \varepsilon} := \{ \psi_n(x, c_\varepsilon, b) : n < \omega \} \), so \(G_{r_{\alpha, \varepsilon}} \) is a subgroup of \(G \) of bounded index (even \(\leq 2^{\aleph_0} \)). Now for \(\alpha, \varepsilon < \theta \) clearly \(d_\alpha \in \cap \{ G_{r_{\alpha, \varepsilon}} : \beta < \theta, \zeta < \varepsilon \} \) by clause \(\odot_1(e) \) (as \(r_{\alpha, \varepsilon} \subseteq \mathbb{R}_M \)). Hence by the choice of \(d_{\alpha, \varepsilon} \) as realizing \(\text{tp}(d_{\alpha}, A_\varepsilon) \), see \(\odot_6(a) \), \(A_\varepsilon \cap \cap \{ \text{Dom}(r_{\alpha, \varepsilon}) : \beta < \theta, \zeta < \varepsilon \} \), clearly

\[\odot_7 (a) \ (a_\varepsilon, \alpha : \alpha < \theta \text{ and } \zeta < \varepsilon) \text{ by } \odot_6(b). \]

But \(d_\alpha \in \cap \{ G_{r_{\alpha, \varepsilon}} : \beta < \theta \} \text{ and } \beta \neq 0 \) by \(\odot_5 \) and \(b_\varepsilon^{-1}(d_\beta, \beta : \beta < \theta) \text{ realizes } \text{tp}(b^{-1}(d_\beta : \beta < \theta, A_\varepsilon) \text{ by } \odot_6, \text{ so } \]

\[\odot_8 (a_\varepsilon, \alpha : \alpha < \theta, \beta = 0 \text{ and } \zeta = \varepsilon). \]
Also by $\oplus_6(a) + \oplus_1(d) + \oplus_3$ we have

$$\oplus_9 \ d_{a,\varepsilon} \not\in G_{r_{a,\varepsilon}} \ \text{moreover } \mathfrak{C} \models \neg \psi_0(d_{a,\varepsilon}, e_{\alpha}, b_{\varepsilon}).$$

Also by $\oplus_1(f) + \oplus_2$ we have

$$\oplus_{10} \ \text{if } d_1, d_2 \in \psi_{n+1}(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}') \ \text{then } d_1d_2, d_1^{r_{a,\varepsilon}}d_1d_2^{-1} \in \psi_{n}(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}').$$

Now forget M but retain

$$(*)_1 \ \psi_1(n < \omega), b_{\varepsilon}, e_{\varepsilon}, r_{a,\varepsilon}, d_{a,\varepsilon}, r_0(\alpha < \theta, \varepsilon < \kappa) \text{ satisfy } \oplus_1(b) - (f), \oplus_7, \oplus_8, \oplus_9, \oplus_{10}.$$

Now by Ramsey theorem and compactness, without loss of generality

$$(*)_2 \ \langle \langle e_{\alpha} : \alpha < \theta \rangle, \langle d_{a,\varepsilon} : \alpha < \theta \rangle : \varepsilon < \kappa \rangle \text{ is an indiscernible sequence over } A_{\varepsilon}.$$

Let $d'_{a,\varepsilon} = d_{a,\varepsilon}^{-1}d_{a,\varepsilon+1}$ and $b_{\varepsilon}' = b_{2\varepsilon}$ for $\varepsilon < \kappa, \alpha < \theta$ and let $r'_{a,\varepsilon}(x) = r(x, e_{\alpha}, b_{\varepsilon}') = r_{a,\varepsilon}.$

Now

$$(*)_3 \ \ d'_{a,\varepsilon} \in r(\mathfrak{C}, e_{\beta}, b_{\varepsilon}') \cap G \ \text{iff } (\alpha, \varepsilon) \neq (\beta, \zeta).$$

[Why? First assume $\varepsilon > \zeta$ then by $(*)_1 + \oplus_7$ we have $d_{a,\varepsilon}, d_{a,\varepsilon+1} \in G_{r_{a,\varepsilon+1}}$ hence $d'_{a,\varepsilon} = d_{a,\varepsilon}^{-1}d_{a,\varepsilon+1} \in G_{r_{a,\varepsilon+1}}.$

Second, assume $\varepsilon < \zeta$, then by the indiscernibility, i.e. $(*)_2$ easily $d_{a,2\varepsilon}G_{r_{a,2\varepsilon}} = d_{a,2\varepsilon+1}G_{r_{a,2\varepsilon+1}}$ hence $d_{a,\varepsilon}G_{r_{a,\varepsilon}} = d_{a,\varepsilon+1}G_{r_{a,\varepsilon+1}}$ so $d'_{a,\varepsilon} = d_{a,\varepsilon}^{-1}d_{a,\varepsilon+1} \in G_{r_{a,\varepsilon+1}}$ as required.

Third, assume $\varepsilon = \zeta, \alpha \neq \beta$, then we have $d'_{a,\varepsilon} \in r(\mathfrak{C}, e_{\beta}, b_{\varepsilon}')$ because: $d_{a,2\varepsilon} \in r(\mathfrak{C}, e_{\beta}, b_{\varepsilon}')$ as $b_{\varepsilon}' = b_{2\varepsilon} = b_{2\varepsilon}$ in the present case and as $\alpha \neq \beta$ using $(*)_1 + \oplus_8$ and $d_{a,2\varepsilon+1} \in r(\mathfrak{C}, e_{\beta}, b_{\varepsilon}')$ as $b_{\varepsilon}' = b_{2\varepsilon} = b_{2\varepsilon}$ and as $2\zeta = 2\varepsilon < 2\varepsilon + 1$ in the present case , by $\oplus_7 + (*)_1$: of course, $d_{a,\varepsilon}, d_{a,\varepsilon+1} \in G$ hence $d'_{a,\varepsilon} = d_{a,\varepsilon}^{-1}d_{a,\varepsilon+1} \in r(\mathfrak{C}, e_{\beta}, b_{\varepsilon}') \cap G.$

Fourth, assume $\varepsilon = \zeta, \alpha = \beta$. So by $\oplus_9 + (*)_1$, we know that $d_{a,2\varepsilon} \not\in r(\mathfrak{C}, e_{\alpha}, b_{2\varepsilon})$ which means $d_{a,2\varepsilon} \not\in r(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$. By $\oplus_7 + (*)_1$ we know that $d_{a,2\varepsilon+1} \in r(\mathfrak{C}, e_{\alpha}, b_{2\varepsilon+1}) = r(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$ and of course $d_{a,2\varepsilon}, d_{a,2\varepsilon+1} \in G$. Putting together the last two sentences and the choice of $d'_{a,\varepsilon}$, as $r(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}') \cap G$ is a subgroup of G we have $d'_{a,\varepsilon} = (d_{a,2\varepsilon})^{-1}d_{a,2\varepsilon+1} \not\in r(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}') \cap G$ as required in $(*)_3$.]

$$(*)_4 \ \ d'_{a,\varepsilon} \in \psi_1(\mathfrak{C}, e_{\beta}, b_{\varepsilon}') \ \text{iff } (\alpha, \varepsilon) \neq (\beta, \zeta).$$

[Why? The “"i"” direction holds by $(*)_3$ because $r(x, e_{\beta}, b_{\varepsilon}') = \{\psi_0(x, e_{\beta}, b_{\varepsilon}') : n \leq \omega\}$. For the other direction assume $(\alpha, \varepsilon) = (\beta, \zeta)$. As in the proof of $(*)_3$ we have $d_{a,2\varepsilon} \not\in \psi_0(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$. Also $d_{a,2\varepsilon} = d_{a,2\varepsilon+1}(d_{a,\varepsilon})^{-1}$ so $d_{a,2\varepsilon+1}(d_{a,\varepsilon})^{-1} \not\in \psi_0(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$. Also as in the proof of $(*)_3$ we have $d_{a,2\varepsilon+1} \in r(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$ hence $d_{a,2\varepsilon+1} \in \psi_1(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$. By the last two sentences and $\oplus_10 + (*)_1$ we have $d'_{a,\varepsilon} \in \psi_1(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}') \Rightarrow d_{a,2\varepsilon} \in \psi_0(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$ but we already note the conclusion fails so $d'_{a,\varepsilon} \not\in \psi_1(\mathfrak{C}, e_{\alpha}, b_{\varepsilon}')$.

So we are done proving $(*)_4$.]

$$(*)_5 \ \text{if } u \subseteq \theta \times \kappa \text{ then some } d \in \mathfrak{C} \text{ realizes } \{\psi_3(x, e_{\alpha}, b_{\varepsilon}') : (\alpha, \varepsilon) \in u \} : \alpha < \theta, \varepsilon < \kappa\}.$$
[Why? By saturation without loss of generality \(u \) is co-finite, let \(\{ (\alpha(\ell), \varepsilon(\ell)) : \ell < k \} \) list \(\theta \times \kappa \setminus u \) with no repetitions and let \(d := d'_{\alpha(0), \varepsilon(0)} \cdot d'_{\alpha(1), \varepsilon(1)} \cdot \cdots \cdot d'_{\alpha(k-1), \varepsilon(k-1)} \).

On the one hand \(\vdash (\alpha, \varepsilon) \in u \Rightarrow (\alpha, \varepsilon) \in \theta \times \kappa \setminus \{ (\alpha(\ell), \varepsilon(\ell)) : \ell < k \} \Rightarrow \{ d'_{\alpha(\ell), \varepsilon(\ell)} : \ell < k \} \subseteq r(\mathcal{C}, \bar{c}_\alpha, \bar{b}_\varepsilon) \cap G \Rightarrow d \in r(\mathcal{C}, \bar{c}_\alpha, \bar{b}_\varepsilon) \models \psi_3[d, \bar{c}_\alpha, \bar{b}_\varepsilon]. \)

On the other hand if \(\ell < k \) then let \(e_1 = d'_{\alpha(0), \varepsilon(0)} \cdots d'_{\alpha(\ell-1), \varepsilon(\ell-1)} \) and let \(e_2 = d'_{\alpha(\ell+1), \varepsilon(\ell+1)} \cdots d'_{\alpha(k-1), \varepsilon(k-1)} \) so \(d = e_1 d'_{\alpha(\ell), \varepsilon(\ell)} e_2 \) hence \(d'_{\alpha(\ell), \varepsilon(\ell)} = e_1^{-1} d e_2^{-1} \). As above \(e_1, e_2 \in r(\mathcal{C}, \bar{c}_\alpha(\ell), \bar{b}_\varepsilon(\ell)) \cap G \) hence \(e_1^{-1} e_2^{-1} \in \psi_3(\bar{c}_\alpha(\ell), \bar{b}_\varepsilon(\ell)) \cap G. \) As \(d \in G \) and \(e^{-1} d \in G \), by \(\otimes_{\bar{1}\bar{0}} \) we get

\[
d \in \psi_3(\bar{c}_\alpha(\ell), \bar{b}_\varepsilon(\ell)) \models e_1^{-1} d \in \psi_2(\bar{c}_\alpha(\ell), \bar{b}_\varepsilon(\ell)) \Rightarrow e_1^{-1} d e_2^{-1} \in \psi_4(\bar{c}_\alpha(\ell), \bar{b}_\varepsilon(\ell)) \Rightarrow d'_{\alpha(\ell), \varepsilon(\ell)} \in \psi_1(\bar{c}_\alpha(\ell), \bar{b}_\varepsilon(\ell)).
\]

But this contradicts \((*)_4\).

Now \((*)_5\) gives \(\psi_3(x, z, y) \) witness \(T \) is 2-independent so we are done. \(\square \)

Claim 2.13. If \(G \) is Abelian, then 2.12 can be proved also replacing \(q_B(\mathcal{C}) \) by \(\cap \{ G' : G' \text{ is a subgroup of } G \text{ of bounded index preserved by automorphisms of } \mathcal{C} \text{ over } A \cup A_\lambda \} \).

Proof. We shall prove this elsewhere. \(\square \)

Discussion 2.14. 1) Is 1/2-dependence preserved by weak expansions (as in [Sh:783, §1])? Of course not, as if \(M \) is a model of \(T_2 \) from 2.8 then any \(Y \subseteq \prod_{\ell < k} P^M_\ell \) is definable in such an expansion, and easily for some such \(Y \) we can interpret number theory (as number theory is interpretable in some bi-partite graph).

2) Is the following interesting? I think yes! It seems that we can prove the \(k \)-dimensional version of 2.12 for 1/k-dependent \(T \), i.e. for \(k = 1 \) it should give [Sh:876], for \(k = 2 \) it should give 2.12. E.g. think of having \(|T| < \lambda_0 < \ldots < \lambda_k, \lambda_{k+1} = (\lambda_{k+1})^{\lambda_k} \) and we choose \(M_\ell \prec \mathcal{C} \) of cardinality \(\lambda_\ell \) closed enough by downward induction on \(\ell \), i.e. we get a \(\mathcal{P}^-(k) \)-diagram. We shall try to deal with this elsewhere.
REFERENCES

[Sh:] Saharon Shelah, Non–structure theory, vol. accepted, Oxford University Press.

E-mail address: shelah@math.huji.ac.il

URL: http://shelah.logic.at