A.E.C. WITH NOT TOO MANY MODELS

SAHARON SHELAH

Dedicated to Jouko Väänänen honouring his 60th birthday

Abstract. Consider an a.e.c. (abstract elementary class), that is, a class K of models with a partial order refining \subseteq (submodel) which satisfy the most basic properties of an elementary class. Our test question is trying to show that the function $\dot{I}(\lambda, K)$, counting the number of models in K of cardinality λ up to isomorphism, is “nice”, not chaotic, even without assuming it is sometimes 1, i.e. categorical in some λ’s. We prove here that for some closed unbounded class C of cardinals we have (a),(b) or (c) where

(a) for every $\lambda \in C$ of cofinality $\aleph_0, \dot{I}(\lambda, K) \geq \lambda$
(b) for every $\lambda \in C$ of cofinality \aleph_0 and $M \in K_\lambda$, for every cardinal $\kappa \geq \lambda$ there is N_κ of cardinality κ extending M (in the sense of our a.e.c.)
(c) it is bounded; that is, $\dot{I}(\lambda, K) = 0$ for every λ large enough (equivalently $\lambda \geq \beth_\kappa$ where $\beth_\kappa = (2^{LST(\kappa)})^+$).

Recall that an important difference of non-elementary classes from the elementary case is the possibility of having models in K, even of large cardinality, which are maximal, or just failing clause (b).

Date: May 7, 2015.

2010 Mathematics Subject Classification. Primary: 03C45, 03C48; Secondary: 03C55, 03C75.

Key words and phrases. Model theory, classification theory, a.e.c. (abstract elementary classes), categoricity, number of non-isomorphic models.

The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 242/03). The author thanks Alice Leonhardt for the beautiful typing. Paper 893 in the author’s list. First Version - 2004/June/20.
Annotated Content

§0 Introduction to the subject, pg.3

§1 Introduction to the paper, pg.6
 §(1A) Content, pg.6
 §(1B) Discussion, (label y), pg.7
 §(1C) What is done, pg.8
 §(1D) Recalling Definitions and Notation, (label z), pg.9

 [Defining $\Gamma_{\kappa}[\mathfrak{F}]$, $\Gamma^{\text{sort.}}$.]

§2 More on Templates, pg.13

 On \mathfrak{F}_{κ}, $\Gamma_{\kappa}^{\text{sort.}}\mathfrak{F}$, the ideal ER, being standard; the ideal ER; isomorphic of vocabularies, 2.7 - 2.9; partial orders on $\Gamma_{\kappa}^{\text{sort.}}\mathfrak{F}$, 2.9, 2.12, basic properties of \leq_{κ}, \leq_{4}, see 2.14. On $\mathfrak{F}_{\kappa}[k_{M}] \neq \emptyset$, 2.15; amalgamating \leq_{κ}, \leq_{4}. Lastly, we define $\text{pit}(\mathfrak{F}, \mathfrak{I})$, 2.17 and have the relevant partition theorem, 2.18.

§3 Approximations to EM models, (label a), pg.25

 We define direct/pre-witnesses, (3.2, 3.3), prove existence, 3.6. Deal with indirect witnesses (used in the main proof (see 3.7, 3.11) and prove the main result.

§4 Concluding Remarks, pg.33
§ 0. Introduction to the subject

We would like to have classification theory for non-elementary classes K and more specifically to generalize stability. Naturally we use the function $I(\lambda, K)$ = number of models up to isomorphism, as a major test problem. Now “non-elementary” has more than one interpretation, we shall start with the infinitary logics $L_{\lambda, \kappa}$.

There are other directions; mostly where compactness in some form holds (e.g. a.e.c. with amalgamation, see about those in [Sh:E53], and on a try to blend with descriptive set theory see [Sh:849]). We had held that for $\kappa > \aleph_0$ the above cannot be developed as, e.g. if $V = L$ or just $V \models \text{“} 0^\# \text{ does not exist} \text{“}$, then there is $\psi \in L_{\aleph_1, \aleph_0}$ such that if $\text{cf}(\mu) = \aleph_0 \land (\forall \alpha < \mu)(|\alpha|^{\aleph_0} < \mu)$ then $M \models \psi$, $\|M\| = \mu$ iff $M \cong (L_\mu, \epsilon)$. However, lately [?] gives evidence that for θ a compact cardinal, we can generalize to $L_{\theta, \theta}$ some theorems of [Shc, Ch.VI] on saturation of ultra-powers and Keisler’s order. This shows that stability theory for $T \subseteq L_{\theta, \theta}$ exists, but it is still not clear how far we can go including $A = |N|, N \prec M$ and $\cup\{M_n : n \subset n\}$ when $\langle M_n : n \subset n\rangle$ is a so called stable $\mathcal{P}^-(n)$-system.

Anyhow (for the purposes of this history, and the present paper) we now concentrate on $\text{Mod}_\psi, \psi \in L_{\lambda^+, \aleph_0}$ so $\kappa = \aleph_0$. Here we have both downward LST theorems, even using $\leq \lambda$ finitary Skolem functions. Also we have the upward LST theorem, using EM models.

Naturally all works started with assuming categoricity in some cardinal, except some dealing with the \aleph_n’s for $\psi \in L_{\aleph_1, \aleph_0}$. In this case we may many times deal with $\psi \in L_{\aleph_1, \aleph_0}(Q)$. Some works appeared in the eighties (see the books [Bal09], and [Shch], [Sh:3]).

Definition 0.1. Let $\hat{I}(\lambda, K)$ be the cardinality of $\{M/ \cong M \in K \text{ of cardinality } \lambda\}$ where K is a class of $\tau(K)$-models (e.g. $K = K_{\ell}$ where $\ell = (K_{\ell}, \leq_{\ell})$).

First, in ZFC, answering a question of Baldwin, it was proved that ψ cannot be categorical, moreover if $\hat{I}(\lambda_1, \psi) = 1$ then $\hat{I}(\lambda_2, \psi) \geq 1$. Also if $\hat{I}(\lambda_1, \psi) < 2^{\lambda_1}$, then for some countable first order T with an atomic model $K_T = \{M : M$ an atomic model of $T\} \subseteq \text{Mod}_\psi$, but $1 \leq \hat{I}(\lambda_1, K_T)$. Fix T for awhile, now if $2^{\aleph_n} < \aleph_{n+1}$, $\hat{I}(\aleph_n, T) < 2^{\aleph_1}$ for every n then K_T is excellent which means it is quite similar to the class of models of an \aleph_0-stable countable complete first order theory. For this we consider $S^{\alpha}(A, M)$ for $A \subseteq M \in K_T$, only for some “nice” A. On the other hand for any n for some such T_n, K_{T_n} is categorical in every $\lambda \leq \aleph_n$, but $\hat{I}(\lambda, T_n) = 2^{\lambda}$ for λ large enough. However, we do not know:

Conjecture 0.2. (Baldwin) If K_T is categorical in \aleph_1, then K_T is \aleph_0-stable, equivalently is absolutely categorical.

Related is the:

Conjecture 0.3. If K_T is categorical in \aleph_1 but not \aleph_0-stable then $\hat{I}(2^{\aleph_0}, K_T) = \beth_2$.

See work in preparation Baldwin-Laskowski-Shelah ([Sh:F1098]) on such K_T’s; it certainly says there is a positive theory for such classes (e.g. pseudo minimal types exist). We recently have changed our mind and now think:

Conjecture 0.4. If K_T is categorical in every \aleph_n then K_T is excellent.

This means that the present counter-examples are best possible. As this seems very far we may consider a weaker conjecture.

\footnote{Note that $\mu_{\text{wd}}(\lambda^+, 2^{\lambda})$ is essentially 2^{λ^+}.}
Conjecture 0.5. Assume \(P \) is a c.c.c. forcing notion of cardinality \(\lambda \) such that
\(|P| \Rightarrow \mathcal{A} + 2^{\aleph_0} = \lambda^n \) and \(\lambda = \lambda^{<\lambda} > \beth_\alpha \). If \(K_T \) is categorical in every \(\lambda < 2^{\aleph_0} \) then \(K_T \) is excellent.

There is more to be said, see [Sh:F1273].

* * *

In another direction, the investigation of models of cardinality \(\aleph_1 \) does not point to a canonical choice of logic for which the theorems on \(I(\psi, \aleph_1) = 1 \) holds. This had motivated the definition of a.e.c. \(\mathcal{I} = (K_1, \leq_1) \) which has the “bottom” property of elementary class \(K = (\text{Mod}_\mathcal{I}, \simeq) \), \(T \) a complete first order theory (i.e. \(K_1 \), a class of \(\tau_1 \)-models, \(\leq_1 \) a partial order on it, both closed under isomorphism, union under \(\leq_1 \)-directed systems of member of \(K_1 \) belong to \(K_1 \), moreover is a \(\leq_1 \)-lub (= union of a directed system of \(\leq_1 \)-submodels of \(N \) is a \(\leq_1 \)-submodel of \(N \)), existence of a LST number and \(M_1 \leq M_2 \wedge M_1 \leq_1 N \wedge M_2 \leq_1 N \Rightarrow M_1 \leq_1 M_2 \).

Thesis 0.6. 1) The framework of a.e.c. \(\mathcal{I} \) is wider and not too far and better than the family of \((\text{Mod}_\mathcal{I}, \simeq_{\text{sub}(\psi)}) \) where \(\psi \in L_{\lambda^+, \aleph_0} \).

2) The right generalization of types in this context is orbital types.

Why? The “wider” in 0.6(1) is obvious. The “not too far” is by the representative theorem which says that for some vocabulary \(\tau_1 \supseteq \tau(\mathcal{I}) \) of cardinality \(\leq_1 \aleph_\lambda, \lambda \) the LST-number +|\(\tau(\mathcal{I})| \) and set \(\Gamma \) of quantifier free 1-types, \(K_1 = \text{PC}(\emptyset, \Gamma) = \{M | \tau_1 : M \text{ a } \tau_1\text{-model omitting every } p(x) \in \Gamma\} \); similarly \(\leq_1 \). We can deduce the upward LST, and so existence of suitable \(\Phi \in T^{\text{lin}}[\mathcal{I}] \) so we have EM-models. For \(\mathcal{I} \) with LST \(\mathcal{I} = \aleph_0 \) it is natural to restrict ourselves to the case “\(\mathcal{I} \) is countable” above for both \(K_1 \) and \(\leq_1 \), then we say \(\mathcal{I} \) is \(\aleph_0 \)-presentable. So we may wonder for such \(\mathcal{I} \) if \(n < \omega \Rightarrow 2^{\aleph_\alpha} + I(\aleph_{n+1}, K_1) < \mu_\text{wd}(\aleph_{n+1}, 2^{\aleph_\alpha}) \) implies \(\mathcal{I} \) satisfies the parallel of being excellent? The answer is yes by [Shch], [Sh:3], but the way is long.

Also, we may replace \(\aleph_0 \) by any \(\lambda \) provided that \(I(\lambda, K_1) = 1 = I(\lambda^+, K_1) \) and \(1 \leq I(\lambda^+, K_1) < \mu_\text{wd}(\lambda^+, 2^\lambda) \), see more in [Sh:E53].

A central notion there is “\(s \) is a good \(\lambda \)-frame”, \(\mathcal{I}_s = \mathcal{I}, \text{LST}_s \leq \lambda \), this is “bare bones superstable”.

This is enough for proving

\((*)\) if \(\mathcal{I} \) is an a.e.c., \(\text{LST}_s \leq \lambda, 2^{\lambda^+ n} < 2^{\lambda^{n+1}} \) and \(I(\lambda^{+ n}, K_1) = 1 \) for every \(n \) and \(K_1 \) has models of cardinality \(\geq \beth_2(\text{LST}(\mathcal{I})) \), then \(K_1 \) is categorical in every \(\mu \geq \lambda \).

However

Conjecture 0.7. If \(\mathcal{I} \) is an a.e.c., \(K_1 \) is categorical in some \(\lambda \) large enough than \(\text{LST}_s \), then \(K_1 \) is categorical in every \(\mu \geq \lambda \).

Note that [Sh:734] is a step ahead: in the context of 0.7, for many \(\mu = \beth_\nu \in [\text{LST}_s, \lambda] \), there is a good \(\mu \)-frame \(s_\mu \) such that \(s_\mu = K_1^\mu \). If we have this for \(\omega \) successive \(\mu \)'s we shall be done by [Sh:600], but in [Sh:734] the family of such \(\mu \)'s is scattered: a beginning is [Sh:842].

A much harder conjecture is:
Conjecture 0.8. 1) The main gap theorem holds for a.e.c. K_λ for λ large enough.
2) The class $\sup \lim = \{ \lambda : \text{there is a super-limit } M \in K^1_\lambda \}$ is "nice", e.g. contains every large enough λ or contains no large enough λ.

We are continuing this work in [Sh:F1302].

* * *

We may wonder

Question 0.9. 1) Maybe there is a natural logic which is the natural framework for categoricity spectrum.
2) Also for the super-limit spectrum.

We expect such logic to be stronger than L_{λ^+, \aleph_0} but weaker than $L_{\lambda, \lambda}$. This may remind us of [Sh:797]. The logic discovered there is $L^L_{< \lambda}$ for $\lambda = \beth_\lambda$, it is between $L^L_{< \lambda} = \bigcup \{ L_{\mu^+, \aleph_0} : \mu < \lambda \}$ and $L^L_{< \lambda, \mu} = \bigcup \{ L_{\mu^+, \mu^+} : \mu < \lambda \}$, in a strong way well ordering is not well defined and it can be characterized (as Lindström theorem characterize first order logic) and has interpolation. In addition, for λ a compact cardinal $L^L_{< \lambda}$-equivalence of M_1, M_2 is equivalent to having isomorphism ω-limit ultra-powers by λ-complete ultrafilters, see [Sh:F1228].

However, probably the characterization in [Sh:797] was by “the maximal logic such that ...”. So maybe we should restrict the logic further such that “EM model can be constructed”.

We conjecture there is a logic characterized by being maximal under this stronger demand, and in it we can say at least something on the function $I(\lambda, \psi)$, and maybe much. This is interesting also from the point of view of soft model theory: we conjecture that there are many such intermediate logics with characterization (and the related interpolation theorem).
§ 1. Introduction to the paper

In this section, we begin by motivating our line of investigation. See notation in §(1D) below (and more self contained introduction in §(1B), §(1C)).

{content}

§ 1(A). Motivation/Content.

We knew of old (see: [Sh:c, Ch.XIII,4.15]):

\(y_1 \)

Theorem 1.1. For a countable complete first order theory \(T \), one of the following holds:

- \(a \) \(T \) is categorical in every \(\lambda > \aleph_0 \)
- \(b \) \(\dot{I}(\lambda,T) = \beth_2 \) for every cardinal \(\lambda \geq 2^{\aleph_0} \)
- \(c \) \(\dot{I}(\aleph_\alpha,T) \geq 1 + |\alpha| \) for every ordinal \(\alpha \).

For a.e.c. we have something when \(t \) is categorical in some \(\lambda \)'s ([Sh:734], [Sh:600]) and something about \(\dot{I}(\aleph_1,t) \), ([Sh:88r], about when \(1 \leq \dot{I}(\aleph_1,t) < 2^{\aleph_1} \), particularly when \(2^{\aleph_0} < 2^{\aleph_1} \) and then on higher cardinals) but nothing for general a.e.c. \(t \). The current paper is motivated by hopes of finding something like 1.1 for a.e.c.’s. Recall the history.

Our approach here assumes/relies on:

\(y_2 \)

Thesis 1.2. Reasonable to concentrate on cardinals from \(C_{fp} = \{ \lambda : \lambda = \beth_\lambda \} \), where \(fp \) stands for “fixed points”.

Why? If \(\lambda \in C_{fp}, \lambda > \text{LST}(t) \) and \(M \in K_t^\lambda \) then for every \(\theta \in [\text{LST}(t),\lambda) \) and \(N \preceq_t M, ||N|| = \theta \) there is \(\Phi \in \Sigma_{I,\theta} \) so \(|\tau(\Phi)| = \theta \) such that for any linear order \(I, \sigma \) \(I = \lambda \) we have \(N \preceq_t \text{EM}_{\tau(I)}(I,\Phi) \). So in \(K_t^\lambda \) we have many models of the form \(\text{EM}_{\tau(I)}(\lambda,\Phi), \Phi \in \Sigma_{I,\theta} \). If \(\dot{I}(\lambda,t) < \lambda \), many of them will be isomorphic.

Hence for many \(\theta_1 < \theta_2 < \lambda, \theta_1 \geq \text{LST}(t) \), every \(N \preceq_t M \) of cardinality \(\theta_2 \) can be \(\preceq_t \)-embedded into some \(\text{EM}_{\tau(I)}(\lambda,\Phi), \Phi \in \Sigma_{I,\theta} \).

Informally, the point is it allows us to use EM models. The key point is finding a suitable template, set \(\Phi \) of quantifier free types, which requires finding enough indiscernible sequences. When \(K_t \) is an a.e.c. (as opposed to an elementary or pseudo elementary class) we must go through the Presentation Theorem to find an indiscernible sequence, i.e. we require sufficiently large models omitting the types in \(\Gamma \).

To further motivate our approach, consider a not so strong conjecture, still enough to exemplify “the function \(\lambda \mapsto \dot{I}(\lambda,t) \) cannot be too wild”.

\(y_4 \)

Conjecture 1.3. 1) Letting \(C_{\aleph_0}^{fp} = \{ \lambda : \lambda = \beth_\lambda \text{ and } \text{cf}(\lambda) = \aleph_0 \} \) and fixing an a.e.c. \(t \), not both of the following classes are stationary (or restrict yourself to some strongly inaccessible \(\mu \) and “stationary” means below it):

- \(a \) \(S_1 = \{ \lambda \in C_{\aleph_0}^{fp} : \dot{I}(\lambda,t) < \lambda \} \)
- \(b \) \(S_2 = \{ \lambda \in C_{\aleph_0}^{fp} : \dot{I}(\lambda,t) \geq \lambda \} \).

2) A weaker conjecture (presented in the abstract) is replacing clause \(b \) by

- \(b' \) \(S_3 = \{ \lambda \in C_{\aleph_0}^{fp} : \text{for every } M \in K_t^\lambda \text{ has } \preceq_t\text{-extensions } N \text{ of any cardinality } > \lambda \} \).
Why “cf(λ) = ℵ₀”? First, trying to prove λ ∈ S₃, we can approximate N by Φ ∈ T^{κ″}_ℵ₀[τ], λ_n < λ as we can approximate M by N′ ≤_t M, \|N′\| = λ_n where λ_n < λ_{n+1} < λ = Σ\{λ_m : m\}. Second, for λ ∈ C^{fp}_ℵ₀ it is enough to show that \{M/ ≡_|M_{κ₀}: M ∈ K^t_λ\} is small because it is well known that if cf(λ) = ℵ₀ and M₁, M₂ are of cardinality λ and ℒ_{∞, λ}-equivalent then they are isomorphic; on such logics see, e.g. [Dic85].

\{y12\}

Thesis 1.4. There are, for a.e.c. ℊ, meaningful dichotomy theorems for \(\hat{I}(λ, K_τ) \) when \(K \) is a class of τ(τ)-models, \(K = K_τ \) and \(ℊ = (K_τ; ≤_τ) \).

This is a more concrete thesis than “considering a.e.c.’s is a good frame for model theory”; even more concrete is the “main gap conjecture”. It had been proved that if \(K_τ \) is the class of models of a complete countable first order theory then it satisfies the “main gap”, i.e. either \(\hat{I}(λ, K) \) is large, even = 2\^λ for all uncountable \(λ \) or \(\hat{I}(Ν, K) \) is small, even < \(\sum_\alpha \{|α|\} \) for all \(α > 0 \); see [Sh:c, Ch.XII], “The book’s main theorem”. In general for a class \(K \) of τ-models the “main gap” will say that either \(\hat{I}(λ, K) \) is large (i.e. 2\^λ or ≥ \(λ^+ \)) for every \(λ \) large enough or it is small for every \(λ \) large enough say \(\hat{I}(Ν, K) \) is ≤ \(\sum_\alpha n(|α|) \) for some \(n = n(K) < ω \).

We are far away from this, still, until now for the a.e.c. the categoricity case was almost alone, i.e. we start assuming \(\hat{I}(λ, K) = 1 \) in some \(λ \), see below, but we try here to look “higher”.

The contribution of the present paper is to show that in the much more general context of a.e.c.’s for some \(Κ₀ \)-closed unbounded class \(C \) of cardinals, we have \(λ ∈ C \Rightarrow \hat{I}(λ, K_τ) ≥ λ \), a non-structure result, or \(λ ∈ C \land M ∈ K^t_λ \Rightarrow M \) has arbitrary large \(≤_τ \)-extensions. Note that the latter property is now taken for granted for elementary classes but is a real gain for a.e.c.

As noted in §0, in [Sh:734] and [Sh:600] we obtained results on \(\hat{I}(λ, K) \) for a.e.c.’s assuming categoricity in some \(λ \)’s. However, nothing was known for general a.e.c.’s under weaker few models assumption.

On abstract elementary classes, see [Sh:88r], [Bal09] and [Sh:E53]. We will make essential use of the Presentation Theorem, which says that every a.e.c. can be represented as a PC class, say PC(\(T, Γ \)), see [Sh:88r, §1].

We thank the audience in the lecture in the Hebrew University seminar 2/2005 for their comments on an earlier version of this paper and Maryanthe Malliaris for helping much in improving §1 and some corrections in fall 2011 - winter 2012 and Will Boney for some further corrections (fall 2013).

\{Discussion\}

§ 1(B). Discussion.

We give some further details regarding §1(A).

In Thesis 1.2 the result on EM models needed is: [Sh:394, Claim 0.6], [Sh:394, Claim 8.6], the “a.e.c. omitting types theorem” and [Sh:394, Lemma 8.7,p.46].

\{y2\}

Fact 1.5. Let ℊ be an a.e.c. If \(λ ∈ C^{fp}_λ, λ > LST_τ \) and \(M ∈ K^t_λ \) then for every \(θ ∈ [LST_τ, λ) \) and \(N ≤_τ M \) of cardinality \(θ \) there is \(Φ ∈ Υ[τ] \) such that:

\{(a) \ |τ(Φ)| = θ\}

\{y15\}
(b) for any linear order I, in particular I = \lambda, without loss of generality N \leq \mathcal{EM}_\tau(I, \Phi) where this denotes the reduct of the EM model to the vocabulary of \tau.

Comment:
Let us repeat, the two points when cf(\lambda) = \aleph_0 may be as required:

(a) downward large depth in \S 3,
(b) if we like to find large N \leq k-\text{-extending} M for a given M \in K^\lambda_k, if cf(\lambda) = \aleph_0 we can get it as an \omega-limit of M' <_\tau M, \|M'\| < \lambda.

Such considerations further lead us to

\{y6\}

\textbf{Question 1.6.} Let \Phi \in \Upsilon_{\theta}[k] and \kappa be a cardinal.

Sort out the functions

(a) \lambda \mapsto |\{EM_\tau(I, \Phi)/ \equiv_\lambda: I \text{ a linear order of cardinality } \lambda\}|
(b) \lambda \mapsto I_\tau(\lambda, \kappa, k) := |\{EM_\tau(I, \Phi)/ \equiv_{L_{\infty, \kappa}}, \lambda: I \text{ a linear order of cardinality } \lambda\}|

Recall, by [Sh:11] restricting ourselves to cardinals \lambda = \lambda^{\prec \kappa}, that the function in clause (b) of 1.6 is “nice”, more specifically: if \theta \leq \lambda_1 = \lambda_1^{\prec \kappa} < \lambda_2 \text{ then } I_\tau(\lambda_1, \kappa, \tau) \geq \min\{\lambda_1^{\prec \kappa}, I(\lambda_2, \kappa, \tau)\}.

What occurs if \lambda_1 < \lambda_1^{\prec \kappa}? The case \lambda_1 = \beth_\delta, cf(\delta) = \aleph_0 is more approachable than the general case, see 4.2.

Our hope is to get “bare bones superstability”, i.e. good \lambda-frames inside \tau, (as in [Sh:600],[Sh:734]).

Another point concerning the function \hat{I}(\lambda, \kappa, \tau) is: for a model M, cardinal \theta and logic \mathcal{L} we can define the depth of M for (\mathcal{L}', \theta) as \min\{\alpha: \text{if } \hat{\alpha}, \hat{\beta} \in \mathcal{E} M, \varepsilon < \theta and \hat{\alpha}, \hat{\beta} realizes the same formulas of } L_{\infty, \theta} \text{ (or } L_{\infty, \theta}^{\mathcal{L}} \text{) of depth } < \alpha \text{ then they realize the same } L_{\infty, \theta}\text{-formulas}\}; of course, only formulas in } L_{\infty, \theta}^{\mathcal{L}} \text{ are relevant. This is a good way to “slice” the equivalence and it is easier for LST considerations.}

\{what\}

\S 1(C). \textbf{What is Done.}

A phenomena making the investigation of general a.e.c. hard is having \leq_\tau \text{-maximal models of large cardinality. As with amalgamation, we may consider the property\}

(*)_A^1 \text{ if } M \in K^\tau_\lambda \text{ then } M \text{ is not } \leq_\tau \text{-maximal.}

In investigations like [Sh:E46] and [Sh:576], which look at \cup\{K_{\lambda, \ell}^\tau: \ell < 4\} this is relevant. But in investigations as in [Sh:734], looking at \cup\{K_\lambda^\tau: \lambda = \beth_\lambda\}, it is more natural to consider

(*)_A^2 \text{ if } M \in K^\tau_\lambda \text{ then for any } \mu > \lambda \text{ there is } N \in K^\tau_\mu \text{ which } \leq_\tau \text{-extends } N.
In §3 we consider a $\lambda = \exists_\lambda$ of cofinality \aleph_0 which is more than strong limit and try to prove non-structure from $\neg(\exists^+\lambda^+)$. Given $N \in K^\lambda_\lambda$ we try to build an EM model (that is construct the $\Phi \leq_\text{fr}$-extending N by an increasing chain of approximations: given $\lambda_n \rightarrow \lambda$, $M_n \rightarrow N$, $M_n \in K^\lambda_\lambda$. The n-th approximation Φ_n to Φ has to have “Φ_n in a suitable sense is represented in N say of size λ_{n+1}”.

Being stuck should be a reason for non-structure. For simplicity we consider only cardinals $\mu = \exists_\mu$, the gain without this restriction seems minor.

Concerning the results of §3 it would be nicer to make one more step concerning 3.15, 3.14 and deal also with $\lambda = \exists_\lambda$ instead of $\lambda = \exists_{1,\lambda}$, but a more central question to get the non-structure result for every $\lambda' > \lambda$. It is natural to try given $\Phi \in T^{\text{au}}_K[t_M]$ and $M \leq_\text{fr} N$, to define a “depth” for approximation of the existence of a \leq_fr-embedding of standard $\text{EML}_t(I, \Phi)$ into N (see Definition 2.2(2)), so that depth infinity give existence. But this does not work for us, so Definition 3.2 is a substitute, moreover we need “indirect evidence”, see Definition 3.7.

Our main theorem is

Theorem 1.7. For any a.e.c. for some closed unbounded class of cardinals C, if $(\exists \lambda \in C)\text{ef}(\lambda) = \aleph_0 \land \bar{I}(\lambda, K_t) < \lambda$ and $M \in K_t$ of cardinality $\mu \in C$ of cofinality \aleph_0, then M has a proper $<_{\text{fr}}$-extension, and even ones of arbitrarily large cardinality.

The natural next steps are

Conjecture 1.8.
1) In Theorem 3.16, i.e. what is promised in the abstract we can choose C as an end segment of $\{\mu : \mu = \exists_{1,\mu}\}$ or just choose C as $\{\mu : \mu = \exists_{2,\mu} > \text{LST}_t\}$.
2) For every a.e.c. \mathfrak{t} for some closed unbounded class C of cardinals, we have $M \in K^\lambda_\lambda \land \lambda \in C \land \text{ef}(\lambda) = \aleph_0 \Rightarrow T^{\alpha}_K[t_M] \not\subseteq \emptyset$ or $\lambda \in C \land \text{ef}(\lambda) = \aleph_0 \Rightarrow \bar{I}(\lambda, K_t) \geq 2^\lambda$

or at least $\geq \lambda^+$. We intend to deal with part (1) in a continuation.

§ 1(D). **Recalling Definitions and Notation.**

Notation 1.9. Let Card be the class of infinite cardinals.

Definition 1.10.
1) Let $\exists_{0,\alpha}(\lambda) = \exists_\alpha(\lambda) := \lambda + \Sigma\{2^{\beta,\alpha}(\lambda) : \beta < \alpha\}$. Let $\exists_{\varepsilon,\alpha}(\lambda)$ be defined by induction on $\varepsilon > 0$ and for each ε by induction on $\alpha : \exists_{\varepsilon,0}(\lambda) = \lambda$, for limit β we let $\exists_{\varepsilon,\beta} = \sum_{\gamma < \beta} \exists_{\varepsilon,\gamma}$ and for $\varepsilon = \zeta + 1$ let $\exists_{\varepsilon,\alpha}(\lambda) = \exists_{\varepsilon,\alpha}(\lambda)$ where $2^\mu = (2^{2^{\zeta,\alpha}(\lambda)})^+$, lastly for limit ε let $\{\exists_{\varepsilon,\alpha} : \alpha \in \text{Ord}\}$ list in increasing order the closed unbounded class $\bigcap_{\varepsilon < \delta} \{\exists_{\varepsilon,\alpha} : \alpha \in \text{Ord}\}$.
2) Let $\lambda \gg \kappa$ mean $(\forall \alpha < \lambda)(|\alpha|^\kappa < \lambda)$.

Convention 1.11.
1) $\mathfrak{t} = (K_t, \leq_t)$ is an a.e.c., with vocabulary $\tau_t = \tau(\mathfrak{t})$ and $\text{LST}(\mathfrak{t}) = \text{LST}_t$ its Löwenheim-Skolem-Tarski number, see [Sh:89r, §1]. If not said otherwise, we assume $|\tau_t| \leq \text{LST}_t$.
2) $K^\lambda_t = K_{t,\lambda} = \{M \in K_t : \|M\| = \lambda\}$.

why not, e.g. $\mu = \exists_{1,\mu}(\lambda)^+$? Not a serious difference as for limit α we shall get the same value and in 1.14(1) this simplifies the notation.
3) If $K = K_\lambda$ we may write t instead of K; also we may write K or K_λ omitting t when (as usually here) t is clear from the context.

Definition 1.12. For a class K of τ-models:

(a) for a cardinal λ, let $I(\lambda, K)$ be the cardinality of $\{M/ \equiv: M \in K \text{ has cardinality } \lambda\}$

(b) for a cardinal λ and a logic \mathcal{L}, let $I(\lambda, \mathcal{L}, K) = \{M/ \equiv_{\mathcal{L}(\tau)}: M \in K \text{ has cardinality } \lambda\}$.

Definition 1.13. 1) Φ is a template proper for linear orders when:

(a) for some vocabulary $\tau = \tau_\Phi = \tau(\Phi)$, Φ is an ω-sequence, with the n-th element a complete quantifier free n-type in the vocabulary τ,

(b) for every linear order I there is a τ-model M denoted by $\text{EM}(I, \Phi)$, generated by $\{a_t: t \in I\}$ such that $s \neq t \Rightarrow a_s \neq a_t$ for $s, t \in I$ and $\langle a_{t_0}, \ldots, a_{t_{n-1}}\rangle$ realizes the quantifier free n-type from clause (a) whenever $n < \omega$ and $t_0 < t_1 \ldots < t_{n-1}$. We call $(M, \langle a_t: t \in I\rangle)$ a Φ-EM-pair or EM-pair for Φ; so really M and even $(M, \langle a_t: t \in I\rangle)$ are determined only up to isomorphism but abusing notation we may ignore this and use $I_1 \subseteq I_2 \Rightarrow \text{EM}(I_1, \Phi) \subseteq \text{EM}(I_2, \Phi)$. We call $\langle a_t: t \in I\rangle$ “the” skeleton of M; of course again “the” is an abuse of notation as it is not necessarily unique.

1A) If $t \subseteq \tau(\Phi)$ then we let $\text{EM}_t(I, \Phi)$ be the t-reduct of $\text{EM}(I, \Phi)$.

2) $T^{\text{EM}}[t]$ is the class of templates Φ proper for linear orders satisfying clauses (a),(b),(c) of Claim 1.14(1) below and $|\tau(\Phi)| = |\tau_t| = \kappa$; normally we assume $\kappa \geq |\tau_t| + \text{LST}_t$ but using t_M we do not assume $\kappa \geq \|M\|$, see 2.1. The default value of κ is LST_t and then we may write T^{EM}_t or $T^{\text{EM}}[t]$ and for simplicity if not said otherwise $\kappa \geq \text{LST}_t$ (and so $\kappa \geq |\tau_t|$). We may omit t when clear from the context and may write T_t using 0 as the default value.

3) For a class K of so called index models, we define “Φ proper for K” similarly when in clause (b) of part (1) we demand $I \in K$, so K is a class of τ_K-models, i.e.

(a) Φ is a function, giving for any complete quantifier free n-type in τ_K realized in some $M \in K$, a quantifier free n-type in τ_Φ.

(b) in clause (b) of part (1), the quantifier free type which $\langle a_{t_0}, \ldots, a_{t_{n-1}}\rangle$ realizes in M is $\Phi(tp_{\text{qf}}(\langle t_{t_0}, \ldots, t_{t_{n-1}}\rangle, \emptyset, I))$ for $n < \omega, t_0, \ldots, t_{n-1} \in I$.

Fact 1.14. 1) Let t be an a.e.e. and $M \in K_t$ be of cardinality $\geq \lambda = \sum_{i=1}^\omega(\text{LST}_t)$ recalling we may assume $|\tau_t| \leq \text{LST}_t$ as usual.

Then there is a Φ such that Φ is proper for linear orders and:

(a) $\tau_t \subseteq \tau_\Phi$,

(b) for any linear order I the model $\text{EM}(I, \Phi)$ has cardinality $|\tau(\Phi)| + |I|$ and we have $\text{EM}_{\tau(t)}(I, \Phi) \in K_t$

(c) for any linear orders $I \subseteq J$ we have $\text{EM}_{\tau(t)}(I, \Phi) \leq_t \text{EM}_{\tau(t)}(J, \Phi)$; moreover, if $M \subseteq \text{EM}(J, \Phi)$ then $M[\tau_t] \leq_t \text{EM}_{\tau(t)}(J, \Phi)$

(d) for every finite linear order I, the model $\text{EM}_{\tau(t)}(I, \Phi)$ can be \leq_t-embedded into M.
1) Moreover, assume in (1) also $\lambda = \beth_{1,1}(\kappa)$, $\kappa \geq \text{LST}_1 + |\tau|$, so not necessarily assuming $\text{LST}_1 \geq |\tau|$, M^+ is an expansion of M with $\tau(\text{M}^+)$ of cardinality $\leq \kappa$ and $b_\alpha \in M$ for $\alpha < \lambda$ are pairwise distinct. Then there is Φ proper for linear orders such that:

- (a) $\tau(M^+) \subseteq \tau_\Phi$ hence $\tau(t) \subseteq \tau_\Phi$
- (b) τ_Φ has cardinality κ
- (c) has in part (1)
- (d) if I is a finite linear order and $t_0 < I \ldots < I t_{n-1}$ list its elements and $M_I = \text{EM}(I, \Phi)$ with skeleton $(a_t : t \in I)$, then for some ordinals $\alpha_0 < \ldots < \alpha_{n-1} < \lambda$ there is an embedding of M_I into M^+ mapping a_t to b_α for $\ell < n$.

2) If $\text{LST}_1 < |\tau|$ and there is $M \in K_1$ of cardinality $\geq \beth_{1,1}(2^{\text{LST}_1})$, then there is $\Phi \in T^1_{\text{LST}(\kappa)}[\tau]$ such that $\text{EM}(I, \Phi)$ has cardinality $\leq \text{LST}_1$ for I finite and $\tau_\Phi \setminus \Phi$ has cardinality LST_1. Note that $\hat{\epsilon}$ has $\leq 2^{\text{LST}_1}$ equivalence classes where $\hat{\epsilon} = \{(P_1, P_2) : P_1, P_2 \in \tau_\Phi \text{ and } P_1^{EM(I, \Phi)} = P_2^{EM(I, \Phi)} \text{ for every linear order } I\}$ hence above $\beth_{1,1}(2^{\text{LST}(\kappa)})^+$ suffice.

3) We can combine parts (1A) and (2). Also in both cases having a model of cardinality $\geq \beth_n$ for every $\alpha < (2^{\text{LST}(\kappa)} + |\tau|)^+$ suffice in parts (1),(1A) and for every $\alpha < \beth_n$ suffice in part (2).

We add

Claim 1.15. For every cardinal μ and strong limit $\chi \leq \mu$ there is a dense κ-
saturated linear order $I = I_\mu$ of cardinality μ such that:

- (+) if $\theta < \partial = \text{cf}(\partial) < \mu$, $2^\theta \leq \chi$ then
- (*)$_{I, \chi, \partial, \theta}$ we have $2^\theta \leq \chi$ and $\theta < \partial = \text{cf}(\partial)$ and (A) \Rightarrow (B) where:
 - (A) $I_0 \subseteq I$
 - (b) I_0 has cardinality $\leq \theta$
 - (c) I_1 is a linear order extending I_0
 - (d) $u_n \subseteq u_{n+1} \subseteq \theta = \bigcup_n u_n$
 - (e) $I_0 \subseteq I_1$ for $\alpha < \partial$ and $\langle I_0^{\alpha} : \alpha < \partial \rangle$ is an indiscernible sequence in I_1 over I_0 (for quantifier free formulas)
 - (f) for every $n, I_{1,n} = I_1 \upharpoonright \{I_0^{\alpha,i} : i \in u_n, \alpha < \partial \} \cup I_0$ is embeddable into I over I_0

- (B) there is $\langle I_0 : \alpha < \mu \rangle$ such that
 - (a) $I_0 \subseteq I$
 - (b) $\langle I_0 : \alpha < \mu \rangle$ is an indiscernible sequence over I_0 into I
 - (c) the quantifier free type of $I_0 \upharpoonright \ldots I_n$ over I_0 in I is equal to the quantifier free type of $I_0 \upharpoonright \ldots I_n$ over I_0 in I for every n

(B)$^+$ moreover we can replace $\langle I_0 : \alpha < \mu \rangle$ by $\langle I_0 : s \in I \rangle$.

Remark 1.16. 1) We may consider replacing (A)(c) by
\((c)' \alpha = \Delta_2(\theta)^+, u_n \subseteq u_{n+1} \subseteq \theta = \bigcup_n u_n \) and there is \(\tilde{f} = \{ f_\eta : \eta \in \Lambda \} \) such that \(f_\eta \) embeds \(I_{1, \eta(\eta)} \) into \(I_1 \) over \(I_0 \) and \(\nu < \eta \Rightarrow f_\nu \subseteq f_\eta \) where \(\Lambda = \{ \eta : \eta \) is a decreasing sequence of ordinals \(< \alpha \} \).

2) Clauses \((A)(d),(e)\) can be weakened to:

\[\oplus \text{ if } i, j < \theta \text{ then } I_1 \{ \{ I_{1, \alpha, \varepsilon}^i : \alpha < \partial, \varepsilon \in u_n \} \} \text{ can be embedded into } I \text{ over } I_0. \]

But the present form fits our application.

Proof. First we give a sufficient condition for \((*)_{I, \partial, \theta}\)

\[\square \text{ the linear order } I \text{ satisfies } (*)_{I, \chi, \partial, \theta} \text{ when: } \chi > \partial = \text{cf}(\partial) > \theta \text{ and} \]

\[(a) \text{ } I \text{ is a linear order of cardinality } \mu \]
\[(b) \text{ if } J_0 \subseteq I, |J_0| \leq \theta \text{ then the set } I_0^+ = \{ t \in I : t \notin I_0 \text{ and there is no} \]
\[t' \in I \setminus I_0 \{ t \} \text{ realizing the same cut of } I_0 \text{ in } I \} \text{ has cardinality } < \partial, \text{ so} \]
\[\text{ if } \partial = (2^\theta)^+ \text{ this holds} \]
\[(c) \text{ if } a < I \text{ then } I \text{ is embeddable into } (a, b)_I \]
\[(d) \text{ every linear order of cardinality } \leq \theta \text{ is embeddable into } I \]
\[(e) \text{ in } I \text{ there is a decreasing sequence of length } \mu \text{ and an increasing sequence of length } \mu \]
\[(f) \text{ to get } (B)^+ \text{ we need: if } J \text{ is a linear order of cardinality } \leq \theta \text{ then we} \]
\[\text{ can embed } I \times J \text{ (ordered lexicographically into } I). \]

It is obvious that there is such linear order. It is also easy to see that if \(I \) satisfies \((a)-(d) \) then \((*)_{I, \partial, \theta}\). \[\square_1.15 \]
§ 2. More on Templates

Why do we need $\mathcal{T}_{\kappa}^{\text{sort}}[M, \mathfrak{t}]$? Remember that such Φ’s are witnesses to M having \leq_τ-extensions in every $\mu > \text{LST}_\tau + |M|$ so proving existence is a major theme here. First, why do we need below $\mathcal{T}_{\kappa}^{\text{sort}}$? Because $"\mathcal{T}_{\kappa}^{\text{sort}}[M, \mathfrak{t}] \neq \emptyset"$ is equivalent to M being not \leq_τ-maximal; moreover has \leq_τ-extensions of arbitrarily large cardinality so proving this for every $M \in K^\chi_\kappa$ indicates $"\mathfrak{t}$ is nice, at least in λ". Second, why do we need various partial orders on $\mathcal{T}_{\kappa}^{\text{sort}}[M, \mathfrak{t}]$’s?

In a major proof here to build $\Phi \in \mathcal{T}_{\kappa}^{\text{sort}}[M, \mathfrak{t}]$ we use \leq_τ-increasing M_n with union M and try to choose $\Phi_n \in \mathcal{T}_{\kappa}^{\text{sort}}[M_n, \mathfrak{t}]$ increasing with n. For this we assume $|M_n| = \lambda_n$, $\lambda_n \ll \lambda_{n+1}$ and we use an induction hypothesis that Φ_n has a say $\lambda_{n+\tau}$-witness in M.

Of course, it is nice if $\text{EM}_{\tau}(\lambda_{n+\tau}, \Phi_n)$ is \leq_τ-embeddable into M over M_n but for this we do not have strong enough existence theorem. To fine tune this and having a limit ($\Phi \in \mathcal{T}_{\kappa}^{\text{sort}}[M, \mathfrak{t}]$) we need some orders.

Definition 2.1. For \mathfrak{t} an a.e.c. and $M \in K_\mathfrak{t}$ let $\mathfrak{t}_M = \mathfrak{t} | M$ be the following a.e.c.:

(a) vocabulary $\tau_\mathfrak{t} \cup \{c_\alpha : \alpha \in M\}$ where the c_α’s are pairwise distinct new individual constants

(b) $N \in K_{\mathfrak{t}_M}$ if $N|\tau_\mathfrak{t} \in \mathfrak{t}$ and $a \mapsto c^N_\alpha$ is a \leq_τ-embedding of M into $N|\tau_\mathfrak{t}$;

(c) $N_1 \leq_{\mathfrak{t}_M} N_2$ if

(α) N_1, N_2 are $\tau_{\mathfrak{t}_M}$-models from $K_{\mathfrak{t}_M}$

(β) $N_1 \subseteq N_2$

(γ) $(N_1|\tau_\mathfrak{t}) \leq_{\mathfrak{t}} (N_2|\tau_\mathfrak{t})$.

Definition 2.2. 1) We call $N \in K_{\mathfrak{t}_M}$ standard when $M \leq_{\mathfrak{t}} N|\tau_\mathfrak{t}$ and $a \in M \Rightarrow c^N_\alpha = a$.

2) If $N^1 \in K_{\mathfrak{t}_M}$ is standard and $N^0 = N^1|\tau_\mathfrak{t}$ then we write $N^1 = N^0 | M$.

3) We call $\Phi \in \mathcal{T}_{\kappa}^{\text{sort}}$ standard when $M = \text{EM}_{\tau}(\emptyset, \Phi)$ implies $N \leq_{\mathfrak{t}} M | \tau_\mathfrak{t}$ when N is the submodel3 of $M | \tau_\mathfrak{t}$ with universe $\{c^M : c \in \tau(\Phi) \text{ an individual constant}\}$. We call Φ fully standard when above $N = M | \tau_\mathfrak{t}$.

4) Let $\mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}]$ be the class of standard $\Phi \in \mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}]$.

5) For $M \in K_{\mathfrak{t}}$ let $\mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}_M]$ be the class of κ-standard $\Phi \in \mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}_M]$ which3 means:

(a) letting $\kappa_1 = \kappa + |M|$, we have $\Phi \in \mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}]$

(b) $\{c_\alpha : a \in M\} = \{c \in \tau(\Phi) : c \text{ an individual constant}\}$.

(c) $N = \text{EM}(\emptyset, \Phi) \Rightarrow |N| = \{c^N : c \in \tau_\Phi\}$

(d) $\tau_\Phi := \tau(\{c \in \tau_\Phi \text{ is an individual constant}\}$ has cardinality $\leq \kappa$

(e) if $N = \text{EM}(I, \Phi)$ and N_1 is a submodel of $N | \tau_\Phi$ then $N_1 | \tau_\mathfrak{t} \leq_{\mathfrak{t}} N | \tau_\mathfrak{t}$.

5A) We may omit κ in part (5) when $\kappa = \text{LST}_\tau + |\tau_\mathfrak{t}|$. We may write $\mathcal{T}_{\kappa}^{\text{sort}}[M, \mathfrak{t}]$ instead of $\mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}_M]$, useful when \mathfrak{t} is not clear from the context.

3Note that we have not said “$\Phi \in \mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t} | N]$” but by renaming this follows.

4So though such Φ belongs to $\mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}]$, being standard for $\mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}_M]$ is a different demand than being standard for $\mathcal{T}_{\kappa}^{\text{sort}}[\mathfrak{t}]$ as for the latter possibly $\{c_\alpha : a \in M\} \not\subseteq \{c \in \tau_\Phi : c \text{ an individual constant}\}$.
Observation 2.3. 1) If $\Phi \in \mathcal{Y}_n^\kappa [\mathfrak{t}, M]$ then $\Phi \in \mathcal{Y}_n^\kappa + \|M\| [\mathfrak{t}]$ but not necessarily the inverse.
2) If $\Phi \in \mathcal{Y}_n^\kappa [\mathfrak{t}, M]$ then Φ is a fully standard member of $\mathcal{Y}_n^\kappa [\mathfrak{t}_M]$.

Claim 2.4. Assume \mathfrak{t} is an a.e.c. and $M \in K_\mathfrak{t}$ and $\mathfrak{t}_1 = \mathfrak{t}_M$ then:

(a) \mathfrak{t}_1 is an a.e.c.
(b) $\text{LST}_{\mathfrak{t}_1} = \text{LST}_\mathfrak{t} + \|M\|
(c) applying 1.14 to \mathfrak{t}_1, we can add $\{\Phi \in \mathcal{Y}_n^\kappa [\mathfrak{t}_M]\}$.

Proof. Straightforward. $\square_{2.4}$

Definition 2.5. Assume J is a linear order of cardinality λ and $\lambda \to (\mu)^\kappa_\theta$. We define the ideal $\mathcal{I} = \text{ER}_{J, \mu, \theta}$ on the set $[J]^{\kappa^\kappa}$ by:

- $\mathcal{I} \subseteq [J]^\mu$ belongs to \mathcal{I} iff for some $c : [J]^{\leq n} \to \theta$ there is no $s \in \mathcal{I}$ such that $c[s]^n$ is constant.

Observation 2.6. 1) If $|J| = \lambda$ and $\lambda \to (\mu)^\kappa_\theta$ then $\text{ER}_{J, \mu, \theta}$ is indeed an ideal, i.e. $J \notin \text{ER}_{J, \mu, \theta}$.
2) If $\theta = \theta^{< \kappa}$ then this ideal is κ-complete.

Definition 2.7. 1) For vocabularies τ_1, τ_2 we say that h is an isomorphism from τ_1 onto τ_2 when h is a one-to-one function from the non-logical symbols of τ_1 (= the predicates and function symbols) onto those of τ_2 such that:

(a) if $P \in \tau_1$ is a predicate then $h(P)$ is a predicate of τ_2 and $\text{arity}_{\tau_1}(P) = \text{arity}_{\tau_2}(h(P))$
(b) if $F \in \tau_1$ is a function symbol\(^5\) then $h(F)$ is a function symbol of τ_2 and $\text{arity}_{\tau_1}(F) = \text{arity}_{\tau_2}(h(F))$.

2) If h is an isomorphism from the vocabulary τ_1 onto the vocabulary τ_1 and M_1 is a τ_1-model then $M_1^{[h]}$ is the unique M_2 such that:

(a) M_2 is a τ_2-model
(b) $|M_2| = |M_1|$
(c) $P_{M_2}^{M_2} = P_{M_1}^{M_1}$ when $P_1 \in \tau_1$ is a predicate and $P_2 = h(P_1)$
(d) $F_{M_2}^{M_2} = F_{M_1}^{M_1}$ when $F_1 \in \tau_1$ is a function symbol and $F_2 = h(F_1)$.

3) We say h is an isomorphism from τ_1 onto τ_2 over τ when $\tau \subseteq \tau_1 \cap \tau_2$, h is an isomorphism from τ_1 onto τ_2 and $h|\tau$ is the identity.
4) If $\Phi_1 \in \mathcal{Y}_n^\kappa$ and h is an isomorphism from the vocabulary $\tau_1 := \tau(\Phi)$ onto the vocabulary τ_2 then $\Phi_2^{[h]}$ is the unique $\Phi_2 \in \mathcal{Y}_n^\kappa$ such that: if I is a linear order, $M_1 = \text{EM}(I, \Phi_1)$ with skeleton $\langle a_t : t \in I \rangle$ then $M_1^{[h]}$ is the model $(\text{EM}(I, \Phi_2))^{[h]}$ with the same skeleton.

\(^5\)this includes individual constants
Observation 2.8. 1) In 2.7(2), $M_2 = M_{1}^{[h]}$ is indeed a τ_2-model. If in addition h is over τ (i.e. $\tau \subseteq \tau_1 \cap \tau_2$ and $h|\tau = \text{id}_\tau$) then $M_1|\tau = M_2|\tau$.

2) In 2.7(4), indeed $\Phi_2 \in \Upsilon_\kappa^{or}$.

3) If h is an isomorphism from τ_1 onto τ_2 over τ_t so $\tau_t \subseteq \tau_1 \cap \tau_2$ and $\Phi_1 \in \Upsilon_\kappa^{or}[t], \tau_1 = \tau(\Phi_1)$ then $\Phi_2 = \Phi_1^{[h]}$ belongs to $\Upsilon_\kappa^{or}[t]$.

4) In part (3) if in addition $M \in K_t$ and $\Phi_1 \in \Upsilon_\kappa^{or}[M,t]$ and $a \in M \Rightarrow h(c_a) = c_a$, then $\Phi_2 = \Phi_1^{[h]}$ belongs to $\Upsilon_\kappa^{or}[M,t]$.

Proof. Straightforward. \(\square_{2,8}\)

Next we recall the partial orders \leq_1, \leq_2 and define an equivalence relation and some quasi-orders on $\Upsilon_\kappa^{or}[t]$.

Definition 2.9. Fixing t, we define partial orders $\leq_1^{\kappa}, \leq_2^{\kappa}$ on $\Upsilon_\kappa^{or}[t]$ (for $\kappa \geq \text{LST}_t$):

1) $\Psi_1 \leq_1^{\kappa} \Psi_2$ if $\tau(\Psi_1) \subseteq \tau(\Psi_2)$ and $\text{EM}_{\tau(t)}(I, \Psi_1) \subseteq \text{EM}_{\tau(t)}(I, \Psi_2)$ and $\text{EM}(I, \Psi_1) = \text{EM}_{\tau(t)}(I, \Psi_2)$ for any linear order I (so, of course, same a_i’s, etc.).

Again for $\kappa = \text{LST}_t + |\tau_t|$ we may drop the κ.

2) For $\Phi_1, \Phi_2 \in \Upsilon_\kappa^{or}$, we say Φ_2 is an inessential extension of Φ_1 and write $\Phi_1 \leq^{ie}_\kappa \Phi_2$ if $\Phi_1 \leq_2^{\kappa} \Phi_2$ and for every linear order I, we have

$$\text{EM}_{\tau(t)}(I, \Phi_1) = \text{EM}_{\tau(t)}(I, \Phi_2).$$

(note: there may be more function symbols in $\tau(\Phi_2)$!)

2A) We define the two-place relation E^a on Υ_κ^{or} as follows: $\Phi_1 E^a \Phi_2$ iff $\tau(\Phi_1) = \tau(\Phi_2)$ and for some unary function symbol $F \in \tau(\Phi_1)$ or F is just a (finite) composition of such function symbols, if $M = \text{EM}(I, \Phi_1)$ with skeleton $\langle a_t^I : t \in I \rangle$ and we let $a_t^F = F^M(a_t^I)$ for $t \in I$ then:

- $F^M(a_t^2) = a_t^I$
- M is EM(I, Φ_2) with skeleton $\langle a_t^\Psi : t \in I \rangle$;

“a^Ψ” stands for almost equal.

2B) Above we say $\Phi_2 E^a \Phi_2$ is witnessed by F.

2C) We define the two-place relation E^{ae}_κ on Υ_κ^{or} by: $\Phi_1 E^{ae}_\kappa \Phi_2$ iff for some $\Phi_3, \Phi_1 \leq^{ie}_\kappa \Phi_3$ and $\Phi_2 \leq^{ie}_\kappa \Phi_3$.

2D) We define a two-place relation E^{ai}_κ on $\Upsilon_\kappa^{or}[t]$ by $\Phi_1 E^{ai}_\kappa \Phi_3$ iff for some $\Phi_2 \in \Upsilon_\kappa^{or}[t]$ we have $\Phi_1 E^{ae}_\kappa \Phi_2$ and $\Phi_2 E^{ai}_\kappa \Phi_3$.

3) Let Υ_κ^{lin} be the class of Ψ proper for linear order and producing linear orders, that is, such that:

- (a) $\tau(\Psi)$ has cardinality $\leq \kappa$,
- (b) $\text{EM}_{\tau(t)}(I, \Psi)$ is a linear order which is an extension of I which means $s < I$ \(t \Rightarrow \text{EM}(I, \Psi) = (a_i < a_i^\Psi); \text{in fact we can have}

$|t \in I \Rightarrow a_i = t|.

4) $\Phi_1 \leq^{a}_\kappa \Phi_2$ iff there is Ψ such that:

but abusing our notation we may still write $F \in \tau_\theta$
Similarly for \(\Phi\) we allow further expansion by functions definable from earlier ones (composition or even definition by cases), as long as the number is \(\leq \kappa\).

It is not a real loss to restrict ourselves to standard \(\Phi\) because

\[
\text{Claim 2.10. 1) For every } \Phi_1 \in \mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t], \text{there is a standard } \Phi_2 \in \mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t] \text{ such that } \Phi_1 \leq^k \Phi_2; \text{ moreover } M = EM(\emptyset, \Phi_2) \Rightarrow |M| = \{ c^M : c \in \tau(\Phi_2) \text{ an individual constant} \}, \text{ that is } \Phi_2 \text{ is fully standard.}
\]

2) Assume \(\Phi_1 \in \mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t], F \in \tau(\Phi) \) is a unary function symbol such that \(M = EM(I, \Phi_1) \cap t \in I \Rightarrow F^M(F^M(a_t)) = a_t\). Then for a unique \(\Phi_2, \Phi_2 E^\kappa \Phi_2\) as witnessed by \(F\) and \(\Phi_1 \in \mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t_M] \Leftrightarrow \Phi_2 \in \mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t_M].
\]

3) \(E^\kappa\) is an equivalence relation on \(\mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t]\) for \(x \in \{a, \text{ie}, \text{ai}\}\) all refining \(E^\text{ai}\).

\[
\text{Proof.} \text{ Obvious.} \quad \square_{2.10}
\]

\[
\text{Observation 2.11. Let } \ell = 1, 2.
\]

1) The relation \(\leq^\ell\) is a partial order on \(\mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t]\).

2) If \(\langle \Phi_\alpha : \alpha < \delta \rangle\) is \(\leq^\ell\)-increasing with \(\delta\) a limit ordinal \(< \kappa^+ \) then \(\bigcup_{\alpha < \delta} \Phi_\alpha\)

3) \(E^\kappa\) is an equivalence relation on \(\mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t]\).

4) If \(\mathcal{Y}^{\text{ort}}_{\mathcal{K}_1}[t] \leq \mathcal{Y}^{\text{ort}}_{\mathcal{K}_2}[t]\) then \(\kappa_1 \leq \kappa_2\). If \(\kappa_1 \leq \kappa_2\) and \(t \in \{1, 2\}\) and \(\Phi, \Psi \in \mathcal{Y}^{\text{ort}}_{\mathcal{K}_1}\) then \(\Phi \leq \kappa_1, \Psi \Rightarrow \Phi \leq^\kappa \Psi\).

5) Similarly for \(\mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t_M]\) defined in 2.2(5).

\[
\text{Definition 2.12. 1) For } \kappa > \text{LST}_{\ell + |\tau|}, \text{ we define } \leq^\circ = \leq^2_{\kappa, \kappa}, \text{ in full } \leq_{\kappa, \kappa}, \text{ a two-place relation on } \mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t], \text{ recalling Definition 2.2(5) as follows:}
\]

Let \(\Phi_1 \leq^\kappa \Phi_2\) mean that: for every linear order \(I_1\) there are a linear order \(I_2\) and \(\tau\)-embedding \(h\) of \(EM(\tau(t)(I_1, \Phi_1))\) into \(EM(\tau(t)(I_2, \Phi_2))\), moreover every individual constant \(c\) of \(\tau(\Phi_1)\) is an individual constant of \(\tau(\Phi_2)\) and \(h(c^{EM(I_1, \Phi_1)}) = c^{EM(I_2, \Phi_2)}\).

2) We define \(\leq^1_{\kappa} = \leq^4_{\kappa, \kappa}\); a two-place relation on \(\mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t]\) as follows.

Let \(\Phi_1 \leq^1_{\kappa} \Phi_2\) mean that: for some \(F\) we have:

\[
\text{(a) } \Phi_1, \Phi_2 \in \mathcal{Y}^{\text{ort}}_{\mathcal{K}}[t]
\]

\[
\text{(b) } \tau(\Phi_1) \subseteq \tau(\Phi_2)
\]

\[
\text{(c) } F \in \tau(\Phi_2) \text{ is a unary function symbol or as in 2.9(2A)}
\]

\[
\text{(c) if } I \text{ is a linear order and } M_1 = EM(I, \Phi_2) \text{ with skeleton } \langle a^1_s : s \in I \rangle \text{ then there is } M_2 = EM(I, \Phi_1) \text{ with skeleton } \langle a^2_s : s \in I \rangle \text{ such that:}
\]

\[
\begin{align*}
\text{(d) } a^1_s &= F^M(a^1_s) \text{ for } s \in I \\
\text{(d) } a^2_s &= F^M(a^2_s) \text{ for } s \in I \\
\text{(e) } M_1 \subseteq M_2 | \tau_0, \text{ so } \tau(\Phi_1) \subseteq \tau(\Phi_2) \\
\text{(f) } (M_1 | \tau_t) \leq (M_2 | \tau_t) \\
\text{(g) } c^{M_1} = c^{M_2} \text{ when } c \in \tau(\Phi_1) \text{ is an individual constant.}
\end{align*}
\]
Remark 2.13. So \leq_4 is like \leq_2 but we demand less as $a_i^1 = a_i^2$ is weakened by using the function symbol F.

Claim 2.14. 1) \leq_3^κ is a partial order on $\mathcal{Y}^\kappa_\kappa[t]$ as well as \leq_2^κ; also for $\Phi_1, \Phi_2 \in Y^\kappa_\kappa[t]$ and $t = 1, 2, 4$ we have $\Phi_1 \leq_2 \Phi_2 \Rightarrow \Phi_1 \leq_2 \Phi_2 \Rightarrow \Phi_1 \leq_2 \Phi_2 \Rightarrow \Phi_1 \leq_3 \Phi_2$.

2) Assume $\Phi_1, \Phi_2 \in Y^\kappa_\kappa[t]$ have the same individual constants. Then $\Phi_1 \leq_2^\kappa \Phi_2$ iff as in 2.12(1) restricting ourselves to $I = [1, \lambda]$ if $\Phi_1, \Phi_2 \in Y^\kappa_\kappa[t]$ and for some F and $\Phi_1', \Phi_2' \in Y^\kappa_\kappa[t]$ we have $\Phi_1 \leq_4^\kappa \Phi_1'$ witnessed by F and $\Phi_1' \leq_4^\kappa \Phi_2'$ witnessed by F and for some τ_α, h we have $\tau(t) \subseteq \tau_\alpha \subseteq \tau(\Phi_1')$, h is an isomorphism from $\tau(\Phi_1)$ onto $\tau(\Phi_1') \cup \{c : c \in \tau(\Phi_1)\}$ and $\Phi_2^{[h]} \leq_3^\kappa \Phi_2'$ iff for some $\Phi' \in Y^\kappa_\kappa[t]$ we have $\Phi_1 \leq_3^\kappa \Phi'$ and Φ' embeds Φ, see 2.9(2).

3) If $\Phi_n \in Y^\kappa_\kappa[t]$ and $\Phi_n \leq_3^\kappa \Phi_{n+1}$ then there is $\Phi_\omega \in Y^\kappa_\kappa[t]$ such that $n < \omega \Rightarrow \Phi_n \leq_3^\kappa \Phi_\omega$; moreover, $EM_{\tau(t)}(\emptyset, \Phi_\omega)$ is the union of the \leq_4^κ-increasing sequence $\{EM_{\tau(t)}(\emptyset, \Phi_n) : n < \omega\}$.

4) Similarly for \leq_4^κ.

Proof. 1) Obvious.

2) First clause implies second clause.

Holds trivially.

Second clause implies the third clause.

Let $I_1 = (\lambda, < \lambda)$, λ large enough, e.g. $\lambda = \aleph_1(\kappa)$. Let $M_1 = EM(I_1, \eta_1)$ be with skeleton $\langle a_i^1 : t \in I_1 \rangle$. As $\Phi_1 \leq_2^\kappa \Phi_2$, there is a linear order I_2 and $M_2 = EM(I_2, \eta_2)$ with skeleton $\langle a_i^2 : t \in I_2 \rangle$ and \leq_κ embedding f from $M_1[\tau(t)]$ into $M_2[\tau(t)]$ such that $c \in \tau(\Phi_1) \Rightarrow c \in \tau(\Phi_2)$ and $f(c^{M_1}) = c^{M_2}$; so without loss of generality $|I_2| > \lambda$ by renaming $f|Sk(\emptyset, M_1)$ is the identity and as $\|M_2\| \geq \lambda \geq \kappa > |\tau(M_2)|$, clearly we can find pairwise distinct $t_\alpha \in I_2$ for $\alpha < \lambda$ such that $\{a_i^{\alpha}_2 : \alpha < \lambda\} \cap \{f(a_i^1) : \alpha < \lambda\} = \emptyset$.

Let $\tau_1 = \tau(\Phi_1)$ and τ_3 be such that: h is an isomorphism from the vocabulary $\tau_2 = \tau(\Phi_2)$ onto τ_3 over $\tau(t) \cup \{c : c \in \tau(\Phi_1)\}$ such that $\tau_1 \cap \tau_3 = \tau(t) \cup \{c : c \in \tau(\Phi_2)\}$ and let $M_3 = M_2^{[h]}$, so $\tau(M_3) = \tau_3, \Phi_3 = \Phi_2^{[h]}$ so $\tau(M_1) = \tau_3 = \tau(\Phi_3)$ and M_3 is an EM(I_2, η_3) model with skeleton $\langle a_i^{\alpha}_3 : t \in I_2 \rangle$.

Let $\tau_4 = \tau_3 \cup \tau_1 \cup \{F, P : t = 1, 2, 3, 4\}$ with F a one place function symbol and $P_t, F \notin \tau_3 \cup \tau_1$ and P_t one place predicates for $t = 1, 2, 3, 4$. We define a τ_4-model M_4:

1. it has universe $|M_3|$
2. $F^{M_4}(a_i^{\alpha}_3) = f(a_i^1)$ and $F^{M_4}(f(a_i^1)) = a_i^2$
3. $P_4^{M_4} = \{a_i^1 : t \in I_1\}, P_2^{M_4} = \{a_i^2 : t \in I_2\}, P_3^{M_4} = \{f(a_i^1) : t \in I_1\}, P_4^{M_4} = Rang(f)$
5. f embeds M_1 into $M_4[\tau_1]$.

Clearly there is no problem to do this and we apply 1.14(1A) with $M_4[\tau(t)], M_4, \{a_i^{\alpha}_3 : \alpha < \lambda\}$, here standing for $M, M^{+}, \{a_\alpha : \alpha < \lambda\}$ there and Φ_4 standing for Φ there. Now by inspection (see Definition 2.12(2)).

7The reason is that there may be a symbol in $\tau(\Phi_2) \cap \tau(\Phi_3)$ but not from $\tau(\Phi_1) \cup \{c : c \in \tau(\Phi_1)\}$.

We eliminate this “accidental equality”. Only now $\tau_3 \cup \tau_4$ makes sense.
\((*)_1\) \(\Phi_1 \leq^r \Phi_4\)
\((*)_2\) \(\Phi_3 \leq^c \Phi_4\); moreover \(\Phi_3 \leq^e \Phi_4\).

{z22} We derive \(\Phi_3\) from \(\Phi_4\) by 2.10(2) using our \(F\) so \(\Phi_4 \mathcal{E}^e \Phi_5\). To show that the third clause of part (2) indeed holds, we just note that \(\Phi_1, \Phi_2, h, \tau_\lambda\), there can stand for \(\Phi_3, \Phi_5, h, \tau_3\) here, so we are done.

The third clause implies the first clause:

So we are given \(F\) and \(\Phi_1, \Phi_2 \in \mathcal{Y}_{\text{fin}}[t], \Phi_3, \Phi_4 \in \mathcal{Y}_{\text{sort}}[t], \tau_\lambda \subseteq \tau(\Phi_3)\) including \(\tau(t)\) and an isomorphism \(h\) from \(\tau(\Phi_2)\) onto \(\tau_\lambda\) over \(\tau_\mu \cup \{c : c \in \tau(\Phi_1)\}\) such that \(\Phi_1 \leq^r \Phi_2\) witness by \(F, \Phi_1 \mathcal{E}^e \Phi_2\) witness by \(F\) and \(\Phi_2 \mathcal{E}^l \Phi_3\).

Let \(\Psi \in \mathcal{Y}_\kappa\) witness \(\Phi_2 \mathcal{E}^l \Phi_3\); and for uniformity of notation we let \(\Phi_3 := \Phi_2\).

We have to prove \(\Phi_1 \leq^c \Phi_4\). So let \(I_1\) be a linear order.

Let \(M_1 = \text{EM}(I_1, \Phi_1)\) be with skeleton \(\{a^1_t : t \in I_1\}\), let \(I_2 = \text{EM}_I(\Psi, I_1)\) so with skeleton \(\{t : t \in I_1\}\). Let \(M_2 \subseteq M_1\) be defined by \(M_2 = \text{EM}(I_2, \Phi_2)\) with skeleton \(a^2_t = \{a^2_t : t \in I_2\}\) for \(t = 1, 2\) and let \(M_3 = \text{EM}(I_1, \Phi_3)\) be with skeleton \(\{a^1_t : t \in I_1\}\).

By the choice of \(\Psi\) and of \(I_2\) without loss of generality \(\Phi_2 \mathcal{E}^l \Phi_3\).

Lastly, there is a unique embedding \(f\) of \(M_1\) into \(M_3|\tau(\Phi_3)\) mapping \(a^1_t\) to \(f^{M_3}(a^1_t)\) for \(t \in I_1\). Easily \(f\) is a \(\leq^c\)-embedding of \(M_1|\tau(t)\) into \(M_3|\tau(t)\) mapping \(c^{M_1}\) to \(c^{M_2}\) for \(c \in \tau(\Phi_1)\) and \(M_3|\tau(t) = M_2|\tau(t)\) and \(c \in \tau(\Phi_1) \Rightarrow c \in \tau(\Phi_2)\) and \(f(c^{M_1}) = c^{M_2}\).

We leave the fourth clause to the reader.

{z28} 3) By parts (2) and (4) or directly using 1.14(1) and the definition of \(\leq^3\).

4) So assume that \(n < \omega \Rightarrow \Phi_n \leq^r \Phi_{n+1}\) as witnessed by \(F_n \in \tau(\Phi_{n+1})\).

For any infinite linear order \(I\) we can choose \(M_n = \text{EM}(I_n, \Phi_n)\) with skeleton \(\{a^0_t : t \in I\}\). Let \(\tau_\omega = \cup \{\tau(\Phi_n) : n < \omega\}\). Without loss of generality \(M_n \subseteq M_{n+1}|\tau(\Phi_n), F_n^{M_{n+1}}(a^0_t) = a^0_t\) and \(F_n^{M_{n+1}}(a^0_t) = a^0_{t+1}\). For each \(n\) we define \(M_{\omega,n} = \cup \{M_{n+k}|\tau_n : k \in [n, \omega]\}\), so \(n_1 < n_2 \Rightarrow M_{\omega,n_1} = M_{\omega,n_2}|\tau(\Phi_n_1)\). Hence letting \(\tau_\omega = \cup \{\tau(\Phi_n) : n < \omega\}\) there is a \(\tau_\omega\)-model \(M_\omega\) with universe \([\lambda_{\omega,0}]\) such that \(M_\omega|\tau_n = M_{\omega,n}\) for \(n < \omega\). Now define \(\Phi\) by \(\Phi(n) = \text{tp}_q((a^0_0, \ldots, a^0_{n-1}), 0, M_\omega)\) whenever \(0 \leq t \leq \omega\).

Clearly \(M_\omega = \text{EM}(I, \Phi)\) with skeleton \(\{a^0_t : t \in I\}\) and \(F_{n-1} \circ \cdots \circ F_1 \circ F_0\) witness \(\Phi_n \leq^c \Phi_\omega\), here we need composition of unary functions.

{z29} Claim 2.15. For \(M \in K_\ell\) of cardinality \(\kappa \geq \text{LST}_\ell + |\tau_\ell|\) the following conditions are equivalent:

(a) \(\mathcal{T}_{\text{fin}}[M] \neq \emptyset\)
(b) for every \(\lambda \geq \kappa\) there is \(N\) such that \(M \leq T N \in K_\ell^\lambda\)
(c) for every \(\alpha < 2^\kappa\) there is \(N \in K_\ell^{\geq \omega_\alpha}\) which \(\leq T\)-extend \(M\)
(d) there is \(\Phi \in \mathcal{T}_{\text{sort}}[M]\) such that if \(N = \text{EM}(I, \Phi)\) and \(N|\tau_M\) is standard then \(M = (N|\tau_\ell)|\{c^N : c \in \tau_\Phi\text{ an individual constant}\}\)
(e) \(\mathcal{T}_{\text{sort}}[M]\) is non-empty.

Proof. For (d) note that we can replace an individual constant by a unary function which is interpreted as being a constant function. More generally an \(n\)-place function \(F^N\) by functions \(F_1, F_2\) where
Claim 2.16. If (A) then (B) when:

$(A) (a)$ $M_1 \leq T M_2$

(b) Φ_1, Ψ_1 are from $\Upsilon^{\text{sort}}_\kappa[I_{M_1}]$ so are κ-standard

(c) $\Psi_2 \in \Upsilon^{\text{sort}}_\kappa[I_{M_2}]$

(d) $\Phi_1 \leq^\kappa \Phi_1$

(e) $\Psi_1 \leq^\kappa \Psi_2$

(f) $\{ c_\alpha : a \in M_2 \} \cap \tau(\Psi_1) = \{ c_\alpha : a \in M_1 \}$

(B) there is Φ_2 such that

(a) $\Phi_2 \in \Upsilon^{\text{sort}}_\kappa[I_{M_2}]$

(b) $\Phi_1 \leq^\kappa \Phi_2$

(c) $\Phi_2 \leq^\kappa \Psi_2$.

Proof. Straightforward: let I be an infinite linear order, $M_2 = EM(I, \Psi_2)$ be with skeleton $\langle a_t^2 : t \in I \rangle$. Let the unary function symbol F witness $\Phi_1 \leq^\kappa \Phi_1$ so $F \in \tau(\Psi_1) \subseteq \tau(\Psi_2)$ and let $a_t^2 = F^{M_2}(a_t^2)$. Clearly $\langle a_t^1 : t \in I \rangle$ is indiscernible for quantifier formulas in M_2 and generate it hence for some $\Phi_2 \in \Upsilon^{\text{sort}}_\kappa$ we have $M_2 = EM(I, \Phi_2)$ with skeleton $\langle a_t^1 : t \in I \rangle$. Clearly $\Phi_2 \in \Upsilon^{\text{sort}}_\kappa[I]$. Also $\Phi_2 E^\kappa \Phi_2$ hence $\Phi_2 \leq^\kappa \Psi_2$ and $\Phi_1 \leq^\kappa \Phi_2$ as required.

The following will be used when applied to a tree of approximations to embedding of EM-models to a model. In fact, we use only 2.18 for the case $\mathcal{F} = \mathcal{F} \setminus \max(\mathcal{F}),$ see background in 2.19.

Definition 2.17. 1) We say $i = (\mathcal{F}, I) = (\mathcal{R}, \bar{I})$ is pit (partially idealized tree) when:

(a) \mathcal{F} is a tree with $\leq \omega$ levels and

- for transparency it is a set of finite sequences ordered by $<$, closed under initial segments
- let $\text{lev}(\eta, \mathcal{F}) = \text{lev}_\mathcal{F}(\eta)$ be the level of $\eta \in \mathcal{F}$ in \mathcal{F}, that is $\{ \nu \in \mathcal{F} : \nu < \eta \}$
- let $\text{rt}_\mathcal{F}$ be the root
- the n-level of \mathcal{F} is the set $\{ \eta : \text{lev}_\mathcal{F}(\eta) = n \}$
- so we have $\text{lev}_\mathcal{F}(\eta) = \ell_\mathcal{F}(\eta)$ and $\text{rt}_\mathcal{F} = \langle \rangle$

(b) $I = \{ I_\eta : \eta \in \mathcal{F} \}$ where $\mathcal{F} \subseteq \mathcal{F} \setminus \max(\mathcal{F})$, we may write $\mathcal{A} = I$

(c) I_η is an ideal on $\text{suc}_\mathcal{F}(\eta) := \{ \rho : \nu \in \mathcal{F}, \eta < \mathcal{F} \rho \}$ and there is no $\nu \in \mathcal{F}$ satisfying $\eta < \mathcal{F} \nu < \mathcal{F} \rho$ or just an ideal on a set which $\supseteq \text{suc}_\mathcal{F}(\eta)$ such that $\text{suc}_\mathcal{F}(\eta) \not\in I_\eta$; we may write I_η.

1A) If $I_\eta = \{ \{ s : \eta'(s) \in X \} : X \in I \}$ for some ideal I_η on some set then abusing notation we may write I_η' instead of I_η.

2) Let $(\mathcal{F}_1, i_1) \leq (\mathcal{F}_2, i_2)$ when (each is a pit and):

(a) $\mathcal{F}_1 \subseteq \mathcal{F}_2$ which means:

$\eta \in \mathcal{F}_2 \Rightarrow \eta \in \mathcal{F}_1 \land \text{lev}(\eta, \mathcal{F}_2) = \text{lev}(\eta, \mathcal{F}_1) \land \text{suc}(\eta, \mathcal{F}_2) \subseteq \text{suc}(\eta, \mathcal{F}_1)$

$\beta \leq \mathcal{F}_1 = \mathcal{F}_2 \mid \mathcal{F}_1$

(b) $i_2 = i_1 \mid \mathcal{F}_2$, i.e. $i_1 \{ \eta \in \mathcal{F}_1 : \eta \in \text{Dom}(i_1) \land \eta \in \mathcal{F}_2 \}$

(c) if $\eta \in \mathcal{F}_2 \setminus \mathcal{F}_1$ then $\text{suc}(\eta, \mathcal{F}_2) = \text{suc}(\eta, \mathcal{F}_1)$.

2A) Let $(\mathcal{F}_1, i_1) \leq_{pr} (\mathcal{F}_2, i_2)$ when (each is a pit and)

(a), (b), (c) as above

(d) if $\eta \in \text{Dom}(i_2)$ then $\text{suc}(\mathcal{F}_1(\eta)) \cup \text{suc}(\mathcal{F}_2(\eta)) \in I_{1,\eta}$.

3) We say (\mathcal{F}, i) is κ-complete when every ideal I_η is.

4) For $i = (\mathcal{F}, i)$ we define $D_{\mathcal{F}}i = D_{\mathcal{F},i} : \mathcal{F} \to \text{Ord} \cup \{ \infty \}$ by (stipulate $\infty + 1 = \infty$) defining when $D_{\mathcal{F},i}(\eta) \geq \alpha$ by induction on α as follows:

(a) if $\eta \in \text{max}(\mathcal{F})$ then $D_{\mathcal{F},i}(\eta) \geq \alpha$ iff $\alpha = 0$

(b) if $\eta \in \mathcal{F} \setminus \text{max}(\mathcal{F})$ and $\eta \in \mathcal{F} = \text{Dom}(i)$ then $D_{\mathcal{F},i}(\eta) \geq \alpha$ iff $(\forall \beta < \alpha)(\exists X \subseteq \text{suc}(\eta)[X \in I_i \land (\forall X \in \mathcal{F})(D_{\mathcal{F},i}(\nu) \geq \beta)]$

(c) if $\eta \in \mathcal{F} \setminus \text{max}(\mathcal{F}) \setminus \mathcal{F}$ then $D_{\mathcal{F},i}(\eta) \geq \alpha$ iff $(\forall \nu)(\nu \in \text{suc}(\mathcal{F}) \Rightarrow D_{\mathcal{F},i}(\nu) \geq \alpha)$.

6) If $i = (\mathcal{F}, i)$ is a pit and $\eta \in \mathcal{F}$ let $\text{proj}(\eta, i) = \text{proj}_i(\eta)$ is the sequence ν of length $\ell(\eta)$ such that:

- $\ell < \ell(\eta)$ \land $\eta(\ell) \in \text{Dom}(i) \Rightarrow \nu(\ell) = -1$
- $\ell < \ell(\eta)$ \land $\eta(\ell) \notin \text{Dom}(i) \Rightarrow \nu(\ell) = \eta(\ell)$.

7) For $i = (\mathcal{F}, i)$ a pit let $\text{proj}(n, i) = \text{proj}_i(\eta) : \eta \in \mathcal{F}$ has length n and $\text{proj}_i = \text{proj}(i)$ is $\cup \{ \text{proj}_i(\eta) : \eta \in \mathcal{F} \}$.

8) If i_1 is a pit for $\ell < n$ then

(a) $\prod_{\ell < n} \mathcal{F}_\ell$ is $\{ \eta : \eta = (\eta_\ell : \ell < n) \}$ is such that $\ell < n \Rightarrow \eta_\ell \in \mathcal{F}_\ell$ and moreover for some n called $\text{lev}(\eta)$ we have $(\forall \ell < n)(\ell(\mathcal{F}_\ell(\eta_\ell) = n))$.

\textbf{Theorem 2.18.} There are a pit i_2 and $\langle c_\eta : \eta \in \text{proj}(i_1) \rangle$ such that: $i_1 \leq i_2, D_{i_2, (rt_{i_2})} \geq \gamma_2$ and $\eta \in \mathcal{F}_2 \Rightarrow c(\eta) = c_{\text{proj}(i_1)} \text{ when}$:

(a) $i_1 = (\mathcal{F}_1, i_1)$ is a pit

(b) i_1 is κ-complete pit

(c) $2^{\kappa} < \lambda$ where $\theta = |\text{proj}_{i_1}|, \kappa + \theta$ is infinite for transparency

(d) c is a colouring of \mathcal{F}_1 by $\leq \kappa$ colours

(e) $\gamma_1 = \gamma_2 = (2^{\kappa})^+$ or just

$\langle \gamma_1 \leq D_{i_1, (rt_{i_1})}, \gamma_1 \text{ is a regular cardinal} \rangle$.

\footnote{If κ and θ are finite, the computations are somewhat different. Note that $\kappa = 0$ is impossible and if $\kappa = 1$ then $i_2 = i_1$ will do so, without loss of generality $\kappa \geq 2$.}
(β) γ_2 has cofinality $> \kappa^\theta$ and $\gamma < \gamma_2 \Rightarrow |\gamma|^{\kappa^\theta} < \gamma_1$.

Remark 2.19. 1) This relates on the one hand to the partition theorem of [Sh:f, Ch.XI] continuing Rubin-Shelah [RuSh:117], Shelah [Sh:909] on the other hand to Komjath-Shelah [KoSh:796]; the latter is continued in Gruenhut-Shelah [GhSh:909] but presently this is not used.

2) Now 2.18 is what we use but we can get a somewhat more general result - see [GhSh:909] but presently this is not used.

3) In 2.18 the case $\gamma_1 = \gamma_2$ is equivalent to $\gamma_1 = \gamma_2 = \infty$.

Proof. Let $C = \{c : c = (c_0 : \gamma \in \text{proj}_I), c_{<0} = c(\text{rt}(I))\} and where \(c_0 \in \text{Rang}(c)\) or just $\exists \eta \in \text{Rang}(c)\}(c = \text{proj}_I(\eta) \land c_{\emptyset} = c(\eta))$. For transparency without loss of generality we assume $\text{Rang}(\text{proj}(\text{Rang}(I)), \text{Rang}(c)(\text{Rang}(I), \text{Rang}(\text{Rang}(I), \text{Rang}(I))$ are disjoint. Clearly $|C| \leq \kappa^{\text{proj}(I)} = \kappa^\theta < \lambda$.

Fix for a while $c \in C$, first let $\mathcal{F} = \{\eta \in \mathcal{F} : \eta \leq \eta \text{ then } c(\eta) = c_{\text{proj}(\text{proj}(I))}\} be a subtree of \mathcal{F}, i.e. a downward closed subset noting that $\text{rt}(\mathcal{I}) \in \mathcal{F}$.

Second, for $\eta \in \mathcal{F}$, let $X^1_{\eta, \gamma} \text{ be } \text{Suc}(\eta) \text{ if } \eta \in \mathcal{I} \cap \text{Dom}(I_1)$ and this set is $\in I_{1, \gamma}$ and be 0 otherwise. Let $\mathcal{F}' = \{\eta \in \mathcal{F} : \eta \leq \eta \text{ and } \eta \in \text{Dom}(I_1)\} \text{ then } \eta \leq (\eta + 1) \in X^1_{\eta, \gamma} \text{ i.e. } \text{Suc}(\eta, \gamma) = \{\nu \in \text{Suc}(\eta) : \nu \in \mathcal{I} \neq \emptyset \mod I_1, \eta\}$, again \mathcal{F}' is a subtree of \mathcal{F}, moreover $i_{2, \gamma} = (\mathcal{F}', I_1(\mathcal{F}))$ is a pit.

Third, for $\eta \in \mathcal{F}'$, $Dp_{i_3}(\eta) \in \text{Ord} \cup \{\infty\}$ is well defined and, now for $\eta \in \mathcal{I}$, let $X^2_{\eta, \gamma} \text{ be } \{\nu \in \text{Suc}(\eta) : Dp_{i_3}(\eta, \eta) \geq Dp_{i_3}(\eta)\} \neq \emptyset \mod I_1, \eta$ if $\eta \in \mathcal{F}' \cap \text{Dom}(I_1), Dp_{i_3}(\eta) < \infty \text{ and be } 0 \text{ otherwise}$.

If for some $\bar{c} \in C, Dp_{i_3}(\text{rt}(\mathcal{F})) \geq \gamma_2$ easily we are done, so toward a contradiction assume this is not the case, so recalling $\text{cf}(\gamma_2) = |C| \leq \kappa^\theta < \lambda$ hence $X_{\gamma} = X^1_{\eta, \gamma} \cup X^2_{\eta, \gamma} \in \mathcal{F}$ belong to $I_{1, \gamma}$.

Hence i_3 is an pit and $i_1 \leq i_3$ where $i_3 = i_3(\{\eta \in \mathcal{I} : \eta \leq \eta \text{ and } \eta \in \text{Dom}(I_1)\} \text{ then } \eta \leq \eta \in \text{Dom}(I_1), Dp_{i_3}(\eta) < \gamma_\alpha \text{ and the choice of } i_3 \text{ clearly}$

(1) i_1 is a pit; moreover $i_1 \leq \kappa^\theta$ hence

(b) $\eta \in \mathcal{I}$ then $Dp_{i_3}(\eta) = Dp_{i_3}(\eta)$.

Define h by

(1) h is a function from $\mathcal{I} \times C$ defined by

- $h(\eta, \bar{c}) = -1$ if $\eta \notin \mathcal{I} \setminus \mathcal{F}'$
- $h(\eta, \bar{c}) = Dp_{i_3}(\eta)$ if $\eta \in \mathcal{F}'$ and $Dp_{i_3}(\eta) < \gamma_\alpha$
- $Dp(\eta, \bar{c}) = \gamma_\alpha$ if none of the above.

We now choose $(c_0, h_\alpha, \mathcal{I}_0, \mathcal{I}_\alpha, \mathcal{I}_\alpha)$ by induction on n such that:

(a) X_n is a subset of $\pm \{\text{proj}_I(m) : m \leq n\}$

(b) if $n = k + 1$ then $X_k = X_n \cap (\pm \{\text{proj}_I(m) : m \leq k\})$

(c) $X_n \subseteq X_n$

(b) h_n is a function with domain $X_n \times C$ to $\gamma_n + 1$

(c) c_α is a function from X_n to $\text{Rang}(c)$

(93)
(d)(α) \(\mathcal{P}_{n,\gamma} \) is a subset of \(\mathcal{S}_1 \), downward closed of cardinality \(\leq \theta \)

(β) if \(\eta \in \mathcal{P}_{n,\gamma} \) then \(\ell g(\eta) \leq n \)

(γ) if \(\eta \in \mathcal{P}_{n,\gamma} \) then \(\text{Dp}_1(\eta) = \text{Dp}_1(\eta) \geq \gamma \)

(δ) if \(\eta \in \mathcal{P}_{n,\gamma} \) and \(\ell g(\eta) < n \) and \(\eta \notin \text{Dom}(\text{I}_1) \) then \(\text{suc}_n(\eta) \) is a singleton

(ε) if \(\eta \in \mathcal{P}_{n,\gamma} \) and \(\ell g(\eta) < n \) and \(\eta \in \text{Dom}(\text{I}_1) \) then \(\text{suc}_n(\eta) \) is a singleton

Why this is possible

For \(n = 0 \) this is trivial.

For \(n = m + 1 \) for every \(\gamma < \gamma_1 \), choose \(\varphi_{n,\gamma} \in \Pi\{ \text{suc}_n(\eta) : \eta \in \mathcal{P}_{m+1,\gamma} \} \) such that if \(\eta \in \text{Dom}(\varphi_{n,\gamma}) \) then \(\text{Dp}_1(\eta) \geq \gamma \), possible as \(\eta \in \text{Dom}(\varphi_{n,\gamma}) \) \(\Rightarrow \) \(\text{Dp}_1(\eta) \geq \gamma + 1 \). Let \(\mathcal{P}_{n,\gamma} = \mathcal{P}_{m+1,\gamma} \cup \{ \nu : \text{for some } \eta \in \mathcal{P}_{n,\gamma} \text{ we have } \ell g(\eta) = m \text{ and we have } \eta \notin \text{Dom}(\text{I}_1) \Rightarrow \nu = \varphi_{n,\gamma}(\eta) \) and \(\eta \notin \text{Dom}(\text{I}_1) \Rightarrow \nu \in \text{suc}_n(\eta) \} \cup \text{Rang}(\varphi_{n,\gamma}) \).

Let \(\mathcal{F}_{n,\gamma} = \{ \text{proj}_{i,1}(\eta) : \eta \in \mathcal{P}_{n,\gamma} \} \) and let the function \(c_{n,\gamma} : \mathcal{F}_{n,\gamma} \to \text{Rang}(\text{c}) \)
be defined by \(\eta \in \mathcal{F}_{n,\gamma} \Rightarrow c_{n,\gamma}(\text{proj}_{i,1}(\eta)) = c(\eta) \), well defined as in \(\Xi(d)(\eta) \) and let \(\mathcal{F}_{n,\gamma} = \{ \text{proj}_{i,1}(\eta) : \eta \in \mathcal{P}_{n,\gamma} \text{ and } \eta \in \text{Dom}(\text{I}_1) \} \). Let \(h_{n,\gamma} : \mathcal{F}_{n,\gamma} \to \gamma_s + 1 \) be defined by: if \(\nu \in \mathcal{P}, \nu = \text{proj}_{i,1}(\eta) \) and \(\eta \in \mathcal{P}_{n,\gamma} \text{ then } \eta \notin \mathcal{F}_{n,\gamma} \Rightarrow \eta \in \mathcal{F}_{n,\gamma} \) \(\Rightarrow h_{n,\gamma}(\nu) = \gamma, \eta \in \mathcal{F}_{n,\gamma} \) \(\Rightarrow h_{n,\gamma}(\nu) = \text{Dp}_1(\eta) \).

Now \(\mathcal{F}_{n,\gamma} \) is a subset of \(\text{proj}_{1,1} \), a set of cardinality \(\leq \theta \) and \(c_{n,\gamma} \) is a function from \(\mathcal{F}_{n,\gamma} \) into \(\text{Rang}(\text{c}) \), a set of cardinality \(\leq \kappa \) and \(h_{n,\gamma} \) is a function from \(\mathcal{F}_{n,\gamma} \subseteq \text{proj}_{1,1} \) into \(\gamma_s \). But \(\gamma_s < \gamma_2, \gamma_s + \kappa < \gamma_1, \gamma_1 \) is a regular cardinal (recalling clause (c) of the theorem) and \((\gamma_s + \kappa)^\theta < \text{cf}(\gamma_1) = \gamma_1 \) hence for every \(\gamma_1 \) we have \(\text{proj}_{1,1}(\mathcal{F}_{n,\gamma} ; c_{n,\gamma} ; h_{n,\gamma} ; \gamma) = \gamma \geq \gamma_1 \) \(\Rightarrow \text{proj}_{1,1}(\mathcal{F}_{n,\gamma} ; c_{n,\gamma} ; h_{n,\gamma} ; \gamma) = \gamma \) hence for some \(c_{n,\gamma}, h_{n,\gamma}, \mathcal{F}_{n,\gamma} \) the set \(S_n = \{ \gamma < \gamma_1 : c_{n,\gamma} = c_n \text{ and } h_{n,\gamma} = h_n \} \) is unbounded in \(\gamma_1 \).

Lastly, let \(\mathcal{F}_{n,\gamma} = \mathcal{F}_{n_{\text{min}}(S_n),\gamma} \) clearly \(c_{n+1,\gamma} = c_{n+1} \) and \(h_{n+1} = h_n \) \(\Rightarrow \mathcal{F}_{n,\gamma} = \mathcal{F}_n \) are as required; so we can carry the induction.

Why this is enough:

Let \(\mathcal{X} = \bigcup \{ \mathcal{X}_n : n < \omega \} \subseteq \text{proj}(\text{I}_1) \) and \(\mathcal{Y} = \bigcup \{ \mathcal{Y}_n : n < \omega \} \) and \(\mathcal{C} = \bigcup \{ c_n : n < \omega \} \) and \(h = \bigcup \{ h_n : n < \omega \} \) so by \(\Xi(d)(\eta) \) clearly there is \(\hat{c} \in \mathcal{C} \) such that \(c_{\hat{c}} = c(\hat{c}) \) when the latter is defined, so:

(1) if \(\eta \in \mathcal{X}_n, \eta \in \mathcal{P}_{n,\gamma} \) and \(\nu = \text{proj}(\text{I}_1) \in \mathcal{X} \) then

(a) \(c(\eta) = c_n(\text{proj}_{1,1}(\eta)) \)
(b) \(\text{Dp}_1(\eta) = h(\eta, \hat{c}) = h_n(\nu, \hat{c}) \)
(c) \(\text{Dp}_1(\eta) \geq \gamma \)

Also
\(\odot_2 \mathcal{X} \subseteq \text{proj}_1 \) is a set of finite sequences, closed under initial segments with no \(< \)-maximal member.

[Why? Straight, e.g. if \(\nu \in X \) choose \(n = \ell g(\nu) + 2 \) let \(\gamma < \gamma_1 \) and choose \(\eta \in Y_{n, \gamma + 1} \) such that \(\text{proj}_1(\eta) = \nu \), now by clause (c) of \(\odot_1 \) we know that \(\text{Dp}_1(\eta) \geq \gamma + 1 \), hence there is \(\eta_1 \in \text{suc}_\mathcal{Y}_{n}(\eta) \) in \(Y_{n+1} \) hence \(\nu_1 = \text{proj}_1(\eta_1) \) is in \(\text{suc}_\mathcal{X}(\nu) \), i.e. successor of \(\eta \) in \(\mathcal{X}_{n+1} \) hence in \(\mathcal{X} \).]

\(\odot_3 \) if \(\nu \in \mathcal{X} \) then \(h(\nu, \bar{c}) \neq -1 \).

[Why? Let \(n > \ell g(\nu) \), let \(\gamma < \gamma_2 \). Now by \(\text{D}(\bar{d})(\bar{z}) \) there is \(\eta \in \mathcal{X}_{n, \gamma} \) such that \(\text{proj}_1(\eta) = \nu \).

Next by \((*)_2 \) we have \(h(\eta, \bar{c}) \) is -1 iff \(\eta \notin \mathcal{X}' \). However, \(\eta \in \mathcal{X} \) by the definition of \(\mathcal{X} \) and the choice of \(\bar{c} \) and \(\text{D}(\bar{d})(\eta) \); moreover \(\eta \in \mathcal{X}' \) by the definition of \(\mathcal{X}' \) andada of \(i_3 \) and clause \(\text{D}(\bar{d})(\alpha) \).

By the last two sentences \(h(\eta, \bar{c}) \neq -1 \) hence by the choice of \(\eta \), i.e. as \(\text{proj}_1(\eta) = \nu \), clause \(\text{D}(\bar{d})(\eta) \) tells us \(h(\nu, \bar{c}) = h(\eta, \bar{c}) \) so together \(h(\nu, \bar{c}) \neq -1 \) as promised.]

\(\odot_4 \) \(0 \leq \text{Dp}_{\bar{d}, \bar{c}}(\bar{z}) < \gamma_2 \) hence \(h(\bar{c}, \bar{c}) < \gamma_2 \).

[Why? Similarly using \(\text{D}(\bar{d})(\eta) \).]

\(\odot_5 \) if \(\nu \in \mathcal{X} \cap \mathcal{F} \) and \(0 \leq h(\nu, \bar{c}) < \gamma_2 \) then for some \(\rho \in \text{suc}_\mathcal{X}(\nu) \) we have \(0 \leq h(\rho, \bar{c}) < h(\nu, \bar{c}) < \gamma_2 \).

[Why? Similarly using \(\text{D}(\bar{d})(\delta) \).]

\(\odot_6 \) if \(\nu \in \mathcal{X} \) and \(0 \leq h(\nu, \bar{c}) < \gamma_2 \) then for the unique \(\rho \in \text{suc}_\mathcal{X}(\nu) \) we have \(0 \leq h(\rho, \bar{c}) < h(\nu, \bar{c}) < \gamma_2 \).

[Why? Similarly using \(\text{D}(\bar{d})(\epsilon) \).

By \(\odot_4, \odot_5, \odot_6 \) together we get a contradiction. \(\square_{2.18} \)

We may prefer the following variant of 2.18.

Definition 2.20. 1) For a pit \(i = (\mathcal{F}, I) \) and partition \(\mathcal{X} = (\mathcal{X}_0, \mathcal{X}_1) \) of \(\mathcal{X} \) (or just \(\mathcal{F} = (\mathcal{X}_0, \mathcal{X}_1) \) such that \(\mathcal{X}_0 \cap \mathcal{X}_1 = \emptyset \) and \(\mathcal{X} \subseteq \mathcal{X}_0 \cup \mathcal{X}_1 \)) we define \(\text{Dp}_{\mathcal{F}, \mathcal{X}} : \mathcal{F} \to \text{Ord} \cup \{ \infty \} \), stipulating \(\infty + 1 = \infty \) by defining when \(\text{Dp}_{\mathcal{F}, \mathcal{X}}(\eta) \geq \alpha \) by induction on the ordinal \(\alpha \) (compare with 2.17(4)): \(\{2.35\} \)

\begin{align*}
(a) &\text{ if } \eta \in \text{max}(\mathcal{F}) \text{ then } \text{Dp}_{\mathcal{F}, \mathcal{X}}(\eta) \geq \alpha \text{ iff } \alpha = 0 \\
(b) &\text{ if } \eta \in \mathcal{X}_0 \text{ hence } \eta \notin \mathcal{F}, \eta \notin \text{max}(\mathcal{F}) \text{ then } \text{Dp}_{\mathcal{F}, \mathcal{X}}(\eta) \geq \alpha \text{ iff for every } \beta < \alpha \text{ the set } \{ \nu \in \text{suc}_{\mathcal{F}}(\eta) : \text{Dp}_{\mathcal{F}, \mathcal{X}}(\nu) \geq \beta \} \text{ belong to } \mathcal{I}^*_\eta \\
(c) &\text{ if } \eta \in \mathcal{F} \setminus \text{max}(\mathcal{F}) \text{ then } \text{Dp}_{\mathcal{F}, \mathcal{X}}(\eta) \geq \alpha \text{ iff for every } \nu \in \text{suc}_{\mathcal{F}}(\eta) \text{ we have } \text{Dp}_{\mathcal{F}, \mathcal{X}}(\eta).
\end{align*}

\(\{2.32\} \)

Theorem 2.21. There are a pit \(i_2 \) and \(\bar{c} = (c_0 : \eta \in \text{proj}(i_1)) \) such that \(i_1 \leq i_2, \text{Dp}_{\bar{d}, \mathcal{F}}(\text{rt}_{i_2}) \geq \gamma_2 \) and \(\eta \in \mathcal{X}_2 \Rightarrow c(\eta) = c_{\text{proj}(\eta, i_1)} \).

\(\{2.35\} \)

\((a) - (c) \) as in 2.18 replacing \(\text{Dp}_{\bar{d}, \mathcal{X}} \) by \(\text{Dp}_{i_2, \mathcal{F}} \) in \((e)(f) \).

\(\{2.21\} \)

\(\mathcal{F} = (\mathcal{X}_0, \mathcal{X}_1) \text{ is a partition of } \mathcal{X}. \)
§ 3. APPROXIMATION TO EM MODELS

In the game below the protagonist tries to exemplify in a weak form that the standard EM_{\tau|t}(\lambda, \Phi) is \leq \tau-embeddable into N over M. We may consider games in which the protagonist tries to exemplify a weak form of isomorphism, this is connected to logics which have EM models, continuing [Sh:797], but not for now.

Here we do not try to get the best cardinal bounds: just enough for the result promised in the abstract.

Definition 3.1. Assume \(\lambda > \kappa \geq \text{LST}_{\tau} + |\tau| \) and \(M \in K_\tau^\kappa \) and \(M \leq \tau N \) and \(\gamma \) is an ordinal.

1) We say \(\Phi \) is an \((M, \lambda, \kappa, \gamma)\)-solution of \(N \) or is an \((N, M, \lambda, \kappa, \gamma)\)-solution when \(\Phi \in T_\kappa^{\text{ext}}(t_M) \) and in the game \(\vec{\gamma}^1_{N,M,\lambda,\Phi,\gamma} \) the protagonist has a winning strategy.

2) Assume \(\Phi \in \mathcal{T}_\kappa(t_M) \) recalling Definition 2.1 fixing \(M_\lambda = \text{EM}(\lambda, \Phi) \) and \(M_I = \text{EM}(I, \Phi) \) for \(I \subseteq \lambda \) and without loss of generality every \(M_I \) (equivalently some \(M_I \)) is standard, hence in particular \(M \leq \tau M_I|\tau(t) \). We define the game \(\vec{\gamma}^1_{N,M,\lambda,\Phi,\gamma} \) a play last < \omega moves, in the \(n \)-th move \(\lambda_n, J_n, h_n, \gamma_n \) are chosen such that:

- \(\exists_n \ (a) \lambda_0 = \lambda \)
- (b) if \(n = m + 1 \) then \(\kappa < \lambda_0 < \lambda_m \) moreover \(\lambda_m \to (\lambda_n)_m^\kappa \)
- (c) \(J_0 = \lambda \), and if \(n = m + 1 \) then \(J_n \subseteq J_m \)
- (d) \(|J_n| = \lambda_n \)
- (e) \(h_n = \langle h_u : u \in [J_n]^n \rangle \)
- (f) if \(u \in [J_n]^n \) then \(h_u \) is a \(\leq \tau \)-embedding of \(M_u \) into \(N \) extending \(h_v \)

whenever \(v \subseteq u \)

[Explanation: note if \(v \subseteq u, |v| = m \) then \(v \in [J_n]^m \subseteq [J_n]^n \) hence \(h_v \) was defined; this says then for \(u_1, u_2 \in [J_n]^m, h_{u_1}, h_{u_2} \) are compatible functions]

(g) \(\gamma_0 = \gamma \) and \(\gamma_{n+1} \) is an ordinal < \(\gamma_n \).

In the \(n \)-th move:

(A) if \(n = 0 \) the antagonist chooses \(\lambda_0 = \lambda, J_0 = \lambda, \gamma_0 = \gamma \) and the protagonist chooses \(h_0 \)

(B) if \(n = m + 1 \) then

(a) the antagonist chooses an ordinal \(\gamma_n < \gamma_m \) and \(\lambda_n > \kappa \) such that

\(\lambda_m \to (\lambda_n)_m^{2(\kappa)} \)

(b) the protagonist chooses \(h_n = \langle h_u : u \in [J_m]^n \rangle \) and \(\mathcal{S}_n \in (\text{ER}_{j_m:J_m,\lambda_n,\mathcal{S}_n})^{+} \)

i.e. \(\mathcal{S}_n \subseteq [\lambda_m]^{\lambda_n} \) and \(\mathcal{S}_n \) is not from this ideal, see Definition 2.5

(c) the antagonist chooses \(J_n \in \mathcal{S}_n \subseteq [J_m]^{\lambda_n} \) and we let \(h_n = h_n[][J_n]^n \)

(C) the play ends when a player has no legal move and then this player loses.

Another presentation:

Definition 3.2. Assume \(M \leq \tau N \) and \(\text{LST}_{\tau} + |\tau| \leq \theta, \|M\| + \theta \leq \kappa < \lambda \) and \(\Phi \in T_\kappa^{\text{ext}}[M, \tau] \).

1) Below we omit \(\gamma \) if (a) or (b), where:

- (a) \(\gamma = \text{cf}(\lambda), \lambda \) strong limit and \(\alpha < \text{cf}(\lambda) \Rightarrow |\alpha|^{2^{\omega + |M|}} < \text{cf}(\lambda) \)
(b) not (a) but γ is maximal such that γ = ωγ is infinite and \(\bigcup_\gamma (\kappa + ||M||) \leq \lambda \) and \(\lambda \) is strong limit of cofinality > \(\bigcup_2 (\kappa) \) (similarly in all such definitions).

2) We say that \(x \) is a direct witness for \((N, M, \lambda, \kappa, \gamma, \Phi) \) when \(x \) consists of:

(a) \(N, M, \Phi, \lambda, \kappa \) and \(\gamma \)
(b) \(T \) is a non-empty set of finite sequences closed under initial segments
(c) if \(\eta \in T \) then:
 (α) \(\eta(2n) \) is a cardinal when \(2n < \ell g(\eta) \)
 (β) \(\eta(2n + 1) \) is a subset of \(\lambda \) of cardinality \(\eta(2n) \) when \(2n + 1 < \ell g(\eta) \)
 (γ) \(\eta(2n + 1) \geq \eta(2n + 3) \) when \(2n + 3 < \ell g(\eta) \)
 (δ) \(\eta(2n) \geq \eta(2n + 2) \), moreover \(\eta(2n) \to (\eta(2n + 2))^{2n+1}_{\bigcup_2 (\kappa)} \) when \(2n + 2 < \ell g(\eta) \)
(d) \(I_{\eta}, \lambda_{\eta} \) for \(\eta \in T \) are defined by:
 (α) if \(\ell g(\eta) = 0 \) then \(I_\eta = \lambda, \lambda_{\eta} = \lambda \)
 (β) if \(\ell g(\eta) = 2n + 1 \) then \(I_\eta = I_{\eta}(2n), \) see (α) or (γ) and \(\lambda_{\eta} = \eta(2n) \)
 (γ) if \(\ell g(\eta) = 2n + 2 \) then \(I_\eta = \eta(2n + 1), \lambda_{\eta} = \eta(2n) = \eta_{\eta(2n+1)} \), see (α) or (β)
(e) if \(\eta \in T \setminus \max(T) \) has length \(2n + 1 \) then: the set \(\mathcal{S}_\eta = \{ I_\nu : \nu \in \text{suc}(\mathcal{S}(\eta)) \} \subseteq [I\nu]^{\lambda_{\eta}} \) is not from the ideal \(ER_{I_{\eta}, \lambda_{\eta}, \bigcup_2 (\kappa)} \)
(f) if \(\eta \in T \) then:
 (α) \(h_\eta = \langle h_{\eta, \nu} : \nu \in [I\eta]^{\ell g(\eta)/2} \rangle \)
 (β) \(h_{\eta, \nu} \) is a \(\leq \ell g(\eta) \) embedding of \(EM_{(\gamma)}(\nu, \Phi) \) into \(N \) for \(\nu \in [I\eta]^{\ell g(\eta)/2} \)
 (γ) \(u_1 \subseteq u_2 \subseteq [I\eta]^{\ell g(\eta)/2} \Rightarrow h_{\eta, u_1} \subseteq h_{\eta, u_2} \)
 (δ) if \(u \in [I\eta]^{\ell g(\eta)/2} \) and \(\nu \leq \eta \) and \(\ell g(\nu) \geq 2|u| \), then \(h_{\eta, u} = h_{\nu, u} \)
 (ε) if \(\ell g(\eta) = 2n + 2 \) and \(u \in [I\eta]^{\ell g(\eta)/2} \) then \(h_{\eta, u} = h_{\eta, \eta(2n+1), u} \)
 (ζ) there is \(\bar{a} = \bar{a}_x = \langle a_\alpha : \alpha < \lambda \rangle \in \lambda N \) such that \(\alpha \in u \in [I\eta]^{\ell g(\eta)/2} + h_{\eta, u}(\alpha) = a_\alpha \) and \(\bar{a} \) is with no repetitions

\{z32\}

(g) \(Dp_x(<\nu) \geq \gamma \) where \(Dp_x(\eta) \) is defined as \(Dp_{i(|x|)}(\eta) \), see Definition 2.17, where \(i = i(x) = i_k \) is defined by:
 • \(\mathcal{R}_k = T \)
 • \(\mathcal{A}_k = \{ \eta \in T : \eta \) is not \(a \)-maximal in \(T \) and \(\ell g(\eta) \) is odd \}

\{z32\}

if \(\eta \in \mathcal{A}_k \) and \(\ell g(\eta) \) is odd then \(I_{\eta, \nu} = ER_{I_{\eta, \lambda_{\eta}, \bigcup_2 (\kappa)}} \) recalling 2.17(1A)

\{a6\} 1) We say \(x \) is a pre-\(t \)-witness of \((N, M, \lambda, \kappa, \delta) \) when it as in 3.2 omitting \(h \), i.e. clause (f), so \(N, M \) are irrelevant.

2) We say \(x \) is a semi-\(t \)-witness of \((N^+, M, \lambda, \kappa, \delta) \) when: it consists of:

(a) \(N^+ \) expands a model from \(K_{\ell}(M \leq \ell (N^+ \tau(\ell))) \), \(\lambda \geq \kappa \geq (\tau(N^+)) \)

\{a5\} (b) \(c \) as in 3.2(2)

(f) \(\bar{a} = \langle a_\alpha : \alpha < \lambda \rangle \)
Claim 3.4. 1) The definitions 3.1, 3.2 are equivalent.
2) In Definition 3.2, I_{x} is indeed a pit.
3) If $\Phi_{1}\Phi_{2}\Phi_{3} \in \mathcal{T}_{\kappa}^{\text{ext}}[M,\tau]$ for $\ell = 1, 2$ and Φ_{1} has a (N, M, λ, κ)-witness then Φ_{2} has a (N, M, λ, κ)-witness.

Proof. Straightforward.

Claim 3.5. 1) If $\Phi_{1} \in \mathcal{T}_{\kappa}^{\text{ext}}[M], \kappa \geq \tau(\tau) + ||M||$ and $M_{\ell} = EM_{\tau}(\lambda, \Phi_{1})$ for $\ell = 1, 2$ and λ is strong limit of cofinality μ where $\mu = (\mathcal{D}_{2}(\kappa))^{+}$ or μ is regular such that $(\forall \alpha < \mu)(|\alpha|^{2^{\omega_{2}}} < \mu)$ and the protagonist wins in the game $\mathcal{G}^{1}_{M_{2}, \lambda, \Phi_{1}, \mu}$ (equivalently some x is a witness for $(M_{2}, M, \lambda, \kappa, \Phi_{1})$) then $\Phi_{1} \leq_{K} \Phi_{2}$, see Definition 2.12.

Proof. Straightforward by 2.18 and the definitions of the ideal ER in 2.5. See details in a similar case in the proof of 3.6(1) below.

Claim 3.6. Assume $M \leq N, \kappa \geq ||M|| + \theta, \theta \geq \text{LST}_{\tau} + |\tau|$, and $||N|| \geq \lambda, \lambda$ strong limit of cofinality μ and $\mu = (\mathcal{D}_{2}(\kappa))^{+}$ or μ is regular such that $(\forall \alpha < \mu)(|\alpha|^{2^{\omega_{2}}} < \mu)$.
1) There are x, Φ such that:
 (a) $\Phi \in \mathcal{T}_{\kappa}^{\text{ext}}(M)$
 (b) x is a direct witness of $(N, M, \lambda, \kappa, \Phi)$.
2) If $M_{1} = M, \Phi_{1} \in \mathcal{T}_{\kappa}^{\text{ext}}[M_{1}, \tau]$ and x_{1} a direct witness for $(N, M_{1}, \lambda, \kappa, \Phi_{1})$ and $M_{1} \leq_{\tau} M_{2} \leq_{\tau} N$ and $||M_{2}|| \leq \kappa$ then there are Φ_{2}, x_{2} such that:
 (a) $\Phi_{2} \in \mathcal{T}_{\kappa}^{\text{ext}}[M_{2}]
 (b) \Phi_{1} \leq_{K} \Phi_{2}$ and $\Phi_{1} \leq_{K} \Phi_{2}$
 (c) x_{2} is a direct witness $(N, M_{2}, \lambda, \kappa, \Phi_{2})$.
3) If in part (1) we change the assumption on $\lambda = \mathcal{D}_{2}(\kappa)$ then there are Φ, x such that:
 (a) $\Phi \in \mathcal{T}_{\kappa}^{\text{ext}}[M, \tau]
 (b) x$ is a direct witness of $(N, M, \Phi, \lambda, \kappa, \gamma, \Phi)$.
4) Also part (2) has a version with (γ_{1}, γ_{2}) as in 2.18.

Proof. 1) Let $(a_{\alpha} : \alpha < \lambda)$ be a sequence of pairwise distinct members of N.
Now
\[(*)_{1} \text{let } \mathcal{F} \text{ be the set of finite sequences } \eta \text{ satisfying clauses (b),(c) of Definition 3.2 } \]
\[(*)_{2} \text{let } I = \{I_{\eta} : \eta \in \mathcal{F} \} \text{ where } \]
\[\mathcal{F} = \{ \eta \in \mathcal{F} : \eta \text{ is not } \sigma \text{-maximal in } \mathcal{F} \} \]
\[\text{if } \eta \in \mathcal{F}, \ell(\eta) = 2n + 1 \text{ then } I_{\eta} = ER_{\kappa}^{\lambda_{0}, \mathcal{D}_{2}(\kappa)} \]
\[\text{if } \eta \in \mathcal{F} \text{ and } \ell(\eta) = 2n \text{ then } I_{\eta} = \emptyset, \text{ the trivial ideal } \]
\[(*)_{3} \text{ } I_{1} = I(1) = (\mathcal{F}, I) \text{ is a pit and is } (2^{\omega})^{+} \text{-complete and } D^{\kappa}_{\tau}(<\tau) = (\mathcal{D}_{2}(\kappa))^{+}. \]

[Why? Just read Definition 2.17(3) and the ideal ER is from Definition 2.5 and it is $(2^{\omega})^{+}$-complete by 2.6 and as for the depth recall $\mu = (\mathcal{D}_{2}(\kappa))^{+}. \]
Let M^+ be such that:
(a) M^+ is an expansion of N
(b) $|\tau(M^+)| \leq \kappa$ and $\tau' := \tau(M^+)\setminus \{c_\alpha : a \in M\}$ has cardinality $\leq \theta$
(c) if $M^+_i | \tau' \subseteq M^+ | \tau'$ then $M^+_i | \tau(\emptyset) \leq M^+ | \tau(\emptyset)$
(d) $|M| = \{c^{M^+} : c \in \tau(M^+)\}$.

Why M^+ exists? By the representation theorem, [Sh:88r, §1] except clause (d) which as before is easy.

We like to apply Theorem 2.18 but before this we need

there is a pit $i_2 = \text{I}(2)$ such that $\text{I}(1) \leq_{\text{pr}} \text{I}(2)$ (see 2.17(2A)) so $\text{Dp}_{\text{I}(2)}(\eta) = \text{Dp}_{\text{I}(1)}(\eta)$ for $\eta \in \mathcal{I}_{\text{I}(2)}$ and:
- if $\eta \in \mathcal{I}_{\text{I}(2)}, \ell g(\eta) = 2n + 1$ and $\nu \in \text{suc}_{\mathcal{I}_{\text{I}(2)}}(\eta)$ then $\langle a_\alpha : \alpha \in \nu(2n+1) \rangle$ is an n-indiscernible sequence in M^+ for quantifier free formulas, may add: and $N|\{\sigma(\alpha_\alpha, \ldots, \alpha_{\alpha_{n-1}}) : \varepsilon < \zeta \leq t \subseteq N$ where $\zeta < \kappa^+$ and σ_ε is a $\tau(M^+)$-term.

Why such $\text{I}(2)$ exists? By the definition of the ideal I_η, see $(*)_2$ above and by Definition 1.14. That is, for $\eta \in \text{Dom}(\text{I}_\eta)$ of length $2n + 1 + \text{X}_\eta = \{\nu : \nu \in \text{suc} \tau(\emptyset), \langle a_\alpha : \alpha \in \nu(2n+1) \rangle$ is n-indiscernible in M^+ for quantifier free formulas],
recalling Dom($\text{I}_1, \eta) = \{\nu \in \text{I}_\eta : |u| = \eta(2n)\}$. By 2.5 clearly $\text{X}_\eta = \text{[\eta]}^{\eta(2n)}_{\text{I}(1)}$.

Now let $\mathcal{T}' = \{\eta \in \mathcal{T} : \eta(n + 1) \in \mathcal{T}_\eta \} \cup \{\eta(2n + 2) \in \text{X}_\eta \}$ and $i_2 = 1_1 | \mathcal{T}'$,
so clearly $i_1 \leq_{\text{pr}} i_2$, see Definition 2.17(2A).

Next

define a function c with domain \mathcal{T}_i as follows:
- if $\eta \in \mathcal{T}, \ell g(\eta) = 2n + 2$, then $c(\eta)$ is the quantifier type in M^+ of $(a_\ell : \ell < n)$ for any $a_0 < a_1 < \ldots < a_{n-1}$ from $\eta(2n + 1)$
- if $\eta \in \mathcal{T}, \ell g(\eta) = 2n + 1$ or $\ell g(\eta) = 0$, then $c(\eta) = 0$.

Clearly

Rang(c) has cardinality $\leq 2^n = 2^\kappa$.

So by 2.18 (with a degenerate projection; so κ, θ there stands for $2^\kappa, \aleph_0$ here):

there are $i(3) = i_3 \geq i_2$ and $\langle c_n : n < \omega \rangle$ such that:
(a) $\eta \in \mathcal{T}_{i_3} \Rightarrow c(\eta) = c_{\ell g(\eta)}$
(b) $\text{Dp}_{i_3}(\langle c_{\ell g(\eta)} \rangle)$.

The rest should be clear.

2) Similar proof, this time in M^+ we have individual constants for every member of M_2 and we start with the witness x_1 so X_η have fewer elements still positive modulo the ideal.

3), 4) Similarly. \[\square\]

Definition 3.7. We say x is an indirect witness for $(N, M, \lambda, \kappa, \gamma, \Phi)$, recalling 3.2(1), when for some Ψ:

(a) $M, N, \lambda, \kappa, \gamma, \Phi$ are as in Definition 3.2
\(\{z24\} \quad (b) \; \Psi \in \mathcal{T}_{\kappa}^{\text{cor}}[\mathfrak{M}] \) and \(\Phi \leq_\kappa^\kappa \Psi \), see Definition 2.12
\((c) \; x \) is a direct witness of \((N, M, \lambda, \kappa, \gamma, \Psi)\).

Remark 3.8. Why do we need the indirect witnesses? As if we use direct witness only in the proof of 3.14 it is not clear how to get many non-isomorphic models. \(\{a22\} \)

Claim 3.9. Assume \(I = I_\chi \) as in 1.15.
If \((A)\) then \((B)\) where:
\((A) \quad (a) \; \text{LST}_t + |\tau_t| \leq \kappa < \chi_1 < \chi_2 < \chi_3 \leq \chi \) and for \(\ell = 1, 2, \chi_{t+1} \)
is strong limit of cofinality \(> \beth_2(\chi_\ell) \)
\((b) \; N = \text{EM}_t(I, \Phi_1) \) where \(\Phi_1 \in \mathcal{T}_{\kappa}^{\text{cor}}[M_1, t], \|M_1\| \leq \chi_1 \)
\((c) \; M_2 \leq_t N \) and \(\|M_2\| \leq \chi_1 \)
\((d) \; \Phi_2 \in \mathcal{T}_{\kappa}^{\text{cor}}[M, t] \)
\((e) \; \Phi_2 \) has a witness for \((N, M_2, \chi_2, \kappa)\)
\((B) \quad (a) \; \Phi_2 \) has a witness for \((N, M_2, \chi_3, \kappa)\)
\((b) \; \text{if in addition } M_2 \leq_t M_1 \text{ then } \Phi_2 \leq_\kappa^\kappa \Phi_1 \)
\((c) \; \text{we can } \leq_t \text{-embed } \text{EM}_t(I, \Phi_2) \text{ into } N. \)

Proof. As in the proof of 3.6 recalling the choice of \(I \) in 1.15; for \((B)\) we use Clause \((B)^+ \) of 3.6. \(\square_{3.9} \)

Remark 3.10. In fact, in 3.9, \(\chi_2 = \beth_1(\chi_1) \) and \(\chi_3 = \beth_\gamma(\chi_1) \) suffices so, of course, in \((B)\)\((a) \) we use \((N, M_1, \chi_3, \kappa, \gamma)\). \(\{a13\} \)

Claim 3.11. If \((A)\) then \((B)\) where:
\((A) \quad (a) \; M_1 \leq_t M_2 \leq_t N \)
\((b) (a) \; \|M\| \geq \lambda \)
\((b) (\beta) \; \kappa_\ell \geq \kappa \geq \text{LST}_t + |\tau_t| \)
\((b) (\gamma) \; \|M\| \geq \lambda \)
\(\Phi_1 \in \mathcal{T}_{\kappa}^{\text{cor}}[M_1, t] \)
\(\lambda \) is strong limit and cf(\(\lambda \)) = \(\beth_2(\kappa_2)^+ \) or just \((\forall a < \text{cf}(\lambda))(|\alpha|^\beth_2 < \text{cf}(\lambda)) \)
\((c) \; x_1 \) is an indirect witness for \((N, M_1, \lambda, \kappa, \Phi_1)\)

\((B) \) there are \(\Phi_2, x_2 \) such that:
\((a) \; \Phi_2 \in \mathcal{T}_{\kappa}^{\text{cor}}[M_2] \)
\((b) \; \Phi_1 \leq_{\kappa_1} \Phi_2 \)
\((c) \; x_2 \) is an indirect witness for \((N, M_2, \lambda, \kappa_2, \Phi_2)\).

Proof. By clause \((A)\)(c) of the assumption and the definition of indirect witness in 3.7 there is \(\Psi_1 \) such that:
\((\ast)_1 \quad (a) \; \Psi_1 \in \mathcal{T}_{\kappa_1}^{\text{cor}}[\mathfrak{M}_1] \) which is standard
\((b) \; x_1 \) is a direct witness of \((N, M_1, \lambda, \kappa_1, \Psi_1)\)
\((c) \; \Phi_1 \leq_{\kappa_1}^\kappa \Psi_1. \)

By claim 3.6(2) there are \(x_2, \Psi_2 \) such that
\((\ast)_2 \quad (a) \; \Psi_2 \in \mathcal{T}_{\kappa_2}^{\text{cor}}[\mathfrak{M}_2] \)
Lastly, by 2.16 applied to our \(\Phi_1, \Psi_1, \Psi_2\) and get \(\Phi_2\) such that

\[(*)_3 \quad (a) \quad \Phi_1 \in \mathcal{Y}_\lambda^\tau[t_{M_2}] \\
(b) \quad \Phi_1 \leq^\tau \Phi_2 \\
(c) \quad \Phi_2 \leq^\lambda \Psi_2. \]

So we have gotten Clause (B) as promised. \(\square\)

Claim 3.12. If \((A) + (B)\) then \((C)\) where:

\[(A) \quad (a) \quad \lambda_n \geq \text{LST}_t \text{ is strong limit, } \text{cf}(\lambda_n) = (\beth_2(\text{LST}_t + \lambda_n))^+ \text{ if } n = m + 1 \\
(b) \quad \lambda = \sum_n \lambda_n \text{ and } \lambda_n < \lambda_{n+1} \\
(c) \quad N \in K^\tau_1 \\
(d) \quad M_n \leq_t M_{n+1} < t \text{ and } \|M_n\| = \lambda_n \\
(e) \quad N = \cup\{M_n : n < \omega\} \]

\[(B) \text{ there is no } \Phi \in \mathcal{Y}_{\lambda_n}^\tau[t_N], \text{ see 2.15} \]

\[(C) \text{ for some } n \text{ and } \Phi \]

\[(a) \quad \Phi \in \mathcal{Y}_{\lambda_n}^\tau[t_{M_n}] \\
(b) \quad \text{there is an indirect witness}^9 \text{ for } (N, M_n, \lambda_{n+4}, \lambda_n, \Phi_n) \\
(c) \quad \text{there is no indirect witness for } (N, M_n, \lambda_{n+5}, \lambda_n, \Phi_n). \]

Remark 3.13.

1) Later we shall weaken \((A)(a)\).

2) We may use \(\mathcal{Y}_\lambda^\tau[t_{M_n}]\) where \(\lambda_0 \geq \kappa \geq \text{LST}_t + |\tau|\) in 3.11 and in 3.12, also in 3.14.

Proof. We assume \((A) + \neg(C)\) and shall prove \(\neg(B)\), this suffices. We try to choose \((\Phi_n, x_n)\) by induction on \(n\) such that:

\(\otimes \)

\[(a) \quad \Phi_n \in \mathcal{Y}_{\lambda_n}^\tau[t_{M_n}] \\
(b) \quad \{c_a : a \in N\} \cap \tau(\Phi_n) = \{c_a : a \in M_n\} \\
(c) \quad x_n \text{ is an indirect witness for } (N, M_n, \lambda_{n+4}, \lambda_n, \Phi_n) \\
(d) \quad \text{if } n = m + 1 \text{ then } \Phi_m \leq^\lambda \Phi_n. \]

Now

\[(*)_1 \text{ if we succeed to carry the induction then } \text{there is } \Phi \in \mathcal{Y}_{\lambda_n}^\tau[t_N]. \]

[Why? Note that \(\Phi_n \in \mathcal{Y}_{\lambda_n}^\tau[t_{M_n}] \subseteq \mathcal{Y}_{\lambda_n}^\tau[t]\) and as \(\lambda_n \leq \lambda\) clearly \(\Phi_n \in \mathcal{Y}_{\lambda_n}^\tau[t] \subseteq \mathcal{Y}_{\lambda}^\tau[t]\) and so by 2.11(2) there is \(\Phi \in \mathcal{Y}_{\lambda}^\tau[t]\) such that \(n < \omega \Rightarrow \Phi_n \leq^\lambda \Phi\). Easily \(N\) is \(\leq t\)-embeddable into every \(EM_{\tau(t)}(I, \Phi)\), in fact, \(\Phi \in \mathcal{Y}_{\lambda}^\tau[t_N]\), contradiction to clause (B) of the assumption.]

\[(*)_2 \text{ we can choose } (x_n, \Phi_n) \text{ for } n = 0. \]

[Why? By 3.6(1).]

\[(*)_3 \text{ if } n = m + 1 \text{ and we have chosen } (x_m, \Phi_m) \text{ then we can choose } (x_n, \Phi_n). \]

\(^9\)hence also a direct one; similarly in \(\otimes(d)\) in the proof
Claim 3.14. We have $\overline{I}(\mu, K) \geq \chi$ when:

\[\oplus (a) \quad \text{LST}_\ell + |\eta_k| \leq \kappa \leq \chi_2 < \chi_3 \leq \min\{\lambda, \mu\} \]
\[(b) \quad M \leq \ell \quad N \]
\[(c) \quad \|M\| \leq \kappa \quad \text{and} \quad \|N\| \geq \lambda \]
\[(d) \quad \Phi \in \mathbb{T}_\kappa^{cof}[\mathbb{M}] \]
\[(e) \quad x \text{ is an indirect witness for } (N, M, \chi_2, \chi_1, \Phi) \]
\[(f) \quad \text{there is no indirect witness for } (N, M, \chi_3, \chi_1, \Phi) \]
\[(g) \quad \chi_3 \text{ is strong limit of cofinality } (\overline{\omega}_2(\chi_2))^+ \]
\[(h) \quad \chi = [\theta : \theta = \overline{\omega}_0 \text{ and } \theta \in [\chi_1, \chi_2]) \]

Proof. Let γ_* be maximal such that $\overline{\omega}_{\gamma_2}(\chi_1) \leq \chi_2$. Let $\Psi \in \mathbb{T}_\kappa^{cof}[\mathbb{M}]$ be such that $\Phi \leq \varphi_\kappa \Psi$ and Ψ has a direct witness for $(N, M, \chi_2, \chi_1, \Phi)$ and choose such a witness x.

Let M_2 be such that $M \leq M_2 \leq \ell \quad N$ and $\|M_2\| = \overline{\omega}_{\gamma_2}(\chi_1) \leq \chi_2$ and x is a direct witness for $(M_2, M, \overline{\omega}_{\gamma_2}(\chi_1), \chi_1, \gamma_*, \Psi)$.

As χ_3 is strong limit of cofinality $> \overline{\omega}_2(\chi_2)$ there are $\Phi_\gamma \in \mathbb{T}_\kappa^{cof}[\mathbb{M}_2]$ and y which is a direct witness for $(N, M_2, \chi_3, \chi_1, \Phi)$ and so $\tau_{\Phi_\gamma} := \tau(\Phi_\gamma) \setminus \{c_a : a \in M_2\}$ has cardinality κ. For each $\gamma < \gamma_*$ there are $M_{2, \gamma}, \kappa_\gamma$ such that:

\[(+)_1 \quad (a) \quad M_{2, \gamma} \leq M_2 \]
\[(b) \quad \|M_{2, \gamma}\| \text{ is } \geq \overline{\omega}_{\gamma_2}(\chi_1) \text{ but } \overline{\omega}_{\gamma_2}(\chi_1) \text{; can get even} \]
\[\|M_{2, \gamma}\| = \overline{\omega}_{\gamma_2}(\chi_1) \]
\[(c) \quad x_{\kappa_\gamma} \text{ is a direct witness for } (M_{2, \gamma}, M, \overline{\omega}_{\gamma_2}(\chi_1), \chi_1, \gamma, \Psi) \]

[Why? Try by induction on k to choose $\eta_k \in \mathcal{K}_X$ such that $s_k(\eta_k) = 2k + 1, \eta_k(2k) \leq \overline{\omega}_{\gamma_2}(\chi_1)$ and $k < k \Rightarrow \eta_k < \eta_k$. For $k = 0$, clearly $\eta_k = \emptyset$ is O.K., and as $\eta_k(2k) > \eta_{k+1}(2k+2)$, necessarily for some k we have η_k but cannot choose η_k+1; let $A_{\eta_k} = \cup\{\text{Rang}(\rho^{X^k}] : \eta_k \leq \eta_k \in \mathcal{K}_X \text{ and } u \in [\rho^{X^k}]_{\eta_k}^{\ell(\eta_k)/2}] \text{ so } A_{\eta_k} \subseteq M \text{ has cardinality } \eta_k(2k) \in \overline{\omega}_{\gamma_2}(\chi_1), \overline{\omega}_{\gamma_2}(\chi_1) \text{. Without loss of generality if } N_{\ell} = EM(\emptyset, \Phi_\gamma) \text{ is standard (i.e. } M = N_{\ell} | \tau_{\Phi_\gamma}) \text{ then } A_{\eta_k} \text{ is closed under the functions of } N_{\ell} | \tau_{\Phi_\gamma} \text{. Let } M_{2, \gamma} = M_{2, \gamma} | A_{\eta_k} \text{; it is } \leq \ell \quad M \text{ and it satisfies clauses } (a), (b) \text{ and include } A_{\eta_k} \text{. Then we can easily find } x_{\kappa_\gamma} \text{ as required in clause } (c)_1 \text{.]}

Next we can find $y_{\kappa_\gamma, \Phi_{3, \gamma}}$ such that

\[(+)_2 \quad (a) \quad y_{\gamma} \text{ is a direct witness of } (N, M_{2, \gamma}, \chi_3, \|M_{2, \gamma}\|, \Phi_{3, \gamma}) \]
\[(b) \quad \Phi_{3, \gamma} \in \mathbb{T}_\kappa^{cof}[M_{2, \gamma}, \ell] \]

[Why? Recall $\tau(\Phi_3) \setminus \{c_a : a \in M_2\}$ has cardinality κ. Let $\tau_{2, \gamma} = \tau(\Phi_3) \setminus \{c_a : a \in M_2 \}
\text{ so has cardinality } \|M_{2, \gamma}\|$, let $\Phi_{3, \gamma} = \Phi_3 | \tau_{2, \gamma}$, is as required in $(+)_2(k)$. As for y_{γ} we derived it form y_{γ}]

Now let $I = I_{\mu}$ be a linear order of cardinality μ as required in 1.15.

Lastly, let $N_{\mu} = EM_{\ell}(I, \mu, \Phi_{3, \gamma})$ be standard hence $M_{2, \gamma} \leq \ell \quad N_{\mu} \in K_{\mu}^{\ell}$.

We choose ∂_i by induction on i such that: if $i = 0$ then $\partial_i = \chi_1$, if i is limit then $\partial_i = \cup\{\partial_j : j < i\}$ and if $i = j + 1$ then $\partial_i = \overline{\omega}_{\gamma_2}(\partial_j)$ when it is $\leq \chi_2$ and
Let Θ be defined iff $i < i(\ast)$ and let $\Theta = \{\partial_{i+1} : i + 1 < i(\ast)\}$. Now $|\Theta| \geq \chi$ so it suffices to prove that $(N_\theta : \theta \in \Theta)$ are pairwise non-isomorphic.

So toward contradiction assume

$$\ast_3 \theta_1 < \theta_2$$

We can find $M_* \leq \kappa$ N_{θ_1} such that $||M_*|| = \theta_2$ and $M \cup M_{2,\theta_1} \cup \pi(M_{2,\theta_2}) \subseteq M_*$ and without loss of generality we can find $I_* \subseteq \mu$ of cardinality θ_2 such that $M_* = EM_{\tau(t)}(I_*, \Phi_{\tau(t)}).

Let $I^* \subseteq I_*$ be of cardinality θ_1 such that $M_{2,\theta_1} \cup \pi(M) \subseteq N^*_{\theta_1} := EM_{\tau(t)}(I^*_1, \Phi_{\tau(t)}).

By 3.6(3) we can find $\Psi'(\in T_{\kappa}^{\text{a.e.c.}}(N^*_{\theta_1}, \pi)$ and x_{θ_1} witness for $(M_{2,\theta_1}, N^*_{\theta_1}, \theta_2, \kappa, \Psi')$ such that $\Psi \leq \kappa \Psi'$ and $x_{\theta_2} \leq x_{\theta_1}$ where $\theta_2 = \exists_{\omega \gamma}(\chi_1)$

Now clearly $N^*_{\theta_1}, \Psi, \pi(\Psi'), \pi(x_{\theta_1})$ satisfies the parallel statements in N_{θ_1}. By 3.9(B)(a) and the choice of $I_* \mu$ there is a witness for $(N_{\theta_1}, N^*_{\theta_1}, \chi_3, \kappa, \pi(\Psi'))$, hence applying \ast_1 there is a witness x''_{θ_2} for $(N_{\theta_1}, N^*_{\theta_1}, \chi_3, \kappa, \Psi')$.

Hence by 3.9(B)(b), $\Psi \leq \kappa \Psi'$ but together $\Phi \leq \kappa \Psi \leq \kappa \Phi_{\tau(t)}$ hence $\Phi \leq \kappa \Phi_{\tau(t)}$, by 2.14(1) so by 2.14(2), the last clause, there is $\Phi \leq \kappa \Phi_{\tau(t)}$, is as required. But as $\Phi_{\tau(t)}$ has a $(N, M_{2,\theta_2}, \chi_3, \theta_2)$ witness by 3.4(3) also $\Phi_{\tau(t)}$ has hence Φ has an indirect witness for (N, M, χ_3, κ), contradiction. \qed

Conclusion 3.15. Assume $\text{cf} (\lambda) = \aleph_0$ and $\lambda = \exists_{\omega \gamma} \lambda$.

1) If $\lambda > \exists_{\omega \gamma} (\lambda, K_\xi)$ then $M \in K_{\lambda}^\xi \Rightarrow T_{\kappa}^{\text{a.e.c.}}[M] \neq \emptyset.$

2) If $\mu \geq \lambda > \exists_{\omega \gamma} (\mu, K_\xi)$ then $M \in K_{\lambda}^\xi \Rightarrow T_{\kappa}^{\text{a.e.c.}}[M] \neq \emptyset.$

Moreover, at least one of the following holds:

(a) for some $\chi_1 < \lambda$ if $\chi_1 < \chi_2 = \exists_{\omega \gamma} \lambda \leq \min \{\lambda, \mu\}$ then $|\delta| \leq \exists_{\omega \gamma} (\mu, K_\xi)$

(b) $T_{\kappa}^{\text{a.e.c.}}[M] \neq \emptyset$ for every $M \in K_{\lambda}^\xi$. \qed

Theorem 3.16. The result from the abstract holds, that is, for every a.e.c. \mathfrak{t} for some closed unbounded class \mathcal{C} of cardinals we have (a) or (b) where

(a) for every $\lambda \in \mathcal{C}$ of cofinality \aleph_0, $I(\lambda, K) \geq \lambda$

(b) for every $\lambda \in \mathcal{C}$ of cofinality \aleph_0 and $M \in K_{\lambda}$, for every cardinal $\kappa \geq \lambda$ there is N_{κ} of cardinality κ extending M (in the sense of our a.e.c.).

Proof. Let $\Theta = \{\mu : \mu = \exists_{\omega \gamma} \lambda \text{ and } |\delta| > \exists_{\omega \gamma} (\mu, K_\xi) \text{ for some limit ordinal } \delta\}$. Case 1: Θ is an unbounded class of cardinals.

So $\mathcal{C} = \{\mu : \mu = \sup (\mu \cup \Theta)\}$ is a closed unbounded class of cardinals. Easily $\mu \in \mathcal{C} \Rightarrow \mu = \exists_{\omega \gamma} \lambda$ and by 3.15 + 2.15 for every $\mu \in \mathcal{C}$, clause (b) of 3.16 holds.

Case 2: Θ is a bounded class of cardinals.

So by the definition of Θ, $\mathcal{C} = \{\mu : \mu > \sup (\Theta), \mu = \exists_{\omega \gamma} \lambda\}$ is as required. \qed

Also

Theorem 3.17. For every a.e.c. \mathfrak{t} one of the following holds:

(a) for some χ we have $\chi < \mu = \exists_{\omega \gamma} \Rightarrow \exists_{\omega \gamma} (\mu, K_\xi) \geq \mu$ and $\chi < \mu = \exists_{\omega \gamma} \Rightarrow \exists_{\omega \gamma} (\mu, K_\xi) \geq \gamma$

(b) for some closed unbounded class \mathcal{C} of cardinals we have $\text{cf}(\lambda) = \aleph_0 \wedge \lambda \in \mathcal{C}$ and $M \in K_{\lambda}^\xi \Rightarrow T_{\kappa}^{\text{a.e.c.}}[M, \mathfrak{t}] \neq \emptyset$.

Proof. Similarly to 3.16, using Fodor lemma for classes of cardinals. \qed

(3.17)
§ 4. Concluding Remarks

Definition 4.1. 1) For an ordinal γ, τ-models M_1, M_2 and cardinal λ we define a game $\mathcal{G} = \mathcal{G}_{\lambda, \gamma}(M_1, M_2)$. A play lasts less than ω models is defined as in [Sh:797, 2.1].

Claim 4.2. 1) Assume $\text{cf}(\lambda) = \aleph_0$ and M_1, M_2 are τ-models of cardinality λ. If the isomorphic player wins in $\mathcal{G}_{\lambda, \gamma}(M_1, M_2)$ for every γ or just $\gamma < (2^{<\lambda})^+$ then M_1, M_2 are isomorphism.

1A) If above λ is strong limit then "$(2^{<\lambda})^+ = \lambda^+$".

2) Assume λ is strong limit of cofinality $K = K_\tau$ and $|\tau| + \text{LST}_\tau \leq \lambda$ and $K = \{M | \tau : M \models \psi\}$ for some $\psi \in L_{\lambda^+, \aleph_0}$.

If $I(\lambda, K) \leq \lambda$ then for every $M_1 \in K$ there is $M_2 \in K_{\leq \lambda}$ such that the isomorphism player wins in $\mathcal{G}_{\lambda, \gamma}(M_1, M_2)$ for every λ.

Conjecture 4.3. For every a.e.c. \mathcal{L} letting $\kappa = \text{LST}_\tau + |\tau|$, at least one of the following occurs:

(a) if $\lambda = \beth_{1, \lambda} > \kappa$ and $\text{cf}(\lambda) = \aleph_0$, then $\Upsilon^\mathcal{L}_{\kappa}[M, \mathcal{L}] \neq \emptyset$

(b) if $\lambda = \beth_{1, \lambda} > \kappa$ and $\text{cf}(\lambda) = \aleph_0$, then $I(\lambda, K_\tau) = 2^\lambda$.
§ 5. Private Appendix

{a22} Claim 5.1. \(\lambda = \beth_{1,\gamma}(\chi_1) \Rightarrow I(K_{\chi}) \geq \gamma \) when (a)-(b) of 3.14.

{a23}

Proof. Like the proof of 3.14 up to the choice of \(y, \Phi_{3,\gamma} \) in (*)2.

{z9} Let \(I_{x_3} \) be as in 1.15 and let \(t^n \in I_{x_3} \) be pairwise distinct.

Let \(N_{2}^{2} = EM(I_{x_3}, \Phi_{3}) \) hence \(M_2 \preceq_N N_{1}^{1} \models \tau_t \).

Let \(N_{2}^{2} \) be the expansion of \(N_{1}^{1} \) by \(P^{N_{2}^{2}} = \{ a_t : t \in I_{x_3} \} \), \(P^{M} = (M_2) \) and \(\sigma^{N_{1}^{1}}(\bar{x}, a_{t_0}, \ldots, a_{t_{n-1}}) \) for \(\sigma = \sigma(\bar{x}, \bar{y}_{n-1}) \) a term in \(\tau_{t} \). Let \(\bar{I} = (\bar{x}, \bar{y}_{n-1}) \) hence

\[\{ \bar{I} : a_{t} \in \tau_{t} \} \text{ is the closure of } P_{1}^{N_{2}^{2}} \cup P_{2}^{N_{2}^{2}} \text{ by } \{ F^{N_{2}^{2}} : F \in \tau(k) \} \{ c_{a} : a \in M_{2} \} \}

Let \(i = i_{x} \), see ?

We can find \(I_{1} \) such that \(i \preceq_{pr} i_{2} \), see Definition xxx such that for every \(\eta \in \mathcal{F}_{x} \), the sequence \(\langle h_{\eta,\chi_{1}}(a_{\alpha}) : \alpha \in \eta(2^{n+1}) \rangle \) is \(n \)-indiscernible in the model \(N_{2}^{2} \). \(\square_{5.1} \)

References

[Sh:E46] Categoricity of an abstract elementary class in two successive cardinals, revisited.

[Sh:88r] Abstract elementary classes near \(\aleph_{1} \), Chapter I, 0705.4137, arxiv:0705.4137.

[Sh:F1098] Saharon Shelah, Number of models in \(\aleph_{1} \) for an infinitary sentence.

[Sh:F1273] Categoricity spectrum for the atomic model of a countable T: thoughts.
[Sh:F1302] AEC with not too many models II.

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA
E-mail address: shelah@math.huji.ac.il
URL: http://shelah.logic.at