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Abstract. We try to understand complete types over a somewhat saturated
model of a complete first order theory which is dependent (previously called
NIP), by “decomposition theorems for such types”. Our thesis is that the
picture of dependent theory is the combination of the one for stable theories
and the one for the theory of dense linear order or trees (and first we should
try to understand the quite saturated case). As a measure of our progress, we
give several applications considering some test questions; in particular we try
to prove the generic pair conjecture and do it for measurable cardinals.
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2 SAHARON SHELAH

Annotated Content

§0 Introduction, pg. 3

§1 Non-splitting construction, pg. 10

[For κ-saturated M and N such that M ≺ N we try to analyze N over
M by finding M1, N1 such that M ≺ M1 ≺ N1,M ≺ N ≺ N1 and both
M1/M,N1/N are understood but in opposite ways. The first similar in
some sense to the stable situation, the second to the situation for order.]

§2 The type decomposition theorem, pg. 20

[For κ-saturatedM ≺ C and d̄ ∈ C of length < θ+ we try to analyze the type
tp(d̄,M) in two steps - pseudo stable and tree-like one. This is the main
aim of the section (and a major part of the paper). It is done by looking
at Kℓ and mxKℓ

λ,κ,θ. A consequence which fulfilled to some extent the

aim is the Type Decomposition Theorem (2.4). As a second consequence{tp25.43}
we give a characterization of “M is exactly κ-saturated, κ > cf(κ) >
|T |”, see 2.2. In fact, we deal a little with singular exact saturation per{tp16.14}
se. “Unfortunately” there are independent (complete first order theories)
T which has no model with singular exact saturation, see 2.23. But the{tp16.15}
existence of an indiscernible set for dependent T suffice (see 2.26 under{tp16.17}
instances of GCH) and has a neat characterization. Also, if p is a complete
1-type over a modelM of T which is quite saturated then p has a spectrum
in a suitable sense, see 2.31.]{tp35.46}

§3 Existence of strict decomposition, pg. 39

[E.g. here complete types over a saturated model M of cardinality κ, a
measurable cardinal, is analyzed. What we get is a better decomposition
theorem (the strict one).]

§4 Consequences of strict decomposition, pg. 46

[We start by sufficient conditions for a sequence being indiscernible. For a
measurable cardinal κ (> |T |) we confirm the structure half of the generic
pair conjecture. Toward this, if we have the consequences of §3 we can
analyze generic pairs of models of T in κ. In a slightly simplified formulation
this means: if 2κ = κ+, (κ = κ<κ > |T |),Mα, a model of T of cardinality
κ for α < κ+ is ≺-increasing continuous, M = ∪{Mα : α < κ+} is κ+-
saturated, then for a club E of κ+ for all α < β belonging to {δ ∈ E : δ
has cofinality κ} the pair (Mβ ,Mα) has the same isomorphism type. In
fact for κ1 < κ2 we get L∞,κ1(τT )-equivalence, so we have a derived first
order theory. For the proof we show that an increasing (short) sequence of
so called strict (κ, θ)-decompositions has a limit.]
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 3

§ 0. Introduction
{s:introduction}

We first give a page of introductory remarks for non-logicians to clarify notions
and to motivate working on dependent theories. The classical center of model
theory is investigating elementary classes, i.e. we fix a vocabulary τ (i.e. a set
of predicates and function symbols), for a τ -structure M let Th(M) be the set of
first order sentences which M satisfies, a complete first order theory T is Th(M)
for some τ -model M . We fix T and τ = τT and investigate τ -models of T , i.e.
τ -structures M such that T = Th(M); about other contexts, see e.g. [Sh:E53].

Let M,N denote such structures and they are called models (of T ). Let ā, b̄, c̄, d̄
denote sequences of elements of such models and ϕ(x̄) or ϕ(x̄, ȳ) denote members
of L(τ), i.e. the set of first order formulas in this vocabulary but we allow x̄ to be
infinite though the formula is finite so only finitely many xℓ, yj are relevant.

Let M |= ϕ[ā] mean that the model M satisfies the formula ϕ(x̄) under the
substitution x̄ 7→ ā (so ā, x̄ have the same length).

The right notion of sub-models is ≺, being elementary submodel where M ≺ N
iff M ⊆ N and for every ϕ(x̄) ∈ L(τ) and ā ∈ ℓg(x̄)M we have M |= ϕ[ā] iff
N |= ϕ[ā].

Recall that an ordinal is the isomorphism type of a well ordering (which is a
linear order for which every non-empty set has a first member). But we identify
an ordinal with the set of smaller ordinals. Also a cardinal is an ordinal λ with no
smaller ordinal of the same power. Here saying “x is a cardinal” means “x is an
infinite cardinal” if not said otherwise. Let ℵα be the α-th infinite cardinal and the
cardinality |U | of a set U is the minimal ordinal of the same power.

Let the successor λ+ of a cardinal λ be ℵα+1 when λ = ℵα.
We say E is a closed subset of the limit cardinal γ when E ⊆ γ and δ < γ ∧ δ =

sup(δ ∩ E) ⇒ δ ∈ E and E is called unbounded when (∀α < γ)(∃β)(α ≤ β ∈ E),
“E is a club of γ” is the shorthand for “E is a closed unbounded subset of γ”.

For an ordinal α let cf(α) = min{|C| : C an unbounded subset of α} =
min{otp(C) : C a closed unbounded subset of α}; we say α is regular if α = cf(α)
is infinite (hence is a cardinal), now recall (see e.g. [Jec03]) that if α is a limit
ordinal (e.g. a cardinal) then cf(α) is regular, and every cardinal of the form λ+ is
regular. When cf(δ) > ℵ0 we say “S ⊆ δ is stationary” when S ∩ E 6= ∅ for every
club E of δ.

A central notion is type; for A ⊆M and ā a sequence fromM let tp(ā, A,M) be
the set {ϕ(x̄, b̄) : ϕ̄(x̄, ȳ) ∈ L(τ), b̄ a sequence from A and M |= ϕ[ā, b̄]}. We may
write a instead of 〈a〉.

Let

Sα(A,M) = {tp(ā, A,N) : for some N, ā we have
M ≺ N, ā a sequence of length α from N}

Sα(M) = Sα(M,M).

By this we can define another central notion. M is κ-saturated iff for every A ⊆

M, |A| < κ and p ∈ S1(A,M) some a ∈ M realizes p in M which means p =
tp(a,A,M). We say the model M is saturated when it is κ-saturated and of
cardinality κ for some κ. Let ECλ(T ) be the class of models of T of cardinality λ.
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4 SAHARON SHELAH

It is classically known that for λ ≥ |T |, (assuming 2λ = λ+, mostly done here
for transparency) there is a saturated member of ECλ+(T ), it is unique up to
isomorphism, and the union of an ≺-increasing chain of saturated members of
ECλ+(T ) of length λ+ is a saturated member of ECλ+(T ). On the background so
far, see e.g. Chang-Keisler [CK73].

∗ ∗ ∗
A major theme of the author’s work is trying to find natural dividing lines (i.e.

properties) in the family of first order complete T , a criterion for natural is having
both “inside definition” by formulas and “outside definition” by properties of the
class of its models. That is, such a property is interesting as a dividing line when
we have consequences for those with the property and for those without it; see e.g.
[Sh:E53, §(1A)].

A major such dividing line is “T is stable” recalling that T is stable iff (∗)1T iff
(∗)2T where

(∗)1T for some ϕ(x̄, ȳ) ∈ L(τT ), model M of T and ān ∈ (ℓg(x̄))M, b̄n ∈ (ℓg(ȳ))M
for n < ω we have n < m⇔M |= ϕ[ān, b̄m]

(∗)2T for every λ ≥ |T | and limit ordinal δ ≤ λ of cofinality > |T |, the union of
any ≺-increasing chain of length δ of saturated models of T of cardinality
λ is saturated.

Another major dividing line is “T is superstable” which holds iff

(∗)3T like (∗)2T allowing any limit ordinal δ.

On this and the relevant history, see e.g. [Sh:c].
The property we deal with here is “T is dependent”, also called “T is NIP”, where

its negation, “T is independent” or “T has the independence property” means

(∗)4T there are ϕ(x̄, ȳ) ∈ L(τT ), a model M of T and āu ∈ (ℓg(x̄))M, b̄n ∈ (ℓg(ȳ))M
for u ⊆ ω, n < ω such that n ∈ u⇔M |= ϕ[āu, b̄n].

What is the motivation to investigate this dividing line? First, it has a nice, simple
definition, parallel to the one for stable theories. Second, it is a much wider class
than that of the stable theories; also, extremely important for many, whereas infinite
fields with stable first order complete theory are hard to come by (algebraically
closed and separably closed are the only known ones), there are many important
fields with dependent first order complete theory (the p-adics and many of the power
series fields). Third, there are some results on it indicating it is not unreasonable
to hope there is a rich theory on it to be discovered.

On history and background on dependent theories, see [Sh:715], [Sh:783].

∗ ∗ ∗

Let T be a fixed first order complete theory. For transparency, till 0.1, we assume{0n.1}
G.C.H., i.e. 2κ = κ+ for every infinite cardinal κ and consider only λ regular > |T |.
Let M̄ = 〈Mα : α < λ+〉 be an ≺-increasing continuous sequence of models of T
of cardinality λ with M being saturated where M := ∪{Mα : α < λ+}. Now M is
unique (up to isomorphism, for each λ) and though for a givenM, M̄ is not unique,
for any two such sequences M̄ ′, M̄ ′′ there is a closed unbounded subset E of λ+
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 5

and isomorphism f from M ′ = ∪{M ′
α : α < λ+} onto M ′′ = ∪{M ′′

α : α < λ} such
that f maps M ′

δ onto M ′′
δ for every δ ∈ E.

So it is natural to ask (λ > |T | regular and E varies on closed unbounded subsets
of λ+)

⊙1 what1 is nλ(T ) := MinE |{Mδ/ ∼=: δ ∈ E}|? where Mδ/ ∼= is the isomor-
phism type of Mδ. When is nλ(T ) equal to one?

Now (see [Sh:868]):

⊙2 nλ(T ) = 1 iff T is superstable

⊙3 for countable T,nλ(T ) = 2 iff T is strictly stable (i.e. T is stable, not
superstable)

⊙4 given an ordinal γ, for λ large enough nλ(T ) = |γ + 1| if T is stable and
κ(T ) = ℵγ (recalling that for a stable T, κ(T ) is cardinal ≤ |T |+, so for
countable T it is ℵ0 or ℵ1)

⊙5 if T is unstable, λ = ℵγ then nλ(T ) ≥ |γ + 1|.

[Why? Because for some closed unbounded subset E of λ+, if δ ∈ E then Mδ is
cf(δ)-saturated but not (cf(δ))+-saturated hence [δ1, δ2 ∈ E ∧ cf(δ1) 6= cf(δ2) ⇒
Mδ1 ≇Mδ2 .]

Hence it is natural to replace nλ(T ) by:

⊙6 let nλ,κ(T ) = MinE |{Mδ/ ∼=: δ ∈ E and cf(δ) = κ}| when λ > κ = cf(κ),
(as above E varies on the clubs of λ+).

Below we use nλ,κ(T ) only when λ = cf(λ) > |T |+ κ ∧ κ = cf(κ) and remember
that for simplicity we are assuming G.C.H.

Now (see [Sh:868]):

⊙7 if T is stable then nλ,κ(T ) = 1.

It is natural to ask whether this characterizes stable theories. The answer is no, in
fact, by an example everyone knows (by [Sh:877, §1]):

⊙8 nλ,κ(T ) = 1 for T = Th(Q, <), the theory of dense linear orders with
neither first nor last element, so λ = λ<λ > κ = cf(κ).

During the proof we analyze p ∈ S(Mα),Mα saturated, of course, only when p 6=
tp(a,Mα,Mα) for a ∈ Mα. So Mα is a linear order and p induces a cut (C−

p , C
+
p )

of Mα, i.e. C−
p = {a ∈ Mα : (a < x) ∈ p} is an initial segment of Mα and its

compliment, {a ∈ Mα : (a < x) /∈ p} is an end segment. This gives a pair of
cofinalities, (µ−

p , µ
+
p ), µ

−
p the cofinality of the linear order C−

p and µ+
p the cofinality

of the inverse of C+
p .

Now

1We can present the problem differently, about the existence of (variations of) (λ, κ)-limit

models (so 2λ = λ+ is no longer necessary, by forcing this is equivalent). Also, instead of the
function n getting the value λ+ we can consider saying for some club no two relevant cases
are isomorphic. This does not make a real difference but we find the present choice has more
transparent presentation.
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6 SAHARON SHELAH

(∗)8.1 if µp := min{µ−
p , µ

+
p } < λ, then the type is determined by any subset of

Mα of cardinality µp such that:

• the set is unbounded in C−
p if µp = µ−

p and

• the set is unbounded from below in C+
p if µp = µ+

p .

(∗)8.2 if µp = λ, and we expand Mα by the (unary) relation C−
p , we still get a

saturated model.

Next considering ⊙7 +⊙8 you may think that for every T we get nλ,κ(T ) = 1, but
([Sh:877, 2.3(2)] implies directly that):

⊙9 nλ,κ(T ) = λ+ if T is Peano arithmetic

moreover, this holds for quite many theories T (by [Sh:877, §2]):

⊙10 nλ,κ(T ) = λ+ if T has the strong independence property (see [Sh:72], i.e.
for some first order formula ϕ(x, y), 〈ϕ(M,a) : a ∈ M〉 is an independent
sequence of subsets of M , see Definition 0.6).{0n.22}

For me this rings a bell and strengthens a suspicion - maybe the dividing line is T
independent/T dependent, indeed (by [Sh:877, §2]):

⊙11 nλ,κ(T ) = λ+ if T is independent, λ a successor cardinal.

We try here to address the complement, the structure side. This calls for analyzing
appropriate ≺-increasing continuous sequence M̄ = 〈Mi : i ≤ κ〉 of models of T of
cardinality λ. Clearly in the relevant cases they “increase fast enough” and Mi is
saturated for i non-limit. Now among such sequences, is it not reasonable to first
deal with the case of length 2?

This leads to the generic pair conjecture which says that for λ = λ<λ > |T |, we
have T is independent iff nλ,2(T ) = λ+ where:

⊙12 n∗
λ,2(T ) := MinE |{(Mβ,Mα)/ ∼=: α < β belongs to E and cf(α) = λ =

cf(β)}|.

Note that in defining nλ,κ(T ), κ ∈ Reg ∩ [ℵ0, λ] we speak on models of T , i.e.
δ ∈ E, cf(δ) = κ whereas here we deal with pairs of models. However, to analyze
Mδ for δ ∈ E ∧ cf(δ) = κ,E a small enough club of λ+, it is natural to assume
δ = sup{α ∈ E : cf(α) = λ and α < δ} and choose ᾱ ∈ SeqE,κ,δ which means ᾱ is an
increasing continuous sequence 〈αi : i < κ〉 of ordinals with limit δ such that i < κ
non-limit ⇒ cf(αi) = λ and let M̄ᾱ = (Msup(ᾱ),Mi)i<κ. So a sufficient condition
for nλ,κ(T ) = 1 is n∗

λ,κ(T ) = 1 where n∗
λ,κ = MinE |{Mᾱ/ ∼=: ᾱ ∈ SeqE,κ,δ}|, E

varying on the clubs of λ+. Now though it is not clear if this is also a necessary
condition it seems more approachable and is natural. Anyhow it seems reasonable
to consider n∗

λ,2(T ) = 1, i.e. the generic pair conjecture.
This connects us to the long term goal of classifying first order theories by

“good” dividing lines, ones in which we find outside properties (like here investi-
gating nλ,κ(T ) or just nλ,λ(T ), trying to characterize it) with “inside” definitions
(like being dependent), and developing an inside theory; here - looking at decom-
position (in §1 decompositions of models, in §2 decomposition of types, in §3,§4
strict decomposition of types). More fully, for this we have to analyze types. In §1
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 7

we make a first attempt; more exactly see 1.8 and 1.9. We try to analyze a model{3m.3}{3m.4}
N :=Mβ over2 M :=Mα by trying to find models M1, , N1 such that:

⊞1 Mα =M ≺M1 ≺ N1 and Mα =M ≺ N =Mβ ≺ N1

⊞2 for every ā ∈ ω>(M1) for some Bα ∈ [M ]<λ the type tp(ā,M,M1) is
definable over Bα in a weak sense, i.e. does not split over Bα, this means
that if n < ω and b̄, c̄ ∈ n(Mα) realizes the same type over Bα then so does
āˆb̄, āˆc̄ (this is parallel to (∗)8.1 from ⊙8); it follows that for any sequence
ā ∈ κ>(M1) a similar statement holds

⊞3 tp(N1,M1, N1) is weakly orthogonal to every q ∈ S<ω(M1) which does not
split over some B ∈ [M1]

<λ; the weakly orthogonal means that q has a
unique extension in Sn(N1) wherever q ∈ Sn(M1).

In §2 we try to analyze a type rather than a pair of models, also we find it better
to deal with θ-types, θ ≥ |T |, as during the analysis we add more variables. So
for a κ-saturated model M ≺ C and sequence d̄ of length < θ+ we try to analyze
tp(d̄,M,C) in two steps. The first is to add c̄ of length < θ+ such that

⊞4 tp(c̄,M,C) does not split over some B ⊆M ≺ C of cardinality < κ.

This corresponds to the stable type (“unfortunately” but unavoidably depending
on κ), so for the theory of dense linear orders it corresponds to types p ∈ S(M)
with µp < κ, see (∗)8.1 above. True, they are not really definable, but non-splitting
is a weak form of being definable. The second step is

⊞5 tp(d̄,M + c̄,C) is tree like, i.e. if A ⊆ M ≺ C and |A| < κ then for some

ē ∈ θ+>M we have tp(d̄, c̄+ ē) ⊢ tp(d̄, A+ c).

This property holds for T = Th(Q, <), p ∈ S(M) when µp ≥ κ!, i.e. when both
cofinalities are ≥ κ. This is the Type Decomposition Theorem (2.4). {tp25.43}

A consequence is some clarification of models of M of a dependent theory which
are exactly κ-saturated for singular κ. We deal with this question to some extent
per se.

In §3 we get a better decomposition - strict decomposition. But at present with
a price, assuming e.g. κ = ‖M‖ is a measurable cardinal. The main point appears
in §4, the existence of limits of increasing sequences of strict decompositions.

Using this we are able to prove the pair genericity conjecture, the structure
side for the case of a measurable cardinal. The measurability assumption seems
undesirable. Describing this to Udi Hrushovski he was more concerned about also
having the non-structure side for independent T . Now at the time in [Sh:877] it
was remarked that a similar proof should work for the strongly inaccessibles, but
the author was not motivated enough to really look into it. Subsequently [Sh:906]
completes it.

The order of the sections is by their conceptions, so there are some repetitions. In
Kaplan-Shelah [KpSh:946] we start to continue this work as well as in Kaplan-Lavi-
Shelah [KpLaSh:1055]. The author continues this work in [Sh:950] which concen-
trates on saturated models but it works just as well for special models (in singular
strong limit cardinals, see e.g. [CK73]).

2pedantically, when 1 < α < β
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8 SAHARON SHELAH

We thank the referee with thoroughness much above the call of duty causing the
paper to be much improved and John Baldwin for much helpful criticism and Itay
Kaplan and Noa Lavi for last minute pointing out of some difficiencies in §4.

{0n.1}
Context 0.1. 1) T is complete first order theory.
2) C = CT is a monster model for T , omitting T when no confusion arises; i.e. κ̄
is a large enough cardinal, C is a κ̄-saturated model such that we deal only with
models M ≺ C, sets A ⊆ C of cardinality < κ̄ and sequences ā, b̄, c̄, d̄, ē from α

C for
some α < κ̄. So tp(c̄, A) means tp(c̄, A,C).
3) We may not pedantically distinguish a modelM and its universe, the cardinality
‖M‖ of M is that of its universe.

{0n.4}
Notation 0.2. 1) ForM ≺ C and ā ∈ αM or just ā ∈ α

C letM[ā] be the expansion of

M by every relation Rϕ(x̄,ā) = ϕ(M, ā) where ϕ(M, ā) := {b̄ ∈ ℓg(x̄)M : C |= ϕ[b̄, ā]}
for ϕ(x̄, ȳ) ∈ L(τT ) such that ℓg(ȳ) = α, ℓg(x̄) < ω or pedantically ϕ(x̄, ȳ ↾ u) for
x̄, ȳ as above, u ⊆ α finite. We define M[A] similarly, i.e. as the expansion of M by

Rϕ(x̄,ā) = ϕ(M, ā) for every ā ∈ ℓg(ȳ)A and ϕ(x̄, ȳ) ∈ L(τT ).
1A) For p(x̄) ∈ Sα(M) let M[p] be M[ā] whenever ā ∈ α

C realizes p(x̄).
1B) We say the sequence 〈ϕs(x̄, ās) : s ∈ I〉 of formulas from L(τM ) with ās fromM
is independent in the model M when every finite non-trivial Boolean combination
of sets from ϕs(M, ās) is non-empty.
2) Writing ϕ(x̄, ȳ) ∈ L(τT ), ϕ here is always first order but x̄ and ȳ may be infinite,
though sometimes are finite (said or clear from the context). Let p(x̄), q(x̄), r(x̄)

denote types over some A ⊆ C, i.e. set of formulas of the form ϕ(x̄, b̄), b̄ ∈ (ℓg(b̄))A.
3) ECλ(T ) is the class of models M of T (so M ≺ C) of cardinality λ and ECλ,κ(T )
is the class of κ-saturated M ∈ ECλ(T ).
4) A+ c̄ is A ∪ Rang(c̄), etc.
5) Let tp(A,B) be tp(ā, B) where ā is the identity function on A.

{0n.8}
Definition 0.3. 1) If āt ∈ γ

C for t ∈ I and D is a filter on I and x̄ = 〈xi : i < γ〉
and A ⊆ C then Av(〈āt : t ∈ I〉/D , A) = {ϕ(x̄, b̄) : b̄ ∈ ω>A and the set {t ∈ I :
C |= ϕ[āt, b̄]} belongs to D}. Note that if T is dependent, I is a linear order with
no last members and 〈āt : t ∈ I〉 is an indiscernible sequence, see below then the
result ∈ Sγ(A). Also note that if D is an ultrafilter on I then Av(〈āt : t ∈ I〉/D , A)
belongs to Sγ(A).
1A) Recall that if D is a filter on {āt : t ∈ I} ⊆ α

C and A ⊆ C we define Av(D , A)
similarly and if I a linear order and D is the filter of co-bounded subsets of I we
may omit it.
2) If p(x̄), q(ȳ) are complete types over A we say p(x̄), q(ȳ) are weakly orthogonal
when for every ā1, ā2 realizing p(x̄) and b̄1, b̄2 realizing q(ȳ) we have tp(ā1ˆb̄1, A) =
tp(ā2ˆb̄2, A).
3) For a linear order I, 〈ās : s ∈ I〉 is an indiscernible sequence over B when :
ℓg(ās) is constant and if s0 <I . . . <I sn−1 an t0 <I . . . <I tn−1 then the sequences
ās0ˆ . . . ˆāsn−1 and āt0ˆ . . . ˆātn−1 realize the same type over B.

Recall also (see [Sh:c, Ch.II,§4])
{0n.17}

Fact 0.4. If T is dependent then for any formula ϕ = ϕ(x̄, ȳ, z̄) ∈ L(τT ) there is
n = nϕ < ω (depending on T ) such that:
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 9

(a) For no c̄ ∈ ℓg(z̄)
C and b̄i ∈ ℓg(ȳ)

C for i < n, is the sequence 〈ϕ(x̄, b̄i, c̄) :
i < n〉 independent, i.e. every non-trivial Boolean combination of the sets
ϕ(M, b̄i, c̄) = {ā ∈ ℓg(x̄)M :M |= ϕ[ā, b̄i, c̄]} for i < n is non-empty.

(b) If 〈b̄i : i < n〉 is an indiscernible sequence over C, ℓg(b̄i) = ℓg(ȳ), c̄ ∈ ℓg(z̄)C
(all in C) then for no ā ∈ ℓg(ā)M do we have C |= ϕ[ā, b̄i, c̄]

if(ℓ even) for ℓ < n.

(c) Also there is a finite ∆ϕ ⊆ L(τT ) such that in clause (b) it is enough to
demand that 〈b̄i : i < n〉 is a ∆ϕ-indiscernible sequence.

Lastly, we quote Erdös-Rado [ER69].
{0n.19}

Fact 0.5. The ∆-System Lemma for finite sets.
For every natural numbers k, n there is a natural number m such that: if ui is a

finite set with ≤ k elements for i < m then there are sets w ⊆ {0, . . . ,m− 1} with
|w| = n and u∗ such that 〈ui : i ∈ w〉 is a ∆-system with heart u∗, which means
that i 6= j ∈ w ⇒ ui ∩ uj = u∗.

{0n.22}
Definition 0.6. 1) A partial order I is κ-directed when every set J ⊆ I of cardi-
nality < κ has an upper bound t ∈ I which means that (∀s)(s ∈ J ⇒ s ≤I t).
2) A sequence 〈As : s ∈ I〉 is an independent sequence of subsets of A∗ when
(As ⊆ A∗ for s ∈ I and)

⋂

s∈u

As\
⋃

t∈v

At is non-empty for every disjoint finite u, v ⊆ I.
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10 SAHARON SHELAH

§ 1. Non-splitting constructions
{s:non}

On such constructions including Fnsp
κ see [Sh:c, Ch.IV,§1,§3] but Fnsp here is Fp

there; and see [Sh:715, 4.23-4.26], however this section is self-contained.
We try here to analyze κ-saturated models M ≺ N , e.g. by finding M1, N1

such that M ≺ M1 ≺ N1, N ≺ N1 where M1 is Fnsp
κ -constructible over M , see

below and tp(N1,M1) is weakly orthogonal to any type over M1 realized in some
Fnsp

κ -construction over it, see Theorem 1.9, part (B) noting thatM,N,N1,M1 here{3m.4}
stands for A,A+,M,N there. We first recall the definition of non-splitting and
some of its properties.

{3k.0.4}
Definition 1.1. We say p(x̄) does not split over A when : if ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈ p(x̄)
then tp(b̄, A) 6= tp(c̄, A).

{3k.0.7}
Fact 1.2. 1) If ⊛A,B,C below holds and p(x̄) ∈ Sm(B) does not split over A, then
there is one and only one q(x̄) ∈ Sm(C) extending p(x̄) and not splitting over A
(also called the non-splitting extension of p(x̄) over C), where:

⊛A,B,C (a) A ⊆ B ⊆ C

(b) for every c̄ ∈ ω>C there is b̄ ∈ ℓg(c̄)B realizing tp(c̄, A).

2) Let I be a linear order. If tp(āt, B ∪
⋃
{ās : s <I t}) does not split over B and

increases with t ∈ I then 〈āt : t ∈ I〉 is an indiscernible sequence over B.
3) If tp(ā, B) does not split over A, the sequence 〈b̄t : t ∈ I〉 is an indiscernible
sequence over A and b̄t ⊆ B for t ∈ I then 〈b̄t : t ∈ I〉 is an indiscernible sequence
over A ∪ ā.
4) If A ⊆ B then the number of p ∈ Sθ(B) which does not split over A is ≤

22
|A|+|T |+θ

, moreover if T is dependent the number is ≤ 2|A|+|T |+θ.
5) If A ⊆ B and p ∈ Sα(B) is finitely satisfiable in A then p does not split over A.

Proof. 1) By [Sh:3] or see [Sh:715] or see [Sh:300a, 1.10] for uniqueness.
2) By [Sh:c, I] or [Sh:300, I] or [Sh:300a, 3.2].
3) By the definitions.
4) The first conclusion is easy and see [Sh:3] or [Sh:300a, §1], the second holds by
[Sh:783, 5.26].
5) Easy, too. �1.2

{3k.2}
Fact 1.3. [Assume T is dependent.]

If p(x̄) is an α-type over B ⊆ A then we can find q(x̄) ∈ Sα(A) extending p(x̄)
such that for some C ⊆ A of cardinality ≤ |T | + |α| the type q(x̄) does not split
over B ∪ C.

Proof. [Sh:c, III,7.5,pg.140] or see [Sh:715, 4.24]. �1.3

{3k.4}
Observation 1.4. For κ regular.
1) If A ⊆ B, |A| < κ and ā ∈ κ>

C and tp(ā, B) is finitely satisfiable in A then it
does not split over A.
2) If A ⊆ B, c̄ ∈ κ>

C and tp(c̄, B) does not split over A and i < ℓg(c̄) then
tp(ci, B ∪ {cj : j < i}) does not split over A∪ {cj : j < i}. Similarly for 〈c̄j : j < i〉
when j ≤ i⇒ Rang(c̄j) ⊆ Rang(c̄).
3) If tp(c̄k, B + c̄0 + . . . + c̄k−1) does not split over A ⊆ B for k < n then
tp(c̄0ˆ . . . ˆc̄n−1, B) does not split over A.



(
9
0
0
)
 
 
r
e
v
i
s
i
o
n
:
2
0
1
7
-
0
4
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
7
-
0
4
-
2
4
 
 

DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 11

4) If A ⊆ A1 ⊆ B1 ⊆ B and Rang(c̄1) ⊆ Rang(c̄) and tp(c̄, B) does not split over
A then tp(c̄1, B1) does not split over A1.
5) If c̄ ∈ κ>

C and for every finite u ⊆ ℓg(c̄) and finite B1 ⊆ B the type tp(c̄↾u,B1)
does not split over A then tp(c̄, B) does not split over A.

Proof. Easy (or see [Sh:c, Ch.IV]). �1.4

As in [Sh:c, IV].
{3k.6}

Definition 1.5. 1) A is an Fnsp
κ -construction when :

(a) A = (A, ā, B̄, Ā, α) = (AA , āA , B̄A , ĀA , αA ),

(b) ā = 〈aβ : β < α〉 = 〈aA

β : β < α〉,

(c) B̄ = 〈Bβ : β < α〉 = 〈BA
β : β < α〉,

(d) Ā = 〈Aβ : β ≤ α〉 = 〈AA
β : β ≤ α〉,

(e) Aβ = A ∪ {aγ : γ < β},

(f) Bβ ⊆ Aβ and |Bβ | < κ,

(g) tp(aβ , Aβ) does not split over Bβ .

2) We let ℓg(A ) = αA and writing A we may omit ĀA , αA as they are determined
by the others so may write A = (A, ā, B̄) or A = (A, 〈(aβ , Bβ) : β < α〉). We may
replace aβ by a finite sequence āβ with no real change.
3) We say the Fnsp

κ -construction A is µ-full when cf(ℓg(A )) ≥ κ and if q ∈
S(AA

ℓg(A )) does not split over B where B ⊆ AA

ℓg(A ) has cardinality < κ, then

{β < ℓg(A ) : aβ realizes p ↾ AA

β and B ⊆ AA

β } is unbounded in αA and has order
type divisible by µ.
4) We say C is Fnsp

κ -constructible over A when there is an Fnsp
κ -construction A

such that A = AA = AA
0 and C = AA

ℓg(A ).
{3m.1}

Definition 1.6. 1) Let A ≤κ C mean that C is Fnsp
κ -constructible over A.

2) We say that (A+, A) is κ-reduced when : if A ≤κ C and c̄ ∈ κ>(A+) then tp(c̄, A)
has a unique extension to a complete type over C.
3) We say the (N,M) is κ-nice when :

(a) (N,M) is κ-reduced and M ≺ N ,

(b) M is κ-saturated,

(c) N is κ-saturated,

(d) if M ≤κ M
+ then M[N ] ≺M+

[N ], see below.

3A) Recall M[B] is M expanded by Rϕ(x̄,ā) = {b̄ ∈ ℓg(x̄)M : C |= ϕ[b̄, ā]} for

ϕ(x̄, ȳ) ∈ L(τT ) (with x̄ finite of course), ā ∈ ℓg(ȳ)N and recall Th(M[B]) is depen-
dent by [Sh:783, §1].
4) We say that (M,A) is pseudo κ-reduced when: if c̄ ∈ ω>A, ‖M1‖ < κ,M1 ⊆
M, q(x̄) ∈ S<ω(M) is finitely satisfiable in M1 then q(x̄), tp(c̄,M) are weakly
orthogonal.

{3m.2}
Observation 1.7. For κ regular:
1) ≤κ is a partial order.
2) If 〈Ai : i ≤ α〉 is increasing continuous and i < α⇒ Ai ≤κ Ai+1 then A0 ≤κ Aα.



(
9
0
0
)
 
 
r
e
v
i
s
i
o
n
:
2
0
1
7
-
0
4
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
7
-
0
4
-
2
4
 
 

12 SAHARON SHELAH

3) In Definition 1.6(2) it is enough to consider c̄ ∈ ω>(C\A). {3m.1}
4) If A ≤κ B and c̄ ∈ κ>B then3 tp(c̄, A) does not split over some A′ ⊆ A of
cardinality < κ.
5) If the pair (M,C) is κ-reduced then (M,C) is pseudo κ-reduced.
6) If tp(ā, A) does not split over B and B ⊆ A has cardinality < κ then A ≤κ A+ ā.

Proof. Easy; e.g. part (6) by 1.4(2) and part (4) by 1.3(3),(4)) and part (5) by{3k.4}{3k.2}{3k.0.7}
1.2(5). �1.7

{3m.3}
Claim 1.8. [T is dependent and κ = cf(κ) > |T |].
1) For every A there is a κ-saturated C such that A ≤κ C and |C| ≤ (|A|+ |T |)<κ.
2) If in addition µ ≤ (|A| + |T |)<κ then we can add “C is “µ-full κ-saturated”;
clearer if |C| ≤ (|A|+ |T |)<κ + 22

κ

).

Proof. 1) By 1.3 + 1.7(2) and 1.7(6).{3k.2}{3m.2}{3m.2}
2) Similarly (by 1.2(4)). �1.8{3k.0.7}

Now we arrive to the first result giving a decomposition. The type tp(A+, A)
is decomposed in Theorem 1.9 by finding M such that A ≤κ M , (so the complete{3m.4}
types over A realized in M are somewhat definable) and (A+,M) is κ-reduced, so
the type tp(A+,M) is weakly orthogonal to types in S<ω(M) not splitting over
subsets of M of cardinality < κ.

{3m.4}
Theorem 1.9. The Density of Reduced Pairs Theorem [T dependent].

For any A ⊆ A+ and κ = cf(κ) > |T | and λ satisfying4 θ < κ ⇒ λ = λθ ≥
|A+|+ 2|T |

(A) we can find M such that M is a model of cardinality λ satisfying A ≤κ M
and (A+,M) is κ-reduced

(B) for some M as in clause (A) and N the pair (N,M) is κ-reduced and even
κ-nice and A+ ⊆ N .

Proof. Proof of (A):
Our intention is to try to do a construction as described in ⊠ below. Having

carried the induction the proof is divided to two cases. In the first we get the
desired conclusion. In the second, we get a contradiction to T being dependent;
formally to the maximality of the k chosen in clause (g)(β) of ⊠.

We choose Mi, Bi, ji, c̄i by induction on i ≤ λ+ such that

⊠ (a) Mi is ≺-increasing continuous, Mi of cardinality ≤ λ+ |i|,

(b) ji ≤ i, Bi ≺Mi, ‖Bi‖ < κ,

(c) M0 is Fnsp
κ -constructible over A,

(d) Mi+1 is Fnsp
κ -constructible over Mi and Mi+1 is κ-saturated,

(e) c̄i ∈ ω>(Mi+1) and Bi ⊆Mji has cardinality < κ,

(f) tp(c̄i,Mi) does not split over Bi,

3we could have chosen this as the definition. This changes the places we really need “κ regular”.
4no real harm if we replace “θ < λ ⇒ λ = λθ ≥ |A+|” by θ < κ ⇒ λ = λθ + 22

θ+|T |
≥ |A+|

and then we can use only the first version of 1.2(4).{3k.0.7}
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 13

(g) if cf(i) ≥ κ and subclause (α) below holds then subclause (β) holds
where:

Subclause (α): There are j < i,m < ω,B ⊆Mj of cardinality < κ and

p(x̄) ∈ Sm(Mi) which does not split over B and p(x̄) has
≥ 2 extensions in Sm(Mi ∪A+).
Subclause (β): There are5 m = mi < ω, k = ki < ω and

ϕ(x̄, ȳ) = ϕi(x̄i, ȳi) ∈ L(τT ) with ℓg(x̄) = mi, ȳ finite and b̄ =
b̄i ∈ (ℓg(ȳ))(Mj ∪ A+) and ε0 < . . . < εk−1 from the interval
[ji, i) such that:

• Bi ⊆Mji ,

• tp(c̄i,Mi) ∪ {ϕi(x̄, b̄i)} and tp(c̄i,Mi) ∪ {¬ϕi(x̄, b̄i)} are consistent,

• tp(c̄εℓ ,Mεℓ) = tp(c̄i,Mεℓ),

• C |= ϕ[c̄εℓ , b̄]
if(ℓ even),

• k is maximal for the given ϕ(x̄, ȳ), b̄i, ji (see ⊛ below; k is well defined
as T is dependent, see ⊛ below),

• C |= ϕ[c̄i, b̄]
if(k is even).

So in stage i we first choose Mi: if i = 0 by clause (c), such model Mi exists by {3m.3}
1.8(1), if i is a limit ordinal we chooseMi as ∪{Mj : j < i} and if i = j+1 (so c̄j has
already been defined) then choose Mi such that Mj ∪ c̄j ≤κ Mj+1 and Mi =Mj+1

is κ-saturated of cardinality λ (and λ-full if you like), possible by Claim 1.8(1). {3m.3}
Note that Mj ≤κ Mj ∪ c̄j by clause (f) and 1.7(6) hence Mj ≤κ Mj+1 recalling {3m.2}{3m.2}
1.7(2).

Note

⊛ there is n = nϕ(x̄,ȳ) depending on ϕ(x̄, ȳ) and T only such that in subclause
(β) we have ϕi(x̄i, ȳi) = ϕ(x̄, ȳ) ⇒ ki ≤ n.

[Why? As by clause (f) in subclause (g)(β) of ⊞(f), by 1.2(2) the sequence 〈c̄εℓ : {3k.0.7}
ℓ < k〉 is an indiscernible sequence, so by T being dependent we are done by 0.4(b).] {0n.17}

Second, why can we choose (mi, ji, Bi, ϕi, tp(c̄i,Mi)) as required in clause (g)?
If cf(i) < κ or the antecedent of clause (g), i.e. subclause (g)(α) fails then trivially
yes (choose e.g. c̄i as the empty sequence). Otherwise let j < i,B ⊆ Mj be of
cardinality < κ,m < ω and p(x̄) ∈ Sm(Mi) which does not split over B and which
has extensions p0(x̄) 6= p1(x̄) in Sm(Mi∪A+) with p0 ↾ (Mi∪A+) 6= p1 ↾ (Mi∪A+),
so p0 ↾Mi = p = p1 ↾Mi does not split over B.

Hence for some b̄ ∈ ω>(Mi ∪ A+) and ϕ = ϕ(x̄, ȳ) ∈ L(τT ) we have ϕ(x̄, b̄) ∈
p1(x̄),¬ϕ(x̄, b̄) ∈ p0(x̄); as i is a limit ordinal without loss of generality b̄ ∈ ω>(Mj∪
A+). We now try to choose εℓ by induction on ℓ ≤ nϕ(x̄,ȳ) such that:

⊙ (a) j ≤ εℓ < i and k < ℓ⇒ εk < εℓ,

(b) c̄εℓ realizes p(x̄) ↾Mεℓ ,

(c) C |= ϕ[c̄εℓ , b̄]
if(ℓ is even),

(d) εℓ is minimal under (a)+(b)+(c).

5We can add:

• not only ji satisfies the demand on j in subclause (α), but it is the minimal such j.
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14 SAHARON SHELAH

So by ⊛ for some k ≤ nϕ(x̄,ȳ) we have: εℓ is well defined iff ℓ < k. At last we
choose:

(∗) (a) Bi = B

(b) ϕi = ϕ

(c) ji = j

(d) ki = k

(e) c̄i realizes p1(x̄) if k is even and realizes p0(x̄) if k is odd.

So at last we are in a situation where the construction from ⊠(a)− (g) having been
carried out. So now comes the division to cases.

Let S∗ = {i < λ+: cf(i) ≥ κ and subclause (α) of clause (g) holds for i}.
Recall that S is a stationary subset of an ordinal δ of cofinality > ℵ0 (e.g. a

regular uncountable cardinal) when it is not disjoint to any closed unbounded subset
E of δ.

Case 1: S∗ is a stationary subset of λ+.
Hence for i ∈ S∗, there are ji, Bi, ϕi(x̄i, ȳi), b̄i and ki < ω and ε0(i) < . . . <

εki−1(i) < i as in subclause (β) of ⊠(g) and by Fodor’s lemma (see e.g. [Jec03])
for some m∗ < ω, j < λ+, B, ϕ(x̄, b̄), k∗, 〈εi : i < k∗〉 and a stationary subset S
of S∗ ⊆ {δ < λ+: cf(δ) ≥ κ} we have δ ∈ S ⇒ jδ = j ∧ Bδ = B ∧ ℓg(c̄δ) =
m∗ ∧ ϕδ(x̄, b̄δ) = ϕ(x̄, b̄) ∧ kδ = k∗ ∧

∧

ℓ<k∗

εℓ(δ) = εℓ. Also without loss of generality

by 1.2(4) we have δ ∈ S ⇒ tp(c̄δ,Mmin(S)) = tp(c̄min(S),Mmin(S)) recalling that{3k.0.7}
the number of such types is ≤ 2|B|+|T |. Choose δ(0) < δ(1) from S so both has
cofinality ≥ κ and Bδ(0) = Bδ(1), tp(c̄δ(0),Mδ(0)) ⊆ tp(c̄δ(1),Mδ(1)) by 1.2(1) and{3k.0.7}
b̄δ(1) = b̄δ(0) and εi(δ(0)) = εi(δ(1)) for i < k∗. But we could have chosen in stage
δ(1), εk for k < k∗ and k′δ(1) = k∗ + 1 and ε′k∗

(δ(1)) = δ(0), contradiction to the

maximality of k in Subclause (β) of ⊠(g).

Case 2: Not Case 1.
Then for a club of i < λ+ if cf(i) ≥ κ then subclause (α) of Clause (g) fails for

i hence Mi exemplifies that we have gotten the desired conclusion in (A) of 1.9.{3m.4}
By the proof of (A) note that:

⊞ for every A ⊆ B and λ = λ<κ ≥ 2|T |+|B| there is MA,B ⊆ {M : A ≤κ M ≺
CT and ‖M‖ = λ} such that:

(a) if M1 ⊆M2 are from MA,B then (M1)[B] ≺ (M2)[B]

(b) if M1 ∈ MA,B and M1 ≤κ M2 ≺ C, ‖M2‖ ≤ λ then there is M3 ∈
MA,B such that M2 ≤κ M3

(c) MA,B is closed6 under increasing union of length < λ+”

(d) MA,B is ≤κ-dense above A which means: if A ≤κ A1 ⊆ C and |A1| ≤ λ
then there is M ∈ MA,B satisfying A1 ≤M .

Moreover

⊞+ if in addition θ = cf(θ), |T |<θ ≤ λ then we can strengthen clause (a) to

6We may use ≺Lκ,κ but then we have to say “increasing union of length δ < λ+ when cf(δ) ≥

κ”.



(
9
0
0
)
 
 
r
e
v
i
s
i
o
n
:
2
0
1
7
-
0
4
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
7
-
0
4
-
2
4
 
 

DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 15

(a)+ if M1 ⊆M2 are from MA,B then (M1)[B] ≺Lθ,ℵ0
(M2)[B].

Why ⊞ and ⊞+ holds? It suffices to prove ⊞+ (using θ = ℵ0 or even θ = κ). We
define Mα by induction on α ≤ θ as follows:

⊞2 Mα is the class of M such that:

(a) A ≤κ M ≺ CT and ‖M‖ = λ

(b) M ∈ Mβ for every β < α

(c) if α = β+1,M ⊆M2 ∈ Mβ , ϕ = ϕi(x̄, ȳ) ∈ Lθ,ℵ0(τT ) for i < i∗ < θ so

x̄, ȳ are finite, and each ϕi has quantifier depth < β and b̄ ∈ ℓg(ȳ)M, ā ∈
ℓg(x̄)(M2) then for some ā∗2 ∈ ℓg(x)M we have

• i < i∗ and M2 |= ϕi[ā, b̄] then M2 |= ϕi[ā
′, b̄].

Now we prove by induction on α ≤ θ that

⊞2
α (a) if M1 ⊆M2 are from Mα and ϕ(x̄) ∈ Lθ,ℵ0(τT ) has quantifier depth

< α and ā ∈ ℓg(x̄)(M1) so finite then M1 |= ϕ[ā] iff M2 |= ϕ[ā]

(b), (c), (d) as in ⊞

(e) 〈Mβ : β ≤ α〉 is ⊆-decreasing continuous

(f) if α is a limit ordinal, u ⊆ α = sup(u) and Mα ∈ Mα for α ∈ u
is ⊆-increasing then ∪{Mα : α ∈ u} ∈ Mα.

There is no problem to carry the induction and then Mθ is as required in ⊞ and
⊞+.

Proof of (B): By induction on i < λ+ we choose Mi, Ni, Bi, ji, c̄i such that

⊠′ Clauses (a),(c),(d) of ⊠ and
(h) 〈Nj : j ≤ i〉 is ≺-increasing continuous and A+ ⊆M+

0 ,

(i) Mi ≺ Ni and Ni has cardinality λ and if i is non-limit then
Mi, Ni are κ-saturated,

(j) if cf(i) ≥ κ and there are ji < i,m < ω,B ≺Mji of cardinality
< κ and p ∈ Sm(Mi) which does not split over B and has
≥ 2 extensions in Sm(Nj) then subclause (β) of clause ⊠(g)

above holds (with b̄ ∈ ℓg(ȳ)(Nj))

(k) if cf(i) ≥ κ and (Mi, Ni) is κ-reduced and
j ≤ i then there is M+

i,j such that Mi ≤κ M
+
i,j ≤κ Mi+1

and M+
i,j ∈ MMj ,Nj

.

The rest of the proof is similar to that of (A). �1.9

∗ ∗ ∗

For the rest of the section we shall assume (as we use it all the time).
{3n.0}

Hypothesis 1.10. T is dependent.



(
9
0
0
)
 
 
r
e
v
i
s
i
o
n
:
2
0
1
7
-
0
4
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
7
-
0
4
-
2
4
 
 

16 SAHARON SHELAH

{3n.1}
Definition 1.11. 1) S

nsp
<κ (A) = {p ∈ S(A) : p does not split over some B ⊆ A of

cardinality < κ}.
2) Snsp,α

<κ (A) ⊆ Sα(A) and S
nsp,<α
<κ (A) ⊆

⋃

β<α

Sβ(A) are defined similarly.

3) Snsp
≥κ (A) = {p ∈ S(A) : p is weakly orthogonal to r for every r ∈ S

nsp
<κ (A)}.

4) Snsp,α
≥κ (A),Snsp,<α

≥κ (A) are defined similarly.

We may note
{3n.1d}

Observation 1.12. 1) If tp(c̄1, A) belongs to S
nsp,α
≥κ (A) and c̄2 ∈ β

C and Rang(c̄2) ⊆

Rang(c̄1) then tp(c̄2, A) belongs to S
nsp,β
≥κ .

2) tp(c̄, A) ∈ S
nsp,α
≥κ (A) iff tp(c̄↾u,A) ∈ S

nsp,|u|
≥κ (A) for every finite u ⊆ ℓg(c̄).

3) If tp(ā, A) ∈ Sm(A) is weakly orthogonal to tp(c̄, A) and does not split over
B ⊆ A and every q ∈ S<ω(B) is realized in A then tp(ā, A+ c̄) does not split over
B.

Proof. Straightforward. �1.12
{3n.2}

Observation 1.13. If κ = cf(κ) > |T |, the model M is κ-saturated and p ∈
Sm(M), then we can find N, q such that:

⊛1
N (a) ‖N‖ = ‖M‖<κ,

(b) q ∈ Sm(N) extends p,

(c) N is Fnsp
<κ -constructible over M ,

⊛2
N,q,κ (a) N is κ-saturated and q ∈ Sm(N).

(b) if r ∈ S
nsp,<ω
<κ (N) then r, q are weakly orthogonal, i.e. q ∈ S

nsp,m
≥κ (N).

Proof. Let c̄ realize p(x̄) and let C = Rang(c̄), now we apply clause (A) of Theorem
1.9 with M,M ∪ C,N here standing for A,A+,M there. �1.13{3m.4}

{3n.3}
Theorem 1.14. The Tree-like Type Theorem Assume q(x̄) ∈ S

nsp,α
≥κ (N) and N is

κ-saturated and κ > θ = |T | + |α| and let z̄ = 〈zα : α < θ〉. Then we can find
a sequence ψ̄ = 〈ψϕ(x̄,ȳ)(x̄, z̄) : ϕ(x̄, ȳ) ∈ L(τT )〉 of formulas such that for every

A ⊆M of cardinality < κ there is c̄ ∈ θM such that:

(a) {ψϕ(x̄,ȳ)(x̄, c̄) : ϕ(x̄, ȳ) ∈ L(τT )} ⊆ q↾Rang(c̄) ⊆ q,

(b) for each ϕ(x̄, ȳ) ∈ L(τT ) we have ψϕ(x̄,ȳ)(x̄, c̄) ⊢ {ϕ(x̄, b̄) : b̄ ∈ ℓg(ȳ)A and

ϕ(x̄, b̄) ∈ q}.

Proof. This follows from Claims 1.15, 1.16 below. �1.14{3n.4}{3n.5}
{3n.4}

Claim 1.15. 1) Assume that ⊛2
N,q,κ from the Claim 1.13 holds, which means N is{3n.2}

κ-saturated and q ∈ S
nsp
≥κ (N). Then

⊛3
N,q,κ if M ≺ N has cardinality < κ and ϕ(x, y) is a formula with parameters

from N , then for some ψ(x, d̄) = ψϕ(x,y),M(x, d̄ϕ(x,y),M ) ∈ q and η ∈ M2

we have ψ(x, d̄) ⊢ pM,η

ϕ(x,y) where

pM,η

ϕ(x,y) = {ϕ(x, b)η(b) : b ∈M}; so it is included in q.

2) Part (1) works also for q ∈ Sm(N), i.e. q ∈ S
nsp,m
≥κ (N) and ϕ = ϕ(x̄, ȳ) where

ℓg(x̄) = m, ℓg(ȳ) < ω.
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 17

Proof. Fix M such that M ≺ N is of cardinality < κ.
1) First note that

(∗)1 ifD is an ultrafilter onM then q(x) is weakly orthogonal to rD = Av(D,N).

[Why? As rD does not split over M , by 1.4(1).] {3k.4}
Second, note that

(∗)2 the following type cannot be finitely satisfiable in M :

r∗(y) = {(∃x1)(ψ(x1, d̄) ∧ ϕ(x1, y)) : ψ(x, d̄) ∈ q}∪
{(∃x2)(ψ(x2, d̄) ∧ ¬ϕ(x2, y)) : ψ(x, d̄) ∈ q}.

[Why? Otherwise for some ultrafilter D onM we have ϑ(y, d̄) ∈ r∗(y) ⇒ ϑ(M, d̄) ∈

D. Let b ∈ C realize Av(D,N) so as q(x̄) is closed under conjunctions, q(x) ∪
{ϕ(x, b)} and q(x)∪{¬ϕ(x, b)} are finitely satisfiable in C, and we get a contradiction
to (∗)1.]

(∗)3 there is ψ(x, d̄) ∈ q such that {(∃x1)(ψ(x1, d̄) ∧ ϕ(x1, y)), (∃x2)(ψ(x2, d̄) ∧
¬ϕ(x2, y))} is satisfied by no b ∈M .

[Why? By the monotonicity in ψ(x, d̄) and q being closed under conjunctions this
follows from (∗)2.]

(∗)4 let ψϕ(x,y),M(x, d̄ϕ(x,y),M ) = ψ(x, d̄), from (∗)3,

(∗)5 for every b ∈M we haveN |= “(∀x)(ψ(x, d̄) → ϕ(x, b))” orN |= “(∀x)(ψ(x, d̄) →
¬ϕ(x, b̄))”.

[Why? By logic this follows by (∗)3.]

(∗)6 there is η ∈ M2 such that for every b ∈ M we have M |= “(∃x)(ψ(x, d̄) ∧
ϕ(x, b))” iff M |= “¬(∃x)(ψ(x, y)) ∧ ¬ϕ(x, b)” iff η(b) = 1.

[Why? By (∗)5 + (∗)3.]
So we are done.

2) Similarly. �1.15
{3n.5}

Claim 1.16. 1) In the previous claim 1.15, fixing q, if cf(κ) > |T | then ψ depends {3n.4}
on ϕ but does not depend on M though d̄ in general does, i.e. given ϕ(x̄, ȳ) we may
assume without loss of generality that ψϕ(x̄, d̄) = ψϕ(x̄,ȳ)(x, d̄ϕ(x̄,ȳ),M ).

2) Assume ⊛2
N,q,κ from claim 1.13, i.e. N is κ-saturated and q ∈ S

nsp,m
≥κ (N). Then {3n.2}

the following partial order is κ-directed

(a) elements: q ↾ B for B ⊆ N of cardinality7 ≤ |T |

(b) order: p1 ≤ p2 if p2 ⊢ p1.

Proof. 1) As if N1 ≺ N2 ≺ N and ‖N2‖ < κ, then ψϕ(x̄,ȳ),N2
(x, d̄ϕ(x̄,ȳ),N2

) can

serve as ψϕ(x̄,ȳ),N1
(x̄, d̄ϕ(x̄,q),N2

). As the number of possible ψϕ’s is < κ = cf(κ) we
are easily done.
2) Easy. �1.16

As a conclusion we can now show that a key fact in [Sh:877] for the theory
T = Th(Q, <) has a parallel for every dependent T .

7from some form of strongly dependent we should be able to get “essentially finite”
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18 SAHARON SHELAH

{3n.6}
Conclusion 1.17. The Saturated Expansion Conclusion Assume

(a) N is κ-saturated,

(b) |T |+ |A| < κ,

(c) if ā ∈ A then qā = tp(ā, N) ∈ S
nsp,<ω
≥κ (N), see Definition 1.11(3),{3n.1}

(d) N[A] has elimination of quantifiers.

Then N[A] is κ-saturated.

Remark 1.18. 1) Recall N[A] is N expanded by Rϕ(x̄,b̄) = {ā ∈ ℓg(x̄)N : C |= ϕ[ā, b̄]}

for ϕ(x̄, b̄) a formula with parameters from A, see 1.6(3A) or [Sh:783, §1].{3m.1}
2) We can omit assumption (d) in 1.17, but then get κ-saturated only for quantifier{3n.6}
free types.

Proof. Without loss of generality κ is regular, this as it is enough to prove λ+-
saturation for every λ ∈ [|T | + |A|, κ). Let M ≺ N be such that ‖M‖ < κ and
assume p = p(ȳ) ∈ Sm(|M |, N[A]) and we shall prove that some c̄ ∈ mN realizes
p(ȳ). Actually without loss of generality M[A] ≺ N[A] and by assumption (d),
equivalently p(ȳ) ∈ Sm(M ∪ A) = Sm(M ∪ A,C) is finitely satisfiable in M . Let
c̄ = 〈cα : α < α∗〉 list A so α∗ < κ and for u ⊆ α∗ let c̄u = 〈cα : α ∈ u〉, x̄u = 〈xα :
α ∈ u〉.

Next note that by Claims 1.16(1) and 1.15(2) (here clause (c) of the assumption{3n.5}{3n.4}
is used) applied to tp(c̄u, N) noting ȳ of length m is fixed and letting x̄u = 〈xα :
α ∈ u〉, we have:

(∗)1 for every finite u ⊆ α∗ and formula ϕ = ϕ(x̄u, ȳ, z̄) ∈ L(τT ) there are
ψϕ(x̄u,ȳ,z̄)(x̄u, d̄ϕ(x̄u,ȳ,z̄),M ) ∈ tp(〈cα : α ∈ u〉, N) so d̄ϕ(x̄u,ȳ,z̄),M ∈ ω>N

and η a function from ℓg(ȳ)+ℓg(z̄)M to {0, 1} such that:

ψϕ(x̄u,ȳ,z̄)(x̄u, d̄ϕ(x̄u,ȳ,z̄),M ) ⊢ {ϕ(x̄u, b̄, c̄)
η(b̄ˆc̄) : b̄ ∈ ℓg(ȳ)M and c̄ ∈ ℓg(z̄)M}.

Clearly |p(ȳ)| < κ so there are ζ∗ < κ and a sequence 〈(ϕζ(x̄uζ
, ȳ, z̄ζ), uζ) : ζ < ζ∗〉

listing the pairs (ϕ(x̄u, ȳ, z̄), u) as above so we have

p(ȳ) = {ϕζ(c̄ ↾ uζ, ȳ, ē) : ζ < ζ∗ < κ and ē ∈ ℓg(z̄ζ)M},

so uζ ⊆ α∗ is finite.
For each ζ < ζ∗ we choose ψζ(x̄uζ

, d̄ζ) as guaranteed by (∗)1 above (for ϕζ(x̄uζ
, ȳ, z̄)).

Let

p′(ȳ) := {(∀x̄uζ
)[ψζ(x̄uζ

, d̄ζ) → ϕζ(x̄uζ
, ȳ, ē)] : ζ < ζ∗ and ē ∈ ℓg(z̄ζ)M}.

Now

(∗)2 p′(ȳ) is finitely satisfiable in M .
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 19

[Why? As p(ȳ) finitely satisfiable in M , using the translation and the choice of
ψζ(x̄uζ

, d̄ζ). That is, let p′′(ȳ) be a finite subset of p′(ȳ) so for some k < ω, ζℓ =

ζ(ℓ) < ζ∗, c̄ℓ ∈ ℓg(z̄ζ)M for ℓ < k we have p′′(ȳ) = {(∀x̄uζ(ℓ)
[ψζ(ℓ)(x̄uζ(ℓ)

, d̄ζ(ℓ)) →
ϕζ(x̄uζ(ℓ)

, ȳ, ēℓ)] : ℓ < k}. Now {ϕζℓ(c̄ ↾ uζℓ , ȳ, ēℓ) : ℓ < k} is a finite subset of p(ȳ)

hence is realized by some b̄ ∈ mM , hence by (∗)1 the sequence b̄ realizes p′′(ȳ).]

(∗)3 the type p′(ȳ) is over ∪{d̄ζ : ζ < ζ∗} ∪M ⊆ N .

[Why? Check.]

(∗)4 p′(ȳ) has cardinality ≤ |A|+ |T |+ ‖M‖ < κ.

[Why? Obvious.]

(∗)5 there are M+ and b̄ such that:
(a) M ≺M+ ≺ N ,

(b) tp(M+,M ∪
⋃
{d̄ζ : ζ < ζ∗}) is finitely satisfiable in M ,

(c) b̄ ∈M+ realizing p′(ȳ).

[Why? Easy, e.g. using ultrapower, “N is κ-saturated” and (∗)2 + (∗)3.]

(∗)6 b̄ realizes p(ȳ) ∈ Sm(N ∪ A) and b̄ ∈ ℓg(ȳ)(M+) ⊆ ℓg(ȳ)N .

[Why? Follow the translations.]
So we are done. �1.17

{3n.7}
Question 1.19. 1) Can we waive assumption (d) in 1.17? {3n.6}
2) Is the family of (N,A) as in 1.17 “dense under ≤κ”? {3n.6}

{3n.8.17}
Discussion 1.20. 1) Assume λ = λ<λ > κ = cf(κ) > |T | and we try to prove that
there is a (λ, κ)-limit model.

So let M ∈ ECλ(T ) be saturated and we try to analyze the class of N,M ≺
N ∈ ECλ, which are “close enough”, in the sense of (λ, κ)-limit model.

So if p ∈ S
nsp
<λ (M), say p does not split over B, for some B ⊆ M of cardinality

< λ, then we can assume that in N there are “enough elements” realizing “types
not-splitting over B” extensions of p. So hopefully we can analyze such N by

P ⊆ S
nsp
≥λ (M) pairwise perpendicular or P ⊆ S

nsp,|T |
≥λ (M) such that for each

p ∈ P the model M[p] from 0.2(1A) has elimination of quantifiers and is saturated, {0n.4}
it is reasonable that this holds if we can expand M by definition of < λ types
p ∈ P.

What we need, i.e., what is necessary for this line of attack (but not yet clear if
sufficient to carry it), is:

(∗) if Pℓ above has cardinality λ and is quite dense (e.g. using F’s for ℓ = 1, 2)
then there is an automorphism of M which maps P1 onto P2.

This leads to the generic pair conjecture.
2) About Snsp

<λ (M) recall Definition 1.11(1). {3n.1}
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20 SAHARON SHELAH

§ 2. The type decomposition theorem
{s:the}{tp.45.8}

Context 2.1. 1) T is a complete first order theory; dependent if not said otherwise.
2) C = CT is a monster for T , etc. as in 0.1.{0n.1}

Here we try to analyze a type p ∈ S≤θ(M) for κ-saturated M ≺ C where κ >
θ ≥ |T |, the characteristic case being κ >> θ (θ may be ℵ0, if T is countable). In
the case of θ < |T |, or even better θ < ℵ0 we know less but mention it. We look
at “T being stable” as our dream, our paradise. The hard reality is T being just
dependent. In some sense T dependent should be like stable but we allow order,
e.g. Th(Q, <) or trees. What we actually do is investigate the Kℓ (see Definition{tp14.21}
2.6).

How helpful is this analysis? We present two consequences. The first to some
extent accomplished the professed aim: the Type Decomposition Theorem 2.4.{tp25.43}

What is its meaning? If M is κ-saturated, d̄ ∈ θ+>
C and κ > θ ≥ |T | then we

try to analyze the type tp(d̄,M) in two steps: for some c̄, B:

(a) B ⊆M has cardinality < κ, say B = |N |,

(b) the type in the first step is similar to the types of stable theories, i.e.
tp(c̄,M) does not split over B ⊆ M ; (we can even demand tp(c̄,M) is
finitely satisfiable in B),

(c) the type in the second step, tp(d̄,M + c̄) behaves as in trees; e.g. letting
x = (M,B, c̄,d) we have: on θM the partial orders ≤x is κ-directed (see{0n.22}
0.6) where we let ā1 ≤x ā2 iff tp(d̄, c̄ˆā2) ⊢ tp(d̄, c̄ˆā1).

The reader may say that Clause (b) is not a true parallel to a stable case, as |B| is
not bounded by θ + |T | (but this is impossible even for the theory of dense linear
order). Still a type not splitting over a set is a weak form of definability. Also
we may wonder, what is the meaning, when T is Th(Q, <)? If M is κ-saturated
each p ∈ S(M) actually stands for a cut of M . Now the cuts are divided to those
which have cofinality ≥ κ from both sides (falling under (c)), and those which do
not (hence fall under (b)).

The second consequence deals with singular µ of cofinality > |T |. We ask: is
thereM ≺ C which is exactly µ-saturated, i.e. is µ-saturated but not µ+-saturated.
Now if T = Th(Q, <) this is impossible, that is, there is no such M . If T is stable
there is no problem to find such M , the main case being cf(µ) > |T | (or just
cf(µ) ≥ κ(T ), see [Sh:c, Ch.III]) and let M be µ-prime over an indiscernible set of
cardinality µ. The result says that for dependent T there is something like that,
this is 2.2.{tp16.14}

{tp16.14}

Lemma 2.2. Singular Exact Saturation Lemma Assume T is a dependent theory,
κ is singular of cofinality > |T | and M ≺ C is an exactly κ-saturated model, i.e. is
κ-saturated but not κ+-saturated. Then there are N and A such that:

(a) N ≺M of cardinality < κ and A ⊆M of cardinality κ and M omits some
p ∈ S(A) which does not split over N ;

moreover

(b) there is q ∈ S(M) which does not split over N such that p = q ↾ A,
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DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 21

(c) there is an indiscernible sequence 〈āα : α < κ〉 over N of θ-tuples from M
such that Av(〈āα : α < κ〉, N ∪{āα : α < κ}) is omitted by M (equivalently,
we cannot choose āκ ∈M) and does not split over N .

Remark 2.3. We can add in (c):

(c)+ moreover we can demand that there is an ultrafilter D on N such that M
omits p = Av(D , A) where A := ∪{āα : α < κ}∪N and p(x̄) is as in Clause
(c).

{tp25.43}
Theorem 2.4. The Type Decomposition Theorem Assume cf(κ) > θ ≥ |T |,M is

κ-saturated and d̄ ∈ θ≥
C. Then for some c̄ ∈ θ

C, recalling Definition 1.11 we have {3n.1}
tp(c̄,M) ∈ S

nsp,θ
<κ (M) and (P,≤P) is a κ-directed partial order where:

(a) P = {tp(d̄, A ∪ c̄) : A ⊆M has cardinality ≤ θ},

(b) p1 ≤P p2 iff p2 ⊢ p1.

Remark 2.5. 1) In fact (P,≤P) is (Px,θ,≤x,θ) from the Definition 2.6(8) below. {tp14.21}
2) Note that being θ+-directed is obvious.
3) Would it be more transparent to use the notation p2 ⊢ p1 instead of p1 ≤P p2?
A matter of taste, the author feels that not.

{tp14.21}
Definition 2.6. 1) Let K = K1 be the family of x satisfying

(a) x = (A,B, c̄, d̄) but if A = |M |, as usual, we may write M instead of A
and if B = ∅ we may omit it,

(b) B ⊆ A,

(c) I a linear order,

(d) c̄ = 〈c̄t,n : n < nt, t ∈ I〉 where nt ≤ ω, each c̄t,n a finite8 sequence and let9

c̄t = c̄t,0ˆc̄t,1ˆ . . . ˆc̄t,nt−1,

(e) 〈c̄t,n : n < nt〉 is an indiscernible sequence over A ∪ {c̄s : s ∈ I\{t}}, so if
nt = 1 this is an empty statement,

(f) if t ∈ I then10 tp(c̄t, {c̄s : s <I t} ∪ A) does not split over B

(g) d̄ is a sequence of elements or finite sequences from C.

2) Let K0 be defined similarly omitting clause (f).
3) For λ ≥ κ, cf(λ) ≥ θ (or just λ ≥ θ), cf(κ) ≥ θ and ℓ ∈ {0, 1} let Kℓ

λ,κ,<θ =

{(M,B, c̄, d̄) ∈ Kℓ :M is λ-saturated, |B| < κ and |ℓg(d̄)|+ |ℓg(c̄)|| < θ}; omitting
ℓ means 1. If θ = σ+ instead of “< θ” we may write σ.
4)

(a) let x = (Ax, Bx, c̄x, d̄x) for x ∈ K0 (or Mx instead of Ax), I = Ix, c̄x,t =
c̄t, nt = nx,t and Cx = ∪{Rang(c̄t,n) : t ∈ I and n < nx,t},

(b) we may11 replace d̄ by Dx = Rang(d̄),

(c) we may omit κ if κ = λ.

8we remark when it matters.
9but abusing our notation, Rang(c̄) is the set of elements of C appearing in it; similarly in

other cases
10of course, this implies that clause (e) follows from a weak version, see 2.7(5) but see part {tp14.28}

(2).
11we may write Cx = Rang(c̄), c̄x,t,n = 〈cxt,n,m : m < ℓg(cx,t,n)〉 so in fact c̄x = 〈cxt,n,m :

(t,m,m) ∈ J〉 for the natural J = Jx.
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22 SAHARON SHELAH

For λ = ℵ0, let “ < λ” mean Ax is the universe ofMx ≺ C (no saturation demand).
5) We define a two-place relation ≤0 on K0 : x ≤0 y iff Ax ⊆ Ay, Bx ⊆ By, Ix ⊆
Iy, c̄x = c̄y ↾ Ix, i.e. t ∈ Ix ⇒ c̄y,t = c̄x,t moreover t ∈ Ix ⇒ ny,t = nx,t and
t ∈ Ix ∧ n < nx,t ⇒ c̄y,t,n = c̄x,t,n, d̄x E d̄y and tp(c̄x, Ay) does not split over Bx

hence “tp(c̄x, Ax) does not split over Bx” follows.
5A) x ≤1 y mean x ≤0 y and Ay = Ax.
6) We define a two-place relation ≤2 on K0 : x ≤2 y iff x ≤1 y ∧ d̄x = d̄y.
7) x ∈ K0

λ,κ,θ is called normal when Rang(c̄x) ⊆ Rang(d̄x).

8) For x ∈ K, let Px,θ = (Px,θ ≤x,θ) be defined by:

(a) Px = {tp(d̄x, A+ c̄x) : A ⊆ Ax has cardinality ≤ θ},

(b) ≤x,θ is the following two-place relation on Px,θ : p1(x̄d̄x
) ≤x,θ p2(x̄d̄x

) iff
p2 ⊢ p1.

9) If θ = |T |+ |ℓg(d̄x)|+ |ℓg(c̄x)|, i.e. we use “< θ+”, we may omit it.
{tp14.28}

Claim 2.7. 1) K1 ⊆ K0.
2) ≤i is a partial order on K0 for i = 0, 1, 2.
3) If i ∈ {0, 1, 2}, 〈xα : α < δ〉 is ≤i-increasing in K0

λ,κ,θ where δ is a limit ordinal,

[cf(δ) ≥ θ+ ⇒
∧

j<δ

c̄xj
= c̄x0 ] and

12[i ≤ 1 ∧ cf(δ) ≥ θ+ ⇒ (
∧

α<δ

d̄xα
= d̄x0)], [i =

0 ⇒ λ ≤ cf(δ)] and δ < cf(κ) ∨ (
∧

α<δ

Bxα
= Bxi

), then it has a ≤i-lub xδ :=

∪{xα : α < δ} ∈ K0
λ,κ,θ defined by Ax = ∪{Axα

: α < δ}, Bx = ∪{Bxα
: α <

δ}, Ix = ∪{Ixα
: α < δ}, c̄x = ∪{c̄xα

: α < δ}, i.e. c̄x,t = c̄xα,t when t ∈ Ixα
and

d̄x = ∪{d̄xα
: α < δ}.

3A) In part (3), if α < δ ⇒ xα ∈ K1
λ,κ,θ then xδ ∈ K1

λ,κ,θ.

4) If d̄ ∈ θ+>
C and M is κ-saturated and κ > θ then x = (M, ∅, <>, d̄)) ∈ Kℓ

κ,θ

for ℓ = 0, 1.
5) In the definition of x ∈ K1: in clause (e) it suffices to demand that: if nt > 1
then 〈c̄t,n : n < nt〉 is indiscernible over A ∪ {c̄s,m : s <I t,m < ns}.
6) For every x ∈ Kλ,κ,θ there is a normal y ∈ Kλ,κ,θ satisfying x ≤1 y, c̄x = c̄y
and Rang(d̄y) = Rang(d̄x) ∪ Rang(c̄x). Hence y ∈ mxKλ,κ,θ ⇔ x ∈ mxKλ,κ,θ, see
Definition 2.8 below.{tp25.32}
7) If i = 0 and 〈xα : α < δ〉 is ≤i-increasing in K0

λ,κ,θ and cf(δ) < θ+, δ < cf(κ),

then the sequence has a ≤i-upper bound xδ ∈ K0
λ,κ,θ, note that we have not said

“lub”.
7A) In part (7), if α < δ ⇒ xα ∈ K1

λ,κ,θ then we can add xδ ∈ K1
λ,κ,θ.

Proof. Easy e.g.
7), 7A) The problem is when part (3) does not cover it, so λ > ℵ0. It is clear how
to choose c̄xδ

, d̄xδ
and Bxδ

, but we should choose a λ-saturated Mxδ
.

Let B = ∪{Bxα
: α < δ}, I = ∪{Ixδ

: α < δ} and c̄ = 〈c̄t : t ∈ I〉 with c̄t = c̄xα,t

when α ∈ Ixα
; similarly d̄.

First, choose a λ-saturated M extending ∪{Mxα
: α < δ} but what about

“tp(c̄xα
,M) does not split over Bxα

for each α < δ”?
Now for each α < γ < δ, tp(c̄xα

,Mγ) does not split over Bxα
which means

pα,γ(x̄) = tp(c̄xα
,Mγ) does not split over Bxα

hence pα(x̄) := ∪{pα,β(x̄) : β ∈

12This follows from “〈xα : α < δ〉 is ≤i-increasing” when i = 2.
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(α, δ)} = tp(c̄xα
,
⋃

β<δ

Mβ) does not split over Bxα
. Hence for α < δ by 1.2(1) there

{3k.0.7}
is c̄′α such that tp(c̄′α,M) does not split over Bxα

and extends pα. As Mxα
⊇ Bxα

is λ-saturated and λ ≥ κ by Definition 2.6(3) clearly the model Mxβ
is κ-saturated{tp14.21}

and |Bxα
| < κ by the definition ofKi

λ,κ,θ. Recalling 1.2(1), by the last two sentences{3k.0.7}
c̄′β ↾ Ixα

realizes tp(c̄′α,M) for α < β < δ hence without loss of generality α < β <

δ ⇒ c̄′β ↾ Ixα
= c̄′α.

Hence there is an elementary mapping f mapping with domain ∪{c̄′α : α < δ} ∪
M , mapping c̄′α to c̄xα

for α < δ, and extending id∪{Mα:α<δ}. Now Mxδ
:= f(M)

will do, i.e. let My =M,By = B, c̄y = c̄, d̄y = d̄. �2.7

{tp25.32}
Definition 2.8. 1) For ℓ = 0, 1 let mxKℓ

λ,κ,<θ be the family of x ∈ Kℓ
λ,κ,<θ which

are ≤+
2 -maximal in Kℓ

λ,κ,<θ, i.e. for no y do we have x <+
2 y ∈ Kℓ

λ,κ,<θ, see below;
if ℓ = 1 we may omit it.
2) For i = 0, 1, 2 let ≤+

i be the following two-place relation on K0 : x ≤+
i y iff

x ≤i y, see Definition 2.6 and if x 6= y then for some t ∈ Iy\Ix satisfying nx,t ≥ 2 {tp14.21}
we have: C |= ϕ[d̄x, c̄t,1, b̄] ∧ ¬ϕ[d̄x, c̄t,0, b̄] for some ϕ = ϕt(x̄, ȳ, z̄) ∈ L(τT ) and
b̄ ⊆ Ax ∪

⋃
{c̄y,s : s ∈ Iy\{t}}.

3) Again, if θ = σ+ instead of “< θ”: we may write σ, and if κ = λ we may omit λ.
4) Of course, x <+

i y means x ≤+
i y ∧ x 6= y.

{tp25.31}
Observation 2.9. Let i = 0, 1, 2.
1) For ℓ = 0, 1 the two-place relation ≤+

i is a partial order on Kℓ.
2) If x1 ≤i x2 <

+
i x3 ≤i x4 then x1 <

+
i x4.

3) If x <+
i z are from Kℓ

λ,κ,<θ then there is y ∈ Kℓ
λ,κ,<θ such that x <+

2 y ≤i z

and d̄y = d̄x, Iy\Ix is finite.
4) The parallel of 2.7(3),(3A) holds for mxK. {tp14.28}
5) If κ2 ≥ κ1 ≥ θ then mxKκℓ,θ ⊆ mxKκ1,θ.

Proof. E.g.
3) Let t ∈ Iz\Ix and ϕ = ϕ(x̄, ȳ, z̄) ∈ L(τT ) and b̄ ⊆ Ax ∪

⋃
{c̄y,s : s ∈ Iy\{t}} be

such that C |= ϕ[d̄x, c̄y,t,1, b̄] ∧ ¬ϕ[d̄x, c̄y,t,0, b̄]. We choose a finite I ⊆ Iy\{t} such
that b̄ ⊆ ∪{c̄y,s : s ∈ I} ∪ Ax. Now define y by: My =Mx, Iy = Ix ∪ I ∪ {t}, c̄y =
c̄z↾Iy, d̄y = d̄x and By = Bx.

Now check. �2.9

The following claim may be good for digesting the meaning of mxKℓ
λ,κ,θ.

{tp25.30}
Claim 2.10. The L.S.T. Claim for mxK

If x ∈ mxKκ,θ and M = Mx then for some function F with domain [M ]<κ

satisfying F (A) ∈ [M ]≤2|A|+|T |

for A ∈ Dom(F ), we have: if M1 ≺ M is closed
under F and contains Bx then (M1, Bx, c̄x, d̄x) belongs to mxKℓ

κ,θ.

Remark 2.11. 1) By 2.9(4), it suffices to consider F with domain [M ]<ℵ0 . {tp25.31}
2) The LST claim for x ∈ Kκ,θ and for x ∈ Kκ,θ\mxKκ,θ are true and easier.

Proof. We can choose F (∅) ∈ [M ]1 and for notational transparency we fix a set J
of cardinality ℵ0 disjoint to Ix.

Note that for every N ≺M satisfying Bx ⊆ N we have xN := (N,Bx, c̄x, d̄x) ∈
Kℓ

κ,θ; call such N a candidate. So to choose F let us analyze the cases Bx ⊆ N ≺M
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24 SAHARON SHELAH

but xN /∈ mxKℓ
κ,θ. Considering Definition 2.8, it suffices by 2.9(3) to consider the {tp25.32}{tp25.31}

case xN <+
2 y, Iy\Ix is finite and is ⊆ J, t∗ ∈ Iy\Ix, ϕ∗(x̄, ȳ, z̄), b̄∗ as there, we can

ignore the possibility that also some other t ∈ Iy\Ix\{t∗} works.
We let b̄0 list By, Iy\Ix = {t0, . . . , tk−1}, t∗ = tℓ(∗), ℓ(∗) < k,mt > ℓg(c̄y,t,0), nt =

ny,t for t ∈ Iy. Also without loss of generality ϕ = ϕ(x̄, ȳ; z̄1, z̄2), ℓg(ȳ) = ℓg(c̄y,t∗,0), ℓg(x̄) =
ℓg(d̄x), b̄ = b̄1ˆb̄2, b̄1 ∈ ω>(My) = ω>N, ℓg(z̄1) = ℓg(b̄1) and abusing our nota-
tion, ℓg(z̄2) = ℓg(b̄2) where b̄2 = 〈c̄y,t,k : k < ny,t, t ∈ Iy〉 and b̄2,<t = 〈cy,s,k :
k < nt, s < t so t ∈ Iy〉 and b̄2, 6=t = 〈c̄y,s,k : k < ns, s ∈ Iy\{t}〉, so C |=
ϕ[d̄x, c̄y,t∗,1, b̄1, b̄2,t∗ ] ∧ ¬ϕ[d̄x, c̄y,t∗,0, b̄1, b̄2,t∗ ] and let ℓg(z̄∗t ) = ℓg(c̄y,t), ℓg(z̄t,ℓ) =
ℓg(c̄y,t,ℓ) so z̄

∗
t = z̄t,0ˆ . . . ˆz̄t,nt−1 and z̄2 = (. . . , z̄∗t , . . .)t∈Iy .

All this information will be called a witness against the candidate N and we
denote it by w.

Let s consist of the following pieces of information on the witness w and in this
case we shall say that w materializes s and s is a case for N .

⊠ (a) I = Iy and 〈tℓ : ℓ < k〉 (so we will write Is, ts,ℓ) and ℓ(∗),

(b) nt,mt for t ∈ I,

(c) ϕ = ϕ(x̄, ȳ, z̄1, z̄2) hence ℓg(b̄1) = ℓg(z̄1),

(d) ζ(0) = ℓg(b̄0) but not b̄0 itself,

(e) q0 = tp(b̄0, ∅) and q1 = tp(b̄0ˆb̄1ˆb̄2, ∅), so from q1 we know when
b2,ℓ1 = ctℓ,n,ℓ2

(f) the scheme of non-splitting of tp(c̄t,M) for t ∈ Iy from
clause (f) of 2.6(1), that is Ξt = {(ψ(z̄c̄y,t

, ȳ′), q(ȳ′, ȳb̄0)): for some{tp14.21}
b̄ ∈ ℓg(ȳ′)N we have C |= ψ[c̄y,t, b̄] and q(ȳ

′, ȳb̄0) = tp(b̄ˆb̄0, ∅)}.

We shall write I = Is, t∗ = t∗(s), ϕ = ϕs(x̄s, ȳ, z̄s,1, z̄s,2), qs,0 = q0, etc. and let
rs = tp(c̄y, N). We call s a case when it is a case for some candidate N . If s is

a case and b̄0 ∈ ζ(0)(Mx) realizes qs,0, then we can choose c̄s,b̄0 = 〈c̄x,b̄0,t : t ∈ Is〉
such that tp(c̄s,b̄0,t,∪{c̄s,b̄0,s : s <Is t} ∪ Mx) is defined by the scheme Ξt with

the parameter b̄0, this type is determined by s, b̄0 and x (though not the c̄s,b̄0,t’s
themselves). Without loss of generality t ∈ Ix ⇒ c̄s,b̄0,t = c̄x,t.

Now clearly

(∗)1 for a candidate N we have xN ∈ mxKκ,θ iff for every case s and b̄0 ∈ ζ(0)N

realizing qs,0 there is no b̄1 ∈ ℓg(ȳ)N such that s1, b̄0, b̄1, b̄2 = c̄s,b̄0 are as
above.

So

(∗)2 for every case s and b̄0 ∈ ζ(0)(Mx) realizing qs,0 and b̄1 ∈ ℓg(z̄s,1)M , we can-
not choose c̄′, c̄′′ realizing tp(c̄s,b̄0 ,Mx) such that c̄′↾Ix = c̄x = c̄′′↾Ix and

C |= ϕs[dx, c̄
′
t∗(s)

, b̄1, c̄
′↾(Is\{t∗(s)})] ∧ ¬ϕs[dx, c̄

′′
t∗(s)

, b̄1, c̄
′↾(Ix\{t∗(s)})].

[Why? As then x /∈ mxKκ,θ.]
Hence

(∗)3 for every case s and b̄0 ∈ ζ(0)(Mx) realizing qs,0 and b̄1 ∈ ℓg(z̄s,1)(Mx) there
is a finite set C = Cs(b̄0, b̄1) ⊆ Mx such that: if N is a candidate which
includes b̄0, b̄1, C then there is no witness w against N with s = sw, b̄0 =
b̄w,0, b̄1 = b̄w,1.
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Also (1.2(4)){3k.0.7}

(∗)4 for B ⊆ M of cardinality < κ let C(B) be a subset of M of cardinality
≤ 2|B|+|T | in which every p ∈ S<ω(B) is realized.

Lastly, let F be defined for B ∈ [M ]<κ, F (B) = ∪{Cs(b̄0, b̄1) : s a case and b̄0, b̄1
suitable sequences from B} ∪ C(B).

Now the number of cases is ≤ ℵ0 + ℵ0 + ℵ0 + |T | + θ + 2|T |+|B| = 2|T |+|B|, so
F (B) ∈ [M ]≤θ. So we are done. �2.10

{tp25.33}
Theorem 2.12. The Existence Theorem If ℓ = 0, 1 and cf(κ) > θ ≥ |T | and
x ∈ Kℓ

λ,κ,θ then there is y such that x ≤2 y ∈ mxKℓ
λ,κ,θ.

{tp25.34}
Remark 2.13. 1) If we use Kℓ

λ,κ,<θ instead of “θ ≥ |T |” we should demand “cf(θ) >

|T |”.
2) We may get more. E.g. demand I1 = Ix, I2 is well ordered and Iy = I1∪I2, I1 <
I2, i.e. s1 ∈ I1 ∧ s2 ∈ I2 ⇒ s1 <I s2.
2A) Also this claim holds (by the same proof) when we replace clause (f) in Defi-
nition 2.6(1) by {tp14.21}

(f)2 tp(c̄x, Ax) is finitely satisfiable in Bx.

Then in part (2) of the remark we may add

(∗) for t ∈ I2, tp(c̄t,Mx ∪ {c̄y,s : s <Iy t}) is finitely satisfiable in By.

See more in 2.33, 2.34 and 2.35. {tp.77}{tp.84}{tp.98}
2B) In this case we may say “Clause (f)1, of 2.6(1)” instead of Clause (f). {tp14.21}
3) We can be more relaxed in the demands on 〈xα : α < θ+〉 in the proof e.g. it
suffices to demand

⊛′ (a) xα ∈ K0
λ,κ,θ,

(b) xα is ≤1-increasing continuous, natural to demand “≤2-increasing”,
that is, d̄xα

= d̄x0 but not necessary,

(c) for each α < θ+ (or just for stationarily many α < θ+) we have
xα <

+
1 xα+1.

[Why? Let d̄x1↾uα (uα finite) tα, ϕα(x̄α, ȳα, b̄α) witness xα <
+
1 xα+1 when α ∈ S0

where S0 := {α < θ+ : xα <+
1 xα+1}. For α ∈ S0 let h(α) = Min{γ : d̄xα

↾uα =
d̄xγ

↾uα, equivalently uα ⊆ Dom(d̄xγ
) and Rang(b̄α) ∩ (Axα

+ c̄xα
) ⊆ Axγ

+ c̄xγ
},

clearly h(α) < α for α limit ∈ S0.
So by Fodor’s Lemma for some β < α and u the set S = {δ ∈ S0 : δ is a limit

ordinal as in clause (c) above uδ = u and h(δ) = β} is stationary. As θ ≥ |T |, for
some13 formula ϕ the set S2 := {δ ∈ S1 : ϕδ = ϕ} is a stationary subset of θ+ and
we continue as in the proof.
4) How does part (3) of the remark help? E.g. if we like to get y ∈ mxKℓ

λ,κ,θ

which is normal and Rang(d̄y) is the universe of some N ≺ C.

Proof. Assume this fails. We try to choose xα by induction on α < θ+ such that

13if c̄tα,n is infinite we let uα ⊆ ℓg(c̄xα
tα,0

) be finite such that C |= ϕα[d̄x, c̄
xα+1
tα,0

↾ uα, b̄α] ∧

¬ϕα[d̄xα , c̄
xα+1
tα,1 , b̄α] and the rest is the same.
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26 SAHARON SHELAH

⊛ (a) xα ∈ Kℓ
λ,κ,θ,

(b) xβ ≤2 xα for β < α,

(c) if α = β + 1 then xβ <
+
2 xα, i.e. xα witness xβ /∈ mxKℓ

λ,κ,θ

(i.e. is like y in Definition 2.8);{tp25.32}

(d) x0 = x.

For α = 0 use clause (d), for α = β+1 we use our assumption toward contradiction.
For α limit use 2.7(3). Note that d̄xα

= d̄x for α < θ+ by clauses (d) + (b).{tp14.28}
Having carried the induction, for each α < θ+ there are tα, ϕα(x̄, ȳα, z̄α), b̄α

satisfying:

(∗)1α (a) tα ∈ Ixα+1\Ixα

(b) ϕα(x̄, ȳα, z̄α) ∈ L(τT )

(c) b̄α ⊆Mxα
∪
⋃
{c̄xα+1,s : s ∈ Ixα+1\{tα}}

(d) ℓg(b̄α) = ℓg(z̄α) and ℓg(ȳα) = ℓg(c̄xα+1,tα,0)

(e) C |= “¬ϕα[d̄x, c̄xα+1,tα,0, b̄α] ∧ ϕα[d̄x, c̄xα+1,tα,1, b̄α]” so

ℓg(x̄) = ℓg(d̄x) and ntα ≥ 2.

Clearly the sequence 〈tα : α < θ+〉 is without repetitions. Now let Jα ⊆ Ixα+1\{tα}
be finite such that b̄α ⊆Mxα

∪
⋃
{c̄xα+1,s : s ∈ Jα}. We can find a pair (ϕ(x̄, ȳ, z̄), n∗,m∗)

such that the set S0 = {δ < θ+ : |Jδ| ≤ n∗ and ϕδ(x̄, ȳ0, z̄0) = ϕ(x̄, ȳ, z̄)} is infinite
(even stationary). By Ramsey’s theorem (or Fodor’s Lemma) we can find an infinite
(and even stationary) set S1 ⊆ S0 ⊆ θ+ such that δ ∈ S1 ⇒ Jδ ∩ {tβ : β ∈ S1} = ∅.
Note that there are ≤ θ possibilities for ϕ, not necessarily ≤ |T | because though
ϕα(x̄, ȳα, z̄α) depend only on x̄ ↾ u for some finite u ⊆ ℓg(x̄) there are ≤ ℓg(d̄x)+ℵ0

possibilities for u.
Next we shall prove that in this case ϕ(x̄; ȳ, z̄) has the independence property

(for T ), a contradiction.
For every w, v ⊆ S1 and η ∈ w2 let, noting that w = Dom(η):

(∗)2 (a) Aη,v = Ax ∪ {c̄xβ+1,t,n : t ∈ Jβ and n < nxβ+1,t for some β ∈ v}∪
{c̄xα+1,tα,η(α) : α ∈ w},

(b) fη,v is the function with:

(α) domain Aη,v,

(β) is the identity on Ax ∪ {c̄xβ+1,t,n : t ∈ Jβ and
n < nxβ+1,t for some β ∈ v},

(γ) fη,v(c̄xα+1,tα,η(α)) = c̄xα+1,tα,0 for α ∈ w = Dom(η).

Now

(∗)3 fη,v is an elementary mapping.

[Why? Without loss of generality w ⊆ v are finite so ⊆ α(∗) for some α(∗) < θ+

and prove this by induction on |v|. We just use: for α ∈ v the sequence 〈c̄xd(∗),t,n :

n < nxα(∗),t〉 is indiscernible over Axα(∗)
∪ {c̄xα(∗),s : s ∈ Ixα(∗)

\{t}}, by Definition{tp14.21}
2.6(1), Clause (e).]

Now let gη,v ∈ aut(C) extends fη,v. So α ∈ v ⇒ gη,v(b̄α) = fη(b̄α) = b̄α and
gη,ν(c̄xα+1,tα,η(α)) = c̄xα+1,tα,0 for α ∈ w; hence by the choice of Jα so for η ∈ w2
we have
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(∗)4 C |= ϕ[gη,v(d̄x), c̄xα+1,tα,0, b̄α] iff η(α) = 1.

So 〈ϕ(x̄, c̄xα+1,tα,0, b̄α) : t ∈ u〉 is an independent sequence of formulas, see 0.4(a); {0n.17}
as w is any subset of S1 we get a contradiction as promised. �2.12

{tp25.36}
Claim 2.14. The Weak Orthogonality Claim

Assume ℓ = 0, 1 and x ∈ mxKℓ
λ,κ,θ.

1) If m < ω,B′ ⊆Mx and14 |B′| < κ and q ∈ Sm(Mx ∪Cx) does not split over B′

then tp(d̄x,Mx ∪Cx) is weakly orthogonal to q.
1A) Above it suffices15 that q = tp(c̄1ˆc̄2,Mx∪Cx) and tp(c̄1,Mx) does not split over
some B′ ∈ [M ]<κ, tp(Cx,Mx+ c̄1) does not split over Bx and tp(c̄2,Mx+ c̄1+Cx)
does not split over some B′′′ ∈ [Mx]

<κ.

2) If xα ∈ mxKℓ
λ,κ,θ for α < δ is ≤1-increasing, δ < θ+ and xδ := ∪{xα : α < δ}

belongs to Kℓ
λ,κ,θ (recall 2.7(3)) then it also belongs to mxKℓ

λ,κ,θ. {tp14.28}

Proof. 1) Assume toward contradiction that those types are not weakly orthogonal.
Let q = q(ȳ), ȳ = 〈yk : k < m〉 and let x̄ = 〈xα : α < αx〉 recalling αx = ℓg(d̄x) and
p(x̄) = tp(d̄x,Mx∪Cx). So for some formula ϕ(x̄, ȳ, z̄) and ē ∈ ℓg(z̄)(Mx∪Cx) the
type p(x̄)∪ q(ȳ) does not decide ϕ(x̄, ȳ, ē), i.e. rt(x̄, ȳ) = p(x̄)∪ q(ȳ)∪ {ϕ(x̄, ȳ, ē)t}
is consistent (= finitely satisfiable in C) for t = 0, 1 and let c̄′0, c̄

′
1 be such that d̄ˆc̄′t

realizes rt(x̄, ȳ) for t = 0, 1. Now it cannot be that tp(c̄′t,Mx ∪ Cx ∪ d̄x) does not
split over B′ for both t = 0, 1 (by 1.2(1), as every p ∈ S<ω(B′) is realized in M {3k.0.7}
recalling M is κ-saturated and κ > |B′|). So choose c̄0 ∈ {c̄′0, c̄

′
1} such that the

type tp(c̄0,Mx ∪ Cx ∪ d̄) splits over B′.
Now by 1.2(1) there is c̄1 ∈ m

C such that tp(c̄1,Mx ∪Cx ∪ d̄x ∪ c̄0) extends q(ȳ) {3k.0.7}
and does not split over B′. Hence also tp(c̄1,Mx ∪ Cx ∪ d̄x) does not split over
B′, hence it is different from tp(c̄0,Mx ∪ Cx ∪ d̄x). We can continue and choose
c̄n (n = 2, 3 . . .) realizing the complete type over Mx ∪ Cx ∪ d̄x ∪

⋃
{c̄k : k < n}

which extends q and does not split over B′. Hence

(∗)0 for every n < ω, tp(c̄n,Mx ∪Cx ∪
⋃
{c̄k : k < n}) extend q(ȳ) and does not

split over B′.

So by 1.2(2) {3k.0.7}

(∗)1 〈c̄n : n < ω〉 is an indiscernible sequence over Mx ∪ Cx.

Also (by induction on γ ≤ ω) by 1.2(3) we have: {3k.0.7}

(∗)2 if t ∈ Ix then 〈c̄x,t,n : n < nt〉 is an indiscernible sequence overMx∪{c̄x,s,m :
s ∈ I\{t}} ∪ {c̄n : n < γ}.

Now we define y = (My, By, c̄y, d̄y) by

⊛ (a) My =Mx,

(b) By = Bx ∪B′,

(c) d̄y = d̄x,

(d) Iy = Ix ∪ {s(∗)} were [t ∈ Ix ⇒ t <Iy s(∗)],

(e) c̄y ↾ Ix = c̄x,

14this is just to ensure that M realizes every q ∈ S<ω(B′).
15even more as we can increase the linear order Ix.
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(f) ny,s(∗) = ω (or any number ∈ [2, ω]) and c̄y,s(∗),n = c̄n for n < ny,s(∗).

Now y contradicts the assumption x ∈ mxKℓ
λ,κ,θ.

1A) Similarly (recalling that we can use {s1}+ Ix).
2) Easy. �2.14

The following claim is a crucial step toward proving the Type Decomposition
Theorem 2.4.{tp25.43}{tp25.38}

Claim 2.15. If x ∈ mxKℓ
λ,κ,θ (or just x ∈ K and ⊛ below) then for every A ⊆Mx

of cardinality < κ and ϕ = ϕ(x̄, ȳ, z̄) ∈ L(τT ) satisfying ℓg(x̄) = ℓg(d̄x), ℓg(z̄) =
ℓg(c̄x), ℓg(ȳ) = m, there is ψ(x̄, ē, c̄x) ∈ tp(d̄x,Mx ∪ Cx) satisfying ē ∈ ω>Mx

such that ψ(x̄, ē, c̄x) ⊢ {ϕ(x̄, b̄, c̄x)t : b̄ ∈ ℓg(ȳ)A and t ∈ {0, 1} are such that C |=
ϕ[d̄x, b̄, c̄x]

t} where

⊛ if q(ȳ) ∈ Sℓg(ȳ)(Mx∪c̄x) is finitely satisfiable in some A ⊆Mx of cardinality
< κ then q(ȳ) is weakly orthogonal to tp(d̄x,Mx ∪Cx).

Proof. By 2.14, if x ∈ mxKλ,κ,θ then ⊛ holds; hence we can in any case assume ⊛.{tp25.36}
Let p(x̄) = tp(d̄x,M ∪ Cx), so x̄ = 〈xi : i < ℓg(d̄x)〉 and recalling ȳ = 〈yℓ : ℓ <

m〉 we define a set r = r(ȳ) as follows:

r(ȳ) := {(∃x̄)(ϕ(x̄, ȳ, c̄x)t ∧ ψ(x̄, ā, c̄x)) : t ∈ {0, 1} and
ψ(x̄, ā, c̄x) ∈ p(x̄) and ā ∈ ω>(Mx)}.

Now

⊙1 r(ȳ) is not finitely satisfiable in mA.

[Why? If r(ȳ) is finitely satisfiable in mA, then there is an ultrafilter D on mA
such that for every ϑ(ȳ, ā, c̄x) ∈ r(ȳ), the set {b̄ : b̄ ∈ mA and |= ϑ[b̄, ā, c̄x]}
belongs to D . Let q(ȳ) = Av(D ,Mx ∪ c̄x), clearly q(ȳ) ∈ Sm(Mx ∪ c̄x) is finitely
satisfiable in mA,A ⊆ M and |A| < κ. Let b̄∗ ∈ m

C realize q(ȳ), so (ψ(x̄, ā, c̄x) ∈
p(x̄)) ∧ t ∈ {0, 1} ⇒ C |= (∃x̄)(ϕ(x̄, b̄∗, c̄x)t ∧ ψ(x̄, ā, c̄x)). Why? This holds by
the choices of r(ȳ),D and b̄∗. As p(x̄) is closed under conjunctions it follows that
p(x̄)∪{ϕ(x̄, b̄∗, c̄x)t} is finitely satisfiable in C for t = 0, 1. But this contradicts the
assumption ⊛.]

Hence for some n < ω and ψℓ(x̄, āℓ, c̄x) ∈ p(x̄) for ℓ < n we have

⊙2 for no b̄ ∈ mA do we have (∃x̄)(ϕ(x̄, b̄, c̄x)
t ∧ ψℓ(x̄, āℓ, c̄x)) for ℓ < n, t ∈

{0, 1}.

Let ψ(x̄, ā, c̄x) =
∧

ℓ<n

ψℓ(x̄, āℓ, c̄x), so clearly

⊙3 (a) ā ∈ ω>(Mx),

(b) ψ(x̄, ā, c̄x) ∈ p(x̄),

(c) for no b̄ ∈ mA do we have
1∧

t=0
(∃x̄)(ϕ(x̄, b̄, c̄x)t ∧ ψ(x̄, ā, c̄x)).

So for every b̄ ∈ mA for some t = t(b̄) ∈ {0, 1} we have C |= ¬(∃x̄)(ϕ(x̄, b̄, c̄x)t ∧

ψ(x̄, ā, c̄x)) hence ψ(x̄, ā, c̄x) ⊢ ¬ϕ(x̄, b̄, c̄x)t(b̄). As ψ(x̄, ā, c̄x) ∈ p(x̄) = tp(d̄x,Mx∪

cx) it follows that ¬ϕ(x̄, b̄, c̄x)t(b̄) ∈ p(x̄).
So ψ(x̄, ā, c̄x) is as required. �2.15
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{tp14.42}
Claim 2.16. Assume x ∈ mxKℓ

λ,κ,θ. If B′ ⊆ Mx, |B′| < κ, d̄ ∈ m(Dx), c̄ ∈
ω>(Cx), ϕ = ϕ(x̄, ȳ, z̄), ℓg(x̄) = ℓg(d̄), ℓg(z̄) = ℓg(c̄) then for some ψ(x̄, ȳ′, z̄′) and

ē ∈ ℓg(ȳ′)(Mx) we have |= ψ[d̄, ē, c̄] and

ψ(x̄, ē, c̄) ⊢ {ϕ(x̄, b̄, c̄)t : b̄ ∈ ℓg(ȳ)(B′) and C |= ϕ[d̄, b̄, c̄]t and t ∈ {0, 1}}.

Proof. This just reformulates 2.15; see more in 2.20(0). �2.16 {tp25.38}{tp26.7}

Now at last

Proof. Proof of 2.4, The Type Decomposition Theorem

By 2.7(4) there is x ∈ K1
κ,≤θ such that dx = d̄ and Mx =M . By the Existence {tp14.28}

Theorem 2.12 without loss of generality x ∈ mxK1
κ,≤θ. Clearly (Px,θ,≤x,θ) is {tp25.33}

a partial order. Assume that α(∗) < κ and pα ∈ Px,θ for α < α(∗). Let B =⋃
{Dom(pα) : α < α(∗)} ∪ Bx, so B ⊆ Mx has cardinality < κ. Hence by {tp14.42}

2.16 for every v ⊆ ℓg(c̄x) and ϕ = ϕ(x̄, ȳ, z̄) satisfying ℓg(z̄) = ℓg(c̄x), ℓg(x̄) =
ℓg(d̄x), ℓg(ȳ) < ω there is ψ = ψϕ(x̄, ēϕ, c̄x) ∈ tp(d̄x,M∪c̄x) where ēϕ ∈ ℓg(ȳ)(Mx)

such that ψϕ(x̄, ēϕ, c̄x) ⊢ {ϕ(x̄, b̄, c̄x)
t : b̄ ∈ ℓg(ȳ)B and C |= ϕ[d̄x, b̄, c̄x]

t and
t ∈ {0, 1}}.

Let A = ∪{Rang(ēϕ) : ϕ as above}, clearly |A| ≤ θ and let p = tp(d̄x, A ∪ c̄x);
it is an upper bound, as required. �2.4

{tp14.44}
Discussion 2.17. The type decomposition theorems say that we can analyze a type
p ∈ S(M) in two steps; first tp(c̄,M) does not split over some “small” B ⊆ M .
Second, tp(d̄, c̄ +M) is like a type in the theory of trees and lastly without loss
of generality by 2.7(6) some initial segment of d̄ realizes p. As an example, see {tp14.28}
[Sh:877]:

{tp14.45}
Exercise 2.18. Let T = Tord be Th(Q, <) and if M ≺ CT ,M is κ-saturated, in
the main case and p ∈ S(M) then

(a) p induces a cut C̄p of M where C̄p = 〈Cp,1, Cp,2〉, Cp,1 = {a ∈ M : (a <
x) ∈ p} and Cp,2 =M\Cp,1,

(b) now C̄p has a pair (κ1, κ2) of cofinalities, that is κ1 = cf(Cp,1, <M ), κ2 =
cf(Cp,2, >M ), as M is κ-saturated necessarily max{κ1, κ2} ≥ κ,

(c) now p does not split over some subset B of M of cardinality ≤ λ < κ iff
min{κ1, κ2} ≤ λ,

(d) for every B ⊆ M of cardinality < min{κ1, κ2} for some ϕ(x, ā) ∈ p we
have ϕ(x, ā) ⊢ p ↾ B (i.e. p under ⊢ is min{κ1, κ2}-directed); in fact we can
add that for some a1 ∈ Cp,1 and a2 ∈ Cp,2 we have ϕ(x, ā) = a1 < x < a2,

(e) so for κ = min{κ1, κ2} we have a decomposition which is trivial in some
sense: either we have c̄ =<> or we have d̄ = c̄,

(f) if e.g. B1 is an unbounded subset of Cp,1 of cardinality κ1 and c, d realize
in C (where M ≺ C) the type p and C |= c < d, then tp(c,M ∪ {d}) is
finitely satisfiable in B1 and for every A ⊆M of cardinality < κ2 for some
formula ϕ(x, ā) ∈ p we have ϕ(x, ā) ∧ (c < x) ⊢ tp(d,A ∪ {c}).

{tp14.46}
Discussion 2.19. Note: if T is stable and x ∈ mxKκ,θ is normal then d̄x ⊆
dcl(Rang(c̄x)) recalling dcl(A) = {b : b is definable over A, equivalently tp(c, A) =
tp(b, A) ⇒ c = b}.
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{tp26.7}
Claim 2.20. 0) In 2.16 if cf(κ) > θ+ |T | then we can choose ψ = ψ(x̄, ȳ′, z̄′) such{tp14.42}
that it depends on x, d̄, ϕ(x̄, ȳ, z̄) but not on B′.
0A) In 2.16 if cf(κ) > 2θ+|T | then we can fix also q = tp(ē, Cx ∪ d̄x). If cf(κ) >{tp14.42}
2θ+|T |+|Bx| then moreover we can fix q = tp(ē, Bx ∪ cx ∪ d̄x).
1) Assume that x ∈ K0 and ϕ = ϕ(x̄, ȳ, z̄) ∈ L(τT ) are such that ȳ, z̄ are finite and
ℓg(x̄) = ℓg(d̄x).

Then the following set is finite: J = Jx,ϕ = {t ∈ Ix: there are ᾱ = 〈αℓ : ℓ <

ℓg(ȳ)〉 and a sequence b̄ ∈ ℓg(ȳ)(Ax ∪ {c̄x,s : s ∈ Ix\{t}}) such that ℓ < ℓg(ȳ) ⇒
αℓ < ℓg(c̄x,t,0) and C |= ϕ[d̄x, 〈(c̄x,t,0)αℓ

: ℓ < ℓg(ȳ)〉, b̄] ∧ ¬ϕ[d̄x, 〈(c̄x,t,1)αℓ
: ℓ <

ℓg(ȳ)〉, b̄)]}.
2) Moreover, there is a bound on |J | depends just on ϕ and T .
3) For any x ∈ K<ℵ0,<ℵ0 and ϕ there is y satisfying x ≤2 y ∈ K<ℵ0,<ℵ0 such that
Iy\Ix is finite and the local version of maximality holds, i.e.

y ≤2 z ∈ K<ℵ0,<ℵ0 ⇒ Jz,ϕ = Jy,ϕ.

4) For any x ∈ K<ℵ0,<ℵ0 and sequence 〈ϕn : n < ω〉 we can find 〈xn : n < ω〉

such that x0 = x,xn ≤2 xn+1 ∈ K<ℵ0,<ℵ0 , Ixn
\Ix finite and xn+1, ϕn satisfies the

demands on y, ϕ above for every n.

Proof. 0) As there are ≤ θ+|T | < cf(κ) possible choices of ψ and the set of possible
B’s is (cf(κ))-directed.
0A) Similarly.
1),2) Let n1 be minimal such that: these are b̄ℓ ∈ ℓg(ȳ)

C, c̄ℓ ∈ ℓg(z̄)
C for ℓ < n1 such

that 〈ϕ(x̄, b̄ℓ, c̄ℓ) : ℓ < n1〉 an independent sequence of formulas; note that n1 exists
as T is a dependent theory. Let n2 be minimal such that if ui ∈ [n2\{i}]ℓg(z̄) for
i < n2 then for some v ∈ [n2]

n1 we have i, j ∈ v ⇒ i /∈ uj (the ∆-system lemma for
finite sets, see 0.5). Now n2 is a bound as required by the proof of 2.12.{0n.19}{tp25.33}
3),4) Follows. �2.20

{tp26.9}
Conclusion 2.21. If x ∈ mxKℓ

λ,κ,θ and cf(κ) > θ + |T | then we can find ē ∈
θ
C and 〈ψϕ(x̄,ȳ,z̄)(x̄, ē, c̄x) : ϕ(x̄, ȳ, z̄) ∈ L(τT )〉 satisfying ℓg(x̄) = ℓg(d̄x), ℓg(z̄) =

c̄x, ℓg(ȳ) = θ such that: for each ϕ(x̄, ȳ, z̄) with ℓg(x̄) = ℓg(d̄x), ℓg(ȳ) = θ, ℓg(z̄) =
c̄x (but ϕ depends just on finitely many variables) we have:

• ψϕ(x̄,ȳ,z̄)(x̄, ē, c̄x) ∈ tp(d̄x, ē ∪ c̄x),

• ψϕ(x̄,ȳ,z̄)(x̄, ē, c̄x) ⊢ {ϕ(x̄, b̄, c̄x)
t : b̄ ∈ ℓg(ȳ)M and t ∈ {0, 1} such that

C |= ϕ[d̄x, b̄, c̄x]
t}

• tp(ē,Mx ∪ c̄x ∪ d̄x) is finitely satisfiable in Mx.

Proof. By 2.15 and 2.20 and compactness (i.e. saturation of C). �2.21{tp25.38}{tp26.7}

On strongly/strongly2 dependent theories see [Sh:863].
{tp26.14}

Remark 2.22. 1) If T is strongly dependent then in the previous claim 2.20(1),{tp26.7}
if x satisfies t ∈ Ix ⇒ nt = ω then for each n < ω even the set Jx = ∪{Jx,ϕ :
ϕ(x̄, ȳ, z̄) ∈ L(τT ) as there and ℓg(z̄) < n} is finite.
2) If T is strongly dependent2 then above we can allow n = ω.
3) The proofs are similar.
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∗ ∗ ∗

We now turn to exact saturation. We first prove Theorem 2.2, second we prove in{tp16.14}{tp16.15}
2.23 that some independent T ’s satisfies it, even give a sufficient criterion. Third,
we give a sufficient condition for T to satisfy the theorem - in 2.26 - the existence{tp16.17}
of a stable indiscernible set (2.24).{tp16.16}

Proof. Proof of 2.2, The Singular Exact Saturation Lemma

Let θ = |T |. As M is not κ+-saturated, there are A ⊆ M of cardinality ≤ κ
and p ∈ S1(A) omitted by M . Let d ∈ C realize p. By Theorem 2.4, there is {tp25.43}
c̄ ∈ θ≥

C as there for 〈d〉, so in particular such that tp(c̄,M) does not split over
some N ≺ M of cardinality < κ. Let 〈Bi : i < cf(κ)〉 be a ⊆-increasing sequence
of sets with union N ∪ A such that i < cf(κ) ⇒ |Bi| < κ and N ⊆ B0. Now we
choose Ai ⊆ M by induction on i < cf(κ) such that Ai is of cardinality ≤ θ and
tp(d,Ai ∪ c̄) ⊢ tp(d,B+

i ) where B+
i := Bi ∪

⋃
{Aj : j < i}.

The choice is possible as |B+
i | < κ by 2.4, i.e. by the choice of c̄. Next we can {tp25.43}

find Aκ ⊆M of cardinality ≤ θ such that tp(d,Aκ ∪ c̄) ⊢ tp(d,
⋃

i<κ

Ai), possible as

|
⋃

i< cf(κ)

Ai| ≤ θ + cf(κ) < κ. Let B+ = ∪{B+
i : i < cf(κ)} ∪ Aκ so |B+| = κ and

we ask the question:

⊙ is there an elementary mapping f (or automorphism of C) such that f ↾ B+

is the identity and f(c̄) ∈ θM?

If yes, then let d′ ∈ M realize f(tp(d,Aκ ∪ c̄)) ∈ S(Aκ ∪ f(c̄)) hence there is an
elementary mapping g satisfying g↾Aκ = idAκ

= f↾Aκ, g(c̄) = f(c̄) and g(d) = d′.
Hence easily for each i < cf(κ) the sequence 〈d′〉ˆf(c̄) realizes f(tp(〈d〉ˆc̄, Ai))
hence it realizes also f(tp(〈d〉ˆc̄, B+

i ))); so d′ realizes f(tp(d,B+
i )). But as B+

i

increases with i it realizes f(tp(d,∪{B+
i : i < cf(κ)}), but A ⊆ ∪{Bi : i <

cf(κ)} ⊆ ∪{B+
i : i < κ} hence d′ realizes tp(d,A), but d′ ∈ M contradicting the

choice of p,A, d.
So the answer to the question is no, which gives clauses (a),(b) of the desired

conclusion. Let B∗
i = B+

i ∪ Aκ hence 〈B∗
i : i < cf(κ)〉 is ⊆-increasing with union

B+ and |Bi| < κ for i < cf(κ).
As for clause (c), we choose c̄ε by induction on ε < κ such that:

(∗) (a) c̄ε ∈ θM ,

(b) c̄ε realizes tp(c̄,∪{c̄ζ : ζ < ε} ∪N),

(c) for even ε, if possible c̄ε does not realize tp(c̄, N ∪B+) hence for some
α = αε < cf(κ), c̄ε does not realize tp(c̄, B∗

α),

(d) for even ε, if αε is well defined, it is minimal,

(e) for odd ε, αε = αε−1 and c̄ε realizes tp(c̄, B∗
α) or even

tp(c̄,∪{c̄ζ : ζ < ε} ∪N ∪B∗
αε
).

There is no problem in carrying the induction, by 1.2(2) the sequence 〈c̄ε : ε < κ〉 {3k.0.7}
is indiscernible over N . Also obviously the sequence 〈αε : ε < κ〉 is non-decreasing;
if some αε is not well defined or α∗ := ∪{αε : ε < κ} is equal to cf(κ) we are
done; that is letting c̄κ from θM be such that 〈c̄ε : ε ≤ κ〉 is an indiscernible
sequence over N , necessarily c̄κ realizes tp(c̄, N ∪B∗

i ) for each i < κ hence realizes
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32 SAHARON SHELAH

tp(c̄, B+) contradiction to “⊙ fails”. But the non-existence of c̄κ and the properties
of 〈c̄i : i < κ〉 are as promised in clause (c) of the Lemma, so we are indeed done.

So assume α∗ < cf(κ), so for each ε < κ there is a formula ϕε(x̄, ēε) ∈ tp(c̄, B∗
α2ε

) ⊆
tp(c̄, B∗

α∗
) with ℓg(x̄) = ℓg(c̄) such that C |= ¬ϕε[c̄, ēε], but by clause (e) of (∗)

necessarily C |= ϕε[c̄2ε+1, ēε]. As κ > |B∗
α∗
|+ |T | for some formula ϕ(x̄, ē) we have

{ε < κ : ϕε(x̄, ēε) = ϕ(x̄, ēε)} is infinite. But this contradicts T being dependent,
so we are done proving Clause (c).

Clause (c)+, that is “moreover, there is an ultrafilter D on N” follows when we
use the version of mxK from 2.13(2A) or 2.33 - 2.35 below. �2.2{tp25.34}{tp.77}{tp.98}

We may have hoped that 2.2 characterize being dependent, but this is not{tp16.14}
so. Clarification when this property (characterization of exactly κ-saturated κ >
cf(κ) > |T |, as in 2.2) holds is given by:{tp16.14}

{tp16.15}
Example 2.23. 0) The theory Trg of random graphs is unstable and easily for
every κ it has a κ-saturated not κ+-saturated model.
1) There is an independent T such that: if T has an exactly κ-saturated model
then κ is regular. In fact, this is a sufficient condition.
2) The same holds for exactly κ-compact, κ > ℵ0.

Proof. We use T which satisfies “The Chang Trick” from his proof of his two car-
dinal theorem (ℵ1,ℵ0) → (λ+, λ) when λ = λ<λ; the use is not an incident, he uses
such T to overcome a related problem in his proof.

The condition is:

⊛ for some predicate R(x, y) ∈ τT written xRy (or just a formula ϕ∗(x, y) ∈
L(τT )) we have16:
(a) the empty set can be coded, that is ∃y∀x(¬xRy),

(b) we can add to a coded set one element, that is (∀x, y)(∃y1)(∀x1)[x1Ry1 ≡
(x1Ry ∨ x1 = x)].

Note: for any model M , if R /∈ τM ,M an infinite model, let 〈ub : b ∈ M〉 list the

finite subsets of M , and we expand M to M+ by choosing Rµ+

= {(a, b) : a ∈ ub
and b ∈M}, then Th(M+) is as required.

So assume κ = Σ{κi : i < cf(κ)}, κi < κj < κ for i < j < cf(κ), cf(κ) < κ and
M is κ-saturated. Let A ⊆ M, |A| = κ and p ∈ S(A,M). Let A = ∪{Ai : i <
cf(κ)}, |Ai| ≤ κi, Ai increasing with i. Let ci realize p ↾ Ai.
By induction on i, we choose bi ∈M which realizes the type

pi(y) = {cjRy : j < cf(κ) and j ≥ i} ∪{(∀x)(xRy → xRbj) : j < i}
∪{(∀x)(xRy → ϕ(x, ā)) : ϕ(x̄, ā) ∈ p ↾ Ai}.

Arriving to the i-th stage by ⊛ and the induction hypothesis on i, pi(y) is finitely

satisfiable in M .
[Why? Let p′(y) ⊆ pi(y) be finite so it has the form {cjRy : j ∈ u}∪ {(∀x)(xRy →
xRbj) : j ∈ v} ∪ {(∀x)(xRy → ϕℓ(x, āℓ)) : ℓ < n} where u ⊆ [i, cf(κ)) is finite,

16instead (a)+(b) we can have
(a)′ (∀x0, . . . , xn−1)(∀z)(zRy =

∨

ℓ<n

z = xℓ) for every n.
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v ⊆ i is finite and ϕℓ(x̄, āℓ) ∈ p↾Ai for ℓ < n. By ⊛ we can find c ∈ M such that
M |= (∀x)(xRc ≡ (

∨

j∈v

x = cj), thus c realizes p
′(y))].

But |pi| < κ so we can choose bi.
Now {xRbi : i < cf(κ)} is a set of formulas finitely satisfiable inM of cardinality

< κ and any element realizing it realizes p. �2.23

A weak complement to 2.4 is 2.26 but first recall: {tp25.43}{tp16.17}
{tp16.16}

Definition 2.24. [T not necessarily dependent].
1) I ⊆ α

C is a stable indiscernible set when : I is an infinite indiscernible set
and for any n and ϕ = ϕ(x̄0, . . . , xn−1, ȳ) with ℓg(x̄ℓ) = α and b̄ ∈ ℓg(ȳ)

C there
are a finite J ⊆ I and truth value t such that: if ā0, . . . , ān−1 ∈ I\J with no
repetitions then C |= ϕ[ā0, . . . , c̄n−1, b̄]

if(t); (hence Av(I,C) is well defined, i.e. for
any ϕ(x̄, ȳ), ℓg(x̄) = α and b̄ ∈ ℓg(ȳ)

C either ϕ(I, b̄) or ¬ϕ(I, b̄) is finite).
2) I is a dependent indiscernible sequence when : I is a linear order and I = 〈āt :
t ∈ I〉 is an indiscernible sequence and for every formula ϕ with ℓg(x̄ℓ) = α, ϕ =
ϕ(x̄0, . . . , x̄n−1, ȳ) there is k = kϕ such that

• for any b̄ ∈ ℓg(ȳ)
C there is a convex equivalent relation E on I with ≤

kϕ many equivalence classes such that if t0, . . . , tn−1, s0, . . . , sn−1 ∈ I and
tℓ1 < tℓ2 ≡ sℓ1 < sℓ2 , tℓ1Esℓ1 for ℓ1, ℓ2 < n then C |= “ϕ[āt0 , . . . , ātn−1 , b̄] ≡
ϕ(ās0 , . . . , āsn−1 , b̄]”.

{tp16.16n}
Fact 2.25. Assume T is dependent and I ⊆ α

C is infinite. Then I is a stable
indiscernible set iff I is an infinite indiscernible set.

Proof. As in [Sh:715, 1.28]. �2.25
{tp16.17}

Claim 2.26. 1) Assume (T is dependent and) there is an infinite indiscernible set
I ⊆ C. If κ+ = 2κ and κ > |T | then T has an exactly κ-saturated model.
2) Assume (T not necessarily dependent), I ⊆ C is a stable indiscernible set. Then
the conclusion of part (1) holds.
3) In parts (1),(2) the conclusion holds for T if the assumption holds for T eq.

{tp16.18}
Remark 2.27. 1) Of course, trivially if for some non-zero ordinal α there is an
infinite indiscernible set I ⊆ α

C then for some i < α, {(ā)i : ā ∈ I} is an infinite
indiscernible set.
2) But we could use below indiscernible set I ⊆ α

C.
3) On indiscernible sets for T dependent see [Sh:715, §1], we use it freely.
4) Of course: if {āt : t ∈ I} ⊆ α

C is an infinite indiscernible set/a stable indiscernible
set, u ⊆ α and 〈āt ↾ u : t ∈ I〉 is not constant then {āt ↾ u : t ∈ I} ⊆ u

C is an
infinite indiscernible set/a stable indiscernible set. So using singletons in 2.26 is {tp16.17}
not a loss.
5) Recall that if I is a linear order and I1, I2 ⊆ I are infinite, āt ∈ β

C for t ∈ I and
I = 〈āt : t ∈ I〉 is an indiscernible sequence then I ↾ I1 is stable iff I ↾ I2 is stable.
This is easy.
6) We can in 2.24(1) add a bound kϕ to |J| as in 2.24(2), and get an equivalence {tp16.16}{tp16.16}
definition (using I is an infinite indiscernible set).

Proof. 1) By part (2) (and 2.25). {tp16.16n}
2) Let I = {aα : α < κ} ⊆ C be an infinite stable indiscernible set. Now easily



(
9
0
0
)
 
 
r
e
v
i
s
i
o
n
:
2
0
1
7
-
0
4
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
7
-
0
4
-
2
4
 
 

34 SAHARON SHELAH

⊙1 for any b̄ ∈ ω>
C for some J ∈ [I]≤|T |, the set I\J is an indiscernible set over

b̄ ∪ J.

[Why? By the definition but we elaborate. First, recall that for any n and
ϕ = ϕ(x̄0, . . . , x̄n−1, b̄

′) for some finite Jϕ we have C |= “ϕ[a0, . . . , an−1, b̄
′] ≡

ϕ[a′0, . . . , a
′
n−1, b̄

′]” when a0, . . . , an−1 ∈ I\Jϕ with no repetition and a′0, . . . , a
′
n−1 ∈

I\Jϕ with no repetitions. Lastly, we choose Jk ⊆ I by induction on k such that
‖Jk‖ ≤ |T |,m < k ⇒ Jm ⊆ Jk ⊆ I and if k = m+1 and ϕ = ϕ(x̄0, . . . , x̄n−1, b̄

′), b̄′ ⊆
(∪Jm) ∪ b̄ then we can above choose Jϕ ⊆ Jk. Now

⋃

k

Jk is as required.]

⊙2 the following conditions on b̄ ∈ ω>
C are equivalent:

(a) tp(b̄, I), Av(I, I) are weakly orthogonal,

(b) for some J ∈ [I]≤|T | we have tp(b̄,J) ⊢ tp(b̄, I).

[Why? Easy using ⊙1 but we elaborate.

Clause (a) ⇒ Clause (b):

Let āκ realize Av(I , I) and I+ = I ∪ {āκ}.
By ⊙1 there is J1 ⊆ I− of cardinality ≤ |T | such that I\J1 is an indiscernible set

of b̄∪J1∪ āκ and also such that I\J is an indiscernible set over b̄∪J1. Let J2 ⊆ I\J1

be of cardinality |T | (really ℵ0 suffices) and let J = J1 ∪ J2, so J ⊆ I, |J| ≤ |T |.
Hence it suffices to prove that tp(b̄,J) ⊢ tp(b̄, I).

Assume āα(6), . . . , āα(n−1) ∈ I be with no repetitions and shal prove that tp(b̄,J) ⊢
tp(b̄,J ∪ āα(0) ∪ . . . ∪ c̄α(n−1)), this suffices.

By transitivity of ⊢ it suffics to prove tp(b̄,J∗
ℓ ) ⊢ tp(b̄,J∗

ℓ+1) for ℓ < n, where we
let J∗

ℓ = {c̄α(0), . . . , c̄α(ℓ−1)} ∪ J. Now if āℓ ∈ Jℓ then Jℓ+1 = Jℓ so the statement

is trivial; so without loss of generality āℓ /∈ Jℓ. Also it suffices to prove tp(b̄,J∗
ℓ ) ⊢

tp(b̄,J′ ∪ {āα(0), . . . , āα(ℓ−1) for any finite J′ ⊆ I.

Now tp(b̄, I) ⊢ tp(b̄, I+) because we are assuming clause (a) hence there is J′′ ⊆ I

or such that J1 ⊆ J′′, |J′′\J1| = |T | and tp(b̄,J′′) ⊢ tp(b̄,J′ ∪ āκ).
Now by cardinality consideration there is a permutation of π1 of I+ such that

π ↿ J′, π ↿ J are the identity and k ≤ ℓ ⇒ π(c̄α(k)) = āα(k), π1(āκ) = āκ and π1
maps J′′ ∪ {āα(0), . . . , āα(ℓ−1)} onto J ∪ {āα(0), . . . , aα(ℓ−1)}. By the choice of J1

and a2 there is an automorphism f1 of C extending π1 and mapping b̄ to b̄.
So as tp(b̄,J′′) ⊢ tp(b̄,J′ ∪ āκ) applying f1 clearly we have

• tp(b̄,J ∪ {āα(0), . . . , āα(ℓ−1)}) ⊢ tp(b̄,J ∪ {āα(0), . . . , āα(ℓ−1), āκ}).

Let Π2 be the permutation of I+ we interchange āα(i), āκ (recall āα(ℓ) /∈ J ∪
{āα(0), . . . , āα(ℓ−1)}), so as above we can in • replace āκ by āα(ℓ) as promised so we
are done.]

⊙3 let D = DI = {p ∈ S<ω(I) : p weakly orthogonal to Av(I, I)}.

We define

⊙4 we say A is a D-set if ā ∈ ω>A⇒ tp(ā, I) ∈ DI

⊙5 if I ⊆ A we let Sm
D(A) = {tp(b̄, A) : A ∪ b̄ is a D-set and ℓg(b̄) = m}.

We note
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⊙6 (a) if A is a D-set and I ⊆ A then Av(I, I) ⊢ Av(I, A); hence if A = |M |,
then M is not κ+-saturated,

(b) A is a D-set iff A ∪ I is a D-set.

⊙7 If A is a D-set of cardinality < κ and p ∈ Sm
D(A ∪ I) then for some J ⊆ I

of cardinality ≤ |A|+ |T | we have p ↾ (A ∪ J) ⊢ p.

[Why? By ⊙2 and ⊙6.]

⊙8 if 〈Aα : α < δ〉 is an ⊆-increasing sequence of D-sets, then Aδ := ∪{Aα :
α < δ} is a D-set.

[Why? By the definition of a D-set.]

⊙9 if 〈Aα : α ≤ δ〉 is ⊆-increasing continuous sequence of D-sets, I ⊆ A0 and
p ∈ Sm(Aδ) then p ∈ Sm

D(Aδ) ⇔
∧

α<δ

p ↾ Aα ∈ Sm
D(Aα).

[Why? By the definition of Sm
D(−) and ⊙8.]

Now comes a major point

⊙10 if A ⊆ C and |A| < κ then we can find I1 such that: I1 is an indiscernible
set, I ⊆ I1, |I1\I| ≤ |T |+ |A| and A is a DI1 -set.

[Why? Let θ = |A| + |T | and we try by induction on ζ < θ+ to choose a sequence
āε ∈ α

C for ε ∈ [ωζ, ωζ + ω) such that each āε realizes Av(I, {aξ : ξ < ωζ} ∪ I) but
〈αε : ε ∈ [ωζ, ωζ + ω]〉 is not an indiscernible sequence over A ∪ I ∪ {āε : ε < ωζ}.
But if we succeed to carry the induction clearly I+ := I ∪ {aε : ε < θ+} is an
indiscernible set, and a stable one (recalling 2.27(5)) hence for some J ⊆ I+ of {tp16.18}
cardinality ≤ |A|+ |T |, also I+\J is an indiscernible set over A∪J, but necessarily
J ⊆ I∪{aξ : ξ < ωζ} for some ζ < θ+, easy contradiction to the choice of the aε’s.]

⊙11 if A1 ⊆ A2 are DI-sets, |A2| ≤ κ, |A1| < κ and p ∈ Sm
D(A1 ∪ I) then there

is q ∈ Sm
D(A2 ∪ I) extending p.

[Why ⊙11? By ⊙9 without loss of generality A2 = A1 ∪ {b}, so |A2| < κ and let
θ = |A2| + |T |. We can find c̄ realizing p(ȳ) and let A = A1 ∪ {b} ∪ c̄ = A2 ∪ c̄.
So by ⊙10 there is I+ such that: I+ is an indiscernible set, I ⊆ I+, |I+\I| ≤ θ :=
|A|+ |T | = |A1|+ |T | < κ and A is a DI+ -set. As A2 is a DI-set by ⊙1 we can find
J1 ⊆ I of cardinality ≤ |A2| + |T | ≤ θ < κ satisfying tp(A2,J1) ⊢ tp(A2, I). Also
A1∪ c̄ is a DI-set (as A1 is a DI-set and c̄ realizes p(ȳ) ∈ Sm

D(A1∪I)) hence there is
J2 ⊆ I of cardinality ≤ |A1∪ c̄|+|T | = θ < κ such that tp(A1∪ c̄,J1) ⊢ tp(A1∪ c̄, I).
Lastly, as A is a DI+ -set there is J3 ⊆ I+ of cardinality ≤ |A| + |T | = θ such that
tp(A,J3) ⊢ tp(A, I+).

As tp(A2,J1) ⊢ tp(A2, I) as in the proof of⊙2 necessarily tp(A2,J1) ⊢ tp(A2, I
+).

Similarly tp(A1 ∪ c̄,J2) ⊢ tp(A2 ∪ c̄, I+). By cardinality considerations there is a
permutation h of I+ which is the identity on J1,J2 and J3 ∩ I and maps J3\I
into I. As I+ is an indiscernible set, h is an elementary mapping (of C). As
h ↾ J1 is the identity and tp(A2,J1) ⊢ tp(A2, I

+), see above also h ∪ idA2 is an
elementary mapping hence there is an automorphism g of C extending h ∪ idA2 .
As tp(A1 ∪ c̄,J2) ⊢ tp(A1 ∪ c̄, I+) and h ↾ J2 = idJ2 , h↾A1 = idA1 (recalling
A1 ⊆ A2) and h(I+) = I+ necessarily g(c̄) realizes tp(c̄, A1 ∪ I+) hence it real-
izes tp(c̄, A1 ∪ I) which is equal to p(ȳ). Also tp(A2 ∪ c̄,J3) ⊢ tp(A2 ∪ c̄, I

+) hence
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36 SAHARON SHELAH

tp(A2∪g(c̄), h(J3)) ⊢ tp(A2∪h(c̄), I+) hence tp(A2∪g(c̄), h(J3)) ⊢ tp(A2∪g(c̄), I),
but h(J3) ⊆ I has cardinality < κ. So A2 ∪ g(c̄) is a DI-set hence q(ȳ) =:
tp(g(c̄), A2 ∪ I) belongs to Sm

DI
(A2 ∪ I) so is as required.]

As 2κ = κ+, by ⊙9 +⊙11 there is M ⊇ I of cardinality κ+ which is κ-saturated
and is a D-set hence by ⊙6 is not κ+-saturated.
3) Should be clear. �2.26

{tp16.19}
Observation 2.28. (Any complete first order T )

In C there is no infinite indiscernible set iff for some n and ϕ = ϕ(x0, . . . , xn−1) ∈
L(τT ), ϕ is connected and anti-symmetric i.e. if a0, . . . , an−1 ∈ C with no repetitions
then for some permutations π1, π2 of {0, . . . , n− 1} we have

C |= ϕ[aπ1(0), . . . , aπ1(n−1)] ∧ ¬ϕ[aπ2(a), . . . , aπ2(an−1)].
{tp16.20}

Remark 2.29. 1) The second condition is related to the property (E) of complete
first order theories of Ehrenfeucht [Ehr57] which says that the condition holds for
some infinite set.
2) Note that C may have no infinite indiscernible set but Ceq has.

Proof. The implication ⇐ is obvious.
So assume the first statement. For α ≤ ω and ∆ ⊆ ∆∗ := {ϕ(x̄) : ϕ ∈

L(τT ), x̄ = 〈xℓ : ℓ < n〉} let17 Γα
∆ = {yk 6= yℓ : k < ℓ < α} ∪ {ϕ(yk0 , . . . , ykn−1) ≡

ϕ(yℓ0 , . . . , yℓn−1) : n < α,ϕ(x0, . . . , xn−1) ∈ L(τT ) and k0, . . . , kn−1 < α without
repetitions and ℓ0, . . . , ℓn−1 < α without repetitions}. Easily Γω

∆∗
is not realized

in C by the present assumption and 〈Γk
∆ : ∆ is a finite subset of ∆∗ and k < ω〉

is ⊆-increasing with k and ∆ with union Γω
∆∗

. Hence for some finite ∆ ⊆ ∆∗ and

k < ω, the set Γk
∆ is not realized in C.

Let 〈ϕi(x0, . . . , xni−1) : i < i(∗)〉 list ∆ so i(∗) < ω, so without loss of generality
ni < k for i < i(∗). Lastly, we define ϕ(y0, . . . , yk−1), it says: if 〈yℓ : ℓ < k〉
is without repetitions and i < i(∗) is minimal such that 〈yℓ : ℓ < k〉 is not a
{ϕi(x0, . . . , xni−1)}-indiscernible set then ϕi(y0, . . . , yni−1). Now check. �2.28

{tp16.21}
Question 2.30. 1) Is there a dependent T such that even in C

eq there is no infinite
indiscernible set but some singular κ of cofinality > |T | there is an exactly κ-
saturated model of T ?
2) For a dependent theory T characterize {κ : κ singular and T has exactly κ-
saturated models}.
3) In both parts we may at least initially restrict ourselves to κ strong limit of large
enough cofinality such that 2κ = κ+.
4) Try to eliminate the assumption “2κ = κ+” in 2.26 at least when κ is strong{tp16.17}
limit of cofinality > |T |. A natural way is via P−(n)-diagrams (as in [Sh:c, Ch.XII]
and even closer in [Sh:234]).

∗ ∗ ∗

The following in a sense gives a spectrum for d̄/M .

17yes: we use singletons y’s.
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{tp35.46}
Claim 2.31. For θ ≥ |T |, a model M and sequence d̄ ∈ θ≥

C, there is a set Θ such
that:

(a) Θ ⊆ Θ∗ := {κ : κ > θ and M is κ-saturated},

(b) |Θ| ≤ θ,

(c) if κ ∈ Θ and cf(κ) > θ then there is x ∈ mxKκ,≤θ such that Mx =M, d̄x =
d̄ and |Bx| ≤ θ + sup(Θ ∩ κ),

(d) if θ < κ ∈ Θ and cf(κ) ≤ θ then sup(Θ ∩ κ) = κ.

Proof. Straight.
For each κ ∈ Θ′ := {κ′ ∈ Θ∗ : κ′ has cofinality > θ} we can find xκ ∈ mxKκ,≤θ

such that Mx = M, d̄x = d̄ and for κ ∈ Θ∗\Θ′ let Θκ be a cofinal subset of κ of
cardinality cf(κ) ≤ θ. Let f : Θ′ → Card be defined by f(κ) = |Bx|+ θ. Note that
Θ′ has a maximal member or Θ′ has a cofinal subset of cardinality ≤ θ. Now we
shall choose Θn by induction on n such that Θn ⊆ Θ∗, |Θn| ≤ θ and n = m+ 1 ⇒
Θm ⊆ Θn. Let Θ0 be a cofinal subset of Θ∗ of cardinality ≤ θ, see above why
possible. If n = m+ 1, let Θn = {f(κ) : κ ∈ Θm ∩Θ′} ∪ {Θκ : κ ∈ Θm\Θ′} ∪ Θm.
Now ∪{Θn : n < ω} is as required. �2.31

{tp26.47}
Discussion 2.32. Note thatPx in 2.4 is κ-directed, but in general it is not definable {tp25.43}
inMx and even not definable in (Mx)[c̄x] (orM[Bx+cx]) even by disjunction of types

as it depends on d̄x. So we may consider P′
x = PM,c̄x,αx

= {p : p ∈ Sα(x)(A ∪ c̄x)
and A ⊆ M has cardinality < κ} ordered as before. Now P′

x is partially ordered
but it is not clear that it is κ-directed. Moreover (Mx)[c̄x] is not κ-saturated, but is
(Dx, κ)- sequence homogeneous for suitable Dx and Dx is a good diagram (see e.g.
[Sh:3]; see more in [Sh:950]). So we can consider the families of such D’s, fixing (T
and) θ.

But we can define the order in the κ-saturated (Mx)[Bx] which is L∞,κ(τT )-
equivalent to C[Bx]. In this model we have ψ(x̄, ȳ) ∈ L∞,κ which is a partial order
on the θ-tuples, ℓg(x̄) = αx = ℓg(ȳ).

However, in our case we know more. Letting Γ = L(τT ), if cf(κ) > θ ≥ |T | we
know that we can find ψ̄ = 〈ψϕ(x̄ϕ, ȳϕ, z̄ϕ) : ϕ ∈ Γ〉 and the order on the set of
ē = (. . . ˆēϕˆ . . .)ϕ such that in 2.15 we can choose ψ = ψϕ (easy, see 2.20(0)). If {tp25.38}{tp26.7}
cf(κ) > 2θ, we can fix there also the type of ē over Cx ∪ d̄x.

So

(∗)1 let I = {ē : ē as above}, so I is type-definable in (Mx)[Bx].

(∗)2 pē = {ψϕ(x̄ϕ, ē, c̄x) : ϕ ∈ Γ} for ē ∈ I.

(∗)3 (a) ≤1 defined by ē1 ≤ ē2 if pē2
⊢ p′ for some p′ such that

pē1
⊆ p′ ∈ S(Bx ∪ ē1),

(b) R is defined by ē1Rē2 iff ψϕ(x̄, ē
1
ϕ, c̄) ⊢ p

′ ∩ {ϕ(x̄, b̄, c̄):

b̄ ⊆ Rang(ē1 ∪Bx)} for each ϕ ∈ Γ where p′ is as above.

There are other variants, we intend to return to this.

We now consider some variants of the main Definition 2.6. {tp14.21}{tp.77}

Definition 2.33. 1) In Definition 2.6 we add and define Kℓ,K
ℓ
λ,κ,θ, etc., also for {tp14.21}

ℓ = 2, 3 by replacing18 Clause (f)1 = (f) by (f)ℓ where:

18Compare with 2.13(2A) {tp25.34}
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38 SAHARON SHELAH

(f)2 if ℓ = 2 then tp(c̄t, A ∪ {c̄s,m : s <I t,m < ns}) is finitely satisfiable in B

(f)3 if ℓ = 3 then for some endless indiscernible sequence b̄t = 〈b̄t,r : r ∈ Jt〉 of
sequences from B, the sequence c̄t,0 realizes19 the type Av(A∪{c̄s,m : s <I

t,m < nt}, b̄t).

2) We define mxKℓ
λ,κ,θ similarly.

{tp.84}
Claim 2.34. 1) K3 ⊆ K2 ⊆ K1.
2) If ℓ ∈ {2, 3} and 〈xα : α < δ〉 is ≤1-increasing in K

ℓ
λ,κ,<θ and δ < cf(θ), δ < cf(κ)

then xδ =
⋃

α<δ

xα defined as in 2.7 belongs to Kℓ
λ,κ,<θ and is a ≤1-lub of the

{tp14.28}
sequence.
3) If ℓ = 0, 1, 2, 3 and d̄ ∈ θ>

C and M is κ-saturated, cf(κ) ≥ θ then x = (M, ∅, <>
, d̄) ∈ Kℓ

κ,<θ.

4) Like 2.12 for ℓ = 2, 3, i.e.: if cf(θ) > |T |, cf(κ) > θ, ℓ ≤ 3 and x ∈ Kℓ
λ,κ,<θ{tp25.33}

then20 for some y we have x ≤1 y ∈ mxKℓ
λ,κ,<θ; so in tp(cx,My + cx) we can get

tp(c̄,M) is finitely satisfiable in My + (Cy\Cx)).
5) If x ∈ K2 and c̄ ∈ Cx then tp(c̄, Ax) is finitely satisfiable in Bx.

Proof. Similar to the proofs for ℓ = 1. �2.34
{tp.98}

Claim 2.35. 1) In 2.14 we can deal with Kℓ
λ,κ,<θ, ℓ = 2, 3, i.e. if ℓ = 2 we should{tp25.36}

strengthen the assumption to “q is finitely satisfiable in B′”.
2) If ℓ = 3 we should strengthen the assumption to q = Av(Mx∪Cx, I), I an endless
indiscernible sequence of cardinality < κ.
3) In 2.15 we can deal with mxK2

λ,κ,θ.{tp25.38}

Proof. Similar to the proof for ℓ = 1. �2.35

19we may consider “c̄t realizes seeming this makes no difference.
20so if κ = cf(κ) > θ ≥ |T |,M is κ-saturated and d̄ ∈ θ+>

C then for some c̄ ∈ θ+>
C and

B ∈ [M ]<κ we have (M,B, c̄, d̄) ∈ mxK2.
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§ 3. Existence of strict type decompositions
{s:existence}

We here get a better decomposition, but at a price: using normal ultrafilters
(so measurable or supercompact cardinals). Why is the decomposition from §2 not
enough for our purposes? See 4.5 below. {d10}

{pr.7}
Hypothesis 3.1. We assume T is dependent, C = CT a monster; if not said
otherwise, we assume (1) or just (2) where:

(1) (a) λ = κ is a measurable cardinal,

(b) D is a normal ultrafilter on I = λ, so I is a linear order,

(c) Mα ≺ C is ≺-increasing, ‖Mα‖ < λ for α < λ,

(d) Mλ =
⋃

α<λ

Mα, by Clauses (a) + (c) + (e) necessarilyMλ is saturated,

(e) Mα is ‖Mβ‖+-saturated for β < α,

(2) (a) I is the following partial order, which is (< κ)-directed, and:
(α) set of elements {a ∈ [λ]<κ : a ∩ κ ∈ κ} and

(β) s ≤I t iff s ⊆ t ∧ |s| < min(κ\t),
(b) D is a fine normal ultrafilter on I and it follows that κ is a measurable

cardinal ≤ λ,

(c) Mt ≺ C, ‖Mt‖ < κ and s <I t⇒Ms ≺Mt,

(d) Mλ = ∪{Mt : t ∈ I} (by (a)+(c)+(e), Mλ is κ-saturated)

(e) if s <I t then Mt is ‖Ms‖+-saturated.
{pr.8}

Remark 3.2. 1) So in 3.1 we can define: {pr.7}

(A) like (2) without the normality and

(B) (a), (b), (c), (d) of part (2).

2) Note that we have (1) ⇒ (2) ⇒ (A) and (2) ⇒ (B).
{pr.9}

Notation 3.3. 1) In 3.1(1) let κI(t) := t for t ∈ I, this notation is introduced only {pr.7}
for having a uniform treatment of (1) and (2).
2) In 3.1(2) let κI(t) = Min(κ\t) for t ∈ I. {pr.7}

{pr.10}
Definition 3.4. [under 3.1(1) or (2) or alternatively (B) from 3.2 so these notions {pr.7}{pr.8}
depend on 〈Mt : t ∈ I〉.]
1) For U ⊆ I (usually ∈ D), so is a partial order, we say 〈āt : t ∈ U 〉 is indiscernible
in Mλ over A when (A ⊆Mλ and):

(a) ℓg(āt) is constant, possibly infinite, and āt ⊆Mλ for t ∈ U ,

(b) for each n for some pn for every t0 <I . . . <I tn−1 from U we have
tp(āt0ˆ . . . ˆātn−1, A,Mλ) = pn, see the ninth paragraph of §0.

2) We say 〈āt : t ∈ U 〉 is fully indiscernible (in Mλ) over A when Clauses (a),(b)
above holds and

(c) if s <I t are from U then ās ⊆Mt, recalling M̄ is from 3.1, {pr.7}

(d) if s ∈ U then recalling M̄ is from 3.121 the sequence 〈at : t ∈ U ∩ I≥s〉 is {pr.7}
indiscernible over Ms ∪ A where, of course, I≥s := {t ∈ I : s ≤I t}.

21By normality (i.e. if (1) or (2) or (B) holds) then this follows.
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3) In parts (1),(2) of the definition we say k-indiscernible when in Clause (b) we
demand n ≤ k.

We shall in Theorem 3.10 (and see 3.8) below prove the existence of:{pr.42}{pr.28}
{pr.35}

Definition 3.5. 1) For an infinite linear order J we say 〈(c̄t, d̄t) : t ∈ J〉 is a
strict1 (κ,< θ)-decomposition over (M,B) (and over M means “for some B ⊆ M
of cardinality < κ”) when :

(a) B ⊆ M is of cardinality < κ and M ≺ C is κ-saturated, but if we write
< ℵ0 instead of κ we mean M ≺ C and if we write 0 instead of κ we replace
M by a set ⊇ B, but in both cases we omit |B| < κ

(b) α = ℓg(c̄t), β = ℓg(d̄t) are < θ,

(c) if t0 <J . . . <J tk then tp(c̄tn ,M + c̄t0ˆd̄t0 + . . .+ c̄tn−1ˆdtn−1) is increasing
with n ≤ k and does not split over B,

(d) 〈(c̄tˆd̄t : t ∈ J〉 is an indiscernible sequence over M ,

(e) if s <J t then tp(d̄t, c̄t+d̄s) ⊢ tp(d̄t,
⋃
{c̄rˆd̄r : r ≤J s}∪

⋃
{c̄r : r ∈ J}∪M),

(f) for every A ⊆ M of cardinality < κ for some c̄ˆd̄ ∈ α+βM , the sequence
〈c̄ˆd̄〉ˆ〈c̄tˆd̄t : t ∈ J〉 is an indiscernible sequence over A, so if κ = 0 this is
an empty demand.

2) We say strict−1 (κ, θ)-decomposition if (in part (1)) we omit Clauses (e) and (f).
3) We say strict0 (κ,< θ)-decomposition if we omit (f) and weaken (e) to (e)−,
where

(e)− if s <I t then tp(d̄t, c̄t + d̄s) ⊢ tp(d̄t,∪{c̄rˆd̄r : r ≤ s} ∪ c̄t ∪M).

4) Notation:

• If θ = σ+ instead of “< θ” we may write σ.

• If κ = 0 then M is replaced by a set B, if we write < ℵ0 instead of κ then
M is just a model, but in both cases we omit the demand “|B| < κ”.

• Strict1 may be written strict.

A natural question about those notions of indiscernibility is about existence results.
Now 3.6 is a well known set-theoretic existence and 3.8 is existence for dependent{pr.21}{pr.28}
theories.

{pr.21}

Fact 3.6. 1) If A ⊆ C, |A| < κ, α < κ,U1 ∈ D and āt ∈ α
C for t ∈ U1 then for

some U2 ⊆ U1 from D the sequence 〈āt : t ∈ U2〉 is indiscernible over A.
2) If in addition āt ∈ α(Mλ) then we can add “fully indiscernible”.
3) If ι ∈ {−1, 0, 1} and 〈(c̄t, d̄t) : t ∈ J〉 is a strictι (κ,< θ)-decomposition over
(M,B) and B ⊆ B1 ⊆ M, |B1| < κ then it is a strictι (κ,< θ)-decomposition over
(M,B1). Similarly we can replace M by M ′ if B1 ⊆ M ′ ⊆ M and M1 satisfies
Clause (a) in Definition 3.5.{pr.35}

Proof. 1),2) By well known set theory (see Kanamori Magidor [KM78]).
3) Obvious. �3.6
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{pr.23}
Observation 3.7. 1) For some U∗ ∈ D , for every t ∈ U∗ the model Mt is κ(t)-
saturated and κ(t) > |T |.
2) If M ≺ C is κ-saturated, J an infinite linear order θ ≥ ℵ0, B ∈ [M ]<κ and
c̄t = 〈〉 = d̄t for t ∈ J then 〈(c̄t : d̄t) : t ∈ J〉 is a strictι (κ,< θ)-decomposition over
(M,B) for ι = 1 hence for ι ∈ {−1, 0}, too.

Proof. Obvious. �3.7
{pr.28}

Theorem 3.8. Assume θ satisfies κ > θ ≥ |T | and recall λ ≥ κ. For every
γ(∗) < θ+ and d̄ ∈ γ(∗)

C there are B and 〈(c̄ωt , d̄
ω
t ) : t ∈ U ∪ {λ}〉 such that:

⊠ (a) U ∈ D ,

(b) B ⊆Mλ, |B| < κ,

(c) ℓg(d̄ωt ) = γ(∗) + θ · ω,

(d) d̄ E d̄ωλ ,

(e) x = (Mλ, B, c̄
ω
λ , d̄

ω
λ) ∈ mxKκ,θ,

(f) c̄ωt ˆd̄
ω
t ⊆Mλ realizes tp(c̄ωλˆd̄

ω
λ ,Mt) for t ∈ U ,

(g) 〈c̄ωt ˆd̄
ω
t : t ∈ U 〉 is fully indiscernible (in Mλ) over B and even over

B ∪ c̄ωλ ∪ d̄ωλ , (see Definition 3.4(2)), {pr.10}

(h)1 if t0 <I . . . <I tm <I . . . <I tn belongs to U , so m < n and possibly
m+ 1 = n; moreover possibly 0 = m then
tp(d̄ωtm+1

, c̄ωtm+1
+ d̄ωtm) ⊢

tp(d̄ωtm+1
, c̄ωt0 + . . .+ c̄ωtm+1

+ . . .+ c̄ωtn + d̄ωt0 + . . .+ d̄ωtm +Mt0),

(h)2 if s <I t are from U then c̄ωs ˆd̄
ω
s is from Mt, (actually follows

from clause (g)),

(h)3 if t0 <I . . . <I tn are from U then tp(d̄ωt1 , d̄
ω
t0
+ c̄ωt1) ⊢ tp(d̄ωt1 ,Mt0+

d̄ωt0 + c̄ωt0 + c̄ωt1 + . . .+ c̄ωtn) (actually this is the case m = 0 in (h)1).
{pr.29}

Remark 3.9. We easily can add:

(i) x is normal, i.e. Rang(c̄ω) ⊆ Rang(d̄ω).

Proof. First by induction on n we choose d̄n, c̄n, Bn, 〈(c̄nt , d̄
n
t ) : t ∈ Un〉 and if n > 0

also ēn, ē
n
t (for t ∈ Un) such that:

⊛n (a) d̄n ∈ γ(∗)+θ·n
C and d̄0 = d̄ and ēn ∈ θ

C

(b) xn = (Mλ, Bn, c̄n, d̄n) ∈ mxKκ,θ is normal,

(c) d̄m ⊳ d̄n if m < n,

(d) c̄m = c̄n ↾ Ixm
if m < n,

(e) c̄nt ˆd̄
n
t is from Mλ and realizes tp(c̄nˆd̄n,Mt) for t ∈ Un,

(f) d̄n = d̄mˆēn and ℓg(ēn) = θ and xm ≤1 xn if n = m+ 1,

(g) 〈c̄nt ˆd̄
n
t : t ∈ Un〉 is fully indiscernible over Bn + c̄n + d̄n,

(h) Un ∈ D decrease with n and is ⊆ U∗ from 3.7(1), {pr.23}

(i) if s < t are from Un then Ms + c̄ns + d̄ns ⊆Mt (follows by (g)),

(j) tp(d̄m, ē
n
t + c̄m) ⊢ tp(d̄m,Mt + c̄m + c̄mt + d̄mt ) if n = m+ 1, t ∈ Un,

(k) (Mt, Bn, c̄n, d̄n) ∈ mxKκI(t),θ for t ∈ Un,
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(l) if n = m+ 1, k < ω and t0 <I . . . <I tk are from Un then

tp(d̄mt1 , c̄
m
t1
+ ēnt0) ⊢ tp(d̄mt1 ,

k∑

ℓ=0

c̄mtℓ + d̄mt0 + ēnt0 +Mt0).

Case 1: n = 0.
First, let d̄n = d̄. Recalling 2.7(4) clearly yn =: (Mλ, ∅, <>, d̄n) ∈ Kκ,θ.{tp14.28}
Second, by Claim 2.12 we can findBn, c̄n such that yn ≤1 xn := (Mλ, Bn, c̄n, d̄n) ∈{tp25.33}

mxKκ,θ; we can add xn is normal by 2.7(6) but then ℓg(d̄n) = γ(∗) + θ.{tp14.28}
Third, for t ∈ I we can choose c̄nt ˆd̄

n
t from Mλ which realizes tp(c̄nˆd̄n,Mt).

Fourth, by 3.6 we choose Un ∈ D such that 〈c̄nt ˆd̄
n
t : t ∈ Un〉 is a fully in-{pr.21}

discernible sequence over Bn + d̄n + c̄n and (by the normality of the filter D) in
particular c̄ns ˆd̄

n
s ⊆Mt when s < t ∈ Un are from I and Un is ⊆ U∗ from 3.7. It is{pr.23}

easy to check that all the demands hold, recalling ēn for n = 0 is not required in
⊛n. In particular for clause (k) use the reflective property of D or by the proof of
Claim 2.10.{tp25.30}

Case 2: n = m+ 1.
First, by clause (k) form and Conclusion 2.21 for each t ∈ Um recallingMt+c̄

m
t +{tp26.9}

d̄mt is ⊆Mλ and is of cardinality < κ and Mλ is κ-saturated, there is ēn,∗t ∈ θ(Mλ)
such that:

(∗)1 tp(d̄m, c̄m + ēn,∗t ) ⊢ tp(d̄m,Mt + c̄m + c̄mt + d̄mt ).

Second, by 3.6 choose U ′
n ⊆ Um which belongs to D such that 〈c̄mt ˆd̄mt ˆēn,∗t : t ∈{pr.21}

U ′
n〉 is fully indiscernible over Bm + c̄m + d̄m.
We shall now prove

⊙1 if t0 < . . . < tk are from U ′
n then tp(d̄mt1 , c̄

m
t1

+ ēn,∗t0
) ⊢ tp(d̄mt1 , c̄

m
t1

+ . . . +
c̄mtk +Mt0).

Toward this, by clause (e) of ⊛m we have

(∗)2 tp(c̄mt1ˆd̄
m
t1
,Mt1) = tp(c̄mˆd̄m,Mt1).

By (∗)2 there is an elementary mapping f mapping c̄mˆd̄m to c̄mt1ˆd̄
m
t1

which is the

identity on Mt1 . But Mt0 + c̄mt0 + d̄mt0 ⊆ Mt1 by ⊛m(i) and ēn,∗t0
⊆ Mt1 by the full

indiscernibility, i.e. by the choice of U ′
n above, hence by applying f on (∗)1 for t0

we get

(∗)3 tp(d̄mt1 , c̄
m
t1
+ ēn,∗t0

) ⊢ tp(d̄mt1 ,Mt0 + c̄mt1 + c̄mt0 + d̄mt0 ).

Now by clause (k) of ⊛m

(∗)4 (Mt0 , Bm, c̄m, d̄m) ∈ mxKκI(t0),θ.

But by clause (e) of ⊛m, recalling t0 < t1 hence Mt0 ⊆Mt1

(∗)5 tp(c̄mt1ˆd̄
m
t1
,Mt0) = tp(c̄mˆd̄m,Mt0).

By (∗)4 + (∗)5

(∗)6 (Mt0 , Bm, c̄
m
t1
, d̄mt1 ) ∈ mxKκI(t0),θ.

Also easily by clauses (k) + (i) of ⊛m applied to t = t2, t3, . . . , tk (recalling 1.4(3)){3k.4}

(∗)7 tp(c̄mt2ˆ . . . ˆc̄
m
tk
,Mt0 + c̄mt1 + d̄mt1 ) does not split over Bm.
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By (∗)6 + (∗)7 and the weak orthogonality claim 2.14(1) we have{tp25.36}

(∗)8 tp(d̄mt1 ,Mt0 + c̄mt1 ) ⊢ tp(d̄mt1 ,Mt0 + c̄mt1 + . . .+ c̄mtk).

By (∗)3 + (∗)8

(∗)9 tp(d̄mt1 , c̄
m
t1
+ ēn,∗t0

) ⊢ tp(dmt1 ,Mt0 + c̄mt1 + . . .+ c̄mtk)

as promised in ⊙1.

Now we continue to deal with Case 2, choose Fn : U ′
n → U ′

n such that s ∈
U ′

n ⇒ s <I Fn(s) ∈ U ′
n and for t ∈ U ′

n we let ēnt := ēn,∗
Fn(t)

. Let ēn ∈ θ
C be

such that c̄mˆd̄mˆēn realizes Av(〈c̄mt ˆd̄mt ˆēnt : t ∈ U ′
n〉/D ,Mλ). Let U ′′

n ∈ D be
⊆ U ′

n and such that s ∈ U ′′
n ∧ t ∈ U ′′

n ∧ s <I t ⇒ Fn(s) <I t and the sequence
〈c̄mt ˆd̄mt ˆēn,∗

F (t) : t ∈ U ′′
n 〉 is fully indiscernible over c̄mˆd̄mˆēn.

Let d̄n = d̄mˆēn and d̄nt = d̄mt ˆēnt for t ∈ U ′′
n .

Let yn := (M,Bm, c̄m, d̄n) ∈ Kκ,θ so clearly xm ≤1 yn hence by 2.12 there {tp25.33}
is xn = (Mλ, Bn, c̄n, d̄n) ∈ mxKκ,θ such that yn ≤2 xn so c̄n and Bn are well
defined22 and c̄m = c̄n ↾ Ixm

; can add xn is normal by 2.7(6) (correcting the {tp14.28}
length). For t ∈ U ′′

n , let c̄nt be a sequence from Mλ such that c̄mt = c̄nt ↾ Dom(c̄m)
and tp(c̄nt ˆd̄

n
t ,Mt) = tp(c̄nˆd̄n,Mt), this is possible as M is κ-saturated, |Mt +

c̄mt + d̄nt | < κ, |Rang(c̄n)| ≤ θ < κ and c̄mt ˆd̄nt realizes the type tp(c̄mˆd̄n,Mt).
Lastly, let Un be a subset of U ′′

n which belongs to D such that:

⊙2 〈c̄nt ˆd̄
n
t : t ∈ Un〉 is fully indiscernible over Bn + c̄n + d̄n.

⊙3 (Mt, Bn, c̄n, d̄n) ∈ mxKκ,θ for every t ∈ Un.

[Why Un exists? By 3.6 and reflection by D or by the proof of 2.10.] {pr.21}{tp25.30}
It is easy to check that xn, c̄n, d̄n, d̄n, 〈(cnt , d̄

n
t , ē

n
t ) : t ∈ Un〉 are as required. E.g.

clause (f) holds as ℓg(d̄0) = ℓg(d̄) = γ(∗) and ℓg(d̄m) = γ(∗) + θ · m by clause
(a) of ⊛m and ℓg(ēn) = θ by ⊛n(f) we can prove that ℓg(d̄n) = ℓg(d̄m) + θ =
γ(∗)+θ ·m+θ = γ(∗)+θ ·n, so we clearly are done. For clause (e) note ⊙1 and the
choices of F and U ′′

n ,Un. For clause ⊛n(ℓ) note that s ∈ U ′
n ⇒ s <I Fn(s) ∈ U ′

n

so c̄ms ⊆MFn(s).

So we have carried the induction. Second, let c̄ω = c̄ωλ =
⋃

n<ω

c̄n, d̄ω = d̄ωλ =
⋃

n<ω

d̄n and B = ∪{Bn : n < ω} and U = ∩{Un : n < ω} and for t ∈ U let

c̄t =
⋃

n

c̄nt , d̄t =
⋃

n

d̄nt .

Let us check that ⊠ from the theorem holds indeed.

Clause (a): U ∈ D as each Un ∈ D by ⊛n(h) and D is κ-complete and κ > ℵ0

recalling U = ∩{Un : n < ω}.

Clause (b): B ∈ [Mλ]
<κ as Bn ⊆Mλ, |Bn| < κ by ⊛n(b) for n < ω and κ is regular

uncountable recalling and B := ∪{Bn : n < ω}.

Clause (c): By ⊛n(a) + (c) for n < ω and the choice of d̄.

Clause (d): d̄ = d̄0 = d̄ω ↾ γ(∗) is proved as in clause (c).

22in fact, we can demand that tp(c̄n ↾ (Ixn\Ixm),M + c̄m) does not split over Bxn .
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44 SAHARON SHELAH

Clause (e): As xn = (M,Bn, c̄n, d̄n) ∈ mxKκ,θ by clause (b) of ⊛n and xn ≤1 xn+1

by ⊛n+1(f) and (M,B, c̄ω, d̄ω) = ∪{xn : n < ω}, clearly by claim 2.14(2) we are {tp25.36}
done.

Clause (f): By clause (e) of ⊛n (and the choice of c̄ω, d̄ω, c̄
ω
t , d̄

ω
t , etc).

Clause (g): Similarly by clause (g) of ⊛n.

Clause (h)1: By clauses (h)2 + (h)3 proved below.

Clause (h)2: By clause (i) of ⊛n.

Clause (h)3: Holds by clause (ℓ) of ⊛n. �3.8

{pr.42}
Theorem 3.10. 1) If M is κ-saturated of cardinality ≤ λ, d̄ ∈ θ+>

C then we can
find a strict (κ, θ)-decomposition 〈(c̄n, d̄n) : n < ω〉 over M such that d̄0 ⊳ d̄.
2) Instead Hypothesis 3.1 it is enough to demand: if M is κ-saturated and p ={pr.7}
p(〈xi : i < θ〉) is a type with parameters from M ∪ C, |C| ≤ θ which is (< κ)-
satisfiable in M , i.e. every subset of p of cardinality < κ is realized in M then p
can be extended to p+ ∈ Sθ(M ∪ C) which is (< κ)-satisfiable in M .

Proof. 1) We can choose M̄ ′ = 〈M ′
t : t ∈ I〉 such that (M, M̄ ′) satisfies the demands

on (Mλ, 〈Mt : t ∈ I〉) in Hypothesis 3.1(1) or 3.1(2) and apply Theorem 3.8 (as{pr.7}{pr.7}{pr.28}
assuming ℓg(d̄) = θ or ℓg(θ) < θ+ does not matter).
2) The idea is to repeat the proof of 3.8, but as of unclear value we leave it to the{pr.28}
reader. �3.10

{pr.56}
Corollary 3.11. Assume κ = λ > |T | is weakly compact, Mα ∈ EC<λ(T ) is ≺-
increasing continuous, M = ∪{Mα : α < λ} is saturated. Then 3.8 and 3.12(2){pr.28}{pr.49}
hold.

Proof. Revise the proof of 3.8, but in ⊛n weaken clauses (g),(h) to (g)−,(h)− and{pr.28}
use the proof of 4.14 in the end where{ps.21}

(g)− Un ∈ [κ]κ decreasing with n and 〈c̄nt ˆd̄
n
t : t ∈ Un〉 is just fully n-indiscernible

(h)− Un does not belong to the weakly compact ideal.

We leave the details to the reader or see [Sh:950, 3.27=Lc78,3.28=Lc65]. �3.11

{pr.49}
Claim 3.12. 1) (even not assuming 3.1){pr.7}

Assume M is κ-saturated, |T | ≤ θ < κ, tp(c̄n,M + c̄0+ . . .+ c̄n−1) does not split
over B where |B| < κ,B ⊆ M and ℓg(c̄n) < θ+ and d̄n = c̄n ↾ u for n < ω (so
u ⊆ Dom(c̄n)) then 〈(c̄n, d̄n) : n < ω〉 is a strict (κ, θ)-decomposition over (M,B).
2) (Assuming 3.1) Assume 〈(c̄n, d̄n) : n < ω〉 is a strict (κ, θ)-decomposition over{pr.7}
(Mλ, B). For any d̄ ∈ θ+>

C such that 〈c̄1+nˆd̄1+n : n < ω〉 is an indiscernible
sequence over M + c̄0 + d̄0 + d̄ we can find a strict (κ, θ)-decomposition 〈(c̄+n , d̄

+
n ) :

n < ω〉 over (Mλ, B) such that c̄n E c̄+n , d̄n E d̄+n for n < ω and d̄0ˆd̄ E d̄+0 .
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Proof. 1) Easy.
2) Repeat the proof of 3.8 starting with x0 = (Mλ, B, c̄0, d̄0) and 〈c̄tˆd̄t : t ∈ I〉 and{pr.28}
c̄tˆdt ∈ ℓg(c̄t)+ℓg(d̄t)(Mλ) realizing tp(c̄0ˆd̄0,Mt +

∑

n<ω

c̄1+nˆd̄1+n). It details, first

let us denote (c̄n, d̄n) by (c̄∗n, d̄
∗
n).

⊛′
0 (c̄0t , d̄

0
t ) for t ∈ I satisfy

(a) c̄0t ∈ ℓg(c̄∗0)(Mλ) and d̄t ∈ ℓg(d̄∗
0)(Mλ)

(b) 〈c̄0tˆd̄
0
t 〉ˆ〈c̄

∗
nˆd̄

∗
n : n < ω〉 is an indiscernible sequence over Mt.

Letting (c̄0, d̄0) = (c̄∗0, d̄
∗
0), clearly ⊛n of the proof of 3.8 for n = 0 holds. {pr.28}

We continue as in the proof there except demanding Rang(d̄) ⊆ Rang(ē1), getting
in the end c̄ω = c̄ωλ , d̄ω = d̄ωλ , c̄

ω
t , d̄

ω
t (for t ∈ U ).

Let 〈(c̄+n , d̄
+
n ) : n < ω〉 be such that ℓg(c̄+n ) = ℓg(c̄ω), ℓg(d̄

+
n ) = ℓg(d̄ω) and

for every n and g0 < . . . < tn from U the sequences c̄ωt0ˆd̄
ω
t0
ˆ . . . ˆc̄ωtnˆd̄

ω
tn

and

c̄+0 ˆd̄
+
0 ˆ . . . ˆc̄

+
n ˆd̄

+
n realize the same type.

Using an automorphism of C without loss of generality c̄∗n ⊳ c̄
+
n , d̄

∗
n ⊳ d̄

+
n ; pedan-

tically we should change a little to upgrade “Rang(d̄) ⊆ Rang(d̄1) ⊆ Rang(d̄+0 ) to
“d̄∗0ˆd̄ ⊳ d̄

+
0 ”. �3.12

{pr.84}
Claim 3.13. The sequence 〈(c̄2t , d̄

2
t ) : t ∈ I2〉 is a strict0 (0, θ)-decomposition over

(B2, B1) when :

(a) 〈(c̄1s, d̄
1
s) : s ∈ I1)〉 is a strict0 (0, θ)-decomposition over (B2, B1) (and

ℓg(c̄1s) = ℓg(c̄2t ), ℓg(d̄
1
s) = ℓg(d̄1s) = ℓg(d̄2t ), of course),

(b) for any n if Iℓ |= “tℓ,0 < . . . < tℓ,n−1” for ℓ = 1, 2 then tp(c̄1t1,0ˆd̄
1
t1,0

ˆ . . . ˆ

c̄1t1,n−1
ˆd̄t1,n−1 , B2) = tp(c̄2t2,0ˆd̄

2
t2,0

ˆ . . . ˆc̄2t2,n−1
ˆd̄2t2,n−1

, B2).

Proof. Should be clear. �3.13
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46 SAHARON SHELAH

§ 4. Consequences of strict decomposition
{s:consequences}

Here we look again at the generic pair conjecture ([Sh:877, 0.2]). The non-
structure side (in a strong version) is proved there for λ = λ<λ non-strong limit
and in [Sh:906] for λ = λ<λ strong limit (i.e. strongly inaccessible).
The conjecture is (the instances of G.C.H. are used to make the conjecture trans-
parent):

{ps.1}
Conjecture 4.1. The generic pair conjecture

Assume23 λ = λ<λ > |T |, 2λ = λ+,Mα ∈ ECλ(T ) is ≺-increasing continuous
for α < λ+ with ∪{Mα : α < λ+} ∈ ECλ+(T ) being saturated.
1) The λ-generic pair conjecture says that: T is dependent iff for some club E
of λ+ for all pairs α < β < λ+ from E of cofinality λ+, (Mβ ,Mα) has the same
isomorphism type.
2) For ζ < λ the λ-generic ζ-tuple conjecture says that: T is dependent iff for some
club E of λ+ for all increasing sequences 〈αε : ε ≤ ζ〉 of members of E of cofinality
λ, the structure (Mαζ

,Mαε
)ε<ζ has the same isomorphism type, (equivalently, if

〈αℓ,ε : ε ≤ ζ〉 is as above for ℓ = 1, 2 then there is an isomorphism from Mα1,ζ
onto

Mα2,ζ
mapping Mα1,ε onto M2,αε

for ε < ζ).

We concentrate on the case of the “generic pair conjecture”. Note that if κ =
cf(κ) < λ, then the λ-generic κ-tuple conjecture implies that for dependent T there
is a medium (λ, κ)-limit model, see [Sh:877], but we do not succeed to deal with it
here.

Here we prove the “structure” side when λ is measurable. It seemed natural to
assume that the first order theories of such pair is complicated if T is independent
and “understandable” for dependent of T .

In fact, it may be better to ask
{ps.3}

Problem 4.2. 1) Assume |T | < θ ≤ κ ≤ λ = λ<κ < κ2 ≤ µ = µ<ℵ2 and
M1 ≺M2 ≺ C,M1 is κ1-saturated of cardinality λ,M2 is κ2-saturated of cardinality
µ. What can we say on Th(M2,M1)? On ThL∞,θ(τ(T ))(M2,M1)?

More generally
{gs.3}

Problem 4.3. 1) Assume n < ω, |T | < θ, σ < θ < κ0, λℓ = λ<κℓ

ℓ for ℓ ≤ n, λℓ <
κℓ+1 for ℓ < n. Let Mℓ be κℓ-saturated of cardinality λℓ for ℓ ≤ n and Mℓ ≺Mℓ+1

for ℓ < n. What can we say on M+ = Th(Mn, . . . ,M1,M0),i.e. Mn expanded
by unary predicates for Mℓ for ℓ < n? When can we interpret (with first order
formulas with parameters) second order logic on θ? i.e. classify T by this.
2) Similarly for Lσ,σ(τM+).
3) Similarly allowing n to be < θ.

The proof here, if e.g. κ = λ is measurable say that even the L∞,κ-theory of
the pair is constant, but does not say much even on the first order theory, (see
[KpSh:946]). It is known that for many “complicated enough” theories T , for
M2,M1 as in 4.2, in Th(M2,M1) we can interpret second order logic on (λ,=).{ps.3}
This holds, e.g. for T = Peano arithmetic.

On n-independent theories see [Sh:886, §2]. Note that

23the “2λ = λ+” is just for making the formulation more transparent, and by absoluteness is
equivalent to the formulation not assuming 2λ = λ+.
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{gs.4}
Claim 4.4. Assume T is the model completion of T0, defined below so seems “the
simplest” 2-independent theory. If M0 ∈ ECλ(T ) and M1 is a λ+-saturated ≺-
extension of M0 then in (M1,M0) we can interpret second order logic on M0 (i.e.
quantification on two-place relations, when :

(∗) τT0 consists of P0, P1, P2 (unary predicates) and R (a ternary predicate)
and a τT0-model M is a model of T0 iff 〈PM

0 , PM
1 , PM

2 〉 is a partition of
|M | and RM ⊆ PM

0 × PM
1 × PM

2 .

Proof. Obvious. �4.4

Also for T = theory of Boolean algebras (which is n-independent for every n) the
theory is complicated. Of course, it would be better to eliminate the measurable
assumption.

{d10}
Explanation 4.5. Why Kλ,κ,θ and mxKλ,κ,θ from §2 does not suffice for us so
that in §3 we deal also with the more complicated 〈(c̄t, d̄t) : t ∈ J〉 from Definition
3.5? This is motivated by the proof of the generic pair conjecture. {pr.35}

To understand it maybe better consider the class

(∗) N2
κ = {(N,M) : M ≺ N ≺ CT ,M is κ-saturated and N is ‖M‖+-

saturated}.

Proving the generic pair conjecture for κ we consider M̄ = 〈Mα : α < κ+〉, which
is ≺-increasing continuous, M =

⋃

α

Mα ≺ CT is saturated of cardinality κ+.

Assuming T is dependent we should choose a thin enough club E of κ+ and

consider {(Mβ,Mα) : α < β and {α, β} ⊆ E∩Sκ+

κ }. Now the club E will be chosen
such that all relevant pairs (Mβ,Mα) are similar enough to those of pairs from N2

κ.
So a sufficient condition for the conjecture is:

⊞ assume (N1,M1), (N2,M2) ∈ N2
κ, then we can find f̄ = 〈fs : s ∈ Y 〉 such

that:

(a) Y is a partial order,

(b) Y is (< κ)-complete, that is, any increasing chain (for <Y ) of length
< κ has an upper bound,

(c) fs is an (N1, N2)-elementary mapping,

(d) Dom(fs) has cardinality < κ,

(e) fs maps Dom(fs) ∩M1 onto Rang(fs) ∩M2,

(f)1 if s ∈ Y , A ∈ [N1]
<κ then for some t ∈ Y we have s <Y t ∧ A ⊆

Dom(ft),

(f)2 if s ∈ Y and A ∈ [N2]
<κ then for some t ∈ Y we have s <Y t ∧ A ⊆

Rang(ft).

Now the approximation will consist of Bℓ ∈ [Mℓ]
<κ and 〈(c̄ℓn, d̄

ℓ
n) : n < ω〉, with

c̄ℓ0, d̄
ℓ
0 from Nℓ, which form a strict (κ,< κ)-decomposition over (Mℓ, Bℓ) for ℓ = 1, 2

and an elementary mapping hmapping B1 ontoB2 and (c̄1n, d̄
1
n) to (c̄

2
n, d̄

2
n). So using

c̄ℓn, d̄
ℓ
n for n > 0 is to give us a condition with which we can continue in a good

induction hypothesis.
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48 SAHARON SHELAH

Now it should be clear what we like to have from strict decomposition; however,
the decomposition from §2 are not enough.

We first connect decomposition (i.e. the results of 3.8) and sufficient conditions for{pr.28}
being an indiscernible sequence.

{pu.14}
Claim 4.6. The sequence 〈āα : α < α∗〉 is an indiscernible sequence over B when
for some p,B we have:

(a) āα is a sequence of members of C and āα = c̄αˆd̄α where ℓg(c̄α) = ℓg(c̄0), ℓg(d̄α) =
ℓg(d̄0) (not necessarily finite),

(b) tp(āαˆāβ, B) = p for α < β < α∗,

(c) if α < β < α∗ then tp(d̄β , c̄β + d̄α +B) ⊢ tp(d̄β , c̄β ∪ {āγ : γ ≤ α} ∪B),

(d) tp(c̄α,∪{āβ : β < α} ∪B) is increasing with α,

(e) tp(c̄α,∪{āβ : β < α} ∪B) does not split over B.

Remark 4.7. Concerning §3, it is natural to omit the first occurance of B in clause
(c).

Proof. For u, v ⊆ α∗ let Bu,v =
⋃
{āα : α ∈ u} ∪

⋃
{c̄α : α ∈ v} ∪ B. For

u, v ⊆ α∗ and increasing functions h1 from u to α∗ and h2 to v to α∗ such that
h1↾(u∩ v) = h2↾(u∩ v) and even h = h1 ∪ h2 is an increasing function h from u∪ v
to α∗; let f = fh1,h2 be defined as follows:

⊛ (a) Dom(f) = Bu,v,

(b) f ↾ B = idB,

(c) f maps āα to āh(α) for α ∈ u,

(d) f maps c̄α to c̄h(α) for α ∈ v.

Is fh↾u,h↾v a well defined function and even one to one? For this it suffices to check
the following three demands, which follows by Clause (b) of the assumption

(∗)1 (α) if α, β < α∗, b ∈ B and i < ℓg(āα) then (āα)i = b⇔ (āβ)i = b,

(β) if α, β < α∗ and i, j < ℓg(āα) then (āα)i = (āα)j ⇔ (āβ)i = (āβ)j ,

(γ) if α1 < α2 < α∗ and β1 < β2 < α∗ and i, j < ℓg(āα) then
(āα1)i = (āα2)j ⇔ (āβ1)i = (āβ2)j .

We prove by induction on n that 〈āα : α < α∗〉 is an n-indiscernible sequence over
B (when n < α∗). For n ≤ 2 this is trivial by Clause (b) of the assumption. So
assume n = m + 1 > 2 and we have proved it up to m. So let α0 < . . . < αm <
α∗, β0 < . . . < βm < α∗ and we shall prove that āα0ˆ . . . ˆāαm

, āβ0ˆ . . . ˆāβm
realize

the same type over B, this suffices.
Now by symmetry without loss of generality αm ≤ βm let h0 = {(αℓ, βℓ) : ℓ <

m}, h1 = {(αℓ, αℓ) : ℓ < m}, h2 = h1 ∪ {(αm, βm)} and h3 = h0 ∪ {(βm, βm)} and
h4 = h0 ∪ {(αm, βm)}.

Let f0 be the mapping fh0,h0 . By the induction hypothesis

(∗)2 f0 is an elementary mapping.

Let f1 be the mapping fh1,h2 , now by Clause (d) of the assumption

(∗)3 f1 is an elementary mapping.
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By (∗)2 we know that āα0ˆ . . . ˆāαm−1 and f0(āα0ˆ . . . ˆāαm−1) realize the same
type over B and they are included in Bαm,αm

, Bβm,βm
respectively. But αm ≤ βm

so both sequences are from Bβm
hence by Clause (e) of the assumption, i.e. as

tp(c̄βm
, Bβm,βm

) does not split over B, recalling (∗)2 we have

(∗)4 f2 := fh0,h3 is an elementary mapping.

By (∗)3 + (∗)4, comparing we have

(∗)5 f3 := fh0,h4 being f2 ◦ f1 is an elementary mapping.

Note that

(∗)6 f3(c̄αm
ˆd̄αm−1) = c̄βm

ˆd̄βm−1 .

By Clause (b) of the assumption and (∗)5 + (∗)6 clearly

(∗)7 f3(tp(d̄αm
, c̄αm

+ d̄αm−1 +B)) = tp(d̄βm
, c̄βm

+ d̄βm−1 +B).

By Clause (c) of the assumption

(∗)8 tp(d̄αm
, c̄αm

+ d̄αm−1 +B) ⊢ tp(d̄αm
, c̄αm

+ āα0 + . . .+ āαm−1 +B)

(∗)9 tp(d̄βm
, c̄βm

+ d̄βm−1 +B) ⊢ tp(d̄βm
, c̄βm

+ āβ0 + . . .+ āβm−1 +B).

Together f4 = fh4,h4 is an elementary mapping and it maps āαℓ
to āβℓ

for ℓ ≤ m
(and extend idB) so we are done. �4.6

{pu.16}
Observation 4.8. The sequence 〈(c̄t, d̄t) : t ∈ I〉 is a strict0 (0, θ)-decomposition
over (B0, B) when for some 〈Iℓ, B,Bℓ : ℓ < n〉 we have:

(a) n < ω and n ≥ 2

(b) the linear order I is I0 + . . .+ In where Iℓ is infinite for ℓ = 1, . . . , n− 1,

(c) 〈(c̄t, d̄t) : t ∈ Iℓ〉 is a strict0 (0, θ)-decomposition over (Bℓ, B) for ℓ ≤ n,

(d) 〈c̄tˆd̄t : t ∈ Iℓ + Iℓ+1〉 is indiscernible over Bℓ and ℓg(c̄t) for t ∈ Iℓ ∪ Iℓ+1 is
constant for ℓ < n,

(e) Bℓ+1 ⊇ {c̄tˆd̄t : t ∈ Iℓ} ∪B
ℓ,

(f) B ⊆ B0.

Proof. In Definition 3.5, Clause (a) holds trivially as B0 ⊇ B by Clause (f) here {pr.35}
(recalling that κ there stands for 0 here). For Clause (b) of 3.5 the sequence {pr.35}
〈ℓg(c̄t) : t ∈ I〉 is constant as for each ℓ < n the sequence 〈ℓg(c̄t) : t ∈ Iℓ ∪ Iℓ+1〉 is
constant (by Clause (c) here and (b) in 3.5) and use transitivity of equality and Iℓ {pr.35}
for ℓ = 1, . . . , n− 1 being non-empty by Clause (b) here. Similarly 〈ℓg(d̄t) : t ∈ I〉
is constant, so 3.5(b) indeed holds. {pr.35}

Similarly, Clause 3.5(c) follows from 3.5(d) proved below and also Clause (c) {pr.35}{pr.35}
here for ℓ = 1 (recalling I1 is infinite). Clause 3.5(e)− from 3.5(3) follows similarly {pr.35}{pr.35}
using B′ ⊇ B0 by Clause (e) here and (e)− there and clause (d) proved below.

So we are left with Clause 3.5(d), that is 〈c̄tˆd̄t : t ∈ I〉 is an indiscernible {pr.35}
sequence over B0. For this we prove by induction on k ≤ n that 〈c̄tˆd̄t : t ∈
∪{Iℓ : ℓ ∈ [n − k, n]}〉 is an indiscernible sequence over Bn−k. For k = 0, 1 this
holds by clause (d), for k ≥ 2, let s0 <I . . . <I sm−1, t0 <I . . . <I tm−1 be from
∪{Iℓ : ℓ ∈ [n − k, n]} be given. Choose s′i, t

′
i from In−k ∪ In−k+1 for i < m such

that s′0 <I . . . <I s
′
m−1, t

′
0 <I . . . <I t

′
m−1 and sℓ ∈ In−k ⇒ s′ℓ = sℓ, sℓ /∈ In−k ⇒
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50 SAHARON SHELAH

s′ℓ ∈ In−k+1 and tℓ ∈ In−k ⇒ t′ℓ = tℓ, tℓ /∈ In−k ⇒ t′ℓ ∈ In−k+1. This is possible as
In−k+1 is infinite because k ∈ [2, n].

Let j ≤ m be such that ℓ < m ⇒ (sℓ ∈ In−k ⇔ ℓ < j); so by the induction
hypothesis we have tp(āsjˆ . . . ˆāsm−1 , B

n−k+1) = tp(ās′jˆ . . . ˆās′m−1
, Bn−k+1). As

ℓ < j ⇒ āsℓ = ās′
ℓ
⊆ Bn−k+1 and Bn−k ⊆ Bn−k+1 it follows that tp(ās0ˆ . . . ˆāsm−1 , B

n−k)

is equal to tp(ās′0ˆ . . . ˆās′m−1
, Bn−k). This type by clause (d) is equal to tp(āt′0ˆ . . . ˆāt′m−1

, Bn−k).

Similarly to the proof in the beginning of the paragraph, this type by the induction
hypothesis is equal to tp(āt0ˆ . . . ˆātm−1 , B

n−k), so together we are done. �4.8

The following is a local version of 4.6 (see 4.10){pu.14}{du.22}
{du.19}

Claim 4.9. Assume (n(∗) < ω and α(∗) > n(∗)) for each k < n(∗)). The sequence
〈c̄0αˆd̄α : α < α∗〉 is an n(∗)-indiscernible sequence over B when :

(a) c̄kα ∈ γ(k,1)
C for k ≤ n(∗), α < α(∗); this means that the length of c̄kα may

depend on k but not on α and may be infinite,

(b) d̄α = d̄0α ∈ γ(k,0)
C for α < α(∗),

(c) c̄kα ⊳ c̄
k+1
α for α < α(∗), k < n(∗),

(d) ēkα ∈ γ(m,2)
C for non-zero k ≤ n(∗), α < α(∗),

(e) for all α < β < α(∗) the type tp(c̄k+1
β ˆēk+1

α ˆd̄βˆē
k
β, B) is the same,

(f) tp(d̄βˆē
k
β, c̄

k
β + ēk+1

α +B) ⊢ tp(d̄kβˆē
k
β, c̄

k
β +

∑

γ<β

c̄kγˆd̄γ +B),

(g) tp(c̄kα,∪{c̄
k+1
β ˆd̄βˆē

k+1
β : β < α} ∪B) is increasing with α,

(h) tp(c̄kα,∪{c̄
k+1
β ˆd̄βˆē

k+1
β : β < α} ∪B) does not split over B,

(i) tp(c̄
n(∗)
α ˆd̄αˆē

k
α, B) is the same for all α < α(∗).

{du.22}
Remark 4.10. 1) In what sense is 4.9 a local version of 4.6? In the second we get only{du.19}{pu.14}
n(∗)-indiscernibility. Note that the role of d̄α there is played by d̄α, ē

m
α (m < n(∗))

here.
2) The claim is not used in the rest of the section.

Proof. We prove by induction on n < n(∗) that

⊙1 if k ≤ n(∗)− n and α0 < . . . < αn and β0 < β1 < . . . < βn then
c̄kα0

ˆd̄α0ˆ . . . ˆc̄
k
αn−1

ˆd̄αn−1ˆc̄
k
αn

ˆd̄αn
ˆēkαn

and

c̄kβ0
ˆd̄β0ˆ . . . ˆc̄

k
αn−1

ˆd̄αn−1ˆc̄
k
βn
ˆd̄βn

ˆēkβn
realize the same type over B.

For n = n(∗)− 1, k = 0 we get the desired conclusion.

For n = 0 this holds by clause (i) of the assumption. So assume n = m + 1 and
k ≤ n(∗)− n and we have proved this for m. Note that k + 1 ≤ n(∗) −m. So let
α0 < . . . < αm+1 < α∗, β0 < . . . < βm+1 < α∗ be given and (by symmetry) without
loss of generality αn ≤ βn and we shall proof the equality of types from ⊙1 in this
case, this suffice. Now

(∗)1 c̄k+1
α0

ˆd̄α0ˆ . . . ˆc̄
k+1
αm−1

ˆd̄αm−1ˆc̄
k+1
αm

ˆd̄αm
ˆēk+1

αm
and

c̄k+1
β0

ˆd̄β0ˆ . . . ˆc̄
k+1
βm−1

ˆd̄k+1
αm−1

ˆc̄k+1
αm

ˆd̄αm
ˆek+1

αm
realize

the same type over B.

[Why? By the induction hypothesis.]
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(∗)2 tp(c̄kβn
,∪{c̄k+1

γ ˆd̄γˆē
k+1
γ : γ < βn} ∪ B) extends tp(c̄kαn

,∪{c̄k+1
γ ˆd̄γˆē

k+1
γ :

γ < αn} ∪B).

[Why? By clause (g) of the assumption.]

(∗)3 tp(c̄kβn
,∪{c̄k+1

γ ˆd̄γˆē
k+1
γ : γ < βn} ∪B) does not split over B.

[Why? By clause (h) of the assumption.]

(∗)4 c̄k+1
α0

ˆd̄α0ˆ . . . ˆc̄
k+1
αm−1

ˆd̄αm−1ˆc̄
k+1
αm

ˆd̄αm
ˆēk+1

αm
ˆc̄kβm+1

and

c̄k+1
β0

ˆd̄β0ˆ . . . ˆc̄
k+1
βm−1

ˆd̄βm−1ˆc̄
k+1
βm

ˆd̄βm
ˆēk+1

βm
ˆc̄kβm+1

realize

the same type over B.

[Why? By (∗)1 + (∗)3.]

(∗)5 in (∗)4 we can replace c̄kβm+1
in the first sequence by c̄kαm+1

.

[Why? By (∗)4 + (∗)2.] But

(∗)6 (c̄k+1
αm+1

ˆēk+1
αm

)ˆ(d̄αm+1ˆē
k
αm+1

) and (c̄k+1
βm+1

ˆēk+1
βm

)ˆ(d̄βm+1ˆē
k
βm+1

) realize the

same type over B.

[Why? By clause (e) of the assumption.]

(∗)7 in (∗)4, (∗)5 we can replace c̄k+1
αℓ

(ℓ ≤ m) by c̄kαℓ
.

[Why? As c̄kγ ⊳ c̄
k+1
γ by clause (c) of the assumption.]

(∗)8 c̄kα0
ˆd̄α0ˆ . . . ˆc̄

k
αm−1

ˆd̄αm−1ˆc̄
k
αm

ˆd̄αm
ˆc̄kαm+1

ˆd̄mαm+1
ˆēkβm+1

and

c̄kβ0
ˆd̄β0ˆ . . . ˆc̄

k
βm−1

ˆd̄βm−1ˆc̄
k
βm

ˆd̄βm
ˆc̄kβm+1

ˆd̄βm+1ˆē
k
βm+1

realize the same type over B.

[Why? By (∗)7 + (∗)6 and clause (f) of the assumption.]
We finish the induction step. Hence we get the desired statement. �4.9

∗ ∗ ∗

We now return to the generic pair conjecture. Central here is the following defini-
tion; the best case is λ = κ = θ is a measurable cardinal.

{ps.7}
Definition 4.11. We say that the triple (λ, κ,< θ) is good or T -good when :

(A) |T | < θ = cf(θ) ≤ κ = cf(κ) ≤ λ = λ<κ,

(B) T is dependent,

(C) ifM is κ-saturated of cardinality ≤ λ and d̄ ∈ θ>
C then we can find B ⊆M

of cardinality < κ and a strict (κ,< θ)-decomposition 〈(c̄n, d̄n) : n < ω〉
over (M,B) such that d̄ E d̄0,

(D) ifM is κ-saturated of cardinality≤ λ,B ⊆M has cardinality< κ, 〈(c̄n, d̄n) :
n < ω〉 is a strict (κ,< θ)-decomposition over (M,B) and d̄ ∈ θ>

C such
that 〈c̄1+nˆd̄1+n : n < ω〉 is an indiscernible sequence over M + c̄0 + d̄0 + d̄
then there is a strict (κ,< θ)-decomposition 〈(c̄+n , d̄

+
n ) : n < ω〉 over (M,B)

such that c̄n E c̄+n , d̄n ⊳ d̄
+
n for n < ω and d̄0ˆd̄ E d̄+0 .

So to begin our analysis we need
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{ps.11}
Observation 4.12. 1) If T is a dependent and λ > |T | is a measurable cardinal
then (λ, λ,< λ) is T -good.
2) If T is dependent, κ a supercompact cardinal κ and λ = λ<λ ≥ κ, then (λ, κ,< κ)
is T -good.

Proof. Immediate by 3.12(2) and 3.7(2), you may use 3.8, 3.1(2), too. �4.12{pr.49}{pr.23}{pr.28}{pr.7}

For the rest of this section we assume, till but not including the end that is, 4.23.{ps.56}
{ps.13}

Hypothesis 4.13. 1) T is dependent.
2) |T | < θ = cf(θ) ≤ κ = cf(κ) ≤ λ and λ = λ<λ > |T | and (λ, κ,< θ) is T -good.

{ps.21}
Claim 4.14. The sequence 〈(c̄δn, d̄

δ
n) : n < ω〉 is a strict (κ,< θ)-decomposition

over (M,Bδ) provided that:

(a) δ is a limit ordinal < θ = cf(θ),

(b) 〈(c̄αn , d̄
α
n) : n < ω〉 is a strict (κ,< θ)-decomposition over (M,Bα) for each

α < δ,

(c) c̄αn E c̄βn ∧ d̄αn E d̄βn for α < β < δ, n < ω,

(d) Bα ⊆ Bβ for α < β < δ,

(e) we define c̄δn = ∪{c̄αn : α < δ}, d̄δn = ∪{d̄αn : α < δ}, Bδ = ∪{Bα : α < δ}.

Remark 4.15. On another approach see [Sh:950, 3.23=c70].

Proof. We have to check Clauses (a)-(f) of Definition 3.5(1). Clause (a) is trivial{pr.35}
by assumption (b) of 4.14 recaling δ < θ = cf(θ). Clause (b) holds as δ < θ ≤ cf(cf){ps.21}
by assumption (a) of 4.14 and 〈ℓg(c̄δn) : n < ω〉 is constant by assumptions (b),(c){ps.21}
and similarly 〈ℓg(d̄δn) : n < ω〉 is constant. Next Clauses (c),(d),(e) hold by their
local character and assumptions (b) + (c) of 4.14.{ps.21}

Lastly, proving Clause (f) is the main point, it means to show:

⊙1 if Bδ ⊆ A ⊆M and |A| < κ then for some pair (c̄, d̄) of sequences from M
we have 〈c̄ˆd̄〉ˆ〈c̄δnˆd̄

δ
n : n < ω〉 is an indiscernible sequence over A.

Toward this by induction on α < δ we choose a pair (c̄∗α, d̄
∗
α) from M such that

⊛1 〈c̄∗αˆd̄
∗
α〉ˆ〈c

α
nˆd̄

α
n : n < ω〉 is an indiscernible sequence over A ∪

⋃
{c̄∗βˆd̄

∗
β :

β < α}.

[Why possible? We can choose (c̄∗α, d̄
∗
α) because 〈(c̄αn , d̄

α
n) : n < ω〉 being a strict

(κ,< θ)-decomposition over Bα, we can apply clause (f) of Definition 3.5 recalling{pr.35}
Bα being a subset of A ∪ {(c̄∗ˆd̄∗ : β < α} and the latter being ⊆ M and of
cardinality < κ as κ is regular ≥ θ > δ.]

We can find 〈(c̄α, d̄α) : α < δ〉 though not necessarily in M such that

⊛2 (a) 〈c̄αˆd̄α : α < δ〉ˆ〈c̄δnˆd̄
δ
n : n < ω〉 is an indiscernible sequence over A

(b) c̄∗α E c̄α and d̄∗α E d̄α for α < δ and, of course,
ℓg(c̄α) = ℓg(c̄αn), ℓg(d̄α) = ℓg(d̄αn).

[Why? For this by using the saturation of C, it is enough to prove that: if n <
m < ω,α0 < . . . < αn−1 < αn < δ then the sequences c̄∗α0

ˆd̄∗α0
ˆ . . . ˆc̄∗αn−1

ˆd̄∗αn−1

and c̄α0
0 ˆd̄α0

0 ˆc̄α1
1 ˆd̄α1

1 ˆ . . . ˆc̄
αn−1

n−1 ˆd̄
αn−1

n−1 realize the same type over A∪ {c̄δkˆd̄
δ
k : k ∈
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[n,m)}. This is proved by induction on n < ω. For n = 0 this is trivial. For n+ 1,
so assuming n+ 1 < m:

First: c̄∗αn
ˆd̄∗αn

and c̄αn
n ˆd̄αn

n realize the same type over A∪{c̄∗αℓ
ˆd̄∗αℓ

: ℓ < n}∪{c̄δk :

k ∈ [n+ 1,m)} by the choice of (c̄∗αn
, d̄∗αn

).

Second: c̄∗α0
ˆd̄∗α0

ˆc̄∗α1
ˆd̄∗α1

ˆ . . . ˆc̄∗αn−1
ˆd̄∗αn+1

and c̄α0
0 ˆd̄α0

0 ˆc̄α1
1 ˆd̄α1

1 ˆ . . . ˆc̄
αn−1

n−1 ˆd̄
αn−1

n−1

realize the same type over A ∪ {c̄δkˆd̄
δ
k : k ∈ [n,m)} by the induction hypothesis

hence also over A ∪ (c̄αnˆd̄αn) ∪ {c̄δkˆd̄
δ
k : k ∈ [n + 1,m)} by monotonicity. By the

last two sentences we are done proving ⊛2.]
Hence we can find a pair (c̄′, d̄′) such that:

⊛3 〈c̄′ˆd̄′〉ˆ〈c̄αˆd̄α : α < δ〉ˆ〈c̄δnˆd̄
δ
n : n < ω〉 is an indiscernible sequence over

A.

Lastly, we choose (c̄′′, d̄′′) such that

⊛4 (c̄′′, d̄′′) is a pair of sequences fromM such that c̄′′ˆd̄′′ realizes tp(c̄′ˆd̄′, A∪⋃
{c̄∗αˆd̄

∗
α : α < δ}), of course with ℓg(c̄′′) = ℓg(c̄δ0), ℓg(d̄

′′) = ℓg(d̄δ0); equiva-
lently there is an automorphism of C which is the identity on A∪

⋃
{c̄∗αˆd̄

∗
α :

α < δ} mapping c̄′ˆd̄′ to c̄′′ˆd̄′′.

We shall prove that (c̄′′, d̄′′) is as required. Now to prove that (c̄′′, d̄′′) is as required
in ⊙1 it suffices to prove, for each α < δ that

⊙2 〈(c̄′′ ↾ ℓg(c̄α0 ))ˆ(d̄
′′ ↾ ℓg(d̄α0 ))〉ˆ〈c̄

α
nˆd̄

α
n : n < ω〉

is an indiscernible sequence over A.

[Why? As ⊙1 is a “local” demand, i.e. it says that c̄′′ˆd̄′′ is a sequence realizing
an appropriate type q (and is from M) and for this it suffices to check every finite
subtype so ⊙2 suffices.]

Now ⊙2 follows by ⊛6 below. Let (c̄∗β,γ , d̄
∗
β,γ) = (c̄∗β↾ℓg(c̄

γ
0), d̄

∗
β↾ℓg(d

γ
0)) and

(c̄′′γ , d̄
′′
γ) = (c̄′′↾ℓg(c̄γ0), d̄

′′↾ℓg(d̄γ0)) for γ < δ and β ∈ [γ, δ).
Now

⊛5 〈c̄′′αˆd̄
′′
α〉ˆ〈c̄

∗
β,αˆd̄

∗
β,α : β ∈ [α, δ)〉 is a strict0 decomposition over (A,A).

[Why? By ⊛3, this holds for 〈(c̄′ ↾ ℓg(c̄α0 ))ˆ(d̄
′ ↾ ℓg(c̄α0 ))〉ˆ〈c̄

∗
β,αˆd̄

∗
β,α : β ∈ [α, δ)〉

and we use preservation by automorphism of C, i.e. use ⊛4.]

⊛6 For α < δ and i ≤ ω the sequence 〈c̄′′αˆd̄
′′
α〉ˆ〈c̄

∗
β,αˆd̄

∗
β,α : β ∈ [α, δ)〉ˆ〈cαnˆd̄

α
n :

n < i〉 is a strict0 decomposition over (A,A).

[Why? We prove this by induction on i, noticing that for i = ω we get the desired
conclusion; also for i = ω the inductive step is trivial and for i = 0 use ⊛5. So
assume i = n+ 1, let

(∗)1 • A1 = A ∪ Rang(c̄′′α) ∪ Rang(d̄′′α),

• A2 = A2,δ where

• for γ ∈ [α, δ] we let A2,γ = ∪{Rang(c̄∗β,α) ∪ Rang(d̄∗β,α) : β ∈ [α, γ)},

• A3 = ∪{c̄αℓ ˆd̄
α
ℓ : ℓ < n}.

Clearly
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(∗)2 (a) A1, A2,δ are ⊆M and A3 ⊆ C,

(b) A2,γ is ⊆-increasing for γ ∈ [α, δ).

Let γ ∈ (α, δ) be a successor ordinal and we shall prove

(∗)3 (c∗γ,αˆd̄
∗
γ,α)ˆ . . . ˆ(c̄

∗
γ+n,αˆd̄

∗
γ+n,α) and (c̄α0 ˆd̄

α
0 )ˆ . . . ˆ(c̄

α
nˆd̄

α
n) realize the same

type over A1 ∪ A2,γ .

As δ is a limit ordinal this suffices by 4.8 (with n = 2, I0 a singleton, I1 iso-{pu.16}
morphic to δ, I2 isomorphic to ω) for proving ⊛6 (hence for ⊙2 hence for the
claim). Now (c̄∗γ,αˆd̄

∗
γ,α)ˆ . . . ˆ(c̄

∗
γ+n−1,αˆd̄

∗
γ+n−1,α) and (c̄α0 ˆd̄

α
0 )ˆ . . . ˆ(c̄

α
n−1ˆd̄

α
n−1)

realize the same type over A1 ∪A2,γ by the induction hypothesis.
Next by Clause (b) of the assumption tp(c̄αn,M ∪

⋃
{c̄αmˆd̄αm : m < n}) does not

split over Bα hence tp(c̄αn , A ∪ A1 ∪ A2 ∪ A3) does not split over Bα ⊆ A by (∗)1.
Hence by the induction hypothesis 〈c̄′′αˆd̄

′′
α〉ˆ〈c̄

∗
β,αˆd

∗
β,α : β ∈ [α, δ)〉ˆ〈(c̄αk ˆd̄

α
k ) :

k < n〉 is an indiscernible sequence over A ∪ c̄αn , hence

• (c̄∗γ,αˆd̄
∗
γ,α)ˆ . . . ˆ(c̄

∗
γ+n−1,αˆd̄

∗
γ+n−1,α)ˆc̄

α
n and

(c̄α0 ˆd̄
α
0 )ˆ . . . ˆ(c̄

∗
γ+n−1,αˆd̄

∗
γ+n−1,α)ˆc̄

α
n realize the same type over A1∪A2,γ .

But by ⊛1 clearly c̄αn, c̄
∗
γ+n,α realize the same type over A1 ∪ A2,γ hence

• (c∗γ,αˆd̄
∗
γ,α)ˆ . . . ˆ(c̄

∗
γ+n−1,αˆd̄

∗
γ+n−1,α)ˆc̄

∗
γ+n,α and (c̄α0 ˆd̄

α
0 )ˆ . . . ˆ(c̄

α
n−1ˆd̄

α
n−1)ˆc̄

α
n

realize the same type over A1 ∪ A2,γ .

We can choose d̄′ in C such that (c̄∗γ,αˆd̄
∗
γ,α)ˆ . . . ˆ(c̄

∗
γ+n−1,αˆd̄

∗
γ+n−1,α)ˆ(c̄

∗
γ+n,αˆd̄

′)

and (c̄α0 ˆd̄
α
0 )ˆ . . . ˆ(c̄

α
n−1ˆd̄

α
n−1)ˆ(c̄

α
nˆd̄

α
n) realize the same type over A1 ∪A2,γ so (to

prove⊛6) it suffices to prove that d̄∗γ+n,α, d̄
′ realize the same type over A1∪A2,γ+n∪

c̄∗γ+n,α (∗)3 hence.

Recall that 〈c̄∗β,αˆd̄
∗
β,α : β ∈ [α, δ)〉ˆ〈c̄αnˆd̄

α
n : n < ω〉 is an indiscernible sequence,

hence the sequences c̄∗γ+n−1,αˆd̄
∗
γ+n−1,αˆc̄

∗
γ+n,αˆd̄

∗
γ+n,α and c̄∗γ+n−1,αˆd̄

∗
γ+n−1,αˆc̄

α
nˆd̄

α
n

realize the same type.
By the two previous sentences and the transitivity of the equality of types

d̄∗γ+n,α, d̄
′ realize the same type over (c̄∗γ+n−1,αˆd̄

∗
γ+n−1,α)ˆc̄

∗
γ+n,α, but by Clause

(e)− of Definition 3.5 which apply by Clause (b) of the assumption and ⊛5 above{pr.35}
we have tp(d̄∗γ+n,α, c̄

∗
γ+n,α + d̄∗γ+n−1,α) ⊢ tp(d̄∗γ+n,α, A1 + A2,γ+n + c̄∗γ+n,α) so we

are done.] �4.14

{ps.25}
Definition 4.16. 1) We say that the strict (κ,< θ)-decompositions 〈(c̄′ε, d̄

′
ε) :

ε < δ〉, 〈(c̄′′ε , d̄
′′
ε ) : ε < δ〉 over M are equivalent over B ∈ [M ]<λ when for some

automorphism f ofM over B for every n and ε0 < . . . < εn−1 < δ, f maps the type
tp((c̄′εδˆd̄

′
εδ
)ˆ . . . ˆ(c̄′εn−1

ˆd̄′εn−1
),M) to the type tp((c̄′′ε0ˆd̄

′′
ε0
)ˆ . . . ˆ(c̄′′εn−1

ˆd̄′′εn−1
),M)

and ℓg(c̄′ε0) = ℓg(c̄′′ε0), ℓg(d̄
′
ε0
) = ℓg(d̄′′ε0).

2) In part (1) we say “weakly equivalent over B” when for every ζ < κ and
b̄′ ∈ ζM there is b̄′′ ∈ ζM and vice versa and elementary mapping f such that:
f ⊇ idB, f(b̄

′) = b̄′′ and f(c̄′ε) = f(c̄′′ε ), f(d̄
′
ε) = f(d̄′′ε ) for ε < δ.

3) If B = ∅ then we may omit it.
{ps.23}

Claim 4.17. 1) If M is κ-saturated of cardinality λ and B ∈ [M ]<κ then the
number of strict (λ, κ,< θ)-decompositions 〈(c̄n, d̄n) : n < ω〉 over (M,B) such that
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ℓg(d̄n) > 0 up to weak equivalence or when ℓg(d̄n) = 0 up to equivalence over B is
≤ 2<κ (even ≤ 2σ for some σ < κ), see 4.16.{ps.25}
2) For M,B as above, two strict (κ,< θ)-decompositions are equivalent when they
are weakly equivalent over B and λ = κ.
3) If 〈(c̄n, d̄n) : n < ω〉 is a (κ,< θ)-decomposition over (M,B) so B ∈ [M ]<κ and
C = ∪{rang(c̄nˆd̄n) : n < ω} ∪ B then M[C] is a κ-sequence homogeneous model
(see [Sh:88r, 2.1-2.4]).
4) Assume

(a) 〈(c̄ια,n, d̄
ι
α,n) : n < ω〉 is a strict (κ,< θ)-decomposition of (M,Bι) for α ≤ δ

such that ι = 1, 2

(b) α < β ≤ δ ⇒ c̄ια,n E c̄ιβ,n∧ d̄
ι
α,n E d̄ια,n and c̄ιδ,n =

⋃

α<δ

c̄ια,n, d̄
ι
δ,n =

⋃

α<δ

d̄ια,n

(c) 〈(c̄1α,n, d̄
1
α,n) : n < omega〉 is weakly equivalent to 〈(c̄2α,n, d̄

2
α,n) : n < ω〉

over B for α < δ.

Then clause (c) holds also for α = δ.

Proof. 1) First, if ℓg(d̄n) = 0, by 1.2(4), that is [Sh:783, 5.26], however in the {3k.0.7}
present case κ is measurable hence strongly inaccessible so 4.17(1) is easy. That is, {ps.23}
fixing B, also the number of α < λ and p(x̄α) ∈ S(M) not splitting over B is ≤ λ
by 1.2. The case for weakly equivalent holds also is easy. {3k.0.7}
2) Let 〈(c̄′n, d̄

′
n) : n < ω), 〈(c̄′′n, d̄

′′
n) : n < ω〉 be two strict (κ,< θ)-decompositions

over M . As a λ-sequence-homogeneous model of cardinality λ is determined up to
isomorphisms by the set of complete types of finite tuples in it (by [KM67] or see
[Sh:88r, §2]) by part (3) it suffices to show:

(∗)1 for every b̄′ ∈ ω>M there are b̄′′ ∈ ω>M and an elementary mapping f such
that f(b̄′) = b̄′′, f ⊇ idB and ε < δ ⇒ f(c̄′ε) = c̄′′ε ∧ f(d̄′ε) = d̄′ε,

(∗)2 for every b̄′′ ∈ ω>M there are b̄′ ∈ ω>M and f as above.

But this follows from weakly equivalent.
3) Let g be the identity mapping on ∪{Rang(c̄nˆd̄n) : n < ω} ∪B.

Let

(∗)1 F be the set of f such that:

• f is an elementary mapping

• Dom(f) ⊆M has cardinality < κ

• Rang(f) ⊆M

• f ∪ g is an elementary mapping.

It suffices to prove (∗)1 − (∗)4 below:

(∗)1 F 6= ∅.

[Why? As f = idB belongs to F .]

(∗)2 f ∈ F iff f−1 ∈ F .

[Why? Obvious.]

(∗)3 F is closed under union of increasing chains of length < κ.
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[Why? Just check.]

(∗)4 if f ∈ F , ℓ ∈ {1, 2} and aℓ ∈ M then for some a3−ℓ ∈ M we have f ∪
{(a1, a2)} ∈ F .

Why? By symmetry, without loss of generality ℓ = 1. Let δ be a limit ordinal
< κ. We choose c̄′ε, d̄

′
ε sequences from M of length ℓg(c̄0), ℓg(d̄0) respectively by

induction on ε < δ, by applying 3.5(f) with M, 〈(c̄n, d̄n) : n < ω〉 and Bε ={pr.35}
B ∪ Dom(f) ∪ {a1} ∪ Rang(f) ∪

⋃
{c̄′ζˆd̄

′
ζ : ζ < ε} getting c̄′ε, d̄

′
ε from M here

standing for M, 〈(ct, d̄t) : t ∈ J〉, A getting (c̄, d̄) there.
Clearly

(∗)4.1 〈c̄′εˆd̄
′
ε : ε < δ〉ˆ〈(c̄nˆd̄n) : n < ω〉 is an indiscernible sequence over B0.

This implies that, letting B∗ = ∪{c̄′εˆd̄
′
ε : ε < δ} ∪B:

(∗)4.2 f ∪ g ∪ idB∗ is an elementary mapping.

As M is κ-saturated

(∗)4.3 there is a2 ∈M such that f ∪ idB∗ ∪ {(a1, a2)} is an elementary mapping.

So we can prove as in the proof of 4.14{ps.21}

(∗)4.4 f ∪ {(a1, a2)} ∈ F .

So we are done.
4) Repeat the proof of 4.14. �4.17{ps.21}

Clearly 4.14 is a step forward. Now we prove the generic pair conjecture; instead{ps.21}
of assuming that the cardinality λ is measurable we can restrict T .
Toward this (the λ+ is an overkill, λ and even θ suffice).

{ps.28}
Definition 4.18. We say that the triple m = (M,N,A ) = (Mm, Nm,Am) is a
(λ, κ,< θ)-system when (λ ≥ κ ≥ θ = cf(θ) > |T | and) it satisfies clauses (a)-(d)
below, and say the triple is a full (λ, κ,< θ)-system when it satisfies clauses (a)-(i)
below where:

⊞ (a) M is κ-saturated of cardinality λ, even strongly κ-saturated24

(just to simplify clause (i))

(b) M ≺ N ≺ C and N has cardinality λ,

(c) Am is a set of cardinality λ of objects p such that:

(α) p is of the form 〈(c̄ε, d̄ε) : ε < λ+〉 = 〈(c̄ε[p], d̄ε[p]) : ε < λ+〉,

(β) c̄0ˆd̄0 ⊆ N ,

(γ) 〈(c̄ε, d̄ε) : ε < λ+〉 is a strict (κ,< θ)-decomposition over M ,

(d) Am is partially ordered by: p ≤m q iff

• c̄0[p] E c̄0[q] and d̄0[p] E d̄0[q],

• for every large enough ε < λ+, c̄ε[p] E c̄ε[q], d̄ε[p] E d̄ε[q],

(e) Am is closed under union of < θ increasing chains of length < θ
defined naturally,

24This means that for every (M,M)-elementary mapping of cardinality < κ can be extended
to an automorphism of M .
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(f) if p ∈ Am and d̄ ∈ θ>N then for some q ∈ A above p we have
Rang(d̄) ⊆ Rang(d̄0[q]),

(g) N is ℵ0-saturated
25,

(h) up to really equivalence every possible p in Clause (c) occurs (i.e. is
represented in A ), where p,q are really equivalent when they are
as in (c) and (c̄p,0, d̄p,0) = (c̄q,0, d̄q,0) and are equivalent

(i) there is q2 ∈ Am such that p2 ≤m q2 and q2,q1 are
equivalent as witnessed by f , when :

(α) p1 ≤m q1 so both are from Am,

(β) p2 ∈ Am is really equivalent to p1,

(γ) f ∈ aut(M) maps p1 to p2, yes the same f .
{ps.35}

Definition 4.19. 1) Let BP = BPλ,κ,<θ be the set of (λ, κ,< θ)-systems.
2) If (Mℓ, Nℓ,Aℓ) is a (λ, κ,< θ)-system for ℓ = 1, 2 we say (M2, N2,A2) is above
(M1, N1,A1) or (M1, N1,A1) ≤BPλ,κ,<θ

(M2, N2,A2) when M1 = M2, N1 ≺ N2

and A1 ⊆ A2.
3) We may write just BP,≤BP when (λ, κ,< θ) is clear from the context.
4) If m ∈ BP and p ∈ Am, we say that B is a base of p when B ⊆ Mm has
cardinality < κ and p is a strict (κ,< θ)-decomposition over (M,B).

{ps.42}
Claim 4.20. Assume κ = λ = λ<λ (see Definition 4.11). {ps.7}
1) If M ≺ C is strongly κ-saturated of cardinality λ then there is a pair (N,A )
such that (M,N,A ) is a (λ, κ,< θ)-system.
2) If (M,N1,A1) is a (λ, κ,< θ)-system and N2 ≺ C and ‖N2‖ = λ then there is a
pair (N3,A3) such that (M,N3,A3) is a (λ, κ,< θ)-system above (M,N1,A1) and
N2 ≺ N3.
3) If 〈(M,Nε,Aε) : ε < δ〉 is an increasing sequence of (λ, κ,< θ)-systems and δ is
a limit ordinal < λ+ then the union, (M,

⋃

α<δ

Nα,
⋃

α<δ

Aα) is a (λ, κ,< θ)-system

which is a least upper bound of {(M,Nε,Aε) : ε < δ}.
4) If in part (3) we have cf(δ) = λ or just cf(δ) ≥ θ and each is full, then so is the
union.

Proof. 1) Let m = (M,M, ∅) and check.
2) Let N3 ≺ C be such that N1 ∪N2 ≺ N3, N3 is κ-saturated of cardinality λ (even
saturated as really λ = λ<λ) and use (M,N3,A1).
3) Easy.
4) Easy. �4.20

{ps.43}
Claim 4.21. 1) We have:

(a) ≤BP is a partial order on BP,

(b) any ≤BP-increasing sequence of length < λ+ has an upper bound,

(b)+ moreover if 〈(M,Nα,Aα) : α < δ〉 is ≤BP-increasing then (M,∪{Nα : α <
δ},∪{Aα : α < δ}) is a least ≤BP-upper bound,

(c) BP is not empty, moreover for every M ∈ ECλ,λ(T ) there is m ∈ BP such
that Mm =M = Nm,Am = ∅.

25or just N ≺ C, does not matter
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58 SAHARON SHELAH

2) If m is a (λ, κ,< θ)-system then :

(a) ≤m is a partial order of Am,

(b) if also n is a (λ, κ,< θ)-system and m ≤BP n then ≤m=≤n ↾Am,

(c) if δ as a limit ordinal < θ and pα ∈ Am for α < δ is ≤m-increasing
with α then there is n ∈ BP such that m ≤BP n and ≤n-upper bound of
{pα : α < δ},

(d) if p ∈ Am and d̄ ∈ θ>N then there are a (λ, κ,< θ)-system n satisfying
m ≤BP n and q ∈ An such that p ≤n q and d̄ ⊆ Rang(d̄q0 ),

(e) if p1,p2 ∈ Am are equivalent and p1 ≤m q2 then for some n ∈ BP we
have m ≤BP n and for some q2 ∈ An equivalent to q1 we have p1 ≤n q2.

3) If (M,N,A ) is a (λ, κ,< θ)-system then there is a full (λ, κ,< θ)-system above
it.

Proof. 1) Clause (a) holds easily by checking 4.19(2). Clauses (b),(b)+ holds easily{ps.35}
by 4.20(3), and for Clause (c) use (M,M, ∅).{ps.42}
2) Why? Clauses (a),(b): Easy.

Clause (c): For α < β < δ let ζ = ζ(α, β) < λ+ be such that:

• if ε ∈ [ζ, λ+) then c̄pα
ε E c̄

pβ
ε , d̄pα

ε E d̄
pβ
ε .

Let ζ(∗) = sup{ζ(α, β) + 2 : α < β < δ}, so necessarily ζ(∗) < λ+. Clearly
if ζ ∈ [ζ(∗), λ+) ∪ {0} then (c̄pα

ζ : α < δ〉 is E-increasing and also the sequence

〈d̄pα

ζ : α < δ〉 is E-increasing.

We choose c̄0 = ∪{c̄pα

0 : α < δ}, d̄0 = ∪{d̄pα

0 : α < δ} and for ε < λ+ let
c̄1+ε = ∪{c̄pα

ζ(∗)+ε
: α < δ} and d̄1+ε = ∪{d̄pα

ζ(∗)+ε
: α < δ}.

Now easily

• p = 〈(c̄ε, d̄ε) : ε < λ+〉 is well defined and satisfies the demand in{ps.28}
4.18(c)(α) + (β) + (γ).

[Why? By Claim 4.14.]{ps.21}
So we define n as (M,Nm, {p} ∪ Am), easily

• n ∈ BP and m ≤ n.

Lastly, α < δ ⇒ pα ≤n p as witnessed by ζ(∗)× ω. So we are done proving clause
(c).
Clause (d):

Easy. By Clause (D) of Definition 4.11 of “(λ, κ,< θ) is T -good” which holds by{ps.7}
Hypothesis 4.13.{ps.13}
Clause (e):

By the definition of “equivalence” in Definition 4.16 (and 4.18(h)).{ps.25}{ps.28}
3) We fix a (λ, κ,< θ)-system (M,N∗,A∗). We now shall choose mi ∈ BP,≤BP-
increasing by induction on i ≤ λ and

⊙1 for i = 0 : m0 is (M,N∗,A∗)

⊙2 for limit i < λ,mi is a ≤BP-upper bound of 〈mj : j < i〉, in fact the union.



(
9
0
0
)
 
 
r
e
v
i
s
i
o
n
:
2
0
1
7
-
0
4
-
0
7
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
7
-
0
4
-
2
4
 
 

DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 59

[Why? Possible by clause (b)+ of part (1).]
By bookkeeping

⊙3 if 〈pα : α < δ〉 is ≤mj
-increasing, δ a limit ordinal < θ and j < λ, then for

some i ∈ (j, λ) the sequence has an upper bound by ≤mi+1 .

[Why? By Clause (c) of part (2).]

⊙4 if p ∈ Amj
and d̄ ∈ θ>Nmj

and j < λ then for some i ∈ (j, λ), there is

q ∈ Ami+1 such that p ≤mi+1 q and Rang(d̄) ⊆ Rang(d̄q0 ).

[Why? By Clause (d) of part (2).]

⊙5 if j < λ and p1,q1,p2, f satisfy Clauses (α) − (ε) of 4.18(i) with mj here {ps.28}
standing for m there then for some i ∈ (j, λ) there is q2 ∈ Ami+1 such that
p2 ≤mi+1 q2 and q1,q2 are equivalent as witnessed by f .

[Why? Use clause (e) of part (2).]

⊙6 for every i < λ fro some j ∈ (i, λ) and κ-saturated and even saturated
model N ′ we have Nj ≺ N ′ ≺ Nj+1.

[Why? By 4.20(2).] {ps.42}
So we can carry the induction. Now mλ is as required. �4.21

{ps.49}
Theorem 4.22. Assume (λ, κ,< θ) = (λ, λ,< λ) so is a T -good triple, see 4.11, {ps.7}{ps.13}
4.13.
1) If λ+ = 2λ, 〈Mα : α < λ+〉 is an ≺-increasing continuous sequence of members of
ECλ(T ),Mα saturated if α is non-limit andM = ∪{Mα : α < λ+} is saturated then
for some club (= closed unbounded subset) E of λ+ for any α < β < δ ∈ E and α, β

are non-limit or are from Sλ+

λ , the pairs (Mδ,Mα) and (Mδ,Mβ) are isomorphic.
2) If mℓ = (Mℓ, Nℓ,Aℓ) is a full (λ, λ,< λ)-system for ℓ = 1, 2 then (N1,M1) ∼=
(N2,M2) that is there is an isomorphism f from N1 onto N2 mapping M1 onto
M2.

Proof. 1) By part (2), noting that Mα,Mβ are saturated and recalling 4.21 and its {ps.43}
proof but we elaborate.

For α < λ+ let Λα = {η : η an increasing continuous sequence of ordinals with
supremum < α of length < λ and η(0) has cofinality λ and η(i+1) successor} and
Λ+
α = Λα+1\Λα. We now by induction on α choose M ′

α and (Nη,Aη) for η ∈ Λ+
α+1

such that:

(∗) (a) M ′
α ≺ C has cardinality λ

(b) M ′
α is saturated when cf(α) /∈ [ℵ0, λ)

(c) if p ∈ S(M ′
β) then for some γ ∈ (β, λ+), p is realized in M ′

γ

(d) if α = β + 1 and η ∈ Λ+
α+1 (so a supRang(η) = α) then

(α) M ′
β ≺ Nβ,η ≺M ′

α

(β) (M ′
η(0), Nβ,η,Aη) ∈ BP

(γ) if β is a limit ordinal then (M ′
η(0), Nη,Aη) = (M ′

η(0),∪{Nη↾i:

i < ℓg(η)},∪{Aη↾i : i < ℓg(η)}) so Nη =M ′
β

(δ) if β is a successor ordinal then (M ′
η(0), Nη,Aη) is a full

(λ, λ,< λ)-system.
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There is no problem to carry the induction. By clause (c), M = ∪{M ′
α : α < λ+}

is saturated so without loss of generality ∪{M ′
α : α < λ+} = ∪{Mα : α < λ+}, let

E∗ = {δ < λ+ : δ a limit ordinal divisible by λ and M ′
α = Mα}, clearly a club of

λ+.
Now if α < β are from E and has cofinality λ, let η = ηα,β be an increasing

continuous sequence of ordinals of length λ with limit β, such that η(0) = α and
η(i + 1) is a successor ordinal for every i < λ. Now M∗

α = M ′
α,Mβ = M ′

β =

∪{Nη↾i : i < λ} and let Aα,β = ∪{Aη↾i : i < λ}, so (Mα,Mβ ,Aα,β) is a full
(λ, λ,< λ)-system. By part (2) we can finish.
2) We define the set AP of approximation:

(∗)1 AP is the set of triples h = (p1, B1,p2, B2, f) = (p1[h], B2[h], p2[h], B2[h], f [h])
satisfying:

(a) pℓ ∈ Aℓ for ℓ = 1, 2,

(b) Bℓ ∈ [Mℓ]
<λ is a base for pℓ, see 4.19(4),{ps.35}

(c) f is an elementary mapping which mapsB1 ontoB2 such that Dom(f) =
B1,

(d) there is an isomorphism f+ from M1 onto M2 extending f such that:
if α0 < . . . < αn−1 < λ+ then f+ maps
tp((c̄p1,α1ˆd̄p1,α1)ˆ . . . ˆ(c̄p1,αn−1ˆd̄p1,αn−1),M1) onto

tp((c̄p2,α0ˆd̄p2,α0)ˆ . . . ˆ(c̄p2,αn−1ˆd̄p2,αn−1),M2).
(∗)2 we define the two-place relation ≤AP by: h1 ≤AP h2 iff

(a) both are in AP,

(b) pℓ[h1] ≤mℓ
pℓ[h2] for ℓ = 1, 2,

(c) Bℓ[h1] ⊆ Bℓ[h2],

(d) f1[h1] ⊆ f [h2].

Obviously

(∗)3 ≤AP partially ordered AP.

Also

(∗)4 if δ < λ is a limit ordinal and 〈hα : α < δ〉 is ≤AP-increasing, then this
sequence has an ≤AP-upper bound.

[Why? Clauses (a),(b),(c) of (∗)1 holds as in the proof of 4.21(2)(c) and clause (d){ps.43}
of (∗)1 holds by 4.17(4) and 4.17(2).]{ps.23}{ps.23}

(∗)5 if h ∈ AP and a ∈ M1 then there is h′ ∈ AP such that h ≤AP h′
1 and

a ∈ Bpℓ[h′
1]
.

[Why? Let a1 = a and let f+ ⊇ fh be as in (∗)1(d) and let a2 ∈ M2 realize
f+(tp(a1, Bp1[h])).

Let B′
ℓ = (Bpℓ[h] ∪ {aℓ}) and let p′

ℓ ∈ Amℓ
be defined by: (c̄ε[p

′
ℓ], d̄ε[p

′
ℓ]) =

(c̄ε[pℓ[h1], d̄ε[pℓ[h]).
Lastly, let h′ = (p′

1, B
′
1,p

′
2, B

′
2, fh ∪ {(a1, a2)}).]

(∗)6 If h ∈ AP and a ∈ M2 then there is h′ ∈ AP such that h ≤AP h′ and
a ∈ B2[h

′].
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[Why? Like (∗)5.]

(∗)7 if h ∈ AP and d ∈ N1 then for some h′ ∈ AP we have h ≤AP h′ and
d ∈ Rang(d̄0[p1[h

′]]).

[Why? By 4.21(2)(d) there is q1 ∈ Am1 such that p1[h] ≤m1 q1 and d ∈ d̄0[p1[h
′]. {ps.43}

Let f ′ ⊇ fh be as in (∗)1(d) so in particular an isomorphism from M1 onto M2.
Now by clause (i) of Definition 4.18 there is q2 ∈ Am2 such that f ′ maps q1 to {ps.28}

q2.
The rest should be clear.]

(∗)8 if h ∈ AP and d ∈ N2 then for some h′ ∈ AP we have h ≤AP h′ and
d ∈ Rang(d̄0[p1(h

′)]).

[Why? Like (∗)7.]
Together

⊙ there is a sequence 〈hi : i < λ〉 such that (for ℓ = 1, 2)

(a) it is ≤AP-increasing

(b)ℓ if a ∈Mℓ then a ∈ Bℓ[hi] for some i

(c)ℓ if d ∈ Nℓ then d ∈ Rang(d̄0[pℓ[hi]]) for some i < λ.

From this sequence we can “read” an isomorphism as required, say g(a1) = a2 iff for
some i and ε < ℓg(d̄0[p1[hi]) we have a1 = (d̄0[p1[hi]])ε, d2 = (d̄0[p2[hi]])ε.] �4.22

Another form, not assuming Hypothesis 4.13, is {ps.13}
{ps.56}

Conclusion 4.23. Assume (λ, λ,< λ) is T -good, e.g. λ > |T | is a measurable
cardinality and λ = λ<λ. Then for some F we have:

(A) (a) F is as in [Sh:88r, 3.3], i.e.

(α) F is a function with domain {M̄ : M̄ has the form 〈Mi : i ≤ β〉,
a ≺-increasing continuous sequence such that Mi is models of T of
cardinality λ with universe an ordinal ∈ [λ, λ+) and if i is non-limit
then Mi is saturated},

(β) F(M̄) is such that M̄ˆ〈F(M̄)〉 ∈ Dom(F)

(B) if M̄ = 〈Mα : α < λ+〉 obeys F which means that
λ+ = sup{α : F(M̄ ↾ (α+ 1) ≺Mα+1} then
for some club E of λ+ we have:

(a) cf(α) = λ⇒Mα is saturated,

(b) if Mαℓ
is saturated, cf(δℓ) = λ and αℓ < δℓ ∈ E for ℓ = 1, 2

then (Mδ1 ,Mα1)
∼= (Mδ2 ,Mβ2).
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