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tp(d, M) in two steps - pseudo stable and tree-like one. This is the main
aim of the section (and a major part of the paper). It is done by looking
at K, and meg_Kﬁ. A consequence which fulfilled to some extent the
aim is the Type Decomposition Theorem (2.4). As a second consequence
we give a characterization of “M is exactly k-saturated, x > cf(k) >
|T|”, see 2.2. In fact, we deal a little with singular exact saturation per
se. “Unfortunately” there are independent (complete first order theories)
T which has no model with singular exact saturation, see 2.23. But the
existence of an indiscernible set for dependent 7' suffice (see 2.26 under
instances of GCH) and has a neat characterization. Also, if p is a complete
1-type over a model M of T which is quite saturated then p has a spectrum
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[We start by sufficient conditions for a sequence being indiscernible. For a
measurable cardinal £ (> |T'|) we confirm the structure half of the generic
pair conjecture. Toward this, if we have the consequences of §3 we can
analyze generic pairs of models of T" in . In a slightly simplified formulation
this means: if 2% = k™, (k = k<% > |T|), M, a model of T of cardinality
k for a < kT is <-increasing continuous, M = U{M,, : o < xT} is xT-
saturated, then for a club E of k™ for all a < 8 belonging to {§ € F : §
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order theory. For the proof we show that an increasing (short) sequence of
so called strict (k, #)-decompositions has a limit.]
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§ 0. INTRODUCTION

We first give a page of introductory remarks for non-logicians to clarify notions
and to motivate working on dependent theories. The classical center of model
theory is investigating elementary classes, i.e. we fix a vocabulary 7 (i.e. a set
of predicates and function symbols), for a T-structure M let Th(M) be the set of
first order sentences which M satisfies, a complete first order theory T' is Th(M)
for some 7-model M. We fix T and 7 = 7p and investigate T-models of T, i.e.
T-structures M such that 7= Th(M); about other contexts, see e.g. [Sh:E53].

Let M, N denote such structures and they are called models (of T). Let a, b, ¢, d
denote sequences of elements of such models and ¢(Z) or ¢(Z,y) denote members
of L(7), i.e. the set of first order formulas in this vocabulary but we allow Z to be
infinite though the formula is finite so only finitely many ., y; are relevant.

Let M | ¢[a] mean that the model M satisfies the formula ¢(Z) under the
substitution Z + @ (so @,z have the same length).

The right notion of sub-models is <, being elementary submodel where M < N
ifft M C N and for every p(z) € L(r) and a € “9®)M we have M = ola] iff
N = plal.

Recall that an ordinal is the isomorphism type of a well ordering (which is a
linear order for which every non-empty set has a first member). But we identify
an ordinal with the set of smaller ordinals. Also a cardinal is an ordinal A\ with no
smaller ordinal of the same power. Here saying “z is a cardinal” means “z is an
infinite cardinal” if not said otherwise. Let R, be the a-th infinite cardinal and the
cardinality |%| of a set % is the minimal ordinal of the same power.

Let the successor AT of a cardinal A be R,y1 when A = X,.

We say F is a closed subset of the limit cardinal v when £ C v and § < yAd =
sup(0 N E) = ¢ € E and F is called unbounded when (Va < v)(38)(a < 8 € E),
“FE is a club of 4”7 is the shorthand for “F is a closed unbounded subset of +”.

For an ordinal « let cf(a) = min{|C| : C an unbounded subset of a} =
min{otp(C) : C' a closed unbounded subset of a}; we say « is regular if o = cf(«)
is infinite (hence is a cardinal), now recall (see e.g. [Jec03]) that if « is a limit
ordinal (e.g. a cardinal) then cf(c) is regular, and every cardinal of the form AT is
regular. When cf(d) > Ny we say “S C § is stationary” when SN E # ) for every
club F of 6.

A central notion is type; for A C M and @ a sequence from M let tp(a, A, M) be
the set {¢(Z,b) : @(Z,7) € L(7),b a sequence from A and M = ¢la,b]}. We may
write a instead of (a).

Let

S*(A, M) = {tp(a, A, N) : for some N,a we have
M < N,a a sequence of length « from N}

S (M) = S*(M, M).

By this we can define another central notion. M is k-saturated iff for every A C

M,|A| < k and p € S'(A, M) some a € M realizes p in M which means p =
tp(a, A, M). We say the model M is saturated when it is k-saturated and of
cardinality k for some k. Let EC(T') be the class of models of T of cardinality A.

{s:introduction}
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It is classically known that for A > |T|, (assuming 2* = A+, mostly done here
for transparency) there is a saturated member of ECy+(T), it is unique up to
isomorphism, and the union of an <-increasing chain of saturated members of
ECy+(T) of length A% is a saturated member of ECy+(T"). On the background so
far, see e.g. Chang-Keisler [CKT73].

* * *

A major theme of the author’s work is trying to find natural dividing lines (i.e.
properties) in the family of first order complete T', a criterion for natural is having
both “inside definition” by formulas and “outside definition” by properties of the
class of its models. That is, such a property is interesting as a dividing line when
we have consequences for those with the property and for those without it; see e.g.
[Sh:E53, §(1A)].

A major such dividing line is “T" is stable” recalling that T is stable iff ()% iff
(x)2. where

(%)% for some (Z,7) € L(rr), model M of T and a, € Y@M, b, € @) pr

for n < w we have n < m < M | ¢lay, b

(x)2. for every A > |T| and limit ordinal § < X of cofinality > |T'|, the union of
any =<-increasing chain of length § of saturated models of 1" of cardinality
A is saturated.

Another major dividing line is “T" is superstable” which holds iff
(x)3. like (x)2. allowing any limit ordinal d.

On this and the relevant history, see e.g. [Sh:c].
The property we deal with here is “I" is dependent”, also called “I"is NIP”, where
its negation, “T" is independent” or “I" has the independence property” means
(%)% there are ¢(Z,7) € L(rr), a model M of T and a, € “9@) M, b, e @) pr

for u C w,n < w such that n € u & M = p[ay, by).

What is the motivation to investigate this dividing line? First, it has a nice, simple
definition, parallel to the one for stable theories. Second, it is a much wider class
than that of the stable theories; also, extremely important for many, whereas infinite
fields with stable first order complete theory are hard to come by (algebraically
closed and separably closed are the only known ones), there are many important
fields with dependent first order complete theory (the p-adics and many of the power
series fields). Third, there are some results on it indicating it is not unreasonable
to hope there is a rich theory on it to be discovered.
On history and background on dependent theories, see [Sh:715], [Sh:783].

* * *

Let T be a fixed first order complete theory. For transparency, till 0.1, we assume
G.C.H., i.e. 2 = x™ for every infinite cardinal x and consider only A regular > |T'|.
Let M = (M, : @ < A\T) be an <-increasing continuous sequence of models of T
of cardinality A with M being saturated where M := U{M,, : o < AT}. Now M is
unique (up to isomorphism, for each \) and though for a given M, M is not unique,
for any two such sequences M’ , M" there is a closed unbounded subset E of A\
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and isomorphism f from M’ = U{M/ : o < AT} onto M" = U{M” : o < A} such
that f maps M} onto My for every ¢ € E.

So it is natural to ask (A > |T| regular and E varies on closed unbounded subsets
of A1)

©®1 what! is ny(T) := Ming|{Ms/ =: § € E}|? where M;/ = is the isomor-
phism type of Ms. When is n)(7T") equal to one?

Now (see [Sh:868]):

©®2 ny\(T) =1iff T is superstable

©s for countable T,ny)(T) = 2 iff T is strictly stable (i.e. T is stable, not
superstable)

®4 given an ordinal v, for A large enough ny(7) = |y + 1| if T is stable and
k(T) = N, (recalling that for a stable T, x(T') is cardinal < |T'|T, so for
countable T" it is Ry or ¥y)

©s if T is unstable, A = R, then ny(7) > |y + 1].

[Why? Because for some closed unbounded subset E of AT, if § € E then My is
cf(d)-saturated but not (cf(d))*-saturated hence [d1,02 € E A cf(d1) # cf(d2) =
Ms, 2 Ms,.]

Hence it is natural to replace ny(T) by:

®¢ let ny ,(T) = Ming|[{M;/ =: 6 € E and cf(§) = k}| when A > k = cf(x),
(as above E varies on the clubs of A™T).

Below we use ny ,(7") only when A\ = cf(A) > |T| + k Ak = cf(k) and remember
that for simplicity we are assuming G.C.H.
Now (see [Sh:868]):

©7 if T is stable then ny ,(7T) = 1.

It is natural to ask whether this characterizes stable theories. The answer is no, in
fact, by an example everyone knows (by [Sh:877, §1]):

©s nyx(T) = 1 for T = Th(Q, <), the theory of dense linear orders with
neither first nor last element, so A = A<* > k = cf(k).

During the proof we analyze p € S(M, ), M, saturated, of course, only when p #
tp(a, Mo, My) for a € M. So M, is a linear order and p induces a cut (C,, C;r)
of My, ie. CF = {a € M, : (a < z) € p} is an initial segment of M, and its
compliment, {a € M, : (@ < x) ¢ p} is an end segment. This gives a pair of
cofinalities, (1, , u ), p,, the cofinality of the linear order C, and p.f the cofinality
of the inverse of C,f.

Now

IWe can present the problem differently, about the existence of (variations of) (X, %)-limit
models (so 2* = At is no longer necessary, by forcing this is equivalent). Also, instead of the
function n getting the value AT we can consider saying for some club no two relevant cases
are isomorphic. This does not make a real difference but we find the present choice has more
transparent presentation.
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(¥)g.1 if pup == min{p,, pf} < A, then the type is determined by any subset of
M, of cardinality i, such that:

e the set is unbounded in C if u, = p,,; and
e the set is unbounded from below in CF if i, = it

(%)g.2 if pp, = A, and we expand M, by the (unary) relation C

b » we still get a
saturated model.

Next considering @7 + ®g you may think that for every 7' we get ny (T) = 1, but
([Sh:877, 2.3(2)] implies directly that):

©®g ny x(T) = AT if T is Peano arithmetic
moreover, this holds for quite many theories T (by [Sh:877, §2]):

®10 nyx(T) = AT if T has the strong independence property (see [Sh:72], i.e.
for some first order formula ¢(z,y), (p(M,a) : a € M) is an independent
sequence of subsets of M, see Definition 0.6).

For me this rings a bell and strengthens a suspicion - maybe the dividing line is T’
independent/T" dependent, indeed (by [Sh:877, §2]):

®11 ny4(T) = AT if T is independent, A a successor cardinal.

We try here to address the complement, the structure side. This calls for analyzing
appropriate <-increasing continuous sequence M = (M; : i < k) of models of T' of
cardinality A. Clearly in the relevant cases they “increase fast enough” and M; is
saturated for ¢ non-limit. Now among such sequences, is it not reasonable to first
deal with the case of length 27

This leads to the generic pair conjecture which says that for A = A<* > |T|, we
have T is independent iff ny o(7) = At where:

O12 1} o(T) := Ming|[{(Mg, Ms)/ =: o < 8 belongs to £ and cf(a) = A =
cf(B)}-

Note that in defining ny .(7),x € Reg N [N, A] we speak on models of T, i.e.
0 € E,cf(§) = k whereas here we deal with pairs of models. However, to analyze
Ms for § € E Ncf(6) = k, F a small enough club of AT, it is natural to assume
d =sup{a € E: cf(a) = Aand a < ¢} and choose & € Seqy, ,, 5 which means & is an
increasing continuous sequence («; : i < ) of ordinals with limit ¢ such that ¢ < &
non-limit = cf(a;) = A and let My = (Msup(a), Mi)i<r. So a sufficient condition
for ny ,(T) = 1 is nj\,ﬁ(T) = 1 where nj , = Ming[{Mas/ =: @ € Seqg s}, £
varying on the clubs of A™. Now though it is not clear if this is also a necessary
condition it seems more approachable and is natural. Anyhow it seems reasonable
to consider nj ,(7') = 1, i.e. the generic pair conjecture.

This connects us to the long term goal of classifying first order theories by
“good” dividing lines, ones in which we find outside properties (like here investi-
gating ny ,(T') or just ny x(7T), trying to characterize it) with “inside” definitions
(like being dependent), and developing an inside theory; here - looking at decom-
position (in §1 decompositions of models, in §2 decomposition of types, in §3,84
strict decomposition of types). More fully, for this we have to analyze types. In §1
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{3m.a} Wwe make a first attempt; more exactly see 1.8 and 1.9. We try to analyze a model

N := Mg over® M := M, by trying to find models Mj,, Ny such that:

By Mo =M <M; <Ny and M, =M < N = Mgz < N;

My for every a € “>(M;) for some B, € [M]<* the type tp(a, M, M) is
definable over B, in a weak sense, i.e. does not split over B,, this means
that if n < w and b, & € ™(M,,) realizes the same type over B, then so does
a"b,a"¢ (this is parallel to (x)g.; from ®g); it follows that for any sequence
a € "~ (M) a similar statement holds

B3 tp(Ny, M, Np) is weakly orthogonal to every ¢ € S<¥(M;) which does not
split over some B € [M;]<; the weakly orthogonal means that ¢ has a
unique extension in S™(N7) wherever ¢ € S™(My).

In §2 we try to analyze a type rather than a pair of models, also we find it better
to deal with 6-types, 8 > |T'|, as during the analysis we add more variables. So
for a k-saturated model M < € and sequence d of length < 6+ we try to analyze
tp(d, M, €) in two steps. The first is to add ¢ of length < 6% such that

B, tp(c, M, &) does not split over some B C M < € of cardinality < .

This corresponds to the stable type (“unfortunately” but unavoidably depending
on k), so for the theory of dense linear orders it corresponds to types p € S(M)
with u, < K, see (x)g.1 above. True, they are not really definable, but non-splitting
is a weak form of being definable. The second step is

Bs tp(d, M +¢,¢) is tree like, i.e. if A C M < € and |A| < x then for some
& €% > M we have tp(d,c + &) F tp(d, A + c).

This property holds for 7= Th(Q,<),p € S(M) when u, > &!, i.e. when both
cofinalities are > k. This is the Type Decomposition Theorem (2.4).

A consequence is some clarification of models of M of a dependent theory which
are exactly k-saturated for singular k. We deal with this question to some extent
per se.

In §3 we get a better decomposition - strict decomposition. But at present with
a price, assuming e.g. xk = | M|| is a measurable cardinal. The main point appears
in §4, the existence of limits of increasing sequences of strict decompositions.

Using this we are able to prove the pair genericity conjecture, the structure
side for the case of a measurable cardinal. The measurability assumption seems
undesirable. Describing this to Udi Hrushovski he was more concerned about also
having the non-structure side for independent 7. Now at the time in [Sh:877] it
was remarked that a similar proof should work for the strongly inaccessibles, but
the author was not motivated enough to really look into it. Subsequently [Sh:906]
completes it.

The order of the sections is by their conceptions, so there are some repetitions. In
Kaplan-Shelah [KpSh:946] we start to continue this work as well as in Kaplan-Lavi-
Shelah [KpLaSh:1055]. The author continues this work in [Sh:950] which concen-
trates on saturated models but it works just as well for special models (in singular
strong limit cardinals, see e.g. [CKT73]).

2pedantically7 when 1 < a < 8

{tp25.43}
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We thank the referee with thoroughness much above the call of duty causing the
paper to be much improved and John Baldwin for much helpful criticism and Itay
Kaplan and Noa Lavi for last minute pointing out of some difficiencies in §4.

Context 0.1. 1) T is complete first order theory.

2) € = € is a monster model for T, omitting 7" when no confusion arises; i.e. &
is a large enough cardinal, € is a R-saturated model such that we deal only with
models M < €, sets A C € of cardinality < & and sequences a, b, ¢, d, & from “¢ for
some a < K. So tp(¢, A) means tp(c, 4, €).

3) We may not pedantically distinguish a model M and its universe, the cardinality
|[M]] of M is that of its universe.

Notation 0.2. 1) For M < €and a € “M or just a € “€ let M5 be the expansion of
M by every relation R,z a) = ¢(M,a) where p(M,a) := {b € 9@ N € = plb, a)}
for p(z,y) € L(rr) such that £g(y) = a,lg(Z) < w or pedantically o(Z,7 | u) for
7,y as above, u C « finite. We define M|, similarly, i.e. as the expansion of M by
Ry, = ¢(M,a) for every a € 99 A and ¢(z,y) € L(rr).

1A) For p(z) € S*(M) let My, be M whenever a € *€ realizes p(z).

1B) We say the sequence (¢s(Z, as) : s € I) of formulas from L(75) with as from M
is independent in the model M when every finite non-trivial Boolean combination
of sets from ¢4 (M, as) is non-empty.

2) Writing ¢(Z,§) € L(7r), ¢ here is always first order but Z and § may be infinite,
though sometimes are finite (said or clear from the context). Let p(Z),q(Z),r(Z)
denote types over some A C €, i.e. set of formulas of the form o(z,b),b € (¢9(°) A,
3) ECA(T) is the class of models M of T' (so M < €) of cardinality A and ECj . (T')
is the class of k-saturated M € EC,(T).

4) A+¢cis AU Rang(c), etc.

5) Let tp(A, B) be tp(a, B) where a is the identity function on A.

Definition 0.3. 1) If a; € "€ for t € I and 2 is a filter on [ and T = (x; : i < 7)
and A C € then Av({a; : t € I)/P,A) = {p(Z,b) : b € “> A and the set {t € I :
¢ = p[a, b]} belongs to 2}. Note that if T is dependent, I is a linear order with
no last members and (a; : ¢ € I) is an indiscernible sequence, see below then the
result € S7(A). Also note that if 2 is an ultrafilter on I then Av({a, : t € I}/ 2, A)
belongs to S7(A).

1A) Recall that if Z is a filter on {a@; : t € I} C *€ and A C € we define Av(Z, A)
similarly and if I a linear order and 2 is the filter of co-bounded subsets of I we
may omit it.

2) If p(Z), q(y) are complete types over A we say p(Z), q(7) are weakly orthogonal
when for every @y, as realizing p(Z) and by, by realizing q(7) we have tp(a; by, A) =
tp(as ba, A).

3) For a linear order I,(as : s € I) is an indiscernible sequence over B when:
Lg(as) is constant and if sg <y ... <y sp—1 antg <y ... <y t,—1 then the sequences
Gs, ... Gs, , and a¢, " ... @, , realize the same type over B.

Recall also (see [Sh:c, Ch.IL,§4])

Fact 0.4. If T is dependent then for any formula ¢ = ¢(Z,7,z) € L(7r) there is
n=n, < w (depending on T') such that:
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(a) For no ¢ € “93)¢ and b; € W for i < n, is the sequence (o(Z,b;,¢) :
i < n) independent, i.e. every non-trivial Boolean combination of the sets
o(M,b;,¢) = {ac 9@ M : M = pla,b;,c]} for i < n is non-empty.

(b) Tf (b; : i < n) is an indiscernible sequence over C, lg(b;) = Lg(7),¢ € “9Z)C

(all in €) then for no a € “9(® M do we have € = ¢|a, b;, ¢|f* *ven) for £ < n.

(¢) Also there is a finite A, C L(7r) such that in clause (b) it is enough to

demand that (b; : ¢ < n) is a A,-indiscernible sequence.
Lastly, we quote Erdés-Rado [ERG9).

Fact 0.5. The A-System Lemma for finite sets.

For every natural numbers k, n there is a natural number m such that: if u; is a
finite set with < k elements for i < m then there are sets w C {0,...,m — 1} with
|w| = n and u. such that (u; : i € w) is a A-system with heart u,, which means
that i # j € w = u; Nuj = Uy

Definition 0.6. 1) A partial order I is x-directed when every set J C I of cardi-
nality < & has an upper bound ¢ € I which means that (Vs)(s € J = s <; t).
2) A sequence (A; : s € I) is an independent sequence of subsets of A, when

(As C A, for s € Tand) [ As\ U A: is non-empty for every disjoint finite u, v C I.
sEu tev

{on.19}

{On.22}
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§ 1. NON-SPLITTING CONSTRUCTIONS

On such constructions including F25P see [Sh:c, Ch.IV,§1,§3] but F"*P here is F?
there; and see [Sh:715, 4.23-4.26], however this section is self-contained.

We try here to analyze k-saturated models M < N, e.g. by finding M;, Ny
such that M < M; < N1, N < N; where M; is F}*P-constructible over M, see
below and tp(Ny, M;) is weakly orthogonal to any type over M; realized in some
F2P-construction over it, see Theorem 1.9, part (B) noting that M, N, Ny, M; here
stands for A, AT, M, N there. We first recall the definition of non-splitting and
some of its properties.

Definition 1.1. We say p() does not split over A when : if (%, b), 7¢(%, ¢) € p()
then tp(b, A) # tp(c, A).

Fact 1.2. 1) If ® 4 p.c below holds and p(z) € S™(B) does not split over A, then
there is one and only one ¢(Z) € S™(C) extending p(Z) and not splitting over A
(also called the non-splitting extension of p(Z) over C'), where:

®a,Bc () ACBCC
(b)  for every ¢ € “>C there is b € 9(°) B realizing tp(c, A).

2) Let I be a linear order. If tp(a;, BU|J{as : s <; t}) does not split over B and
increases with ¢ € I then (a; : ¢ € I) is an indiscernible sequence over B.

3) If tp(a, B) does not split over A, the sequence (b; : t € I) is an indiscernible
sequence over A and by C B for t € I then (Bt :t € I) is an indiscernible sequence
over AU a.

4) If A C B then the number of p € S?(B) which does not split over A is <
92 AT oreover if T is dependent the number is < 21A1+71+6

5)If A C B and p € S¥(B) is finitely satisfiable in A then p does not split over A.

Proof. 1) By [Sh:3] or see [Sh:715] or see [Sh:300a, 1.10] for uniqueness.

2) By [Sh:c, I] or [Sh:300, I] or [Sh:300a, 3.2].

3) By the definitions.

4) The first conclusion is easy and see [Sh:3] or [Sh:300a, §1], the second holds by
[Sh:783, 5.26).

5) Easy, too. 00

Fact 1.3. [Assume T is dependent.]

If p(Z) is an a-type over B C A then we can find ¢(Z) € S*(A) extending p(Z)
such that for some C' C A of cardinality < |T'| + |a| the type ¢(Z) does not split
over BUC.

Proof. [Sh:c, I11,7.5,pg.140] or see [Sh:715, 4.24]. (.3

Observation 1.4. For k regular.

1) If AC B,|A| < k and @ € "~ € and tp(a, B) is finitely satisfiable in A then it
does not split over A.

2) If A C B,¢c € *>€ and tp(c, B) does not split over A and i < fg(¢) then
tp(ci, BU{c¢; : j < i}) does not split over AU {¢; : j < ¢}. Similarly for (¢; : j < 1)
when j < i = Rang(¢;) C Rang(c).

3) If tp(¢x,B 4+ ¢ + ... + ¢x—1) does not split over A C B for k < n then
tp(Go” ... Cn—1, B) does not split over A.
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4) If A C A; C By C B and Rang(¢;) € Rang(¢) and tp(¢, B) does not split over
A then tp(¢y, By) does not split over A;.

5) If ¢ € > € and for every finite u C £g(¢) and finite By C B the type tp(c|u, By)
does not split over A then tp(c, B) does not split over A.

Proof. Easy (or see [Sh:c, Ch.IV]). 04
As in [Sh:c, IV].
Definition 1.5. 1) & is an F2*P-construction when :
o = (A,a,B,A a) = (A7 ,a”,B7, A7 a”),
’:<a5:6<a):<a§{:6<a),
B=(Bs:B<a)=(BY:B<a)

=(4p: 8 <a) = (A7 : B < a),

A
(e) Ag =AU{ay:v< B},
(f) Bsg C Ag and |Bg| < &,
(9) tp(ag, Ag) does not split over Bg.

2) We let £g(«/) = o and writing ./ we may omit A/, o as they are determined
by the others so may write & = (A,a, B) or & = (A, ((ag, Bg) : 8 < ). We may
replace ag by a finite sequence ag with no real change.

3) We say the FISP-construction & is p-full when cf(g(«)) > k and if ¢ €
S(AZ(%)) does not split over B where B C AZ(W) has cardinality < , then
{B < lyg() : ag realizes p | Agf and B C Agf} is unbounded in o and has order
type divisible by p.

4) We say C' is F2*P-constructible over A when there is an F*P-construction o7
such that A = AY = A and C = A%(m)-

Definition 1.6. 1) Let A <, C' mean that C is F°P-constructible over A.

2) We say that (AT, A) is k-reduced when : if A <, C and ¢ € *>(A™) then tp(¢, A)
has a unique extension to a complete type over C.

3) We say the (N, M) is x-nice when :

(a) (N,M) is k-reduced and M < N,
(b) M is k-saturated,
()

)

c) N is k-saturated,
(d if M <, MT then Al[] < M,

[J]rv] , see below.

3A) Recall Mg is M expanded by Rz 4 = {b € “@M : ¢ | ¢lb,a]} for
©(2,7) € L(rr) (with Z finite of course), a € /) N and recall Th(M|p) is depen-
dent by [Sh:783, §1].

4) We say that (M, A) is pseudo k-reduced when: if ¢ € “” A, ||M;|| < &, M; C
M,q(z) € S<¥(M) is finitely satisfiable in M; then ¢(Z), tp(¢, M) are weakly
orthogonal.

Observation 1.7. For k regular:
1) <4 is a partial order.
2) If (4; : i < «) is increasing continuous and ¢ < o = A4; <,; A;41 then Ag <, A,.

{3k.6}

{3m.1}

{3m.2}
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3) In Definition 1.6(2) it is enough to consider ¢ € ¥~ (C\A).

4)If A <, B and ¢ € "> B then® tp(¢, A) does not split over some A’ C A of
cardinality < k.

5) If the pair (M, C) is s-reduced then (M, C) is pseudo k-reduced.

6) If tp(a, A) does not split over B and B C A has cardinality < « then A <, A+a.

Proof. Easy; e.g. part (6) by 1.4(2) and part (4) by 1.3(3),(4)) and part (5) by
1.2(5). Uiz

Claim 1.8. [T is dependent and k = cf(x) > |T].

1) For every A there is a r-saturated C' such that A <, C and |C| < (|A| + |T|)<".
2) If in addition p < (JA| + |T|)<" then we can add “C' is “u-full k-saturated”;
clearer if |C| < (JA] + |T])<® +227).

Proof. 1) By 1.3 + 1.7(2) and 1.7(6).
2) Similarly (by 1.2(4)). Ui s

Now we arrive to the first result giving a decomposition. The type tp(A™, A)
is decomposed in Theorem 1.9 by finding M such that A <,, M, (so the complete
types over A realized in M are somewhat definable) and (A™, M) is k-reduced, so
the type tp(A™T, M) is weakly orthogonal to types in S<¥(M) not splitting over
subsets of M of cardinality < k.

Theorem 1.9. The Density of Reduced Pairs Theorem [T dependent].
For any A C At and k = cf(k) > |T| and X satisfying* 0 < k = X = \? >
|A*| + 2T

(A) we can find M such that M is a model of cardinality X\ satisfying A <, M
and (AT, M) is r-reduced

(B) for some M as in clause (A) and N the pair (N, M) is k-reduced and even
k-nice and AT C N.

Proof. Proof of (A):

Our intention is to try to do a construction as described in X below. Having
carried the induction the proof is divided to two cases. In the first we get the
desired conclusion. In the second, we get a contradiction to 7' being dependent;
formally to the maximality of the & chosen in clause (g)(8) of K.

We choose M;, B;, j;, ¢ by induction on ¢ < AT such that

X

~—

a) M, is <-increasing continuous, M; of cardinality < X\ + ||,

Ji <1i,B; < M;,||Bi]| < k,

=
~ ~—

)

My is F)*P-constructible over A,
M,y is Fi%P-constructible over M; and M, is k-saturated,
¢ € “7(M;t+1) and B; C M;, has cardinality < &,

~ N N N N
SIS
~— =

=

tp(¢;, M;) does not split over B;,

3
4

we could have chosen this as the definition. This changes the places we really need “k regular”.
1o real harm if we replace “0 < A = A = A? > |[A+] by 0 < & = A = A% + 227171 > 14+
and then we can use only the first version of 1.2(4).

{3m.1}
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(9) if cf(i) > k and subclause («) below holds then subclause (3) holds
where:
Subclause (a): There are j < i,m < w, B C M; of cardinality < x and
p(Z) € S™(M;) which does not split over B and p(Z) has
> 2 extensions in S™(M; U A™).
Subclause (3): There are® m = m; < w,k = k; < w and
o(7,9) = ¢i(%i,7i) € L(rr) with £g(Z) = m;, ¥ finite and b =
b; € W) (M; UAT) and g9 < ... < gx_1 from the interval
[4i, ) such that:
e B; C Mj,,
tp(@', Mz) U {gﬁz(ii‘, Bz)} and tp(@', Mz) U {_‘gﬁi(f, 1_71)} are consistent,
tp(éagaMEg) = tp(éi; MEe)?
¢ ): (p[éawg]if(é even),
e k is maximal for the given ¢(Z, ), b;, j; (see ® below; k is well defined
as T is dependent, see ® below),

o ¢ ): (P[Eia B]if(k is even)

So in stage i we first choose M;: if i = 0 by clause (c), such model M; exists by
1.8(1), if 7 is a limit ordinal we choose M; as U{M; : j < i} and if i = j+1 (so ¢; has
already been defined) then choose M; such that M; U¢; <, M,y1 and M; = M;44
is k-saturated of cardinality A (and A-full if you like), possible by Claim 1.8(1).
Note that M; <, M; U¢; by clause (f) and 1.7(6) hence M; <, M, recalling
1.7(2).

Note

® there is n = ny(z 5) depending on ¢(Z,y) and T only such that in subclause
(ﬂ) we have @Z(jzvgl) = w(fvg) = k’b <n.

[Why? As by clause (f) in subclause (g)(8) of B(f), by 1.2(2) the sequence (¢, :
¢ < k) is an indiscernible sequence, so by T being dependent we are done by 0.4(b).]

Second, why can we choose (m;, j;, Bi, @i, tp(¢;, M;)) as required in clause (g)?
If cf(i) < k or the antecedent of clause (g), i.e. subclause (g)(«) fails then trivially
yes (choose e.g. ¢ as the empty sequence). Otherwise let j < 4, B C M; be of
cardinality < k,m < w and p(z) € S"(M;) which does not split over B and which
has extensions po(Z) # p1(Z) in S™(M;UAT) with po | (M;UAY) # py | (M;UAT),
sopo | M; =p=p1 | M; does not split over B.

Hence for some b € “>(M; U A") and ¢ = ¢(Z,7) € L(rr) we have ¢(7,b) €
p1(Z), ~p(Z,b) € po(Z); as i is a limit ordinal without loss of generality b € “> (M;U

AT). We now try to choose g; by induction on £ < Ny (z,5) such that:

©® (a) j<e<iand k</l= ¢ <ey,
(b) ¢, realizes p(z) | M.,,

(€) €k gla,,bjiftis even),

(d) €4 is minimal under (a)-+(b)+(c).

Ce

5We can add:

e not only j; satisfies the demand on j in subclause («), but it is the minimal such j.

{3m.

{3m.
{3m.

{3k

{On.

3}

3}
2}

.0.7}
17}



nodi fi ed: 2017- 04- 24

revi sion: 2017- 04- 07

(900)

{3k.0.7}

{3k.0.7}

{3m.4}

14 SAHARON SHELAH

So by ® for some k < Ne(z,y) We have: g, is well defined iff ¢ < k. At last we
choose:

(¥*) () B;=B
0) ¢i=¢
() ji=1j
d) ki=k

(e) ¢ realizes p1(Z) if k is even and realizes po(Z) if k is odd.

So at last we are in a situation where the construction from X(a) — (g) having been
carried out. So now comes the division to cases.

Let S, = {i < AT: cf(i) > k and subclause («) of clause (g) holds for i}.

Recall that S is a stationary subset of an ordinal § of cofinality > Ny (e.g. a
regular uncountable cardinal) when it is not disjoint to any closed unbounded subset
E of 4.

Case 1: S, is a stationary subset of \*.

Hence for i € S,, there are j;, B;, 0i(Z;,7:),b; and k; < w and go(i) < ... <
ek;,—1(1) < i as in subclause (3) of K(g) and by Fodor’s lemma (see e.g. [Jec03])
for some m. < w,j < At, B, ¢(Z,b), k., (e; : i < k*) and a stationary subset S
of S, C {6 < A\": cf(6) > Kk} we have 6 € S = js = j A Bs = B A lg(cs) =
My A 0s(T,bs) = o(Z,b) Nks = ke A )\ €0(0) = g¢. Also without loss of generality

o<k,
by 1.2(4) we have § € S = tp(Cs, Mumin(s)) = tP(Cmin(s)s Mmin(s)) recalling that
the number of such types is < 2!B1+IT1. Choose §(0) < §(1) from S so both has
cofinality > x and BJ(O) = B(;(l), tp(étg(o),M(g(O)) - tp(Eé(l),Mé(l)) by 1.2(1) and
bs(1y = bs(o) and &;(5(0)) = ;(6(1)) for i < k.. But we could have chosen in stage
6(1),e for k < ki and k) = ki + 1 and €} (6(1)) = 6(0), contradiction to the
maximality of & in Subclause (8) of K(g).

Case 2: Not Case 1.
Then for a club of i < AT if ¢f(i) > « then subclause («) of Clause (g) fails for
i hence M; exemplifies that we have gotten the desired conclusion in (A) of 1.9.
By the proof of (A) note that:

B for every A C B and A = A<® > 2ITI+IBl there is Map C{M: A<, M=
¢r and ||M|| = A} such that:
(a) if My C My are from %A,B then (Ml)[B] < (MQ)[B]

(0) it Mh € My p and My <, My < € ||[Mz| < X then there is M3 €
M, such that My <, Ms;

(¢) Mg is closed® under increasing union of length < A*”
(d) A4 pis <.-dense above A which means: if A <, A; C €and [4;] <A
then there is M € .# 4 p satisfying A, < M.

Moreover

BT if in addition 6 = cf(6), |T|<Y < X then we can strengthen clause (a) to

6We may use <L,.,. but then we have to say “increasing union of length § < A* when cf(5) >

K.
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(a)™ if My C My are from .# 4, then (M1)p <Lg xg (M2)p)-

Why B and BT holds? It suffices to prove BT (using § = Ry or even 6 = r). We
define .#,, by induction on « < 6 as follows:

By A, is the class of M such that:
(a) A<, M < €pand ||M] =X
(b) M € g for every B < «
(c) fa=pB+1,MC M€ Mp,o=¢i(Z,7) € Lo, (rr) for i <i, <0so
z, 7 are finite, and each ; has quantifier depth < g and b € 9@ M, a €
£9(%)(M,) then for some a; € Zg(_””)M we have B
o | <i,and My ': gﬁi[(_l, b] then My ': (pi[(_l/,b].

Now we prove by induction on a < 6 that

B2 (a) if My C My are from .#, and ¢(Z) € Loy, (77) has quantifier depth
< aand a € 9@ (M) so finite then M; |= ¢a] iff My = ¢[a)
(b),(c),(d) asinH
(e) (Ap3: P < a)is C-decreasing continuous
(f) if o is a limit ordinal, u C o = sup(u) and M, € A, for a € u
is C-increasing then U{M,, : o« € u} € M.

There is no problem to carry the induction and then .#j is as required in B and
B,

Proof of (B): By induction on i < AT we choose M;, N;, B;, j;, ¢; such that

X’ Clauses (a),(c),(d) of K and

(h) (Nj:j <i)is <-increasing continuous and A* C M,

(i) M; < N; and N; has cardinality A and if 7 is non-limit then
M;, N; are k-saturated,

() if cf(é) > k and there are j; < i,m < w, B < Mj, of cardinality
< k and p € S™(M;) which does not split over B and has
> 2 extensions in S (N;) then subclause (3) of clause X(g)
above holds (with b € (%) (N;))

(k) if cf(i) > k and (M;, N;) is k-reduced and
j < i then there is M:FJ such that M; <, M;r] <i Miyy
and.A4ﬂ} S %%h@ﬁAG'

The rest of the proof is similar to that of (A). Uig

For the rest of the section we shall assume (as we use it all the time).

Hypothesis 1.10. T is dependent.

{3n.0}
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Definition 1.11. 1) ST (A) = {p € S(A) : p does not split over some B C A of
cardinality < x}.
2) SEPY(A) C 8*(A) and ST <*(A) C |J SP(A) are defined similarly.
B<a
3) ST2(A) = {p € S(A) : p is weakly orthogonal to r for every r € STY(A)}.
4) ST (A), Sgslf’<a(z4) are defined similarly.

We may note

Observation 1.12. 1) If tp(¢i, A) belongs to STP*(A) and &, € A¢ and Rang(&,) C
Rang(;) then tp(éy, A) belongs to SZP7. -

2) tp(c, A) € STPY(A) iff tp(clu, A) € SI;SS’lu‘(A) for every finite u C £g(c).

3) If tp(a, A) € S™(A) is weakly orthogonal to tp(¢, A) and does not split over

B C A and every ¢ € S<¥(B) is realized in A then tp(a, A 4+ ) does not split over
B.

Proof. Straightforward. Uy 12

Observation 1.13. If x = cf(k) > |T|, the model M is k-saturated and p €
S™(M), then we can find N, ¢ such that:
®y (a) [N =M<,
(b) q € S™(N) extends p,
(¢) N is FZP-constructible over M,
®X g (@) N is k-saturated and ¢ € S™(N).
(b) ifr € ST <Y(N) then r, q are weakly orthogonal, i.e. q € STYT(N).

Proof. Let ¢ realize p(Z) and let C' = Rang(¢), now we apply clause (A) of Theorem
1.9 with M, M U C, N here standing for A, A*, M there. U113

Theorem 1.14. The Tree-like Type Theorem Assume q(z) € STX*(N) and N is
k-saturated and k& > 0 = |T| + |a| and let 2 = (24 : o« < 0). Then we can find
a sequence 1) = (V2.9 (T, 2) + ©(Z,9) € L(rr)) of formulas such that for every
A C M of cardinality < k there is ¢ € °M such that:

(@) {Yp(a,)(T;0) : ¢(Z,9) € L(rr)} € q[Rang(c) € g,
(b) for each ©(z,7) € L(rr) we have thyz 4 (Z,¢) = {p(z,b) : b € 9D A and
¢(,b) € ¢}
Proof. This follows from Claims 1.15, 1.16 below. 14

Claim 1.15. 1) Assume that ®?V,q,l<a from the Claim 1.13 holds, which means N is
k-saturated and g € STP(N). Then

®?V,q,ﬁ if M < N has cardinality < k and @(x,y) is a formula with parameters
from N, then_for some (x,d) = 1/)¢($,y),k1(z,cz¢(z7y)7M) €qandnec M2
we have Y(x,d) H py(fy) where
pf(:y) = {o(x,0)"® : b e M}; so it is included in q.

2) Part (1) works also for g € S™(N), i.e. ¢ € STY™(N) and ¢ = ¢(Z,7) where
lg(z) = m,lg(y) < w.
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Proof. Fix M such that M < N is of cardinality < k.
1) First note that

(x)1 if D is an ultrafilter on M then ¢(x) is weakly orthogonal torp = Av(D, N).

[Why? As rp does not split over M, by 1.4(1).]
Second, note that

(x)2 the following type cannot be finitely satisfiable in M:

r(y) = {Gz) (1, d) Ap(z1,y)) - ¢(2,d) € ¢}U

{(H‘TQ)(Q/J(‘T% d) A ﬁ(téj(‘CCQay)) : 1/’(% d) € q}
[Why? Otherwise for some ultrafilter D on M we have 9(y,d) € r*(y) = (M, d) €
D. Let b € € realize Av(D,N) so as ¢(Z) is closed under conjunctions, ¢(z) U

{¢(x,b)} and q(z)U{—p(z,b)} are finitely satisfiable in €, and we get a contradiction
to (%)1.]

(¥)3 there is 1 (x,d) € ¢ such that {(3z1)(Y(z1,d) A p(z1,y)), Bx2) (Y (z2,d) A
—p(x2,y))} is satisfied by no b € M.

[Why? By the monotonicity in ¢ (x, d) and ¢ being closed under conjunctions this
follows from (x)s.]

(x)4 let wap(x,y),M(xaczup(z,y),IM) = (z,d), from (x)s,

{3k.4}

()5 forevery b € M wehave N |= “(Vz)(¢(x,d) — ¢(z,0))” or N |= “(Va)(¢(z,d) —

—(x,b))”.
[Why? By logic this follows by (x)s.]

(¥)6 there is n € M2 such that for every b € M we have M = “(3z)(¢(z,d) A
p(x, b)) it M |= “=(3z) (¢ (2, y)) A —p(a, b)” iff n(b) = 1.
[Why? By (%)5 + (+)s.]
So we are done.
2) Similarly. Ui1s

Claim 1.16. 1) In the previous claim 1.15, fizing q, if cf(k) > |T'| then 1) depends
on o but does not depend on M though d in general does, i.e. given o(Z,%) we may
assume without loss of generality that 1, (T,d) = Vo (z,5) (7, J«p(i,ﬂ),]\/f)'

2) Assume ®%; , . from claim 1.13, i.e. N is r-saturated and g € STY™(N). Then

the following partial order is k-directed
(a) elements: q | B for BC N of cardinality” < |T|
(b) order: p1 < pa if pa k- p1.

Proof. 1) As if N1 < Ny < N and || Na|| < &, then ¥u(z.4),n, (2, dpz 5).n,) can
serve as Y, (z,5),N, (T, Jw(i7q)7N2). As the number of possible ¢,’s is < k = cf(k) we
are easily done.

2) Easy. U116

As a conclusion we can now show that a key fact in [Sh:877] for the theory
T = Th(Q, <) has a parallel for every dependent T

"from some form of strongly dependent we should be able to get “essentially finite”

{3n.5}
{3n.4}

{3n.2}
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Conclusion 1.17. The Saturated Expansion Conclusion Assume

(a) N is k-saturated,

(0) T+ 1Al < &,

(¢) if a € A then ¢z = tp(a, N) € Sn5p’<w(N), see Definition 1.11(3),
)

(d) Npaj has elimination of quantifiers.

Then Ny is k-saturated.

Remark 1.18. 1) Recall Nj4) is N expanded by R, 5 = {a € “IN : € = ¢la, b]}
for (z,b) a formula with parameters from A, see 1.6(3A) or [Sh:783, §1].

2) We can omit assumption (d) in 1.17, but then get k-saturated only for quantifier
free types.

Proof. Without loss of generality x is regular, this as it is enough to prove A*-
saturation for every A € [|T|+ |A|,k). Let M < N be such that ||M]| < k and
assume p = p(y) € S™(|M|, Nj4j) and we shall prove that some ¢ € ™N realizes
p(7). Actually without loss of generality Mps; < N4 and by assumption (d),
equivalently p(g) € S™(M U A) = S™(M U A, €) is finitely satisfiable in M. Let
C={cq:a<a*)list Asoa* <k and for uC a* let ¢, = (co : @ € u), Ty = (T :
a € u).

Next note that by Claims 1.16(1) and 1.15(2) (here clause (c) of the assumption
is used) applied to tp(¢,, N) noting 7 of length m is fixed and letting Z,, = (x, :
a € u), we have:

(¥)1 for every finite v C o* and formula ¢ = ©(Zu,¥,2) € L(7r) there are
Vo (30,5.2) Tus dp(z,,5.2),m) € tP((ca : @ € u),N) 50 dypz,.5.2.m € "N
and 7 a function from 9@+ M to {0,1} such that:

'l/)lp(ju,yvg) (ju7 Jw(iu7g72),]\/j) '7 {(P(:fu7 B, E>U(BA6) . B e eg(g)M a,nd C e eg(E)M}

Clearly [p(7)| < & so there are (* < x and a sequence ((¢¢(Zu,, ¥, Z¢), uc) : ¢ < ¢¥)
listing the pairs (¢(Z,, 7, Z),u) as above so we have

p(7) ={pc(€Tuc,g,8): (<("<randee eg(EC)M},

so u¢c C a* is finite.

For each ¢ < (* we choose ¥¢ (T, , d¢) as guaranteed by (x)1 above (for ¢ (Zu,, ¥, 2)).-

Let

p ( ) - {(vxug [1/14(3%47 ) — (pC(xugayv )] : C < g* a'nd ec ég(gC)M}'
Now

()2 p'(y) is finitely satisfiable in M.
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[Why? As p(y) finitely satisfiable in M, using the translation and the choice of
Y¢(Tug,de). That is, let p”(y) be a finite subset of p’(7) so for some k < w,(y =
C(l) < ¢* ¢ € YEIM for £ < k we have p”(§) = {(VZug o [V 0) Tug iy » deey) —
Oc(Tug s €0)] £ < k}. Now {p¢, (€ [ u¢,, g, e) : £ <k} is a finite subset of p(y)
hence is realized by some b € ™M, hence by (x); the sequence b realizes p”(7).]

()3 the type p'(9) is over U{d¢ : ( < (*}UM C N.
[Why? Check.]

(x)4 P'(y) has cardinality < |[A| + |T| + | M| < k.
[Why? Obvious.]

(¥)5 there are M+ and b such that:
(a) M <M* <N,
(b) tp(M*, M U\ J{d¢ : ¢ < ¢*}) is finitely satisfiable in M,
(¢) b€ MT realizing p/ (7).
[Why? Easy, e.g. using ultrapower, “N is k-saturated” and (x)a + (*)3.]
(¥)¢ b realizes p(y) € S™(N U A) and b € 9W) (M+) C 9O N,
[Why? Follow the translations.]

So we are done. Oy 47
{3n.7}
Question 1.19. 1) Can we waive assumption (d) in 1.177 {3n.6}
2) Is the family of (N, A) as in 1.17 “dense under <,.”? 3n.6}
%3n.8.17}

Discussion 1.20. 1) Assume A = A<* > k = cf(k) > |T'| and we try to prove that
there is a (A, k)-limit model.

So let M € EC\(T) be saturated and we try to analyze the class of N, M <
N € EC,, which are “close enough”, in the sense of (), x)-limit model.

So if p € STV (M), say p does not split over B, for some B C M of cardinality
< A, then we can assume that in N there are “enough elements” realizing “types
not-splitting over B” extensions of p. So hopefully we can analyze such N by
2 C STY(M) pairwise perpendicular or & C Sr;f"T'(M) such that for each
p € & the model My, from 0.2(1A) has elimination of quantifiers and is saturated, {on.4}
it is reasonable that this holds if we can expand M by definition of < A types
pE L.

What we need, i.e., what is necessary for this line of attack (but not yet clear if
sufficient to carry it), is:

*) 1 ¢ above has cardinality A and is quite dense (e.g. usin, stor £ =1,
if 2, ab h dinality A and 1 ite d g. using F’s for £ = 1,2
then there is an automorphism of M which maps & onto .

This leads to the generic pair conjecture.
2) About SZV(M) recall Definition 1.11(1). (30.1}
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§ 2. THE TYPE DECOMPOSITION THEOREM
{tPHs45h8}

Context 2.1. 1) T is a complete first order theory; dependent if not said otherwise.
{on.1} 2) €=y is a monster for T', etc. as in 0.1.

Here we try to analyze a type p € SS¢(M) for k-saturated M < € where x >
0 > |T|, the characteristic case being k >> 0 (6 may be N, if T' is countable). In
the case of 6 < |T'|, or even better § < Xy we know less but mention it. We look
at “I' being stable” as our dream, our paradise. The hard reality is T" being just
dependent. In some sense T' dependent should be like stable but we allow order,
{tp14.21} e.g.) Th(Q, <) or trees. What we actually do is investigate the Ky (see Definition
2.6).
How helpful is this analysis? We present two consequences. The first to some
{tp25.43} extent accomplished the professed aim: the Type Decomposition Theorem 2.4.
What is its meaning? If M is s-saturated, d € " >€ and x > 6 > |T)| then we
try to analyze the type tp(d, M) in two steps: for some ¢, B:

(a) B C M has cardinality < k, say B = |N|,

(b) the type in the first step is similar to the types of stable theories, i.e.
tp(¢, M) does not split over B C M; (we can even demand tp(¢, M) is
finitely satisfiable in B),

(¢) the type in the second step, tp(d, M + &) behaves as in trees; e.g. letting
{on.22} x = (M, B,¢,d) we have: on GM_the partial orders <y is s-directed (see
0.6) where we let a; <y ao iff tp(d,c"az) - tp(d,c"aq).

The reader may say that Clause (b) is not a true parallel to a stable case, as |B| is
not bounded by 6 + |T'| (but this is impossible even for the theory of dense linear
order). Still a type not splitting over a set is a weak form of definability. Also
we may wonder, what is the meaning, when T is Th(Q, <)? If M is k-saturated
each p € S(M) actually stands for a cut of M. Now the cuts are divided to those
which have cofinality > k from both sides (falling under (c)), and those which do
not (hence fall under (b)).

The second consequence deals with singular p of cofinality > |T|. We ask: is
there M < € which is exactly p-saturated, i.e. is pu-saturated but not p™-saturated.
Now if T'= Th(Q, <) this is impossible, that is, there is no such M. If T is stable
there is no problem to find such M, the main case being cf(p) > |T| (or just
cf(p) > k(T), see [Sh:c, Ch.III]) and let M be p-prime over an indiscernible set of
cardinality p. The result says that for dependent T' there is something like that,

ftp16.141 this is 2.2.
tpl6.14

Lemma 2.2. Singular Ezact Saturation Lemma Assume T is a dependent theory,
K is singular of cofinality > |T'| and M < € is an exactly k-saturated model, i.e. is
k-saturated but not kT -saturated. Then there are N and A such that:

(a) N <M of cardinality < k and A C M of cardinality k and M omits some
p € S(A) which does not split over N;

moreover

(b) there is ¢ € S(M) which does not split over N such that p=gq | A,
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(c) there is an indiscernible sequence (G, : a < k) over N of O-tuples from M
such that Av({(@q : a < k), NU{Gqs : @ < K}) is omitted by M (equivalently,
we cannot choose a,, € M) and does not split over N.

Remark 2.3. We can add in (c):

(¢)T moreover we can demand that there is an ultrafilter 2 on N such that M
omits p = Av(Z, A) where A := U{a, : @« < K} UN and p(Z) is as in Clause
(©)-
Theorem 2.4. The Type Decomposition Theorem Assume cf(k) > 0 > |T|, M s
k-saturated and d € 2. Then for some € € €, recalling Definition 1.11 we have
tp(c, M) € S=PY(M) and (P,<p) is a k-directed partial order where:

(a) P ={tp(d,AuUc): A C M has cardinality < 6},
(b) p1 <p p2 iff p2 - p1.

Remark 2.5. 1) In fact (P, <p) is (Px,0, <x,) from the Definition 2.6(8) below.
2) Note that being 67 -directed is obvious.

3) Would it be more transparent to use the notation ps F p; instead of p1 <p py?
A matter of taste, the author feels that not.

Definition 2.6. 1) Let K = K; be the family of x satisfying

(a) x = (A, B,¢,d) but if A = |M]|, as usual, we may write M instead of A
and if B = () we may omit it,

(b) BC A,

(¢) I alinear order,

(d) € = (e1n:n < ng,t € I) where n; < w, each &, a finite® sequence and let?
Ct = Ct,0 Ct,1 -+ Cing—1,

(e) (étn 1 m < my) is an indiscernible sequence over AU {¢; : s € I\{t}}, so if
ny = 1 this is an empty statement,

(f) if t € I then'® tp(e;, {5 : s <7t} U A) does not split over B

(g) d is a sequence of elements or finite sequences from .

2) Let Ky be defined similarly omitting clause (f).
3) For A > &, cf(A\) > 6 (or just A > 0), cf(k) > 0 and [ € {0,1} let K5, o =
{(M, B,c,d) € K, : M is A-saturated, |B| < x and [¢g(d)|+ [¢g(c)|| < 0}; omitting
¢ means 1. If § = o instead of “< §” we may write o.
4)

(a) let x = (Ax,Bx,éx,ax) for x € Ky (or My instead of Ay), I = Ix,x =

G,y = ny and Cx = U{Rang(¢,,) :t € I and n < nx},
(b) we may'! replace d by Dy = Rang(d),
(¢) we may omit k if K = A.
8we remark when it matters.

Ibut abusing our notation, Rang(c€) is the set of elements of € appearing in it; similarly in
other cases

106f course, this implies that clause (e) follows from a weak version, see 2.7(5) but see part

(2).
e may write Cx = Rang(c),ex,t.n = (e n,m + m < Lg(ex,t,n)) so in fact ex = (cF,, ., :

(t,m,m) € J) for the natural J = Jx.

{tp25.43}

{3n.1}

{tp14.21}

{tp14.21}

{tp14.28}
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For A = N, let “ < A7 mean Ay is the universe of My < € (no saturation demand).
5) We define a two-place relation <g on Ky : x <oy iff Ax C Ay, Bx C By, Ix C
Iy,€x = Cy | I, ie. t € Ix = €y = Cx,; moreover t € Iy = ny; = nx; and
t€ I An < nxt= Cyin = Cxtn,dx I dy and tp(Cx, Ay) does not split over By
hence “tp(C€x, Ax) does not split over By” follows.

5A) x <4 y mean x <oy and A, = Ax.

6) We define a two-place relation <o on Kp:x <oy iff x <; y A dy = (_ly.

7)) x € Kg_,{ﬁ is called normal when Rang(¢,) C Rang(dy).

8) For x € K, let Py g = (Px.g <x.0) be defined by:

(a) Px = {tp(dx, A +¢x) : A C Ay has cardinality < 6},
(b) <x, is the following two-place relation on Py g : p1(Zg_ ) <x¢ p2(Tg ) iff
p2 F p1.
9) If 6 = |T| + |lg(dx)| + [€g(Cx)], i-e. we use “< 0%, we may omit it.
Claim 2.7. 1) K1 g Ko.
2) <; is a partial order on Ko fori=0,1,2.
3) If i € {0,1,2}, (X0 : @ < 0) is <;-increasing in Kf\),n,e where 6 is a limit ordinal,
[cf(6) > 07 = A €, = Cx,) and®[i < 1Acf(0) > 07 = (A dx, = dx,)],[i =
j<sé a<d
0= XA < cf(0)] and 6 < cf(k) V ( N\ Bx, = Bx,), then it has a <;-lub x5 :=
a<d

U{xa : a < 6} € K3, 4 defined by Ax = U{Ax, : a < 6},Bx = U{By, : @ <
0, Ix = U{lx, @ < d},ex = U{Cx, : a < J}, ie. Cxy = Cx,t whent € Ix, and
dx = U{dx, : @ < d}.
3A) In part (3), if « < § = x4 € K} . o then x5 € K3 , 4.
4)Ifd € "> and M is k-saturated and k > 0 then x = (M, ), <>,d)) € Kﬁﬂ
for £=0,1.
5) In the definition of x € Ky: in clause (e) it suffices to demand that: if ny > 1
then (€, :n < ny) is indiscernible over AU {Csm 1§ <rt,m < ns}.
6) For every X € K 9 there is a normal’y € K x0 salisfying x <1 y,Cx = Cy
and Rang(dy) = Rang(dx) U Rang(¢x). Hencey € mxK) 9 < x € mxKy .9, see
Definition 2.8 below.
7) If i = 0 and (xo : a < ) is <;i-increasing in K , 4 and cf(§) < 67,5 < cf(x),
then the sequence has a <;-upper bound x5 € Kf\),n,e’ note that we have not said
“lub”'
7A) In part (7), if a < 3§ = Xo € K} . o then we can add x5 € K , 4.

Proof. Easy e.g.
7), TA) The problem is when part (3) does not cover it, so A > Ng. It is clear how
to choose €x,,dx, and By, but we should choose a A\-saturated My;.

Let B=U{Bx, :a<0},] =Wk, :a<d}and c= (¢, : t € I) with & = ¢x_
when «a € I ; similarly d.

First, choose a A-saturated M extending U{Mx, : o < ¢} but what about
“tp(Cx,, M) does not split over By, for each o < §”7

Now for each o < v < 0, tp(€x,,M,) does not split over By, which means
Pan~(T) = tp(Ex,,My) does not split over By, hence po(Z) := U{pap(T) : 5 €

12Tis follows from “(Xa < 0) is <;-increasing” when i = 2.
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(v, 0)} = tp(éxa,ﬁU(S Mpg) does not split over By, . Hence for a < § by 1.2(1) there
<

is €/, such that tp(c,,, M) does not split over Bk, and extends p,. As My O Bx,
is A-saturated and A > x by Definition 2.6(3) clearly the model My, is x-saturated
and |Bx, | < k by the definition of K7 , ,. Recalling 1.2(1), by the last two sentences
¢ | Ix, realizes tp(cy,, M) for a < 8 < § hence without loss of generality a < 8 <
§=¢y | Ix, =¢,.

Hence there is an elementary mapping f mapping with domain U{¢,, : « < 6} U
M, mapping ¢, to €, for a <, and extending idygar,.a<sy- Now My, := f(M)
will do, i.e. let My = M, By = B,¢y = ¢,dy = d. Oz

Definition 2.8. 1) For £ = 0,1 let mXKg_ﬁKe be the family of x € Kf\.,/{,<0 which

14

i.e. for no y do we have x <J y € K . <o

are <j-maximal in Kﬁ,n,<0’
if £ =1 we may omit it.

2) For i = 0,1,2 let §;r be the following two-place relation on Ky : x §;r y iff
x <; y, see Definition 2.6 and if x # y then for some ¢ € I, \Ix satisfying ny, > 2
we have: € = ¢[dx,é.1,b] A —~p[dx, G .0,b] for some ¢ = ¢(Z,7,2) € L(rr) and
bC AxUU{Gy,s : s € L\{t}}.

3) Again, if 0 = o instead of “< 6”: we may write o, and if kK = A we may omit \.
4) Of course, x <Zr Yy means x §;r YAXZYy.

see below;

Observation 2.9. Let i =0,1,2.

1) For ¢ =0, 1 the two-place relation SZF is a partial order on K*.

2) If x1 <; %o < x3 <; x4 then x; <} x4.

3) If x <;r z are from Kﬁ,m,<9 then there is y € Ki,n,<0 such that x <§r y <;z
and dy = dx, Iy \ I is finite.

4) The parallel of 2.7(3),(3A) holds for mxK.

5) If ko > k1 > 6 then mxK,, o C mxKy, 4.

Proof. E.g.
3) Let t € I,\Ix and ¢ = p(Z,9,2) € L(rr) and b C Ax UU{Gy s : s € Iy \{t}} be
such that € = ¢[dx, Gy +.1,b] A =¢[dx, Gy 1.0,b]. We choose a finite I C I,\{t} such
that b C U{¢ys:s €I} UAx. Now define y by: My, = My, I, = I, UT U{t},¢cy =
eslly,dy = dx and By = Bx.

Now check. oo

The following claim may be good for digesting the meaning of meﬁym(,.

Claim 2.10. The L.S.T. Claim for mxK

If x € mxKy 9 and M = My then for some function F with domain [M]<*
satisfying F(A) € [M]SQ‘AMT‘ for A € Dom(F), we have: if My < M s closed
under F and contains By then (M, By, Cx,dy) belongs to mXKf;ye.

Remark 2.11. 1) By 2.9(4), it suffices to consider F with domain [M]<o.
2) The LST claim for x € K, ¢ and for x € K, p\mxK, ¢ are true and easier.

Proof. We can choose F(f)) € [M]! and for notational transparency we fix a set .J
of cardinality Ng disjoint to Ix.

Note that for every N < M satisfying By C N we have xy := (N, By, Cx, ax) S
Kﬁﬁ; call such N a candidate. So to choose F’ let us analyze the cases By C N < M

{tp25.32}

{tp14.21}

{tp25.31}

{tp14.28}

{tp25.30}

{tp25.31}
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but xy ¢ meﬁﬁ. Considering Definition 2.8, it suffices by 2.9(3) to consider the
case Xy <3 ¥, Iy\Ix is finite and is C J, ¢, € Iy\Ix, p«(Z,7, Z), b« as there, we can
ignore the possibility that also some other t € I\ I\ {t.} works.

We let b list By, Iy\Ix = {to, ..., tk—1},ts = Loy, L(x) < kymy > Lg(Cy0),ne =

{tp25.32}

ny,t fort € Iy. Also without loss of generahty v =p(z,7y; z1, zz) Lg(g) = Lg(Cy t.0),l9(T) =

lg(dy),b = b1 bo,by € “>(My) = “>N,{g(%1) = £g(by) and abusing our nota-
tion, £g(Z2) = Lg(by) where by = (Cyth  k < nyyt € Iy) and 521<t = (Cysk °
k< nys <tsot € ly)and by = (Gysk : k < ng,s € Iy\{t}), so € =
(p[dx, Ey,t*,la bl, bgyt*] A _‘gﬁ[dx, Ey,t*,O; bl, bgyt*] and let Eg(Zf) = Eg(éyyt), Eg(ZM) =
gg(éyﬁtyg) SO Z;k = ZtﬁoA . AZtynt,l and 29 = ( cey 2;;, .. -)tGIy'

All this information will be called a witness against the candidate N and we
denote it by w.

Let s consist of the following pieces of information on the witness w and in this
case we shall say that w materializes s and s is a case for N.

K (a) I=1I,and (t;: ¢ < k) (so we will write Is,ts ) and £(x),
ng, my fort € I,

o) )

(¢) ¢ =o(Z,7, 21, 22) hence Lg(b1) = Lg(z1),
(d) ¢(0) = £g(b) but not by itself,
(e)

e

c

qo = tp(bo,0) and q; = tp(bg by ba, D), so from ¢; we know when
ba.e, = Ctymty

(f)  the scheme of non-splitting of tp(E M) for t € I, from

clause (f) of 2.6(1), that is Z; = {(¢(Ze, .. ¥'), a7, Up,)): for some

b e WW)N we have € = [cy 4, b] and a7, 5s,) = tp(bbo,0)}.

We shall write I = I, t. = t.(8),¢ = ¢s(Ts, ¥, 2s.1,2s,2),Gs,0 = qo, etc. and let
rs = tp(Cy, N). We call s a case when it is a case for some candidate N. If s is
a case and by € (9 (M) realizes gs o, then we can choose Cobo = (Cxpot it € L)
such that tp(Cs 5,4, U{Cs 5,6 © 5 <1, t} U Mx) is defined by the scheme Z; with
the parameter by, this type is determined by s,by and x (though not the Cs bt S
themselves). Without loss of generality ¢ € I = ¢4 5, ; = Cx,t-

Now clearly

(x)1 for a candidate N we have x € mxK, g iff for every case s and by € CON
realizing ¢s,o there is no by € 99 N such that s1,b0,b1,b0 = Cs,p, are as
above.

So

(*)g for every case s and by € <(O)(M,) realizing gso and by € “91) M| we can-
not choose ¢’,¢” realizing tp(Cq ,, Mx) such that ¢'[Ix = ¢x = c” [I. and

€ ald. ), gy, b1, NI\ {1 (9)1)] A ~oslds € 0y b1, € (o (£ ()]

[Why? As then x ¢ mxK, .]
Hence

(*)3 for every case s and by € (9 (M) realizing gs o and by € “9(%1) (M) there
is a finite set C' = Cs(bo, b1) C My such that: if N is a candidate which
includes bg, b1, C then there is no witness w against N with s = sy, by =
bw,0,b1 = b1
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{3k.0.7} Also (1.2(4))

(¥)4 for B C M of cardinality <  let C'(B) be a subset of M of cardinality
< 2IBIHIT1 in which every p € S<¥(B) is realized.

Lastly, let F' be defined for B € [M]<*, F(B) = U{Cs(bo,b1) : s a case and bg, by
suitable sequences from B} U C(B).

Now the number of cases is < Rg + Rg + Ro + |[T'| + 0 + 2/THIBl = 2ITIHIBI g4
F(B) € [M]=?. So we are done. Os.10

Theorem 2.12. The Eristence Theorem If { = 0,1 and cf(k) > 6 > |T| and
X € Kf\,me then there is'y such that x <oy € mXKﬁ,me.

Remark 2.13. 1) If we use K , _, instead of “0 > |T|” we should demand “cf(6) >
|T|77.

2) We may get more. E.g. demand I) = I, I» is well ordered and I, = [y ULy, I; <
Iy, ie. sy €1 Nsg € Ir = s1 < So.

2A) Also this claim holds (by the same proof) when we replace clause (f) in Defi-
nition 2.6(1) by

(f)2 tp(Cx, Ax) is finitely satisfiable in By.
Then in part (2) of the remark we may add
(x) for t € I, tp(cs, My U {Cy s : s <p, t}) is finitely satisfiable in By.

See more in 2.33, 2.34 and 2.35.

2B) In this case we may say “Clause (f)1, of 2.6(1)” instead of Clause (f).

3) We can be more relaxed in the demands on (x, : a < 0%) in the proof e.g. it
suffices to demand

@ (a) xq € Kg,n,ea
(b) x4 is <j-increasing continuous, natural to demand “<s-increasing”,
that is, dx_, = dx, but not necessary,

(c) for each a < 0% (or just for stationarily many o < 1) we have
Xa <<1‘r Xa+1-

[Why? Let dy, [ta (ua finite) ta, 0a(Ta, Ja, ba) Witness X, <f Xq+1 When a € Sy
where Sy := {a < 0% : x, <] Xat1}. For a € Sp let h(a) = Min{y : dx, [ua =
dy, [ta, equivalently u, C Dom(dyx, ) and Rang(bs) N (Ax, + Cx.) € Ax, + €, },
clearly h(a) < a for a limit € Sp.

So by Fodor’s Lemma for some § < a and u the set S = {§ € Sy : § is a limit
ordinal as in clause (c¢) above us = u and h(d) = B} is stationary. As 6 > |T|, for
some'® formula ¢ the set Sy := {6 € S1 : s = ¢} is a stationary subset of 1 and
we continue as in the proof.

4) How does part (3) of the remark help? E.g. if we like to get y € mef\ﬁ,e

which is normal and Rang(dy ) is the universe of some N < €.

Proof. Assume this fails. We try to choose x,, by induction on o < 7 such that

13if Ct,,n is infinite we let uq C Zg(Ef:‘O) be finite such that € &= ¢ [&x,af:gl I ua,ba] A

“Pa [&xa,afjjl ,ba] and the rest is the same.

{tp25.33}

{tp25.34}

{tp14.21}

{tp.88}
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® (a) x4 € Kﬁ,n,ev
(b)) x5 <2 x4 for 8 < a,
() ifa=p+1then x5 <3 Xa, i.e. X, Witness xg ¢ mXKi,mH
(i.e. is like y in Definition 2.8);
(d) xo=x.

For o« = 0 use clause (d), for « = 841 we use our assumption toward contradiction.
For a limit use 2.7(3). Note that dx, = dx for a < 6% by clauses (d) + (b).

Having carried the induction, for each o < 0% there are ta,tpa(i,ga,éa),ga
satisfying:

(*) a) tOz € Ixa+1\lxa
b) (Poz(j7ga, Zoz) € L(TT)
c) ba € My, U {Cxuirs 18 € Ixoyy \{ta}}

d) Eg(ba) = fg(,?a) and Eg(goz) = gg(éxa+17ta10)
)

¢ ': “_‘90(1 [dx; E_xa+1,ta707 ba] A Pa [dx; Exa+1,ta,17 ba]” SO
Lg(Z) = Lg(dx) and ns, > 2.

a (
(
(
(
(e

Clearly the sequence (to : o < 07) is without repetitions. Now let J, C Ix, ., \{ta}

be finite such that by, C My, UU{Cs.,,s 1 8 € Jo}. We can find a pair (p(Z, 7, 2), 1., M)

such that the set Sy = {d < 67 : |Js| < n. and ¢s(Z, Yo, 20) = ¢(T,7, 2)} is infinite
(even stationary). By Ramsey’s theorem (or Fodor’s Lemma) we can find an infinite
(and even stationary) set S; C Sp C 61 such that 6 € S1 = JsN{tg: B € S1} =0.
Note that there are < 6 possibilities for ¢, not necessarily < |T'| because though
©0a(Z, Ua, Zo) depend only on Z | u for some finite u C £g(Z) there are < £g(dy)+Ro
possibilities for u.

Next we shall prove that in this case ¢(Z; 7, Z) has the independence property
(for T'), a contradiction.

For every w,v C 57 and 7 € 2 let, noting that w = Dom(n):

()2 (a) Ao =AxU{Cxs it t € Jgand n <ny, for some 3 € v}iU
{Exa+17ta7"7(a) o€ w},
(b)  fy,v is the function with:
(a)  domain A, ,,
(B) is the identity on Ay U {Cxs,, t,n:t € Jg and
n < nx, . for some g € v},

(7) fn,v(éxa+1,ta,n(a)) = Exa+11ta70 foraew= Dom(n)'

Now
(%)3 fn,u is an elementary mapping.

[Why? Without loss of generality w C v are finite so C «(x) for some a(x) < 0T
and prove this by induction on |v]. We just use: for o € v the sequence (Cx,,, t,n :
n < Nx,,t) is indiscernible over Ax_ . U{Cx, ., s 8 € Ix,., \{t}}, by Definition
2.6(1), Clause (e).]

Now let g,., € aut(¢) extends f,,. So @ € v = g,4(ba) = fy(ba) = bs and
90 (Cxair tam(@)) = Cxain ta,0 fOr @ € w; hence by the choice of J, so for n € *2
we have



nodi fi ed: 2017- 04- 24

revi sion: 2017- 04- 07

(900)

DEPENDENT THEORIES AND THE GENERIC PAIR CONJECTURE SH900 27

(*)4 < ): 90[9777U(dx)7 Exa+17ta10’ ba] iff U(a) =1

So (p(Z, Cxy1,t0,0,ba) 1 t € u) is an independent sequence of formulas, see 0.4(a);
as w is any subset of S; we get a contradiction as promised. s 19

Claim 2.14. The Weak Orthogonality Claim

A

ssume £ = 0,1 and x € mXKf\yme.

1) If m < w, B’ C My and"* |B'| < k and q € S™(Myx U Cx) does not split over B’

then

1A) Above it suffices'® that ¢ = tp(€1 G2, M UCy) and tp(1, My) does not split over

tp(dx, Mx U Cx) is weakly orthogonal to q.

some B' € [M]<", tp(Cx, Mx +¢1) does not split over By and tp(¢a, My +¢1 + Cx)

does

not split over some B"' € [My]<".

2) If x, € mXKf\yme for a < § is <y-increasing, 6 < 07 and x5 := U{xo : @ < &}
belongs to Kﬁ,n,e (recall 2.7(3)) then it also belongs to mXKgﬁnﬁ.

Proof. 1) Assume toward contradiction that those types are not weakly orthogonal.
Let ¢ =q(7),7 = (yr : k <m) and let T = (z, : @ < ax) recalling ax = £g(dx) and

p(Z)
type
is co
reali
split

= tp(dx, Mx UC%). So for some formula ¢(Z, 7, Z) and € € £9(2) (Mx UCY) the
p(E) U g(5) does not decide ¢(z,5, @), ie. 74(%,5) = p(7) Ug(5) U {o(Z, 5, 0)'}
nsistent (= finitely satisfiable in €) for t = 0,1 and let &), ¢} be such that d"c;
zes 1¢(Z,y) for t = 0,1. Now it cannot be that tp(c}, My U Cx U dy) does not
over B’ for both t = 0,1 (by 1.2(1), as every p € S<¥(B’) is realized in M

recalling M is k-saturated and x > |B’|). So choose ¢ € {¢,c;} such that the

type
N
and

tp(Co, My U Cx U d) splits over B'. B
ow by 1.2(1) there is ¢; € ™€ such that tp(¢1, Mx U Cx Udx U¢o) extends q(7)
does not split over B’. Hence also tp(¢1, Mx U Cx U dx) does not split over

B’, hence it is different from tp(cy, My U Cx U dy). We can continue and choose
én (n = 2,3...) realizing the complete type over My U Cx Udx U J{c : k < n}
which extends ¢ and does not split over B’. Hence

(x)o for every n < w, tp(&n, MxUCx UU{c : k < n}) extend ¢(7) and does not

split over B’.

So by 1.2(2)

(¥)1 (€n : n < w) is an indiscernible sequence over My U Ck.

Also

(by induction on v < w) by 1.2(3) we have:

(%)2 ift € Ix then (Cx 1 : 7 < n¢) is an indiscernible sequence over My U{¢x s m :

Now

14
15

se I\{t}tu{e, :n <~}

we define y = (My, By, Cy,dy) by
a) My = My,
) By=ByUB,
¢) ay = dy,

d
e

Iy = I, U {s(x)} were [t € I, =t <p, s(+)],
Cy | Ix = cx,

® (
(b
(
(d)
()

this is just to ensure that M realizes every g € S<“(B’).

even more as we can increase the linear order Ix.

{On.17}
{tp25.36}
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(f) ny s = w (or any number € [2,w]) and ¢y ;(4)n = Gy for n < ny o).

Now y contradicts the assumption x € meﬁym(,.
1A) Similarly (recalling that we can use {s1} + Ix).
2) Easy. Ua.14

The following claim is a crucial step toward proving the Type Decomposition
Theorem 2.4.

Claim 2.15. Ifx € mXKi,mg (or just x € K and ® below) then for every A C My
of cardinality < k and ¢ = @(%,7,2) € L(rr) satisfying £g(7) = Lg(dx),{g(Z) =
lg(ex),Lg(y) = m, there is ¥(Z,€,ex) € tp(dx, Mx U Cx) satisfying &€ € “> My
such that (7, ,ex) F {0(Z,0,¢x)t : b € WA and t € {0,1} are such that € =
o[dx, b, ex]t} where

® if q(7) € SY9W) (M, Ucy) is finitely satisfiable in some A C My of cardinality

< Kk then q(g) is weakly orthogonal to tp(dx, Mx U Cy).

Proof. By 2.14, if x € mxK) ¢ then ® holds; hence we can in any case assume ®.

Let p(z) = tp(dx, M UCx), so T = (x; : i < £g(dx)) and recalling § = (ye : £ <
m) we define a set r = r() as follows:

r(y) == {(32)(p(Z,7,cx)* ANY(Z,a,¢x)) : t € {0,1} and
¥(Z,a,cx) € p(Z) and a € ¥~ (My)}.
Now

®1 7(y) is not finitely satisfiable in " A.
[Why? If r(g) is finitely satisfiable in ™A, then there is an ultrafilter 2 on ™A

such that for every 9(7,a,cx) € r(y), the set {b : b € ™A and = J[b,a,cx|}
belongs to 2. Let q(y) = Av(Z, Mx U éx), clearly q(y) € S™(Mx U €x) is finitely
satisfiable in ™A, A C M and |A| < k. Let b* € ™€ realize ¢(7), so (¥(7,a,cx) €
p(T) At € {0,1} = € | (37)(p(7,b*,¢x)t A (T,a,¢x)). Why? This holds by
the choices of 7(7), 2 and b*. As p(z) is closed under conjunctions it follows that
p(Z)U{p(Z,b*,cx)t} is finitely satisfiable in € for t = 0, 1. But this contradicts the
assumption ®.]

Hence for some n < w and 9¢(Z, a¢, cx) € p(Z) for £ < n we have
®9 for no b € ™A do we have (37)(¢(%, b, €x)t A (T, ar,¢x)) for £ < n,t €
{0,1}.

Let ¢(Z,a,¢x) = A %e(Z,ar, Cx), so clearly
£<n

(b) ¥(z,a,¢x) € p(T),

_ 1 _
(¢) formnobe ™A do we have A (37)(¢(Z,b,¢x)* A (T, a,cx)).
t=0
So for every b € ™A for some t = t(b) € {0,1} we have € |= —(3%)(p(Z, b, ¢x)* A
¥(Z,a,¢x)) hence 1(Z,a, €x) b —p(Z,b,x) ™). As(Z,a,¢x) € p(z) = tp(dx, MyxU
cx) it follows that —p(Z,b, cx)*®) € p(z).
So ¥(Z,a,¢x) is as required. Us.15
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Claim 2.16. Assume x € meﬁﬁ,{ﬁ. If B" C My, |B'| < k,d € ™(Dy),¢ €

“7(Cx), ¢ = @(2,9,2),Lg(T) = Lg(d), Lg(2) = Lg(c) then for some (z,¥',Z") and
e € L9 (M) we have = +[d, €,¢| and

W(z,e,0) F {o@,be)t :be99(B) and € = [d,b,d* and t € {0,1}}.
)

Proof. This just reformulates 2.15; see more in 2.20(0 Os.16

Now at last

Proof. Proof of 2.4, The Type Decomposition Theorem

By 2.7(4) there is x € K,lﬁ7<9 such that dy = d and My = M. By the Existence
Theorem 2.12 without loss of generality x € mxK} _,. Clearly (Pyg,<xg) is
a partial order. Assume that a(x) < k and p, € P,:e for « < a(x). Let B =
U{Dom(p,) : @ < a(*)} U Bx, so B C My has cardinality < x. Hence by
2.16 for every v C lg(cx) and ¢ = ¢(T, 7, z) satisfying fg(Z) = lg(cx),lg(T) =
Lg(dyx), £9(7) < w there is ¢ = 1, (7, €,,¢x) € tp(dx, MUey) where &, € 9 (M)
such that 1, (Z,8,,¢x) F {p(7,b,cx)t : b € “OB and € = ¢[dx,b,cx]t and
t e {0,1}}.

Let A = U{Rang(é,) : ¢ as above}, clearly |A| < 6 and let p = tp(dx, A U ex);
it is an upper bound, as required. O g

Discussion 2.17. The type decomposition theorems say that we can analyze a type
p € S(M) in two steps; first tp(¢, M) does not split over some “small” B C M.
Second, tp(d, &+ M) is like a type in the theory of trees and lastly without loss
of generality by 2.7(6) some initial segment of d realizes p. As an example, see
[Sh:877]:

Exercise 2.18. Let T' = Tyq be Th(Q, <) and if M < €p, M is k-saturated, in
the main case and p € S(M) then

(a) p induces a cut C, of M where C, = (Cp1,Cp2),Cp1 = {a € M : (a <
x) € p} and Cpo = M\C)p 1,

(b) now C,, has a pair (k1,k2) of cofinalities, that is k1 = cf(Cp1,<un), k2 =

cf(Cp2,>n), as M is k-saturated necessarily max{xi, Ko} > &,

(¢) now p does not split over some subset B of M of cardinality < A < r iff
min{ky, Ko} < A,

(d) for every B C M of cardinality < min{ky, K2} for some ¢(x,a) € p we
have p(z,a) - p [ B (i.e. p under - is min{k1, ko }-directed); in fact we can
add that for some a; € Cp 1 and as € Cp 2 we have ¢(z,a) = a1 < x < ag,

(e) so for Kk = min{k1,ka} we have a decomposition which is trivial in some
sense: either we have ¢ =<> or we have d = ¢,

(f) if e.g. By is an unbounded subset of C), 1 of cardinality x1 and ¢, d realize
in € (where M < €) the type p and € = ¢ < d, then tp(c, M U {d}) is
finitely satisfiable in By and for every A C M of cardinality < ko for some
formula ¢(x,a) € p we have ¢(z,a) A (¢ < z) - tp(d, AU {c}).

Discussion 2.19. Note: if 7" is stable and x € mxK, ¢ is normal then dy
del(Rang(cx)) recalling dcl(A) = {b: b is definable over A, equivalently tp(c, A)
tp(b, A) = ¢ = b}.

N
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Claim 2.20. 0) In 2.16 if cf(k) > 0 + |T'| then we can choose ¥ = (Z,y',Z") such
that it depends on x,d, (%, 7, Z) but not on B'.

0A) In 2.16 if cf(k) > 20HT| then we can fir also ¢ = tp(€,Cx Udy). If cf(r) >
20HITI+1Bx then moreover we can fix ¢ = tp(€, Bx U cx Udy).

1) Assume that x € Ko and ¢ = ¢(,9, %) € L(1r) are such that g, Z are finite and
9(x) = Lg(dy).

Then the following set is finite: J = Jx o, = {t € Ix: there are & = (oy : £ <
Lg(9)) and a sequence b € Y9 (A U {xs : 5 € L\{t}}) such that { < lg(y) =
oy < Lg(Cxt0) and € = pldx, ((ex,t,0)a, : € < £g(9)),b] A =¢ldx, (Cx,t,1)a, £ <
tg(y)),b)]}-

2) Moreover, there is a bound on |J| depends just on ¢ and T.
3) For any x € Koy, <x, and ¢ there isy satisfying x <oy € Kon,,<x, Such that
I \Ix is finite and the local version of mazimality holds, i.e.

Y <22 € Kang,<ng = Jap = Jy o
4) For any x € Kon,,<n, and sequence (@, : n < w) we can find (X, : n < w)

such that xo = X, Xn <o Xpt1 € Keng,<ros Ix, \Ix finite and X411, pn satisfies the
demands on 'y, p above for every n.

Proof. 0) As there are < 0+|T'| < cf(k) possible choices of 1) and the set of possible
B’s is (cf(k))-directed.

0A) Similarly.

1),2) Let n; be minimal such that: these are by € 9 g, € 93¢ for ¢ < ny such
that (p(Z,be, &) : £ < n1) an independent sequence of formulas; note that n; exists
as T is a dependent theory. Let no be minimal such that if u; € [no\{i}]%9® for
i < ng then for some v € [ng]™ we have i,j € v = i ¢ u; (the A-system lemma for
finite sets, see 0.5). Now ng is a bound as required by the proof of 2.12.

3),4) Follows. DQ_QQ

Conclusion 2.21. Ifx € meﬁﬁKﬁ and cf(k) > 0 + |T| then we can find € €
C and (Y25, (T, 8,Cx)  9(#,9.2) € L(rr)) satisfying £9(z) = Lg(dx), Lg(
Cx, Lg(7) = 0 such that: for each ©(T,7,z) with Lg(Z) = Lg(dx),Lg(g) = 0,Lg9(Z
Cx (but ¢ depends just on finitely many variables) we have:

® Yy(z.5.2)(T, 6 Cx) € tp(dx, e Ucx),
® Vy(z,5,5)(T,6¢x) F {o(Z,b,cx)t : b € “ODM and t € {0,1} such that
Q ): (ID[CZX, Ea éx]t}
e tp(&, My Ucy Udy) is finitely satisfiable in M.
Proof. By 2.15 and 2.20 and compactness (i.e. saturation of ). Os.91

On strongly/strongly? dependent theories see [Sh:863].

Remark 2.22. 1) If T is strongly dependent then in the previous claim 2.20(1),
if x satisfies t € Ix = n; = w then for each n < w even the set Jx = U{Jx, :
©(Z,7,z) € L(rr) as there and £g(z) < n} is finite.

2) If T is strongly dependent? then above we can allow n = w.

3) The proofs are similar.

{tp26.7}
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We now turn to exact saturation. We first prove Theorem 2.2, second we prove in
2.23 that some independent T’s satisfies it, even give a sufficient criterion. Third,
we give a sufficient condition for 7" to satisfy the theorem - in 2.26 - the existence
of a stable indiscernible set (2.24).

Proof. Proof of 2.2, The Singular Exact Saturation Lemma

Let 0 = |T|. As M is not k*-saturated, there are A C M of cardinality < &
and p € S'(A) omitted by M. Let d € € realize p. By Theorem 2.4, there is
¢ € 92¢ as there for (d), so in particular such that tp(c, M) does not split over
some N < M of cardinality < k. Let (B; : i < cf(x)) be a C-increasing sequence
of sets with union N U A such that i < cf(k) = |B;] < k and N C By. Now we
choose A; C M by induction on i < cf(k) such that A; is of cardinality < 6 and
tp(d, A; Ue) - tp(d, Bf") where B := B; U{J{A; : j < i}.

The choice is possible as |B;f| < x by 2.4, i.e. by the choice of €. Next we can
find A, C M of cardinality < 6 such that tp(d, A, Uc) - tp(d, |J A;), possible as

i<K

| U Al <0+ cf(k) < k. Let BY = U{B] :i < cf(k)} UA, so |BT| =« and
i< cf(k)
we ask the question:

® is there an elementary mapping f (or automorphism of €) such that f | BT
is the identity and f(c) € M?

If yes, then let d' € M realize f(tp(d, A, Uc)) € S(A, U f(€)) hence there is an
elementary mapping g satisfying g|A, = ida, = flAx,g(¢) = f(€) and g(d) = d'.
Hence easily for each i < cf(k) the sequence (d’ )Af(_) realizes f(tp({(d)"c, A;))
hence it realizes also f(tp((d)"€, B;"))); so d’ realizes f(tp(d,B;")). But as B
increases with i it realizes f(tp(d,U{B;" : i < cf(k)}), but A C U{B; : i <
cf(k)} C U{B;" : i < K} hence d realizes tp(d, A), but d’ € M contradicting the
choice of p, A, d.

So the answer to the question is no, which gives clauses (a),(b) of the desired
conclusion. Let Bf = B U A, hence (B} : i < cf(k)) is C-increasing with union
Bt and |B;| < & for i < cf(k).

As for clause (c), we choose €. by induction on & < x such that:

(*) (a) e.€M,
(b) ¢ realizes tp(¢,U{c¢ : ( <e}UN),
(c) for even ¢, if possible €. does not realize tp(¢, N UB™) hence for some
a = a. < cf(k), €. does not realize tp(c, BY),
(d) for even e, if . is well defined, it is minimal,
(e) for odd e, = a1 and ¢, realizes tp(c, B}) or even

tp(c,U{Cc: ( <e}UNUDB ).

There is no problem in carrying the induction, by 1.2(2) the sequence (¢. : € < k)
is indiscernible over N. Also obviously the sequence {(a. : € < k) is non-decreasing;
if some . is not well defined or an := U{a. : ¢ < K} is equal to cf(k) we are
done; that is letting €, from ?M be such that (€. : € < &) is an indiscernible
sequence over N, necessarily ¢, realizes tp(¢, N U B}) for each i < k hence realizes

{tp25.43}

{tp25.43}

{3k.0.7}
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tp(€, B™) contradiction to “® fails”. But the non-existence of €, and the properties
of (¢; : i < k) are as promised in clause (c) of the Lemma, so we are indeed done.

So assume a, < cf(k), so for each e <  there is a formula . (7, €.) € tp(e, B;,.) €
tp(c, B, ) with £g(z) = £g(c) such that € |= —p.[c,&.], but by clause (e) of (x)
necessarily € |= ¢.[Cocy1,€.]. As k> |B |+ |T| for some formula ¢(Z,€) we have
{e < k:9.(Z,8.) = o(T,e.)} is infinite. But this contradicts T being dependent,
so we are done proving Clause (c).

Clause (¢)™, that is “moreover, there is an ultrafilter 2 on N” follows when we
use the version of mxK from 2.13(2A) or 2.33 - 2.35 below. Oso

We may have hoped that 2.2 characterize being dependent, but this is not
so. Clarification when this property (characterization of exactly xk-saturated k >
cf(k) > |T|, as in 2.2) holds is given by:

Example 2.23. 0) The theory T, of random graphs is unstable and easily for
every k it has a k-saturated not x*-saturated model.

1) There is an independent 7' such that: if 7" has an exactly r-saturated model
then k is regular. In fact, this is a sufficient condition.

2) The same holds for exactly k-compact, k > Rq.

Proof. We use T which satisfies “The Chang Trick” from his proof of his two car-
dinal theorem (Ry,Rg) — (AT, \) when A = A<*; the use is not an incident, he uses
such T' to overcome a related problem in his proof.

The condition is:

@ for some predicate R(x,y) € 7 written Ry (or just a formula ¢, (z,y) €
L(77)) we have'®:
(a) the empty set can be coded, that is JyVaz(—xzRy),
(b) we can add to a coded set one element, that is (Va, y)(3y1) (V1) [x1 Ryr =
(r1Ry V x1 = x)].

Note: for any model M, if R ¢ 7y, M an infinite model, let (up : b € M) list the
finite subsets of M, and we expand M to M™ by choosing RH' = {(a,b) : a € up
and b € M}, then Th(M™) is as required.

So assume k = X{k; 1 i < cf(k)}, k; < kj < K for i < j < cf(k), cf(k) < Kk and
M is k-saturated. Let A C M,|A| = k and p € S(A,M). Let A = U{4; : i <
cf(k)}, |Ai| < ki, A; increasing with i. Let ¢; realize p | A;.

By induction on i, we choose b; € M which realizes the type

pi(y) ={c¢jRy : j < cf(x) and j > i} U{(Vz)(xRy — xRb;):j <i}
U{(Vz)(zRy — ¢(z,a)) : ¢(Z,a) € p | Ai}.
Arriving to the i-th stage by ® and the induction hypothesis on 4, p;(y) is finitely
satisfiable in M.

[Why? Let p'(y) C p;(y) be finite so it has the form {¢;Ry : j € u} U {(Vx)(xRy —
xRb;) : j € v} U{(Vz)(xRy — wi(z,a¢)) : £ < n} where u C [i,cf(k)) is finite,

16instead (a)+(b) we can have

() (Vzo,...,2n—1)(V2)(zRy = \ z = z;) for every n.
£<n
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v C 7 is finite and ¢y(Z,as) € plA; for £ < n. By ® we can find ¢ € M such that
M = (Vz)(xRe = (V = = ¢j), thus c realizes p'(y))].
JjEV
But |p;| < k so we can choose b;.
Now {xRb; : i < cf(k)} is a set of formulas finitely satisfiable in M of cardinality
< k and any element realizing it realizes p. (o053

A weak complement to 2.4 is 2.26 but first recall:

Definition 2.24. [T not necessarily dependent].

1) I C “C is a stable indiscernible set when: I is an infinite indiscernible set
and for any n and ¢ = @(Zo,...,Tn_1,7) with £g(Z) = o and b € 9O ¢ there
are a finite J C I and truth value t such that: if a@g,...,a,—1 € I\J with no
repetitions then € |= @[ag, ..., én_1,b®; (hence Av(I, €) is well defined, i.e. for

any ¢(Z,7),49(Z) = o and b € 9D either o(I,b) or —¢(I,b) is finite).

2) I is a dependent indiscernible sequence when: [ is a linear order and I = (@ :
t € I) is an indiscernible sequence and for every formula ¢ with ¢g(Z,) = a,¢ =
©(Zo, ..., Tn-1,7) there is k = k,, such that

e for any b € “W¢ there is a convex equivalent relation E on I with <
k, many equivalence classes such that if ¢o,...,%,—1,50,...,5,—1 € I and
te, < te, = S0, < Su,,te, Esg, for £, 0y < n then € |= “play,,. . .,at, ,,b] =
O(Csgy - yas, 4, 0]7.
Fact 2.25. Assume T is dependent and I C € is infinite. Then I is a stable
indiscernible set iff I is an infinite indiscernible set.

Proof. As in [Sh:715, 1.28]. U225

n—17

Claim 2.26. 1) Assume (T is dependent and) there is an infinite indiscernible set
I1C¢ Ifst =2% and k > |T| then T has an exactly k-saturated model.

2) Assume (T not necessarily dependent), I C € is a stable indiscernible set. Then
the conclusion of part (1) holds.

3) In parts (1),(2) the conclusion holds for T if the assumption holds for T

Remark 2.27. 1) Of course, trivially if for some non-zero ordinal a there is an
infinite indiscernible set I C “€ then for some i < a,{(a); : @ € I} is an infinite
indiscernible set.

2) But we could use below indiscernible set I C *€.

3) On indiscernible sets for 7' dependent see [Sh:715, §1], we use it freely.

4) Of course: if {a, : t € I'} C “€is an infinite indiscernible set/a stable indiscernible
set, u C awand (@ [ uw:t € I) is not constant then {G; [ w:¢ € I} C “C is an
infinite indiscernible set/a stable indiscernible set. So using singletons in 2.26 is
not a loss.

5) Recall that if I is a linear order and Iy, Is C I are infinite, a; € Be for t € I and
I=(a,:t € I) is an indiscernible sequence then I | I; is stable iff I [ I5 is stable.
This is easy.

6) We can in 2.24(1) add a bound k, to |J| as in 2.24(2), and get an equivalence
definition (using I is an infinite indiscernible set).

Proof. 1) By part (2) (and 2.25).
2) Let I = {aq : @ < k} C € be an infinite stable indiscernible set. Now easily

{tp16.

{tp16.

{tp16.

{tp16.

{tp16.

{tp16.

16n}

17}

18}

17}

16}

16n}
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®1 for any b € “> ¢ for some J € [T]</71 the set T\J is an indiscernible set over

bUJ.
[Why? By the definition but we elaborate. First, recall that for any n and
¢ = p(ZTo,. .., Tn-1,0") for some finite J, we have € &= “plao,...,an-1,0'] =
plag, ..., a,_q,b0)” when ag, ..., an—1 € I\J, with no repetition and ag, ..., a,_; €

I\J, with no repetitions. Lastly, we choose J;, C I by induction on k such that
[Jell < |T|,m <k =3, CJ CTandifk = m+1and ¢ = ¢(Zo, . .., Tpn-1,0"),0 C
(UJm) Ub then we can above choose J, C Ji. Now JJj is as required.]

k

©2 the following conditions on b € “>¢ are equivalent:

(a) tp(b,I), Av(I,I) are weakly orthogonal,
(b) for some J € [TI]=IT1 we have tp(b,J) = tp(b,T).

[Why? Easy using @1 but we elaborate.

Clause (a) = Clause (b):

Let a, realize Av(#,1I) and I =1 U {a,}.

By ®; there is J; C I™ of cardinality < |T'| such that I\J; is an indiscernible set
of bUJ;Ua, and also such that I\J is an indiscernible set over bUJ;. Let J, C I\J;
be of cardinality |T'| (really Xq suffices) and let J = J; UJs, so J C I |J| < |T.
Hence it suffices to prove that tp(b,J) - tp(b, ).

Assume Gy 6), - - -, @a(n—1) € I be with no repetitions and shal prove that tp(E7 J)E
tp(b, J U a0y U ... UCqn—1)), this suffices.

By transitivity of I it suffics to prove tp(b,J}) I tp(b, Ji ) for £ < n, where we
let J; = {Ca(0),--+»Cae—1)} UJ. Now if @y € Jp then Joy1 = J; so the statement
is trivial; so without loss of generality @, ¢ Jy. Also it suffices to prove tp(b, J7) I
tp(b, " U {@a(0); - - - » Ga(e—1) for any finite J' C 1.

Now tp(b,I) F tp(b, IT) because we are assuming clause (a) hence there is J” C I
or such that J; € J” |J"\J;| = |T| and tp(b,J”) I tp(b,J" U a,).

Now by cardinality consideration there is a permutation of m; of I™ such that
7 1 3,71 J are the identity and k < £ = 7(Cawr)) = Qa(r), T1(Ax) = ax and
maps J” U {@qa(0), - - -+ @ae—1)} onto J U {a@a(0),---,aau—1)}. By the choice of J;
and as there is an automorphism f; of € extending 7; and mapping b to b.

So as tp(b,J”) - tp(b,J’ Ua,) applying fi clearly we have

o tp(b, I U{@a(0), - Ga@e—1)}) F tp(b, T U{@a(0): - - - Ba(e—1)s Gn })-

Let II, be the permutation of I™ we interchange Qg (i)s Or (recall Qo (0) ¢ Ju
{da(o), e da(g,l)}), so as above we can in e replace Gy, by @q () as promised so we
are done.]

©®3 let D =Dy = {p € S<¥(I) : p weakly orthogonal to Av(I,I)}.
We define

®4 we say Aisa D-setifa € “” A= tp(a,I) € Dy
®s if T C A welet SB(A) = {tp(b,A) : AUD is a D-set and £g(b) = m}.

We note
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®¢ (a) if AisaD-set and I C A then Av(L,I) F Av(I, A); hence if A =|M|,
then M is not x*-saturated,
(b) AisaD-setiff AUT is a D-set.
©7 If A is a D-set of cardinality < x and p € S (A UI) then for some J C 1
of cardinality < |A|+ |T'| we have p [ (AUJ) I p.
[Why? By ®2 and ®g.]

©s if (A : @ < §) is an C-increasing sequence of D-sets, then Ajs := U{A, :
a < §}is a D-set.

[Why? By the definition of a D-set.]

Og if (A, @ @ < §) is C-increasing continuous sequence of D-sets, I C Ay and
p € S™(As) then p € SE(As) & A pl Ag € SB(AL).
a<d
[Why? By the definition of S (—) and ©s.]
Now comes a major point

®10 if A C € and |A| < k then we can find I such that: I; is an indiscernible
set, I C Iy, IH\I| < |T|+ |A| and A is a Dy, -set.

[Why? Let 6 = |A| + |T'| and we try by induction on ¢ < 6 to choose a sequence
a. € *¢ for € € [w(,w( + w) such that each a. realizes Av(I, {a¢ : £ < w(}UI) but
(ag : € € [w(,w( + w]) is not an indiscernible sequence over AUT U {a. : ¢ < w(}.
But if we succeed to carry the induction clearly I := T U {a. : ¢ < 67} is an

indiscernible set, and a stable one (recalling 2.27(5)) hence for some J C I of {tp16.18}

cardinality < |A|+|T|, also IT\J is an indiscernible set over AUJ, but necessarily
J CIU{a¢ : € < w(} for some ¢ < 07, easy contradiction to the choice of the a.’s.]

©11 if Ay C Ay are Dy-sets, |As| < k,|A41] < k and p € ST (A; UI) then there
is g € S (A UT) extending p.

[Why ©117 By ®g without loss of generality As = A; U {b}, so |As| < k and let
0 = |As| + |T'|. We can find ¢ realizing p(y) and let A = A; U{buec = A, Uec.
So by ®1¢ there is I such that: IT is an indiscernible set, I C It [IT\I| < 0 :=
|A|+|T| = |A1|+|T| < k and A is a Dy+-set. As Ay is a Dy-set by ®1 we can find
J1 C I of cardinality < [As| + |T| < 0 < & satisfying tp(A2,J1) F tp(Az,I). Also
A;Uc is a Dr-set (as Ap is a Dy-set and ¢ realizes p(g) € S§ (A1 UI)) hence there is
Jo C T of cardinality < |41 U¢|+|T| = 6 < k such that tp(4,Ue, J1) b tp(A UG I).
Lastly, as A is a Dy+-set there is J3 C I of cardinality < |A| + |T'| = 0 such that
tp(A,J3) F tp(A,TT).

Astp(Az,J1) F tp(As, 1) as in the proof of ®s necessarily tp(A4z,J1) F tp(Az, IT).
Similarly tp(A4; U¢,J2) = tp(Az U IT). By cardinality considerations there is a
permutation h of IT which is the identity on J;,J2 and J3 NI and maps J3\I
into I. As I" is an indiscernible set, h is an elementary mapping (of €). As
h | Jq is the identity and tp(As,J1) F tp(A2,IT), see above also h U idg, is an
elementary mapping hence there is an automorphism g of € extending h U ida,.
As tp(A; UG, Jo) b tp(A; UG IT) and h | Jo = idy,,hlA; = ida, (recalling
Ay C Ay) and h(I*) = I necessarily g(¢) realizes tp(¢, A UIT) hence it real-
izes tp(¢, A1 UT) which is equal to p(7). Also tp(As U, J3) F tp(Ax U, IT) hence
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tp(AaUg(€), h(J3)) = tp(A2UhA(e),IT) hence tp(A2Ug(c), h(J3)) F tp(A2Ug(c), ),
but h(J3) C I has cardinality < k. So Az U g(¢) is a Di-set hence ¢(y) =:
tp(g(¢), A2 UT) belongs to ST (A2 UT) so is as required.]

As 2% = kT, by ®g + ®11 there is M D I of cardinality x* which is k-saturated
and is a D-set hence by ®g is not s -saturated.

3) Should be clear. (s 06
Observation 2.28. (Any complete first order T')

In € there is no infinite indiscernible set iff for some n and ¢ = p(zg,...,Tp—1) €
L(7r), ¢ is connected and anti-symmetric i.e. if ag, ..., a,—1 € € with no repetitions
then for some permutations 7y, m of {0,...,n — 1} we have

< ': QO[G’TU(O)’ s aa’ﬂ'1(n—1)] A _'QO[GWZ(a), ) a‘ﬂ'2(an71)]'

Remark 2.29. 1) The second condition is related to the property (E) of complete
first order theories of Ehrenfeucht [Ehr57] which says that the condition holds for
some infinite set.

2) Note that € may have no infinite indiscernible set but €°4 has.

Proof. The implication < is obvious.

So assume the first statement. For o < w and A C A, = {¢(T) : ¢ €
L(rr), 7 = (xe: £ <n)} 1t TX =y vtk < €< alU{pWhgys s Uk, _,) =
Wty Ye,_1) 1 < a,o(xg,...,xn-1) € L(rr) and ko, ..., kn—1 < a without
repetitions and fo,...,¢,_1 < a without repetitions}. Easily I'S_is not realized
in € by the present assumption and (I'X : A is a finite subset of A, and k < w)
is C-increasing with & and A with union F‘Z*. Hence for some finite A C A, and
k < w, the set I'% is not realized in €.

Let (@i(xo, ..., @n,—1) 2 1 <i(x)) list A so i(x) < w, so without loss of generality
n; < k for i < i(x). Lastly, we define ¢(yo,...,yx—1), it says: if {ys : £ < k)
is without repetitions and ¢ < 4(x) is minimal such that (y, : ¢ < k) is not a
{@i(xo, ..., Tn,—1)}-indiscernible set then ¢;(yo,...,yn,—1). Now check. Oy 08

Question 2.30. 1) Is there a dependent T such that even in €°9 there is no infinite
indiscernible set but some singular x of cofinality > |T'| there is an exactly k-
saturated model of T'7

2) For a dependent theory T characterize {x : k singular and T has exactly k-
saturated models}.

3) In both parts we may at least initially restrict ourselves to x strong limit of large
enough cofinality such that 2% = k™.

4) Try to eliminate the assumption “2% = k%7 in 2.26 at least when k is strong
limit of cofinality > |T'|. A natural way is via &~ (n)-diagrams (as in [Sh:c, Ch.XII]
and even closer in [Sh:234]).

The following in a sense gives a spectrum for d /M.

17yes: we use singletons y’s.
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Claim 2.31. For 0 > |T|, a model M and sequence d € 92¢€, there is a set © such
that:

(a) ©CO,:={k:k>0 and M is k-saturated},

(b) |81 <0,

(¢) if k € © and cf(k) > 0 then there is x € mxK, < such that My = M,dy =
d and |Bx| < 0+ sup(© N k),

(d) if 0 < Kk € © and cf(k) < 0 then sup(© N k) = K.

Proof. Straight.

For each k € ©' := {k’ € O, : £’ has cofinality > 0} we can find x, € mxK, <¢
such that My = M, dy =d and for k € 0.\0’ let ©, be a cofinal subset of k of
cardinality cf(k) < 0. Let f: © — Card be defined by f(k) = |Bx| + 0. Note that
©’ has a maximal member or ©' has a cofinal subset of cardinality < 6. Now we
shall choose ©,, by induction on n such that ©,, C 0,,(0,| <fandn=m+1=
0,, C 0,,. Let ©g be a cofinal subset of ©, of cardinality < 6, see above why
possible. f n=m+1,1let ©, = {f(k): k€ 0, NO'} U{O, : k € ©,,\O'} UO,,.
Now U{O,, : n < w} is as required. 0531

Discussion 2.32. Note that Py in 2.4 is k-directed, but in general it is not definable
in My and even not definable in (Mx)[s,] (or Mg, 4c,]) even by disjunction of types
as it depends on dy. So we may consider P, = Prre, 0, = {p:p € S*®(AUcy)
and A C M has cardinality < s} ordered as before. Now P/ is partially ordered
but it is not clear that it is s-directed. Moreover (Mx)e,] is not x-saturated, but is
(Dy, k)- sequence homogeneous for suitable Dy and Dy is a good diagram (see e.g.
[Sh:3]; see more in [Sh:950]). So we can consider the families of such D’s, fixing (T'
and) 6.

But we can define the order in the s-saturated (Mx)[Bx] which is LW7K(TT)-
equivalent to €(p_j. In this model we have (%, Y) € Lo, which is a partial order
on the #-tuples, £g(T) = ax = Lg(7).

However, in our case we know more. Letting I' = L(7p), if cf(k) > 6 > |T| we
know that we can find ¢ = (¥,(Zy, ¥y, Z,) : ¢ € I') and the order on the set of
€= (..."e,"...), such that in 2.15 we can choose ¥ = 1), (easy, see 2.20(0)). If
cf(k) > 2%, we can fix there also the type of & over Cy U dy.

So

(¥)1 let I = {e: e as above}, so I is type-definable in (Mx)[p,]-
(¥)2 Pe = {Wp(Ty,€,¢x) 1 p €T} for e € L.
(x)s (a) <; defined by €; < ey if pg, F p’ for some p’ such that
pe, S ' €S(BxUe&),
(b) R is defined by e Re, iff 1, (Z,el,c) b p’' N {p(Z,b,0):
b C Rang(e; U Bx)} for each ¢ € T where p’ is as above.
There are other variants, we intend to return to this.
We now consider some variants of the main Definition 2.6.

Definition 2.33. 1) In Definition 2.6 we add and define Ky, Kf\,me, etc., also for
¢ = 2,3 by replacing'® Clause (f)1 = (f) by (f)¢ where:

8Compare with 2.13(2A)
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(f)2 if £ =2 then tp(&, AU {Cs,m : s <1 t,m < ns}) is finitely satisfiable in B
(f)s if £ = 3 then for some endless indiscernible sequence by = (b;,. : 7 € J;) of

sequences from B, the sequence ¢t g realizes'? the type Av(AU{¢s m : s <1
t, m < nt}, bt)

2) We define meﬁ\’Kﬁ similarly.

Claim 2.34. 1) Kg g KQ Q Kl.
2) If € € {2,3} and (x4 : o < §) is <q-increasing in Ki,n,<0 and 6 < cf(0),d < cf(k)

then x5 = |J xo defined as in 2.7 belongs to K§7m<9 and is a <i-lub of the

a<d
sequence.

3)If¢=0,1,2,3 and d € °>€ and M is k-saturated, cf(k) > 0 then x = (M, ), <>
,d) e KL _y.
4) Like 2.12 for £ = 2,3, i.e.: if cf(8) > |T|, cf(k) > 0,£ < 3 and x € Ki,n,<0
then®® for some y we have x <1y € me§1K7<9,' s0 in tp(cx, My + cx) we can get
tp(¢, M) is finitely satisfiable in My + (Cy\Cx)).

5) If x € Ky and ¢ € Cx then tp(c, Ax) is finitely satisfiable in Bx.

Proof. Similar to the proofs for ¢ = 1. U234

Claim 2.35. 1) In 2.1/ we can deal with K§,H7<9,€ = 2,3, i.e. if { =2 we should
strengthen the assumption to “q is finitely satisfiable in B’”.

2) If £ = 3 we should strengthen the assumption to ¢ = Av(MxUCx,I), T an endless
indiscernible sequence of cardinality < k.

3) In 2.15 we can deal with mxK3 , .

Proof. Similar to the proof for £ = 1. Ua.35

e may consider “¢; realizes seeming this makes no difference.

2050 if k = cf(k) > 0 > |T'|, M is k-saturated and d € ">¢ then for some ¢ € *">¢ and
B € [M]<* we have (M, B,¢,d) € mxKa.
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§ 3. EXISTENCE OF STRICT TYPE DECOMPOSITIONS

We here get a better decomposition, but at a price: using normal ultrafilters
(so measurable or supercompact cardinals). Why is the decomposition from §2 not
enough for our purposes? See 4.5 below.

Hypothesis 3.1. We assume T is dependent, € = &7 a monster; if not said
otherwise, we assume (1) or just (2) where:

(1) (a) A=k is a measurable cardinal,
(b) 2 is a normal ultrafilter on I = A, so I is a linear order,
(¢) M, < €is <-increasing, ||M,|| < A for a < A,
(d) My= U Ma,, by Clauses (a) + (c) + (e) necessarily M) is saturated,
a<A
(e) M, is || Mg]||"-saturated for 3 < a,
(2) (a) I is the following partial order, which is (< k)-directed, and:
(o)  set of elements {a € [\|<":aNk € k} and
(B) s<;tiff sCtA|s| < min(k\t),
(b) 2 is a fine normal ultrafilter on I and it follows that k is a measurable
cardinal < A,

(¢) My <€ ||My]| <rkands<pt= Ms=< M,
(d) My=U{M;:tel} (by (a)+(c)+(e), My is s-saturated)
(e) if s <yt then M, is || M|/ *-saturated.

Remark 3.2. 1) So in 3.1 we can define:

(A) like (2) without the normality and
(B) (a),(b),(c),(d) of part (2).
2) Note that we have (1) = (2) = (A4) and (2) = (B).
Notation 3.3. 1) In 3.1(1) let x;(t) := ¢ for t € I, this notation is introduced only

for having a uniform treatment of (1) and (2).
2) In 3.1(2) let k7(t) = Min(s\¢t) for ¢ € I.
Definition 3.4. [under 3.1(1) or (2) or alternatively (B) from 3.2 so these notions
depend on (M : t € I).]
1) For 7 C I (usually € 2), so is a partial order, we say (a; : t € %) is indiscernible
in My over A when (A C M) and):

(a) lg(a;) is constant, possibly infinite, and a; C M) for t € %,

(b) for each n for some p, for every to <; ... <; t,—1 from % we have

tp(ae, ... ae,_,, A, M\) = pn, see the ninth paragraph of §0.
2) We say (a; : t € %) is fully indiscernible (in M) over A when Clauses (a),(b)

above holds and
(c) if s <y t are from % then a; C M;, recalling M is from 3.1,

(d) if s € % then recalling M is from 3.1%! the sequence (a; : t € % N Is) is
indiscernible over My U A where, of course, I :={t €I :s <;t}.

21By normality (i.e. if (1) or (2) or (B) holds) then this follows.

{s:existence}

foroh
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fpe 14
{pr.8}

{pr.7}
{pr.7}



nodi fi ed: 2017- 04- 24

revi sion: 2017- 04- 07

(900)

r.23
%5r.351

{pr.28}
{pr.21}

{pr.35}

40 SAHARON SHELAH

3) In parts (1),(2) of the definition we say k-indiscernible when in Clause (b) we
demand n < k.

We shall in Theorem 3.10 (and see 3.8) below prove the existence of:

Definition 3.5. 1) For an infinite linear order J we say ((¢;,d;) : t € J) is a
stricty (k, < 0)-decomposition over (M, B) (and over M means “for some B C M
of cardinality < x”) when:

(a) B C M is of cardinality < x and M < € is k-saturated, but if we write
< Ny instead of kK we mean M < € and if we write 0 instead of xk we replace
M by a set O B, but in both cases we omit |B| < &

(b) a=1Lg(&),B =Lg(d;) are < 0,

(¢) iftg <j...<jty then tp(cy,, M + &, dyy+ ...+, , di, ) is increasing
with n < k and does not split over B,

(d) ((¢:"ds = t € J) is an indiscernible sequence over M,

(e) if s <t thentp(dy, &+ds) = tp(de, UL "d, : v <5 stUU{E, : r € JJUM),

(f) for every A C M of cardinality <  for some ¢'d € “tBAM, the sequence
(e°d)"(¢;"dy : t € J) is an indiscernible sequence over A, so if x = 0 this is
an empty demand.

2) We say strict_ (x, #)-decomposition if (in part (1)) we omit Clauses (e) and (f
3) We say strictg (k, < @)-decomposition if we omit (f) and weaken (e) to (e)
where

~—

)

(€)™ if s <; t then tp(dys, & +ds) = tp(dy, U{E. d, : 7 < s}UE U M).
4) Notation:

o If ) = 0T instead of “< 6” we may write o.

o If kK =0 then M is replaced by a set B, if we write < N instead of x then
M is just a model, but in both cases we omit the demand “|B| < x”.

e Strict; may be written strict.

A natural question about those notions of indiscernibility is about existence results.
Now 3.6 is a well known set-theoretic existence and 3.8 is existence for dependent
theories.

Fact 3.6. 1) If A C € |A| < k,a < K, 71 € P and a; € “C for t € %4 then for
some % C 74 from 2 the sequence (a; : t € %) is indiscernible over A.

2) If in addition a; € *(M)) then we can add “fully indiscernible”.

3) If v € {—1,0,1} and ((¢,d;) : t € J) is a strict, (k, < #)-decomposition over
(M,B) and B C By C M,|B1| < & then it is a strict, (k, < 6)-decomposition over
(M, By). Similarly we can replace M by M’ if By € M’ C M and M; satisfies
Clause (a) in Definition 3.5.

Proof. 1),2) By well known set theory (see Kanamori Magidor [KMT78]).
3) Obvious. D3.6
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Observation 3.7. 1) For some %, € Z, for every t € %, the model M, is k(t)-
saturated and x(t) > |T|.

2) If M < € is k-saturated, J an infinite linear order § > Wy, B € [M]<" and
¢ = () =d; fort € J then ((¢ :d;):t € J)is astrict, (k, < #)-decomposition over
(M, B) for ¢ =1 hence for ¢ € {—1,0}, too.

Proof. Obvious. Us.7

Theorem 3.8. Assume 0 satisfies £ > 0 > |T'| and recall X > k. For every
v(*) < 0% and d € Y there are B and ((¢¥,d¥) :t € % U{\}) such that:

X (a) % €2,

B C My, |B| < &,

lg(dy) =(*) + 6w,

d) d<ds,

e) x=(My, B,&,dy) € mxK, g,

f) & d¥ C M, realizes tp(c5"dy, My) fort € U,

9) (¢ dy :te) is fully indiscernible (in M) over B and even over
BU& Udy, (see Definition 3.4(2)),

(h)1  ifto<r...<ptm <p...<ypty belongsto %, som < n and possibly
m + 1 =n; moreover possibly 0 = m then

tp(d¥ Gt J“’m) F

tm41"

tp(dy,,,C0 4. O A 4 dY + Myy),

(h)e if s <rt are from U then & d¥ is from M;, (actually follows
from clause (g)),

(h)s  ifto<r...<ptn are from % then tp(dy . de +¢2) b tp(dy,, My, +
dy +¢¢ + ¢ +...+c) (actually this is the case m = 0 in (h)y).

Remark 3.9. We easily can add:

(i) x is normal, i.e. Rang(é,) C Rang(d,,).
Proof. First by induction on n we choose d,,, é,, By, (7, d}) : t € %,) and if n. > 0
also e, ey (for t € %,) such that:

a) d, € Mg and dy =d and e, € /¢

Xp = (Mx, By, Cn, dy) € mxKy ¢ is normal,

®n

dp, < d,, if m < n,
Cm = Cn | Ix,, it m <n,
e dr is from M, and realizes tp(&, dy, M;) for t € %,
) dp = dp &, and Lg(&,) = 0 and x,, <1 X, if n =m + 1,
g) (¢ AJ? .t € %,) is fully indiscernible over B,, + &, + d,
) U, € 2 decrease with n and is C %, from 3.7(1),
i) if s <t are from %, then M, + & + d* C M; (follows by (g)),
) tp(dm, € +Em) F tp(dm, My + G+ +d7) if n=m +1,t € %y,
) (Mg, By, épn,dy) € mxK,, 1),9 for t € %,

{pr.28}

{pr.10}

{pr.29}

{pr.23}
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(1) ifn=m+1k<wandty<s...<jtarefrom %, then

ok
tp(dg,ég’f + é?o) F tp(d?},ez E;’Z + d?g + e + My,).
=0

Case 1: n=0.

First, let d,, = d. Recalling 2.7(4) clearly y, =: (M, 0, <>,d,) € K, ¢.

Second, by Claim 2.12 we can find B,,, ¢, such that y,, <1 x,, := (M}, By, Cn, Jn) S
mxK, p; we can add x,, is normal by 2.7(6) but then £g(d,) = () + 0.

Third, for t € I we can choose E?AJ? from M)y which realizes tp(&, "dy, M;).

Fourth, by 3.6 we choose %, € 2 such that (¢!"d} : t € %,) is a fully in-
discernible sequence over B,, + d,, + &, and (by the normality of the filter 2) in
particular E?AJZ C M; when s <t € %, are from I and %,, is C %, from 3.7. It is
easy to check that all the demands hold, recalling €, for n = 0 is not required in
®p,. In particular for clause (k) use the reflective property of & or by the proof of
Claim 2.10.

Case 2: n=m + 1.
_ First, by clause (k) for m and Conclusion 2.21 for each t € %, recalling M;+¢"+
d™ is C M), and is of cardinality < x and M) is k-saturated, there is ;" € (M)
such that:

()1 tD(dm, Cm + ") = tD (i, My + o + & + ).
Second, by 3.6 choose %, C %y, which belongs to 2 such that (¢]""dj*" e : t €
) is fully indiscernible over B, + ¢, + dp.

n
We shall now prove

®1 if tg < ... < tj are from %, then tp(dy,c” +&.") b tp(d", " + ... +
et + My,).

Toward this, by clause (e) of ®,, we have

(*)2 tp(EZLAJZLaMtl) = tp(EmAvaMtl)-
By (%)2 there is an elementary mapping f mapping &, d, to E;’l“cz,’;’f which is the
identity on M;,. But My, + & + dj* C My, by ®,,(i) and é;;* C M,, by the full
indiscernibility, i.e. by the choice of %,/ above, hence by applying f on (x); for g
we get

()3 tp(dy", " + ep ™) = tp(d, My, + & + & + dj).
Now by clause (k) of &,,

(*)4 (Mtoa B, €, Cim) € mXKnI(to),O-
But by clause (e) of ®,,, recalling to < t; hence My, C M,

(*)5 tp(EZLACZZL’Mto) = tp(émAdmaMto)'
By (#)a + (%)

(*)6 (Mg, Bm, ", di) € mxKy, (4),0-
Also easily by clauses (k) + (i) of ®,, applied to t = ta,ts, ..., t; (recalling 1.4(3))

(¥)7 tp(c” ... €, My, + & + dj") does not split over By,.
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{tp25.36} BY (*)6 + (*)7 and the weak orthogonality claim 2.14(1) we have

(
() tp(dyy, My, +E7) = tp(dfy, My, + ) + ... + )
y (%)3 + (%)s

(*)o tp(d, e + ") b tp(d, My, + & + ...+ ")
as promised in ®1.

Now we continue to deal with Case 2, choose F, : %, — %, such that s €
Uy = s <1 Fu(s) € %, and for t € %, we let &} = ey, Let &, € ¢ be
such that ¢, d,, €, realizes Av((c/*"d" e} : t € U.)/ D, M)). Let % € 7 be
C 2, and such that s € % Nt € %) Ns <;t = F,(s) <; t and the sequence
(em AdmAéZﬂ(*t) t € %) is fully indiscernible over &, d,, " &n.

Let d,, = d,, enanddgfdm 7 fort € %)

Let y, = (M, Bm,cm,dn) S K «,0 so clearly x,, <; y, hence by 2.12 there
is X, = (M,\,Bn,én,dn) € mxK, g such that y, <o x, so ¢, and B, are well
defined®® and &,, = &, | Ix,; can add x, is normal by 2.7(6) (correcting the
length). For t € %,', let &} be a sequence from M) such that ¢* = ¢} | Dom(¢,)
and tp(eP"dP, M;) = tp(Gn dn, M), this is possible as M is &- saturated | M +
&+ d?| < K, |Rang(¢,)| < 0 < k and & d} realizes the type tp(&,, dp, Mt)

Lastly, let %, be a subset of %,/ which belongs to 2 such that:

G (EP°dP : t € %,) is fully indiscernible over B,, + &, + d,.
3 (My, By, ¢n,dy) € mxK, g for every t € %,.

[Why %, exists? By 3.6 and reflection by 2 or by the proof of 2.10.]

It is easy to check that X, ¢, dyn, dy, (¢, dP, €R) : t € %,) are as required. E.g.
clause (f) holds as £g(dy) = Lg(d) = ~v(x) and Lg(d,,) = Y(*) + 60 -m by clause
(a) of ®,, and £g(&,) = 0 by ®,(f) we can prove that £g(d,) = Lg(dm) + 0 =
Y(x)+60-m+6 = (x)+0-n, so we clearly are done. For clause (e) note ®; and the
choices of F and %,), %,,. For clause ®,({) note that s € % = s <; F,(s) € %,
so ¢yt C MFn(s)'

So we have carried the induction. Second, let ¢, = & = | Cnydy = CZU/\J =
n<w
U dnand B = U{B,, : n < w} and % = N{%, : n < w} and for t € % let
nw

e =Jer,dy = Jdp.

Let us check that X from the theorem holds indeed.

Clause (a): % € 2 as each %, € 2 by ®,(h) and Z is k-complete and x > Vg
recalling Z = N{%, :n < w}.

Clause (b): B € [M)]<" as B,, C M), |Bn| < k by &,(b) for n < w and k is regular
uncountable recalling and B := U{B,, : n < w}.

Clause (c): By ®,(a) + (c) for n < w and the choice of d.

Clause (d): d = dy = d,, | (%) is proved as in clause (c).

22in fact, we can demand that tp(én | (Ix, \1x,, ), M + &n) does not split over By, .

{tp25.33}
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Clause (e): As x,, = (M, B,,, €, d,) € mxK, ¢ by clause (b) of ®,, and x,, <1 X,41

by ®p4+1(f) and (M, B, ¢y, dy,) = U{x, : n < w}, clearly by claim 2.14(2) we are
done.

Clause (f): By clause (e) of ®,, (and the choice of ¢,, d., ¢, dy, etc).

Clause (g): Similarly by clause (g) of &,,.

Clause (h);: By clauses (h)z + (h)s proved below.

Clause (h)z: By clause (i) of ®,,.

Clause (h)s: Holds by clause (¢) of &®,. Us.s

Theorem 3.10. 1) If M is k-saturated of cardinality < \,d € 0> ¢ then we can
find a strict (k,0)-decomposition ((¢,,d,) :n < w) over M such that do < d.

2) Instead Hypothesis 3.1 it is enough to demand: if M is k-saturated and p =
p((x; 1 < 0)) is a type with parameters from M U C,|C| < 6 which is (< k)-
satisfiable in M, i.e. every subset of p of cardinality < k is realized in M then p
can be extended to pT € S?(M U C) which is (< k)-satisfiable in M.

Proof. 1) We can choose M’ = (M] : t € I) such that (M, M') satisfies the demands
on (My, (M, : t € I)) in Hypothesis 3.1(1) or 3.1(2) and apply Theorem 3.8 (as
assuming £g(d) = 0 or £g(0) < 6 does not matter).

2) The idea is to repeat the proof of 3.8, but as of unclear value we leave it to the

reader. Us.10

Corollary 3.11. Assume k = X\ > |T| is weakly compact, M, € EC.A\(T) is <-
increasing continuous, M = U{M,, : a < A} is saturated. Then 3.8 and 3.12(2)
hold.

Proof. Revise the proof of 3.8, but in ®,, weaken clauses (g),(h) to (g)~,(h)~ and
use the proof of 4.14 in the end where

(9)~ %, € [r]" decreasing withn and (¢} "d} : t € %) is just fully n-indiscernible

(h)~ %, does not belong to the weakly compact ideal.
We leave the details to the reader or see [Sh:950, 3.27=Lc78,3.28=Lc65]. Os 11

Claim 3.12. 1) (even not assuming 3.1)

Assume M is k-saturated, |T'| < 0 < k, tp(€n, M+ + ...+ Cn—1) does not split
over B where |B| < k, B C M and lg(¢,) < 0T and d,, = &, [ u for n < w (so
u C Dom(e,,)) then ((Gn,d,) :n < w) is a strict (k,0)-decomposition over (M, B).
2) (Assuming 3.1) Assume {(Cpn,dy,) : n < w) is a strict (r,0)-decomposition over
(M, B). For any d € 9">¢ such that (Clan dign 1 n < W) is an indiscernible
sequence over M + ¢y + do + d we can find a strict (rk,0)-decomposition (¢}, d}) :

n < w) over (My, B) such that ¢, < &', d, <d} forn <w and dy"d < da'.
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Proof. 1) Easy. B B
2) Repeat the proof of 3.8 starting with xo = (M, B, o, do) and (¢;"d; : t € I) and
¢ dy € lg(éf)Hg(df)(MA) realizing tp(cy do, My + Y. €14n di4n). It details, first

nw

let us denote (&,,d,) by (¢%,d%).

®p (22,dY) for t € I satisfy
(a) € € “9)(My) and dy € (%) (M)

(b) (&°dY)"(c: d¥ : m < w) is an indiscernible sequence over M;.
Letting (o, do) = (5, dg), clearly ®,, of the proof of 3.8 for n = 0 holds.
We continue as in the proof there except demanding Rang(d) C Rang(ey), getting
in the end ¢, = &, d, = dY, ¢, dy (for t € %). B B
Let ((¢F,d}f) : n < w) be such that lg(c}) = lg(c,),Lg(d}) = Lg(d,) and
for every m and go < ... < t, from % the sequences ¢ "dy " ... ¢ "dy and
ey dy ... et d} realize the same type. o
Using an automorphism of € without loss of generality ¢;, < E_;'{, df <dt; pedan-
tically we should change a little to upgrade “Rang(d) C Rang(di) C Rang(dy) to
“dgrdadd. Us.12
Claim 3.13. The sequence {(¢?,d?) : t € ) is a stricty (0,0)-decomposition over
(B2, By) when :
(a) (€. d}) : s € Ih)) is a stricty (0,6)-decomposition over (By,Bi) (and
Lg() = tg(@2), bg(:) = tg(dL) = Lg(®), of course),
(b) for any n if Iy |= “tro < ... < ten—1” for £ =1,2 then tp(c}, ~di ~...°
iy iy, i, B2) =tp(E, , "dE, T8, TdR, L Ba).

Proof. Should be clear. Us.13

{pr.28}

{pr.84}
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§ 4. CONSEQUENCES OF STRICT DECOMPOSITION

Here we look again at the generic pair conjecture ([Sh:877, 0.2]). The non-
structure side (in a strong version) is proved there for A = A<* non-strong limit
and in [Sh:906] for A = A< strong limit (i.e. strongly inaccessible).

The conjecture is (the instances of G.C.H. are used to make the conjecture trans-
parent):

Conjecture 4.1. The generic pair conjecture

Assume®® X = \<* > |T|,2* = AT, M, € EC,(T) is <-increasing continuous
for < AT with U{M, : @« < AT} € EC,+(T) being saturated.

1) The A-generic pair conjecture says that: T is dependent iff for some club FE
of AT for all pairs o < 8 < A" from E of cofinality AT, (Mg, M,) has the same
isomorphism type.

2) For ¢ < X the A-generic (-tuple conjecture says that: T is dependent iff for some
club E of At for all increasing sequences (. : € < ¢) of members of E of cofinality
A, the structure (Mo, M, )e<¢ has the same isomorphism type, (equivalently, if
(ayge s € <) is as above for £ = 1,2 then there is an isomorphism from M,, . onto
M., . mapping M,, . onto Ms . for e < ().

We concentrate on the case of the “generic pair conjecture”. Note that if k =
cf(k) < A, then the A-generic k-tuple conjecture implies that for dependent T' there
is a medium (A, x)-limit model, see [Sh:877], but we do not succeed to deal with it
here.

Here we prove the “structure” side when \ is measurable. It seemed natural to
assume that the first order theories of such pair is complicated if 7" is independent
and “understandable” for dependent of 7.

1,e

In fact, it may be better to ask

Problem 4.2. 1) Assume |T| < 0 < K < X = A% < ky < p = <2 and
My < My < €, M; is k1-saturated of cardinality A\, My is ko-saturated of cardinality
p. What can we say on Th(Ma, M1)? On Thy,__ (7 (7)) (M2, M1)?

More generally

Problem 4.3. 1) Assume n < w, |T'| < 0,0 < 0 < ko, \e = A\;™ for £ < n, )\, <
Keq1 for £ < n. Let M, be rg-saturated of cardinality A\, for £ < n and My < My
for £ < m. What can we say on MT = Th(M,,..., My, My),i.e. M, expanded
by unary predicates for M, for £ < n? When can we interpret (with first order
formulas with parameters) second order logic on 07 i.e. classify 7" by this.

2) Similarly for L, o (7Tp+)-

3) Similarly allowing n to be < 6.

The proof here, if e.g. K = X is measurable say that even the L ,-theory of
the pair is constant, but does not say much even on the first order theory, (see
[KpSh:946]). Tt is known that for many “complicated enough” theories T', for
My, My as in 4.2, in Th(Ms, My) we can interpret second order logic on (A, =).
This holds, e.g. for T'= Peano arithmetic.

On n-independent theories see [Sh:886, §2]. Note that

23the “2X = AT is just for making the formulation more transparent, and by absoluteness is
equivalent to the formulation not assuming 2* = A*.
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Claim 4.4. Assume T is the model completion of Ty, defined below so seems “the
simplest” 2-independent theory. If My € EC\(T) and My is a \T-saturated —<-
extension of My then in (My, My) we can interpret second order logic on My (i.e.
quantification on two-place relations, when :

(%) 71, consists of Py, Pi, Py (unary predicates) and R (a ternary predicate)
and a Tr,-model M is a model of Ty iff (P}, PM, PM) is a partition of
|M| and RM C PM x PM x P},

Proof. Obvious. Oy.a

Also for T' = theory of Boolean algebras (which is n-independent for every n) the
theory is complicated. Of course, it would be better to eliminate the measurable
assumption.

Explanation 4.5. Why K ¢ and mxK) . ¢ from §2 does not suffice for us so
that in §3 we deal also with the more complicated ((¢;,d;) : ¢ € J) from Definition
3.57 This is motivated by the proof of the generic pair conjecture.

To understand it maybe better consider the class

(*) N2 = {(N,M) : M < N < €p,M is k-saturated and N is ||M]*-
saturated}.

Proving the generic pair conjecture for x we consider M = (M, : a < ™), which

is <-increasing continuous, M = |J M, < € is saturated of cardinality 7.
«

Assuming T is dependent we should choose a thin enough club E of x* and
consider {(Mg, M) : o < f and {a, 5} C EﬂS§+}. Now the club E will be chosen
such that all relevant pairs (Mg, M,,) are similar enough to those of pairs from NZ.

So a sufficient condition for the conjecture is:

M assume (Ny, My), (N2, My) € N2, then we can find f = (f, : s € %) such
that:
(a) ¢ is a partial order,

(b) ¢ is (< k)-complete, that is, any increasing chain (for <) of length
< k has an upper bound,

(¢) fsis an (N7, Na)-elementary mapping,

(d) Dom(fs) has cardinality < x,

(e) fs maps Dom(fs) N M; onto Rang(fs) N Ma,

(f)1 if s € &, A € [N]<" then for some t € # we have s <g t N A C

Dom(ft)a

(f)2 if s € % and A € [N3]<" then for some t € # we have s <g t N A C
Rang(f:).

Now the approximation will consist of B, € [M,]<" and ((¢/,d") : n < w), with

e, d from Ny, which form a strict (k, < k)-decomposition over (My, By) for £ = 1,2
and an elementary mapping h mapping By onto By and (¢, d?) to (¢2,d2). So using

¢ ,d’ for n > 0 is to give us a condition with which we can continue in a good
induction hypothesis.

{d10}

{pr.35}
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Now it should be clear what we like to have from strict decomposition; however,
the decomposition from §2 are not enough.

We first connect decomposition (i.e. the results of 3.8) and sufficient conditions for
being an indiscernible sequence.

Claim 4.6. The sequence {aq : a < a*) is an indiscernible sequence over B when
for some p, B we have:

(a) @ is a sequence of members of € and G, = o do where £g(Ey) = £g(E), Lg(ds) =

Lg(do) (not necessarily finite),
(b) tp(an"ag, B) =p for a < < a*,
(¢) if a < B < a* then tp(dg, s + do + B) - tp(ds, s U {a, : v < a} UB),
(d) tp(Ca,U{as : f < a} U B) is increasing with c,
(e) tp(Ca,U{ag : B < a} U B) does not split over B.
Remark 4.7. Concerning §3, it is natural to omit the first occurance of B in clause
(©).

Proof. For u,v C o* let By, = U{Ga : @ € u} UU{Cn : @« € v} UB. For
u,v C o and increasing functions hy from u to o™ and hs to v to au such that
hil(unwv) = haol(uNv) and even h = hy U hgy is an increasing function h from u U v
to a*; let f = fp, n, be defined as follows:

® (a) Dom(f) = Bu,,

(b) fIB=ids,

(c) [ maps G to Gp(q) for a € u,

(d) f maps Co t0 Ch(a) for a € v.

Is fru,nto @ well defined function and even one to one? For this it suffices to check

the following three demands, which follows by Clause (b) of the assumption

(¥)1 (o) ifa,f<a*be Bandi</{lg(a,) then (ay); = b < (ag ) =
(B) ifa,B<a”andi,j</lg(as) then (aa)i = (@a); < (ap)i ( 8)5>
(v) ifar <az<a*and B < By < a* andzy<€g(aa) then
(@ay)i = (Gas);j < (as,)i = (ag,);-

We prove by induction on n that (G, : @ < o*) is an n-indiscernible sequence over
B (when n < o). For n < 2 this is trivial by Clause (b) of the assumption. So
assume n = m + 1 > 2 and we have proved it up to m. So let ag < ... < ay, <
a*, By < ...< Bm < a* and we shall prove that aq, " ... @a,,,08, -.. ag,, realize
the same type over B, this suffices.

Now by symmetry without loss of generality ., < B, let hg = {(aw, f¢) : £ <
m},hi = {(ag,ap) : £ <m}, ha = hy U{(m,Bm)} and hg = ho U {(Bm, Bm)} and
ha = ho U{(am,Bm)}-

Let fo be the mapping fi,.n,- By the induction hypothesis

(¥)2 fo is an elementary mapping.
Let f1 be the mapping fn, n,, now by Clause (d) of the assumption

(x)3 f1 is an elementary mapping.
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By (%)2 we know that Gn," ... @a,,_, and fo(Ga, " ... @a,,_,) realize the same
type over B and they are included in B, a,., Bg,..5., respectively. But a,, < B,
so both sequences are from Bg,, hence by Clause (e) of the assumption, i.e. as
tp(€s,,, Bg,,.3,.) does not split over B, recalling ()2 we have

()4 f2 := fno,hs 1S an elementary mapping.
By (%)3 + ()4, comparing we have
(%)5 f3:= fho.n, being fa o f1 is an elementary mapping.

Note that

(*)6 [f3(Car da,,_.) =Ca,, da,. ;-
By Clause (b) of the assumption and ()5 + (x)g clearly

(*)7 f3(tp(day,,Ca,, + da,,_, + B)) = tp(dg,,,Cs, +dgs, _, + B).
By Clause (c) of the assumption

(%)8 tp(dam,7éam, + Jamq +B) tp(czamaéam + Gy + - .- +8a,, , + D)
(*)9 tp(Jﬁm, CB,, + Jﬁmfl + B) F tp(JﬁmaEﬁm +ag, +...+ag,_, + B)

Together fys = fn, n, is an elementary mapping and it maps a,, to ag, for £ < m
(and extend idg) so we are done. Oig

Observation 4.8. The sequence ((¢;,d;) : t € I) is a strict (0, 8)-decomposition
over (B°, B) when for some (I;, B, B* : £ < n) we have:

(a) n<wandn>2
(b) the linear order I is Ip + ...+ I, where I, is infinite for £ =1,...,n —1
(c)

)

) ((é,dy) : t € 1) is a strictg (0, §)-decomposition over (B, B) for £ < n,
(d) (¢;°dy :t € Iy + Iy 1) is indiscernible over B and £g(&;) for t € I, U Iy is
constant for £ < n,
(e) B D {e dy:tel,}UBY,
(f) BC B,

Proof. In Definition 3.5, Clause (a) holds trivially as B® O B by Clause (f) here
(recalling that k there stands for 0 here). For Clause (b) of 3.5 the sequence
(Lg(e;) : t € I) is constant as for each £ < n the sequence (£g(c;) : t € Iy U Ip4q) is
constant (by Clause (c) here and (b) in 3.5) and use transitivity of equality and I,
for £ =1,...,n — 1 being non-empty by Clause (b) here. Similarly (¢g(d;) :t € I)
is constant, so 3.5(b) indeed holds.

Similarly, Clause 3.5(c) follows from 3.5(d) proved below and also Clause (c)
here for £ =1 (recalling I; is infinite). Clause 3.5(e)~ from 3.5(3) follows similarly
using B’ 2 BY by Clause (e) here and (e)~ there and clause (d) proved below.

So we are left with Clause 3.5(d), that is (¢,°d; : t € I) is an indiscernible
sequence over BY. For this we prove by induction on k& < n that (¢,°d; : t €
U{l, : ¢ € [n — k,n]}) is an indiscernible sequence over B"~*. For k = 0,1 this
holds by clause (d), for k > 2, let s9 <1 ... <1 Sm—1,t0 <7 ... <I t;m—1 be from
U{I; : £ € [n— k,n]} be given. Choose s}, from I,,_j U I,_g+1 for i < m such

that s, <7 ... <7 8h,_1,t0 <1 ... <gth,_and sg € Iy, = s, = 5¢,8¢ ¢ L =

{pu.

{pr.
{pr.

{pr.
{pr.
{pr.
{pr.

{pr.

16}

35}
35}

35}
35}
35}
35}

35}
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sp € In—pq1 and ty € I, = t) =tg,ty & In_j, = 1), € I,_j41. This is possible as
I, k1 is infinite because k € [2,n].
Let 7 < m be such that £ < m = (sp € I, < £ < j); so by the induction

hypothesis we have tp(as,” ... @s,,_,, B""!) = tp(as " ... Yag L, BYTRT) As

(< j=as =aq C Bn—k+1land B"~% C B"~*+1 it follows that tp(as, ... as,,_,, B"*)
isequal to tp(ag,~ ... as B"~k). This type by clause (d) is equal to tp(ag, " ... ay Bk,
Similarly to the proof in the beginning of the paragraph, this type by the induction

hypothesis is equal to tp(as, " ... as,,_,, B" ), so together we are done. Oy

The following is a local version of 4.6 (see 4.10)

Claim 4.9. Assume (n(x) < w and a(x) > n(x)) for each k < n(x)). The sequence
(°dy : o < ) is an n(*)-indiscernible sequence over B when :

(a) & € " BUE for k < n(x),a < a(x); this means that the length of ¢& may
depend on k but not on a and may be infinite,
) do = d5 € VRO for o < (),
) ek ekt for o < a(*), k < n(*),
d) ek € Ym2A¢ for non-zero k < n(x),a < a(x),
e) for all a < B < a(x) the type tp(c EH k“AczBAég,B) is the same,
) tp(ds €f, e + ekt + B) - tp(djy e, o + W{jﬂ cdy + B),
(9) tp(ek, U{ckJrlAd _k+1 : B < a}UB) is increasing with «,
(h) tp(ek U{ck“Ad ’EH : B < a}U B) does not split over B,
(1) t (_"( ) d,” k. B) is the same for all a < a(x).

Remark 4.10. 1) In what sense is 4.9 a local version of 4.67 In the second we get only
n(x)-indiscernibility. Note that the role of d,, there is played by d,,e™ (m < n(x))
here.

2) The claim is not used in the rest of the section.

Proof. We prove by induction on n < n(x) that

®1isz<n()—nanda0< < apand By < P <...< B, then

ek Cday e Cda, ”; “cian“’;n and
Cﬂo dgo Ein,lAdan Ny cﬂ “dg,” eﬂ realize the same type over B.

For n.=n(x) — 1,k = 0 we get the desired conclusion.

For n = 0 this holds by clause (i) of the assumption. So assume n = m + 1 and
k < n(x) —n and we have proved this for m. Note that k + 1 < n(x) —m. So let
ap < ... < amy1 < a*, By < ... < Bmy1 < aF be given and (by symmetry) without
loss of generality «a,, < (3, and we shall proof the equality of types from ®; in this
case, this suffice. Now

k1~ ] cgktls g~k
(#)1 EHdg, .. 0kt od,,  cehtlod, ekt and
—k+1 ~gktl s gktl agktlag s okl :
Ch, d G Tdar” Tegt  da,, "eg ! realize

the same type over B.

[Why? By the induction hypothesis.]
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(*)2 tp(eh, ,U{chT d, est! -y < B} U B) extends tp(ch ,u{eit"d, ebt!
v < ap}tUDB).
[Why? By clause (g) of the assumption.]
(%)s tp(ch ,U{ci™d, ekt : v < B,} U B) does not split over B.

[Why? By clause (h) of the assumption.]

cEt1od,, ..kt o ~gkt1n ~ght1-~ gk
(%)a Cotl%dy, " ... Cor da,, _,"C0T d € Chon and
* k17 ~ghtl NIER “k41a ok .
5, d G dgs, s dgm €~ Cg, ., realize

the same type over B.
[Why? By (+)1 + (+)s.]
()5 in (%)4 we can replace 5§m+1 in the first sequence by &

[Why? By (%)4 + (x)2.] But

Qm 41"

(¥)g (Ft! “ek“‘l)A(JamHAéZmH) and (¢ ’E‘H “’Z:l) (5Bm,+fé’ém+l) realize the

oz m41 Om
same type over B.

[Why? By clause (e) of the assumption.]
()7 in (*)4, ()5 we can replace c& (¢ < m) by ¢k,

[Why? As & <t by clause (c) of the assumption.]

I AR T Ak AT A=k ~3m o ~sk

(*)8 Cap dao ozm 1 damfl Cam dam Camir dam+1 eﬁm+1 and
T Tk A7 Ak AT Ak a7 Ak
€8y dﬁo t cBm,fl dﬁmfl CBon dﬁm CBrt1 dﬁm+1 €Bm+1

realize the same type over B.

[Why? By (%)7 + (x)¢ and clause (f) of the assumption.]
We finish the induction step. Hence we get the desired statement. Lo

* * *

We now return to the generic pair conjecture. Central here is the following defini-
tion; the best case is A = k = 0 is a measurable cardinal.

Definition 4.11. We say that the triple (\, &, < 0) is good or T-good when :

(A) |T| < b= cf(f) < k= cl(k) < A= A<F,

(B) T is dependent,

(C) if M is k-saturated of cardinality < A and d € ?>€ then we can find B C M
of cardinality < & and a strict (k, < 6)-decomposition {(¢,,d,) : n < w)
over (M, B) such that d < dy,

(D) if M is k-saturated of cardinality < A\, B C M has cardinality < &, ((¢,,d,) :
n < w) is a strict (k, < 6)-decomposition over (M, B) and d € ?>€ such
that (€11, di4n : n < w) is an indiscernible sequence over M + & + dg +d
then there is a strict (x, < ¢)-decomposition ((¢,; d+) n < w) over (M, B)

n n

such that ¢, <&, d, ad for n <w and dy"d < d

So to begin our analysis we need

{ps.7}
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Observation 4.12. 1) If T is a dependent and A > |T| is a measurable cardinal
then (A, A, < A) is T-good.

2) If T is dependent, » a supercompact cardinal k and A = A<* > k, then (\, x, < k)
is T-good.

Proof. Immediate by 3.12(2) and 3.7(2), you may use 3.8, 3.1(2), too. U412
For the rest of this section we assume, till but not including the end that is, 4.23.

Hypothesis 4.13. 1) T is dependent.
2) |T| <0 =cf(f) <rk=cf(k) <Xand A = \<* > |T| and (\, &, < 0) is T-good.

Claim 4.14. The sequence {(¢,d5) : n < w) is a strict (k, < 0)-decomposition
over (M, Bs) provided that:

(a) 0 is a limit ordinal < 6 = cf(0),
(b) ((e2,d2) : n < w) is a strict (k, < 0)-decomposition over (M, By,,) for each
a <4,
(c) e Qe NdY < dP fora< B <dn<w,
(d) Bo € Bg for o< <6,
(e) we define & = U{c2 : a < §},d) = U{dY : a < 6}, Bs = U{By : a < §}.
Remark 4.15. On another approach see [Sh:950, 3.23=c70)].

Proof. We have to check Clauses (a)-(f) of Definition 3.5(1). Clause (a) is trivial
by assumption (b) of 4.14 recaling 6 < 0 = cf(¢). Clause (b) holds as § < 0 < cf(cf)
by assumption (a) of 4.14 and (€g(¢}) : n < w) is constant by assumptions (b),(c)
and similarly (€g(d3) : n < w) is constant. Next Clauses (c),(d),(e) hold by their
local character and assumptions (b) + (c) of 4.14.

Lastly, proving Clause (f) is the main point, it means to show:

o1 if BsCACM and7|A| < & then for some pair (¢, d) of sequences from M
we have (¢°d)"(¢)"d? : n < w) is an indiscernible sequence over A.

Toward this by induction on o < § we choose a pair (¢, d%,) from M such that

[e%iate?
®1 (€ d5) (¢ dY : n < w) is an indiscernible sequence over A U U{EZ;ACZE :

B8 < a}l.
[Why possible? We can choose (¢, d}) because ((¢2,d%) : n < w) being a strict

(K, < 0)-decomposition over B, we can apply clause (f) of Definition 3.5 recalling
B, being a subset of AU {(¢""d* : f < a} and the latter being C M and of
cardinality < k as k is regular > 0 > §.]

We can find ((C4,ds) : @ < &) though not necessarily in M such that

®2 (a) (o dy:a<8)(e)°d} :n < w) is an indiscernible sequence over A
(b) ¢ <é, and Jg <ad, for @ < ¢ and, of course,
tg(ca) = Lg(cy), Lg(da) = Lg(dy).

[Why? For this by using the saturation of €, it is enough to prove that: if n <

m < w,ag < ... < an_1 < an <0 then the sequences ¢, “d;, ~..."¢,  “d |
d ,aUAdaoA,al Adal ~ A—Qlp—1 Aczan,l 1 h A ,5AJ5 . k/’
and ¢g° dy° et tdyt ... te, ! "d, " realize the same type over AU{e)"dY 1 k €

{ps.11}
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[n,m)}. This is proved by induction on n < w. For n = 0 this is trivial. For n + 1,
so assuming n + 1 < m:

First: ¢, "d;, and 3" dS» realize the same type over AU{c,, d}, : ¢ < n}uU{c)
k € [n+ 1,m)} by the choice of (¢}, ,d} ).

QA ? Py
Lok A TR Aok A TJE A ~ =k ~ Jx SO0 A JOQ A =00 A JO A ASOn—1 A~ J0n—1
Second: ¢, "dg,"Ch, "dy, ... TCh, Tdg,  and g Tdg? eyt Tdy L e T

realize the same type over AU {e) d}, : k € [n,m)} by the induction hypothesis
hence also over AU (% "d*) U {e} dS : k € [n+ 1,m)} by monotonicity. By the
last two sentences we are done proving ®2.]

Hence we can find a pair (¢, d’) such that:

®3 (@°d) (s dy : a0 < 0)(22°d° : n < w) is an indiscernible sequence over
A.

Lastly, we choose (¢”,d") such that

®4 (¢’,d") is a pair of sequences from M such that &’ "d” realizes tp(¢'"d’, AU
U{es d: : a < §}), of course with £g(¢”) = Lg(c), Lg(d") = Lg(dy); equiva-
lently there is an automorphism of € which is the identity on AU{J{c’ dz, :
a < §} mapping & d’ to &' d".

We shall prove that (¢, d") is as required. Now to prove that (¢”,d") is as required
in ® it suffices to prove, for each oo < § that

©2 (@ 1 Lg(cg))"(d" I Lg(dg)))" (e dp :n < w)

is an indiscernible sequence over A.

[Why? As ©; is a “local” demand, i.e. it says that ¢’ d” is a sequence realizing
an appropriate type ¢ (and is from M) and for this it suffices to check every finite
subtype so ®2 suffices.]
Now ©g follows by ®¢ below. Let (¢ . dj ) = (€51¢g(c)), djlg(dy)) and
(e, ) = (& 1g(c}), &' 1g(d})) for v < 6 and f € [,6).
Now
®5 (E’CQACZ’OC)A(EEAACZB& : B € |, 0)) is a strictg decomposition over (4, A).

[Why? By @s, this holds for (@ | £g(e))" (@ | £g(e)))"(cha @5a : B € [0,0))
and we use preservation by automorphism of €, i.e. use ®4.]
®¢ For a < ¢ and i < w the sequence (E’;AJ@A(EBQA%@ 1B € la,d)) (e d
n < i) is a stricty decomposition over (A, A).
[Why? We prove this by induction on 7, noticing that for i = w we get the desired
conclusion; also for i = w the inductive step is trivial and for ¢ = 0 use ®5. So
assume 1 =n + 1, let
(¥)1  A; = AU Rang(¢’) U Rang(d!),
® A2 = Agyg where
for v € [, 6] we let A2, = U{Rang(cj ,) U Rang(cil’g’a) B €,
Az =u{er dy £ < n}.

Clearly
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(¥)2 (a) Ay, Agsare C M and Az C €,
(b) A, is C-increasing for v € [o, ).

Let v € («, d) be a successor ordinal and we shall prove

(%)3 (€3 a0 AJ* o) (@ aAdTHn o) and (65°dg)" ... (e2"d%) realize the same
type over A1 UA,y .

As § is a limit ordinal this suffices by 4.8 (with n = 2, I a singleton, I; iso-
morphic to 4, I isomorphic to w) for proving ®g (hence for ®2 hence for the
claim). Now (¢} ,"d} )" ... (€ 1p_1.0 dip1,4) and (egdg) ... (e%_,"d%_)
realize the same type over A; U A, , by the induction hypothesis.

Next by Clause (b) of the assumption tp(c%, M U (J{c2 d%, : m < n}) does not
split over B, hence tp(cjy, AU Ay U Ay U A3) does not split over B, C A by (*);.

Hence by the induction hypothesis (E’OZAJ@A(EEVQAdEya B € [a,8) ((exdg)
k < n) is an indiscernible sequence over A U ¢, hence

i (77 aAd* )A ce A(Eikernfl aAdTern 1 a) E% and
(@°dg)" .. (Eyn1.a &pn_1,) € realize the same type over Ay U Ay .

But by ®; clearly ¢* realize the same type over A; U Az - hence

n’ v-i—noz
o (Cj;,aAJTy,a)A e A(ETernfl aAdj;Jrn 1 a) ’y+n,a and (ESLAd_SL)A ce A(EzflAJ%71>AE${
realize the same type over A; U Ag,V
We can choose d" in € such that (€%, d% )" . (@10 Tin1.0) (Epna d)
and (e§"dg)" ... (e%_, d%_,) " (e&” do‘) reahze the same type over A, U Ay, so (to
prove ®g) it suffices to prove that d* d’ realize the same type over A;UA; ~+nU
(%)3 hence.

y+n,a

'y+nqa _ -
Recall that (cj aAdz; B €, d)) (e dY 1 n < w) is an indiscernible sequence,
~ ok ~ T 7 A san Jo
hence the sequences ¢} ,,_1 , d7+n_17a Crina Dppoand i,y di, ,cy dy

realize the same type.

By the two previous sentences and the transitivity of the equality of types
dTHn o, d’ realize the same type over (G aAdi‘Hn 1,0) C4n.a» but by Clause
(e)~ of Definition 3. 5 which apply by Clause (b) of the assumption and ®5 above
we have tp(dX |, o) & o + iy 1.0) F (A, 00 AL + Ao ygn + E 4 0) SO We
are done.] 0414
Definition 4.16. 1) We say that the strict (x,< 0)-decompositions ((¢.,d.) :
e < 6),{((e,d!) : e < &) over M are equivalent over B € [M]<* when for some
automorphlsm f of M over B for every n and g9 < ... < g,-1 < J, f maps the type

tp((c.,"d.,)" ... (e, "d. ), M) tothetypetp((égoAd'g’o)A...A(c'a’ Cdl ), M)
and (g(e.,) = Lg(e, ), (g(dL,) = (g(dZ,)

2) In part (1) we say “weakly equivalent over B” when for every ( < x and
b € M there is b” € M and vice versa and elementary mapping f such that:
f2idp, f(V') =" and f(cL) = f(cZ), f(dL) = f(dZ) for e < 6.

3) If B = ) then we may omit it.

Claim 4.17. 1) If M is k-saturated of cardinality X\ and B € [M]<" then the
number of strict (X, k, < 0)-decompositions ((Cn,dy) : n < w) over (M, B) such that
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£g(d,) > 0 up to weak equivalence or when £g(d,) = 0 up to equivalence over B is

< 2<% (even < 27 for some 0 < k), see 4.16.

2) For M, B as above, two strict (k, < 0)-decompositions are equivalent when they

are weakly equivalent over B and A\ = k.

3) If {(Cn,dy) : n < w) is a (k, < 0)-decomposition over (M, B) so B € [M]<* and
= U{rang(c, d,) : n < w} U B then Mcy is a k-sequence homogeneous model

(see [Sh:88r, 2.1-2.4] ).

4) Assume

(a) (@ p.dh,) s 0 <w) is a strict (k, < 0)-decomposition of (M, B,) for a <&
such that 1 = 1,2

(b) a<B<d=c,, cﬂn/\dL ﬂngn andégm: Ue amdan* U d

a<d a<d
(e) (el ,,dL ) :n < omega) is weakly equivalent to ((¢2,,d2 ) :n < w)

(177/7 a,n Ot’fl7 a,n

over B for a < 9.
Then clause (¢) holds also for o =9.

Proof. 1) First, if £g(d,) = 0, by 1.2(4), that is [Sh:783, 5.26], however in the
present case k is measurable hence strongly inaccessible so 4.17(1) is easy. That is,
fixing B, also the number of @ < X\ and p(Z,) € S(M) not splitting over B is < A
by 1.2. The case for weakly equivalent holds also is easy.

2) Let ((€,,d},) : n < w),{(€!,d!) : n < w) be two strict (k, < #)-decompositions

n'n n’ n

over M. As a A-sequence-homogeneous model of cardinality A is determined up to
isomorphisms by the set of complete types of finite tuples in it (by [KM67] or see
[Sh:88r, §2]) by part (3) it suffices to show:

(¥)1 for every b’ € “> M there are b’ € “> M and an elementary mapping f such
that f(t') =b",f Didg and e < 6 = f(e.) =/ A f(d.) = d.,
(¥)2 for every b € “> M there are b’ € “> M and f as above.

But this follows from weakly equivalent. -
3) Let g be the identity mapping on U{Rang(¢, d,) :n <w} U B.
Let

(¥)1 Z be the set of f such that:
e f is an elementary mapping
e Dom(f) C M has cardinality < k
e Rang(f) C M

e f Uy is an elementary mapping.
It suffices to prove (x); — ()4 below:
()1 F #0.
[Why? As f = idp belongs to Z.]
(x)o fEeFiff fleF
[Why? Obvious.]

()3 % is closed under union of increasing chains of length < k.

{3k.0.7}
{ps.23}

{3k.0.7}



nodi fi ed: 2017- 04- 24

revi sion: 2017- 04- 07

(900)

{pr.

{ps.

{ps.
{ps.

{ps.

35}

21}

21}

21}

28}

56 SAHARON SHELAH

[Why? Just check.]

(x)q if f e F,0 € {1,2} and ay € M then for some as_, € M we have f U
{(a1,a2)} € 7.

Why? By symmetry, without loss of generality ¢ = 1. Let ¢ be a limit ordinal
< k. We choose ¢, d_ sequences from M of length £g(o),¢g(do) respectively by

€1 e
induction on e < ¢, by applying 3.5(f) with M, ((¢,,dn) : n < w) and B. =
B U Dom(f) U {a1} U Rang(f) U U{e:"d; - ¢ < e} getting ¢.,d. from M here
standing for M, ((¢t,dt) : t € J), A getting (¢, d) there.
Clearly

(¥)a1 (€.°d. e < 6)((€,"dy) : n < w) is an indiscernible sequence over By.
This implies that, letting B, = U{e."d. : ¢ < 6} U B:

(¥)a2 fUgUidp, is an elementary mapping.
As M is k-saturated

(%)4.3 there is ag € M such that fUidp, U{(a1,a2)} is an elementary mapping.
So we can prove as in the proof of 4.14

(%)4.4 fU{(a1,a2)} € Z.

So we are done.
4) Repeat the proof of 4.14. Uaa7

Clearly 4.14 is a step forward. Now we prove the generic pair conjecture; instead
of assuming that the cardinality A is measurable we can restrict 7T'.
Toward this (the AT is an overkill, A and even 6 suffice).

Definition 4.18. We say that the triple m = (M, N, /) = (Mm, Nm, %m) is a
(A, k, < 0)-system when (A >k > 6 = cf(f) > |T| and) it satisfies clauses (a)-(d)
below, and say the triple is a full (A, k, < 0)-system when it satisfies clauses (a)-(i)
below where:

B (a) M is k-saturated of cardinality \, even strongly s-saturated?*
(just to simplify clause (i))
(b) M < N < € and N has cardinality A,
(¢) m is a set of cardinality A of objects p such that:

(a) pis of the form ((¢.,d.) : e < A*) = ((e.[p], d:[p]) : € < A1),
(B) ¢ do €N,
(7) {(G,d.) : e < A\T) is a strict (x, < )-decomposition over M,
(d) m is partially ordered by: p <p, q iff
o lp] < colg] and do[p] < dold],
e for every large enough € < A*, é.[p] < é[q], d.[p] < d.[q],
(e) m is closed under union of < @ increasing chains of length < 6
defined naturally,

24This means that for every (M, M)-elementary mapping of cardinality < k can be extended
to an automorphism of M.
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(f) ifp€ m and de efN then for some q € o/ above p we have
Rang(d) C Rang(do[q]),

(g) N is Rp-saturated?®,

(h)  up to really equivalence every possible p in Clause (¢) occurs (i.e. is
represented in 7)), where p, q are really equivalent when they are

as in (c¢) and (¢p.0, dp,0) = (Cq,0,dq,0) and are equivalent
(i)  there is q2 € 4y, such that p2 <u;, g2 and g2, q; are
equivalent as witnessed by f, when :
(@) Pp1 <m qi1 so both are from %,
(B) P2 € Sy is really equivalent to py,
(v) f € aut(M) maps p; to pa, yes the same f.

Definition 4.19. 1) Let BP = BP) ,; <¢ be the set of (A, k, < 0)-systems.

2) If (My, Ny, o7p) is a (A, Kk, < 0)-system for £ = 1,2 we say (Ma, No, of) is above
(My, Ny1,.4) or (My, Ny, 94) <gp, . .o (M2, No,af5) when M; = My, Ny < N
and A C .

3) We may write just BP, <gp when (\,k, < #) is clear from the context.

4) If m € BP and p € ,, we say that B is a base of p when B C M, has
cardinality < k and p is a strict (k, < #)-decomposition over (M, B).

Claim 4.20. Assume k = A = A\<* (see Definition 4.11).

1) If M < € is strongly k-saturated of cardinality \ then there is a pair (N, o)
such that (M, N, o) is a (\, K, < 0)-system.

2) If (M, Ny, ) is a (A, K, < 0)-system and No < € and ||Na|| = X then there is a
pair (N3, o73) such that (M, N3, o73) is a (A, K, < 6)-system above (M, N1, %) and
Ny < Ns.

3) If (M, N., o) : € < 0) is an increasing sequence of (A, k, < 0)-systems and § is
a limit ordinal < A\t then the union, (M, U Na, U o) is a (N, k, < 0)-system

a<d a<d
which is a least upper bound of {(M, N., o) : e < §}.

4) If in part (3) we have cf(§) = X or just cf(§) > 0 and each is full, then so is the
UNLON.

Proof. 1) Let m = (M, M, ) and check.

2) Let N3 < € be such that Ny U Ny < N3, N3 is s-saturated of cardinality A (even
saturated as really A = A<*) and use (M, N3, 7).

3) Easy.

4) Easy. Ua.20

Claim 4.21. 1) We have:

(a) <pp is a partial order on BP,
(b) any <pp-increasing sequence of length < AT has an upper bound,
(b)T moreover if (M, Ny, ) : a < 8) is <pp-increasing then (M,U{N, : a <
O}, U{ey - e < 6}) is a least <pp-upper bound,

(c¢) BP is not empty, moreover for every M € ECx A(T) there is m € BP such
that My = M = Ny, i = 0.

250r just N < €, does not matter
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2) If m is a (\ K, < 0)-system then :

(a) <m s a partial order of ty,

(b) if also n is a (A, k, < 0)-system and m <pp n then <p\=<p [Pm,

(¢) if 6 as a limit ordinal < 0 and po € m for a < 0 is <m-increasing
with o then there is n € BP such that m <gp n and <,-upper bound of
{Pa 1 @ < 0},

(d) if p € Fm and d € >N then there are a (A, K, < 0)-system n satisfying
m <gp n and q € F, such that p <,, q and d C Rang(dy),

(e) if p1,P2 € Y are equivalent and p1 <m d2 then for some n € BP we
have m <gp n and for some qo € 9y, equivalent to q1 we have p1 <n q2-

3) If (M, N, <) is a (\, k, < 0)-system then there is a full (\, K, < 0)-system above
it.

Proof. 1) Clause (a) holds easily by checking 4.19(2). Clauses (b),(b)™ holds easily
by 4.20(3), and for Clause (c) use (M, M, ).

2) Why? Clauses (a),(b): Easy.

Clause (c): For a < 8 <6 let ¢ = ((a, 8) < AT be such that:

e if £ € [(, A1) then ¢P= < &E” dP> < d2”.

Let ¢(*) = sup{C(o,8) +2 : o < B < §}, so necessarily ((x) < A*. Clearly
if ¢ € [C(+),A") U {0} then (g~ : a < §) is J-increasing and also the sequence
(dg* : o < 0) is <-increasing.

We choose ¢y = U{ch™ : a < &},dyp = U{d§* : a < &} and for ¢ < AT let
Ciye = {00, s a < 6} and diye = U{dE(,), .t a < 4}

Now easily

e p = ((G,d:) : € < At) is well defined and satisfies the demand in
4.18(c)(a) + (B) + (7)-

[Why? By Claim 4.14.]
So we define n as (M, Ny, {P} U ), casily

e n <€ BP and m <n.

Lastly, @ < 0 = pa <a P as witnessed by ((x) x w. So we are done proving clause
(c).
Clause (d):

Easy. By Clause (D) of Definition 4.11 of “(\, k, < 0) is T-good” which holds by
Hypothesis 4.13.
Clause (e):

By the definition of “equivalence” in Definition 4.16 (and 4.18(h)).
3) We fix a (A, k, < 0)-system (M, N,,<7.). We now shall choose m; € BP, <pp-
increasing by induction on ¢ < A and

@1 fori:():mo is (M,N*,(SZ{*)

®g for limit 4 < A\, m; is a <gp-upper bound of (m; : j < i), in fact the union.
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[Why? Possible by clause (b)T of part (1).]
By bookkeeping
O3 if (pa 1 @ < §) is <py,-increasing, § a limit ordinal < 6 and j < A, then for
some i € (j,\) the sequence has an upper bound by <p,, .

[Why? By Clause (c) of part (2).]

©4 if p € F, and d € "> Np; and j < X then for some i € (j, ), there is
q € “r,,, such that p <pm,,, g and Rang(d) C Rang(dg).
[Why? By Clause (d) of part (2).]

©®s5 if j < A and p1,q1, pe, f satisfy Clauses («) — (&) of 4.18(i) with m; here

standing for m there then for some i € (j,\) there is q2 € Py, , such that
P2 <m,,, 92 and qp, q2 are equivalent as witnessed by f.

[Why? Use clause (e) of part (2).]

i+1

©®¢ for every ¢ < A fro some j € (i,A) and k-saturated and even saturated
model N’ we have N; < N' < Nj;.

[Why? By 4.20(2).]

So we can carry the induction. Now my) is as required. Ly01
Theorem 4.22. Assume (A k,< 0) = (A, A\, < ) so is a T-good triple, see .11,
4.13.

1) If AT =2 (M, : a < A1) is an <-increasing continuous sequence of members of
ECA(T), My, saturated if o is non-limit and M = U{M,, : o < AT} is saturated then
for some club (= closed unbounded subset) E of XT for anya < 8 < € E and «, 3
are mnon-limit or are from S’f\‘+, the pairs (Ms, My) and (Ms, Mg) are isomorphic.

2) If my = (My, Ny, o) is a full (AN, < N)-system for £ = 1,2 then (Ny,My) =
(Na, Ms) that is there is an isomorphism f from Ny onto No mapping My onto
M.

Proof. 1) By part (2), noting that M,, Mg are saturated and recalling 4.21 and its
proof but we elaborate.

For a < AT let A, = {1 : 7 an increasing continuous sequence of ordinals with
supremum < « of length < A and 7(0) has cofinality A and 7(i + 1) successor} and
AY = Aat1\Aa. We now by induction on « choose M/, and (N,, &) for n € A},
such that:

(%) (a) M] < € has cardinality A
(b) M], is saturated when cf(a) ¢ [Ng, A)
(c) if p € S(M}) then for some v € (3, A7), p is realized in M,
(d) ifa=p+1landne Al (soasupRang(n) = ) then
() A4é < Ng, < M|,
(B) (Mé(o)vNﬁ,mJZ{n) € BP
() .if B is a limit ordina.l then (Mj oy, Ny, @) = (M ), U{ Ny
i < Lg(n)}, {1 <lg(n)}) so Ny = Mg
(6) if B is a successor ordinal then (ley(o)’ N, ) is a full
(A, A, < A)-system.
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There is no problem to carry the induction. By clause (c), M = U{M/, : o < AT}
is saturated so without loss of generality U{M/, : a« < AT} = U{M,, : a < AT}, let
E. = {6 < AT : ¢ a limit ordinal divisible by A and M/, = M,}, clearly a club of
AT

Now if e < B are from E and has cofinality A, let 7 = 7,3 be an increasing
continuous sequence of ordinals of length A with limit 3, such that n(0) = « and
n(i 4+ 1) is a successor ordinal for every i < A\. Now My = M, Mg = My =
U{Nypi ¢ < A} and let @, 3 = U{et @ @ < A}, so (Mg, Mg, o7, ) is a full
(A, A, < A)-system. By part (2) we can finish.
2) We define the set AP of approximation:

(x)1 AP is the set of triples h = (p1, By, p2, Ba, f) = (p1[h], Ba[h], p2[h], Ba[h], f[h])

satisfying:
(a) py € o for £ =1,2,

(b) By € [M]<* is a base for py, see 4.19(4),
(¢) fisanelementary mapping which maps B onto By such that Dom(f) =
Bla
(d) there is an isomorphism f*+ from M; onto Mz extending f such that:
if g <... <an-1 < AT then f* maps
tp((épl,al A‘%Pl,al)A o (Epl,anfl Adplyan71)7 Ml) onto
tp((EPQ,ao Asz,ao)A s (Ep21an—1 AdP27an,71)7 MQ)'
(¥)2 we define the two-place relation <ap by: hy <ap ho iff
(a) both are in AP,
(b) pl[hl] Smg pe[hQ] for £ = 1725
(¢) Be[hi] € Bylhy],
(d) fi[hi] C flha].
Obviously
(¥)3 <ap partially ordered AP.
Also
(¥)4 if 6 < Ais a limit ordinal and (h, : @ < d) is <ap-increasing, then this
sequence has an <ap-upper bound.
[Why? Clauses (a),(b),(c) of (x)1 holds as in the proof of 4.21(2)(c) and clause (d)

of (x); holds by 4.17(4) and 4.17(2).]

(¥)5 if h € AP and a € M; then there is h’ € AP such that h <ap h} and
ac sz[h/l]'

[Why? Let a; = a and let f* D f, be as in (x)1(d) and let ay € My realize
fT(tp(a1, Bp,m)))- B

Let B; = (Bp,n U{ar}) and let pj, € o, be defined by: (c:[p)],d:[p}]) =
(¢c[pe[hu], de[pe[h]).

Lastly, let b’ = (p!, By, ph, By, fu U{(a1,a2)}).]

(¥)¢ If h € AP and a € M, then there is h’ € AP such that h <ap h’ and
a € Bolh'].
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[Why? Like (x)s.]

(x)7 if h € AP and d € N; then for some h’ € AP we have h <,p h’ and
d € Rang(do[p: []).

[Why? By 4.21(2)(d) there is q; € iy, such that pi[h] <m, q1 and d € dg[p:[h’].
Let f' O fn be as in (x)1(d) so in particular an isomorphism from M; onto Ms.
Now by clause (i) of Definition 4.18 there is q2 € %4n, such that f/ maps q; to

q2-
The rest should be clear.]
(x)g if h € AP and d € N, then for some h’ € AP we have h <ap h’ and
d € Rang(do[ps (1))
[Why? Like (x)7.]
Together
© there is a sequence (h; : i < A) such that (for £ =1,2)
(a) it is <ap-increasing
(b)¢ if a € My then a € By[h;] for some 4
(¢)¢ if d € N, then d € Rang(do[p¢[h;]]) for some i < .

From this sequence we can “read” an isomorphism as required, say g(a1) = ag iff for
some i and € < £g(do[p1[h;]) we have a1 = (do[p1[hi]])e, d2 = (do[p2[hi]])e.] a0

Another form, not assuming Hypothesis 4.13, is

Conclusion 4.23. Assume (A, A, < A) is T-good, e.g. X > |T| is a measurable
cardinality and X\ = X<*. Then for some F we have:

(A) (a) F is as in [Sh:88r, 3.3], i.e.
(a) F is a function with domain {M : M has the form (M; : i < f3),
a <-increasing continuous sequence such that M; is models of T of
cardinality \ with universe an ordinal € [\, \T) and if i is non-limit
then M; is saturated},
(B) F(M) is such that M (F(M)) € Dom(F)
(B) if M = (M, : a < AT) obeys F which means that
At =sup{a: F(M | (« +1) < My41} then
for some club E of A\t we have:
(a) cf(a) == M, is saturated,
(b) if My, is saturated, cf(d¢) = A and ay < b € E for £ =1,2
then (M51 ) Maq) = (M527 Mﬁ2)'
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