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SQUARES OF MENGER-BOUNDED GROUPS
MICHAL MACHURA, SAHARON SHELAH, AND BOAZ TSABAN

ABSTRACT. Using a portion of the Continuum Hypothesis, we
prove that there is a Menger-bounded (also called o-bounded) sub-
group of the Baire group Z", whose square is not Menger-bounded.
This settles a major open problem concerning boundedness notions
for groups, and implies that Menger-bounded groups need not be
Scheepers-bounded.

1. INTRODUCTION

Assume that (G, ) is a topological group. For A, B C G, A- B stands
for {a-b:a€ A, be B}, and a - B stands for {a-b:b e B}.

G is Menger-bounded (also called o-bounded) if for each sequence
{Up}nen of neighborhoods of the unit, there exist finite sets F,, C G,
n € N, such that G =, F, - U,,.

G is Scheepers-bounded if for each sequence {U, },en of neighbor-
hoods of the unit, there exist finite sets F,, C GG, n € N, such that for
each finite set ' C @, there is n such that F' C F,, - U,.

A variety of boundedness properties for groups, including the two
mentioned ones, were studied extensively in the literature, resulting in
an almost complete classification of these notions [15, 8,9, 11, 4, 16, 2,
1, 12, 5]. Only the following classification problem remained open.

Problem 1. Is every metrizable Menger-bounded group Scheepers-boun-
ded?

The notions of Menger-bounded and Scheepers-bounded groups are
related in the following elegant manner.

Theorem 2 (Babinkostova-Koc¢inac-Scheepers [2]). G is Scheepers-
bounded if, and only if, G* is Menger-bounded for all k.

In light of Theorem 2, Problem 1 asks whether there could be a
metrizable group G such that for some k, G* is Menger-bounded but
G**! is not. We give a negative answer by showing that, assuming
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a portion of the Continuum Hypothesis, there is such an example for
each k.

Some special hypothesis is necessary in order to prove such a result:
Banakh and Zdomskyy [6, 5] proved that consistently, every topological
group with Menger-bounded square is Scheepers-bounded.

2. SPECIALIZING THE QUESTION FOR THE BAIRE GROUP

Subgroups of the Baire group ZN form a rich source of examples of
groups with various boundedness properties [12]. The advantage of
working in Z" is that the boundedness properties there can be stated
in a purely combinatorial manner.

We use mainly self-evident notation. For natural numbers k < m,
[k,m) ={k,k+1,...,m —1}. For a partial function f : N — Z, |f|
is the function with the same domain, which satisfies |f|(n) = |f(n)],
where in this case |- | denotes the absolute value. For partial functions
f,g : N — N with dom(f) C dom(g), f < g means: For each n in
the domain of f, f(n) < g(n). Similarly, f < k means: For each n in
the domain of f, f(n) < k. The quantifiers (3°n) and (V*°n) stand
for “there exist infinitely many n” and “for all but finitely many n”,
respectively.

Theorem 3 ([12]). Assume that G is a subgroup of ZV. The following
conditions are equivalent:

(1) G is Menger-bounded.

(2) For each increasing h € NN, there is f € N such that:

(Vg € G)(3*n) lg] 10, h(n)) < f(n).

The proof of Theorem 2 actually shows that the following holds for
each natural number k.

Theorem 4. G* is Menger-bounded if, and only if, for each sequence
{U,}nen of neighborhoods of the unit, there exist finite sets F,, C G,
n € N, such that for each F' C G with |F| = k, there is n such that
FCEF, U,. O

Specializing to Z" again and using arguments as in the proof of
Theorem 3, we obtain the following.

Theorem 5. Assume that G is a subgroup of ZN. The following con-
ditions are equivalent:

(1) G* is Menger-bounded.
(2) For each increasing h € NN, there is f € N such that:

(VF € [G]")(3*n)(Vg € F) |g] [0, h(n)) < f(n). O
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In light of these results, it is clear that the theorem that we prove in
the next section is what we are looking for.

3. THE MAIN THEOREM

The forthcoming Theorem 7 requires a (weak) portion of the Contin-
uum Hypothesis. It is stated in terms of cardinal characteristics of the
continuum, see [7] for an introduction. We define the following ad-hoc
cardinals.

Definition 6. Fix a partition P = {; : [ € N} of N such that for each
[, there are infinitely many n such that n,n +1 € I;. For f € N¥ and
an increasing h € NN, write

[f<hl={n:f(h(n)) <h(n+1)}.
0'(P) is the cardinal such that the following are equivalent:
(1) & <(P);
(2) For each F C NN such that |F| = &, there is an increasing
h € NY such that for each f € F,

VO)(F*n) n,n+1e L N[f < hl.

It is not difficult to show that for each P, max{b, cov(M)} <?'(P) <
0, and there are additional bounds on ?'(P) [14]. (Here M denotes the
ideal of meager subsets of R.)

Theorem 7. Assume that there is P such that o'(P) = 9. Then for
each k, there is a group G < ZN such that G* is Menger-bounded, but
G**1 s not Menger-bounded.

Proof. Fix a partition P = {[; : | € N} of N such that for each [, there
are infinitely many n such that n,n + 1 € I;, and such that o'(P) = 0.

Enumerate Z***+1 as {A,, : n € N}, such that the sequence { A, }ner,
is constant for each [. Fix a dominating family of increasing func-
tions {d, : a < 0} C NN, For v = (vg,...,v) € ZFFHL write ||v|| or
|lvo, - . ., vg|| for max{|vg|, ..., |vg|} (the supremum norm of v).

We carry out a construction by induction on o« < 0. Step a: Define
functions pa,m € NN, m €N, by

Pam(n) = min{[[v] : v € Z*', o] > du(n), Ao =0}
Also, define ¢, € NY by
Pa(n) = max{pa(j) : i,j < n}.
We define a set M, C Z" as follows. Assume, inductively, that for each

B < a, | M| < max{Ry, |#|}. Let M, be the smallest set (with respect
to inclusion) containing d,, ¢, and all functions defined in stages < «
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(in particular, (Jz., Mp € M,), and such that M, is closed under all
operations relevant for the proof.
For example, closing M, under the following operations suffices:!
fn)—c-f(n), ceN;
g(n) = g(n) = max{lg(m)| : m <nj;
f,d) — fod when d e M, NNY;
fo(n), ..., frea(n)) = max{fo(n), ..., fr-1(n)};
Fo(n), fu(n), fa(n), fo(n)) — t(n), where w(n) is defined to be

min{k : (3j) fo(j) < f1(j) and [f2(5), f3())) € [n. k)},
and where f, € M, NN is increasing, and f; £* fo.

There are countably many such operations, and | M,| < max{R, |a|} <
?'(P). By the definition of ?’(P), there is an increasing h, € N such
that for each f € M, NNV,

(VD)(F*n) n,n+ 1€ [N[f < hgl.

o~~~

Define k + 1 elements gg,...,g> € ZY as follows: For each n, let
v € Z*! be a witness for the definition of ¢, ,(ha(n + 1)), and define
(95 (ha(n)), ..., g (ha(n))) = v. The remaining values are defined by
declaring each g to be constant on each interval [hy(n), ho(n+1)).

Take the generated subgroup G = (g3,...,9% : a < 0) of ZN. We
will show that G is as required in the theorem.

GF*L is not Menger-bounded. We use Theorem 5. Take h(n) = n + 1.
Let f € NN. Take o < 0 such that f <* d,. Then F = {gg,...,92} €
[G]*FL. Let m be large enough, so that f(m) < d,(m). Take n such
that m € [ha(n), ha(n+1)). Then

lgg (m), ..., gk (m)]| =
= lgg(ha(n)), .., g8 (ha(P))|| = Pan(ha(n +1)) =
> do(ha(n+1)) > do(m) > f(m).

This violates Theorem 5(2) for the power k + 1.

G* is Menger-bounded. Let h € NN be increasing. Take § < 9 such that
h <* ds. Tt suffices to prove Theorem 5(2) for ds instead of h (so that
now h is free to denote something else). Abbreviate d = ds, h = hs.
Choose an increasing f € N¥ dominating all functions f.(n) = c -
h(n+1), c € N. We will prove that f is as required in Theorem 5(2).

IWe may, alternatively, use model theory for first-order logic and assume that
the sets M, are elementary submodels of H (k) for a sufficiently large «.
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Fix FF'={go,...,9k-1} C G. Then there are g|,...g;_; € Ms, i <k,
M € Nand a3 < .-+ < apy < 0 such that § < oy, and matrices
By, ..., By € ZF<0+1 guch that

9 9% 9" g™
I A - A -l B
Gk—1 Gy g g™
For each m < M, let
9o,m 9 9" 9"
o= ¢ | +B| |+ +Ba|
Gk—1.m Gy apt gp"

We prove, by induction on m < M, that for an appropriate constant

Cm,
[ ”g(],m o d7 e e 7§k71,m o d” < Cm * h ]

is infinite. By the definition of f, this suffices.
m=0: As g),...,q._1,d € Ms, ||gyod,...,q,_,0od| € Ms, and as
h = h57

[lgood, .. gk odl <h]

is infinite, so that ¢y = 1 works.
From m — 1 to m: Let

Jm - [ ||g0,m—1 o d7 cee 7gk—1,m—1 o d” K Cp—1 - h ],

and assume that J,, is infinite. We must prove that J,,,; is infinite,
for an appropriate constant ¢,,. As gom—1,---, 9k—1,m-1,d,h € M,,,,
we have that ||gom—104d,...,0k—1,m-10d|,cmn_1-h,doh € M,,,, and
thus the (well defined) function

Um(n) = min{k : (35 € Jm) [h(j), d(h())) € [n, k)}

belongs to M,,,. Thus, max{iy,, ¢a,,} € M,,,
For each i < k and each n > 0, as n — 1 < h,,, (n), we have that

197" (hay, (n = 1)) < @a,,m-1(Pa, (1)) < Pa (P, (1))

As ¢, is nondecreasing,

196" (hawn (0 = 1)), -, Gg™ (hay, (0 = D) < @ay (e, (1))
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Thus, if [ is such that for each n € I;, A,, = B,,, we have that

n,n+1e¢e 1,

I = Sns (G e Tn) [0G), dR(G))) S [hay, (0 + 1), by, (0 +2)),
196 (ha, (n = 1)), .., g (hay, (n = 1))|| < ha,, (n+ 1)
n,n+1e¢e 1,

D n: Yplhg, (n+1)) < hg, (n+2),
Cam, (P, (1)) < hg,, (n+ 1)

O {n:n,n+1¢€Nmax{tn, Lo, < ha,]}

By the definition of h,,,, the last set is infinite, and therefore so is I.
By the construction,

90" (ha,, (n))

9" (ha,,(n))
for all n. Let n € I. Then n,n+1 € [, and A, = A,4y1 = B,,. Thus,
for each i < k,

Ji,m f [ham (n)a hcvm (Tl + 2)) = Gim—1 f [ham <n>7 ham (77, + 2))
Let j € J,, witness that n € I, and let p € [0,d(h(7))).

Case 1: p € [ha,,(n),d(h(j))). By the definition of I,
(e, (), d(1(7))) € [ha, (1), ha,, (1 +2)),

i)

e
m)

1(d(h(7))) < em-1h(G+1)

and by the equality above (as j € J,

195.m(P)| = 195,m-1(P)| < Gism
for all i < k.
Case 2: p € [0, hg,,(n)). Let C' be the maximal absolute value of a
coordinate of B,,. For all ¢ < k, by the definition of g, ,,,

19im ()| < [gim—1(P)| + (k +1)C" - max{|gi" (p)| : i < k}.
By the choice of n and j, p < h,,,(n) < h(j) < d(h(j)), and therefore
|9im-1()| < Gim-1(d(h(]))) < cm-1h(j +1). For each i <k,

g7 (p)| < 97 (hay, (n — 1)) < ha,, (n+ 1) < ().

Thus,

|9im(D)] |9im—1(p)] + (k + 1)C - max{|g;" (p)] : < k}
Cm—1h(j + 1) + (k+1)C - h(j)
Cm—1h(+ 1)+ (k+1)C-h(j+1)

(emo1 + (E+1)C) - h(j +1).

IA A IA
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Take ¢, = ¢;_1 + kC.
This completes the proof of Theorem 7. 0

The problem whether, consistently, every Menger-bounded group is
Scheepers-bounded is yet to be addressed.

Acknowledgements. We thank Heike Mildenberger and Lyubomyr
Zdomskyy for their useful comments.
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PERSONAL APPENDIX: THREE FUNDAMENTAL PROBLEMS

Following are two suggested extensions to F761, and one suggested
extension for F762.

Recall that a subgroup G of ZN is Menger-bounded iff:
For each increasing h € NV, there is f € NY such that:

(Vg € G)(F*n) |9 1[0,h(n)) < f(n).
We used a weak but unprovable hypothesis to prove that there is a

group G < ZN such that G is Menger-bounded, but G2 is not Menger-
bounded.

Now assume that we are given more freedom. I expect the following

to have a positive answer, and this would solve an important problem
of Tkacenko.

Problem F761(A). Are there (in ZFC!) Menger-bounded groups G, H <
ZN such that G x H is not Menger-bounded.

Definition 8. A subgroup G of Z" is Rothberger-bounded iff
For each increasing h € NV, there is ¢ : N — Z<% such that:

(Vg € G)(3n) g 1'0,h(n)) = ¢(n).
Recall that G? is Menger-bounded iff:
For each increasing h € NV, there is f € NY such that:

(VF € [G]))(3*n)(Vg € F) |g] [ [0, h(n)) < f(n).

Problem F761(B). Does CH imply the existence of a group G < ZN
such that G is Rothberger-bounded but G? is not Menger-bounded?

Semifilter-trichotomy is the hypothesis equivalent to u < g, which
asserts that for each semifilter F on N (i.e., F C [N]® is nonempty,
and for all A,B C N, F > AC*B— B € F), there is an increasing
sequence h such that F/h is either the Fréchet filter (all cofinite sets),
or an ultrafilter, or [N]%.

Problem F762(C). Does semifilter-trichotomy imply that the square
of each Menger-bounded subgroup of ZY is Menger-bounded?

The question for larger powers was settled in the positive by Banakh
and Zdomskyy, and independently bey Heike in her work on F762.
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