908 ## On long increasing chains modulo flat ideals ## Saharon Shelah* 1,2 - ¹ The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel - ² Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA Received xxx, revised xxx, accepted xxx Published online xxx **Key words** increasing chain, order modulo an ideal **MSC (2000)** 03E05 03E10 We prove that, e.g., in $(\omega_3)(\omega_3)$ there is no sequence of length ω_4 increasing modulo the ideal of countable sets. Copyright line will be provided by the publisher This note is concerned with the depth of the partial order of the functions in ${}^{\kappa}\gamma$ modulo the ideal of the form $\mathcal{I} = [\kappa]^{<\mu}$. Let us recall the following definitions. **Definition 1** For a partial order (P, \sqsubseteq) we define - Depth $(P, \Box) = \sup\{|\mathcal{F}| : \mathcal{F} \subseteq P \text{ is well-ordered by } \Box\}$ [the depth] - $cf(P, \Box) = min\{|\mathcal{F}| : \mathcal{F} \subseteq P \text{ is } \Box \text{-cofinal which mean that for every } p \in P \text{ there is } q \in \mathcal{F} \text{ such that } p \sqsubseteq p \} [\text{the cofinality}].$ Our result (Theorem 4) states that under suitable assumptions the depth of the partial order $({}^{\kappa}\gamma, <_{[\kappa]^{<\mu}})$ is at most $|\gamma|$. In particular, letting $\mu = \aleph_1$, $\kappa = |\gamma| = \aleph_3$ we obtain that in $({}^{(\omega_3)}(\omega_3))$ there is no sequence of length ω_4 increasing modulo the ideal of countable sets. Let $\kappa = \mathrm{cf}(\kappa) > \aleph_0$. If $\mu = \kappa$, then $\mathrm{Depth}(^{\kappa}\kappa, <_{J_{\kappa}^{\mathrm{bd}}})$ can be (forced to be) large. But for $\mu > \mathrm{Depth}(^{\kappa}\mu, <_{J_{\kappa}^{\mathrm{bd}}})$ this implies pcf results (see [Sh 410], [Sh 589]). However, e.g., for the ideal $\mathcal{I}=[\omega_3]^{\leq\aleph_0}$ it is harder to get long increasing sequence, as above for "high μ ", this leads to pcf results e.g. if we assume that $\bar{\lambda}=\langle\lambda_i:i<\omega_3\rangle\in{}^{\omega_3}\mathrm{Reg}$, and in $(\prod\bar{\lambda},<_{\mathcal{I}})$ there is an increasing sequence moduo \mathcal{I} of length say $>2^{\aleph_3}+\sup\{\lambda_i:i<\omega_3\}$ are much stronger than known consistency results. Even for $I=[\omega_1]^{\leq\aleph_0}$ we do not know, for $I=[\beth_\omega]^{\leq\aleph_0}$ we know ([Sh 460]), so even $[\aleph_\omega]^{\leq\aleph_0}$ would be interesting good news. We hope sometime to prove, e.g., **Conjecture 2** For every $\mu > \theta$, in $(\theta^{+3})\mu$ there is no increasing sequence of length μ^+ modulo $[\theta^{+3}] \leq \theta$. **Problem 3** Is it consistent that ${}^{\theta}\theta$ contains $<_{\mathcal{I}}$ -increasing sequence of length θ^+ when $\theta = \kappa^+$ and $\mathcal{I} = [\theta]^{<\kappa}$? **Notation:** Our notation is rather standard and compatible with that of classical textbooks (like Jech [J]). - 1. Ordinal numbers will be denoted be the lower case initial letters of the Greek alphabet $\alpha, \beta, \gamma, \delta, \ldots$ (with possible subscripts). Cardinal numbers will be called $\kappa, \lambda, \mu, \theta$. - 2. For a set X and a cardinal θ , $[X]^{\theta}$ (or $[X]^{<\theta}$, respectively) stands for the family of subsets of X of size θ ($<\theta$, respectively). I would like to thank Alice Leonhardt for the beautiful typing. The author acknowledges support from the United States-Israel Binational Science Foundation (Grant no. 2002323). Publication 908. ^{*} e-mail: shelah@math.huji.ac.il, URL: http://shelah.logic.at **Theorem 4** Assume $\mu^+ < \kappa \le \theta$ and $\mathcal{J} = [\kappa]^{<\mu}$ and $\operatorname{cf}([\theta]^{\mu}, \subseteq) \le \theta$. Let $\gamma < \theta^+$. Then $\operatorname{Depth}(^{\kappa}\gamma, <_{\mathcal{J}}) \le \theta$, i.e., there is no $<_{\mathcal{J}}$ -increasing sequence $<_{\mathcal{J}}f_{\alpha} : \alpha < \theta^+ > 0$ of functions from $^{\kappa}\gamma$ modulo \mathcal{J} . Proof. Assume towards contradiction that there is a $<_{\mathcal{J}}$ -increasing sequence $\langle f_{\zeta} : \zeta < \theta^{+} \rangle \subseteq {}^{\kappa}\gamma$. Let $\mathcal{S} \subseteq [\gamma]^{\mu}$ be cofinal of cardinality $\leq \theta$ (exists as $|\gamma| \leq \theta$ and $\mathrm{cf}([\theta]^{\mu}, \subseteq) \leq \theta$). For every $s \in \mathcal{S}$ and $\beta < \kappa$, $\zeta < \theta^{+}$ we let - $I(\beta) := [\beta, \beta + \mu),$ - $f_{\zeta}^s \in {}^{\kappa}(\gamma+1)$ be defined by $f_{\zeta}^s(i) = \min(s \cup \{\gamma\} \setminus f_{\zeta}(i))$, - $f^{s,\beta}_{\zeta} \in I(\beta)(\gamma+1)$ be defined as $f^s_{\zeta} \upharpoonright I(\beta)$. Now, for each $s \in \mathcal{S}$ we have $$(*)_1$$ (a) for every $\zeta < \theta^+, f_{\zeta}^{s,\beta} : I(\beta) \longrightarrow s \cup \{\gamma\},$ $$\text{(b) if } \zeta < \xi < \theta^+ \text{, then } f_\zeta^{s,\beta} \leq f_\xi^{s,\beta} \mod [I(\beta)]^{<\mu}.$$ For $s \in \mathcal{S}$ we define $$(*)_2 B_s = \{ \beta < \kappa : (\forall \zeta < \theta^+)(\exists \xi > \zeta) \neg (f_{\zeta}^{s,\beta} = f_{\xi}^{s,\beta} \mod [I(\beta)]^{<\mu}) \}.$$ Plainly, we may choose a sequence $\langle C^s_{\beta} : \beta < \kappa, \ s \in \mathcal{S} \rangle$ such that - $(*)_3$ (a) C^s_{β} is a club of θ^+ , - (b) if $\beta \in B_s$ and $\xi, \zeta \in C^s_\beta$ are such that $\zeta < \xi$, then $\neg (f^{s,\beta}_\zeta = f^{s,\beta}_\xi \mod [I(\beta)]^{<\mu})$, - $\text{(c) if } \beta \in \kappa \setminus B_s \text{, then } f_\zeta^{s,\beta} = f_\xi^{s,\beta} \mod [I(\beta)]^{<\mu} \text{ whenever } \min(C_\beta^s) \leq \zeta \leq \xi < \theta^+.$ Then, as $|S| < \theta$ and $\kappa < \theta$, we have $$(*)_4$$ the set $C := \bigcap \{C^s_\beta : s \in \mathcal{S} \text{ and } \beta < \kappa\}$ is a club of θ^+ . Choose a sequence $\langle \alpha_{\varepsilon} : \varepsilon < \mu^+ \rangle \subseteq C$ increasing with ε . Then, for all $\varepsilon < \zeta < \mu^+$, $$(*)_5 \ u_{\varepsilon,\zeta} := \{i < \kappa : f_{\alpha_{\varepsilon}}(i) \ge f_{\alpha_{\zeta}}(i)\} \in \mathcal{J}.$$ We have assumed that $\mu^+ < \kappa$, so we can find $\delta < \kappa$ such that - (*)₆ (a) $I(\delta) = [\delta, \delta + \mu)$ is disjoint from $\bigcup \{u_{\varepsilon,\zeta} : \varepsilon < \zeta < \mu^+\}$, and hence - (b) the sequence $\langle f_{\alpha_{\varepsilon}}(i) : \varepsilon < \mu^{+} \rangle$ is increasing for each $i \in I(\delta)$. As $|I(\delta)| = \mu$ and $S \subseteq [\gamma]^{\leq \mu}$ is cofinal (for the partial order \subseteq), we can find $s \in S$ such that $$(*)_7 \{f_{\alpha_0}(i), f_{\alpha_1}(i) : i \in I(\delta)\} \subseteq s.$$ It follows from $(*)_6 + (*)_7$ that for every $i \in I(\delta)$ $$(*)_8 f_{\alpha_0}^s(i) = f_{\alpha_0}(i) < f_{\alpha_1}(i) = f_{\alpha_1}^s(i).$$ As $\alpha_0 < \alpha_1$ are from C and $I(\delta) \notin \mathcal{J}$, recalling $(*)_2 + (*)_3 + (*)_4$, clearly $$(*)_9 \ \delta \in B_s$$. Therefore, as $\alpha_{\varepsilon} \in C \subseteq C^s_{\delta}$ for $\varepsilon < \mu^+$ and α_{ε} is increasing with ε , we have $(*)_{10}$ for every $\varepsilon < \mu^+$ there is $i_{\varepsilon} \in I(\delta)$ such that $$(\alpha) \ f_{\alpha_{\varepsilon}}^{s}(i_{\varepsilon}) < f_{\alpha_{\varepsilon+1}}^{s}(i_{\varepsilon}),$$ and hence there is $j_{\varepsilon} \in s$ such that 908 (β) $f_{\alpha_{\varepsilon}}^{s}(i_{\varepsilon}) \leq j_{\varepsilon} < f_{\alpha_{\varepsilon+1}}^{s}(i_{\varepsilon})$ and therefore $$(\gamma) \ f_{\alpha_{\varepsilon}}(i_{\varepsilon}) \leq j_{\varepsilon} < f_{\alpha_{\varepsilon+1}}(i_{\varepsilon}).$$ But $|I(\delta)| + |s| = \mu < \mu^+$, so for some pair $(j_*, i_*) \in s \times I(\delta)$ we may choose $\varepsilon_1 < \varepsilon_2 < \mu^+$ such that $$(*)_{11}\ \ j_{\varepsilon_1}=j_{\varepsilon_2}=j_*\ \text{and}\ i_{\varepsilon_1}=i_{\varepsilon_2}=i_*.$$ But the sequence $\langle f_{\alpha_{\varepsilon}}(i_*) : \varepsilon < \theta^+ \rangle$ is increasing by $(*)_6(b)$ (see the choice of δ), so $$f_{\alpha_{\varepsilon_1}}(i_*) < f_{\alpha_{\varepsilon_1+1}}(i_*) \le f_{\alpha_{\varepsilon_2}}(i_*) < f_{\alpha_{\varepsilon_2+1}}(i_*).$$ It follows from $(*)_{10}(\gamma)+(*)_{11}$ that the ordinal j_* belongs to $[f_{\alpha_{\varepsilon_1}}(i_*),f_{\alpha_{\varepsilon_1+1}}(i_*))$ and to $[f_{\alpha_{\varepsilon_2}}(i_*),f_{\alpha_{\varepsilon_2+1}}(i_*))$, which are disjoint intervals, a contradiction. Similarly, **Theorem 5** Assume that - (a) \mathcal{J} is an ideal on κ , - (b) $I_{\beta} \in [\kappa]^{\mu}$, $I_{\beta} \notin \mathcal{J}$ for $\beta < \kappa$, - (c) $\theta = |\gamma| + \kappa \text{ and } \operatorname{cf}([\theta]^{\mu}, \subseteq) < \lambda$, - (d) if $u_{\varepsilon} \in \mathcal{J}$ for $\varepsilon < \mu^+$, then for some $\beta < \kappa$ the set I_{β} is disjoint from $\bigcup_{\varepsilon < \mu^+} u_{\varepsilon}$. *Then there is no* $<_{\mathcal{I}}$ *–increasing sequence of functions from* κ *to* γ *of length* λ . Proof. Without loss of generality λ is the successor of $cf([\theta]^{\mu},\subseteq)$ hence is regular. The proof is similar to the proof of Theorem 4. ## References - [J] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. - [Sh 410] Saharon Shelah. More on Cardinal Arithmetic. *Archive for Mathematical Logic*, **32**:399–428, 1993. math.LO/0406550. - [Sh 589] Saharon Shelah. Applications of PCF theory. Journal of Symbolic Logic, 65:1624-1674, 2000. - [Sh 460] Saharon Shelah. The Generalized Continuum Hypothesis revisited. Israel Journal of Mathematics, 116:285–321, 2000. math.LO/9809200.