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We prove that, e.g., ift’s) (w3) there is no sequence of length increasing modulo the ideal of countable sets.
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This note is concerned with the depth of the partial ordehefftinctions in*~y modulo the ideal of the form
T = [k]<*. Let us recall the following definitions.

Definition 1 For a partial orde(P, =) we define
e Depth(P,C) = sup{|F|: F C P is well-ordered by" } [the depth]

e cf(P,C) = min{|F| : F C Pis C—cofinal which mean that for evefye P thereisq € F suchthap C p
} [the cofinality].

Our result (Theorem 4) states that under suitable assunsptiie depth of the partial ordgry, <<« ) is at

most|y|. In particular, letting: = R;, s = || = X3 we obtain that if“2) (ws) there is no sequence of length
increasing modulo the ideal of countable sets.

Letr = cf(k) > No. If u = x, thenDepth(", < jua) can be (forced to be) large. But fr> Depth (", < jua
) this implies pcf results (see [Sh 410], [Sh 589]).

However, e.g., for the idedl = [w3]=™ it is harder to get long increasing sequence, as above fgh*“hi
w”, this leads to pcf results e.g. if we assume that (\; : i < w3) € “*Reg, and in([] A, <z) there is an
increasing sequence modzi@f length say> 283 +sup{\; : i < w3} are much stronger than known consistency
results. Even fofl = [w;]<"° we do not know, fol = [J,,]= we know ([Sh 460]), so evej,,]<*° would be
interesting good news.

We hope sometime to prove, e.g.,

Conjecture 2 For everyu > 6, in ("H)M there is no increasing sequence of lengthmodulo[f*3]<%.

Problem 3 Is it consistent thaf# contains<z-increasing sequence of length whenf = x* andZ =
o)<

Notation: Our notation is rather standard and compatible with thatasfsical textbooks (like Jech [J]).

1. Ordinal numbers will be denoted be the lower case inigtiels of the Greek alphabet3,~,d, . .. (with
possible subscripts). Cardinal numbers will be cakted, p, 6.

2. For a set and a cardinad, [X]? (or [X]<?, respectively) stands for the family of subsets\obf sized
(< 0, respectively).
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Theorem 4 Assumes™ < k < # andJ = [k]<# andcf([f]#, C) < 0. Lety < 0. ThenDepth(®y, <7) <
0, i.e., there is no< s—increasing sequendd,, : o < 0T) of functions fronfy modulo7.

Proof. Assume towards contradiction that there is a-increasing sequencg: : ¢ < %) C *~.
LetS C [y]* be cofinal of cardinality< 6 (exists agy| < 6 andcf([f]#, C) < ). Foreverys € S and < &,
¢ < 6% welet

o I(B) :=1[83,8+p)
o fZ €"(y+1)bedefined byf#(i) = min(s U {y}\ f¢(i)),
o 27 €1 (y+1) be defined ags | 1(3).
Now, for eachs € S we have
(+)1 (a) forevery¢ < 0%, f&7 : 1(8) — sU {y},
(b) if ¢ <& <o, thenf” < f&7 mod [I(3)]<".
Fors € S we define
(K2 Bs = {8 <r: (V¢ <03 > ([0 = f7 mod [1(8)]<)}.
Plainly, we may choose a sequeni¢g; : 8 < x, s € S) such that
(¥)3 (a) Cjisaclubofot,
(b) if B € B, and¢, ¢ € €5 are such thaf < ¢, then—(f>” = 2 mod [1(8)]<#),
() if B € K\ By, thenf>” = 27 mod [I(8)]<# whenevemin(C§) < ¢ < £ < 0.
Then, agS| < # andx < 6, we have
(¥)4 thesetC := N{C}: s € SandfB < s} isaclub ofg™ .
Choose a sequenda. : ¢ < put) C C increasing withe. Then, for alle < ¢ < u™,
()5 ue:={i <r: fa.(i) = fa (i)} € T.
We have assumed that™ < x, so we can find < « such that

(x)¢ (@) 1(0) = [d,0 + p) is disjoint fromJ{ue ¢ : € < ¢ < put}, and hence
(b) the sequencéf,. (i) : € < put) is increasing for eache 1(4).

As |I(8)| = pandS C [y]=* is cofinal (for the partial ordet), we can finds € S such that
()7 {fao (i), fa, (i) : i € I(0)} C s.
It follows from (x)s + ()7 that for everyi € I(9)
()8 [0 (i) = fao (i) < fou (i) = £5, (D).
As ag < oy are fromC andI(0) ¢ J, recalling(x)2 + (%)3 + ()4, Clearly
(*)9 0 € Bs.
Therefore, ag.. € C' C C§ fore < p* anda. is increasing withe, we have
(x)10 foreverye < p* thereisi. € I() such that
() fa.(ic) < fa.,, (i),
and hence there ig € s such that
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(8) fa.lic) <je < fa.,,(ic)
and therefore
(V) fa.(ic) < Je < faoi (ic).
But|I(d)| + |s| = p < u™, so for some paifj.,i.) € s x I(§) we may choose; < 2 < u™ such that
(K11 Jer = Je, = Jx @Nig, = ie, = ix.
But the sequencéf,,_ (i.) : € < 7) is increasing byx)s(b) (see the choice of), so
oo, (1) < fae, 12 (1) < o, (i) < fae, ()

It follows from ()10 () +(*)11 that the ordinaj, belongstd fa., (is), fa., . (ix)) @nd o] fa., (ix), far, 1 (ix)),
which are disjoint intervals, a contradiction. O

Similarly,
Theorem 5 Assume that

(@) J is anideal orx,

(b) Ig € [k]*, I5 ¢ J for B <k,

(€) 0 = |v| + randcf([0]*,C) < A,

(d) if u. € J fore < u, then for some < « the setls is disjoint fromUKH+ Ue.
Then there is nec s—increasing sequence of functions frarto ~ of length\.

Proof. Without loss of generality is the successor ef ([#]*, C) hence is regular. The proof is similar to
the proof of Theorem 4. O
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