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We prove that, e.g., in(ω3)(ω3) there is no sequence of lengthω4 increasing modulo the ideal of countable sets.
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This note is concerned with the depth of the partial order of the functions inκγ modulo the ideal of the form
I = [κ]<µ. Let us recall the following definitions.

Definition 1 For a partial order(P, ⊏) we define

• Depth(P, ⊏) = sup{|F| : F ⊆ P is well–ordered by⊏ } [the depth]

• cf(P, ⊏) = min{|F| : F ⊆ P is ⊏–cofinal which mean that for everyp ∈ P there isq ∈ F such thatp ⊑ p
} [the cofinality].

Our result (Theorem 4) states that under suitable assumptions the depth of the partial order(κγ, <[κ]<µ) is at
most|γ|. In particular, lettingµ = ℵ1, κ = |γ| = ℵ3 we obtain that in(ω3)(ω3) there is no sequence of lengthω4

increasing modulo the ideal of countable sets.

Letκ = cf(κ) > ℵ0. If µ = κ, thenDepth(κκ, <Jbd
κ

) can be (forced to be) large. But forµ > Depth(κµ, <Jbd
κ

) this implies pcf results (see [Sh 410], [Sh 589]).
However, e.g., for the idealI = [ω3]

≤ℵ0 it is harder to get long increasing sequence, as above for “high
µ”, this leads to pcf results e.g. if we assume thatλ̄ = 〈λi : i < ω3〉 ∈ ω3Reg, and in(

∏
λ̄, <I) there is an

increasing sequence moduoI of length say> 2ℵ3 +sup{λi : i < ω3} are much stronger than known consistency
results. Even forI = [ω1]

≤ℵ0 we do not know, forI = [iω]≤ℵ0 we know ([Sh 460]), so even[ℵω]≤ℵ0 would be
interesting good news.

We hope sometime to prove, e.g.,

Conjecture 2 For everyµ > θ, in (θ+3)µ there is no increasing sequence of lengthµ+ modulo[θ+3]≤θ.

Problem 3 Is it consistent thatθθ contains<I-increasing sequence of lengthθ+ whenθ = κ+ andI =
[θ]<κ?

Notation: Our notation is rather standard and compatible with that of classical textbooks (like Jech [J]).

1. Ordinal numbers will be denoted be the lower case initial letters of the Greek alphabetα, β, γ, δ, . . . (with
possible subscripts). Cardinal numbers will be calledκ, λ, µ, θ.

2. For a setX and a cardinalθ, [X ]θ (or [X ]<θ, respectively) stands for the family of subsets ofX of sizeθ
(< θ, respectively).
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4 Saharon Shelah: Increasing Chains

Theorem 4 Assumeµ+ < κ ≤ θ andJ = [κ]<µ andcf([θ]µ,⊆) ≤ θ. Letγ < θ+. ThenDepth(κγ, <J ) ≤
θ, i.e., there is no<J –increasing sequence〈fα : α < θ+〉 of functions fromκγ moduloJ .

P r o o f. Assume towards contradiction that there is a<J –increasing sequence〈fζ : ζ < θ+〉 ⊆ κγ.
LetS ⊆ [γ]µ be cofinal of cardinality≤ θ (exists as|γ| ≤ θ andcf([θ]µ,⊆) ≤ θ). For everys ∈ S andβ < κ,

ζ < θ+ we let

• I(β) := [β, β + µ),

• fs
ζ ∈ κ(γ + 1) be defined byfs

ζ (i) = min(s ∪ {γ} \ fζ(i)),

• fs,β
ζ ∈ I(β)(γ + 1) be defined asfs

ζ ↾ I(β).

Now, for eachs ∈ S we have

(∗)1 (a) for everyζ < θ+, fs,β
ζ : I(β) −→ s ∪ {γ},

(b) if ζ < ξ < θ+, thenfs,β
ζ ≤ fs,β

ξ mod [I(β)]<µ.

Fors ∈ S we define

(∗)2 Bs = {β < κ : (∀ζ < θ+)(∃ξ > ζ)¬(fs,β
ζ = fs,β

ξ mod [I(β)]<µ) }.

Plainly, we may choose a sequence〈Cs
β : β < κ, s ∈ S〉 such that

(∗)3 (a) Cs
β is a club ofθ+,

(b) if β ∈ Bs andξ, ζ ∈ Cs
β are such thatζ < ξ, then¬(fs,β

ζ = fs,β
ξ mod [I(β)]<µ),

(c) if β ∈ κ \ Bs, thenfs,β
ζ = fs,β

ξ mod [I(β)]<µ whenevermin(Cs
β) ≤ ζ ≤ ξ < θ+.

Then, as|S| ≤ θ andκ ≤ θ, we have

(∗)4 the setC :=
⋂
{Cs

β : s ∈ S andβ < κ} is a club ofθ+ .

Choose a sequence〈αε : ε < µ+〉 ⊆ C increasing withε. Then, for allε < ζ < µ+,

(∗)5 uε,ζ := {i < κ : fαε
(i) ≥ fαζ

(i)} ∈ J .

We have assumed thatµ+ < κ, so we can findδ < κ such that

(∗)6 (a) I(δ) = [δ, δ + µ) is disjoint from
⋃
{uε,ζ : ε < ζ < µ+}, and hence

(b) the sequence〈fαε
(i) : ε < µ+〉 is increasing for eachi ∈ I(δ).

As |I(δ)| = µ andS ⊆ [γ]≤µ is cofinal (for the partial order⊆), we can finds ∈ S such that

(∗)7 {fα0
(i), fα1

(i) : i ∈ I(δ)} ⊆ s.

It follows from (∗)6 + (∗)7 that for everyi ∈ I(δ)

(∗)8 fs
α0

(i) = fα0
(i) < fα1

(i) = fs
α1

(i).

As α0 < α1 are fromC andI(δ) /∈ J , recalling(∗)2 + (∗)3 + (∗)4, clearly

(∗)9 δ ∈ Bs.

Therefore, asαε ∈ C ⊆ Cs
δ for ε < µ+ andαε is increasing withε, we have

(∗)10 for everyε < µ+ there isiε ∈ I(δ) such that

(α) fs
αε

(iε) < fs
αε+1

(iε),

and hence there isjε ∈ s such that
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(β) fs
αε

(iε) ≤ jε < fs
αε+1

(iε)

and therefore

(γ) fαε
(iε) ≤ jε < fαε+1

(iε).

But |I(δ)| + |s| = µ < µ+, so for some pair(j∗, i∗) ∈ s × I(δ) we may chooseε1 < ε2 < µ+ such that

(∗)11 jε1
= jε2

= j∗ andiε1
= iε2

= i∗.

But the sequence〈fαε
(i∗) : ε < θ+〉 is increasing by(∗)6(b) (see the choice ofδ), so

fαε1
(i∗) < fαε1+1

(i∗) ≤ fαε2
(i∗) < fαε2+1

(i∗).

It follows from (∗)10(γ)+(∗)11 that the ordinalj∗ belongs to[fαε1
(i∗), fαε1+1

(i∗)) and to[fαε2
(i∗), fαε2+1

(i∗)),
which are disjoint intervals, a contradiction.

Similarly,

Theorem 5 Assume that

(a) J is an ideal onκ,

(b) Iβ ∈ [κ]µ, Iβ /∈ J for β < κ,

(c) θ = |γ| + κ andcf([θ]µ,⊆) < λ,

(d) if uε ∈ J for ε < µ+, then for someβ < κ the setIβ is disjoint from
⋃

ε<µ+ uε.

Then there is no<J –increasing sequence of functions fromκ to γ of lengthλ.

P r o o f. Without loss of generalityλ is the successor ofcf([θ]µ,⊆) hence is regular. The proof is similar to
the proof of Theorem 4.
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