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Basic Subgroups and Freeness,
a Counterexample

Andreas Blass and Saharon Shelah

Abstract. We construct a non-free but ℵ1-separable, torsion-free abelian group G with a pure free
subgroup B such that all subgroups of G disjoint from B are free and such that G/B is divisible.
This answers a question of Irwin and shows that a theorem of Blass and Irwin cannot be strengthened
so as to give an exact analog for torsion-free groups of a result proved for p-groups by Benabdallah
and Irwin.
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1 Introduction

All groups in this paper are abelian and, except for some motivating remarks about
p-groups in this introduction, all groups are torsion-free. A subgroup B of a group G
is basic in G if

• B is a direct sum of cyclic groups,

• B is a pure subgroup of G, and

• G/B is divisible.
Of course in the torsion-free case, “a direct sum of cyclic groups” can be shortened to
“free.”

Benabdallah and Irwin proved in [1] the following result:
Theorem 1.1. Suppose G is a p-group with no elements of infinite height. Suppose
further that G has a basic subgroup B such that every subgroup of G disjoint from B
is a direct sum of cyclic groups. Then G itself is a direct sum of cyclic groups.
“Disjoint” means that the intersection is (0), not ∅, as the latter is impossible for
subgroups.

Later, Irwin asked whether an analogous theorem holds for torsion-free groups.
The following partial affirmative answer was given in [2]. Note that, unlike p-groups,
torsion-free groups need not have basic subgroups.
Theorem 1.2. Suppose G is a torsion-free group such that

• G has a basic subgroup of infinite rank, and

• for every basic subgroup B of G, all subgroups of G disjoint from B are free.
Then G is free.

First author: Research partially supported by NSF grants DMS-0070723 and DMS-0653696.
Second author: Research partially supported by NSF grants DMS-0072560 and DMS-0600940 and German-
Israeli Foundation for Scientific Research & Development Grant No. I-706-54.6/2001. Publication number 910.
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2 Andreas Blass and Saharon Shelah

This result is weaker in two ways than the hoped-for analog of Theorem 1.1. First,
not only must there be a basic subgroup, but it must have infinite rank. (It was shown
in [3] that all basic subgroups of a torsion-free group have the same rank.) Second, the
assumption that all subgroups disjoint from B are free is needed not just for one basic
subgroup B but for all of them.

The assumption that a basic subgroup has infinite rank is needed. As was pointed
out in [2], Fuchs and Loonstra constructed in [5] a torsion-free group of rank 2 such that
every subgroup of rank 1 is free and every torsion-free quotient of rank 1 is divisible.
In such a group G, every pure subgroup B of rank 1 is basic, every subgroup disjoint
from B has rank at most 1 and is therefore free, yet G is certainly not free.

It has remained an open question until now whether the second weakness of Theo-
rem 1.2 can be removed. Can “for every basic subgroup” be replaced with “for some
basic subgroup” in the second hypothesis? In this paper, we answer this question neg-
atively.

Theorem 1.3. There exists an ℵ1-separable torsion-free group G of size ℵ1 with a
basic subgroup B of rank ℵ1 such that all subgroups of G disjoint from B are free but
G itself is not free.

The rest of this paper is devoted to the proof of this theorem. The group G and the
subgroup B will be constructed in Section 2 and the claimed properties will be proved
in Section 3.

The proof will show a little more than is stated in the theorem. We can arrange for
the Gamma invariant Γ(G) to be any prescribed non-zero element of the Boolean alge-
bra P(ℵ1)/NS of subsets of ℵ1 modulo non-stationary subsets. (See [4, Section IV.1]
for the definition and basic properties of Γ.)

2 Construction

Our construction is somewhat similar to the construction of ℵ1-separable groups in
[4, Section VIII.1]. We shall, however, present our result in detail, not presupposing
familiarity with the cited construction from [4]. We begin by fixing notations for a
set-theoretic ingredient and a group-theoretic ingredient of our construction.

Notation 2.1. Fix a set S of countable limit ordinals such that S is stationary in ℵ1.
Also fix, for each δ ∈ S, a strictly increasing sequence 〈η(δ, n) : n ∈ ω〉 with limit δ.

The equivalence class of S in P(ℵ1)/NS will be the Gamma invariant of the group
G that we construct. Since the countable limit ordinals form a closed unbounded subset
of ℵ1, every non-zero element of P(ℵ1)/NS is the equivalence class of an S as in
Notation 2.1 and can therefore occur as Γ(G) in Theorem 1.3.

Notation 2.2. Fix a torsion-free group E of rank 2 such that all rank 1 subgroups
are free and all torsion-free rank-1 quotients are divisible. Such a group exists by [5,
Lemma 2]. Also fix a pure subgroup of E of rank 1 and, since it is free, fix a generator
a for it. Since E/〈a〉 is a torsion-free rank-1 quotient of E, it is divisible and thus
isomorphic to Q. Fix an isomorphism ϕ from Q to E/〈a〉 and fix, for each positive
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Basic Subgroups and Freeness, a Counterexample 3

integer n, a representative bn ∈ E of ϕ(1/n!). Since

ϕ

(

1
n!

)

= (n + 1)ϕ

(

1
(n + 1)!

)

,

there are (unique) integers qn such that

bn = (n + 1)bn+1 + qna

for all n. Fix this notation qn for the rest of the paper.
Remark 2.3. We shall not need the full strength of the conditions on E. Specifically,
we need divisibility only for E/〈a〉, not for all the other torsion-free rank-1 quotients
of E.
Lemma 2.4. The generators a and bn for n ∈ ω and the relations bn = (n + 1)bn+1 +
qna constitute a presentation of E.

Proof. Since Q is generated by the elements 1/n!, E/〈a〉 is generated by the images
[bn] of the elements bn. Therefore E is generated by these elements together with a.

It remains to show that every relation between these generators that holds in E is a
consequence of the specified relations bn = (n + 1)bn+1 + qna. Consider an arbitrary
relation ca +

∑

n∈F dnbn = 0 that holds in E; here F is a finite subset of ω and c and
the dn’s are integers.

The given relations bn = (n+ 1)bn+1 + qna allow us to eliminate any bn in favor of
bn+1 at the cost of changing the coefficient of a. So, at a similar cost, we can replace
any bn with a multiple of bm for any desired m > n. Thus, we can arrange to have
only a single bn occurring; that is, the relation under consideration can, via the given
relations, be converted to the form c′a + d′bn = 0.

Since this relation holds in E, we have d′[bn] = 0 in E/〈a〉. But E/〈a〉 is torsion-
free and [bn] = ϕ(1/n!) is non-zero. So d′ = 0 and our relation is simply c′a = 0.
Since 〈a〉 is torsion-free, c′ = 0. Thus, the given relations bn = (n+1)bn+1 +qna have
reduced our original ca+

∑

n∈F dnbn = 0 to 0 = 0. Equivalently, ca+
∑

n∈F dnbn = 0
is a consequence of the given relations.

We are now ready to define the group G and subgroup B required in Theorem 1.3.
Definition 2.5. G is the group generated by symbols xα for all α < ℵ1 and yδ,n for all
δ ∈ S and n ∈ ω, subject to the defining relations, one for each δ ∈ S and n ∈ ω,

yδ,n = (n + 1)yδ,n+1 + qnxδ + xη(δ,n).

B is the subgroup of G generated by all of the xα’s.
Since there are exactly ℵ1 generators in this presentation, the inequality |G| ≤ ℵ1 is

obvious. The reverse inequality also holds because, as we shall show in Subsection 3.1
below, B is free of rank ℵ1.

We shall sometimes have to discuss formal words in the generators of G, i.e., el-
ements of the free group on the xα’s and yδ,n’s without the defining relations above.
We shall call such formal words expressions and we say that an expression denotes
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4 Andreas Blass and Saharon Shelah

its image in G, i.e., its equivalence class modulo the defining relations. We call two
expressions equivalent if they denote the same element, i.e., if one can be converted
into the other by applying the defining relations.

We shall sometimes refer to the defining relation yδ,n = (n + 1)yδ,n+1 + qnxδ +
xη(δ,n) as the defining relation for δ and n; when n varies but δ is fixed, we shall also
refer to a defining relation for δ.

Given an expression that contains yδ,n for a certain δ and n, we can eliminate this
yδ,n in favor of yδ,n+1 by applying the defining relation for δ and n. In the resulting
equivalent expression, the coefficient of the newly produced yδ,n+1 will be n + 1 times
the original coefficient of yδ,n, and a couple of x terms, namely that original coefficient
times qnxδ + xη(δ,n), are introduced as well. We shall refer to this manipulation of
expressions as “raising the subscript n of yδ,n to n + 1,” and we shall refer to the
introduced x terms as being “spun off” in the raising process.

By repeating this process, we can raise the subscript n of yδ,n to any desired m > n.
If the original yδ,n had coefficient c, then the newly produced yδ,m will have coefficient
c · m!/n!. There will also be spun off terms, namely xδ with coefficient c

∑m−1
k=n

k!
n!qk,

and xη(δ,k) with coefficient c k!
n! for each k in the range n ≤ k < m.

We shall need the notion of a linear combination of defining relations, by which we
mean the result of taking finitely many of the defining relations, multiplying each of
these by an integer, and adding the resulting equations. It will sometimes be convenient
to think of equations t = u (particularly defining relations and their linear combina-
tions) as normalized to the form t − u = 0. In particular, we shall say that a generator
(xα or yδ,n) occurs in t = u if it occurs in the expression t−u, i.e., if its total coefficient
in this expression is non-zero.

As a side effect of these conventions, we do not distinguish between two equations
if their normalized forms are the same, i.e., if the equations differ only by adding the
same expression to both sides, a special case of which is transposing terms from one
side to the other.

Notice that an equation t = u is (identified with) a linear combination of defining
relations if and only if t and u denote the same element of G.

3 Proofs

In this section, we verify the properties of G and B claimed in Theorem 1.3.

3.1 B is free of rank ℵ1

We show that the generators xα of B are linearly independent, by showing that no
nontrivial linear combination of the defining relations can involve only x’s without any
y’s. In fact, we show somewhat more, because it will be useful later.

Lemma 3.1. If xα occurs in a linear combination of defining relations, then so does
yδ,n for some δ ≥ α and some n. Furthermore, if yδ,n occurs in a linear combination
of defining relations, then so does yδ,m for at least one m 6= n (and the same δ).
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Basic Subgroups and Freeness, a Counterexample 5

Proof. For the first statement, consider a linear combination of defining relations in
which xα occurs, and consider one of the defining relations, say yδ,n = (n+1)yδ,n+1 +
qnxδ + xη(δ,n), used in this linear combination and containing xα. So either α = δ or
α = η(δ, n). In either case δ ≥ α. Fix this δ and consider all the defining relations for
this δ that are used in the given linear combination. If they are the defining relations
for δ and n1 < · · · < nk, then the yδ,n1 from the first of these relations is not in any of
the others, so it cannot be canceled and therefore occurs in the linear combination.

For the second statement, again suppose that the linear combination involves the
defining relations for δ and n1 < · · · < nk (perhaps along with defining relations for
other ordinals δ′ 6= δ). As above, the yδ,n1 from the first of these cannot be canceled.
Neither can the yδ,nk+1 from the last. So at least these two yδ,n’s occur in the linear
combination.

3.2 G/B is divisible and torsion-free

We get a presentation of G/B from the defining presentation of G by adjoining the
relations xα = 0 for all the generators xα of B. The resulting presentation amounts to
having generators yδ,n for all δ ∈ S and all n ∈ ω with relations

yδ,n = (n + 1)yδ,n+1.

For any fixed δ ∈ S, the generators and relations with δ in the subscripts are a presen-
tation of Q, with yδ,n corresponding to 1/n!. With δ varying over S, therefore, we have
a presentation of

⊕

δ∈S Q, a torsion-free, divisible group.
Corollary 3.2. G is a torsion-free group, and B is a basic subgroup.

Proof. Since both the subgroup B and the quotient G/B are torsion-free, so is G. B
is pure in G because G/B is torsion-free. Since B is free and G/B is divisible, B is
basic.

3.3 G is ℵ1-free

To prove that G is ℵ1-free, i.e., that all its countable subgroups are free, we use Pon-
tryagin’s criterion [4, Theorem IV.2.3]. We must show that every finite subset of G is
included in a finitely generated pure subgroup of G.

Let F be an arbitrary finite subset of G, and provisionally choose, for each element
of F , an expression denoting it. (“Provisionally” means that we shall modify these
choices several times during the following argument. The first modification comes
immediately.) Raising subscripts on the y’s, we may assume that, for each δ, there is
at most one m such that yδ,m occurs in the chosen expressions. In fact, with further
raising if necessary, we may and do assume that it is the same m, which we name m1,
for all δ. Notice that, although there is still some freedom in choosing the expressions
(for example, we could raise the subscript m1 further), there is no ambiguity as to the
set ∆ of δ’s that occur as the first subscripts of y’s in our expressions. Indeed, if δ occurs
exactly once in one expression but doesn’t occur in another expression, then, according
to the second part of Lemma 3.1, these two expressions cannot be equivalent.
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6 Andreas Blass and Saharon Shelah

Let us say that an ordinal α is used in our (current) provisional expressions if either
it is in ∆ or xα occurs in one of these expressions. (In other words, α occurs either as a
subscript on an x or as the first subscript on a y.) Of course, only finitely many ordinals
are used. So, by raising subscripts again from m1 to a suitable m2, we can assume that,
if δ ∈ ∆ and if α < δ was used (before the current raising), then α < η(δ, m2).

We would prefer to omit the phrase “before the current raising,” but this needs some
more work. The problem is that the raising process spins off x’s whose subscripts may
not have been used before but are used after the raising. We analyze this situation, with
the intention of correcting it by a further raising of subscripts. The problem is that, in
raising the subscript from m1 to m2 for yδ,m1 , we spin off xδ and xη(δ,k) for certain k,
namely those in the range m1 ≤ k < m2, and the subscript used here (δ or η(δ, k)) may
be < δ′ but ≥ η(δ′, m2) for some δ′ ∈ ∆.

The problem cannot arise from xδ . That is, we will not have η(δ′, m2) ≤ δ < δ′.
This is because m2 was chosen so that (among other things), when δ, δ′ ∈ ∆ and δ < δ′,
then δ < η(δ′, m2).

So the problem can only be that η(δ′, m2) ≤ η(δ, k) < δ′. Here we cannot have
δ = δ′ because η(δ, n) is a strictly increasing function of n and k < m2. Nor can we
have δ < δ′, for then we would have η(δ, k) < δ < η(δ′, m2) by our choice of m2. So
we must have δ′ < δ.

Unfortunately, this situation cannot be excluded, so one further modification of our
provisional expressions is needed. We raise the subscript from m2 to an m3 so large
that, whenever η(δ, k) < δ′ < δ with k < m2 and δ, δ′ ∈ ∆, then η(δ′, m3) > η(δ, k).

This raising from m2 to m3 solves the problem under consideration, but one might
fear that it introduces a new problem, just like the old one but higher up. That is, the
latest raising spins off new x’s, so some new ordinals get used. Could they be below
some δ′ ∈ ∆ but ≥ η(δ′, m3)? Fortunately not. To see this, repeat the preceding
discussion, now with m3 in place of m2, and notice in addition that the newly spun off
xη(δ,k) will have m2 ≤ k < m3. As before, the problem can only be that η(δ′, m3) ≤
η(δ, k) < δ′ with δ′ < δ. But now this is impossible, since δ′ < δ implies δ′ <
η(δ, m2) ≤ η(δ, k), thanks to our choice of m2 and the monotonicity of η with respect
to its second argument.

Rearranging the preceding argument slightly, we obtain the following additional
information.

Lemma 3.3. With notation as above, it never happens that δ, δ′ ∈ ∆ and k < m3 and
η(δ′, m3) ≤ η(δ, k) < δ′.

Proof. Suppose we had δ, δ′, and k violating the lemma. We consider several cases.
If δ = δ′ then the suppositions η(δ′, m3) ≤ η(δ, k) and k < m3 violate the mono-

tonicity of η with respect to the second argument.
If δ < δ′, then η(δ, k) < δ < η(δ′, m3) (in fact even with m2 in place of m3),

contrary to the supposition.
If δ′ < δ and k < m2 then our choice of m3 ensures that η(δ′, m3) > η(δ, k),

contrary to the supposition.
Finally, if δ′ < δ and k ≥ m2 then δ′ < η(δ, m2) ≤ η(δ, k), again contrary to the

supposition.
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Basic Subgroups and Freeness, a Counterexample 7

What we have achieved by all this raising of subscripts can be summarized as fol-
lows, where ∆ and “used” refer to the final version of our expressions. (Actually, the
raising process doesn’t change ∆, but it generally changes what is used.) We have an
expression for each element of F . There is a fixed integer m (previously called m3)
such that the only y’s occurring in any of these expressions are yδ,m for δ ∈ ∆. If δ ∈ ∆
and α is used and α < δ, then α < η(δ, m). Furthermore, by the lemma, if δ, δ′ ∈ ∆
and k < m and η(δ, k) < δ′ then η(δ, k) < η(δ′, m).

These expressions for the members of F will remain fixed from now on. Thus, the
meanings of ∆ and “used” will also remain unchanged. Also, m will no longer change.

Let M be the set of
• all the x’s and y’s occurring in the (final) expressions for elements of F ,

• xδ for all δ ∈ ∆, and

• xη(δ,k) for all δ ∈ ∆ and all k < m.

Clearly, M is a finite subset of G and the subgroup 〈M〉 that it generates includes F .
To finish verifying Pontryagin’s criterion, we must show that 〈M〉 is pure in G.

We point out for future reference that the only y’s in M are yδ,m for the one fixed
m and for δ ∈ ∆.

Suppose, toward a contradiction, that 〈M〉 is not pure, so there exist an integer
r ≥ 2 and an element g ∈ G such that rg ∈ 〈M〉 but g /∈ 〈M〉. Choose an expression ĝ
for g in which (by raising subscripts if necessary) no two y’s occur with the same first
subscript δ. In fact, arrange (by further raising) that the second subscript on all y’s in ĝ
is the same n, independent of δ. Also choose an expression d̂ for rg where d̂ is a linear
combination of elements of M . We may suppose that d̂ is minimal in the sense that the
number of elements of M occurring in d̂ is as small as possible, for any r, g, and d̂ as
above.

Consider any yδ,n that occurs in ĝ. According to Lemma 3.1, we must have δ ∈ ∆,
because the equation rĝ = d̂ is a linear combination of defining relations.

If n ≤ m, then we can raise the subscript n to m in ĝ, obtaining a new expression ĝ′

for the same element g. Since the equation rĝ′ = d̂ is a linear combination of defining
relations and since it no longer contains yδ,k for any k 6= m (and the same δ), we
can apply Lemma 3.1 again to conclude that yδ,m has the same coefficient in rĝ′ and
in d̂. So, if we delete the terms involving yδ,m from both ĝ′ and d̂, we get another
counterexample to purity with fewer elements of M occurring in d̂. This contradicts
the minimality of d̂.

We therefore have n > m. Now consider what happens in d̂ if we raise the sub-
scripts of all the yδ,m terms to n. Call the resulting expression d̂′. (Note that d̂′ will
no longer be a combination of the generators listed for M .) The same argument as
in the preceding paragraph shows that each yδ,n has the same coefficient in rĝ and d̂′.
Therefore, if we remove all the y terms from both ĝ and d̂′, obtaining ĝ− and d̂−, then
rĝ− and d̂− denote the same element in G. But we saw earlier that the x’s are linearly
independent in G, so rĝ− and d̂− must be the same expression. In particular, all the
coefficients in d̂− must be divisible by r. These are the same as the coefficients of the
x terms in d̂′.
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8 Andreas Blass and Saharon Shelah

Let δ be the largest ordinal such that yδ,m occurred in d̂. Let c be the coefficient of
yδ,m in d̂.

When we raised the subscript of yδ,m from m to n in going from d̂ to d̂′, the first
step spun off (a multiple of xδ and) cxη(δ,m). The subscript η(δ, m) here is larger than
all the other elements δ′ ∈ ∆ that occur as subscripts of y’s in d̂, because of our choice
of δ as largest and our choice of m. It is also, by choice of m, not among the α’s for
which xα ∈ M . As a result, no other occurrences of xη(δ,m) were present in d̂ or arose
in the raising process leading to d̂′. (Raising for smaller δ′ spun off only x’s whose
subscripts are ordinals smaller than δ′ < η(δ, m), and later steps in the raising for δ
spun off only x’s with subscripts > η(δ, m).) This means that the coefficient of xη(δ,m)

in d̂′ is c. Since we already showed that all coefficients of x’s in d̂′ are divisible by r,
we conclude that r divides c.

Now we can delete the term cyδ,m from d̂ and subtract c
r
yδ,m from g to get a viola-

tion of purity with fewer terms in its d̂. That contradicts our choice of d̂ as minimal, and
this contradiction completes the proof that 〈M〉 is pure in G. By Pontryagin’s criterion,
G is ℵ1-free.

3.4 G is ℵ1-separable

A group is κ-separable if every subset of size < κ is included in a free direct summand
of size < κ (see [4, Section IV.2]). So we must prove in this subsection that every
countable subset of G is included in a countable free direct summand of G. We begin
by defining the natural filtration of G.
Definition 3.4. For any countable ordinal ν, let Gν be the subgroup of G generated by
the elements xα for α < ν and the elements yδ,n for δ ∈ S ∩ ν and n ∈ ω. (In writing
S ∩ ν, we use the usual identification of an ordinal with the set of all smaller ordinals.)

Clearly, Gλ =
⋃

ν<λ Gν for limit ordinals λ, the sequence 〈Gν : ν < ℵ1〉 is increas-
ing, and it covers G, so we have a filtration. Because G is ℵ1-free and each Gν is
countable, each Gν is free. Furthermore, every countable subset of G is included in
some Gν . So to complete the proof that G is ℵ1-separable, we need only show that
there are arbitrarily large ν < ℵ1 such that Gν is a direct summand of G. In fact, we
shall show that Gν is a direct summand whenever ν /∈ S. Recall that the stationary S
in Notation 2.1 was chosen to consist of limit ordinals, so, in particular, Gν will be a
direct summand for all successor ν.

Fix an arbitrary ν /∈ S. We shall show that Gν is a direct summand of G by
explicitly defining a projection homomorphism p : G → Gν that is the identity on Gν .
For this purpose, it suffices to define p on the generators xα and yδ,n of G and to show
that the defining relations of G are preserved.

Of course, we define p(xα) = xα for all α < ν and p(yδ,n) = yδ,n for all δ ∈ S ∩ ν
and all n ∈ ω, so that p is the identity on Gν . For α ≥ ν, we set p(xα) = 0. Finally, for
δ ∈ S − ν and n ∈ ω, we set

p(yδ,n) =
∑

k≥n

k!
n!

p(xη(δ,k)).
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Basic Subgroups and Freeness, a Counterexample 9

Although the sum appears to be over infinitely many k’s, only finitely many of them
give non-zero terms in the sum. Indeed, since ν /∈ S and δ ∈ S − ν, we have ν < δ;
therefore, for all sufficiently large k ∈ ω, we have ν < η(δ, k) and so p(xη(δ,k)) = 0.

It remains to check that p respects the defining relations of G, i.e., that, for all δ ∈ S
and all n ∈ ω,

p(yδ,n) = (n + 1)p(yδ,n+1) + qnp(xδ) + p(xη(δ,n)).

If δ < ν this is trivial, since all four applications of p do nothing. δ = ν is impossible
as δ ∈ S and ν /∈ S. So we assume from now on that δ > ν. In this case, the term
qnp(xδ) vanishes and what we must check is, in view of the definition of p,

∑

k≥n

k!
n!

p(xη(δ,k)) = (n + 1)
∑

k≥n+1

k!
(n + 1)!

p(xη(δ,k)) + p(xη(δ,k)).

But this equation is obvious, and so the proof is complete.

3.5 G is not free

Using the filtration from the preceding subsection, we can easily show that G is not free
because its Gamma invariant, Γ(G), is at least (the equivalence class in P(ℵ1)/NS of)
S. (See [4, Section IV.1] for Gamma invariants and their connection with freeness.)
Indeed, for any δ ∈ S, the quotient group Gδ+1/Gδ is generated by xδ and the yδ,n for
n ∈ ω, subject to the relations

yδ,n = (n + 1)yδ,n+1 + qnxδ ,

because the remaining term in the defining relation for G, namely xη(δ,n), is zero in the
quotient. But this presentation of Gδ+1/Gδ is, except for the names of the generators,
identical with the presentation of E in Lemma 2.4. Since E isn’t free, G/Gδ isn’t
ℵ1-free, and so δ ∈ Γ(G).

Although the preceding completes the verification that G isn’t free, we point out
that Γ(G) is exactly (the equivalence class of) S. Indeed, we showed in the preceding
subsection that, when ν /∈ S, then Gν is a direct summand of G. Thus, the quotient
G/Gν is isomorphic to a subgroup of G and is therefore ℵ1-free.

3.6 Subgroups of G disjoint from B are free

Suppose, toward a contradiction, that H is a non-free subgroup of G disjoint from B.
So Γ(H) 6= 0. The Gamma invariant here can be computed using any filtration of
H; we choose the one induced by the filtration of G already introduced. So we set
Hν = Gν ∩ H and conclude that the set

A = {ν < ℵ1 : H/Hν is not ℵ1-free}

= {ν < ℵ1 : For some µ > ν, Hµ/Hν is not free}
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must be stationary.
Thanks to our choice of the filtration 〈Hν〉, we have, for all ν < µ < ℵ1,

Hµ

Hν

=
Hµ

Hµ ∩ Gν

∼=
Hµ + Gν

Gν

⊆
Gµ

Gν

,

the isomorphism being induced by the inclusion map of Hµ into Hµ + Gν . We already
saw that, when ν /∈ S, the groups Gµ/Gν are free; therefore, so are the groups Hµ/Hν .
Thus, A ⊆ S.

Temporarily fix some ν ∈ A. For any µ > ν, we have an exact sequence

0 →
Hν+1

Hν

→
Hµ

Hν

→
Hµ

Hν+1
→ 0.

Since ν ∈ A, the middle group here is not free for certain µ. The group on the right,
Hµ/Hν+1, on the other hand, is free because ν +1 /∈ S. (Recall that S consists of limit
ordinals.) So the exact sequence splits and therefore the group on the left, Hν+1/Hν ,
is not free.

Since ν ∈ S, we know, from a calculation in the preceding subsection, that Gν+1/Gν

is isomorphic to E, and we saw above that Hν+1/Hν is isomorphic to a subgroup of
this (via the map induced by the inclusion of Hν+1 into Gν+1). Since all rank-1 sub-
groups of E are free but Hν+1/Hν is not free, Hν+1/Hν must have the same rank 2
as the whole group Gν+1/Gν . So the purification of Hν+1/Hν in Gν+1/Gν is all of
Gν+1/Gν .

In particular, this purification must contain the coset of the element xν ∈ Gν+1.
That is, there must exist an integer n 6= 0 and an element g ∈ Gν such that nxν − g ∈
Hν+1.

Now un-fix ν. Of course the n and g obtained above can depend on ν, so we write
them from now on with subscripts ν. Thus we have, for all ν ∈ A, some nν ∈ Z − {0}
and some gν ∈ Gν such that

nνxν − gν ∈ Hν+1.

Because A is stationary and all values of nν lie in a countable set, there is a station-
ary A′ ⊆ A such that nν has the same value n for all ν ∈ A′. Furthermore, by Fodor’s
theorem, there is a stationary set A′′ ⊆ A′ such that gν has the same value g for all
ν ∈ A′′. (In more detail: For each ν ∈ A′ ⊆ S, we know that ν is a limit ordinal, so
Gν =

⋃

α<λ Gα. Thus, gν ∈ Gr(ν) for some r(ν) < ν. This r is a regressive function
on A′, so by Fodor’s theorem it is constant, say with value ρ, on a stationary subset. For
ν in this stationary set, gν has values in the countable set Gρ and is therefore constant
on a smaller stationary subset A′′.)

Consider any two distinct elements ν and ξ of A′′. Since nν = nξ = n and gν =
gξ = g, we have that H contains both nxν − g and nxξ − g. So it contains their
difference n(xν − xξ). Since n 6= 0 and ν 6= ξ, this contradicts the assumption that H
is disjoint from the subgroup B generated by all the xα’s.
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