MODELS OF EXPANSIONS OF $\mathbb{N}$ WITH NO END EXTENSIONS

SAHARON SHELAH

Abstract. We deal with models of Peano arithmetic (specifically with a question of Ali Enayat). The methods are from creature forcing. We find an expansion of $\mathbb{N}$ such that its theory has models with no (elementary) end extensions. In fact there is a Borel uncountable set of subsets of $\mathbb{N}$ such that expanding $\mathbb{N}$ by any uncountably many of them suffice. Also we find arithmetically closed $A$ with no ultrafilter on it with suitable definability demand (related to being Ramsey).

0. Introduction

Recently, solving a long standing problem on models of Peano arithmetic, (appearing as Problem 7 in the book [KoSc06]), Ali Enayat proved (and other results as well):

Theorem 0.1. [See [Ena08]] For some arithmetically closed family $A$ of subsets of $\omega$, the model $\mathbb{N}_A = (\mathbb{N}, A)_{A \in A}$ has no conservative extension (i.e., one in which the intersection of any definable subset with $\mathbb{N}$ belongs to $A$).

Motivated by this result he asked:

Question 0.2. Is there $A \subseteq \mathcal{P}(\omega)$ such that some model of $\text{Th}(\mathbb{N}_A)$ has no elementary end extension?

This asks whether the countability demand in the MacDowell-Specker theorem is necessary. This classical theorem says that if $T$ is a theory in a countable vocabulary $\tau = \tau_T$ extending $\tau(\mathbb{N}) = \{0, 1, +, \times\}$ and $T$ contains PA($\tau$), then any model of $T$ has an (elementary) end extension; Gaifman continues this theorem in several ways, e.g., having minimal extensions (see [KoSc06] on it). The author [Sh 66] continues it in another way: we do not need addition and multiplication, i.e., any model of $T$ has an elementary end extension when $\tau$ is a countable vocabulary, $\{0, <\} \subseteq \tau$, $T$ is a (first order) theory in $L(\tau)$, $T$ says that $<$ is a linear order with 0 first, every element $x$ has a successor $S(x)$, and all cases of the induction scheme belong to $T$.

Mills [Mil78] prove that there is a countable non-standard model of PA with uncountable vocabulary such that it has no elementary end extension.

We answer the question 0.2 positively in §4, we give a sufficient condition in §2 and deal with a relevant forcing in §3. In fact we get an uncountable Borel set $B \subseteq \mathcal{P}(\mathbb{N})$ such that if $B_\alpha \in B$ for $\alpha < \alpha^*$ are pairwise distinct and $\alpha^*$ is uncountable, then $\text{Th}(\mathbb{N}, B_\alpha)_{\alpha < \alpha^*}$, satisfies the conclusion.

1991 Mathematics Subject Classification. 03C62 03E35 03E40.

Key words and phrases. Models of Peano arithmetic, end extensions, forcing with creatures.

I would like to thank Alice Leonhardt for the beautiful typing. The author acknowledges support from the United States-Israel Binational Science Foundation (Grant no. 2002323). Publication 937.
Enayat [Ena08] also asked:

**Question 0.3.** Can we prove in ZFC that there is an arithmetically closed $A \subseteq \mathcal{P}(\omega)$ such that $A$ carries no minimal ultrafilter?

He proved it for the stronger notion of 2-Ramsey ultrafilter. We hope to deal with the problem later (see [Sh:944]); here we prove that there is an arithmetically closed Borel set $B \subseteq \mathcal{P}(\mathbb{N})$ such that any expansion $\mathbb{N}$ by any uncountably many members of $B$ has such a property, i.e., the family of definable subsets of $\mathbb{N}^+$ carry no 2.5-Ramsey ultrafilter.

Note that

$(\ast)$ if $N \neq \mathbb{N}$ is a model of PA which has no cofinal minimal extension, then on $\text{StSy}(\mathbb{N})$ there is no minimal ultrafilter, see Definitions 0.6, 0.7(1).

Enayat also asks:

**Question 0.4.** For a Borel set $A \subseteq \mathcal{P}(\omega)$:

(a) does the model $\mathbb{N}_A$ have a conservative end extension? This is what is answered here (in the light of the previous paragraph).

(b) Suppose further that $A$ is arithmetically closed. Is $(A \cap [\omega]^{<\omega_0}, \supseteq)$ a proper forcing notion?

The results here solve 0.4(a) and the second, 0.4(b), is solved in Enayat-Shelah [EnSh:936].

Enayat suggests that if we succeed to combine an example for “StSy($\mathbb{N}$) has no minimal ultrafilter” and Kaufman-Schmerl [KaSc84], then we shall solve the “there is $N$ with no cofinal minimal extension” (Problem 2 of [KoSc06]).

Note that our claim on the creature forcing gives suitable kinds of Ramsey theorems.

We thank the audience for comments in the lectures given on it in the Rutgers Logic Seminar (October 2007) and later in Jerusalem’s Logic Seminar and we would like to thank the referee for pointing out some gaps, many corrections and help.

---

**Notation 0.5.**

1. As usual in set theory, $\omega$ is the set of natural numbers. Let $pr : \omega \times \omega \rightarrow \omega$ be the standard pairing function (i.e., $pr(n, m) = (n + m)^2 + n$, so one-to-one onto two-place function).

2. Let $A$ denote a subset of $\mathcal{P}(\omega)$.

3. The Boolean algebra generated by $A \cup [\omega]^{<\omega_0}$ will be denoted by $\text{BA}(A)$.

4. Let $D$ denote a non-principal ultrafilter on $A$. When $A$ is not a sub-Boolean-Algebra of $\mathcal{P}(\omega)$, this means that $D \subseteq A$ and there is a unique non-principal ultrafilter $D'$ on the Boolean algebra $\text{BA}(A)$ such that $D = D' \cap A$.

In 0.7 this extension makes a difference.

5. Let $\tau$ denote a vocabulary extending $\text{PA} = \tau_\mathbb{N} = \{0, 1, +, \times, <\}$, usually countable.

6. $\text{PA} = \text{PA}(\tau)$ is Peano arithmetic for the vocabulary $\tau$.

7. A model $N$ of $\text{PA}(\tau)$ is ordinary if $N | \text{PA}$ extends $\mathbb{N}$; usually our models will be ordinary.

8. $\varphi(N, \bar{a})$ is $\{b : N \models \varphi[b, \bar{a}]\}$, where $\varphi(x, \bar{y}) \in L(\tau_\mathbb{N})$ and $\bar{a} \in f^{\varphi(b)} N$.

9. $\text{Per}(A)$ is the set (or group) of permutations of $A$. 

Definition 0.6. (1) For $A \subseteq \mathcal{P}(\omega)$ we let

$$\text{ar-cl}(A) = \{B \subseteq \omega : B \text{ is first order definable in } (N, A_1, \ldots, A_n) \text{ for some } n < \omega \text{ and } A_1, \ldots, A_n \in A\}.$$  

The set $\text{ar-cl}(A)$ is called the arithmetic closure of $A$.

(2) For a model $N$ of PA($\tau$) let the standard system of $N$ be

$$\text{StSy}(N) = \{\varphi(N', \bar{a}) \cap N : \varphi(x, \bar{g}) \in L(\tau) \text{ and } \bar{a} \in {}^g(\bar{y})N\}$$

for any ordinary model $N'$ isomorphic to $N$.

Definition 0.7. Let $A \subseteq \mathcal{P}(\omega)$.

(1) For $h \in {}^\omega \omega$ let $\text{cd}(h) = \{\text{pr}(n, h(n)) : n < \omega\}$, where $\text{pr}$ is the standard pairing function of $\omega$, see 0.5(1).

(2) An ultrafilter $D$ on $A$, is called minimal when:

- if $h \in {}^\omega \omega$ and $\text{cd}(h) \in A$, then for some $X \in D$ we have that $h|X$ is either constant or one-to-one.

(3) An ultrafilter $D$ on $A$ is called Ramsey when:

- if $k < \omega$ and $h : [\omega]^k \to \{0, 1\}$ and $\text{cd}(h) \in A$, then for some $X \in D$ we have $\text{cd}(h|X)[k]$ is constant.

Similarly we define $k$-Ramsey ultrafilters.

(4) $D$ is called 2.5-Ramsey or self-definably closed when:

- if $\bar{h} = (h_i : i < \omega)$ and $h_i \in {}^\omega (i + 1)$ and $\text{cd}(h_i) = \{\text{pr}(i, \text{pr}(n, h_i(n)) : i < \omega, n < \omega\}$ belongs to $A$, then for some $g \in {}^\omega \omega$ we have:

$$\text{cd}(g) \in A \text{ and } (\forall i)[g(i) \leq i \land \{n < \omega : h_i(n) = g(i)\} \in D];$$

this follows from 3-Ramsey and implies 2-Ramsey.

(5) $D$ is weakly definably closed when:

- if $\{A_i : i < \omega\}$ is a sequence of subsets of $\omega$ and $\{\text{pr}(n, i) : n \in A_i \text{ and } i < \omega\} \in A$, then $\{i : A_i \in D\} \in A$, (follows from 2-Ramsey); Kirby called it “definable”; Enayat uses “iterable”.

Definition 0.8. For $A \subseteq \mathcal{P}(\omega)$ let $\mathbb{N}_A$ be $\mathbb{N}$ expanded by a unary relation $A$ for every $A \in A$, so formally it is a $\tau_A$–model, $\tau_A = \tau_\mathbb{N} \cup \{P_A : A \in A\}$, but below if we use $A = \{A_t : t \in X\}$, then we actually use $\{P_t : t \in X\}$.

Definition 0.9. Let $N$ be a model of $T \supseteq \text{PA}(\tau)$, $\tau = \tau_T$.

(1) We say that $N^+$ is an end extension of $N$ when:

- (a) $N \preceq N^+$,

- (b) if $a \in N$ and $b \in N^+ \setminus N$, then $N^+ \models a < b$.

(2) We say $N^+$ is a conservative [end] extension of $N$ whenever (a),(b) hold and

- (c) if $\varphi(x, \bar{g}) \in L(\tau)$, $\bar{b} \in {}^g(\bar{y})(N^+)$, then $\varphi(N^+, \bar{b}) \cap N$ is a definable subset of $N$. 

Discussion 0.10. We may ask: How is the creature forcing relevant? Do we need Roslanowski-Shelah [RoSh 470]?

The creatures (and creatures forcing) we deal with fit [RoSh 470], but instead of CS iteration it suffices for us to use a watered down version of creature iteration. That is here it is enough to define $Q_u$ for finite $u \subseteq \text{Ord}$ such that:

(a) In $\S 3$, $Q_u$ is a creature forcing with generic $(t_\alpha : \alpha \in u)$; this restriction implies that cases irrelevant in full forcing where we have to use countable $u$, are of interest here; hence we can use creature forcing rather than iterated creature forcing.

(b) We are used to do it above a countable models $N$ of ZFC$, and this seems more transparent. But actually asking on the $\Delta_n$-type of the generic over $\mathbb{N}$ suffices. That is, we can, e.g., by $\Delta_{n+7}$ formula over $\mathbb{N}$ find, e.g., a condition $p \in Q_u$ such that any $t \in B_p$, e.g. a branch in the tree its $\Delta_n$-type over $\mathbb{N}$, i.e. the $\Delta_n$-theory of $(\mathbb{N}, t)$, so $t_\ell$ acts as a predicate (we can think of $B_u$ as $\subseteq \mathbb{N}$).

(c) However, in $\S 3$ we can define full creature iterated forcing, i.e. using countable support; it is of interest but irrelevant here;

(d) but some cases of such creature forcing may look like: look at $T' = \bigcup \{ \prod_{i+1} : n < \omega \}$, and the ideal

$$\{ A \subseteq \prod_{i+1} : A = \bigcup A_n \text{ and } (\forall n < \omega) (\forall \eta \in T')(\exists \nu \in \text{sup}_{T'}(\eta))(\forall \eta \in A_n)[\neg (\nu \eta)] \}.$$

(e) In the cases in which (c) is relevant, we get a Borel set $B$ such that $(\mathbb{N}, t) \in B \ldots$, but not “for every $\aleph_1$-members of $B$ we have…”.
(d) Actually, what we use are iterated creature forcing, but as we deal only with \(Q_n\), a finite, so here we need not rely on the theory of creature iteration.

1. MODELS OF THEORIES OF EXPANSIONS OF \(\mathbb{N}\) WITH NO END EXTENSIONS

**Theorem 1.1.**

1. For some \(A \subseteq \mathcal{P}(\omega)\) some model of \(\text{Th}(\mathbb{N}_A)\) has no end extension.

2. There is an uncountable Borel set \(A \subseteq \mathcal{P}(\omega)\) such that for any uncountable \(A' \subseteq A\) the theory \(T := \text{Th}(\mathbb{N}_{A'})\) has a model with no end extension.

3. In fact, any model \(N\) of \(T\) such that the naturally associated tree (set of levels \(N\), the set of nodes of level \(n \in N\) is \((n\omega)^N)\) has no undefinable branch is O.K.; such models exist by [Sh 73].

4. Moreover, without loss of generality, the set of subsets of \(\mathbb{N}\) definable in \(\mathbb{N}_A\) is Borel.

The proof is broken to a series of definitions and claims finding a sufficient condition proved in Sections 2, 3. More specifically, Theorem 1.5(b) gives a sufficient condition which is proved in Proposition 3.7.

**Definition 1.2.**

1. Let sequences \(\bar{n}^* = \langle n^*_i : i < \omega \rangle\) and \(\bar{k}^* = \langle k^*_i : i < \omega \rangle\) be such that \(n^*_0 = 0\), \(n^*_i \ll k^*_{i+1} \ll n^*_{i+1}\) for \(i < \omega\). We can demand that the ranges of \(\bar{n}^*, \bar{k}^*\) are definable in \(\mathbb{N}\) even by a bounded formula. In fact, in our computations later we put \(n^*_i = \mathfrak{A}(30i + 30)\) (for \(i > 0\)) and \(k^*_i = \mathfrak{A}(30i + 30), \mathfrak{A}(0) = 1, \mathfrak{A}(i + 1) = 2\mathfrak{A}(i)\).

We also let \(n_\eta(i) = n^*_i\).

2. Let \(Y_\ell = \{\pi : \pi\) is a permutation of \(n^{(\ell)}\}\) and \(T_n = \{\langle \pi_\ell : \ell < n \rangle : \pi_\ell \in Y_\ell\) for \(\ell < n\}\) and \(T = \bigcup\{T_n : n < \omega\}\).

For \(\pi \in T_n\) we keep the convention that \(\pi = \langle \pi^*_\ell : \ell < n \rangle\) (unless otherwise stated).

3. For \(\pi \in T\) let \(<_{n^{(\ell)}}\) be the following partial order:

   (a) \(\text{Dom}(<_{n^{(\ell)}}) = \bigcup\{n^{(\ell)} : i < \ell\(\pi\);\)

   (b) \(\eta \prec_{n^{(\ell)}} \nu\) if and only if they are from \(\text{Dom}(<_{n^{(\ell)}})\) and for some \(i < j\) we have \(\eta \in n^{(i)}\) and \(\nu \in n^{(j)}\) and \(\pi^*_\ell(\eta) < \pi^*_\ell(\nu)\).

Let \(t_{\pi} = (\text{Dom}(<_{n^{(\ell)}}), <_{\pi})\) for \(\pi \in T\).

4. Let \(T_\omega\) be \(\text{lim}_{\omega} (T)\), i.e.,

\[T_\omega = \{\langle \pi_i : i < \omega \rangle : \pi_i\) is a permutation of \(n^{(\ell)}\) for \(\ell < i \}\]

and for \(\pi \in T_\omega\) let \(\pi|n = \langle \pi^*_i : i < n \rangle\).

We interpret \(\pi \in T_\omega\) as the tree \(t_{\pi} := (\bigcup_{i<\omega} n^{(i)}, <_{\pi})\), where \(<_{\pi} = \bigcup_{i<\omega} n^{(i)}; n < \omega\), so \(t = t_{\pi}\) is \((\text{Dom}(t), <_t)\).

5. Let \(F\) be a one–to–one function from \(\{n^{(i)} : i < \omega\}\) onto \(\omega\), defined in \(\mathbb{N}\) (i.e., the functions \(n \mapsto t\ell(F^{-1}(n))\) and \((n, i) \mapsto (F^{-1}(n))(i)\) are definable in \(\mathbb{N}\) even by a bounded formula) such that \(F\) maps each \(n^{(i)}\) onto an interval. Then clearly \(F^{-1}\) is a one–to–one function from \(\mathbb{N}\) onto \(\{n^{(i)} : i < \omega\}\). If \(n^*, k^*\) are not definable in \(\mathbb{N}\) then we mean definable in \((\mathbb{N}, n^*, k^*)\), considering \(n^*, k^*\) as unary functions.

6. For \(\pi \in T_\omega\) let \(<_{n^{(\ell)}}\) be \(\{F(\eta), F(\nu) : \eta <_{n^{(\ell)}} \nu\}\) and \(A_{\pi} = \{\text{pr}(n_1, n_2) : n_1 <_{n^{(\ell)}} n_2\}\) and let \(t_{\pi}^{A_{\pi}} = (\omega, <_{n^{(\ell)}})\); similarly \(t_{\pi}^{A_{\pi}}\) for \(\pi \in T\).

7. For \(S \subseteq T_\omega\) let \(A_S = \{A_{\pi} : \pi \in S\}\) and let \(A_S\) be the arithmetic closure of \(A_S\) recalling 0.6(1).
Proposition 1.3. For \( \kappa \in T_\omega \), in \((\mathbb{N}, A_\kappa)\) we can define \(<^*_\kappa\) and
\[
(\mathbb{N}, A_\kappa) \models " \, <^*_\kappa \, \text{is a tree with set of levels } \mathbb{N}, \text{set of elements } \mathbb{N} \text{ and each level finite (}=\text{bounded in } \mathbb{N}, \text{even an interval} \, " .
\]

Of course, \( t_\kappa \) and \( t^*_\kappa = (\omega, <^*_\kappa) \) are isomorphic trees. Note that in \( \mathbb{N} \) we can interpret the finite set theory \( \mathcal{H}(\mathbb{N}_0) \).

Our aim is to construct objects with the following properties.

Definition 1.4. (1) We say \( T^*_\omega \) is strongly pcd (perfect cone disjoint) whenever:
\[
T^*_\omega \text{ is a perfect subset of } T_\omega \text{ such that:}
\]
\[
\boxtimes_{T^*_\omega} \text{ if } n < \omega \text{ and } \kappa_0, \kappa_1, \ldots, \kappa_n \in T^*_\omega \text{ with no repetitions and for } \ell = 0, 1, \eta_\ell \text{ is an } \omega\text{-branch of } t^*_\kappa \text{ which is definable in } (\mathbb{N}, A_{\kappa_0}, A_{\kappa_1}, \ldots, A_{\kappa_n}) ,
\]
then \( \eta_0, \eta_1 \) belong to disjoint cones (in their respective trees) which means that:
\[
(\square) \text{ for some level } n \text{ the sets}
\]
\[
\{ a : a \text{ is } <^*_{t_\kappa} \text{-above the member of } \eta \text{ of level } n \} \subseteq \mathbb{N}
\]
for \( \ell = 0, 1 \) are disjoint.

(2) We say \( T^*_\omega \) is weakly pcd (perfect cone disjoint) whenever:
\[
T^*_\omega \text{ is a perfect subset of } T_\omega \text{ such that:}
\]
\[
\boxtimes_{T^*_\omega} \text{ for every } n \text{ and } \varphi(x, y) \in \mathbb{L}(\tau_{PA} + \{ P_0, \ldots, P_n \}) \text{ there is } i(\ast) \text{ such that if}
\]
- \( i \in [\ast(\ast), \omega) \) and \( \kappa_{m, \ell} \in T^*_\omega \) for \( m \leq n, \ell = 0, 1, \)
- \( \kappa_{0,0} \neq \kappa_{0,1} \) and 
- \( \kappa_{m, \ell} \mid i = \kappa_{m_2, \ell_2} \mid i \) if and only if \( m_1 = m_2, \) and 
- \( P_0, \ldots, P_n \) are unary predicates, \( \varphi = \varphi(x, y, P_0, \ldots, P_n) \in \mathbb{L}(\tau_{PA} + \{ P_0, \ldots, P_n \}), \) and \( b_\ell \in t^*_\kappa(\mathbb{N}), \varphi(x, b_\ell, A_{\kappa_0}, \ldots, A_{\kappa_n}) \) define in
\[
(\mathbb{N}, A_{\kappa_0}, \ldots, A_{\kappa_n}) \text{ a branch } B_\ell \text{ of } t^*_\kappa \text{ for } \ell = 0, 1
\]
then the branches \( B_0, B_1 \) have disjoint cones (in their respective trees).

(3) Conditions \( \boxtimes_{T^*_\omega} \) and \( \boxtimes_{T^*_\omega} \) are defined like \( \boxtimes_{T^*_\omega} \) and \( \boxtimes_{T^*_\omega} \) above replacing “have disjoint cones” (i.e., \( \square \)) by “have bounded intersection”, which means that
\[
(\circ) \text{ for some } a \text{ the sets } \{ b \in \eta_0 : b \text{ is of level } > a \} \text{ and } \{ b \in \eta_1 : b \text{ is of level } > a \} \text{ are disjoint}.
\]

Then we define weakly pbd and strongly pbd (where pbd stands for perfect branch disjoint) in the same manner as pcd above, replacing \( \boxtimes_{T^*_\omega} \) by \( \boxtimes_{T^*_\omega} \) and \( \boxtimes_{T^*_\omega} \) respectively.

(4) Omitting strongly/weakly means weakly.

One may now ask if the existence of pcd/pbd (Definition 1.4) can be proved and if this concept helps us. We shall prove the existence of pbd in Sections 2 and 3, specifically in 3.7. The existence of pcd remains an open question. Below we argue that objects of this kind are useful to prove Theorem 1.1.

Theorem 1.5. (a) If \( T^*_\omega \) is a pcd, i.e., it is a perfect subset of \( T_\omega \) satisfying \( \boxtimes_{T^*_\omega} \) from Definition 1.4, then \( A = A_{T^*_\omega} \) (see Definition 1.2(7)) is as required in 1.1.

(b) Even if \( T^*_\omega \) is a pbd then \( A = A_{T^*_\omega} \) is as required in 1.1.
Proof. (a) We will deal with each part of Theorem 1.1. First we give details for part (3) of 1.1.

For $x \in \mathbf{T}_x^*$ recall

$$A_x = \{ \varphi(F(\eta), F(\nu)) : \eta <^* \nu \} \subseteq \mathbb{N}$$

and $A = \{ A_x : x \in \mathbf{T}_x^* \} \subseteq \mathcal{P}(\omega)$. Assume $A' \subseteq A$ is uncountable and let $T = Th(\mathbb{N}_A)$ and $\tau_{A'}$ be its vocabulary. Then by [Sh 73] the theory $T$ has a model $M$ in which definable trees (we are interested just in the case the set of levels being $M$ with the order $<^M$) have no undefinable branches, so, in particular (and this is enough)

if $x \in A$, then $(<^*_x)^M$ has no undefinable branch

(i.e., as in [Sh 73], branches mean full branches, “visiting” every level). Note that

“the $a$-th level of $(M, (<_x^M))$ does not depend on $x$.

Assume towards contradiction $M^+$ is an (elementary) end-extension of $M$ and

let $b^* \in M^+ \setminus M$. Now consider any $A_x \in A$ so $(<_x^*)^M$ is naturally definable in $M$ and

$$M \models \text{“ for every element } a \text{ serving as level, }$$

$$\{ \langle c : b <^*_x c \rangle : b \text{ is of level } a \text{ in the tree } t_x, \text{ i.e. } (M, (<_x^M)) \}$$

is a partition of $\{ x : x \text{ is of } <^*_x \text{-level } a \}$ to finitely many sets ”,

the finite is in the sense of $M$ of course.

As $M^+$ is an end-extension of $M$ recalling 1.2(5) it follows that the level of $b^*$ in $M^+$ is above $M$ and $b^*$ defines a branch of $(M, (<_x^M))$ which we call $\eta_x = \langle b^*_x : a \in M \rangle$. That is $b^*_x$ is the unique member of $M$ of level $a$ such that $M^+ \models \langle b^*_x \leq^*_x b^* \rangle$.

By the choice of $M$ the branch $\eta_x$, i.e., $\{ b^*_x : a \in M \}$ is a definable subset of $M$, say by $\varphi_{\eta} (x, d_\eta)$ where $\varphi_{\eta} (x, d_\eta) \in L(\tau_{A'})$ and $d_\eta \in \mathcal{L}(\eta_{\mathbb{N}})$. Now by the assumptions on $A, A', T$ there are $s_{\eta,1}, \ldots , s_{\eta, n_{\eta}} \in \mathbf{T}_x^* \setminus \{ x \}$ with no repetitions, hence $A_{s_{\eta}, n_{\eta}} \in A' \setminus \{ A_x \}$ for $n = 1, \ldots , n_{\eta}$, and in $\varphi_{\eta} (x, d_\eta)$ only $A_{s_{\eta},1, \ldots , A_{s_{\eta}, n_{\eta}}}$ and $A_x$ appear (i.e., the predicates $P_{s_{\eta},1, \ldots , P_{s_{\eta}, n_{\eta}}, P_x}$ corresponding to them and $\tau_{A'}$, of course). Let $s_{\eta,0} = x$ and we write $\varphi'_{\eta} = \varphi'_{\eta} (x, y_{\eta}, P_x)$, where $P_x = \langle P_{s_{\eta}, \ell} : \ell \leq n_{\eta} \rangle$ and $\varphi'_{\eta}$ has non-logical symbols only from $\tau_{T_{\mathbb{N}}}$ and so $\varphi'_{\eta} (x, y_{\eta}) \in L(\tau_{T_{\mathbb{N}}} \cup \{ P_{\ell} : \ell \leq n_{\eta} \})$, that is $\varphi'_{\eta} (x, y_{\eta})$ when we substitute $P_{\ell}$ for $P_{s_{\eta}, \ell}$ for $\ell \leq n_{\eta}$.

For $A_x \in A$ let

$$m_{\eta} = \min \{ m : s_{\eta, \ell} \mid m \} \text{ for } \ell = 0, \ldots , n_{\eta} \text{ are pairwise distinct } \} .$$

Hence for some $\varphi_{\eta} (x, y_{\eta}), n_{\eta}, m_{\eta}, s_{\eta}$ the set

$$A_2 = \{ A_x \in A : \varphi'_{\eta} = \varphi_{\eta} \setminus \varphi_{\eta} = \varphi_{\eta}, \ y_{\eta} = \bar{y}_{\eta} \}$$

so $n_{\eta} = n_{\eta}, \ m_{\eta} = m_{\eta}$ and $\varphi_{\eta, \ell} (m : \ell = 0, \ldots , n_{\eta}) = s_{\eta}$ is uncountable. Let $i(*) \geq m_{\eta}$ be as guaranteed by $\mathbb{E}^{\mathbb{E}_{\mathbb{F}_{\mathbb{N}}}}_{x}$, so for some uncountable $A_3 \subseteq A_2$ for some $s_{\eta}$ we have that $\langle s_{\eta, \ell} \mid i(*) : \ell = 1, \ldots , n_{\eta} \rangle = s_{\eta}$ whenever $A_x \in A_3$. As $A$ is uncountable clearly for some $A_{s_{\eta,1}, A_{s_{\eta,2}} \in A}$ we have $\{ x_1, x_2 \}$ is disjoint to $\{ s_{\eta, m} : m = 1, \ldots , n_{\eta} \}$, and $\ell = 1, 2$.

So by $\mathbb{E}^{\mathbb{E}_{\mathbb{F}_{\mathbb{N}}}}_{x}$ from Definition 1.4 for some $a \in M$ we have

$$\langle c : b^*_a <^*_a c \rangle \cap \{ c : b^*_a <^*_a c \} = \emptyset ^* \} .$$

[Why? Because $N_{s_{\eta}} \models \langle \forall y_{\eta} (\varphi_{\eta} (x, y_{\eta})) \mid \varphi_{\eta} (x, y_{\eta}) \rangle$ define a branch of $t^*_{\eta, \ell}$ for $\ell = 1, 2$, then there are $x_1, x_2$ such that $\varphi_{\eta_1} (x_1, y_{\eta_1}) = \varphi_{\eta_2} (x_2, y_{\eta_2}) = \neg (\exists z) [z \leq t^*_{\eta_1} \wedge x_2 \leq t^*_{\eta_2} x_2]$.]

But in $M^+$ the elements $b^*$ belong to both, contradiction to $M \prec M^+$. 


Now, parts (2), (3) of 1.1 follow and so does part (1).

(4) See on this [EnSh:936]. Alternatively, when is \( B = \{ A \subseteq N : A \) is definable in \( N_A \} \) Borel? As we can shrink \( T^n_\omega \), without loss of generality there is a function \( g \in 2^\omega \sigma \) such that for every \( f \in 2^\omega \), \( g_\sigma = g \), i.e., 
\[ (\forall i)(f(i) < g(i)). \]
This suffices (in fact if we prove 1.4 using forcing notion \( Q_\omega \), where each \( Q_\omega \) is \( \omega^\omega \)-bounding this will be true for \( T^n_\omega \) itself and we do this in \( \S 3 \); moreover we have continuous reading for every such \( f \) (as a function of \( A_{x_0}, \ldots, A_{x_{n-1}} \) for some \( x_0, \ldots, x_{n-1} \in T^n_\omega \)).

(b) We repeat the proof of (a) above until the choice of \( \{ x_1, x_2 \} \) (right before (\( \square \))), but we replace the rest of the arguments for clause (3) of 1.1 by the following.
So by \( \otimes_{T^n_\omega}^\omega \) of Definition 1.4(3), for some \( a_* \in M \) we have
\[ (\otimes) M \models \text{"the sets } \{ b^{a_*}_i : a_* < a \}, \{ b^{a_*}_i : a_* < a \}\] are disjoint”.
( Remember all that the trees consider have the same levels.) But in \( M^+ \) the element \( b^* \) belongs to both definable branches contrary to \( M \prec M^+ \). □

**Theorem 1.6.**

1. If \( T^n_\omega \) is a strong pcd, i.e., it is a perfect subset of \( T_\omega \)
satisfying \( \mathcal{D}_\omega \), from 1.4, and \( A \subseteq \{ A_\kappa : \kappa \in T^n_\omega \} \) is uncountable, then

there is no weakly definably closed ultrafilter on \( \text{ar-cl}(A) \), see Definition 0.7(5).

2. Above, we may replace “pcd” with “pbd”.

3. Without loss of generality, \( \text{ar-cl}(T^n_\omega) \) is a Borel set.

**Proof.** (1) Assume towards contradiction that a pair \((A, D)\) forms a counterexample. Let \( M = N_A \) and let \( M^+ \) be an \( N_2 \)-saturated elementary extension of \( M \) and let \( b^* \in M^+ \) realizes the type
\[ p^* = \{ \varphi(x, \bar{a}) : \varphi(x, \bar{y}) \in \mathcal{L}(\tau_M), \bar{a} \in \mathcal{L}(\emptyset)M \text{ and } \{ b \in M : M \models \varphi[b, \bar{a}] \} \text{ includes some member of } D \}. \]
Clearly \( p^* \) is a set of formulas over \( M \), finitely satisfiable in \( M \) and even a complete type over \( M \).

Now, for every \( \kappa \) such that \( A_\kappa \in A \) and \( i < \omega \) we consider a function \( g_{\kappa, i} \) definable in \( M \) as follows:
\[ (\star) g_{\kappa, i}(c) : \]
\[ (\alpha) b \] if \( c \) is of \( <_\kappa \)-level \( \geq i \) in \( (N, <_\kappa) \) and \( b \) is of \( <_\kappa \)-level \( i \) and \( b \leq \kappa \);\n\[ (\beta) c \] if \( c \) is of \( <_\kappa \)-level \( < i \) in \( (N, <_\kappa) \).

Clearly \( g_{\kappa, i} \) is definable in \( (N, A_\kappa) \), the range of \( g_{\kappa, i} \) is finite, so \( g_{\kappa, i} \mid B_{\kappa, i} \) is constant for some \( B_{\kappa, i} \in \{ g_{\kappa, i}^{-1}(x) : x \in \text{Rang}(g_{\kappa, i}) \} \cap D \). As all co-finite subsets of \( N \) belong to \( D \), also \( B_{\kappa, i} \) cannot be a singleton member of level \( \neq i \). Hence for some \( b_{\kappa, i} \) of level \( i \) for \( \leq \kappa \) we have \( B_{\kappa, i} \subseteq \{ c : b_{\kappa, i} \leq \kappa \} \). Now moreover for some formula \( \varphi_{\kappa}(x_0, x_1, x_2) \in \mathcal{L}(\tau_P + P_\kappa) \), for each \( i \in N \) the formula \( \varphi_{\kappa}(x_0, x_1, i) \) defines \( g_{\kappa, i}(x_1) = x_1 \). By the “weakly definable closed” (see Definition 0.7(5)), \( \{ b_{\kappa, i} : i < \omega \} \) is definable in \( N_A \).

Now we continue as in the proof of 1.5.

(2) Similarly.

(3) As in 1.5 (for clause (4) of 1.1). □
2. The (iterated) creature forcing

We continue the previous section, so we use notation as there, see Definitions 1.2 and 1.4. In particular, \( n_0^* = 0, n_+^*(i) = n_i^* = \beth(30i + 30) \) (for \( i > 0 \)) and \( k_i^* = \beth(30i + 10) \). We also set \( \ell^*_0 = \beth(30i + 10) \).

Definition 2.1. For \( i < \omega \) and a finite set \( u \) of ordinals we define:

(A) \( \text{OB}_i^u \) is the set of all triples \((f, g, e)\) such that \((\text{Per}(A)) \) stands for the set of permutations of \( A \):

\( (a) \) \( f, g \in u(\text{Per}(\langle \alpha \rangle_2)) \);

\( (b) \) if \( i = 1 = j \geq 0 \) and \( \alpha \in u \), then \( (f(\alpha)(\rho))|n_j^* = (g(\alpha)(\rho))|n_j^* \) for all \( \rho \in n_+^*(i) \);

\( (c) \) \( e \) is a function with domain \( u \) such that for each \( \alpha \in u \)

\[ e(\alpha) : \text{Per}(\langle \alpha \rangle_2) \rightarrow \text{Per}(\langle \alpha \rangle_2) \times \text{Per}(\langle \alpha \rangle_2). \]

Above, we stipulate \( n_*(i) = 0 \) if \( i = 0 \). Also, let us note that some triples will never be used, only \( \bigcup\{\text{succ}(x) : x \in \text{OB}_i^u\} \) and we should iterate.

(B) For \( x \in \text{OB}_i^u \) we let \( x = (f_x, g_x, e_x) \) and \( i = i(x) \) and \( u = \text{supp}(x) \).

(C) For \( x \in \text{OB}_i^u \) we set

\[ \text{succ}(x) = \{ y \in \text{OB}_{i+1}^u : (\forall \rho \in n_+^*(i+1))(\forall \alpha \in u) \left( (g_x(\alpha)(\rho))|n_i^* = (f_x(\alpha)(\rho))|n_i^* \right) \text{ and } \left( \forall \alpha \in u \right) (e_x(\alpha)(g_x(\alpha)) = (f_x(\alpha), g_x(\alpha))) \}. \]

(D) For \( j \leq \omega \) let

\[ S_{u,j} = \{ \langle x_{\ell} \rangle : \ell < j \} : (\ell < j \Rightarrow x_{\ell} \in \text{OB}_i^u) \text{ and } (\ell + 1 < j \Rightarrow x_{\ell+1} \in \text{succ}(x_{\ell})) \} \]

(E) \( S_u = \bigcup\{S_{u,\ell} : \ell < \omega \} \); we consider it a tree, ordered by \( \triangleleft \).

(F) For \( x \in \text{OB}_i^u \) and \( w \subseteq u \) let \( x|w = (f_x|w, g_x|w, e_x|w) \).

(G) For \( i \leq \omega, w \subseteq u \) and \( \bar{x} = (x_j : j < i) \in S_{u,i} \) let \( \bar{x}|w = \langle x_j|w : j < i \rangle \) and for \( \alpha \in u \) let \( \bar{x}^\alpha_j = \langle f_{x_j}(\alpha) : j < i \rangle \).

(H) For \( \bar{x} \in S_{u,i}, \ell \leq \omega, \) and \( \alpha \in u \) let \( t_{\bar{x},\alpha} = t_{\bar{x},\alpha}^\ell \) be the tree with \( \ell g(\bar{x}) \) levels, with the \( i \)-th level being \( n_+^*(i) \) for \( i < \ell g(\bar{x}) \) and the order \( <_{t_{\bar{x},\alpha}} \) defined by

\[ \eta <_{t_{\bar{x},\alpha}} \nu \quad \text{if and only if} \]

for some \( i < j < \ell g(\bar{x}) \) we have \( \eta \in n_+^*(i), \nu \in n_+^*(j) \) and \( f_{x_j}(\alpha)(\eta) \triangleleft f_{x_i}(\alpha)(\nu) \).

Since we are interested in getting “bounded branch intersections” we will need the following observation (part (5) is crucial in proving cone disjointness in some situation later).

Proposition 2.2. Assume \( \bar{x} \in S_u \) and \( \alpha \in u \).

1. If \( \rho \in n_+^*(i)2 \) and \( j < \ell g(\bar{x}) \), then \( g_{x_j}(\alpha)(\rho|n_i^*(i)) : i \leq j \) is an increasing noting \( g_{x_j}(\alpha)(\rho|n_i^*(i)) \) in \( n_+^*(i)2 \).

2. \( x_{\bar{x}}^\alpha \in T_{\ell g(\bar{x})} \) and \( t_{\bar{x},\alpha}^\ell = t_{\bar{x},\alpha}^\ell \), on \( t_{\bar{x},\alpha}^\ell \) see 1.2.(3).

3. If \( i < j < \ell g(\bar{x}) \) and \( \nu \in n_+^*(j) \), then \( (f_{x_j}(\alpha)(\nu)|n_i^*) \) depends just on \( \bar{x}|(i+1) \), actually just on \( g_{x_i}, i.e., it is equal to g_{x_j}(\alpha)(\nu|n_i^*) \).

4. The sequence \( \langle g_{x_j}(\alpha), f_{x_j}(\alpha) : j < \ell g(\bar{x}) \rangle \) is fully determined by \( \langle e_{x_j}(\alpha) : j < \ell g(\bar{x}) \rangle \).

5. Assume \( \alpha_1 \neq \alpha_2 \) are from \( u \) and \( i < \ell g(\bar{x}) \) and \( \eta_1, \eta_2 \in n_+^*(i)2 \) but

\[ (g_{x_j}(\alpha_1))^{-1} \circ f_{x_j}(\alpha_1)(\eta_1) \neq ((g_{x_j}(\alpha_2))^{-1} \circ f_{x_j}(\alpha_2))(\eta_2). \]

Then the sets \( \{ \rho : \eta_1 <_{t_{\bar{x},\alpha_1}} \rho \} \) and \( \{ \rho : \eta_2 <_{t_{\bar{x},\alpha_2}} \rho \} \) are disjoint.
Proof. (1), (2), (3) and (4) can be shown by straightforward induction on \( j \).

(5) Assume towards contradiction that

\[
(\ast)_1 \eta_1 \prec_{t_{x,\alpha}} \rho \text{ and } \eta_2 \prec_{t_{x,\alpha}} \rho.
\]

So \( \rho \in t_{x,\alpha_2} \) and hence \( \rho \in n_2(i)2 \) for some \( j \prec \ell g(\bar{x}) \). Since \( \eta_1 \prec_{t_{x,\alpha_1}} \rho \), necessarily \( i \prec j \prec \ell g(\bar{x}) \) and by the definition of \( <_{t_{x,\alpha_1}} \) and \( <_{t_{x,\alpha_2}} \):

\[
(\ast)_2 f_{x,i}(\alpha_1)(\eta_1) \prec f_{x,i}(\alpha_1)(\rho) \text{ and } f_{x,i}(\alpha_2)(\eta_2) \prec f_{x,i}(\alpha_2)(\rho).
\]

This means that

\[
(\ast)_3 f_{x,i}(\alpha_1)(\eta_1) = (f_{x,i}(\alpha_1)(\rho))|n_1^i \text{ and } f_{x,i}(\alpha_2)(\eta_2) = (f_{x,i}(\alpha_2)(\rho))|n_1^i.
\]

Consequently, by part (3), letting \( \rho' = \rho|n_1^i \):

\[
(\ast)_4 f_{x,i}(\alpha_1)(\eta_1) = g_{x,i}(\alpha_1)(\rho') \text{ and } f_{x,i}(\alpha_2)(\eta_2) = g_{x,i}(\alpha_2)(\rho'),
\]

and therefore

\[
(\ast)_5 ((g_{x,i}(\alpha_1))^{-1} \circ f_{x,i}(\alpha_1))(\eta_1) = \rho' = ((g_{x,i}(\alpha_2))^{-1} \circ f_{x,i}(\alpha_2))(\eta_2),
\]

contradicting our assumptions. \( \square \)

Below we may replace the role of \( D_i^\alpha \) by \( \{(f_{x,i}(\alpha), g_{x,i}(\alpha)) : j < i \} : \bar{x} \in S_{u,\alpha} \} \).

**Definition 2.3.** For a finite set \( u \subseteq \text{Ord} \) and an integer \( i < \omega \) we let

(\( \alpha \)) \( D_i^\alpha = \{(\alpha, g) : \alpha \in u \text{ and } g \in \text{Per}^n(i-1)2 \text{ if } i > 0, g \in \text{Per}^0(2) \text{ if } i = 0 \} \); if \( \bar{x} \in S_{u,i} \) and \( \alpha \in u \), then stipulate \( g_{x,\alpha}(\alpha) \) is the unique \( g \in \text{Per}^0(2) \).

(\( \beta \)) \( \text{pos}_u^\alpha \) is the set of all functions \( h \) with domain \( D_i^\alpha \) such that \( h(\alpha, g) \) is a pair \((h_1(\alpha, g), h_2(\alpha, g)) \) satisfying

- \( h_1(\alpha, g), h_2(\alpha, g) \in \text{Per}^n(i-1)2 \), and
- \( (h_2(\alpha, g)(\rho))|n, (i-1) = g(\rho)|n, (i-1) \) for \( \ell \in \{1, 2\}, i > 0 \) and \( \rho \in n^i(i-1)2 \).

Also, for \( h \in \text{pos}_u^\alpha \) and \( w \subseteq u \) we let \( h \upharpoonright w = h|D_i^\alpha \).

(\( \gamma \)) \( \text{wpos}_u^\alpha \) is the family of all functions \( F : \text{pos}_u^\alpha \longrightarrow [0,1] \) which are not constantly zero, and

\[
\text{wpos}_u^\alpha = \left\{ F : \text{wpos}_u^\alpha : \text{range}(F) \subseteq \{ \frac{m}{2n^i(i)} : m = 0, 1, \ldots 2^{n^i(i)} \} \right\}.
\]

If above we allow the constantly zero function instead of \( \text{wpos}_u^\alpha \), \( \text{wpos}_u^\alpha \) we get \( \text{wpos}_u^\alpha, \text{xpos}_u^\alpha \), respectively. A set \( A \subseteq \text{pos}_u^\alpha \) will be identified with its characteristic function \( \chi_A \in \text{wpos}_u^\alpha \).

(\( \delta \)) For \( F \in \text{wpos}_u^\alpha \) we let

\[
\text{set}(F) = \{ h \in \text{pos}_u^\alpha : F(h) > 0 \} \text{ and } \| F \| = \sum \{ F(h) : h \in \text{pos}_u^\alpha \}.
\]

If \( |\text{pos}_u^\alpha|^i \geq \| F \| : (k_i^*)^{n^i(i)} - 1 \), then we put \( \text{nor}_0(\alpha, F) = 0 \); otherwise we let

\[
\text{nor}_0^F(\alpha) = k_i^* - \log_A \left( \frac{k_i^* \cdot |\text{pos}_u^\alpha|^i}{\| F \|} \right).
\]

(\( \varepsilon \)) For \( F_1, F_2 \in \text{wpos}_u^\alpha \) we let

- \( F_1 \leq F_2 \) if and only if \( (\forall h \in \text{pos}_u^\alpha)(F_1(h) \leq F_2(h)) \);
- \( (F_1 + F_2)(h) = F_1(h) + F_2(h) \) and \( (F_1 \cdot F_2)(h) = F_1(h) \cdot F_2(h) \)

for \( h \in \text{pos}_u^\alpha \).
Proposition 2.4. \( [F_1] \) is the function from \( \text{pos}^u \) to \( \{ \frac{m}{2^{\nu_{a}(i)}} : m = 0, 1, \ldots, 2^{\nu_{a}(i)} \} \) given by
\[
[F_1](h) = [F_1(h)] \cdot 2^{\nu_{a}(i)} \cdot 2^{\nu_{a}(i)} \quad \text{for } h \in \text{pos}^u.
\]

(\( \zeta \)) For \( \bar{x} \in S_{u,i} \) and \( h \in \text{pos}^u \) we let \( \text{suc}_x(h) \) be \( \bar{x}^{-}(y) \) where \( y \in \text{OB}_i^u \) is defined by:
- (i) \( (f_y(a), g_y(a)) = (h, g_{z_{a-1}(a)}) \) for \( a \in u \),
- (ii) \( e_y(\alpha)(h) = h(\alpha, \pi) \) for \( \alpha \in u \) and \( \pi \in \text{Per}(\text{pos}^{u,(i)\cdot2}) \).

(\( \lambda \)) \( CR^u \) is the set of all pairs \( \bar{c} = (F, m) = (F_c, m_c) \) such that \( m \) is a non-negative real and \( F \in \text{wpos}^u \) and \( \text{nor}_1(F \geq m) \). We also let \( CR'^u = \{ \bar{c} \in CR^u : F_c \in \text{wpos}^q \} \).

(\( \mu \)) For \( \bar{c} \in CR^u \), we let \( \text{nor}_1(\bar{c}) = (\text{nor}_0(\bar{F}_c) - m_c) \) and \( \text{nor}_1(\bar{c}) = \log_{\ell_c}(\text{nor}_1(\bar{c})) \) if non-negative and well defined, and it is zero otherwise. (Remember, \( \ell_c = \log(30i + 10) \).) We will write \( \text{nor}(\bar{c}) = \text{nor}_2(\bar{c}) \).

(\( \nu \)) For \( \bar{c} \in CR^u \) let \( \Sigma(\bar{c}) \) be the set of all \( \bar{d} \in CR^u \) such that \( F_0 \leq F_c \) and \( m_q \geq m_c \). For \( \bar{c} \in CR^u \) we let \( \Sigma(\bar{c}) = \Sigma(\bar{c}) \cap CR^u \).

(\( \kappa \)) \( Q_u = (Q_u, \leq_{Q_u}) \) is defined by
- (a) \( \bar{Q} = (Q_u, \leq_{Q_u}) \) is defined similarly, replacing \( CR^u, \Sigma \) by \( CR', \Sigma \), respectively.
- (\( \eta \)) If \( u_1, u_2 \subseteq \text{Ord} \) are finite, \( |u_1| = |u_2| \) and \( h : u_1 \to u_2 \) is the order preserving bijection, then \( h \) is the isomorphism from \( Q_{u_1} \) onto \( Q_{u_2} \) induced by \( h \) in a natural way.

Proposition 2.4. Let \( u \subseteq \text{Ord} \) be a finite non-empty set, \( i \in (1, \omega) \) and \( |u| \leq n_*(i - 1) \). Then
- (a) \( |\text{pos}^u_{i-1}| \leq 30i + 3 \), \( |\text{pos}^u_{i-1}| \leq 30i + 4 \), \( \text{nor}_0(\text{pos}^u) \) \( k* \) and \( \text{nor}_1(c_{max}) = 30i + 19, 30i + 9 \) and \( CR^u = \Sigma(\bar{c}_{max}) \), where \( c_{max} = \text{pos}^u_{i-1} \).
- (b) \( |S_{u,i}| \leq 1 \) and if \( x \in S_{u,i} \) and \( h \in \text{pos}^u \), then \( \text{suc}_x(h) \in S_{u,i+1} \).
- (c) \( F_1 \leq F_2 \) are from \( \text{wpos}^u \), then \( 0 \leq \text{nor}_0(F_1) \leq \text{nor}_0(F_2) \).
- (d) If \( \bar{c} \in CR^u \) and \( \text{nor}_1(\bar{c}) \geq 1 \), then \( \bar{c} \) has \( k* \)-bigness with respect to \( \text{nor}_1 \), which means that:
  - if \( F_c = \sum\{Y_k : k < k* \} \) then \( \text{nor}_1(\bar{c}) \leq \text{max}\{\text{nor}_1(Y_{m_c}), m_c + 1 : k < k* \} \),
  - moreover, if \( F_c \leq F', \|F'\| \geq \|F_c\|, k' \), then \( \text{nor}_1(F') \geq \text{nor}_0(F_c) - 1 \).
- (e) Both \( CR^u \) and \( CR' \) have \( k* \)-bigness with respect to \( \text{nor}_1 \), that is
  - (\( \alpha \)) if \( \bar{c} = (F_c, m_c), m_1 = (\text{nor}_0(F_c) + m_c) / 2, \bar{d} = (F_c, m_c) \), then \( \text{nor}_1(\bar{d}) \geq \text{nor}_0(\bar{c}) / 2 \), and
  - (\( \beta \)) if \( d' \in \Sigma(\bar{d}) \) is such that \( \text{nor}_1(d') \geq 1 \), then \( d'' = (F_0', m_0') \) satisfies:\n    \( d'' \in \Sigma(\bar{d}), \text{nor}_1(d') \geq \text{nor}_0(\bar{c}) / 2 \) and \( F_0'' = F_0/d'' \).
Proof. Clause (a): Clearly by the definition \( c_{u,i}^{\text{max}} = (\text{pos}_i^{u}, 0) \in \text{CR}_u^{n} = \Sigma(c_{u,i}^{\text{max}}) \) and

\[
\text{nor}_i^0(\text{pos}_i^{u}) = k_i^* - \log_3 (\log_2 (k_i^*)) = k_i^* ,
\]

so \( \text{nor}_i^0(c_{u,i}^{\text{max}}) = k_i^* - 0 = k_i^* \) and \( \text{nor}_i(c_{u,i}^{\text{max}}) = \log_2 (k_i^*) = \log_2 (\log_3(30i + 20)) = \log_2 (\log_2 (\log_3(30i + 10))) = \log_2 (\log_3(30i + 19))/\log_2 (\log_3(30i + 9)) \). Now, for every \( j > 0 \), letting \( A_j = \text{Per}^{(n_{i(j)/2})} \times \text{Per}^{(n_{i(j)/2})} \) and recalling 2.3(i)(a), we have

\[
|D_j|^u \leq 2^{n_{i(j-1)}} |u| \leq 2^{2n_{i(j-1)}} |u| \quad \text{and} \quad |A_j| \leq (2^{n_{i(j)}})^2 \leq 2^{2n_{i(j)}+1} \leq 2^{2n_{i(j)}} .
\]

Since \( |u| \leq n_*(i-1) \), we get \( |D_j|^u \leq 2^{2n_{i(j-1)}} \times n_*(i-1) \). Since \( 2^{2n_{i(j-2)}} \leq n_*(i-1) \), \( n_*(i-1)^3 \leq 2^{n_{i(i-1)}} \) and \( 4n_*(i-1) + 1 \leq 2^{n_{i(i-1)}} \), we conclude now that

\[
|\text{pos}_i^{u}| \leq |A_{i-1}|^{D_{j-1}} \leq 2^{2n_{i(i-1)}} \times 2^{2n_{i(i-1)}-1} < 2^{2n_{i(i-1)}} < \log(30i+3)
\]

and

\[
|\text{vpos}_i^{u}| \leq (2^{n_{i(i-1)}+1} |\text{pos}_i^{u}| < 2^{2n_{i(i-1)+1} \times 2^{2n_{i(i-1)}}} < 2^{2^{2n_{i(i-1)+1}}} < \log(30i+4) .
\]

Clause (b): Let \( B_j \) be the set of all functions from \( \text{Per}^{(n_{i(j-1)})} \) to \( \text{Per}^{(n_{i(j)})} \). Then we have

\[
|B_j| = \left( 2^{n_{i(j)}} \right)^{2(2^{n_{i(j-1)}})} \leq 2^{2n_{i(j)}} \cdot 2^{2n_{i(j-1)}} \leq 2^{2n_{i(j)}}
\]

and hence for \( j < i \):

\[
|O_B_j| \leq |\text{Per}^{(n_{i(j)})}| \cdot |\text{Per}^{(n_{i(j)})}| \cdot |\text{u}_{B_j}| \leq (2^{n_{i(j)}})^2 |u| \cdot 2^{2n_{i(j)}-1} |u| \leq 2^{2n_{i(j)+1} \times 2^{n_{i(j)-1}}} \cdot |u| \leq 2^{2n_{i(j)} \times n_{i(i-1)}} \leq 2^{2n_{i(i-1)}} .
\]

Therefore,

\[
|S_{u,i}| \leq \prod_{j \leq i} |O_B_j| \leq (2^{2n_{i(i-1)}})^i \leq 2^{2n_{i(i-1)}} < \ell_i^* .
\]

Clause (d): Assume \( c \in \text{CR}_u^{n} \) and \( F_c = \sum \{ \mathcal{Y}_k : k < k_i^* \} \), hence \( \| F_c \| = \sum \{ \| \mathcal{Y}_k \| : k < k_i^* \} \). Let \( k(*) < k_i^* \) be such that \( \| \mathcal{Y}_k(*) \| \) is maximal. Plainly \( \| F_c \| \leq k_i^* \times \| \mathcal{Y}_k(*) \| \) and therefore it suffices to prove the “moreover” part. So assume \( \mathcal{Y} \subseteq F_c \), \( \| F_c \| \leq k_i^* \times \| \mathcal{Y} \| \). Then

\[
\text{nor}_i^0(\mathcal{Y}) = k_i^* - \log_3 (\log_2 (k_i^*)) \geq k_i^* - \log_3 (\log_2 (k_i^* \times |\mathcal{Y}|) - k_i^*)
\]

so we are done.

Clauses (c) and (e): Obvious. \( \square \)

Observation 2.5. (1) \( \mathcal{Q}_u, \mathcal{Q}_u^i \) are non-trivial partial orders.

(2) \( \mathcal{Q}_u^i \) is a dense subset of \( \mathcal{Q}_u^i \).
Observation 2.7. Let \( q \) be the following \( Q_u \)-names:

(a) \( \bar{x} = \bar{x}_u = \bigcup \{ \bar{x}_p : p \in G_{Q_u} \} \) and \( \bar{\pi}_a = (\bar{\pi}_{a,i} : i < \omega) \), where

\[ \bar{\pi}_{a,i}[G_{Q_u}] = \pi \] if and only if for some \( p \in G \) we have \( \ell \bar{g}(\bar{x}_p) > i \) and \( f_{x_p,i}(\alpha) = \pi \).

(b) \( f_a = \tau_{\bar{\pi}_a} \), i.e., it is a tree (see 1.2(4)).

(2) For \( p \in Q_u \) let \( pos(p) = \{ \bar{x}_q : p \leq Q_u, q \} \) and for \( \bar{x} \in pos(p) \) let \( p^\{\bar{x}\} = (\bar{x}, (\bar{\epsilon}_i^\{\bar{x}\} : i < \omega, \bar{x} \in \bigcup \{ f\bar{g}(\bar{x}_p) \} \)).

Observation 2.7. Let \( u \subseteq \text{Ord} \) be a finite non-empty set, \( \alpha \in u \). Then:

1. \( \models \limits^a Q_u \quad \bar{x} \in S_{u} \).

2. We can reconstruct \( G_{Q_u} \) from \( \bar{x} \). As a matter of fact, \( \langle \epsilon_x, i : i < \omega \rangle \) determines \( \langle f_{x,p}, g_{x,p} : i < \omega \rangle \) (and also \( G_{Q_u} \)).

3. \( \bar{\pi}_a = \bigcup \{ \bar{\epsilon}_i : \bar{x} = \bar{x}_p \text{ and } p \in G_{Q_u} \} \).

4. \( \models \limits^a Q_u \quad \bar{x} \in T_u \).

5. If \( h : u \rightarrow \text{Ord} \) is one-to-one, then \( h \) (see 2.3(L)) maps \( \bar{x}_u \) to \( \bar{x}_{h[u]} \), \( (\bar{x}_u)_i \) to \( (\bar{x}_{h[u]})_i \), etc.

Observation 2.8. (1) \( p^\{\bar{x}\} \in Q_u \) and \( p \leq Q_u \) \( p^\{\bar{x}\} \) for every \( \bar{x} \in pos(p) \).

(2) If \( p \in Q_u \) and \( i \in \{ f\bar{g}(\bar{x}_p), \omega \} \), then the set \( I_{p,i} := \{ p^\{\bar{x}\} : \bar{x} \in pos(p) \cap S_{u,i} \} \) is predense above \( p \in Q_u \).

Proposition 2.9. \( Q_u \) is a proper \( \omega \)-bounding forcing notion with rapid continuous reading of names, i.e., if \( p \in Q_u \) and \( p \models \limits^a \forall i < \omega \), then for some \( q \in Q_u \) we have:

(a) \( p \leq q \) and \( i(p) = i(q) \).

(b) For every \( i < \omega \) the set \( \{ y : q \not\leq Q_u \quad h(i) \neq y \} \) is finite, moreover, for some \( j \in f\bar{g}(\bar{x}_q) \), \( \omega \), each \( \bar{x} \in pos(q) \cap S_{u,j} \) the condition \( q^\{\bar{x}\} \) forces a value to \( h(i) \).

(c) If \( p \not\leq Q_u \quad \{ \forall i < \omega \quad h(i) \neq k_i \} \), then:

(\#) If \( \bar{x} \in pos(q) \) has length \( i > i(q) \), then \( q^\{\bar{x}\} \) forces a value to \( h(i) \).

Proof. It is a consequence of [RoSh 470], so in the proof below we will follow definitions and notation as there. First note that we may assume \( |u| < i(p) \) (as otherwise we fix \( i > |u| \) and we carry out the construction successively for all \( \bar{x} \in pos(p) \) of length \( i \)).

For \( i < i(p) \) let \( H(i) = \{ p_{r,i} \} \) and for \( i \geq i(p) \) let \( H(i) = pos_i \). Let \( K^* \) consists of all creatures \( t = (\text{nor}[t], \text{val}[t], \text{dis}[t]) \) such that

- for some \( i \geq i(p) \) and \( \epsilon \in CR_i^u \) we have \( \text{dis}[t] = (\epsilon, i) \) and \( \text{nor}[t] = \text{nor}_i^u(\epsilon) \), and
• \( \text{val}[t] = \{ (\bar{w}, \bar{w}^{-}(h)) : \bar{w} \in \prod_{j \leq i} H(j) \land h \in \text{set}(\mathcal{F}_{i}) \} \).

(Note the use of nor\(^1\) and not nor\(^2\) above.) For \( t \in K^{*} \) with \( \text{dis}[t] = (\epsilon, i) \) we let

\[
\Sigma^{*}(t) = \{ s \in K^{*} : \text{dis}[s] = (\emptyset, i) \land \emptyset \in \Sigma(\epsilon) \}.
\]

Then \((K^{*}, \Sigma^{*})\) is a local finitary big creating pair (for \( H \)) with the Halving Property (remember 2.4(d,e)). Now define \( f : \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \) by \( f(j, i) = (f_{i}^{j})^{j+1} \). Let \( p^{*} \in Q_{i}^{*}(K^{*}, \Sigma^{*}) \) be a condition such that \( w^{p^{*}} = \bar{x}_{p} \) and \( \text{dis}[p_{i}^{j}] = (\epsilon_{i+1}(p), i + i(p)) \) for \( i < \omega \). Note that \( Q_{u} \) above \( p \) is essentially the same as \( Q_{i}^{*}(K^{*}, \Sigma^{*}) \) above \( p^{*} \) (compare 2.7(2)). It should be clear that it is enough to find a condition \( q^{*} \geq p^{*} \) with the properties (a)–(c) restated for \( \Sigma^{*}(K, \Sigma) \).

Let \( \varphi_{H}(i) = | \prod_{j < i} H(j) | \). It follows from 2.4(a) that \( \varphi_{H}(i) \leq | \text{pos}_{\ell, i}^{w} |^{i} < (\beth(30i + 3))^{i} < \beth(30i + 4) \) and \( 2^{\varphi_{H}(i)} < \beth(30i + 5) \). Therefore,

\[
2^{\varphi_{H}(i)} \cdot (f(j, i) + \varphi_{H}(i) + 2) < \beth(30i + 5) \cdot \left( (\beth(30i + 10))^{j+1} + \beth(30i + 4) + 2 \right) < \beth(30i + 7) \cdot \left( (\beth(30i + 10))^{j+1} < (\beth(30i + 10))^{j+2} = f(j + 1, i) .
\]

Since plainly \( f(j, i) \leq f(j, i + 1) \), we conclude that the function \( f \) is \( H \)-fast. Therefore [RoSh 470, Theorem 2.2.11] gives us a condition \( q^{*} \) satisfying (a)+(b) (restated for \( Q_{i}^{*}(K^{*}, \Sigma^{*}) \)). Proceeding as in [RoSh 470, Theorem 5.1.12] but using the large amount of bigness here (see 2.4(d)) we may find a stronger condition satisfying also demand (c).

Note that to claim just properness of \( Q_{u} \) one could use the quite strong halving of nor; and [RShS:941].

\begin{observation}
(1) \( D_{i}^{\ell_{1}, \ell_{2}} = D_{i}^{\ell_{1}} \cup D_{i}^{\ell_{2}} \).

(2) \( h \in \text{pos}_{\ell_{1}, \ell_{2}}^{w} \) if and only if \( h \) is a function with domain \( D_{i}^{\ell_{1}, \ell_{2}} \) and \( h|D_{i}^{\ell_{1}} \in \text{pos}_{\ell_{1}}^{w} \) for \( \ell = 1, 2 \).
\end{observation}

\begin{definition}
Assume that \( \emptyset \neq u \subseteq \ell \subseteq \text{Ord} \) are finite, \( v = u \setminus w \neq \emptyset \). Let \( \mathcal{F} \in \text{pos}_{u}^{w} \). We define \( \mathcal{F} \upharpoonright w : \text{pos}_{w}^{u} \longrightarrow [0, 1] \) by

\[
(\mathcal{F} \upharpoonright w)(h) = \frac{\sum\{ \mathcal{F}(c) : h \subseteq c \in \text{pos}_{w}^{u} \}}{|\text{pos}_{w}^{u}|} \quad \text{for } h \in \text{pos}_{w}^{u}.
\]

We will also keep the convention that if \( u \subseteq \text{Ord} \) and \( \mathcal{F} \in \text{pos}_{v}^{u} \), then \( \mathcal{F} \upharpoonright u = \mathcal{F} \).

\begin{proposition}
Assume that \( \emptyset \neq u_{0} \subseteq u_{1} \subseteq \text{Ord} \) are finite, \( u_{0} \neq u_{1} \) and \( \mathcal{F}_{1} \in \text{pos}_{u_{1}}^{w} \). Let \( \mathcal{F}_{0} := \mathcal{F}_{1} \upharpoonright u_{0} \). Then

(1) \( \mathcal{F}_{0} \in \text{pos}_{u_{0}}^{w} \) and \( \frac{||\mathcal{F}_{0}||}{|\text{pos}_{w}^{u_{0}}|} = \frac{||\mathcal{F}_{1}||}{|\text{pos}_{w}^{u_{1}}|} \).

(2) If \( \mathcal{F}_{2} \in \text{pos}_{w}^{u_{0}} \), \( \mathcal{F}_{2} \leq \mathcal{F}_{0} \), then there is \( \mathcal{F}_{3} \in \text{pos}_{u_{1}}^{w} \) such that \( \mathcal{F}_{3} \leq \mathcal{F}_{1} \) and \( \mathcal{F}_{3} \upharpoonright u_{0} = \mathcal{F}_{2} \).
\end{proposition}

\begin{proof}
Let \( v = u_{1} \setminus u_{0} \).

(1) Plainly, \( \mathcal{F}_{0} \in \text{pos}_{u_{0}}^{w} \). Also

\[
||\mathcal{F}_{0}|| = \frac{1}{|\text{pos}_{w}^{u_{0}}|} \sum \{ \mathcal{F}_{1}(c) : h \subseteq c \in \text{pos}_{w}^{u_{1}} \} : h \in \text{pos}_{w}^{u_{1}} \} = \frac{|\mathcal{F}_{1}|}{|\text{pos}_{w}^{u_{1}}|} \cdot |\mathcal{F}_{1}| = \frac{\text{pos}_{u_{0}}^{w}}{|\text{pos}_{w}^{u_{1}}|} \cdot ||\mathcal{F}_{1}|| .
\]
(2) Suppose $\mathcal{F}_2 \in \text{wpos}^u_\omega$, $\mathcal{F}_2 \preceq \mathcal{F}_0$. For $e \in \text{pos}^u_\omega$ such that $\mathcal{F}_0(e \upharpoonright u_0) > 0$ we put

$$\mathcal{F}_3(e) = \frac{\mathcal{F}_2(e \upharpoonright u_0)}{\mathcal{F}_0(e \upharpoonright u_0)}$$

and for $e \in \text{pos}^u_\omega$ such that $\mathcal{F}_0(e \upharpoonright u_0) = 0$ we let $\mathcal{F}_3(e) = 0$. Then clearly $\mathcal{F}_3 \in \text{wpos}^u_\omega$, $\mathcal{F}_3 \preceq \mathcal{F}_1$ and for $h \in \text{pos}^u_\omega$ we have:

$$\left(\mathcal{F}_3 \upharpoonright u_0\right)(h) = \frac{\sum \{\mathcal{F}_3(e) : h \subseteq e \in \text{pos}^u_\omega\}}{|\text{pos}^u_\omega|} = \frac{\mathcal{F}_2(h)}{\mathcal{F}_0(h)} \frac{\sum \{\mathcal{F}_1(e) : h \subseteq e \in \text{pos}^u_\omega\}}{|\text{pos}^u_\omega|} = \mathcal{F}_2(h).$$

\[
\square
\]

**Definition 2.13.** (1) We say that a pair $(\mathcal{F}_1, \mathcal{F}_2)$ is balanced when for some $i < \omega$ and finite non-empty sets $u_1, u_2 \subseteq \text{Ord}$ we have $\mathcal{F}_\ell \in \text{wpos}^u_\ell$ for \( \ell = 1, 2 \) and $\|\mathcal{F}_1\|/|\text{pos}^u_\ell|$ = $\|\mathcal{F}_2\|/|\text{pos}^u_\ell|$ and, moreover, if $u_1 \cap u_2 \neq \emptyset$ then also $\mathcal{F}_1 \upharpoonright (u_1 \cap u_2) = \mathcal{F}_2 \upharpoonright (u_1 \cap u_2)$.

(2) A pair $(\mathcal{F}_1, \mathcal{F}_2)$ is strongly balanced if it is balanced and $0 \neq |u_1 \setminus u_2| = |u_2 \setminus u_1|$ (where $\mathcal{F}_\ell \in \text{wpos}^u_\ell$ for $\ell = 1, 2$).

(3) Assume $\mathcal{F}_\ell \in \text{wpos}^u_\ell$ (for $\ell = 1, 2$). Let $u = u_1 \cup u_2$. We define $\mathcal{F} = \mathcal{F}_1 * \mathcal{F}_2 \in \text{wpos}^{u_1 \cup u_2}_\ell$ (see 2.3(I)(γ)) by putting for $h \in \text{pos}^{u_1 \cup u_2}$

$$\mathcal{F}(h) = \mathcal{F}_1(h \upharpoonright u_1) * \mathcal{F}_2(h \upharpoonright u_2).$$

**Remark 2.14.** (1) Note that $\mathcal{F}_1 * \mathcal{F}_2$ can be constantly zero, so it does not have to be a member of wpos. However, below we will apply to it our notation and definitions formulated for wpos.

(2) If $\mathcal{F}_1 \in \text{wpos}^u_\ell$ ($\ell = 1, 2$), $u_0 = u_1 \cap u_2 \neq \emptyset$, and $\mathcal{F}_3 = \mathcal{F}_1 * \mathcal{F}_2$, then $\mathcal{F}_3 \upharpoonright u_0 = (\mathcal{F}_1 \upharpoonright u_0) \cdot (\mathcal{F}_2 \upharpoonright u_0)$.

(3) If $u_1 \cap u_2 = \emptyset$, $\mathcal{F}_\ell \in \text{wpos}^u_\ell$, then $\|\mathcal{F}_1 * \mathcal{F}_2\| = \|\mathcal{F}_1\| \cdot \|\mathcal{F}_2\|$.

(4) Suppose $(\mathcal{F}_1, \mathcal{F}_2)$ is balanced, $\mathcal{F}_\ell \in \text{wpos}^u_\ell$ (for $\ell = 1, 2$). Choose finite $u_1', u_2' \subseteq \text{Ord}$ such that $u_1 \subseteq u_1'$, $u_2 \subseteq u_2'$, $u_1 \cap u_2 = u_1' \cap u_2'$ and $|u_2' \setminus u_1'| = |u_1' \setminus u_2'| \neq 0$. For $\ell = 1, 2$ and $h \in \text{pos}^u_\ell$ put $\mathcal{F}_\ell'(h) = \mathcal{F}_\ell(h \upharpoonright u_2)$. Then $(\mathcal{F}_1', \mathcal{F}_2')$ is strongly balanced and $\mathcal{F}_\ell' \upharpoonright u_\ell = \mathcal{F}_\ell$.

**Proposition 2.15.** (1) If $(u_1, u_2)$ is a $\Delta$-system pair, $u_1 \neq u_2 \neq \emptyset$, $\mathcal{F}_\ell \in \text{wpos}^u_\ell$ for $\ell = 1, 2$, and $\mathcal{F}_2 = \text{OP}_{u_2, u_1}(\mathcal{F}_1)$, then the pair $(\mathcal{F}_1, \mathcal{F}_2)$ is strongly balanced.

(2) If $\mathcal{F}_\ell \in \text{wpos}^u_\ell$ for $\ell = 1, 2$ and $\|\mathcal{F}_\ell\|/|\text{pos}^u_\ell| \geq a > 0$, the pair $(\mathcal{F}_1, \mathcal{F}_2)$ is balanced, $u_3 = u_1 \cup u_2$ and $\mathcal{F} = : \mathcal{F}_1 * \mathcal{F}_2$, then $\|\mathcal{F}\|/|\text{pos}^{u_3}_\ell| \geq \frac{a^2}{3}$.

**Proof.** (1) Straightforward.

(2) Let $u_0 = u_1 \cap u_2$. We may assume $u_0 \neq \emptyset$ (see 2.14(3)). Let $\mathcal{F}_3 := \mathcal{F}$ and $\mathcal{F}_0 = \mathcal{F}_1 \upharpoonright u_0 = \mathcal{F}_2 \upharpoonright u_0$. For $h \in \text{pos}^u_\ell$ and $\ell \leq 3$ let $\mathcal{F}_\ell^{[h]} : \text{pos}^u_\ell \rightarrow [0, 1]$ be defined by

$$\mathcal{F}_\ell^{[h]}(e) = \left\{\begin{array}{ll}
\mathcal{F}_\ell(e) & \text{if } h \subseteq e, \\
0 & \text{otherwise.}
\end{array}\right.$$ 

Note that

$$(*)_0 \ell_k = \{|e \in \text{pos}^u_\ell : h \subseteq e| \text{ for } h \in \text{pos}^u_\ell, \ell = 1, 2, \text{i.e., this number does not depend on } h.$$ 

[Why? By the definition of $\text{pos}^u_\ell$ and 2.10.]
\( \mathcal{F}_\ell \) is the disjoint sum of \( \langle \mathcal{F}_{\ell}^{[h]} : h \in \text{pos}_{t_0}^u \rangle \) for \( \ell = 1, 2, 3 \); the "disjoint" means that \( \langle \mathcal{F}_{\ell}^{[h]} : h \in \text{pos}_{t_0}^u \rangle \) are pairwise disjoint. Hence \( \| \mathcal{F}_\ell \| = \sum \| \mathcal{F}_{\ell}^{[h]} : h \in \text{pos}_{t_0}^u \| \).

[Why? By the definition of \( \text{pos}_{t_0}^u \) and \( \mathcal{F}_{\ell}^{[h]} \).]

\( \ast_2 \) \( k_\ell \geq \| \mathcal{F}_{\ell}^{[h]} \| \) for \( \ell = 1, 2, 3 \).

[Why? By Definition 2.11.]

\( \ast_3 \) \( \| \mathcal{F}_3^{[h]} \| = \| \mathcal{F}_2^{[h]} \| \times \| \mathcal{F}_1^{[h]} \| \).

[Why? By the choice of \( \mathcal{F}_3^{[h]} \).]

Let (noting that \( 0 < a \leq 1 \))

\( \ast_4 \) \( A_0 = \{ h \in \text{pos}_{t_0}^u : \mathcal{F}_0(h) \geq \frac{a}{2} \} \).

Now \( \ast_5 \) \( |A_0| \geq \frac{a}{2} \times |\text{pos}_{t_0}^u| \).

[Why? Letting \( d = |A_0|/|\text{pos}_{t_0}^u| \) and \( b = \frac{a}{2} \) (so \( 0 < b \leq \frac{1}{2} \)) we have

\[ h \in \text{pos}_{t_0}^u \setminus A_0 \Rightarrow \| \mathcal{F}_1^{[h]} \| \leq \frac{a}{2} k_1 = bk_1 \]

(remember \( \ast_2 \)). Also \( \| \mathcal{F}_1^{[h]} \| \leq k_1 \) for all \( h \in \text{pos}_{t_0}^u \) and \( k_1 \cdot |\text{pos}_{t_0}^u| = |\text{pos}_{t_0}^u| \).

Hence

\[ a \times |\text{pos}_{t_0}^u| \leq \| \mathcal{F}_1 \| = \sum \{ \| \mathcal{F}_1^{[h]} : h \in \text{pos}_{t_0}^u \} = \sum \{ \| \mathcal{F}_1^{[h]} : h \in \text{pos}_{t_0}^u \setminus A_0 \} + \sum \{ \| \mathcal{F}_1^{[h]} : h \in A_0 \} \leq bk_1 \cdot (|\text{pos}_{t_0}^u| - |A_0|) + k_1 |A_0| = bk_1 (1 - d) |\text{pos}_{t_0}^u| + k_1 |\text{pos}_{t_0}^u| = k_1 \cdot |\text{pos}_{t_0}^u| (b(1 - d) + d) = |\text{pos}_{t_0}^u|(b + (1 - b)d). \]

Hence \( a \leq b + (1 - b)d \) and \( \frac{a - b}{1 - b} \leq d \). So, as \( b = a/2 \), we have \( d \geq \frac{a/2}{1 - a/2} = \frac{a}{2 - a} \). By the choice of \( d \) we conclude \( |A_0| = d \times |\text{pos}_{t_0}^u| \geq \frac{a}{2 - a} \times |\text{pos}_{t_0}^u| \), i.e., \( \ast_5 \) holds.]

Now \( \ast_6 \) \( \| \mathcal{F}_3 \| \geq \frac{a}{2} \times k_1 \times k_2 \times |A_0| \).

[Why? By \( \ast_3 \), \( \| \mathcal{F}_3^{[h]} \| = \| \mathcal{F}_1^{[h]} \| \times \| \mathcal{F}_2^{[h]} \| \) for all \( h \in \text{pos}_{t_0}^u \) and hence

\[ \| \mathcal{F}_3 \| = \| \sum \{ \| \mathcal{F}_1^{[h]} : h \in \text{pos}_{t_0}^u \} \| = \| \sum \{ \| \mathcal{F}_1^{[h]} \| \times \| \mathcal{F}_2^{[h]} \| : h \in \text{pos}_{t_0}^u \} \| \geq \sum \{ \| \mathcal{F}_1^{[h]} \| \times \| \mathcal{F}_2^{[h]} : h \in A_0 \} \}
\]

So \( \ast_6 \) holds.

Lastly,

\( \ast_7 \) \( \| \mathcal{F}_3 \| \geq \frac{a}{2} |\text{pos}_{t_0}^u| \).

[Why? Note that \( k_1 \cdot k_2 \cdot |\text{pos}_{t_0}^u| = |\text{pos}_{t_0}^u| \) and hence

\[ \| \mathcal{F}_3 \| \geq \frac{a}{2} \times k_1 \times k_2 \times |A_0| = \frac{a}{2} \frac{|A_0|}{|\text{pos}_{t_0}^u|} (k_1 \times k_2 \times |\text{pos}_{t_0}^u|) = \frac{a}{2} \times (|A_0|/|\text{pos}_{t_0}^u|) \times |\text{pos}_{t_0}^u| \geq \frac{a}{2} \times \frac{a}{2 - a} \times |\text{pos}_{t_0}^u| \geq \frac{a^2}{8} |\text{pos}_{t_0}^u|. \]

So \( \ast_7 \) holds and we are done. \( \square \)

Remark 2.16. In 2.15(2) we can get a better bound, the proof gives \( \frac{a^4}{(2 - a)^4} \) and we can point out the minimal value, gotten when all are equal.

Definition 2.17. Let \( P, Q \) be forcing notions.

(1) A mapping \( j : P \to Q \) is called a projection of \( P \) onto \( Q \) when:

(a) \( j \) is "onto" \( Q \) and
(b) $p_1 \subseteq p_2 \Rightarrow j(p_1) \leq j(p_2)$.

(2) A projection $j : P \rightarrow Q$ is $\preceq$-complete if (in addition to (a), (b) above):

(c) if $Q \models j(p) \leq q$, then some $p_1$ satisfies $p \preceq p_1$ and $q \leq j(p_1)$.

**Definition 2.18.** If $\emptyset \neq u \subseteq v \subseteq \text{Ord}$ are finite, then $j_{u,v}$ is a function from $Q_u$ onto $Q_v$ defined by:

- For $q \in Q_u$, we have $j_{u,v}(q) = p \in Q_v$ if and only if
  - (a) $1(p) = 1(q)$ and $\bar{x}_p = \bar{x}_q \upharpoonright u$, and
  - (b) for $i \in \bar{I}(p, \omega)$ we have $c_i^q = \text{proj}_u(c_i^p)$ which means $c_i^q = (\mathcal{F}_i^q \upharpoonright u, m_i)$.

**Proposition 2.19.** If $u \subseteq v \subseteq \text{Ord}^{<\aleph_0}$, then $j_{u,v}$ is a (well defined) $\preceq$-complete projection from $\mathcal{Q}_u$ onto $\mathcal{Q}_v$.

**Proof.** It follows from 2.12 that

- $\star_1$ if $x \in CR^u$, then $\text{proj}_u(x) \in CR^v$ and $\text{nor}_i(\text{proj}_u(x)) = \text{nor}_i(x)$.

Also, by the definition of $\text{proj}_u$ and 2.11, easily

- $\star_2$ if $x \in CR^u$, $d \in \Sigma(x)$, then $\text{proj}_u(d) \in \Sigma(\text{proj}_u(x))$, and

- $\star_3$ if $d \in CR^u$, $F : \text{pos}^v \rightarrow [0, 1]$ is defined by $F(h) = F(h \upharpoonright u)$, then

Thus $j_{u,v}$ is a projection from $\mathcal{Q}_u$ onto $\mathcal{Q}_v$. To show that it is $\preceq$-complete we note that, by 2.12(2),

- $\star_4$ if $c_1 \in CR^u$, $c_0 = \text{proj}_u(c_1)$ and $c_2 \in \Sigma(c_0)$, then some $c_3 \in CR^v$ satisfies $c_3 \in \Sigma(c_1)$ and $\text{proj}_u(c_3) = c_2$.

The rest should be clear. $\square$

**Proposition 2.20.** Assume $(u_1, u_2)$ is a $\Delta$-system pair, i.e., $u_1, u_2 \subseteq \text{Ord}$, $|u_1| = |u_2| < \aleph_0$ and so $\text{OP}_{u_2, u_1}$ (the order isomorphism from $u_1$ onto $u_2$, see 0.5(10)) is the identity on $u_1 \cap u_2$. Further assume that $p_\ell \in Q_{u_\ell}$ for $\ell = 1, 2$, $\text{nor}_i^1(c_i^\ell) \geq 1$ for all $i \geq 1(p_\ell)$ and $\text{OP}_{u_1, u_2}$ maps $p_1$ to $p_2$. Then there is a condition $q \in Q_{u_2}$ such that:

- (a) $1(q) = 1(p_1)$ and $p_\ell \preceq q, j_{u_\ell, u}(q)$ for $\ell = 1, 2$, and

- (b) $\text{nor}_i^1(c_i^p) \geq \text{nor}_i^1(c_i^q) - 1$ for $i \in [1(q), \omega)$.

**Proof.** We shall mainly use clause (2) of 2.15.

First, we set $1(q) = 1(p_1)$ and we let $\bar{x} = \langle x_i : i < 1(q) \rangle$, where $x_i = (f_{x_i}, g_{x_i}, e_{x_i})$ is defined by

- $f_{x_i} = f_{x_i}^{p_1} \cup f_{x_i}^{p_2}$, it is well defined function because $f_{x_i}^{p_1} \in \text{Per}^{u_1}(\text{Per}^{u_2}(1, 2))$

for $\ell = 1, 2$ are well defined functions, with the same restriction to $u_0 = u_1 \cap u_2$;

- $g_{x_i} = g_{x_i}^{p_1} \cup g_{x_i}^{p_2}$ (similarly well defined);

- $e_{x_i} = e_{x_i}^{p_1} \cup e_{x_i}^{p_2}$ (again, it is well defined).

Easily,

- $\star_1$ $\bar{x} \in S_{u, 1(q)}$.

Second, we let $\bar{c} = \langle c_i : i \in [1(q), \omega) \rangle$ where for $i \in [1(q), \omega)$ we let $c_i = (F_i, m_i)$, where

- $F_i = F_{c_i}^{p_1} \ast F_{c_i}^{p_2}$,

- $m_i = m_{c_i}$ for $\ell = 1, 2$. 


Let \( i \in [i(q), \omega) \). By Proposition 2.15(1) we know that the pair \( (\mathcal{F}_i^{r_1}, \mathcal{F}_i^{r_2}) \) is (strongly) balanced. Let \( a = \frac{\|\mathcal{F}_i^{r_1}\|}{\|\text{pos}_{u}^i\|} = \frac{\|\mathcal{F}_i^{r_2}\|}{\|\text{pos}_{u}^i\|} \). Then, by 2.15(2) we have \( \|\mathcal{F}_i\| \geq a^2 \times \|\text{pos}_{u}^i\| \). Hence, recalling \( k_1^i \geq 3 \),
\[
\text{nor}_{u}^{i}(\mathcal{F}_i) = k_1^i - \log_3 \left( \log_3 \left( \frac{k_1^i}{\|\mathcal{F}_i\|} \right) \right) \geq k_1^i - \log_3 \left( \log_3 \left( \frac{\|\mathcal{F}_i\|}{\|\text{pos}_{u}^i\|} \right) \right) \geq k_1^i - \log_3 \left( 3 \log_3 \left( \frac{k_1^i}{a} \right) \right) = k_1^i - \log_3 \left( \frac{k_1^i}{\|\mathcal{F}_i\|} \right) - 1 = \text{nor}_{u}^{i}(\mathcal{F}_i^{r_1}) - 1 = \text{nor}_{u}^{i}(\mathcal{F}_i^{r_2}) - 1.
\]
Now clearly \( q := (\bar{x}, \bar{c}) \) is as required. \( \square \)

### 3. Definable branches and disjoint cones

Now we come to the claim on creatures specifically to deal with the bounded intersection of branches. We think below of \( H_\ell \) as part of a name of a branch of the \( \alpha \)-th tree.

**Lemma 3.1.** Assume that \( u = u_1 \cup u_2 \) are finite non-empty sets of ordinals, \( |u_2 \setminus u_1| = |u_1 \setminus u_2| \neq 0 \), \( w = u_1 \cap u_2 \). Suppose also that \( i = j + 1 < \omega \), \( F_\ell \in \text{wpos}^{1\mu} \) (for \( \ell = 1, 2 \)) and the pair \( (F_1, F_2) \) is balanced. Let \( S \) be a finite set (e.g., \( n^{(\ell)}(2) \)) and \( H_\ell : \text{pos}^{u_\ell} \rightarrow S \). Then there are \( F_1', F_2', F \) such that:

(a) \( F \in \text{wpos}^{u_1} \),
(b) \( F_\ell' \subseteq F_\ell \) for \( \ell = 1, 2 \) and \( F = F_1' \ast F_2' \),
(c) the pair \( (F_1', F_2') \) is balanced,
(d) \( |F_\ell'| \geq \frac{1}{2} \|F_\ell\| \) for \( \ell = 1, 2 \),
(e) one of the following occurs:
(\( \alpha \)) if \( h \in \text{set}(F) \) then \( H_1(h \upharpoonright u_1) \neq H_2(h \upharpoonright u_2) \),
\( (\beta) \) (Case 1) \( u_1 \cap u_2 = \emptyset \): for some \( s \in S \) we have \( h \in \text{set}(F) \Rightarrow H_1(h \upharpoonright u_1) = s = H_2(h \upharpoonright u_2) \);
\( (\text{Case 2}) \) general: for some function \( H' \) from \( \text{pos}^{u_1} \) to \( S \) we have:
\( h \in \text{set}(F) \Rightarrow H_1(h \upharpoonright u_1) = H'(h \upharpoonright (u_1 \cap u_2)) = H_2(h \upharpoonright u_2) \).

**Proof.** Let \( \langle s_m : m < m_\ast \rangle \) list of all members of \( S \). Let \( g \in \mathcal{G} := \text{pos}^{u_1} \). Now for every \( m \leq m_\ast \) we define

(\( \oplus_1 \)) (a) \( F_{\ell,g} : \text{pos}^{u_\ell} \rightarrow [0, 1] \) is given by \( F_{\ell,g}(h) = F_\ell(h) \) if \( g \subseteq h \) and \( F_{\ell,g}(h) = 0 \) otherwise,
(b) \( k_{\ell,g} := \|F_{\ell,g}\| \),
(c) \( k_{\ell,m,g} := \sum \{ F_{\ell,g}(h) : g \subseteq h \in \text{pos}^{u_\ell} \land H_\ell(h) \in \{s_m : m_1 < m \} \} \),
(d) \( k_{\ell,m,g} := \sum \{ F_{\ell,g}(h) : g \subseteq h \in \text{pos}^{u_1} \land H_\ell(h) = s_m \} \),
(e) \( k_{\ell,m,g} := \sum \{ F_{\ell,g}(h) : g \subseteq h \in \text{pos}^{u_2} \land H_\ell(h) \in \{s_m : m < m_1 < m_\ast \} \} \).

Since we are assuming that \( (F_1, F_2) \) is strongly balanced, we have

(\( \oplus_2 \)) \( k_{1,g} = k_{2,g} \), call it \( k_g \).

Plainly, \( k_{\ell,m,g}, k_{\ell,m,g}^\sim, k_{\ell,m,g}^\succeq, k_g \) are non-negative reals and

(\( *1 \)) \( k_{\ell,m,g}^\sim + k_{\ell,m,g}^\succeq = k_g \).

Hence

(\( *2 \)) \( \max\{k_{\ell,m,g}^\sim, k_{\ell,m,g}^\succeq\} \geq k_g/2 \).

Also,
$$\star_3 k^>_m \leq k^>_m + k^>_m + k^>_m \leq k^>_m + k^>_m + k^>_m,$$ in fact $k^>_m + k^>_m = k^>_m$ and $k^>_m + k^>_m = k^>_m$ and $k^>_m + k^>_m = k^>_m$.

Therefore:

$$\star_4 k^>_m \geq 0 = k^>_m.$$

Hence for some $m_{t,g}$ we have

$$\star_5 k^>_m \geq k^>_g / 2 \quad \text{and} \quad k^>_m \geq k^>_g / 2.$$

[Why? If clause (b) fails then by (b) we get clause (a).]

Choose $(\ell, \mathcal{F}_{\ell, g}, \mathcal{F}_{\ell, g}^*)$ as follows.

$$\star_7$$ Case 1: $k^>_m \geq k^>_g / 4$ and $k^>_m \leq k^>_m \geq k^>_g / 4$.

Let $\ell = 1$, and $\mathcal{F}_{\ell, g}^* : \mathcal{P} \rightarrow [0, 1]$ be such that $\mathcal{F}_{\ell, g}^* (h) = \mathcal{F}_{\ell, g}^* (h)$ if $g \subseteq h$ and $H_{\ell, g} = s_{m_{t,g}}$, and $\mathcal{F}_{\ell, g}^* (h) = 0$ otherwise (for $\ell = 1, 2$).

Case 2: $k^>_m \geq k^>_g / 4$ and $k^>_m \leq k^>_m \leq k^>_g / 4$.

Let $\ell = 1$, and $\mathcal{F}_{\ell, g}^* : \mathcal{P} \rightarrow [0, 1]$ be such that $\mathcal{F}_{\ell, g}^* (h) = \mathcal{F}_{\ell, g}^* (h)$ if $g \subseteq h$ and $H_{\ell, g} = s_{m_{t,g}}$, and $\mathcal{F}_{\ell, g}^* (h) = 0$ otherwise; $\mathcal{F}_{\ell, g}^* (h) = \mathcal{F}_{\ell, g}^* (h)$ if $g \subseteq h$ and $H_{\ell, g} = s_{m_{t,g}}$, and $\mathcal{F}_{\ell, g}^* (h) = 0$ otherwise.

Case 3: $k^>_m \geq k^>_g / 4$ and $k^>_m \leq k^>_m \leq k^>_g / 4$.

Let $\ell = 1$, and $\mathcal{F}_{\ell, g}^* : \mathcal{P} \rightarrow [0, 1]$ be such that $\mathcal{F}_{\ell, g}^* (h) = \mathcal{F}_{\ell, g}^* (h)$ if $g \subseteq h$ and $H_{\ell, g} = s_{m_{t,g}}$, and $\mathcal{F}_{\ell, g}^* (h) = 0$ otherwise.

Case 4: $k^>_m \geq k^>_g / 4$ and $k^>_m \leq k^>_m \leq k^>_g / 4$.

Let $\ell = 1$, and $\mathcal{F}_{\ell, g}^* : \mathcal{P} \rightarrow [0, 1]$ be such that $\mathcal{F}_{\ell, g}^* (h) = \mathcal{F}_{\ell, g}^* (h)$ if $g \subseteq h$ and $H_{\ell, g} = s_{m_{t,g}}$, and $\mathcal{F}_{\ell, g}^* (h) = 0$ otherwise.

Case 5: $k^>_m \geq k^>_g / 4$ and $k^>_m \leq k^>_m \leq k^>_g / 4$.

Let $\ell = 1$, and $\mathcal{F}_{\ell, g}^* : \mathcal{P} \rightarrow [0, 1]$ be such that $\mathcal{F}_{\ell, g}^* (h) = \mathcal{F}_{\ell, g}^* (h)$ if $g \subseteq h$ and $H_{\ell, g} = s_{m_{t,g}}$, and $\mathcal{F}_{\ell, g}^* (h) = 0$ otherwise.

Now:

$$\star_8 || \mathcal{F}_{\ell, g}^* || \geq \frac{1}{4} || \mathcal{F}_{\ell, g}^* || \geq \frac{1}{4} k^>_g$$ for $\ell = 1, 2$.

[Why? By (5) and (6) - check each case.]

Finally choose $\mathcal{F}_{\ell, g}^*$ (for $\ell = 1, 2$ and $g \in \mathcal{P}$) such that:

$$\star_9$$

(a) $\mathcal{F}_{\ell, g}^* \leq \mathcal{F}_{\ell, g}^*$, $|| \mathcal{F}_{\ell, g}^* || \geq \frac{1}{4} k^>_g$, and $|| \mathcal{F}_{\ell, g}^* || = || \mathcal{F}_{\ell, g}^* ||$,

(b) if $(\ell = 1 \land m_{t,g} = m_{t,g})$ then for some $s = s(g) \in S$

$$h_1 \in \text{set}(\mathcal{F}_{\ell, g}^* ) \land h_2 \in \text{set}(\mathcal{F}_{\ell, g}^* ) \Rightarrow H_1 (h_1) = H_2 (h_2) = s,$$

(c) if $(\ell = 1 \land m_{t,g} \neq m_{t,g})$ then

$$h_1 \in \text{set}(\mathcal{F}_{\ell, g}^* ) \land h_2 \in \text{set}(\mathcal{F}_{\ell, g}^* ) \Rightarrow H_1 (h_1) \neq H_2 (h_2).$$
[Why possible? We can choose them to satisfy clause (a) by (\ast)_8 and clauses (b),(c) follow - look at the choices inside (\ast)_7.]

Now we stop fixing \( g \in G \). Put

\[ G^1 = \{ g \in G : \nu_g = 1 \text{ and } m_1, g = m_2, g \} \quad \text{and} \quad G^2 = \{ g \in G : \nu_g \neq 1 \text{ or } m_1, g \neq m_2, g \}. \]

When we vary \( g \in G \), obviously

\((\ast_1)\) \( F_{\ell} \) is the disjoint sum of \( \langle F_{\ell, g} : g \in G \rangle \),

and hence

\((\ast_2)\) \( \| F_{\ell} \| = \sum \{ k_g : g \in G \} \).

As \( G = \text{pos}^u \) is the disjoint union of \( G^1, G^2 \), plainly

\((\ast_3)\) for some \( G' \in \{ G^1, G^2 \} \) the following occurs:

\[ \sum \{ k_g : g \in G' \} \geq \| F_{\ell} \|/2 = \| F_{\ell, g} \|/2. \]

Lastly, we put \( F'_{\ell} = \sum \{ F'_{\ell, g} : g \in G' \} \) (for \( \ell = 1, 2 \)). We note that

\[ \| F'_{\ell} \| = \sum \{ \| F'_{\ell, g} \| : g \in G' \} \geq \sum \{ \frac{1}{4} k_g : g \in G' \} \geq \frac{1}{4} (\| F_{\ell} \|/2) = \frac{1}{8} \| F_{\ell} \|. \]

Now it should be clear that \( F'_{\ell, g} \) and \( F = F'_{\ell_1} \ast F'_{\ell_2} \) are as required. \( \square \)

**Crucial Lemma 3.2.** Assume that

(a) \( u_1, u_2 \) are finite subsets of \( \text{Ord} \), \( |u_1 \setminus u_2| = |u_2 \setminus u_1| \neq 0 \),

(b) \( F_{\ell} \in \text{wpos}^u, i < \omega \) and \( \| F_{\ell} \| \geq a \times |\text{pos}^u| > 0 \),

(c) \( H_{\ell} \) is a function from \( S_{u_{\ell + 1}} \) to \( n_{\ast} \),

(d) the pair \( (F_1, F_2) \) is balanced.

Let \( u = u_1 \cup u_2 \) and \( w = u_1 \cap u_2 \) and \( |u| < n_+(i - 1) \). Then we can find \( F'_{\ell} \in \text{wpos}^u \) and partial functions \( h_{\ell} \) from \( S_{u_{\ell + 1}} \) into \( n_{\ast} \) for \( \ell = 1, 2 \) and \( F \in \text{wpos}^u \) such that:

(a) \( F'_{\ell} \leq F_{\ell}, \| F'_{\ell} \| \geq 2^{-k_\ast} \| F_{\ell} \|, \) where \( k_\ast = |S_{u_{\ell + 1}}| < \ell^\ast \), and the pair \( (F'_{\ell_1}, F'_{\ell_2}) \) is balanced,

(b) \( F = F'_{\ell_1} \ast F'_{\ell_2} \) and so \( F \mid u \ell \leq F_{\ell} \) for \( \ell = 1, 2 \) and \( \| F \|/|\text{pos}^u| \geq \frac{a^3}{2^{2\omega^3 + 7}} \),

(\gamma) if \( h \in \text{set}(F), x \in S_{u_{\ell + 1}} \) (so \( \ell \nu(x) = i \)) and \( y = \text{suc}_2(h) \in S_{u_{\ell + 1}}, \) then \( H_1(y \mid u_1) \neq H_2(y \mid u_2) \)

(\delta) moreover, for each \( x \in S_{u_{\ell + 1}} \) the truth value of the equality \( H_1(y \mid u_1) = H_2(y \mid u_2) \) in clause (\gamma) is the same for all \( h \in \text{set}(F) \).

**Proof.** Let \( \langle x_k : k < k_\ast \rangle \) list \( S_{u_{\ell + 1}} \) (without repetitions). We choose \( (F_{\ell_k}, F_{1, k}, F_{2, k}) \) by induction on \( k \leq k_\ast \) such that:

(i) \( F_{\ell, k} \in \text{wpos}^u \) for \( \ell = 1, 2 \),

(ii) if \( k = 0 \), then \( F_{\ell, k} = F_{\ell} \),

(iii) \( F_{\ell, k} \) is \( \leq \) -decreasing with \( k \), i.e., \( F_{\ell, k + 1} \leq F_{\ell, k} \),

(iv) \( \| F_{\ell, k} \| \geq \frac{1}{4^k} \| F_{\ell} \| \),

(v) \( (F_{1, k}, F_{2, k}) \) is balanced,

(vi) \( F_k = F_{1, k} \ast F_{2, k} \), so also \( \leq \) -decreasing with \( k \),

(vii) for each \( k \) one of the following occurs:

(a) if \( h \in \text{set}(F_{k + 1}) \) and \( y = \text{suc}_{2, k}(h) \in S_{u_{k + 1}}, \) then \( H_1(y \mid u_1) \neq H_2(y \mid u_2) \);
(β) if \( h', h'' \in \text{set}(\mathcal{F}_{k+1}) \) and \( h' \upharpoonright w = h'' \upharpoonright w, \; \bar{y}' = \text{suc}_x(h'), \; \bar{y}'' = \text{suc}_x(h'') \), then

\[
H_1(\bar{y}' \upharpoonright u_1) = H_1(\bar{y}'' \upharpoonright u_1) = H_2(\bar{y}' \upharpoonright u_2) = H_2(\bar{y}'' \upharpoonright u_2).
\]

We refer to the definition then \( \mathcal{F} = \mathcal{F}_{k+1} \) is as required. Note that \( \|\mathcal{F}_{k+1}\| \geq \|\mathcal{F}_k\|_i \), hence the bound on \( \|\mathcal{F}\|_i \), i.e. clause (β) of 3.2 holds by 2.15; that is we choose \( s = 8^{-k}, 8 \) here for \( a \) there and \( \frac{a^2}{8} \) there means \( \frac{\delta^{-1}, \alpha}{8} \) here.

The initial step of \( k = 0 \) is obvious. For the inductive step, for \( k + 1 \) we define \( H_{k+1} \) as follows: for \( h \in \text{pos}_n^\alpha \) we put \( H_{k+1}(h) = (\text{suc}_x(h))_H \) and we apply Lemma 3.1 to \( \mathcal{F}_{k+1}, \mathcal{F}_{k+2}, H_{1,k}, H_{2,k} \) here standing for \( \mathcal{F}_1, \mathcal{F}_2, H_1, H_2 \) there. This way we obtain \( \mathcal{F}_{k+1} \), \( \mathcal{F}_{k+2}, H_{1,k}, H_{2,k} \) here standing for \( \mathcal{F}_1, \mathcal{F}_2, H_1, H_2 \) there. If in clause 3.1(e) subclause (α) holds, then the demand in (vii)(α) is satisfied. Otherwise, we get a function \( H' \) such that for each \( h \in \text{set}(\mathcal{F}_{k+1}) \) we have

\[
H_{1,k}(h \upharpoonright u_1) = H'(h \upharpoonright w) = H_{2,k}(h \upharpoonright u_2).
\]

Consequently, the demand in (vii)(β) is fulfilled. Moreover this choice is O.K. for any \( \mathcal{F}' \subseteq \mathcal{F}_{k+1}, \) so we are done.

\[ \square \]

**Lemma 3.3.**

(1) Assume that \( u \subseteq \text{Ord} \) is finite, \( \alpha \in u \) and \( \alpha \in \mathbb{C}^u \), \( i > 0 \). Suppose also that there are \( x \in S_{n,i} \) and functions \( h_1, h_2 \) such that

- if \( h \in \text{set}(\mathcal{F}_{i}) \) and \( \bar{y} = \text{suc}_x(h) \), then
  \[
  H_1(\bar{y} \upharpoonright \{\alpha\}) \in n_i^{\uparrow \upharpoonright 1} \text{ is well defined for } \ell = 1, 2 \text{ and } (g_{y}^{(\ell)})^{-1} \circ f_{\ell}(\alpha)(\eta_1) = (g_{y}^{\uparrow \upharpoonright 1} \circ f_{\ell}(\alpha))(\eta_2).
  \]

Then \( \text{nor}_i(\mathcal{F}_i) = 0 \).

(2) Assume that \( w \subseteq u \) is finite, \( \alpha_1, \alpha_2 \in w \setminus u, \alpha_1 \neq \alpha_2 \) and \( \alpha \in \mathbb{C}^u \), \( i > 0 \). Suppose also that \( x \in S_{n,i} \) and there are functions \( h_1, h_2 \) such that

- if \( h \in \text{set}(\mathcal{F}_{i}) \) and \( \bar{y} = \text{suc}_x(h) \), then
  \[
  H_1(\bar{y} \upharpoonright \{\alpha\}) \in n_i^{\uparrow \upharpoonright 1} \text{ is well defined for } \ell = 1, 2 \text{ and } (g_{y}^{(\ell)})^{-1} \circ f_{\ell}(\alpha)(\eta_1) = (g_{y}^{\uparrow \upharpoonright 1} \circ f_{\ell}(\alpha))(\eta_2).
  \]

Then \( \text{nor}_i(\mathcal{F}_i) = 0 \).

**Proof.**

(1) First we try to give an upper bound to \( |\text{set}(\mathcal{F}_i)|/|\text{pos}_n^\alpha| \). Thinking of “randomly drawing” \( h_0 \in \text{pos}_n^\alpha(\alpha) \) with equal probability, we get an upper bound to the fraction of \( h \in \text{pos}_n^\alpha, h \upharpoonright \{\alpha\} = h_0 \) such that if \( \text{suc}_x(h) = \bar{y} \), then

\[
H_1(\bar{y} \upharpoonright \{\alpha\}) \in n_i^{\uparrow \upharpoonright 1} \text{ is well defined for } \ell = 1, 2 \text{ and } (g_{y}^{(\ell)})^{-1} \circ f_{\ell}(\alpha)(\eta_1) = (g_{y}^{\uparrow \upharpoonright 1} \circ f_{\ell}(\alpha))(\eta_2).
\]

Since

\[
g_{y}^{\uparrow \upharpoonright 1}(\alpha)|n_{i}(\alpha) - 1) = g_{y}^{\uparrow \upharpoonright 1}(\alpha)|n_{i}(\alpha) - 1) = f_{\ell}(\alpha)(\nu)|n_{i}(\alpha) - 1) \quad \text{for all } \nu \in n_i^{\uparrow \upharpoonright 1},
\]

clearly it is \( \lesssim 1/2^{n_i^{\uparrow \upharpoonright 1} - n_i} \). So \( \|\mathcal{F}_i\|/|\text{pos}_n^\alpha| \leq |\text{set}(\mathcal{F}_i)|/|\text{pos}_n^\alpha| \lesssim 1/2^{n_i^{\uparrow \upharpoonright 1} - n_i} < (k_i^\alpha)^{1 - \delta_i^\alpha} \) and consequently \( \text{nor}_i(\mathcal{F}_i) = 0 \).

(2) For \( c \in \text{pos}_n^\alpha \) let \( y_0 = \text{suc}_x(u \setminus \{\alpha\})(c) = (x \upharpoonright (u \setminus \{\alpha\})) \upharpoonright \{\alpha\}, h_1'(c) = h_1(x, y_0 \downarrow w \upharpoonright w) \) and \( h_2'(c) = (g_{y}^{\uparrow \upharpoonright 1} \circ f_{\ell}(\alpha))(h_2(x, y_0 \downarrow w \upharpoonright w)) \). Since \( \alpha_1, \alpha_2 \notin w \) and \( \alpha_2 \notin \{\alpha\}, \) for each \( h \in \text{set}(\mathcal{F}_i) \) the values \( h_1'(h \upharpoonright (u \setminus \{\alpha\})), h_2'(h \upharpoonright (u \setminus \{\alpha\})) \) are well defined and, letting \( \bar{y} = \text{suc}_x(h) \),

\[
(g_{y}^{\uparrow \upharpoonright 1} \circ f_{\ell}(\alpha))(h_1'(h \upharpoonright \{\alpha\})) = (g_{y}^{\uparrow \upharpoonright 1} \circ f_{\ell}(\alpha))(h_2'(h \upharpoonright \{\alpha\})).
\]

Therefore clause (1) applies and \( \text{nor}_i(\mathcal{F}_i) = 0 \). 

\[ \square \]
Before we state the main corollary to Crucial Lemma 3.2, let us recall that if \( \emptyset \neq \nu \subseteq \mu \), \( c \in \mathbb{CR}^\nu \), then \( \text{proj}_w(c) = (\mathcal{F}_1 \upharpoonright w, m_1) \in \mathbb{CR}_w^\nu \) (see Definition 2.18(β)). Also, if \( \emptyset = \nu = \nu_1 \cap \nu_2 \) and \( c_1 \in \mathbb{CR}^\nu \), then \( \text{proj}_w(c_1) = \text{proj}_w(c_2) \) will mean that \( \text{nor}_w(c_1) = \text{nor}_w(c_2) \) and \( m_{e_1} = m_{e_2} \).

**Crucial Corollary 3.4.** Assume that

(a) \( u_1, u_2 \) are finite subsets of \( \text{Ord} \), \( |u_1 \cup u_2| = |u_2 \setminus u_1|, u = u_1 \cup u_2, w = u_1 \cap u_2, \alpha_1 \in u_1 \setminus u_2 \) and \( \alpha_2 \in u_2 \setminus u_1, 1 < i < \omega, |u| < n_i(i - 1) \).

(b) \( c \in \mathbb{CR}^\nu \) and \( \text{nor}_w(c) > 2 \) (for \( \ell = 1, 2 \)), and \( \text{proj}_w(c_1) = \text{proj}_w(c_2) \).

(c) \( H_{\ell} : S_{u_{\ell - 1} + 1} \longrightarrow n_{s(i)}2 \).

Then we can find \( \delta_i \in \Sigma(c_\ell), \ell = 1, 2 \), such that:

(a) \( \text{proj}_w(\delta_1) = \text{proj}_w(\delta_2) \),

(b) \( \text{nor}_w(\delta_\ell) \geq \text{nor}_w(c) - 1 \),

(c) \( \text{if } h \in \text{set}(\mathcal{F}_3, \mathcal{F}_2), \vec{x} \in S_{u,i} \) and \( \vec{y} = \text{suc}_x(h) \in S_{u_{\ell - 1} + 1} \), \( \eta_\ell = H_\ell(\vec{y} \upharpoonright u_\ell) \) \( \eta_\ell = H_\ell(\vec{y} \upharpoonright u_\ell) \), then

\[ \eta_1 = \eta_2 \Rightarrow (g_\nu(\alpha_1^{-1} \circ f_\nu(\alpha_1))(\eta_1) \neq (g_\nu(\alpha_2^{-1} \circ f_\nu(\alpha_2))(\eta_2)). \]

\[ \text{Proof. Let } \mathcal{F}_\ell = \mathcal{F}_{c_\ell}. \text{ By assumptions (a,b), the pair } (\mathcal{F}_1, \mathcal{F}_2) \text{ is strongly balanced and } \text{nor}_w(\mathcal{F}_\ell) > (\ell')^2. \text{ Apply Crucial Lemma 3.2 to choose } \mathcal{F}_{\ell}'_1, \mathcal{F}_{\ell}'_2, H_\ell h_2 \text{ such that } \]

\[ \text{for } (\ast)_1 \mathcal{F}_{\ell}'_1 \in \text{wpos}_w^\nu, \mathcal{F}_{\ell}'_2 \leq \mathcal{F}_\ell, \|\mathcal{F}_{\ell}'_1\| \geq 8^{-k_{s,\ell}} \cdot \|\mathcal{F}_\ell\| \text{ (where } k_s = |S_{u_{s,i}|), \text{ and the pair } (\mathcal{F}_{\ell}'_1, \mathcal{F}_{\ell}'_2) \text{ is balanced, } \]

\[ \|\mathcal{F}_{\ell}'_1\| \geq 8^{-k_{s,\ell}} \cdot \|\mathcal{F}_\ell\| \text{ (where } k_s = |S_{u_{s,i}|), \text{ and the pair } (\mathcal{F}_{\ell}'_1, \mathcal{F}_{\ell}'_2) \text{ is balanced, } \]

\[ \forall x \in S_{u_{\ell - 1}}, \|\mathcal{F}_{\ell}'_1\| \geq 8^{-k_{s,\ell}} \cdot \|\mathcal{F}_\ell\| \text{ (where } k_s = |S_{u_{s,i}|), \text{ and the pair } (\mathcal{F}_{\ell}'_1, \mathcal{F}_{\ell}'_2) \text{ is balanced, } \]

\[ H_{\ell}(\vec{y} \upharpoonright u_\ell) = H_2(\vec{y} \upharpoonright u_\ell) \text{ and } \eta_\ell = H_\ell(\vec{y} \upharpoonright u_\ell) \text{ for } \}

Next, for \( \vec{y} \in S_{u_{\ell - 1} + 1}, \ell = 1, 2, \) put

\[ H_\ell(\vec{y}) = (g_\nu(\alpha_\ell^{-1} \circ f_\nu(\alpha_\ell))(h_\ell(\vec{y} \upharpoonright i, \vec{y} \upharpoonright w) \in n_{s(i)}2. \]

Apply 3.2 again (this time using clause (β) there too) to choose \( \mathcal{F}_{\ell}'_1, \mathcal{F}_{\ell}'_2, h_{\ell}', h_\ell'' \) such that

\[ \forall x \in S_{u_{\ell - 1}}, \|\mathcal{F}_{\ell}'_1\| \geq 8^{-k_{s,\ell}} \cdot \|\mathcal{F}_\ell\| \text{ (where } k_s = |S_{u_{s,i}|), \text{ and the pair } (\mathcal{F}_{\ell}'_1, \mathcal{F}_{\ell}'_2) \text{ is balanced, } \]

\[ \forall x \in S_{u_{\ell - 1}} \times S_{u_{\ell - 1} + 1} \longrightarrow n_{s(i)}2, \]

\[ \text{for each } x \in S_{u_{\ell - 1}}, \text{ one of the following occurs: } \]

\[ (\alpha)_{\ell} \text{ if } h \in \text{set}(\mathcal{F}_{\ell}'_1 \ast \mathcal{F}_{\ell}'_2) \text{ and } \vec{y} = \text{suc}_x(h) \in S_{u_{\ell - 1} + 1}, \text{ then } H_{\ell}'(\vec{y} \upharpoonright u_\ell) \neq H_{\ell}'(\vec{y} \upharpoonright u_\ell), \]

\[ (\beta)_{\ell} \text{ if } h \in \text{set}(\mathcal{F}_{\ell}'_1 \ast \mathcal{F}_{\ell}'_2) \text{ and } \vec{y} = \text{suc}_x(h) \in S_{u_{\ell - 1} + 1}, \text{ then } \]

\[ h_{\ell}''(\vec{x} \upharpoonright u_\ell, \vec{y} \upharpoonright w) = h_{\ell}'(\vec{x} \upharpoonright u_\ell, \vec{y} \upharpoonright w) = H_{\ell}'(\vec{y} \upharpoonright u_\ell) = H_{\ell}'(\vec{y} \upharpoonright u_\ell). \]

It follows from (\ast)1 + (\ast)4 that \( (\text{nor}_w(\mathcal{F}_{\ell}'_1) > (\ell')^2) \) we have

\[ \|\mathcal{F}_{\ell}'_1\| \geq k_s - \log_3 \left( \log_{k_s} \left( \frac{k_s \cdot |\text{pos}^u|}{\|\mathcal{F}_\ell\|} \cdot 64^\nu \right) \right) \geq k_s - \log_3 \left( \log_{k_s} \left( \frac{k_s \cdot |\text{pos}^u|}{\|\mathcal{F}_\ell\|} \cdot k_s \right) \right) \geq \]

\[ k_s - \log_3 \left( \log_{k_s} \left( \frac{k_s \cdot |\text{pos}^u|}{\|\mathcal{F}_\ell\|} \right)^2 \right) = k_s - \log_3 \left( 3 \log_{k_s} \left( \frac{k_s \cdot |\text{pos}^u|}{\|\mathcal{F}_\ell\|} \right) \right) = \text{nor}_w(\mathcal{F}_\ell) - 1 > \ell_s. \]
In particular, \( \| F'_n \| / | \operatorname{pos}_{n+1} | > (k^*_n)^{1-3\alpha_n^{-1}} \) and by 2.15(2) we get
\[
\frac{\| F'_n \|}{| \operatorname{pos}_n |} \geq \left( \frac{1}{2} (k^*_n)^{1-3\alpha_n^{-1}} \right)^3,
\]
so
\[
(*)_7 \text{ nor} \alpha_n^0 (F'_n \ast F''_n) \geq k^*_n - \log_3 \left( \log_2 \left( (2(k^*_n)^{3\alpha_n^{-1}-1})^3 \right) \right) > \ell^*_n - 2 > 0.
\]
Now we claim that
\[(*)_8 \text{ in clause } (*)_6 \text{ before, the possibility } (\beta)_x \text{ cannot occur.}\]
Suppose towards contradiction that for some \( \tilde{x} \in S_{u,i} \), the statement in (\( \beta \)_x) holds true. Then, remembering \( h_\ell : S_{u,i} \times S_{w,i+1} \rightarrow n_\ell(\ell_2) \), we have
\[
(*) \text{ if } h \in \text{set}(F'_n \ast F''_n) \text{ and } \eta = h_\ell(x \upharpoonright u, \tilde{y} \upharpoonright w) \text{ for } \ell = 1, 2, \text{ then } \eta_1 = h_\ell(x \upharpoonright u, \tilde{y} \upharpoonright w) \text{ for } \ell = 1, 2,
\]
then
\[
\eta_1 = \eta_2 \Rightarrow \eta_1 = (g_{y_n} (\alpha_1)^{-1} \circ f_{y_n} (\alpha_1)) (\eta_1) \neq (g_{y_n} (\alpha_2)^{-1} \circ f_{y_n} (\alpha_2)) (\eta_2).
\]
Now we set \( \tilde{d}_\ell = (F'_n, m_{\alpha_n}) \) (for \( \ell = 1, 2 \)). Since \( F'_n \leq F'_n \leq F_\ell \) and \( \text{nor} (F'_n) \geq \text{nor} (F_\ell) - 1 > m_{\alpha_n} \), we know that \( \tilde{d}_\ell \in \sum(\alpha_\ell) \), and since \( (F'_n, F''_n) \) is balanced we conclude \( \text{proj}_{w}(\alpha_1) = \text{proj}_{w}(\alpha_2) \). Also \( \text{nor}(\alpha_1) \geq \text{nor}(\alpha_2) - 1 \) and thus \( \alpha_1, \alpha_2 \) are as required in (\( \alpha \), (\( \beta \)). Finally, the demand (\( \gamma \)) is given by (\( \ast \)) \( \gamma \).

Lemma 3.5. Assume that

(a) \( u_1, u_2 \subseteq \text{Ord} \) are finite non-empty sets of the same size, \( |u_1 \setminus u_2| = |u_2 \setminus u_1| \),
(b) \( w = u_1 \cap u_2, u = u_1 \cup u_2, \) and for \( \ell = 1, 2 \):
(c) \( p_\ell \in \mathcal{Q}_{u_\ell} \) and \( \alpha_{\ell,k} \in u_\ell \setminus w \) and \( p_\ell,k \) is a \( \mathcal{Q}_{u_\ell} \)-name for a branch of \( l_{\alpha_{\ell,k}} \)
(i.e., this is forced) for \( k < \omega \), and
(d) \( j_{u_1,u_2}(p_1), j_{w,u_2}(p_2) \) are compatible in \( \mathcal{Q}_w \) (see 2.18, 2.19).

Then there is \( q \in Q_u \) such that \( p_\ell \leq j_{u_1}(q) \) for \( \ell = 1, 2 \) and \( q \not\Vdash \mathcal{Q}_u \lbrack p_{1,k}, p_{2,k} \text{ have bounded intersection} \].

Proof. Without loss of generality
\[(*) \text{ for } Q_{u_\ell}, \text{ for each } j < \omega \text{ the sequence } p_{\ell,j} \text{ can be read continuously above } p_\ell; \text{ moreover for every large enough } i, \text{ say } i \geq i(j) \text{ the sequence } p_{\ell,j}|i \text{ can be read from } \tilde{x}_{u_\ell}|i.\]
[Why? First by Proposition 2.19 there is \( q_1 \) such that \( p_1 \leq Q_{u_1} q_1 \) and
\[
(\forall q)[q_1 \leq Q_{u_1} q \Rightarrow j_{u_1,u_2}(q), j_{w,u_2}(p_2) \text{ are compatible in } \mathcal{Q}_w].
\]
Second, by 2.5+2.9, there is \( p_1' \in Q_{u_1} \), satisfying (\( *) \) and such that \( q_1 \leq Q_{u_1} p_1' \). Third, we may choose \( q_2 \geq Q_{u_2} p_2 \) such that
\[
(\forall q)[q_2 \leq Q_{u_2} q \Rightarrow j_{u_1,u_2}(p_1'), j_{w,u_2}(q) \text{ are compatible in } \mathcal{Q}_w].
\]
Fourth, by 2.9, there is \( p_2' \in Q_{u_2} \) satisfying (\( *) \) and such that \( q_2 \leq Q_{u_2} p_2' \). Clearly (\( p_1', p_2' \) are as required.]
Passing to stronger conditions if needed we may also require that $i(p_1) = i(p_2) = i$, $J_{u_\alpha}(p_1) = J_{u_\alpha}(p_2)$ (note $(\ast)_4$ from the proof of 2.19), $|u| < n_i(i - 1)$ and $\operatorname{nor}(\kappa_p) > 100$ for $i \geq 1$. Without loss of generality, letting $i(j) = \max \{i_1(j), i_2(j)\}$, it satisfies $i(0) = 1$, $i(j + 1) > i(j) + 10$ and

$$\operatorname{nor}(\kappa_p) = \operatorname{nor}(\kappa_p) > 2j + 2 \quad \text{for } i \geq i(j).$$

Fix $i \geq 1$ for a moment. Let $k$ be such that $i(k) \leq i < i(k + 1)$, We shall shrink $\kappa_p^0, \kappa_p^1$ in order to take care of $(\alpha_1, m; p_1, m, \alpha_2, m, p_2, m)$ for $m \leq k$. By $(\ast)$ from the beginning of the proof we know that

(i) if $\gamma \in S_{u_i, i + 1} \cap \operatorname{pos}(p_\ell)$, then the condition $(p_\ell)[\emptyset] \in Q_{u_i}$ decides $p_{\ell, m}(i)$ for $m \leq k$, say $(p_\ell)[\emptyset] \models_{Q_{u_i}} "p_{\ell, m}(i) = H_{\ell, m}(\hat{y})"$, where $H_{\ell, m} : S_{u_i, i + 1} \longrightarrow n_{(i)2}$.

Use Crucial Corollary 3.4 $(k + 1)$ times to choose $\kappa_p^0 \in \Sigma(\kappa_p^0)$ and $\kappa_p^1 \in \Sigma(\kappa_p^1)$ such that:

(ii) $\operatorname{proj}_{u_i}(\kappa_p^0) = \operatorname{proj}_{u_i}(\kappa_p^1)$,

(iii) $\operatorname{nor}(\kappa_p^0) \geq \operatorname{nor}(\kappa_p^1) - (k + 1)$ (for $\ell = 1, 2$),

(iv) if $h \in \operatorname{set}(F_{\kappa_p^0} \ast F_{\kappa_p^1})$, $\bar{x} \in S_{u_i, i}$, $\bar{y} = \operatorname{suc}_2(h) \in S_{u_i, i + 1}$, $m \leq k$, $\ell = 1, 2$ and $\eta_\ell = H_{\ell, m}(\bar{y}) \in n_{(i)2}$, then

$$\eta_{1, m} = \eta_{2, m} \implies (g_{u_i}(\alpha_1, m)^{-1} \circ f_{\kappa_p^1}(\alpha_1, m))(\eta_{1, m}) \neq (g_{u_i}(\alpha_2, m)^{-1} \circ f_{\kappa_p^1}(\alpha_2, m))(\eta_{2, m}).$$

After this construction is carried out for every $i \geq 1$ we define

- $q_\ell = (\hat{x}_{p_\ell}, \hat{y}_\ell)$, where $\hat{y}_\ell = \{Y_i : i \in [1, \omega], \ell \leq 1, 2, q = (\bar{x}_{p_1} \cup \bar{x}_{p_2}, \bar{y})$, where $\bar{y} = \{Y_i : i \in [1, \omega], F_{\kappa_p} = \Sigma_{\kappa_p^0} \ast \Sigma_{\kappa_p^1}$, $m_\odot = m_{\kappa_p^1} = m_{\kappa_p^2}.$

Plainly $p \leq Q_{u_i} q \leq Q_{u_i} J_{u_i}(u)(q)$. Now, let $k < \omega$ and consider $i \geq i(k)$. It follows from (iv)+2.2(5) that for each $\bar{x} \in S_{u_i, i} \cap \operatorname{pos}(q)$ and $h \in \operatorname{set}(F_{\kappa_p})$, if $\bar{y} = \operatorname{suc}_2(h)$ and $\eta_\ell, k = H_{\ell, k}(\bar{y} \mid u_i)$, then

$$\eta_{1, k} = \eta_{2, k} \implies q^{[\emptyset]} \models_{Q_{u_i}} "\{\rho : \eta_{1, k} < \tau_{u_{\kappa_2}, k} \rho\} \cap \{\rho : \eta_{2, k} < \tau_{u_{\kappa_2}, k} \rho\} = \emptyset".$$ Since $q^{[\emptyset]} \models_{Q_{u_i}} "\rho_k(i) = \rho_k(k)"$ (for $\ell = 1, 2$) we may conclude that

$$q^{[\emptyset]} \models_{Q_{u_i}} "\text{either } \rho_k(i) \neq \rho_k(k) \text{ or } (\forall j > i)(\rho_k(j) \neq \rho_k(k))".$$ Hence immediately we see that $q$ is as required in the assertion of the lemma. □

**Remark 3.6.**

1. We can deal only with one case (i.e., $\lambda$ in clause (c) of 3.5), we have to use $A = T_{\omega}^+$, not "any uncountable" $A \subseteq T_{\omega}$. But actually it is enough in 3.5 to deal with finitely many pairs.

2. We can prove in 3.5 that there is a pair $(p_1, p_2)$ such that:

(a) $p_\ell \leq_{Q_{u_i}} p_{\ell}'$ for $\ell = 1, 2$,

(b) $J_{u_\alpha}(p_1), J_{u_\alpha}(p_2)$ are compatible,

(c) If $p \in Q_{u_i}$ satisfies $p_{\ell}' \leq_{Q_{u_i}} J_{u_\alpha}(u)(p)$, then $p$ is as required.

If $a = \{\alpha\}$ is a singleton, then considering $\operatorname{OB}_{u_i}^a, S_{u_i, i}, S_{u_i}, \operatorname{pos}_{u_i}^a, \operatorname{wpos}_{u_i}^a, Q_{u_i}$, we may ignore $u$ and $\alpha$ in a natural way arriving to the definitions of $\operatorname{OB}_{u_i}, S_{u_i}, S_{u_i}, \operatorname{pos}_{u_i}, \operatorname{wpos}_{u_i}, Q_{u_i}$ respectively. Let $x : S_{u_i} \longrightarrow T_{\omega}$ be the mapping given by $x(\bar{a}) = \{f_{\bar{x}_i} : i < \omega \}$ (on $T$ see Definition 1.2(2), concerning $x$ compare Definition 2.1(G)).
The following proposition finishes the proof of Theorem 1.1.

**Proposition 3.7.** Let $N_* < (\mathcal{H}(\mathbb{P}^u), \theta)$ be countable.

1. There is a perfect subtree $S^* \subseteq S$ (so $S^*_* = \lim_\omega(S^*) \subseteq S_\omega$) such that:

   if $n < \omega$, $\bar{x}_\ell \in S^*_*$ for $\ell < n$ are pairwise distinct then $(\bar{x}_0, \ldots, \bar{x}_{n-1})$ is a generic for $\bar{Q}_n$ over $N_*$. 

2. Moreover, $\mathcal{X}[S^*_*] \subseteq T_\omega$ is strongly pbd (see Definition 1.4(3)) and $\text{ar-cl}\{A_{\mathcal{X}(x)} : x \in S^*_*\}$ is Borel.

**Proof.** By 2.9 and 2.20 and (for part (2)) by 3.5. In details, let $T_\ell = \{\eta \in T : \eta \text{ of the } i\text{-th level}\}$.

Let $h_i : [T_\ell] \longrightarrow T_\ell$ be a bijection such that

$$m' < m'' < n_i \mapsto h_i(m') <_{\text{lex}} h_i(m''),$$

where $n_i = |T_\ell|$. Let $((m_j, k_j, \rho_j) : j < \omega)$ list all the triples $(m, k, \rho)$ satisfying: $m < \omega$, $k < m$ and $\rho$ is a $\bar{Q}_{m\setminus\{k\}}$-name of a branch of $\bar{t}_k$ such that $\rho$ belongs to $N_*$. 

Let $\eta_i$ be the unique member of $T_\ell$ such that $\{\eta_i^\sim(0), \eta_i^\sim(1)\} \in T_{i+1}$. For $\ell = 0, 1$ let $f_{i, \ell} : T_\ell \longrightarrow T_{i+1}$ be such that

$$[\eta \in T_\ell \setminus \{\eta_i\} \Rightarrow f_{i, \ell}(\eta) = \eta] \quad \text{and} \quad f_{i, \ell}(\eta_i) = \eta_i^\sim(\ell).$$

Let $u_{i, \ell} = \text{Rang}(g_{i, \ell})$ where $g_{i, \ell} = h_{i+1}^{-1} \circ f_{i, \ell} \circ h_i$. For an order preserving function $g$ from the finite $\omega \cup \text{Ord}$ into $\text{Ord}$ let $\hat{g}$ be the isomorphism from $\bar{Q}_u$ onto $\bar{Q}_{\hat{g}(u)}$ induced by $g$. 

Let $\langle T_{n,i} : i < \omega \rangle$ list all the dense open subsets of $\bar{Q}_n$ which belong to $N_*$. By induction on $i < \omega$ choose $p_i$ such that if $\ell \in \{1, 2\}$ then (recalling $\bar{J}_{u_i, i, n_j}$ is a complete projection from $\bar{Q}_{n_j}$ onto $\bar{Q}_{u_i, i}$) we have

(i) $p_i \in \bar{Q}_{n_i, \ell} \cap \bar{J}_{u_i, i, n_{i+1}}(p_{i+1})$ for $\ell = 0, 1$.

(ii) If $u \subseteq u_i$ and $h^*_{\bar{u}}$ is OP $u_{i, i, n_{i+1}}$, i.e., the order preserving function from $\{0, \ldots, |u| - 1\}$ onto $u$, and $h^*_{\bar{u}}$ is defined as above and $k < i$, then $\bar{J}_{u_i, i, n_j}(p_i) \in \bar{Q}_{u_i}$ belongs to $h^*_{\bar{u}}(T_{u_i, i, k})$.

(iii) Assume that for $\ell = 0, 1$ the objects $j_{\ell} < \omega$, $u_{\ell} \subseteq T_\ell$ satisfy

$$\eta_i \in u_{\ell}, |u_{\ell}| = m_{j_{\ell}} , h^*_{\bar{u}}(k_{j_{\ell}}) = h^{-1}_i(\eta_i),$$

and let $p_{\ell} = \hat{g}_{i, \ell}(h^*_{\bar{u}}(p_{j_{\ell}}))$ (so it is a $\bar{Q}_{n_{i+1}, i}$-name for a branch of $\bar{t}_{j_{\ell}(\hat{g}(n_i))}$). Then $\models_{\bar{Q}_{n_{i+1}}}^{\text{ar-cl}}$ the branches $p_0$ of $\bar{t}_{f_{i, 0}(\eta_i)}$ and $p_1$ of $\bar{t}_{f_{i, 1}(\eta_i)}$ have bounded intersection $^{\circ}$.

This is straightforward. \(\square\)

**Theorem 3.8.**

1. There is a Borel arithmetically closed set $B \subseteq \mathcal{P}(\omega)$ such that there is no arithmetically closed 2-Ramsey ultrafilter on it.

2. Moreover, there is a Borel $A_* \subseteq B$ such that for every uncountable $A' \subseteq A$, there is no definably closed minimal ultrafilter on the arithmetic closure of $\text{ar-cl}(A')$ of $A'$.

3. We can demand that above each $\text{ar-cl}(A')$ is a standard system.

\(\text{to eliminate it we have to force over } N\)
Proof. (1) and (2) Let $\mathcal{A} = T^*_n$ be as in the proof of 3.7 and let $\mathcal{B}$ be the arithmetic closure $\text{ar-cl}(\mathcal{A})$ of $\mathcal{A}$. For every $A_t \in \mathcal{A}$ there towards contradiction assume $D$ is a $\mathcal{B}$-minimal ultrafilter where $B = \text{ar-cl}(\mathcal{A}^t)$, $\mathcal{A}^t \subseteq \mathcal{A}$ is uncountable.

Now for every $A_t \in \mathcal{A}^t$, $(N,<_t)$ is a tree with finite levels (hence finite splittings), a root and the set of levels is $\mathbb{N}$. For every $i < \omega$ the set $\{n < \omega : i < n\}$ is finite and hence its compliment belongs to $D$. The rest is divided to $\{m : b \leq_i m\} : b$ is of level exactly $i$ for $<_t\}$. This is a finite division hence for some unique $b = b_i^t$ of level $i$ such that $\{m : b \leq_i m\} \in D$. As $D$ is a 2-Ramsey ultrafilter

(i) $\langle b_i^t : i < \omega \rangle$ is definable in $N_{A_t}$.

We define a function $g_t$ on $\mathbb{N}$ by $g_t(c) = \max\{i : b_i^t \leq_t c\}$. Again

(ii) $g_t$ is definable in $N_{A_t}$.

As $D$ is minimal there is $C_t \subseteq N$ definable in $N_{A_t}$ and such that

(iii) $g_t | C_t$ is one-to-one.

Let $C_t$ be the first order definable in $N_{A_t}$, where $A_t \subseteq \mathcal{A}$ is finite, $t \in A_t$ for simplicity and so is the set $\{b_i^t : i < \omega \}$. As each $\mathbb{Q}_u$ is $\omega^\omega$-bounding and we can further shred $c_t$ below there is $h_u \in N_u$ such that [recall we are forcing over the countable $N_u \prec (H(\chi),\epsilon)$, so our $\mathcal{B}$ is $\bigcup\{P(\omega) \cap N[t_0,\ldots,t_{n-1}] : t_\ell \in T^*_n\}$] such that

(iv) $h_u \in \omega^\omega$ is increasing, $h_u(0) = 0$, and

(v) if $c \in C_t$ and $g_t(c) < h_u(i)$ then $c <_N h_u(i + 1)$.

Without loss of generality now by the infinite $\Delta$-system for finite sets for some $t_1 \neq t_2$ we have $\{t_1,t_2\} \cap (A_t \cap A_i) = \emptyset$, etc.

Moreover, replacing $A_1 \cup A_2$, $A_1$, $A_2$, $t_1$, $t_2$ by $u = u_1 \cup u_2$, $u_1$, $u_0$, $\alpha_1 \in u_1 \setminus u_2$, $\alpha_2 \in u_2 \setminus u_1$ we have the situation in §2 by similar proof. We get $C_{t_1} \cap C_{t_2}$ is finite, but both are in an ultrafilter, so we are done.

(3) We let $\mathbb{Q}$ be as in [Sh:F834] for $\lambda \geq \beth_\omega$, use what is proved there. \qed

References


[Sh:F834] Saharon Shelah. Iterated creature $\omega^\omega$-bounding forcing.


MODELS OF EXPANSIONS OF $\mathbb{N}$


EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, GIVAT RAM, THE HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, 91904, ISRAEL, AND DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08854, USA

E-mail address: shelah@math.huji.ac.il

URL: http://shelah.logic.at