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COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI
10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973,

GRAPHS WITH PRESCRIBED ASYMMETRY AND MINIMAL
NUMBER OF EDGES

s, sSHELAH*

§0. INTRODUCTION

We shall deal with non-directed graphs, without loops and double
edges, and having a finite number of vertices.

A graph is symmetric if it has a non-trivial automorphism = a permu-
tation of its vertices, such that a pair of vertices is connected iff their im-
ages are connected. The asymmetry of a graph is the minimal number of
changes (i.e. adding and deleting of edges) which is necessary to make the
graph symmetric. Erd&s and Rényi [1] defined and investigated this no-
tion, and defined, F(n, k) [C(n, k)] for k=1, n> 1 as the minimal num-
ber of edges in a [connected] graph, with » vertices, whose asymmetric is
k; if there is no such graph the value of the function will be = (If n is
too small, this happens). (see [1], §5 p. 311): They proved that c6,1)=6,
L 1)=0, Cn,1)=n—-1 for n=7; also Cn,2)>n+1 for
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n>7 and F(n,3)> 4n/3 —3/2. It is obvious that F(n, k) < C(n, k).
They also show that C(n,1)= for 1<n<35, and C(n, k)= for
n<?2k+ 1.

We shall compute C(n, k) and F(n,k) for k>1 and n sufficient-
ly larger than k. For k> 2, n sufficiently larger than k, we affirm the
conjecture in [1] that C(n, k) = F(n, k). (See [1] p. 314. before the re-
marks.) It will be interesting to know for any k, from what n our for-
mulas are correct. From the proof a bound can be found, but seemingly
it will be far from the exact value. s

First we shall formulate the results. Then, in § 1, we prove that F(n, k)
is nbt smaller than the values mentioned in the theorems, by generalizing
a proof from [1]. In §2 we describe examples of connected graphs with
n vertices and asymmetry k, whose number of edges is the number ap-
pearing in the theorems. Finally, in §3 we shall prove for the case k= 41,
that the graphs described in §2, have the required asymmetry. (For
3 < k < 40, the proof is messy and with the same central idea).

The results are the following:
Theorem 0.1. For n sufficiently large
Fin,2)=n+1, Cn,2)=n+2.

Remark. This was independently found by Nesetril in his M. Sc.
thesis.

Theorem 0.2. For odd k> 2, and n sufficiently larger than k
F(n, k) = C(n, k) = [(k + 3)n/4 — 0.5[2n/(k + 3)] + 1/2] .
Theorem 0.3. For even k> 2 and n sufficiently larger than k

F(n, k)= C(n, k)= [(k + 2)n/4 + 1/2] .

Notations. Let G denote a graph, P, Q, R, S vertices of the graph,
N = N(G) the number of vertices of G, E= E(G) the number of edges
of G. Let v, be the valence of P (= the number of edges incident
to P), and » the valence of P, Also ¥V, will denote the number of
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vertices (in G) whose valence is k, V., the number of vertices (in G)
whose valence is = k, etc. Thus, 2F = ;: Vp = %’ kV,. Let m,nk,1

denote natural numbers, and i,j,r integers. A(G) will stand for the
asymmetry of G.

We say that P, P,,...,P, isa path, if P1P2’P2P3=""Pm—1pm
are edges, and P1P2 ... P isacircle, if Ple,P2P3, R0 ,P'm_l m,PmPl,

are edges. [x] is the integral part of x.

§1. PROOF OF THE LOWER BOUNDS
First we shall observe some facts, which, in fact, appear in [1].

If P, Q are vertices of G, which are not connected to any other
vertices (but PQ may be an edge) then the permutation interchanging
them is an automorphism of . Hence

Observation 1. A(G) < vp + v, if P, Q are distinct vertices of G.

Observation 2. A(G) < vp +vg — 2 if P,Q are vertices of ¢, and
PQ is an edge.

If P,Q,R are vertices of G, such that RP,RQ are edges, and
there are no other edges containing P or Q, except possibly PQ, then

the permutation interchanging P and Q is an automorphism of G,
hence G is symmetric.

Observation 3. A(G)<v, + Vo — 2, if P,Q,R are distinct vertices
of G, and RP, RQ are edges of G.

Lemma 1.1. F(n,2)=n+ 1 for n>7, and Cn,2)=2n+ 2 for
nz=T.

Proof. By (1], C(n,2)=n+ 2, for n> 6.

Suppose N(G) = n, A(G)= 2; we should prove E(G)=n+ 1. Let
G,,..., G, be the components of G. By [1] there are, up to isomor-
phism, only two asymmetric connected graphs G with E(G) < N(G).
One, G! is the graph with one point, and the other G2 have six vertices
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and six edges. Now E(G)= 2 E(G) and N(G)= 1_2; M(G,). Now

clearly no two of the G,’s can be isomorphic, hence the worst case is
when, say, G, =G!, G, = G2 As N(G)>7, k> 2. Hence
k i
EG) = :—21' E(G) = E(G,) + E(G,) + I_Z;E(GI) >

k
>0+6+1_Z’3 (N(G)) + 2) =

k
=0+6+£_Z;N(G,)+ 2k —2)=

=6+ NG)—7+ 2k —2)=
=NG)— 1+ 2(k—2)>NG)+ 1.
Lemma 1.2. If k> 2 is even, then
Fn, k) > [(k+ 2)n/4 + 1/2] .

Proof. Let G be a graph with n vertices, A(G) = k. We should
prove that E = E(G)= [(k+ 2)n/4 + 1/2], or, as E(G) is an integer,
E(G) = (k+ 2)n/4, or 2E(G)=> (k+ 2)n/2.

If the valency of every vertex is = (k + 2)/2, then
2= 21V, > (k+ D/2) :Z V,=(k+ 2nl2,

so let R, be a vertex with valency < (k + 2)/2, thatis < k/2. Then,
for any other vertex P we have v, = k|2, because by observation 1

k<AG)<v, +v, <vp +k[2.

Q

Now if Vo S k/2, and PQ is an edge, then v, is > k/2+ 2 as
by observation 2

k< A(G)<vp t v, ~Z=vp+ kf2-2,
Similarly if Q,P,S, are vertices of G, QS,PS are edges, then
Vo < k/2 implies v, > k/2+ 2 (by observation 3).
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Assume first Yas = k/2. As we have shown that for every other P,

vp = k/2, clearly V<_,”,2 = 0. As every vertex of valence < k/2 is con-
nected only with vertices of valence > k/2 + 2, and no vertex is connect-
ed with two vertices of valency k/2, clearly V_ ki2+2) = Viia-

Hence
2B = Z V> (RIQYV iy + (Rl D)V 5y
+ (k/2 + DV ke = .
= (kD)W + K2+ D= Vo = Vogpaa)+
+ (k24 DV iz =

+ k/2+ 1n+ ¥V

>(k(2+2) >

. Vkiz
> (k[2+ Dn=(k+ 2)n/2.

Now assume vRo < k/2. Then by observation 1, the valency of any
other vertex P is > (k+ 2)/2, as k<A(G)< V, + k2 — 1. If vRG #
#0, and P is connected with R, then v, > k — vRD + 2. Hence

2E=,§vo>(kf2+ 1)(n—2)+vR0+vP>
=(k+ 2)n/2 —(k+ 2)+vR0+k—vR0+ 2=(k+ 2)n/2.

| So we are left with the case vRo = 0. Then for every P# Ry, vp = k

(by observation 1). Hence
UE> v, kin—1)=kn—k=
Q

= (ke D)l + (= )nls = k>

' >(k+2n2+ (4 =22 -k =

=(k+ 22+ n—k=(k+ 2)n/2

(we use the assumption that k is evenand > 2, hence = 4; and that
n=2k+ 1>k (for n<2k+ 1>k implies F(n, k)= ).
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Lemma 1.3. If k isodd and > 2, then

F(n, k) > [(k + 3)n/4 — 0.5[2n/(k + 3)] + 1/2] .
Remark. For k= 3, this slightly improves Th. 8 p. 314 F1):
Proof. Let I=(k+ 1)/2. Let N(G)=n, A(G)> k.

If R isavertex of G with valency </, then for every other ver-
tex P we have vp = I, because by observation 1

kéA(G)évP+vR Sy +i1-1
vp2k—(U-D=k—(k+ D2+ 1=
=kl2-12+1=kf2+12=1.

Hence there is at most one vertex with valency < /. Now if vp <1, and
P, Q are connected, then vo = I+ 1 (by observation 2), and similarly if
PR, QR are edges then ve =1+ 1 (by observation 3). Hence if vp <1

and PQ are connected, then Vo = I+ 1, and P is the only vertex con-

nected with Q with a valency < /. Hence Ve a+1) = Z" mV, =1V,
m=

Case 1. Let us assume first Ve,=0.
Then n=V,+ V2V, +1IV,=(1+ 1)V, or V,<nl(l+1).
2E@) = 2mV,, WV, + A+ DV, 4, =
=W+ I+ Dn-V)=>U+Dn-V,>

>+ Dn—[nld+ D] =k + 3)n/2 — [2n/k + 3)] .

So, if V_,=0, the lemma holds. Suppose V_,+# 0, hence Ve =1,
as noted in the beginning of the proof, and let R, be the only vertex
with valency <[

Case II. Assume now an = 0. Then, by observation 1, every
P R, has valency > k. Hence 2E>k(n—1). For k>3, as k> 5
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2E—(k+3)m22k(n—1)—(k+ 3)n/2=
=kn—k—knf2 —3n/2=nk —k/2 - 3/2) — k =
=mkfl2-3/D)-k>=n—-k>0.

This clearly implies the required inequality. For k=3, n>9, the
required inequality also holds.

2EZ2k(n—1)=3n—-3=(k+ 3)n/2—-3=

= (k+ 3)n/2 — [2 - 9/6] > (k + 3)n/2 — [2n/(k + 3)] .

As <= F(n, k) for n<2k+ 1=7, the remaining cases are k = 3,
n=7, k=3, n=38. If we remove R,, we get a graph G,, N@G,)=
=n-—1, E(G,;)= EG), A(G,) > 3, and the valency of every vertex is
= 3. For n=17, we geta graph with six vertices and asymmetry 3, con-
tradicting Theorem 1.1 in [1], according to which

A(G) < (N(G) — 1D)2.

So we are left with the case n= 8. As ZVP is even, there is in G,
at least one vertex with valency = 4. If there are two such vertices, or
one with valency > 4, we get E(G)= E(Gl )= 12 which is the required
inequality. So let P be the only vertex of valency four, Q,,0Q,, 05,0,
the vertices connected with it, and Sl, S2 the two other vertices. As S1
has valency three, and it is not connected with P, it is connected with
two of the (Q’s, say Q,,0Q,. Now clearly in order to make the permu-
tation interchanging Q, and Q, to an automorphism of G, it is suf-
ficient to remove two edges. This is.a contradiction. So have finished the
case vRo = 0,

Case I11. 1> vRO >0

By observations 2 and 3 it is clear that if P is connected with
R,, or connected with a vertex which is connected with R,, then
vp=m=k— Yo g + 2, and hence V_, >m. Clearly 0< vRO i

= (k+ 1)/2 implies m> (k+ 3)/2=1+ 1. As noted before in Case I
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V;(H_ = m% mV, =1V, hence

n=1+ VI+ V;f;‘al+ V;+IV1=1+U+ Dy,
Vi<(n=DIA+ 1) <nf(l+ 1) -1
whence
V,<[nll+ D] —1=[2n/(k+3)] —1.
Now
2E:;rVr;vRo S 1+ 1V, +
b DOV gugy— V) 3 My, . =

= VetV U+ DV, 4y + (M= 1= 1)V, =

VRG+!V,+(J’+1)(M—1-—Vl)+(m—1—-l)V ==

=m

=vRO— Vl.+(l+ Im—0+ 1D+ (m—1-— I)V.;m =
2(1}R0— Vl.)+(¢‘+ Dn—{+ 1)+
+(m—I1—1)m=

= — [2n/(k+ 3)] + (k+ 3)n/2 +

+(—-(U+D+m—-I—1m)=
= (k + 3)n/2 — [2n/(k + 3)]

(the last inequality holds, as m > I+ 1, implies

m—I—1m=m>U+ 1)).

So the required inequality holds in case III, and Lemma 1.3 is proved.
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§2. THE DESCRIPTIONS OF THE EXAMPLES
Example 2.1. We will show that C(n,2)<n + 2.

Description. Let n,,...,n, be different natural numbers > 0.
The vertices of G will be R;,...,R, (of valency three), and PI‘;,
i=1,...,6, k=1,...,n (of valency 2). Now

1 1 2 2 3
Ry Pf couPl Ry RGBS . . PLR BB oy

3 3 4 4
RyP}...P3 Ry, RyPY ... Py Ry,

5 5 6 6
BB o B R BPh s BR,

will be paths, (and every edge of G appears in one of them)
Example 2.2. Proof of F(n,2)<n+ 1.
It is the same as the previous one, if we add one isolated vertex.
Example 2.3. We show the upper bound for F(n, k), foreven k> 2.

Remark. Every pair of vertices which will not be said to be con-
nected, will be considered unconnected. We shall concentrate on the case
k > 40.

Construction. Clearly, by Lemma 1.2, every vertex will have a valen-
cy = (k+ 2)/2, except one vertex if n is odd. Let us choose numbers
Tys. .., such that

; !
l. r; isodd, and 0<rl<—r2<r3<—r4<...<(—ljr,.

2o 1E rl,l - ’:‘2 = rm] + rm2 then {l,d, )= {m;,m,}.

3. It Jr'fl + ’52 - it

i #* "y +'.rm3 then {i},i,,i;}=

={m,,m,,my}, and i, =i, =m; implies m = m, Or m; = m,.
4. Nosumof <35 of the numbers {#r;: 1<i</}is >0 and <k.
Clearly r, = (- 2)'* Yk + 1)+ 1 satisfy the conditions, but we can

casily find much smalier #,'s; for example defining r; by induction as the
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V’(“”;m_z:sz’"?W" hence
n=1+V+V 21+ V,+lV,=1+0+1)V,,
Vi<(n-=DIA+ DH<n/(l+1) -1

whence

V, < (r/l+ D] —-1=[2n/(k+ 3)] - 1.
Now

25=%’rVr;3vR0- 1+ 1V, +

+ A+ 1)V Vo, J+mV, =

=(+1)

T S

Vrg + Wyt U+ DV, gp gy

veg G H U+ D=1 V) + (m—1- 1DV, = I

Il

Vo, — Vi H U=+ B G =T= DY, > :
>(g, —Vp+ U+ Dn—(+ D+
+(m—-1—-1)m=

=>—[2n/(k+ 3)] + (k+ 3)n/2 +

+(=(+ D+ m—1—1m)>
> (k + 3)n/2 — [2n/(k + 3)]

(the last inequality holds, as m > [+ 1, implies

m—I—1m=2m>({+1)).

So the required inequality holds in case III, and Lemma 1.3 is proved.
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§2. THE DESCRIPTIONS OF THE EXAMPLES
Example 2.1. We will show that C(n, 2)<n + 2.

Description. Let n,,...,n, be different natural numbers > 0.
The vertices of G will be R,,...,R, (of valency three), and P,’;,
i=1,...,6, k=1,...,n, (of valency 2). Now

RyP{...P} Ry,R\P}... Bl Ry, R\ Py ...
R\P}...P} Ry, RyP} ... Py Ry,
R,P}...Py Ry, RyP}... Py R,
will be paths, (and evefy edge of G appears in one of them)
Example 2.2. Proof of F(n,2)<n+ 1.
It is the same as the previous one, if we add one isolated vertex.

Example 2.3. We show the upper bound for F(n, k), for even k> 2.

Remark. Every pair of vertices which will not be said to be con-
nected, will be considered unconnected. We shall concentrate on the case
k > 40.

Construction. Clearly, by Lemma 1.2, every vertex will have a valen-
cy [=(k+ 2)/2, except one vertex if n is odd. Let us choose numbers
Fys. -+ »F such that

3 I
1. r; is odd, and O<rl<—-r2<r3<—r4<...<(—l)r‘,.

2.0 1E r”] +r£2=rm] +rm2 then {i,,i,}={m;,m,}.

35 0F 73 + Ty - ¥y = s + e +'rm3 then {i;,iy,i5}=
={m,my, ny }, and i, =i, =m, implies mp=m, Or m;=ms.
4. Nosumof <5 of the numbers {+r;: 1 <i</} is >0 and < k.

Clearly r, = (= 2¥*1(k+ 1)+ 1 satisfy the conditions, but we can
casily find much smaller 7,'s: for example defining r;, by induction as the
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first satisfying the conditions.
Let us first define a graph G(n, k).
Case 1. n is even.

The vertices are P,,. .. P ; andlet P(i)= P, and P, = P! if

i=j (modn). Now for even i, P, is connected with P(i+ r}.) for
g=u. . el

Case 1. n is odd.

The points will be T 1 and Q. As before P, = P(i)
P,. = P! if i=j (modn—1). Foreven i, Pi is connected with
P(i + r}.) j=1,...,1; exceptif j=1 and i belongsto {2r: 1 <r<

< (I + 1)/2}. Q is connected to P2r’P2r+r1 for 1<r<(+ 1)/2.

Let L, =6irl, L=12|rl, (Ir]=(=D'). (For k> 40 thisis
more then sufficient, but for 3 < k < 40, greater values can be more
convenient).

Now we shall define the required graph G*(n, k), by slightly modi-
fying G(n, k). For m=1,...,k+ 15 we omit the edges

P(2[n/4] + 2mL)P(2[n/4) + 2mL + ry)

and P(2[n/4] + 2mL + 2L, + 2m)P(2[n/4] + 2mL + 2L; + 2m+r;) and
add the edges P(2[n/4] + 2mL)P(2[n/4] + 2mL + 2L, + 2m+r;) and
PQ{n[4] + 2mL + r )P2[n/4] + 2mL + 2L, + 2m).

Notice that the r’sand L, L, depend only on k and not on n.
Example 2.4. Proof of the upper bound of F(n, k) for odd k> 3.

Clearly here the valencies of the vertices will be = (k + 1)/2 or
[+ 1. Let n; be such that ((/ + Dn, + n — n, ))/2 is the number ap-
pearing in Theorem 0.3; clearly there is such a number. We define the r's
as in example 2.3, and also L, L,. Clearly In, < ny, where ny,=n-—n
Now we define G(n, k).

3
Case 1. ny is even.
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The vertices will be P1= ot ’P”l 4 be 9 ,an, where My =n—ny.
As before P;.=P(i), and P!.= Pf if i=j (mod "1)' For even i, we

connect P, with P(i+ r}.) for j=1,...,1 We also connect R, with

Pi,...,P; R, with PI+1""’P21""';Rm with £, .. 4500
SR o - N n, > In, we connect szﬂ with
an2+2""’P:n2+2m with an'2+2m—1"" . (Note that this is possible

as n; —In, is even, because n; is even, and as (/+ l)nl + In2 is even,
In, is even). Notice that the valency of the P’s is 1+ 1, and that
of the R/’sis I

Case 11 n; 1is odd.
Note that as (/ + Dn, +in, iseven, ! cannot be even. So [ is
odd and n, is even. Now the vertices will be £ g isece ’P"l— g g
: ,an and Q. Asusual P;= P(i) and B, = 1‘} if i=j (modn, —1).
For even i we connect P, with P(i+ !}.), ji=1,....5L Wealco con-
nect for m=1,...,n,, P with Pimi—1+j) for j=1,...,1. Now
for m=1,...,(+ 1)/2, we “disconnect” PQLm)P(2Lm + r,) and

connect each of them with Q. Note that the P’s and Q have valency
I+ 1, whereas the R,’s have valency I Now the definition of G*(n, k)
from G(n, k) is the same as in example 3.3.

Example 2.5. Proof of the upper bound for F(n, 3).

Let n, be a number such that (3n, + 2(n —n,))/2 is the number
in Theorem 0.3, and n, = n—n,;. Clearly n, is even, and 2ny, < ny;
and so ny — 2n2 is even, hence it is zero or two. Let us define G(n, k).

Case 1. ny = 2n,.

The vertices of the graph will be P1= S, =Pn17R1" i ,an.

Pi,..., P, wil be a circle. R will be connected with P, and
1
Pom+17) (Where as usual P, =P, if i=j (modn,).
Case Il. n, = 2n2 + 2.

The vertices will be P, ... ,Pnl_z, R s ’an’sl'Sz'
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.S‘1 P1 = .PL . LSsz Skl 2 Is a circle, SIS2 is an edge, and Rm is

?l'l-—
L

connected with P 217

2m

The definition of G*(n, k) is as in 2.3, taking r, =1, L, =100,
L= 200.

§3. PROOF THAT THE EXAMPLES HAVE THE REQUIRED
ASYMMETRY

We shall prove it only for k> 40. Let Us mention some properties
of the graphs G*(n, k) we shall need. We assume implicitly that »n is
always sufficiently large.

Property A. There is NO square in the graph.

Proof. By property (4) of the 7;’s, a square cannot contain as a vertex
one of the R,’s in 2.4, nor Q in 2.3 II. By the definition of L it cannot
contain Q from 2.4 II. By the definition of G*(n, k) and L,LI, it suf-
fices to prove that in G(n, k), there is no circle 1“(:‘1 )}"(1'2 )4!"(1'3 VP(i 4)- Now
if there is a such a circle, i, is odd iff i, iseven. So assume 7, is even,
hence I, 1, are odd, I iseven. Moreover; iy by sy — bsdy — iy, iy — i €
E{r,: m= Licvagll. ks (i, =y ¥ o (i, — i) = (i, —aly) =t (i, —i;) by
property (2) of the r’s

{i, — 4,05 ~ 33}_= {12 > bylg—ds k.
Hence o=l =l — iy or i, Th Tl 30 iy =i, or I =1y,
and so this is not a square.

Property B. If P('i] Wi s .P(iﬁ) is a circle in G*(n, k) then iy — i =
=1y —Is; and similarly Iy —i, = by — i, g — iy = g —1,. Moreover
Iy=1i, = lg, 1), = i3 =i, (mod 2).
The proof is similar to that of (A).

Property C. For every P, the number of vertices among {P(; — )
ry <Jj<rn} adjacent to P, is 2 [(I- 1)/2].

Proof. Suppose i is even. Then clearly £. is connected with

|
It
h
P
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UEGLOR. WL L\ — T, ) 10T = 1, ... 5 [\ — 1}4].
Now we shall prove the theorem itself.

Theorem 3.1. A[G™(n, k)] =k, for k> 40, and n sufficiently
large relative to k. (Clearly it is < k).

Proof. We shall prove a stronger result: if 6 is a permutation of the
vertices of G™(n, k), then the number of edges PQ, such that 6(P), 8(Q)
are not connected, is = k.

Suppose G was obtained from G*(n, k) by < k changes, and 6
is an automorphism of G. We should prove 6 is the identity.

We shall first prove

(#) there are m;,m,,r such that (r,)> <m, and for every i,
m, <is<m; +m,, 0(P)=Pi+r), orforevery i m <i<m; +m,,
6(P,) = P(—i+ 1)

Proof of (). Let A be the set of all vertices of G*(n, k) satisfying
at least one of the following conditions:

(1) An edge which contains it, was removed or added in the change
of G(n,k) to G*(n, k) or from G*(n, k) to G.

(2) It is connected to Q oris Q (when there is a vertex named
Q in the graph).

(3) Its image by 0 satisfies (1) or (2).

Now the number of vertices satisfying (1) is < 4(k+ 15+ 2(k - 1)<
< 8k, the number of vertices satisfying (2)is <1+ (+ D<Kk/2+ 4<
< 2k; and the number of vertices satisfying (3) cannot be more than
8k + 2k. So | A|< 20k. Hence there are my,m,; (?’1)2 < m, such that:
for every i, m; <i<m; +m,, P, and 6(P;) do not belong to A. (If
there are > 201‘(7(3";)2 P,.’s, this clearly holds, and we have assumed n is
sufficiently large). Now clearly P, and 6(P,) have the same valency in

G*(n, k) (as they both & A) and also they are not Q. So 6‘(1‘}) is not
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Q, and not an R;, henceitisa I} let B{PI.) 2= PW)' Clearly for my <i,
j<mg+m,, Pi, P] are connected iff Pe(i)Pe(f} are connected. If i is
even, P,.P:,. are connected if j—i€{r,: 1<m<I}, and similarly if 0(i)
is even, Pﬂ(i)Pa(f) are connected iff 6() —0()€{r,: 1 <m<I}. Be-
tween the ordered pairs from {i: m; <i<m; + m,} we define a relation
E : Gy,Jy) E{ G3,],) holds iff there are k,,k, in this interval such that

P.,P. P, P.P. P, isacircle. Let E be the minimal equivalence rela-
1y’ Iy kyig i3k

tion which extends E,. By property (B), (/,,/,) £, (/;,j,) implies

Jo =iy =j4 —Jy, and j, =j; (mod 2), j, =j, (mod2). Clearly also
Gy+Jy) E(s4,j,) implies the same. If we restrict ourselves to pairs (7, 7
such that P, PI is an edge, we have exactly 2/ equivalence classes ({i,j)
and ¢j,i) belongs to different equivalence classes), (j,j,?E (i;,i,) holds
iff jl =}'2 (mod 2) and }'1 —_i2 =£l —ize{irm: 1<m<1[}. Wecande-
fine similarly E’1 and E' among {6(i): m; <i<m; +m,}. Ontheone
hand we can easily see that E] and E' are the imagesof E, and E un-
der 6. That is (jl,_iz)E(j3,f4) holds iff (6(,), 0(,) E' (603], 0G,)
holds, where fl,jz,}'3,j4 el m; <i< m, +m, }. On the other hand
repeating the proof for E, and using the fact that E’, restricted to pairs
{i,j?» for which 'PIPJ. is an edge, has exactly 2! equivalence classes (as
an image of E) we can conclude that: {j,,j,)E' {j,,j,) holds iff
jy=1J; (mod2) and j, —j,=j;—j, €{¢r,: 1<I} (where of course
Jysiysdzsiy €100): my <i<my +m,}.

For 2<m<l, let 0(r, )= 6G +7,)—0() for any even j,,
my <j<m; +m,. (Clearly 6(r, ) is independent of the choice of j).
It is easy to prove that either for every m, 6(r, )E{r;: 1 <i<l}, or
for every m, 0(r, )€ {—r;: 1 <i<]}). Now we shall prove that in the
first case 6(r, ) =, and in the second 6(r, )= —r, . This is done by
considering circles whose edges are from four equivalence classes. Clearly,

this implies (*).
Now we shall prove that

(#+) either for every i, 0(P;) = P(i+r) or for every i 6(P,) =
=P—itLr).

Suppose this is not true. We prove first that there are less than nine
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ne vertices u"uf —m)yr,<m<r} m G7(n k) and G(n,k). Itiseasy
to observe that there are no ki ky < 1}., kysky #iy,. .. ,1}._1,:}. =
such that Pk1P5-=Pk2Pf-- are connected in G*(n, k) and G(n, k), and

¥ j .

also their images are connected in G*(n, k) and G(n, k). (Otherwise

P{G(kl ))P(&(kz))}’(t 1} +r) isasquarein G*(n, k), contradiction.) Hence

the number of edges (in G*(n, k)) PfPl.f, i< i’. such that Pa( nPe ) is

net an edge in G*(n, k), is > [(I — 1)/2) —j. Hence the number of
changes is

9
>;§1 (1l —DR21-j =

= 9{1 — 1)/2] —}_=ij> 9 —2)/2 — 10+ 9/2 =
=9l2—-9—5-9=9I/2—54> 9k + 1)/4 — 54 =
= 9kl4 — 9/4 — 54 = k + Sk/4 — 51.75 =

= (k- 1)+ (5k — 203)/4> k — 1

(if k> 203/5= 40.6) contradiction.

So we have proved that («#) holds except perhaps for < 8P.’s. No-
ticing the edges we add to G(m, k) to create G*(n, k), clearly, for every
i, except possibly the nine mentioned above, H(Pi) =P,

Suppose there are m > 2, i’s for which 6(P,) # P,, and let

iy,...,i, be such indices. Then as before, for each i, if B(P,.) e PI.1

PP, are connected then 6(P,)6(P;) are not connected, except possibly
j j
one i. Hence the number of edges PP, such that S(P!)G(Pij) are not
j
connected, is =/ — m. Hence the number of changes made in G*(n, k)

to create G is = m(l — m); a contradiction, for 2<m <9, k> 40.

So except possibly for two i’s 6(P;,) = P,. Now it is not hard to
see that also,the number of vertices not transferred to themselves is < 2.
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So if @ is not the identity, it interchanges only two vertices. As in
G*(k, n) there is no square or triangle, clearly this also leads to contra-
diction. So we proved theorem 3.1.

Hint to the proof for k< 41. The same way, as we choose

iy <...<liy, we can choose i! >...>i®, whichare < m, and are
the greatest nine i’s for which (#+) fails. Also we can have several inter-
vals satisfying- (#), and we can prove their number is not_ too large, and
that the number of i’s not in any of them is also not too large. Then we
should examine many cases separately, until at least if follows that (=)
holds, and the rest is similar to the proof that appears here. For k = 3
(#) should include the Ri’s as well as the P]’s.
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