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Absolute E-rings

Rüdiger Göbel, Daniel Herden and Saharon Shelah

Abstract

A ring R with 1 is called an E-ring if EndZ R is ring-isomorphic to R under
the canonical homomorphism taking the value 1σ for any σ ∈ EndZ R. Moreover
R is an absolute E-ring if it remains an E-ring in every generic extension of
the universe. E-rings are an important tool for algebraic topology as explained
in the introduction. The existence of an E-ring R of each cardinality of the
form λℵ0 was shown by Dugas, Mader and Vinsonhaler [9]. We want to show
the existence of absolute E-rings. It turns out that there is a precise cardinal-
barrier κ(ω) for this problem: (The cardinal κ(ω) is the first ω-Erdős cardinal
defined in the introduction. It is a relative of measurable cardinals.) We will
construct absolute E-rings of any size λ < κ(ω). But there are no absolute E-
rings of cardinality ≥ κ(ω). The non-existence of huge, absolute E-rings ≥ κ(ω)
follows from a recent paper by Herden and Shelah [25] and the construction
of absolute E-rings R is based on an old result by Shelah [33] where families
of absolute, rigid colored trees (with no automorphism between any distinct
members) are constructed. We plant these trees into our potential E-rings with
the aim to prevent unwanted endomorphisms of their additive group to survive.
Endomorphisms will recognize the trees which will have branches infinitely often
divisible by primes. Our main result provides the existence of absolute E-rings
for all infinite cardinals λ < κ(ω), i.e. these E-rings remain E-rings in all generic
extensions of the universe (e.g. using forcing arguments). Indeed all previously
known E-rings ([9, 24]) of cardinality ≥ 2ℵ0 have a free additive group R+ in some
extended universe, thus are no longer E-rings, as explained in the introduction.

0This is GbHSh 948 in the third author’s list of publications.
The collaboration was supported by the project No. I-963-98.6/2007 of the German-Israeli Foundation
for Scientific Research & Development and the Minerva Foundation.
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Our construction also fills all cardinal-gaps of the earlier constructions (which
have only sizes λℵ0). These E-rings are domains and as a by-product we obtain
the existence of absolutely indecomposable abelian groups, compare [23].

1 Introduction

We want to investigate E-rings and their absolute behavior. E-rings appeared while
studying rings R with the property that the endomorphism ring EndZ R of the un-
derlying additive structure is ring-isomorphic to R. (These rings are now called gen-
eralized E-rings.) However, Schultz [32] was able to isolate in 1973 an important
class of rings which since then are called E-rings: R is an E-ring if the evalua-
tion map EndZ R −→ R (σ 7→ 1σ) is an isomorphism. (The name E-ring refers to
this particular mapping.) E-rings can also be defined dually: The homomorphism
R −→ EndZ R (r 7→ ρr) (with ρr scalar multiplication by r ∈ R on the right) is
an isomorphism. Moreover, it is not hard to see that R is an E-ring if and only if
EndZ R ∼= R and R is commutative; see [24, pp. 468, 469 Proposition 13.1.9]. Thus
R is an E-ring if and only if it is a commutative generalized E-ring. (This, of course,
suggests the question about the existence of proper generalized E-rings, first noticed
50 years ago by Fuchs [15] and answered recently by providing (in ordinary set theory,
ZFC) the existence of a proper class of such non-commutative rings in [22].) The first
examples of E-rings are the 2ℵ0 subrings of Q.

The class of E-rings was in the focus of many papers since then. The algebraic
properties were considered in fundamental papers by Mader, Pierce and Vinsonhaler
[28, 30, 31] and the existence of arbitrarily large E-rings was first shown by examples
of rank ℵ0 in Faticoni [12] (extended to ranks ≤ 2ℵ0 in [24, p. 471, Corollary 13.2.3])
and above 2ℵ0 in Dugas, Mader, Vinsonhaler [9] using Shelah’s Black Box as outlined
in Corner, Göbel [4]. The existence of related E-modules as a natural by-product
appeared soon after in [7]. From [32] also follows that the torsion-part of an E-ring
can be classified; the same holds for the cotorsion-part as shown in [18]. In contrast
the quotients of the ring modulo the ideal of torsion-elements and the ideal generated
by the cotorsion submodules can be arbitrarily large as shown in [1, 18], respectively.

The existence of E-rings contributes to algebraic topology: We rephrase the defini-
tion by the diagram
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Z
η

//

ϕ

��

R

ϕ
��

R,

where η is the inclusion 〈1〉 ⊆ R and for any ϕ there is a unique ϕ such that the diagram
holds. However, this is the definition of a localization R of Z, see [3]. This notion
makes sense in many categories, and in particular can be studied in homotopy theory,
as discussed in Dror Farjoun [5]. He raised the question if for a fixed compact space X,
the distinct homotopy types of the form LfX form a set, where f : Y −→ Z is running
through all possible maps between topological spaces and Lf denotes homotopical
localization with respect to these maps f . The following result is not hard to see, but
is an important observation in the context of localizations of abelian Eilenberg-Mac
Lane spaces. It will appear in Casacuberta, Rodŕıguez, Tai [3]: If a space X is a
homotopical localization of the circle S1 (i.e. X ∼= LfS

1), then X is the Eilenberg-
Mac Lane space K(R, 1) with R an E-ring and any E-ring appears this way (take
f : S1 −→ K(R, 1) induced by the inclusion of 1 into R). (The Eilenberg-Mac Lane
space K(R, 1) is the connected space which has (abelian) fundamental group R and
trivial higher homotopy groups. It is unique up to homotopy and it is well-known
how to construct such cellular models.) Thus the existence of a proper class of E-
rings provides a negative answer to Dror Farjoun’s question. Below we will discuss an
‘absolute version’ of this result.

Note that E-rings constructed earlier and here have also impact to other areas of
algebra. They are useful for constructing nilpotent groups of class 2 (see Dugas, Göbel
[8]) and build the core for investigating abelian groups with automorphism groups
acting uniquely transitive, see [19, 20, 21]. Surveys and classical results on E-rings can
be found in [13, 14, 24, 34].

The second ingredient of this paper is the notion of absolute structures. The recent
activity on this topic was initiated by Eklof and Shelah [11], who studied the existence
of absolutely indecomposable abelian groups. Here a property of a structure is called
absolute if it is preserved under generic extensions of the given universe (of set theory),
in particular it is preserved under forcing. Absolute formulas are discussed in detail in
a classical monograph by Levy [27], examples are the subset relation, or the property
to be an ordinal. A quick survey on absolute formulas is given in [2, pp. 408 –
412]. However, the powerset relation is not absolute. Here is a more striking algebraic
counterexample. The following statement (i) is not absolute.

(i) A 6= Z is an indecomposable abelian group and its subgroups of finite rank are

3
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free.

First we note that the freeness condition by Pontryagin’s theorem (Fuchs [16, Vol. 1,
p. 93]) is equivalent to say that all countable subgroups of A are free, i.e. A is ℵ1-
free. We can find a generic extension of the underlying model of set theory (the Levy
collapse) such that |A | becomes countable, hence A 6= Z is free and definitely not
indecomposable. We immediately note, that all E-rings constructed in the past (and
of size ≥ 2ℵ0) are ℵ1-free and thus can be treated the same way. They become free in
an extended model and thus are no longer E-rings. The problem settled in this paper
becomes obvious.

Can we find absolute E-rings?

As a by-product of these considerations we obtain new, very useful methods for
the construction of ‘complicated’ structures. The crucial point is, that often the old
constructions use stationary sets or tools which are not that friendly from a constructive
point of view: the new methods are based on inductive arguments and thus provide a
more elementary approach to the desired complicated structures.

Surprisingly, there is a precise cardinal bound κ(ω) for the construction of absolute
E-rings. Here κ(ω) denotes the first ω-Erdős cardinal defined in Section 2. We note
immediately that κ(ω) (like the first measurable cardinal) is a large inaccessible cardinal
which may not exist in any universe; see [26]. Any model of set theory contains a
submodel of ZFC which has no first ω-Erdős cardinal and it is also well-known that
Gödel’s universe has no first ω-Erdős cardinal. In a recent paper Herden, Shelah [25]
have shown that there are no absolute E-rings of size ≥ κ(ω). We want to prove the
converse.

Main Theorem 1.1 If λ is any infinite cardinal < κ(ω), (the first ω-Erdős cardinal),
then there is an absolute E-ring R of cardinality λ. Moreover Z[X] ⊆ R ⊆ Q[X] with
X a family of λ commuting free variables.

The new method of constructing E-rings differs from those described in the refer-
ences and above. For example, the construction in [9] (which does not provide any
absolute E-rings) - due to the Black Box - also does not allow to show the existence
of E-rings of cardinality cofinal with ω. However, Theorem 1.1 gives an answer for
all infinite cardinals < κ(ω). In Corollary 5.2 we explain how to extend this result to
obtain rigid families of (absolute) E-rings.

The following application to algebraic topology is immediate by the above remarks.

Corollary 1.2 The family LfS
1 (for any map f) of absolute localizations of the circle

S1 (based on Theorem 1.1) is a proper class, if and only if there is no ω-Erdős cardinal.
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Thus, in models of ZFC without ω-Erdős cardinals the negative answer to Dror
Farjoun’s problem is absolute.

Some absolute constructions for other categories of modules, trees and graphs can be
seen in [23, 17, 33, 6]. In these cases it also follows that the upper bound κ(ω) is sharp.
However, it is still an open problem, if for the family of absolutely indecomposable
abelian groups the upper bound can be larger than κ(ω), see also [11]. The strategy
for the construction of absolute E-rings utilizes the existence of absolutely rigid, colored
trees from Shelah [33], which we will describe in Section 2. In fact, in order to apply
this to E-rings, we first must strengthen [33] in Theorem 2.8.

Finally we explain the strategy of this paper in the simpler case of Theorem 1.1
when X is (non-empty and) countable. In this case we can replace the existence of
absolutely rigid trees by a countable family of primes automatically resulting in an
absolute construction. Consider the family F = {x − z, xn | x ∈ X, z ∈ Z, 0 < n <
ω} ⊆ Z[X] of polynomials. For each f ∈ F we choose a distinct prime pf . If a ∈ A
and A is a torsion-free abelian group, then recall that p−∞a ⊆ Q ⊗ A is the family of
unique quotients p−na (n < ω) and p∞A =

⋂

n<ω pnA is the first Ulm subgroup of A.
The group A is p-reduced if p∞A = 0. Finally U∗ ⊆ A denotes the unique minimal
pure subgroup of A containing U ⊆ A.

Proposition 1.3 The subring

R = 〈Z[X], p−∞
f f | f ∈ F〉

of the polynomial ring Q[X] in countably many variables is an E-ring.

Proof. It is easy to show that p∞f R = (fR)∗ holds for all f ∈ F . So by linearity
the purification of the principal ideal fR of R is fully invariant for all polynomials
f = (x−z)m with m a monomial in 〈X〉, x ∈ X, z ∈ Z. Since R now has visibly many
fully invariant ideals it will also be easy to show the proposition:

Consider any (x− z)m with m a monomial in 〈X〉, x ∈ X, z ∈ Z and ϕ ∈ EndZ R.
From the invariance of the pure ideals related to m, xm and (x − z)m follows the

existence of gm, gxm, g(x−z)m ∈ Q[X] such that mϕ = mgm, (xm)ϕ = xmgxm and

((x − z)m)ϕ = (x − z)mg(x−z)m = (xm)ϕ − z(mϕ) = xmgxm − zmgm.

Thus (x − z)mg(x−z)m = xmgxm − zmgm or seen as functions depending on x

(x − z) · m(x) · g(x−z)m(x) = x · m(x) · gxm(x) − zm(x) · gm(x)

5
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holds for every integer z ∈ Z. Substituting x := z we get 0 = zm(z) · (gxm(z)− gm(z)).
Hence h(z) = 0 follows for h(x) = gxm(x) − gm(x) and for all 0 6= z ∈ Z as zm(z) 6= 0.
Thus x−z is a factor of h(x) for infinitely many z ∈ Z, which is only possible if h is the
zero-polynomial and gm = gxm. Beginning with g = g1 = 1ϕ ∈ R we get by recursion
that ϕ acts by multiplication with g on the set of all monomials. But the monomials
generate R additively, hence ϕ = g idR and R is an E-ring.

Proposition 1.3 is a new proof of the main result in [12] and the problem we must
settle becomes also obvious: Even if we search for an (absolute) E-ring of size ℵ1,
then we must find a suitable substitute for primes, and this is how the large family of
absolutely rigid trees comes into play.

2 Constructing strongly rigid colored trees

In this section we strengthen an earlier result by Shelah [33] on better quasi-orders
which will be applied for E-rings. Thus we must first state one of the main results on
colored trees from this paper. The reader should keep in mind that in the following
tree maps will act on the left and module homomorphisms will act on the right of the
argument, so as usual the order of the composition of two maps ϕπ depends on the
domain which is a tree or a module, respectively.

Let κ(ω) denote the first ω-Erdős cardinal. This is defined as the smallest cardinal
κ such that κ → (ω)<ω holds, i.e. for every function f from the finite subsets of κ to 2
there exist an infinite subset X ⊂ κ and a function g : ω → 2 such that f(Y ) = g(|Y |)
for all finite subsets Y of X. This well-studied cardinal κ(ω) is strongly inaccessible;
see Jech [26, p. 392]. Thus κ(ω) is a very large cardinal. We should also emphasize
that κ(ω) may not exist in any universe of ZFC. In this case the restriction λ < κ(ω)
on a cardinal λ will be irrelevant.

If λ < κ(ω), then let

T = ω>λ = {f : n −→ λ : with n < ω and n = Dom f}

be the tree of all finite sequences f (of length or level lg f) in λ. Since n = {0, . . . , n−1}
as ordinal, we also write f = f(0)∧f(1)∧ . . . ∧f(n−1). By restriction g = f ↾m for any
m ≤ n we obtain all initial segments of f . We will write g � f to denote that g is an
initial segment of f . Thus

g ⊆ f as graphs ⇐⇒ g � f.

6
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We denote the empty map by the symbol ⊥ and call it the root of the tree. A subtree T ′

of T is a non-empty subset which is closed under initial segments and a homomorphism
between two subtrees T1, T2 of T is a map ϕ : T1 → T2 (η 7→ ϕ(η)) that preserves levels
and initial segments, i.e. lg η = lg ϕ(η) and ϕ(ν) � ϕ(η) for all ν � η ∈ T1. (Note that
a homomorphism does not need to be injective or preserve ⋪.) If T ′ comes with a
coloring map c : T ′ −→ ω (η 7→ c(η)) we call this tree an ω-colored (or just a colored)
tree and write (T ′, c). Colored trees in this paper will always be ω-colored, and we
often omit ω. Now, Hom((T1, c1), (T2, c2)) will denote the homomorphisms ϕ between
two such colored trees which are ordinary tree homomorphisms ϕ : T1 → T2 that in
addition preserve colors, i.e. c2(ϕ(η)) = c1(η) for all η ∈ T1. Shelah [33] showed the
existence of an absolutely rigid family of 2λ colored subtrees of T = ω>λ.

Theorem 2.1 If λ < κ(ω) is infinite and T = ω>λ, then there is a family (Tα, cα)
(α < 2λ) of ω-colored subtrees of T (of size λ) such that for α, β < 2λ and in any
generic extension of the universe the following holds.

Hom((Tα, cα), (Tβ, cβ)) 6= ∅ =⇒ α = β.

Remark 2.2 Such a family of colored trees (Tα, cα) (α < 2λ) is called an absolutely
rigid family of trees of size λ. In the following we will show how to implement such a
family to construct absolute E-rings of any infinite cardinality < κ(ω). For λ > κ(ω)
such an absolutely rigid family of trees does not exist.

We fix such a family and write

(T ′′
α , c′′a) (α < 2λ) for an absolutely rigid family of trees ( for a fixed λ < κ(ω)). (2.1)

2.1 A shift map for trees

In order to modify the family (2.1) we introduce two coding maps, which are bijections.

cd : ω>ω → ω

and
cdλ : ω>(λ ∪ {∗}) → λ,

where ∗ denotes a new symbol (which does not appear in the set λ).
If α < 2λ, then let σα := cd−1

λ (α) and define a subset T ′
α ⊆ ω>λ consisting of all

elements η ∈ ω>λ satisfying to the following two conditions. We let lg η = n.

7
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(a) For ℓ < n let lg ση(ℓ) = ℓ + 1.

(b) For any ℓ < n there is νηℓ ∈ T ′′
α such that

ση(ℓ+m)(ℓ) =

{

νηℓ(m) for m < lg νηℓ,
∗ for lg νηℓ ≤ m ≤ n − ℓ − 1.

This in particular implies that lg νηℓ ≤ n − ℓ − 1 must hold. Given η, then the choice
of elements νηℓ is illustrated by the following diagram.

η(0) η(1) η(2) η(3) η(n-1)

...

...

...

...

...

...

ση(0)

η(1)

η(2)

η(3)σ

σ

σ

η

ν

ν

ν

ν

σ

η0

η1

η2

η3

η(n-1)

η n-1ν

...

The triangular shape of the diagram is a direct consequence of the above conditions
(a) and (b). The ℓth line of the diagram is of the form νηℓ

∧〈∗, ∗, ∗, . . . 〉, where the
element νηℓ ∈ T ′′

α is uniquely determined by η and condition (b). Conversely, any choice
of elements νℓ ∈ T ′′

α (ℓ < n) with lg νℓ ≤ n − ℓ − 1 by (b) determines some η ∈ T ′
α of

length n with νηℓ = νℓ (ℓ < n), thus T ′
α 6= ∅. We get an immediate

Proposition 2.3 Let ℵ0 ≤ λ < κ(ω). The above set T ′
α is a colored subtree of ω>λ

with the coloring map

c′α : T ′
α −→ ω, η 7→ c′α(η) = cd( 〈lg νηℓ | ℓ < lg η〉∧〈c′′α(νηℓ) | ℓ < lg η〉∧〈c′′α(⊥)〉 ).

Hence we have a family 〈(T ′
α, c′α) | α < 2λ〉 of colored trees.

8
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The relevant point here is that the color c′α(η) encodes the length and the color of
the branches νηℓ for all ℓ < lg η.

Proof. We have T ′
α 6= ∅ from above. Let η′

� η ∈ T ′
α be an initial segment. We

must show that η′ satisfies the two conditions (a),(b) above. Condition (a) is obvious.
Condition (b) is satisfied with

νη′ℓ =

{

νηℓ ↾(lg η′ − ℓ − 1) for lg η′ − ℓ − 1 < lg νηℓ,
νηℓ otherwise.

Hence η′ ∈ T ′
α. It is clear that c′α defines a coloring of T ′

α.

In particular, νη′ℓ � νηℓ holds for η′
� η ∈ T ′

α and ℓ < lg η′. Finally we illustrate the
above coloring c′α(η) for a tree.

η(0) η(1) η(2) η(3) η(n-1)

...

...

...

...

...

...

ση(0)

η(1)

η(2)

η(3)σ

σ

σ

η

ν

ν

ν

ν

σ

η0

η1

η2

η3

η(n-1)

η n-1ν

...

ν

ν

ν

ν

η0

η1

η2

η3

η n-1νlg( )

lg(

lg(

lg(

lg( )

)

)

) ν

ν

ν

ν

η0

η1

η2

η3

η n-1νc''( )

c''(

c''(

c''(

c''(

)

)

)

)

α

α

α

α

α

α ⊥c''( )

ηc'( )α

Next we will show that these trees are strongly rigid (in the sense of Theorem 2.5
below). We will use the following natural definition.

Definition 2.4 If α < 2λ and η ∈ T ′
α, then let (T ′

α)≥η := {ν ∈ T ′
α | η � ν} be the part

of the tree T ′
α above η.

Using Theorem 2.1 we will establish the following

Theorem 2.5 If α, β < 2λ are distinct, and η ∈ T ′
α, then there is no color preserving

partial tree homomorphism ϕ′ : (T ′
α)≥η −→ T ′

β in any generic extension of the universe.

9



9
4
8
 
 
r
e
v
i
s
i
o
n
:
2
0
1
0
-
0
6
-
2
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
0
-
0
6
-
2
3
 
 

Proof. Suppose for contradiction that ϕ′ : (T ′
α)≥η −→ T ′

β is a color preserving
partial tree homomorphism. First we define an injective projection map

π : T ′′
α −→ (T ′

α)≥η,

which we then want to compose with ϕ′. If τ ∈ T ′′
α and ℓ < lg τ , then we determine a

branch τ ′
ℓ ∈

ω>(λ ∪ {∗}) of length lg τ ′
ℓ = ℓ + lg η + 1. Let

τ ′
ℓ(m) :=

{

τ(ℓ) for m = lg η,
∗ otherwise.

Then put π(τ) = η∧〈cdλ(τ
′
ℓ) | ℓ < lg τ〉 which belongs to (T ′

α)≥η as required: Condition
(a) above is clear and (b) can be seen directly from the diagram below. Thus lg π(τ) =
lg τ +lg η, and νπ(τ), lg η = τ holds for τ 6=⊥. Moreover, if τ �τ ′, then also π(τ)�π(τ ′).
So π : T ′′

α −→ (T ′
α)≥η is an injective map that preserves initial segments.

Finally we want to define a color preserving tree homomorphism

ϕ : T ′′
α −→ T ′′

β . (2.2)

by setting
ϕ(τ) = ν(ϕ′π)(τ), lg η

for τ 6=⊥ and ϕ(⊥) =⊥. Note that ϕ(τ) is well-defined: For this we must show that
lg η < lg(ϕ′π)(τ) for τ 6=⊥. But note that by the above (using that ϕ′ preserves length)

lg(ϕ′π)(τ) = lg π(τ) = lg τ + lg η > lg η

as desired.

η

τ
∗

∗
∗
∗

π(τ) in (T' )α ≥ η

∗
∗
∗

(φ π)(τ) in T'β'

'φ

ν '

lgη lgη
(φ π)(τ),lg η

φ(τ)

10
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It is clear that ϕ(τ) ∈ T ′′
β . Finally we have to show that ϕ preserves the length and

color of branches as well as initial segments.
If τ � τ ′ ∈ T ′′

α then by the properties of π mentioned above we have π(τ) � π(τ ′) ∈
(T ′

α)≥η, and using that ϕ′ is a tree homomorphism also (ϕ′π)(τ) � (ϕ′π)(τ ′) and

ϕ(τ) = ν(ϕ′π)(τ), lg η � ν(ϕ′π)(τ ′), lg η = ϕ(τ ′)

holds. To show that ϕ preserves length and color we recall c′α(π(τ)) = c′β((ϕ′π)(τ)) for
τ ∈ T ′′

α as ϕ′ preserves colors. However c′ codes the length and color of the elements
of the form ν... lg η (if τ 6=⊥) and it follows by definition of π and ϕ, respectively, that

lg τ = lg νπ(τ), lg η = lg ν(ϕ′π)(τ), lg η = lg ϕ(τ)

and similarly c′′α(τ) = c′′β(ϕ(τ)). As c′ always codes the color of the root ⊥ we also have
c′′α(⊥) = c′′β(⊥) = c′′β(ϕ(⊥)), while lg ⊥= lg ϕ(⊥) is obvious.

Hence ϕ is a color preserving tree homomorphism, which by Theorem 2.1 can not
exist unless α = β. This case however was excluded.

2.2 Strongly rigid trees

In the final step of the tree construction we will modify the trees from Section 2.1 to
prove the non-existence of color preserving partial tree homomorphisms on an even
smaller domain. It helps to consider for branches η ∈ ω>λ and σ ∈ ω>ω with lg η = lg σ
the induced branch

η • σ := 〈ω · η(ℓ) + σ(ℓ) | ℓ < lg η〉 ∈ ω>(ω · λ) = ω>λ.

If η ∈ ω>λ, then there is an obviously unique decomposition η = η′ • σ with η′ ∈ ω>λ,
σ ∈ ω>ω and lg η′ = lg σ. Furthermore, η′

1 • σ1 � η′
2 • σ2 holds iff η′

1 � η′
2 and σ1 � σ2.

Using the trees T ′
α (α < 2λ) from Theorem 2.5 we put

Tα := {η ∈ ω>λ | η = η′ • σ, η′ ∈ T ′
α, σ ∈ ω>ω and lg η′ = lg σ}

and define a coloring

cα(η) = cd(〈c′α(η′ ↾ ℓ) | ℓ < lg η′〉 ∧σ) for η = η′ • σ ∈ Tα.

Here cd is the coding map from the beginning of Section 2.1.
Our final tree-results are the following two theorems.
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Theorem 2.6 Let (Tα, cα) (α < 2λ) be as above. Then the following holds.

(i) Tα ⊆ ω>λ is a subtree.

(ii) cα : Tα −→ ω is a coloring.

(iii) For η ∈ Tα and ν ∈ Tβ with cα(η) = cβ(ν) follows

(a) lg η = lg ν.

(b) cα(η ↾ ℓ) = cβ(ν ↾ ℓ) for all ℓ < lg η.

(c) If η = η′ • σ, ν = ν ′ • τ then σ = τ .

Proof. It is clear that Tα 6= ∅, and conditions (i) and (ii) are obvious. For (iii) we
consider cα(η) = cβ(ν). Thus 〈c′α(η′ ↾ ℓ) | ℓ < lg η′〉 ∧σ) = 〈c′β(ν ′ ↾ ℓ) | ℓ < lg ν ′〉 ∧τ) by
definition of the coloring. We get lg η = lg η′ = lg ν ′ = lg ν, σ = τ and c′α(η′ ↾ ℓ) =
c′β(ν ′ ↾ ℓ) for all ℓ < lg η. Now (a),(b) and (c) are obvious.

In preparation of the next theorem we define a special closure property.

Definition 2.7 We will also use the following closure condition for subsets T ∗
α ⊆ Tα

and η = η′ • σ ∈ T ∗
α :

(1) If ν = ν ′ • τ ∈ T ∗
α then ν ′ ∈ (T ′

α)≥η′ .

(2) If ν = ν ′ • τ ∈ T ∗
α and ν ′

� ξ′ ∈ T ′
α and lg ξ′ = lg ν ′ +1, then there is τ �υ ∈ ω>ω

with lg υ = lg τ + 1 and ξ′ • υ ∈ T ∗
α .

Theorem 2.8 If (Tα, cα) (α < 2λ) is as above and T ∗
α ⊆ Tα satisfies the closure

condition from Definition 2.7 for η = η′ • σ ∈ T ∗
α and α 6= β < 2λ, then there is no

color preserving partial tree homomorphism T ∗
α −→ Tβ in any generic extension of the

universe.

12
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Proof. Let η = η′ • σ be as in the theorem and suppose for contradiction that
ϕ : T ∗

α −→ Tβ is a color preserving partial tree homomorphism. We want to define a
color preserving partial tree homomorphism

ϕ′ : (T ′
α)≥η′ −→ T ′

β .

In the first step we define recursively a partial tree homomorphism

g : (T ′
α)≥η′ −→ ω>ω

such that ν ′ • g(ν ′) ∈ T ∗
α for all ν ′ ∈ (T ′

α)≥η′ . The (relative) bottom element is η′ ∈
(T ′

α)≥η′ and we put g(η′) = σ and note that η = η′ • σ ∈ T ∗
α by assumption of the

theorem. For the inductive step we consider ν ′ ∈ (T ′
α)≥η′ , ν ′ • g(ν ′) ∈ T ∗

α , let ν ′
� ξ′ be

with lg ξ′ = lg ν ′ + 1 and define g(ξ′) with the help of Definition 2.7(2). In particular
g(ν ′) � g(ξ′) and lg g(ξ′) = lg g(ν ′) + 1 = lg ν ′ + 1. Hence g is well-defined on (T ′

α)≥η′

and preserves lengths and initial segments.
Recall that for any ν ′ ∈ (T ′

α)≥η′ we have ν = ν ′ • g(ν ′) ∈ T ∗
α . In particular,

ϕ(ν) = ν ′′ • τ ∈ Tβ is well-defined, and since ϕ preserves colors, we derive from
Theorem 2.6(iii)(c) that τ = g(ν ′); hence

ϕ(ν ′ • g(ν ′)) = ν ′′ • g(ν ′) (2.3)

and we put ϕ′(ν ′) = ν ′′ ∈ T ′
β . Thus the map ϕ′ above is defined and we must check

that it preserves initial segments, lengths and colors.
Let ν ′

� ξ′ and recall that g preserves initial segments. Hence also g(ν ′) � g(ξ′)
and ν ′ • g(ν ′) � ξ′ • g(ξ′), and since ϕ is a partial tree homomorphism we conclude
ϕ′(ν ′) • g(ν ′) � ϕ′(ξ′) • g(ξ′) and ϕ′(ν ′) � ϕ′(ξ′) from (2.3).

From ϕ(ν ′ • g(ν ′)) = ϕ′(ν ′) • g(ν ′) and the assumption that ϕ preserves colors
[together with Theorem 2.6(iii)(b),(c)] we get c′α(ν ′) = c′β(ϕ′(ν ′)) and see that also ϕ′

preserves colors. Moreover lg ν ′ = lg(ν ′ • g(ν ′)) = lg(ϕ′(ν ′) • g(ν ′)) = lg ϕ′(ν ′) and
ϕ′ also preserves the length. Such a map ϕ′ however is forbidden by Theorem 2.5 for
α 6= β, so Theorem 2.8 holds.

3 The construction of E-rings

Let λ < κ(ω) be a fixed infinite cardinal and enumerate by

Π = {pnki, qnki | n, k, i < ω}

13



9
4
8
 
 
r
e
v
i
s
i
o
n
:
2
0
1
0
-
0
6
-
2
1
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
0
-
0
6
-
2
3
 
 

some of the primes of Z without repetition. Let Q denote the field of rational numbers.
If p ∈ Π and a is an element of a torsion-free abelian group M , then we denote (as
usual) by p−∞a the family of unique elements {p−na | n < ω} of the divisible hull
QM = Q ⊗ M using M ⊆ QM . If p−∞a ⊆ M , we will also write p∞ | a (in M).

First we decompose λ into λ =
⋃

n<ω Un with equipotent subsets Un of size λ, write
U<n =

⋃

i<n Ui and constitute a chain {Xn | n < ω} with the help of some of the
absolute trees Tα ⊆ ω>λ (α < 2λ) given by Theorem 2.8 as follows. Let

Xn = {xγ , xαη | γ < λ, α ∈ U<n, η ∈ Tα \ {⊥}} for all n < ω and X =
⋃

n<ω

Xn.

Note that X0 = {xγ | γ < λ} (because U<0 = ∅).
By induction on n we define a chain {Rn | n < ω} of subrings Rn of Q[Xn] and let

R =
⋃

n<ω Rn. Let R0 = Z[xγ | γ < λ] be the polynomial ring with integer coefficients
in λ commuting variables. Given Rn, we will choose an enumeration

Rn = {rαn | α ∈ Un}

(without repetition) of all polynomials from Rn \ {0} to define Rn+1.
Let xα⊥ := rαn ∈ Rn and put

Rn+1 = 〈Rn, p−ℓ
nkixαη, q

−ℓ
nki(xαη − xαν) | α ∈ Un, η ∈ Tα \ {⊥}, i, k, ℓ < ω〉 ⊆ Q[Xn+1]

subject to the conditions

cα(η) = i, lg η = k + 1, η ↾ k = ν

where 〈S〉 denotes the ring generated by the set S.
Using the notation p−∞a from above Rn+1 is generated as a ring by the set

{R0, p−∞
mkixαη, q−∞

mki(xαη − xαν) | α ∈ Um, η ∈ Tα \ {⊥}, m ≤ n, and i, k < ω}

with the restrictions of the last display.
The ring R is situated between the polynomial rings Z[X] and Q[X]. Our main

result will then be the following

Main Theorem 3.1 If λ is any infinite cardinal < κ(ω) (the first ω-Erdős cardinal),
then R is an absolute E-ring of cardinality λ. Moreover Z[X] ⊆ R ⊆ Q[X] with X a
family of λ commuting free variables.

The main step for a proof of this theorem is the central result of the next section.

14
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4 Invariant principal ideals of R

Theorem 4.1 If ϕ ∈ EndZ R and r ∈ R, then rϕ ∈ (Rr)∗.

Here (Rr)∗ denotes the (unique) group purification of the principal ideal Rr of R,
which is the smallest ideal I of R containing Rr with torsion-free abelian quotient
R/I. Theorem 4.1 can be rephrased saying that all purified principal ideals of R are
fully invariant under the action of EndZ R.

Recall that a submodule U of an R-module M is fully invariant if U is an EndR M-
submodule of M . We begin with a countable family of ideals which by arithmetical
reasons are obviously fully invariant ideals of the ring R:

• If p = pnki ∈ Π, then Inki := p−∞R =
⋂

ℓ<ω p−ℓR is a fully invariant ideal of R.

• If q = qnki ∈ Π, then Jnki := q−∞R =
⋂

ℓ<ω q−ℓR is a fully invariant ideal of R.

We want to characterize these ideals in different ways and define two families of
ring homomorphisms accordingly.

Definition 4.2 Let p = pnki ∈ Π and q = qnki ∈ Π, respectively.

(i) The ring homomorphism F p
nki : R −→ Q[X] is defined by

xαηF
p
nki :=

{

0 if α ∈ Un, η ∈ Tα, cα(η) = i, lg η = k + 1,
xαη otherwise.

(ii) The ring homomorphism F q
nki : R −→ Q[X] is defined by

xαηF
q
nki :=

{

xαν if α ∈ Un, η ∈ Tα, cα(η) = i, lg η = k + 1, ν = η ↾ k,
xαη otherwise.

The maps F p
nki, F

q
nki extend uniquely from the free generators of Q[X] to ring en-

domorphisms of Q[X] that can be restricted to R. The following lemma characterizes
the ideals Jnki.

Lemma 4.3 For q = qnki ∈ Π the following holds.

Jnki = ker F q
nki = 〈R(xαη − xαν) | α ∈ Un, η ∈ Tα〉∗ ⊆ R

subject to the conditions: cα(η) = i, lg η = k + 1, ν = η ↾ k.

Here 〈S〉∗ denotes the group purification in R of the ring 〈S〉 generated by the set S.

15
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Proof. The inclusion 〈R(xαη − xαν) | α ∈ Un, η ∈ Tα〉∗ ⊆ Jnki holds because Jnki is
pure in R. Next we show that Jnki ⊆ ker F q

nki:
Note that (xαη − xαν)F

q
nki = 0 whenever α ∈ Un, cα(η) = i, lg η = k + 1 and ν = η ↾ k,

thus
RF q

nki ⊆ 〈p−∞Z[X] | qnki 6= p ∈ Π〉 ⊆ Q[X] .

If r ∈ Jnki, then r ∈ q−∞
nki R and rF q

nki ∈ q−∞
nki (RF q

nki). But by the above inclusion
q−∞
nki (RF q

nki) = 0 is obvious, hence r ∈ ker F q
nki.

For ker F q
nki ⊆ 〈R(xαη − xαν) | α ∈ Un, η ∈ Tα〉∗ we consider any 0 6= r ∈ ker F q

nki.
As an element from R there is an integer a 6= 0 such that ar ∈ Z[X] can be expressed
as a finite sum, where we isolate the variables xαη ∈ X that meet the restriction of the
lemma. Thus we represent

ar =
s

∑

j=1

mj(xαη) · fj + g,

where the monomials mj ∈ Z[X] contain only the xαη with cα(η) = i, lg η = k + 1, ν =
η ↾ k while the polynomials fj, g ∈ Z[X] do not have contributions from this set. We
can express xαη = (xαη − xαν) + xαν and rewrite the sum as

ar =
∑

η

(xαη − xαν) · f
′
η + g′

with suitable polynomials f ′
η ∈ Z[X] and g′ =

∑s

j=1 mj(xαν) · fj + g a polynomial
without contributions from xαη. We now apply F q

nki and get

0 = (ar)F q
nki =

∑

η

[(xαη−xαν)·f
′
η]F

q
nki+g′F q

nki =
∑

η

(xαη−xαν)F
q
nki·f

′
ηF

q
nki+g′F q

nki = g′.

Thus g′ = 0 and ar =
∑

η(xαη − xαν) · f
′
η ∈ 〈R(xαη − xαν) | α ∈ Un, η ∈ Tα〉. It follows

that r belongs to the corresponding purification as claimed. Thus the three displayed
sets of the lemma coincide.

Similarly we can characterize the ideals Inki. The proof follows the arguments of
the previous lemma.

Lemma 4.4 For p = pnki ∈ Π the following holds.

Inki = ker F p
nki = 〈Rxαη | α ∈ Un, η ∈ Tα, cα(η) = i, lg η = k + 1〉∗ ⊆ R.
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We now come to the proof of Theorem 4.1. Let ϕ ∈ EndZ R and 0 6= r ∈ R be as
in the theorem. We fix some n ∈ ω and α ∈ Un with r = rαn = xα⊥ and consider the
family Xα = {xαη | η ∈ Tα} of generators from R and let Yα = {yαη := xαηϕ | η ∈ Tα}.
From the definition of the variables xαη, the ideals Inki, Jnki and the observation that
these ideals are fully invariant we get

• xα⊥ = r and yα⊥ = rϕ.

• If lg η > 0, then xαη ∈ X.

• If cα(η) = i, lg η = k + 1, ν = η ↾ k, then xαη ∈ Inki and xαη − xαν ∈ Jnki.

• If cα(η) = i, lg η = k + 1, ν = η ↾ k, then yαη ∈ Inki and yαη − yαν ∈ Jnki.

The next definition helps to investigate Yα.

Definition 4.5 If η ∈ Tα, then let Λα(η) be the set of all monomials from 〈X〉 which
appear in the canonical representation of yαη in Q[X]. If m ∈ 〈X〉, then let activeαη(m)
be the list of all variables xβν from m with cα(η) = cβ(ν).

The definition of activeαη(m) will mainly be used for m ∈ Λα(η). Note that a list
is not a set: a variable xβν will appear with its multiplicity (for m) which in general
may be > 1. We do not care about the ordering of this list.

Corollary 4.6 For η ∈ Tα, cα(η) = i, lg η = k + 1 and m ∈ Λα(η) the following holds.

(i) activeαη(m) 6= ∅.

(ii) If k > 0 and ν = η ↾ k, then m′ := mF q
nki ∈ 〈X〉 and for the lists we have

(activeαη(m))F q
nki ⊆ activeαν(m

′).

From Corollary 4.6(ii) follows immediately | activeαη(m) | ≤ | activeαν(m
′) | for the

sizes of the lists.

17
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Proof. (i) From xαη ∈ Inki follows yαη ∈ Inki and by Lemma 4.4 we have yαηF
p
nki = 0,

hence also mF p
nki = 0. Note that the members of activeαη(m) have color cα(η) = i and

thus activeαη(m) 6= ∅ as the map F p
nki replaces xα′η′ ∈ activeαη(m) ⊆ X with 0.

(ii) If xα′η′ ∈ activeαη(m), then lg η′ = lg η = k + 1 by Theorem 2.6(iii)(a) and the
map F q

nki replaces xα′η′ by xα′ν′ ∈ X (as k > 0) with ν ′ = η′ ↾ k. Thus mF q
nki ∈ 〈X〉.

Furthermore, from xα′η′ ∈ activeαη(m) follows cα′(η′) = cα(η) and cα′(ν ′) = cα(ν)
by Theorem 2.6(iii)(b). Thus xα′ν′ = xα′η′F q

nki ∈ activeαν(m
′) and for the lists we have

(activeαη(m))F q
nki ⊆ activeαν(m

′).

Recall the trees Tα, T ′
α from Section 2.

Corollary 4.7 Let ν = ν ′ • τ ∈ Tα with lg ν ′ = k and ν ′
� η′′ ∈ T ′

α with lg η′′ = k + 1.
Then there is some branch σαν with the following properties.

(i) τ � σαν ∈ ω>ω with lg σαν = k + 1.

(ii) If xβξ ∈ X appears in the canonical representation of yαν with ξ = ξ′ • υ, then
σαν 6= υ.

(iii) If η := η′ • σαν ∈ Tα for some ν ′
� η′ ∈ T ′

α with lg η′ = k + 1, then cα(η) 6= cβ(ξ)
for all xβξ ∈ X which appear in the canonical representation of yαν .

Proof. On the one hand there are only finitely many xβξ which may appear in yαν ,
on the other hand there are infinitely many choices for σαν ∈ ω>ω with (i). So it is
easy to choose σαν with (ii). Property (iii) is an immediate consequence of (i) and (ii):

The branch η ∈ Tα is well-defined by (i) and the definition of Tα, while from
cα(η) = cβ(ξ) follows σαν = υ by Theorem 2.6(iii)(c), contradicting (ii).

Definition 4.8 If ν = ν ′ • τ ∈ Tα with lg ν ′ = k, then set

suc∗α(ν) = {η = η′ • σαν | ν ′
� η′ ∈ T ′

α, lg η′ = k + 1}

as a set of special successors of ν and

T ∗
α = {η ∈ Tα | η ↾(ℓ + 1) ∈ suc∗α(η ↾ ℓ) for all ℓ < lg η}

as the subtree of Tα induced by these successors.

The next corollary shows that for any η ∈ T ∗
α the set (T ∗

α )≥η satisfies the closure
condition from Definition 2.7 and thus qualifies for Theorem 2.8.

Corollary 4.9 If η = η′ • σ ∈ T ∗
α , then (T ∗

α )≥η satisfies the closure condition from
Definition 2.7 for η. In particular T ∗

α ⊆ ω>λ is a subtree with the closure condition for
η = ⊥ • ⊥ ∈ T ∗

α .

18
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Proof. It is clear that T ∗
α and (T ∗

α )≥η are closed under initial segments, thus subtrees
of ω>λ. The closure condition is also immediate from Corollary 4.7. Note that ν =
ν ′ ∗ τ ∈ Tα with lg ν ′ = k and ν ′

� η′ ∈ T ′
α with lg η′ = k + 1 implies that ν ′ has

successors in T ′
α, hence some σαν exists and also suc∗α(ν) 6= ∅.

Corollary 4.10 If η ∈ T ∗
α , cα(η) = i, lg η = k + 1 and ν = η ↾ k, then the following

holds.

(a) If m ∈ Λα(ν), then mF q
nki = m.

(b) yαηF
q
nki = yαν.

(c) If k > 0, m ∈ Λα(ν), then there is m′ ∈ Λα(η) with m′F q
nki = m.

Proof. (a) Suppose that some xβξ ∈ X appears in m which is not a fix-point of
F q

nki. Then necessarily cα(η) = i = cβ(ξ) which contradicts Corollary 4.7(iii).
(b) By the choice of xαη − xαν ∈ Jnki we also have yαη − yαν ∈ Jnki and thus

(yαη − yαν)F
q
nki = 0 by Lemma 4.3. It follows 0 = yαηF

q
nki − yανF

q
nki = yαηF

q
nki − yαν

which is (b).
(c) We write yαν =

∑

mi∈Λα(ν) aimi and yαη =
∑

m′

j
∈Λα(η) a′

jm
′
j ; by (b) follows

∑

m′

j
∈Λα(η)

a′
jm

′
jF

q
nki = yαηF

q
nki = yαν =

∑

mi∈Λα(ν)

aimi .

The summands on the left hand side are monomials in 〈X〉 by Corollary 4.6(ii) and
k > 0. Comparing the two sides, for any mi ∈ Λα(ν) there must be an m′

j ∈ Λα(η)
with m′

jF
q
nki = mi. So mi = m demonstrates (c).

Definition 4.11 If η ∈ T ∗
α , cα(η) = i, lg η = k + 1, ν = η ↾ k and k > 0. Then let

gαν : Λα(ν) −→ Λα(η) with mgανF
q
nki = m for all m ∈ Λα(ν).

The map gαν is well-defined by Corollary 4.10(c) and the following holds by Corol-
lary 4.6(ii).

Proposition 4.12 If gαν is defined as in Definition 4.11, then

F q
nki ↾ activeαη(mgαν) : activeαη(mgαν) −→ activeαν(m)

is an injective map of the lists.
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The following innocent looking lemma collects most of the earlier results and is the
platform for the final stage of the proof of Theorem 4.1.

Lemma 4.13 If η ∈ T ∗
α , lg η = k + 1 and m ∈ Λα(η), then there is ξ ∈ Tα such that

xαξ ∈ activeαη(m).

Proof. If η is as in the lemma, then we want to define inductively a family {mη′ |
η′ ∈ (T ∗

α )≥η} with

(i) mη′ ∈ Λα(η′),

(ii) mη := m,

(iii) mη′ := mν′gαν′ for η�η′ ∈ T ∗
α with cα(η′) = i′, lg η < lg η′ = k′+1 and ν ′ = η′ ↾ k′.

If mη′ is from this list, then mη′F q
nk′i′ = mν′ . First we consider the family

{| activeαη′(mη′) | | η′ ∈ (T ∗
α )≥η}

If η�η1 �η2, then | activeαη2
(mη2

) | ≤ | activeαη1
(mη1

) | by Corollary 4.6(ii). Choose
µ ∈ (T ∗

α )≥η with | activeαµ(mµ) | minimal. Then | activeαη′(mη′) | is constant for all
η′ ∈ (T ∗

α )≥µ. If now µ � η′ ∈ T ∗
α with cα(η′) = i′, lg µ < lg η′ = k′ + 1, ν ′ = η′ ↾ k′, then

F q
nk′i′ : activeαη′(mη′) −→ activeαν′(mν′) is a bijection of lists. (4.1)

By Corollary 4.6(i) we also have that activeαµ(mµ) 6= ∅. So we can choose

xβµ′ ∈ activeαµ(mµ) (4.2)

and we define inductively a color preserving partial tree homomorphism

Ψ : (T ∗
α )≥µ −→ Tβ such that xβΨ(η′) ∈ activeαη′(mη′).

First we choose Ψ(µ) = µ′ ∈ Tβ . Since xβµ′ ∈ activeαµ(mµ) we get cβ(µ′) = cα(µ) and
Ψ preserves the color at this stage. Moreover, since the colors code the branches from
ω>ω and the lengths of branches, also lg µ′ = lg µ and Ψ preserves the length at this
stage. In the inductive step we consider µ � η′ ∈ T ∗

α with cα(η′) = i′, lg µ < lg η′ =
k′ + 1, ν ′ = η′ ↾ k′ and Ψ(ν ′) = ξ ∈ Tβ such that xβξ ∈ activeαν′(mν′). By (4.1) there is
xβ′ξ′ ∈ activeαη′(mη′) with xβ′ξ′F

q
nk′i′ = xβξ. We put Ψ(η′) = ξ′. By definition of F q

nk′i′

follows β = β ′, and ξ′ ∈ Tβ with ξ′ ↾(lg ξ′ − 1) = ξ. Thus Ψ(η′) ∈ Tβ preserves lengths
and initial segments; moreover xβΨ(η′) ∈ activeαη′(mη′). Finally xβΨ(η′) ∈ activeαη′(mη′)
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implies that cβ(Ψ(η′)) = cα(η′), so Ψ also preserves the color and thus is as required
above. We are ready to apply Theorem 2.8 (together with Corollary 4.9) and derive
that α = β. By (4.2) there is µ′ ∈ Tα such that xαµ′ ∈ activeαµ(mµ). Applying
Corollary 4.6(ii) and η � µ we also find some xαξ ∈ activeαη(mη) = activeαη(m) and
the crucial lemma is shown.

The final stage of the proof of Theorem 4.1. We now chose any η ∈ Tα with
lg η = 1, cα(η) = i. By Lemma 4.13 we can write

yαη =
∑

mi∈Λα(η)

aimi =
∑

mi∈Λα(η)

aixαηi
m′

i ,

where mi = xαηi
m′

i with xαηi
∈ activeαη(mi). It follows that cα(ηi) = cα(η) and

thus lg ηi = lg η = 1. By the earlier choice of xα⊥ = r, the definition of yα⊥ and
Corollary 4.10(b) we get from the above that

rϕ = xα⊥ϕ = yα⊥ = yαηF
q
n0i =

∑

mi∈Λα(η)

ai(xαηi
F q

n0i)(m
′
iF

q
n0i) = r

∑

mi∈Λα(η)

ai(m
′
iF

q
n0i)

is an element from (Rr)∗.

5 The Main Theorem and Consequences

5.1 Proof of Main Theorem 3.1

Lemma 5.1 Let ϕ ∈ EndZ Q[X]+ with

fϕ ∈ Q[X] ·f for all f ∈ Q[X],

then ϕ is multiplication by an element of Q[X].

Proof. By hypothesis on ϕ we find for each f ∈ Q[X] an element gf ∈ Q[X]
such that fϕ = f · gf . If m ∈ 〈X〉 is a monomial and x ∈ X, then mϕ = m ·
gm = m(x) · gm(x) and (xm)ϕ = xm · gxm = x · m(x) · gxm(x) seen as functions g(x)
depending on x. Now we fix r ∈ Q and use EndZ Q[X]+ = EndQ Q[X]+ to compute
(rm−xm)ϕ = r ·mϕ− (xm)ϕ = r ·m(x) ·gm(x)−x ·m(x) ·gxm(x), while by hypothesis
also (rm − xm)ϕ = (rm − xm) · grm−xm(x) holds. Thus

(rm − xm) · grm−xm(x) = r · m(x) · gm(x) − x · m(x) · gxm(x).
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We now substitute x := r into this polynomial equation and get

0 = r · m(r) · gm(r) − r · m(r) · gxm(r) (5.1)

which holds for all r ∈ Q. If r 6= 0 also rm(r) is a non-zero element of the integral
domain Q[X], so (5.1) gives

h(r) = 0 for h(x) = gm(x) − gxm(x) and for all 0 6= r ∈ Q.

Thus x − r is a factor of h(x) for infinitely many r ∈ Q, which is only possible if
h is the zero-polynomial and gm = gxm. We apply this recursively for all monomials
m ∈ 〈X〉 to get gm = g1 for all m ∈ 〈X〉, and it is now clear (by linearity) that also
gf = g1 for all 0 6= f ∈ Q[X]. We conclude ϕ = g1 · id, where id denotes the identity
map on Q[X].

Proof of Main Theorem 3.1. Let ϕ ∈ EndZ R for the ring R constructed in Section 3.
Since the additive group of Q[X] is divisible, ϕ can be lifted to a group endomorphism
of Q[X]+ and satisfies by Theorem 4.1 the hypothesis of Lemma 5.1. Thus ϕ = g · id
for some polynomial g ∈ Q[X]. However 1ϕ = g ∈ R which completes the proof.

5.2 Large families of E-rings

The Main Theorem 3.1 can easily be extended to a family of rigid E-rings. For this
decompose the family of trees given by Theorem 2.1 into 2λ families of trees {(Tα, cα) |
α ∈ λi} of size 2λ (i < 2λ) and apply the earlier arguments for the corresponding
families of trees. We get E-rings Ri (i < 2λ) and the following holds.

Corollary 5.2 If λ is any infinite cardinal < κ(ω) (the first ω-Erdős cardinal), there is
a family Ri (i < 2λ) of absolute E-rings of cardinality λ. If HomZ(R+

i , R+
j ) 6= 0 in some

generic extension of the universe for some i, j < 2λ, then i = j; thus {Ri | i < 2λ} is
absolutely rigid, and also Z[X] ⊆ Ri ⊆ Q[X] for all i < 2λ for a set X of λ commuting
free variables.
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