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Abstract. We prove that if ut < A = cf(1) < ¢™, or if g < A < 2% then there is no universal
reduced torsion-free abelian group of cardinality 4. We also prove that if J, < u™ < 1=
cf(4) < 1™, then there is no universal reduced separable abelian p-group in 1. We
also deal with the class of X;-free abelian groups. Both results fail if (a) 2 = A or if
(b) 4 is a strong limit and cf (u) = Ny < p.

0 Introduction

We deal with the problem of the existence of a universal member in ], for a class &
of abelian groups, where K&, is the class of groups in & of cardinality A; universal
means that every other member can be embedded into it. We are concerned mainly
with the class of reduced torsion-free groups. Generally, for the history of the exis-
tence of universal members, see Kojman—Shelah [1]. From previous work, a natural
division of the possible cardinals for such problems is as follows:

Case 0. A = No.

Case 1. ) = .

Case 2. Ny < L < 2%

Case 3. 2% + pt < ) = cf (4) < p™.

Case 4. 2% + it + cf (1) < 4 < p.

Case 5. 4 = u*, cf (1) = No, (Vy < ) (™ < w).
Case 6. cf (1) = N, (Y < 1) (0 < A).

Subcase 6a. A is strong limit.

Subcase 6b. Case 6 but not 6a.

Our main interest was in Case 3, originally for & = &, the class of torsion-free
reduced abelian groups. Note that if we omit the condition ‘reduced’ then divisible
torsion-free abelian groups of cardinality 4 are universal. A second class is K0 the
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class of reduced separable p-groups (see Definition 2.3(4), and more in Fuchs [1]).
However we are also interested in developing methods and in the class of N;-free abe-
lian groups. Kojman—Shelah [3] show that for & = &', ]*”) in Case 3 there is no
universal member if we restrict the possible embeddings to pure embeddings. This
underlines the point that universality depends not only on the class of structures but
also on what embeddings are allowed. In [7] we allow any embeddings, but restrict
the class of abelian groups to (<A)-stable ones. In [8, Sections 1 and 5] we allow any
embeddings and all G € &, but there is a further restriction on 1 related to the pcf
theory (see [6]). This restriction is weak in the sense that it is not clear if there is any
cardinal (in any possible universe of set theory) not satisfying it. Here we prove the
full theorem for A > 3, with no further restrictions:

(x) for 4> 1, in Case 3, and for & = & &™) there is no universal member in K ;.

(Here we define inductively 2y =g, 2,41 =2%, 2, =3, 2% and generally
2, =Ny + 25023/* )

In Section 1 we deal with &™ using mainly type theory. In Section 2 we apply
combinatorial ideals whose definition has some built-in algebra and purely combi-
natorial ones to obtain results on 8"(”); there is more interaction between algebra
and combinatorics than in [8]. Similarly in Section 3 we work on the class of X;-free
abelian groups.

We comment briefly on the other cases. For Case 4 (which is like Case 3 but with 1
singular), for R;ff and pure embedding, the non-existence of universals was shown in
[3] subject to a weak pcf assumption, and in [8] this was done for embeddings under
slightly stronger pcf assumptions. It is not clear whether either of these assumptions
may fail. The results on consistency of existence of universals in this case cannot be
attacked as long as more basic pcf problems remain open.

Concerning Case 5, if we want to prove the consistency of the existence of univer-
sals, it is natural first to prove the existence of the relevant club guessing; here
we expect consistency results. (Of course, consistently there is club guessing (from
C=<{Cs:5€8),8 < 4, otp(Cs) = u) and then there is no universal.) We were inter-
ested first in the existence of universal reduced torsion-free groups under embeddings,
but later we also considered some of the other cases here. See more in [12].

Case 1 (= lNO) By subsequent work there is a universal member of &1, and (see
Fuchs [1]) in R“ ?) there is a universal member, but in K| “free there is no universal
member (see forthcommg work)

Case 0 (A =1). In K& there is no universal member (see above or 3.17) and in
R ?) there is a umversal ‘member (see Fuchs [1]).

Case 2 (Rg < A <2%). For R“ we prove here that there is no universal member
(by 1.2), whereas for K" this is consistent with and independent of ZFC (see [5,
Section 4]).

We have also dealt with Case 6 ((Vy < 1) < 4, A > cf(4) = ¥). There is a uni-
versal member for &Y and also for Rf(” ). See [12].

Notation. The cardinality of a set 4 is |4|, the cardinality of a structure G is || G]|.
A (21) is the set of sets whose transitive closure has cardinality < 4, and <}. denotes
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a fixed well order of # (/). For an ideal I, we denote by I the family of subsets of
Dom(7) which are not in 1.

1 Non-existence of universals among reduced torsion-free abelian groups

The first result (1.2) deals with the case when 1 satisfies 8y < 4 < 2™ and it shows the
non-existence of universal members in Rtff; this result improves [8]. The proof, by
analysing subgroups and comparing Bauer’s types, is straightforward.

Then we deal with the case when 2% + y* < 4 = cf (1) < £™. We add witnesses to
bar the way to ‘undesirable’ extensions (see [12] on classes of modules). This is a
critical new point compared with [8].

1.1 Definition. Let &™ denote the class of torsion-free reduced abelian groups G
(where torsion-free means that nx =0, n€eZ, xe G=n=0vx =0 and reduced
means that (Q,+) cannot be embedded into G). The subclass of G € " of cardi-
nality 4 is denoted by Rfff . Moreover, &Y is the class of torsion-free abelian groups.

1.2 Claim. (1) If R < A < 2% then Rﬂff has no universal member.

(2) Moreover there is no member of 8 universal for Rﬂlf .

Proof. Let P* be the set of all primes and let {Q, : i < 2%} be a family of infinite
subsets of P* with pairwise finite intersection. Let p, € ®2 for o < w; be pairwise
distinct. Let H* be the divisible torsion-free abelian group with {x,: e < w;} a
maximal independent subset. For i < 2% let H; be the subgroup of H* generated by

{xy 0 <o} U{p"xy : pe P"\Q;,00 < w; and n < w}
U{p™"(xy —xp) : o, f <wyand pe P" and p, [ p=p; [ p and n < w}.

Clearly H; € 8™ and ||H;|| = X, < /. Let G e ]". We shall prove that at most /
of the groups H; are embeddable into G.

So assume that ¥ < 2%, |Y| > / and that for each i € ¥ we have an embedding
h; of H} into G. We shall derive that G is not reduced, which is a contradiction.
We choose by induction on n a set I, = "4 and pure abelian subgroups G, of G
for neTI,, as follows. For n=0 we let I'y ={<{)} and G¢y=G. For n+1,
for neT, such that ||G,|| >Ny we let T, ={n<(()>:{<|G,|}, and we let
G, = {Gy ¢ : { < ||G,||> be an increasing continuous sequence of subgroups of G,
of cardinality < ||G,|| with union G, such that

(%) for { < ||G,|| we have
Gy ¢y = G, N (Skolem hull of G, ¢y in (#(1"), €, <5, Gy)).

Let Tyu1 = {5 <> :n €Ty, |Gyl > No with { < [|G,[|} and T = {J,_ T, For each
ieY,letyn=n; el besuch that

(a) {o < 1 :hi(xy) € Gy} is uncountable, and

(b) subject to (a), the cardinality of G, is minimal.



Sh:622

172 Saharon Shelah

Clearly #; is well defined as (a) holds for # = () and clearly G, is uncountable. It is
also clear that the cardinality ||G;, || has cofinality &;. Let

X ={a < :hi(x,) € G, },

and let f; < w; be minimal such that {p,:oef;NX;} is a dense subset of
{p, :we X;}. Let {; < ||G,,| be the minimal { such that

{hi(xs) : o€ BN Xi} < Gyrery
(C exists as cf(||G,, ||) = Ni). Now by condition (b) the set
X/ ={a <o hix,) € Gy}

is countable, and hence we can find «; € X;\ X/.
Now the number of possible sequences <#;, f;, {;, i, hi(xy,) > is at most

|72 x Ry x A x R x 4
(as I' = ®~A). So for some <#,f,{,o, y> and iy < i; from Y we have (for / =0, 1)
m, =1, ﬂil =B, Ci, = o =a, hi(x,) =y
Now as /; embeds H; into G and /;,(x,) = y we must have
(xx) if p e P*\Q;, and n < w then p™" divides y in G.

So this holds for every p € (P*\Q, ) U (P*\Q;,) = P*\(Q,, NQ;).
Now Q; NQ; is finite; let p* € P* be above its maximum. As {p,:ye X/} is a
dense subset of {p, : v € X }, there is y € X such that

Pyt p" =py T (= py T P7).

Let h;,(x,) = y*; thus y* € G, (.
Soin (#(11),€, <}:, Gy), the following formula is satisfied (recall that G, is a pure
subgroup of G):

o(y,y") ="‘in G,, y is divisible by p”" whenp e P* & p=>p" & n<w
and y — y* is divisible by p” whenp e P* & p<p* & n < ’.

Hence by (%), i.e. by the choice of (G, : & < ||G,||>, for some y’ € G, ¢, we must
have p(y', y*). Now y # y" as y' € G-y, ¥ ¢ Gy ry. Also y — ' is divisible by p” for
p € P’ n < w. (This is because if p > p* then both y and y’ are divisible by p”, and if
p < p* then

y=y'=0=-y)-0"-»)

and both y — y* and y’ — y* are divisible by p".) As G is torsion-free, the pure
y—y y -y y p
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closure in G of {{y — y'}>¢ is isomorphic to @, and this is a contradiction since G
is reduced. [;»

1.3 Definition. (1) Let P* be the set of all primes.
(2) For G € 8 and x € G\ {0} let

(a) P(x,G)={peP :xe(),_, p"G}; thus p € P(x, G) if and only if x is divisible
in G by p” for every n < w;

(b) P (x,G)={p:peP*, butp¢P(x,G) and there is ye G\{0} such that
P\{p} = P(y,G) and p e P(x -y, G)}.

(3) G € K" is called full if P* = P(x, G) UP™ (x, G) for every x € G\{0}.
(4) The class of full groups G in 8™ is denoted by &, and K" = &N K/Y. (We
use s as it is the successor to r in the alphabet.)

1.4 Fact. (1) If G € &™ then for any x € G the sets P(x, G) and P~ (x, G) are disjoint
subsets of P*.
(2) If G, is an extension of Gi, both in 8™, and x € G\ {0}, then

(a) P(x, G1) < P(x, Gy), with equality if G; is a pure subgroup of G,, and
(b) P~ (x,G1) = P (x,G).
(3) For every G € 8™ there is a G’ such that
(a) G'is full, G' e ], and
(b) G is a pure subgroup of G’ and ||G’|| = ||G]|.

Proof. Assertions (1), (2) are trivial. To prove (3) it suffices to show the following:

(x) if Ge 8" and x € G\{0}, and p € P*\P(x, G), then for some pure extension G’
of G with rk(G/G’) = 1 we have p € P~ (x,G’) and G’ € |,

Given G, x, let G be the divisible hull of G and let

Go = {y € G : for some n > 0,p"y € G},
G, = {y e G : for some b € Z,b > 0 not divisible by p we have by € G}.

Clearly G = Gy N G). We define the following subsets of G x @:

Hy={(»,0):ye G} (so G isisomorphic to Hp);
Hy = {(p"bx,p"b) : b,n e Z};
Hy ={(0,c1/c2) : c1,¢2 € Z and ¢, not divisible by p}.

All three subsets are additive subgroups of Gx @, and H, ~ Z,). Let G' be the
subgroup Hy + H; + H> of G x Q.
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We claim that G’ N (G x {0}) = Hy. The inclusion 2 is clear. For the other inclu-
sion, let ze G'N(G x {0}); as ze G’ there are (1,0)€ Hy, (so that ye G),
(p"bx, p"b) € Hy (so that beZ,neZ and x e G is the constant from (x)) and
(0,¢1/¢2) € Hy (so that ¢y, ¢; € Z and p does not divide ¢;) and integers ay, a;, a; such
that

z=ao(y,0) +ai(p"bx, p"b) + a2(0,c1/c2),
which means that
z = (aoy + ayp"bx,a1p"b + aze1 /c2).

Asze G x {0} clearly a;p"b + ayci/c; = 0; so as p does not divide ¢, necessarily
aip"b is an integer. Thus a;p"bx e G and so as ye G clearly ayy + a;p"bx € G.
Therefore z € G x {0} = H as required.

It is easy to check now that Hj is a pure subgroup of G'.

Let y* = (0,—1). Clearly (x,0)—y* is divisible by p* for every k < w (as
(p¥x, p*) e Hy = G' for every k € Z) and y* is divisible by any integer b when b is
not divisible by p (as (1/b)y* = (0,—-1/b) € H, = G').

Identifying y € G with (y,0) € G we are done: G’ is as required in (x), with y*
witnessing that p e P~ (x, G'). [i4

1.5 Claim. Suppose that G € 8™ is full and Gy € 8. If h is an embedding of Gy into
G, then

SJor x e GI\{0}, P(x,G)="P(h(x),Gy).

Proof. Without loss of generality / is the identity; now we use 1.4(1), 1.4(2) and the
definition of ‘full’. [

1.6 Conclusion. Assume
(%) 2% < pt < A =cf(A) < p.
Then there is no universal member in Ritf.
Proof. Let
S < {0 < A:cf(0) =R and w? divides 6}
be stationary and # = {15 :J € S), where each #; is an increasing w-sequence of
ordinals < ¢ with limit J such that #5(n) — n is well defined and divisible by w; so
if 61 # 6, then Range(s;,) N Range(#;,) is finite. Let {p; : n < w} list the primes in

increasing order. Let Gg be the abelian group generated by

{xz a0 <2}U{ys:0eStU{zsni:nl <o}U{xymi:o<iml<wo#mmodw}
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freely except for the equations

*
PnZo.ni+1 = Zonls Yo — Xyy(n) = Z5,n,0,

" .
PmXoa,m,l+1 = Xaom, [,  Xa,m,0 = Xo, if o # m mod w.

It is easy to check that G e K that P~ (ys, Gy) is the set of all primes and that
P(x,, G?) is the set of prlmes #priifa=n mod .
Let G; € S be a pure extension of GO which is full (one exists by 1.4(3)). So

(*) if i embeds Gj into G € K&} then
x € G;\{0} = P(x, G;) = P(h(x), G).
Hence the proof in [3] is valid here. [j¢

1.7 Remark. (1) Similarly, the results in [3] on 1 singular (i.e. Case 4) hold for em-
bedding (rather than for pure embedding).

(2) In Case 5, if there is a family 2 = {C < u* : otp(C) = u} which guesses clubs
(i.e. every club E of u* contains one of them), and its cardinality is < x™ then the
result of 1.6 holds for u*.

(3) Concerning the case when Ry < A < 2™ see also 3.17.

2 The existence of universals for separable reduced abelian p-groups

Here we eliminate the very weak pcf assumption from the theorem showing that
there is no universal in K7 (?) when 4 > 2,,. The class 8" is defined in 2. 3(4).

In the first section we have eliminated the very weak pcf assumptions for the
theorem concerning R”f (though the condition that A = cf(1) > u* remains, i.e. we
assume that we are in Case 3). This was done using the ‘infinitely many primes’, so in
the language of e.g. [3] the invariant refers to one element x. This cannot be gener-
alized to Rrs P . However, in [8, Section 5] we use an invariant on e.g. suitable groups
and related stronger ‘combinatorial’ ideals. We continue this, using combinatorial
ideals closer to the algebraic ones to show that the algebraic ideal is non-trivial.

We rely on the ‘GCH right version’ provable from ZFC (see [11]); hence the con-
dition ‘A > 1, is used.

2.1 Definition. (1) For 2= (J;: [ <o) and i = <{t; : [ < w) (with 1 < #; < w) we de-
fine J;1 > to be the family of subsets 4 of [],,, [4]" satistying the following condition:

(%), for every large enough / < w, for every B e (4] for some k € (I,w) we cannot

find

<v,7 ne H

iell, k)

such that
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(@) vy € 4;
(b) if 1,1 € [licyplo)”s I <m<kandn | [, M)—ﬂtzf[l,M) then v, ['m =
vy, [ m; hence v, 1=, Flfornl,nze H,e,k[ "

() ifny € [Tiepplew]” and I < m < k then for some E € (7] we have

[E]'”’={Vn(ﬂ) ne J[ lw"andylu=n, Fﬂ}

1€[2,K)

andm=1[= E = B.
(2) Let J7 4 _, be the family of subsets 4 of [1,-,[44]" such that for some o < 0 and

AgeJ? forﬁ <oawehave 4 < J,_, 4p.
When 0 = k", we may write k instead of <#.

2.2 Fact. (1) J*. is a 0" -complete ideal.
2) It 4 > 2,1 (9) for each / < w then the ideal J7 4 Lo is proper (where J(0) =0
2,,1(0) = 229 and for general o we have 2,(0) = 0 > gy 2700,

Proof. Assertion (1) is trivial. To prove (2), for / < w let

ERI} = {4 = [4]" : for some F : [}]" — 0 there is no B e [
such that F | [B]" is constant and [B]" < A}.

This is a 0" -complete ideal and it is non-trivial by the Erdés—Rado theorem (which
we used similarly in [10, Section 1]). Now we shall prove that the ideal J2s 4 1s proper.

So we assume that [,_,[4]" = ={J,.pXi and X; € J4 for each i < 0 and we shall
obtain a contradiction. Let

X = {7’]6 HM;][’:foreveryl<coforsome17’eX,~we have [ I =5’ [‘I}

<o

(i.e. X;" is the closure of X;). So

X" < [[ (4" = ][] Dom(ERI})

I<w I<w

is closed, and those ideals are 0" -complete and [[,_,, Dom(ERI} ) = (U, Xi*. Hence
(see Rubin—Shelah [4], [9, Chapter X1, 3.5(2)] with H, = X;") we can find 7 such that

) T< Um<w H/<mu'l] rl:

(
(b) T is closed under initial segments,
(

c) <HeT,
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(d) if ve T and lg(v) = [ then {u € [4]" : vV<u) € T} € (ERI})",
(e) forsomei < 0, im(T) < X;*.

(Here, im(T) = {ve [[,., [4]": (Vm < w)v | me T}.) Fix i from clause (¢). We
would like to prove —(x) X+ the definition of the ideal ERT! ;, gives more than required
(with ‘for every I’ instead of ‘for arbitrarily large /” in the negation (%) of Defini-
tion 2.1). [d22

Remark. We note that we could have used the stronger ideal defined implicitly in 2.2,
ie. the family J2. of sets X < [, [4] " for which we can find « < 6 and X; = X
for i < a such that X =J,., Xi and for each i and T satisfying (a)—(d) from the
proof of 2.2 there is T’ = T satlsfymg (a)—(d) such that lim(7’) is disjoint from the
closure of X;.

Of course, we can also replace ERI;’I by variants.

We recall the following definition from [8, 5.1].

2.3 Definition. (1) For fi = {u, : n < w) let B; be the following direct sum of cyclic
p groups Let K be a cyclic group of order p"*! generated by x” and let
=P, K and Bi=P,._, B) , ie. By is the abelian group generated by
{x ‘n< o<} freely except that p"l1x = 0.
Let

Batn = @{K" % < pom < n} < By.

These groups are in R<Z "

Let B# be the p-torsion completlon of By (i.e. from the completion under the norm
|x]] = min{27" : p" divides x} we take only the torsion elements; see Fuchs [1]. Note
that B is the torsion part of the p-adic completion of B )

(2) Let I} y=1I!_y[p] be the ideal on B; (depending on the choice of
(K)o <, n<wy or actually {(Bz},:n< w)) consisting of unions of < 0

members of I/?> where

0_ 70
I; =1y [P]
= {4 < B; : for all large enough n, we have Clép(<A>B,7) NB; S Bin}-
(The definition of cl; 5, is given in (3) below.) When 0 = k™ we may write x instead

of < 0. 1If u, = p, we may write x instead of fi. R
(3) For X = B , recall that (X >, is the subgroup of B; generated by X and that
i

clg (X) = {x: (¥n)(Iye X)(x —y ep"By)}.

(4) Let 8"() be the family of pure subgroups of some Bﬁ;
(5) If p is not clear from the context we may write B;[p|, Bz[p], etc.
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2.4 Claim. Assume that i =<{u,:n<w), t=<t;:1 <w), t; =p and that the ideal
J4 o I8 proper (so that w, >3, 1(0) is enough by 2.2(2)). Then the ideal I g Is proper
(and I1 pisa 0" -complete ideal).

Proof. We define a function 4 from [],_,[4]" into Bz We let
h(n) =Z{p"xy : fen(n) and n < w} € Bl p).

Clearly 4 is one-to-one and it suffices to prove
(x) if X e (J-4, ;)" then 2" (X) belongs to (I} ;)"

So assume that X e (J 4 )+ is given and suppose for a contradiction that
h"(X) € I 5. So we can ﬁnd <Y i < 0 such that for such 7 < 0 we have Y; € I} and

h(X) < U Y;. Let X; = h™'(Y;). So h(X;) € Y e I} and hence 1(X;) € 1. But as
J4 , is o complete and XE(J4 0)+ we have X; e(J4 0) for some i < 0 and so

w1th0ut loss of generality 4" (X ) € I 9 By the definition of 17, for some n(x) <  we
have

(*) B’ﬂd‘ (<h”( )>3) Biip (-

On the other hand, as X e (J° 4u ;)" we have X ¢ Jf‘_, and so from the definition of
J_4_ in 2.1(1) we can find (B, : n € T') such that

(a) T e [w]™ and B, € [4,", and

(b) for n eI and for every k € (n,w) we can find {v)’ kine [icpnle "> as in (a)—

(c) of Definition 2.1(1), with n, B,, k here standmg forl, B, k there.

For me (n,k] and n€ [];cp, »l0]" we let v* be v"* ['m whenever we have
n<m € [Lcpnle ]"; by clause (b) in (*) of 2. 1 this is well defined. We fix tempo-
rarily ne I’ and k € [n ). Let 4, = A" € [Am]"® where m = Ig(n) be such that

(i (m) s w e [o]"} = [4,)"
and without loss of generality (otp stands for ‘the order type’)
() otp(d,) = w and v)%, (m) = OP., (1)
(where OP, ,(i) = o if and only if i = otp(4, Na)).
Now for m e (n,k] and 17 € [, myle0)] " we define
=k
=S {nop*yin=pe ] lo)" and (Dligln) <1<k — p(1) = [0,1]]}

le[n,k)

where <2 denotes being an initial segment. So y, € l}ﬁ and we shall prove by down-
ward induction on m € (n, k] that for every n € [];(, (@] " we have (writing >°,_,,
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for Zle[n‘m))
k—1 ~
IXW’ y’? = ( l:m([l + 1)) X (Zl<m Zaev;‘k(])plxal) mOdpkBﬁ'

Case 1. m=k.
In this case the product H, _(t1+ 1) is just 1, so the equation becomes

Yy = Z Z p'x! mod p*B;.
I<m yevrkr)

Now the expression for y, is

Z{h(”k p<Ape H and [ <1<k:>p(l)9[0711“}

le[n k)

79X 3

<o 161”/ )

=> Y plxl +p"( > pl*kx;)

I<m ocet"k ) lelk,w) aev:‘k(l)

and so the equality is trivial.

Case2.n <m < k.
Here (with equalities in the equation being in B 2, modulo p¥ ) we have

V= Z{y’f<”> cuel{0,...,t,}]"™} (by the definition of yy,y, cu)

ST ) R e

I=m+1 1<m+115lﬂ1~
<M>

(by the induction hypothesis)

:Z{<zﬁ(tl+l)><z Z p’x;):ue[{O,...,tm}]’"‘}
i1 “

+Z{(ﬁ(n+1)) > pmx;”;ue[{()?...?tm}]tm}

I=m+1 %€ OPq, 4, (1)

(dividing the sum Z into Z and Z and noting what v, <u>( m) is)

l<m+1 I<m I=m
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k-1
ST @+0) (X X pxl) uelfo ..o}
I=m+1 I<m aev;’k(l)

3 1( ﬁ (1)) (" X {ae s w € [{0,.., )] an

I=m+1

loNA,| € u}| : o is a member of A4,, moreover [aNA4,| < tm}

(collecting together terms with x/' in the second sum)
k—

(TL+0)(X % ) xHusue o))

I=m+1 I<m yev"k

+Z{( H b+ ))(pmxm) ((thrl)—l):oceA,,,\ocﬂA,,|<tm}

I=m+1
k—1
=+ D( [T @+D)Y > x40
I=m+1 l<'"c<ev” 0

(since t,, = p and p"'x™ = 0)

~(He)(S X #)

I=m I<m :xev"k

Hence we have finished the proof of X .
Now as t;+ 1 =p+ 1 and pp'x —OlnB we obtain

X Y1 = Xtm Lo \plx; mod p¥ B;

Note that for m =n+ 1 the sum ), , is just >, . So, because for n e I' the sub-
set B, serves for every k € (n,w), if uy,up € [B,]" are distinct, then for k € (n,w) we
have letting m =n+ 1

Yy = Yy = Z Z pixl — Z Z p'xlmodp*B;.

] ik ] ik
<m otev<“l>(l) <m ye v<uz>(l)

As this holds for every k € (n,w) we get equality. By the demands on vy k (see

clause (b) above) we have y,5 — V> ¢ Bipn; but from the last sentence we have
Yy = Yoy € Bay (ne1), contradicting (). [l

2.5 Definition. (1) Let 7 be an ideal on x (or just 7 = 2(k) closed downwards,
I'" = 2(xc)\I). Write

U;(2) = min{|2| : 2 = [J]=" and for every f € "
for some a e 2 we have {i <k :f(i)ea} el"}.
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(2)Foro <0< u<ilet

cov(4, i, 0,0) = min{l + |2| : 2 is a family of subsets of A each of
cardinality < u such that all X < 4 of cardinality < 0
is contained in the union of < ¢ members of 2}.

2.6 Claim. (1) For every A = 1, for some 0 < 1, for every p e (3,_1(0),,,) we have
(writing u, = n), U11 (A) = A (and hence U,o(l) = 1).

(2) If cf(A) > No, then Jor some 0 < Jw,for every e (2,-1(0),2,) and 2" < i we
have U[ﬂl ”(l ) < A

Proof. By 2.4,1,pisa 0" -complete proper ideal on a set of cardinality ™, for all u, 0
as in the assumptions. From [11], for each A’ < / for some 0 = 0[A'] < 3, for every
we (0,3,) we have cov(l/,,u LU, 0) =2, ie. there is 2, < [2/1" of cardinality <2’
such that if ¥ € [A/]=* then Y is contained in the union of < 0 members of Z,. As ] ﬂl
is a 0" -complete ideal on a set of cardinality u it follows that U,1 ( N \9 | = /1/
(and trivially Up ()) A). This proves (1).

In (2) we have cf (4) > N, and so for some 0 < 1, for arbitrarily large 1’ < 4 we
have 0[4'] < 0; and clearly the result follows. [

2.7 Conclusmn If 2, < pt < A=cf(2) <y, then there is no universal member in
S}I‘S

Proof. This follows from 2.5 and [8, 5.9].
We also have the following result.

2.8 Claim. Assume that the following conditions hold.
(@) Tliew ks < 1< 4= cf(A) < 4 < s
(b) ut < A or at least for some P we have

(¥)p |12]=4 & (NVaeP)(ac & otp(a) =yu)
& (YE)(E aclubof A — (Jae ?)(a < E));

() A = Up(4) < pN where ik = (i | < w); note that I depends on the prime p.

Then we can find reduced separable abelian p-groups G, € er(p ) for o < i such
that for every reduced separable abelian p-group G of cardinality A the following holds:
some G, is not embeddable into G; also the number of ordinals o < ™ such that G, is
embeddable into G is <J..

Moreover, each G, is slender, i.e. there is no homomorphism from Z® into G, with
range of infinite rank.

Proof. The proof is the same as that of [8, 5.9 and 7.5].
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3. Non-existence of universals for X;-free abelian groups

The first section dealt with Rjtf and improved results in [8]. But the groups used there
are ‘almost divisible’. Now we ask what happens if we replace 8™ by a variant
avoiding this. We propose to consider the N;-free abelian groups where type argu-
ments like those in Section 1 break down. So the proof of [8] becomes relevant and it
is natural to improve it as in Section 2 (which dealt with 8”)). For diversity we use
a stronger ideal. We have not considered the problem for N;-free abelian groups of
cardinality 2 when Ry < 2 < 2™. So we concentrate here on torsion-free (abelian)
groups.

3.1 Definition. (1) Let 7 =<t;: [ < w), 2 < t; < w. For an abelian group H, the /-
valuation is defined by

Ix||; = inf{z—m : [ « divides x in G}.

I<m

This is a semi-norm. We recall that d;(x,y) = ||x — y||;. This semi-norm induces a
topology, called the 7-adic topology. If #; = p for I < w, we may write p instead of 7.
(2) Let cl;(A4, H) be the closure of 4 in H in the -adic topology.
Let PCy(X) be the pure closure of X in H, that is

PCy(X) = {x € H : for some n > 0, nx belongs to {x>y}.

Let PC7,(X) be the p-adic closure in H of the subgroup of H generated by X.

(3) Let 8"™[7] be the class of i-reduced torsion-free abelian groups, i.e. the groups
G € 8™ such that (Vyeoy(ITicn )G = {0} hence || — ||; induces a Hausdorff topology
on these groups. (Conversely, if G is torsion-free and the 7-adic topology is Haus-
dorff, then G € ] [7].)

(4) If the 7-adic topology is Hausdorff, then G) is the completion of G with respect
to || — ||z If 4 = 2+ [, this is the Z-adic completion.

The following continues the analysis in [8, 1.1] (which dealt with %)) and [8, 1.5]
(which dealt with ]™).

3.2 Definition. We say that G has f-density u if it has a pure subgroup of
cardinality < g which is 7-dense, i.e. dense in the 7-adic topology, but has no such
subgroup of cardinality < u.
3.1 Proposition. Suppose that
() <i<p®,
(B) G is an X,-free abelian group with |G| = 4,
(y) tisasin3.1 such that (VI)(3m > 1) (4; divides t,,).
Then there is an X -free group H such that G < H, |H| = A and H has t-density p.
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Proof. Choose 4, < pu for n < w such that

H I = Ay u= Z;an 2/m < ;Ln-‘rl

n<w n<w

(so A, > 0 may be finite). Let {x; : i < A} list the elements of G. Let 4, = Au.1,
2y = . Let n; € [, 4n for i < A be pairwise distinct such that #;(n + 1) > 4, and
such that

i#j= (Im)(Vn)[m < n = n,(n) # n;(n)].

Without loss of generality u = {#,(n) : i < 4,n < w}. Let H be generated by G, x"
fori < /1,’,1, m < w, y! fori < A, n < w, freely except for the following relations:
(a) the equations of G;

(b) ¥ =i (e G);

1 n
(©) tayi™ +2xp ) = Vi
Fact A. H extends G and is torsion-free.

Proof. H can be embedded into the divisible hull of G x F, where F is the abelian
group generated freely by {x” :m < w and « < 1, }.

Fact B. H is R-free and moreover H/G is X;-free.
Proof. Let K be a countable pure subgroup of H. Now, as we can increase K, without

loss of generality K is generated by

(i) a pure subgroup K; = {x; : i € I} of G, where [ is some countably infinite subset
of A,

(i) y", x/' forie I, m < w and (n, j) € J, where J = w x 4 is countable and
iel, n<w= (nn;n)el.

Moreover, the equations holding among those elements are deducible from the
equations of the following form:
(a)” equations of Kj;
(b)~ ¥ =x;foriel,
©) tuy !+ Xy =i foriel,n<o.
We can find {k; : i € I) such that k; < w and

i#j&iel&jel &n>ki&n=k &i#j= n(n)#nn).
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Now we know that K is free (being a countable subgroup of G), and it suffices to
prove that K/K is free. But K/K; is freely generated by

{y!'ielandn> k;}
U{x?: (n,a) € J but for no i € I do we have n > k;, n;(n) = o}.

So K is free.

Fact C. Hy = <{x!" : n < w,i < A} >y satisfies

(@) i < A= di(x;, Hy) = inf{d;(x;,z) : ze Hy} =0,
(b) x e G = dix,Hy) =0,

() xe H= di(x,Hy) =0.

Proof. First note that
(x), Y ={xe H :dix,Hy) =0} is a subgroup of H.
Also for every i < 4 and every n

— +1 _ +1 +2
(ey D7 = X ) + 0V = X ) X Gy F Il DY

k—1 k
= /’(n:n( I=n tl)'x;]y(i(k) + (Hl:n ll)ylkﬂ‘

(This is proved by induction on m > n.) Note that as (V/)(Im > [) (# divides #,,) we
must have (V/)(3%m) (4 divides 1,,) and hence (Vk)(3“m) ([,<,t divides [T, #:).
Now (%), implies

(¥); y'eY.

But x; = 3 and hence (a) holds, and so (b) holds too as {x;:i < A} is dense in G.
Therefore G < Y (by (b)), and x € Y (as Hy < Y and from the choice of Hy) and
yi e Y by (%);. By (%), clearly Y = H, as required in (c).

Fact D. |H| = 4.
Fact E. The t-density of H is u.

Proof. The t-density is at most u as H, has cardinality x4 and is 7-dense in H, and we
now show that it is at least u.

Define a function /& with domain the generators of H listed above, into H. Let

h(x)=0if x € G;

h(x)') =0ifm > 0 or o < Ao;

h(x™) = x"if m=0and Ay < o < A)(= p);

h(y")=0if m < w,i < A.
This function preserves the equations defining H and hence induces a homomorphism
h from H onto (Range(h)); = ({x": o < 2),a = Jo}>y. Clearly h(h(x)) = h(x) for
the generators and hence hoh = h. Therefore Al < Ag 00 = Aoy is a direct
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summand of H and hence the di-density of H is at least the dj-density of
I ae [Ag, Ao) Pa, whichis Ay = w. i3

We define variants of the ideal constructed in Definition 2.1.

3.4 Definition. For 1 = </11 I <o), i={:1<w)2<4<w,welet J;)_ be the set
of subsets X of [,_,[4]" for which we cannot find m(x) < w, ¥ = (Y, :'m < w and
m>= m(*)), and A™ = (A, : n € Y, such that

(a) m = H1<m Ml] [I;

b) Yoty € Ty 4] is a singleton,
c) <4 77 €Yl 1s a sequence of pairwise disjoint subsets of 4,, each of order type w,

(
(
(d) m+1—{7’] uy:neYy,andue[d,)™},
@) Yncs{vim:veX}.

We define J; similarly but with m(x) = 0, and we define

J!. {X forsomeoc<9andX/geJ_ for f < o we have X < UXﬁ}

A, <0
,2,< P

I _ gl
Also let JEJ_..H =J!

12,<0"

3.5 Claim. (1) J'Y <7D \vhen 0, < 0, and 4 < i(1) < i(2) < 6.

LA,<0p T 1,,<0,

(2) Ji s isa H+’-complete ideal for i = 4,5, 6.
(3) If )»1 2,,-1(0) then the ideal ini , 18 proper for i = 4,5,6.

Proof. The proofs of (1), (2) are easy and (3) is proved as in 2.4. [s5

3.6 Definition. Let 2 = (J; : [ < w), i = {t; : | < ) and suppose that 2 < t; < ® and
(Vn)(3m > n)(t,|tm). We define the following groups:

(A) B;”; is the free (abelian) group generated by {x}' : m < w,a < Ay };
(B) Bf‘§ is the subgroup of B_”f generated by {x}' : m <nand a < 4,};
(C) Grtf is the pure closure in (B”f) of the subgroup of (Br“) generated by

BSU {Z (H ”) () = Xapo) 1 e [T 41°

m<w - l<m I<w

(here our notation is that if e.g. n(/) ={o,f}, o <p then (n(I))(1) =7,
(n(1))(0) = 2);

(D) E;‘if = <B;‘£ in<w).
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To cover also the case —(Vn)(Im > n)(t,|t,,) we can use

3.7 Definition. Let g < Ay < Ay for I<w. Let A=y l<wd, i=<{t:1<wd,
2< <o, Ny < A4 < Ayg, (Yr)(3m > n)(4)t,). Let (A), (B), (D) be as in Defini-
tion 3.6 and replace (C) by

(C)’ we choose Y = (Y} :m < w) such that ¥ = [],_,.[4]°, Yq = {<>} and for
each m there is a sequence {4, : 7 € Y, of pairwise disjoint subsets of 4,, each

of cardinality /,, such that Y,;, = (J{[4)]* :ne ¥;}. Let

Y = {;7 € H[i/]z : for every < w we have [ m e Y,;}

<o
Let Gt“)f be the abelian group generated by

B;IEU {xp i :me Yyl <o}

freely except for the equations which hold in B;‘/f and

Y0 =g Ut = Y = Xy = X)) 0)

3.8 Definition. Assume

X 1t1 _ H = {H, :n < w) is an increasing sequence of abelian subgroups of H, such
" that Un o, Hyu 1s dense in H with respect to the 7-adic topology.

Then write

I = {X € H : for some n < w, the intersection of the 7-adic closure of

H.H
PCy(X) in H,cl;(PCy(X), H) with () H; is a subset of Hn},

I<w
1;”;—17@ = {X € H : for some o < 0 and Xy el;;’% for f < « we have
xe Uxl,
p<a
=1

H,HO0  "HH<"

3.9 Definition. Assume 1 = {t;: [ < w), 2 < t; < w, and

@L 7 H is HausdorfT in the 7 [k, w)-topology for each k < w, where 1 | [k, w) =
" gyt I < o); further H = (H, : n < @) is an increasing sequence of abelian
groups, and Un _oHn € H is dense in the 7| [k, w)-adic topology for each

k < o.
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Then we let

(1) I;’ﬁ = {X < H : for some n(x) < w, for every n € (n(*),w) there is no y € H,,

SUéh that: df[ [n,0) (ya PC(<X>H)) =0 but dt [ [n,0) ( ) > O}
IE’H e_{X theresafeoc<9dndXﬁeI " for ff < « such that X < UpeaXs}-
Moreover IH 7.6 A <0t
2) 1 gtﬁ (and I ZIH ol ;’I’H ,) are defined similarly except that we require that
n(x) = 0.
(3) I_’ " stands for Iéf[f e Where Brtf <Brtf ‘n < o).

1A 1,2

3.10 Claim. Let 7,1 be as in 3.4. Then the following statements hold:
(a) &an Brlf (from 3 9)

LA A

(b) an is Ny -free; moreover Grtf/Brtf is Ni-fiee for each n < w;
() Izlﬁ;‘rt(f) are 0" -complete ideals for i = 4,5, 6;

(d) if &”‘ 7 (from3.9) and i € {4,5,6} then Il ‘ pisa 0" -complete ideal.

Proof. This is straightforward; for i = 6 one uses an argument similar to that of
33. s

The following lemma connects the combinatorial ideals defined above and the
more algebraic ideals defined in 3.8.
3.11 Claim. (1) Assume the following conditions:
X =<t <w),2<t < w;
Mo A=yl <), and 2y > 21(0) for | < w.
Then the ideal I['irt(f} is proper for i =4,5,6.
(2) Assume X| and
X5 A=< Al <o), =N, 0=N,.
Then the ideal It'/-rlz is proper.

Proof. (1) If this is not true, we can find X, = L =: G;”if for o < 0 such that
fog =1J, pXsand X, € Ig’zrtf. Fora<wandye H1<a[/11]2 we let

X = (H ’1) (G (1) = X)) 0))-

m<o l<m
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As in the proof of 2.4, we can apply a partition theorem on trees (see [9, Chapter XI,
3.5]) for the ideal J; = ERI}(/;) (this ideal is, of course, 0" -complete and non-trivial
as A > 29).
So we can find (Y, : m < w),{A, : n € Y,,» and a(*) < 0 such that
(@) Y < Hl<m[/11]2’
(b) Yy is a singleton,
(c) 4, € (J1g<,7))Jr for n € Y,, (so that 4, < [}vlg(m]z),
(
(

d) Y= {’7A<u> ‘ue A17777 € Ym}:
e) ifye Y, thenye{vim:x, Xy}
We now prove by induction on k < w that

(*); for any m < w, if e Y, and 4 < 4, is from (J,,)" then for some infinite
A’ € Ay, for any o < f from A’ and k < @ we have

& p [y 1) = 1) € li(<Xogo) 25 L) + (T 1)L

For k = 0 this is trivial: the element ([],_,, #/)(x}" — x}") belongs to (I, .« ) L.

For k + 1, to prove (x), ., we are given m < w, ne€ Y, and A’ = 4,, A" e )7,
and we have to find {a, f} € A such that ®f;1 holds. For / € [m, ), as J; is an ideal
we can find 47 € (J;)" for v e ¥; such that A7 < A4, and the statement ®: holds for
every {a,f} €A or for no {a,f} € A] and v =y implies A = A]. Because (x),
holds, for {a,f} € A we have @f . After renaming, without loss of generality we
have 4" = A,. As 4, € (J,,)", by the choice of J,, we can let y, < y; <7, < --- be in
Ay. So for each j < w, let n; € Yyuik41 (yes, not 77; € Y;11!) be such that n; [ m =7,
n;(m) = {;,7;+1}- By (€) above there are v; such that 7, <1v; € ka[l;]z and

(i) x\,/. € Xa(*).
Now from the definitions of x; ,x,, we have the following statements:.

(11) xﬂj = x\{/ mOd(Hl<m+k+l tl)L;

(i) if /e [m+1,m+k+1) and j < w then

Xy +1) — X1 € Cli({ Xy 2, L) + ( H Zi)L
i<l+k

gcl;(<Xa(*)>,L)+( 11 t,»)L
i<m—+k+1

(the first inclusion comes from the induction hypothesis as the difference is
(TTicmes t")(x(ln,(l))(l) - x(liz,-(/>)(0))’ and the second holds as m + 1 < /);
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(iV) Xp; = Xy M (m+1) € le(<Xo<(*)>a L) + (Hi<m+k+l li)L
(we use (iii) for / =m +1,...,m + k, noting that lg(n;) = m + k + 1);

(V) )C,7 M m+1) ecl: (<X >,L) -+ (Hi<m+k+l [i)L
(from (i) + (ii) + (1V));

(vi) Z{xn Pmr1) 1 < Hi<m+k+l ti} € Cli(<Xa(*)>v L)+ (Hi<m+k+1 ;)L
(from (v);

);
(Vll) (Hi<m [l)(xy]” - m) € le(<Xfx(*)>v L) + (Hz<m+k+1 ))L fOI’]( ) - Hi<m+k+1 li
)

(from (vi) because

Z {xn/[‘(erl) Jj < H

i<m+k+1
=2 Lo+ (TI) 6, =< IT o
i<m i<m+k+1
S {smi< T b+ (T e, i< 1T o)
i<m+k+1 i<m i<m+k+1

(as 77; [ m does not depend on j and using obvious arithmetic)

:( H t,-)-x,,/.(*)rm (Hfz) o —x)

i<m-+k+1
m m .
e (Ils)og, s+ ( TI w)o
i<m i<m+k+1

(viii) if pe ¥, and o« < fare in 4,
then

(TLs)of - echcxasn+ (I o)t

i<m i<m+k+1

(from (vii) and the choice of the Y,,, 4, (7€ Y,,,m < w)).
So we have carried out the induction on k.
(2) The proof of this is easier and it will be omitted.  [J3.1;

3.12 Claim. Assume the following conditions:
X, t=<t:l<w)yand2 < t; < w;
X2 4 > 21(0);

X3 cov(Z ([T ) Ty )7, 07) < A

N
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ThenUys (A) =2Aand Uy (L) = A
4,0 14,0
Proof. This follows from the previous claims 3.10, 3.11 (and the relevant definitions

3.6-3.9).

3.13 Conclusion. For every A > 1, for some 0 < 1, for every k € (1;(0),3,) for
every A, € [21(0), k] we have

U (A)=4i=Us (4)

12,0 12,0

Proof. This follows from the previous claim and [11] (and is similar to 2.5). 3.3

3.14 Claim. Assume the following conditions:
@) [Nepi<u<i=cf(2) <A <" <y
(b) ut < A, or at least for some 2,

(¥)p |2 =Aand (Va e P)(a = A & otp(a) = p)
and (VE)(E a club of 2 — (3a € 2?)(a S E));

() 1" = U,ff,r(}v’) <y, where ty, = [[,_,, 1! or at least " = UJ?,(AI);

I I, Ro Y Ro o p .
) ’ ) & >
(d) cov(A", A7, 27, 4) <u or at least Uigep)(A") < ™, where 2 satisfies the
requirement (x) .

Then we can find Ni-free abelian groups G, of cardinality A for o < u™ such that for
every Ni-fiee abelian group G of cardinality A’ or just G € R;ﬁf[f] the following holds:
some G, is not embeddable into G; also the number of ordinals o. < u™ for which G, is
embeddable into G is at most cov(2", 27,77, 2) (or <Usga(»)(1") at least).

Proof. The proof is as in 2.8; note that ‘N;-free’ implies that || — ||; is a norm.

3.15 Conclusion. If 2, < u* < = cf(1) < @™ then in K" there is no member uni-
versal even just for '™,

Proof. This is straightforward.
3.16 Remark. In Section 2 we can use arguments parallel to those in 3.11.

3.17 Remark. For /=Y, there is no universal member in K%'. In fact, for any
Q < P” let Gg be the subgroup of Qx @ @p{ﬂ)x,, : p € P*\Q} generated by

{p"x:peQ}U{q"x, :peP"\Qand n < w, and g € P"\{p}}
U{p™(x—xp):n<wandpeQ}

So Gg € R{fof, and (see Definition 1.3) P(x, Gg) = Q; and P~ (x, Gg) = P*\Q hence
(see 1.4) if h embeds Ggq into G € K" then P(h(x), G) = Q. As the number of possi-
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ble subsets Q is 2% the statement follows easily. This argument gives an alternative
proof to 1.2, but the proof there looks more amenable to generalization.
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