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Non-existence of universal members in classes of
abelian groups

Saharon Shelah

(Communicated by R. GoÈbel)

Abstract. We prove that if m� < l � cf�l� < m@0 , or if @0 < l < 2@0 , then there is no universal
reduced torsion-free abelian group of cardinality l. We also prove that if $o < m� < l �
cf�l� < m@0 , then there is no universal reduced separable abelian p-group in l. We
also deal with the class of @1-free abelian groups. Both results fail if (a) l � l@0 or if
(b) l is a strong limit and cf�m� � @0 < m.

0 Introduction

We deal with the problem of the existence of a universal member in Kl for a class K
of abelian groups, where Kl is the class of groups in K of cardinality l; universal
means that every other member can be embedded into it. We are concerned mainly
with the class of reduced torsion-free groups. Generally, for the history of the exis-
tence of universal members, see Kojman±Shelah [1]. From previous work, a natural
division of the possible cardinals for such problems is as follows:

Case 0. l � @0.
Case 1. l � l@0 .
Case 2. @0 < l < 2@0

Case 3. 2@0 � m� < l � cf�l� < m@0 .
Case 4. 2@0 � m� � cf�l� < l < m@0 .
Case 5. l � m�, cf�m� � @0; �Ew < m��w@0 < m�.
Case 6. cf�l� � @0; �Ew < l��w@0 < l�.
Subcase 6a. l is strong limit.
Subcase 6b. Case 6 but not 6a.

Our main interest was in Case 3, originally for K � Krtf , the class of torsion-free
reduced abelian groups. Note that if we omit the condition `reduced' then divisible
torsion-free abelian groups of cardinality l are universal. A second class is Krs�p�, the
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class of reduced separable p-groups (see De®nition 2.3(4), and more in Fuchs [1]).
However we are also interested in developing methods and in the class of @1-free abe-
lian groups. Kojman±Shelah [3] show that for K � Krtf ;Krs�p� in Case 3 there is no
universal member if we restrict the possible embeddings to pure embeddings. This
underlines the point that universality depends not only on the class of structures but
also on what embeddings are allowed. In [7] we allow any embeddings, but restrict
the class of abelian groups to �<l�-stable ones. In [8, Sections 1 and 5] we allow any
embeddings and all G A Kl, but there is a further restriction on l related to the pcf
theory (see [6]). This restriction is weak in the sense that it is not clear if there is any
cardinal (in any possible universe of set theory) not satisfying it. Here we prove the
full theorem for l > $o with no further restrictions:

��� for l > $o in Case 3, and for K � Krtf ;Krs�p�, there is no universal member in Kl.

(Here we de®ne inductively $0 � @0, $n�1 � 2$n , $o �
P

n<o 2$n and generally
$a � @0 �

P
b<a 2$b .)

In Section 1 we deal with Krtf using mainly type theory. In Section 2 we apply
combinatorial ideals whose de®nition has some built-in algebra and purely combi-
natorial ones to obtain results on Krs�p�; there is more interaction between algebra
and combinatorics than in [8]. Similarly in Section 3 we work on the class of @1-free
abelian groups.

We comment brie¯y on the other cases. For Case 4 (which is like Case 3 but with l
singular), for Krtf

l and pure embedding, the non-existence of universals was shown in
[3] subject to a weak pcf assumption, and in [8] this was done for embeddings under
slightly stronger pcf assumptions. It is not clear whether either of these assumptions
may fail. The results on consistency of existence of universals in this case cannot be
attacked as long as more basic pcf problems remain open.

Concerning Case 5, if we want to prove the consistency of the existence of univer-
sals, it is natural ®rst to prove the existence of the relevant club guessing; here
we expect consistency results. (Of course, consistently there is club guessing (from
C � hCd : d A Si;S J l, otp�Cd� � m) and then there is no universal.) We were inter-
ested ®rst in the existence of universal reduced torsion-free groups under embeddings,
but later we also considered some of the other cases here. See more in [12].

Case 1 �l � l@0�. By subsequent work there is a universal member of Krtf
l , and (see

Fuchs [1]) in Krs�p�
l there is a universal member, but in K@1-free

l there is no universal
member (see forthcoming work).

Case 0 �l � @0�. In Krtf
l there is no universal member (see above or 3.17) and in

Krs�p�
l there is a universal member (see Fuchs [1]).
Case 2 �@0 < l < 2@0�. For Krtf

l we prove here that there is no universal member
(by 1.2), whereas for Krs�p�

l this is consistent with and independent of ZFC (see [5,
Section 4]).

We have also dealt with Case 6 ��Ew < l�w@0 < l, l > cf�l� � @0�. There is a uni-
versal member for Ktrf

l and also for Krs�p�
l . See [12].

Notation. The cardinality of a set A is jAj, the cardinality of a structure G is kGk.
H�l�� is the set of sets whose transitive closure has cardinalityW l, and <�

l� denotes
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a ®xed well order of H�l��. For an ideal I, we denote by I� the family of subsets of
Dom�I� which are not in I.

1 Non-existence of universals among reduced torsion-free abelian groups

The ®rst result (1.2) deals with the case when l satis®es @0 < l < 2@0 and it shows the
non-existence of universal members in Ktrf

l ; this result improves [8]. The proof, by
analysing subgroups and comparing Bauer's types, is straightforward.

Then we deal with the case when 2@0 � m� < l � cf�l� < m@0 . We add witnesses to
bar the way to `undesirable' extensions (see [12] on classes of modules). This is a
critical new point compared with [8].

1.1 De®nition. Let Krtf denote the class of torsion-free reduced abelian groups G

(where torsion-free means that nx � 0, n A Z, x A G ) n � 04x � 0 and reduced
means that �Q;�� cannot be embedded into G ). The subclass of G A Krtf of cardi-
nality l is denoted by Krtf

l . Moreover, Ktf is the class of torsion-free abelian groups.

1.2 Claim. (1) If @0 < l < 2@0 then Krtf
l has no universal member.

(2) Moreover there is no member of Krtf
l universal for Krtf

@1
.

Proof. Let P� be the set of all primes and let fQi : i < 2@0g be a family of in®nite
subsets of P� with pairwise ®nite intersection. Let ra A o2 for a < o1 be pairwise
distinct. Let H � be the divisible torsion-free abelian group with fxa : a < o1g a
maximal independent subset. For i < 2@0 let H �

i be the subgroup of H � generated by

fxa : a < o1gU fpÿnxa : p A P�nQi; a < o1 and n < og
U fpÿn�xa ÿ xb� : a; b < o1 and p A P� and ra Z p� rb Z p and n < og:

Clearly H �
i A Krtf and kH �

i k � @1 W l. Let G A Krtf
l . We shall prove that at most l

of the groups H �
i are embeddable into G.

So assume that Y J 2@0 , jY j > l and that for each i A Y we have an embedding
hi of H �

i into G. We shall derive that G is not reduced, which is a contradiction.
We choose by induction on n a set Gn J nl and pure abelian subgroups Gh of G

for h A Gn, as follows. For n � 0 we let G0 � fh ig and Gh i � G. For n� 1,
for h A Gn such that kGhk > @0 we let Gn;h � fĥ hzi : z < kGhkg, and we let
Gh � hGh^hzi : z < kGhki be an increasing continuous sequence of subgroups of Gh

of cardinality < kGhk with union Gh such that

��� for z < kGhk we have
Gh^hzi � Gh V �Skolem hull of Gh^hzi in �H�l��; A; <�

l� ;Gh��.
Let Gn�1 � fĥ hzi : h A Gn; kGhk > @0 with z < kGhkg and G �6

n<o
Gn. For each

i A Y , let h � hi A G be such that

(a) fa < o1 : hi�xa� A Ghi
g is uncountable, and

(b) subject to (a), the cardinality of Ghi
is minimal.
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Clearly hi is well de®ned as (a) holds for h � h i and clearly Ghi
is uncountable. It is

also clear that the cardinality kGhi
k has co®nality @1. Let

Xi � fa < o1 : hi�xa� A Ghi
g;

and let bi < o1 be minimal such that fra : a A bi VXig is a dense subset of
fra : a A Xig. Let zi < kGhi

k be the minimal z such that

fhi�xa� : a A bi VXigJGh^hzi

(z exists as cf�kGhi
k� � @1). Now by condition (b) the set

X 0i � fa < o1 : hi�xa� A Ghi^hziig

is countable, and hence we can ®nd ai A XinX 0i .
Now the number of possible sequences hhi; bi; zi; ai; hi�xai

�i is at most

jo>lj � @1 � l� @1 � l

(as GJ o>l). So for some hh; b; z; a; yi and i0 < i1 from Y we have (for l � 0; 1)

hil
� h; bil

� b; zil � z; ail � a; hil �xal
� � y:

Now as hil embeds H �
il

into G and hil �xa� � y we must have

���� if p A P�nQil and n < o then pÿn divides y in G.

So this holds for every p A �P�nQi0�U �P�nQi1� � P�n�Qi0 VQi1�.
Now Qi0 VQi1 is ®nite; let p� A P� be above its maximum. As frg : g A X 0i0g is a

dense subset of fra : a A Xi0g, there is g A X 0i0 such that

rg Z p� � ra Z p��� rai0
Z p��:

Let hi0�xg� � y�; thus y� A Gh^hzi.
So in �H�l��; A; <�

l� ;Gh�, the following formula is satis®ed (recall that Gh is a pure
subgroup of G ):

j�y; y�� � `in Gh; y is divisible by pn when p A P� & pX p� & n < o
and yÿ y� is divisible by pn when p A P� & p < p� & n < o':

Hence by ���, i.e. by the choice of hGh^hxi : x < kGhki, for some y 0 A Gh^hzi we must
have j�y 0; y��. Now y0 y 0 as y 0 A Gh^hzi, y B Gh^hzi. Also yÿ y 0 is divisible by pn for
p A P�; n < o. (This is because if pX p� then both y and y 0 are divisible by pn, and if
p < p� then

yÿ y 0 � �yÿ y�� ÿ �y 0 ÿ y��

and both yÿ y� and y 0 ÿ y� are divisible by pn.) As G is torsion-free, the pure
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closure in G of hfyÿ y 0giG is isomorphic to Q, and this is a contradiction since G

is reduced. r1:2

1.3 De®nition. (1) Let P� be the set of all primes.
(2) For G A Krtf and x A Gnf0g let

(a) P�x;G� � fp A P� : x A 7
n<o

pnGg; thus p A P�x;G� if and only if x is divisible
in G by pn for every n < o;

(b) Pÿ�x;G� � fp : p A P�; but p B P�x;G� and there is y A Gnf0g such that
P�nfpgJP�y;G� and p A P�xÿ y;G�g.

(3) G A Krtf is called full if P� � P�x;G�UPÿ�x;G� for every x A Gnf0g.
(4) The class of full groups G in Krtf is denoted by Kstf , and Kstf

l � Kstf VKrtf
l . (We

use s as it is the successor to r in the alphabet.)

1.4 Fact. (1) If G A Krtf then for any x A G the sets P�x;G� and Pÿ�x;G� are disjoint
subsets of P�.

(2) If G2 is an extension of G1, both in Krtf , and x A G1nf0g, then

(a) P�x;G1�JP�x;G2�, with equality if G1 is a pure subgroup of G2, and

(b) Pÿ�x;G1�JPÿ�x;G2�.
(3) For every G A Krtf there is a G 0 such that

(a) G 0 is full, G 0 A Krtf , and

(b) G is a pure subgroup of G 0 and kG 0k � kGk.

Proof. Assertions (1), (2) are trivial. To prove (3) it su½ces to show the following:

��� if G A Krtf and x A Gnf0g, and p A P�nP�x;G�, then for some pure extension G 0

of G with rk�G=G 0� � 1 we have p A Pÿ�x;G 0� and G 0 A Krtf .

Given G, x, let Ĝ be the divisible hull of G and let

G0 � fy A Ĝ : for some n > 0; pny A Gg;
G1 � fy A Ĝ : for some b A Z; b > 0 not divisible by p we have by A Gg:

Clearly G � G0 VG1. We de®ne the following subsets of Ĝ �Q:

H0 � f�y; 0� : y A Gg �so G is isomorphic to H0�;
H1 � f�pnbx; pnb� : b; n A Zg;
H2 � f�0; c1=c2� : c1; c2 A Z and c2 not divisible by pg:

All three subsets are additive subgroups of Ĝ �Q, and H2 GZ�p�. Let G 0 be the
subgroup H0 �H1 �H2 of Ĝ �Q.

Non-existence of universal members 173

Brought to you by | Kungliga Tekniska Högskolan
Authenticated

Download Date | 7/12/15 5:02 PM

Sh:622



We claim that G 0 V �Ĝ � f0g� � H0. The inclusionK is clear. For the other inclu-
sion, let z A G 0 V �Ĝ � f0g�; as z A G 0 there are �y; 0� A H0, (so that y A G),
�pnbx; pnb� A H1 (so that b A Z; n A Z and x A G is the constant from ���) and
�0; c1=c2� A H2 (so that c1; c2 A Z and p does not divide c2) and integers a0; a1; a2 such
that

z � a0�y; 0� � a1�pnbx; pnb� � a2�0; c1=c2�;

which means that

z � �a0y� a1pnbx; a1pnb� a2c1=c2�:

As z A Ĝ � f0g clearly a1pnb� a2c1=c2 � 0; so as p does not divide c2, necessarily
a1pnb is an integer. Thus a1pnbx A G and so as y A G clearly a0y� a1pnbx A G.
Therefore z A G � f0g � H0 as required.

It is easy to check now that H0 is a pure subgroup of G 0.
Let y� � �0;ÿ1�. Clearly �x; 0� ÿ y� is divisible by pk for every k < o (as

�pkx; pk� A H1 JG 0 for every k A Z) and y� is divisible by any integer b when b is
not divisible by p (as �1=b�y� � �0;ÿ1=b� A H2 JG 0).

Identifying y A G with �y; 0� A G we are done: G 0 is as required in ���, with y�

witnessing that p A Pÿ�x;G 0�. r1:4

1.5 Claim. Suppose that G1 A Krtf is full and G2 A Krtf . If h is an embedding of G1 into

G2 then

for x A G1nf0g; P�x;G1� � P�h�x�;G2�:

Proof. Without loss of generality h is the identity; now we use 1.4(1), 1.4(2) and the
de®nition of `full'. r1:5

1.6 Conclusion. Assume

��� 2@0 < m� < l � cf�l� < m@0 .

Then there is no universal member in Krtf
l .

Proof. Let

S J fd < l : cf�d� � @0 and o2 divides dg

be stationary and h � hhd : d A Si, where each hd is an increasing o-sequence of
ordinals < d with limit d such that hd�n� ÿ n is well de®ned and divisible by o; so
if d1 0 d2 then Range�hd1

�VRange�hd2
� is ®nite. Let fp�n : n < og list the primes in

increasing order. Let G0
h be the abelian group generated by

fxa : a < lgU fyd : d A SgU fzd;n; l : n; l < ogU fxa;m; l : a < l;m; l < o; a0m mod og
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freely except for the equations

p�n zd;n; l�1 � zd;n; l ; yd ÿ xhd�n� � zd;n;0;

p�mxa;m; l�1 � xa;m; l ; xa;m;0 � xa; if a0m mod o:

It is easy to check that G0
h A Krtf

l , that Pÿ�yd;G
0
h � is the set of all primes and that

P�xa;G
0
h � is the set of primes0 p�n if a � n mod o.

Let Gh A Krtf
l be a pure extension of G0

h which is full (one exists by 1.4(3)). So

��� if h embeds Gh into G A Krtf
l then

x A Ghnf0g ) P�x;Gh� � P�h�x�;G�:

Hence the proof in [3] is valid here. r1:6

1.7 Remark. (1) Similarly, the results in [3] on l singular (i.e. Case 4) hold for em-
bedding (rather than for pure embedding).

(2) In Case 5, if there is a family PJ fC J m� : otp�C� � mg which guesses clubs
(i.e. every club E of m� contains one of them), and its cardinality is < m@0 then the
result of 1.6 holds for m�.

(3) Concerning the case when @0 W l < 2@0 see also 3.17.

2 The existence of universals for separable reduced abelian p-groups

Here we eliminate the very weak pcf assumption from the theorem showing that
there is no universal in Krs�p�

l when l > $o. The class Krs�p� is de®ned in 2.3(4).
In the ®rst section we have eliminated the very weak pcf assumptions for the

theorem concerning Krtf
l (though the condition that l � cf�l� > m� remains, i.e. we

assume that we are in Case 3). This was done using the `in®nitely many primes', so in
the language of e.g. [3] the invariant refers to one element x. This cannot be gener-
alized to Krs�p�

l . However, in [8, Section 5] we use an invariant on e.g. suitable groups
and related stronger `combinatorial' ideals. We continue this, using combinatorial
ideals closer to the algebraic ones to show that the algebraic ideal is non-trivial.

We rely on the `GCH right version' provable from ZFC (see [11]); hence the con-
dition `l > $o' is used.

2.1 De®nition. (1) For l � hll : l < oi and t � htl : l < oi (with 1 < tl < o) we de-
®ne J 4

t;l
to be the family of subsets A of

Q
l<o�ll � tl satisfying the following condition:

���A for every large enough l < o, for every B A �ll �@0 for some k A �l;o� we cannot

®nd D
nh : h A

Y
i A �l;k�

�o� ti

E
such that
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(a) nh A A;

(b) if h1; h2 A
Q

i A �l;k��o� ti ; l WmW k and h1 Z �l;m� � h2 Z �l;m� then nh1
Z m �

nh2
Z m; hence nh1

Z l � nh2
Z l for h1; h2 A

Q
i A �l;k��o� ti ;

(c) if h0 A
Q

i A �l;k��o� ti and l Wm < k then for some E A �lm�@0 we have

�E� tm �
n

nh�m� h A
Y

i A �l;k�
�o�ti and h Z m � h0 Z m

o

and m � l ) E � B.
(2) Let J 4

t;l;<y
be the family of subsets A of

Q
l<o�ll � tl such that for some a < y and

Ab A J 4
t;l

for b < a we have AJ6
b<a

Ab.

When y � k�, we may write k instead of <y.

2.2 Fact. (1) J 4
t;l;y

is a y�-complete ideal.

(2) If ll > $tlÿ1�y� for each l < o then the ideal J 4
t;l;y

is proper (where $0�y� � y,

$n�1�y� � 2$n�y�, and for general a we have $a�y� � y�Pb<a 2$b�y��.

Proof. Assertion (1) is trivial. To prove (2), for l < o let

ERI tl

ll
� fAJ �ll � tl : for some F : �ll � tl ! y there is no B A �ll �@0

such that F Z �B� tl is constant and �B� tl JAg:

This is a y�-complete ideal and it is non-trivial by the ErdoÈs±Rado theorem (which
we used similarly in [10, Section 1]). Now we shall prove that the ideal J 4

t;l;y
is proper.

So we assume that
Q

l<o�ll � tl �6
i<y

Xi and Xi A J 4
t;l

for each i < y and we shall
obtain a contradiction. Let

X�i �
n

h A
Y
l<o

�ll � tl : for every l < o for some h 0 A Xi we have h Z l � h 0 Z l
o

(i.e. X�i is the closure of Xi). So

X�i J
Y
l<o

�ll � tl �
Y
l<o

Dom�ERI tl

ll
�

is closed, and those ideals are y�-complete and
Q

l<o Dom�ERI tl

li
� �6

i<y
X�i . Hence

(see Rubin±Shelah [4], [9, Chapter XI, 3.5(2)] with Ha � X�i ) we can ®nd T such that

(a) T J6
m<o

Q
l<m�ll � tl ,

(b) T is closed under initial segments,

(c) h i A T ,
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(d) if n A T and lg�n� � l then fu A �ll � tl : n̂ hui A Tg A �ERI tl

ll
��,

(e) for some i < y, lim�T�JX�i .

(Here, lim�T� � fn A
Q

l<o �ll � tl : �Em < o�n Z m A Tg.) Fix i from clause (e). We
would like to prove s���X�

i
; the de®nition of the ideal ERI tl

ll
gives more than required

(with `for every l ' instead of `for arbitrarily large l ' in the negation ��� of De®ni-
tion 2.1). r2:2

Remark. We note that we could have used the stronger ideal de®ned implicitly in 2.2,
i.e. the family J 5

t;l;y
of sets X J

Q
l<o�ll � tl for which we can ®nd a < y and Xi JX

for i < a such that X �6
i<a

Xi and for each i and T satisfying (a)±(d) from the
proof of 2.2 there is T 0JT satisfying (a)±(d) such that lim�T� is disjoint from the
closure of Xi.

Of course, we can also replace ERI tl

ll
by variants.

We recall the following de®nition from [8, 5.1].

2.3 De®nition. (1) For m � hmn : n < oi let Bm be the following direct sum of cyclic
p-groups. Let K n

a be a cyclic group of order pn�1 generated by xn
a and let

Bn
mn
�0

a<mn
K n

a and Bm �0
n<o

Bn
mn

, i.e. Bm is the abelian group generated by
fxn

a : n < o; a < mng freely except that pn�1xn
a � 0.

Let

Bm Z n �0 fK m
a : a < mm;m < ngJBm:

These groups are in Krs�p�
W
P

n
mn

.

Let B̂m be the p-torsion completion of Bm (i.e. from the completion under the norm
kxk � minf2ÿn : pn divides xg we take only the torsion elements; see Fuchs [1]. Note
that B̂m is the torsion part of the p-adic completion of Bm).

(2) Let I 1
m;<y � I 1

m;<y�p� be the ideal on B̂m (depending on the choice of
hK n

a : a < mn, n < oi or actually hBm Z n : n < oi) consisting of unions of < y
members of I 0

m , where

I 0
m � I 0

m � p�
� fAJ B̂m : for all large enough n; we have clB̂m

�hAiB̂m
�VBm JBm Z ng:

(The de®nition of clB̂m
is given in (3) below.) When y � k� we may write k instead

of < y. If mn � m, we may write m instead of m.
(3) For X J B̂m, recall that hXiB̂m

is the subgroup of B̂m generated by X and that

clB̂m
�X � � fx : �En��by A X ��xÿ y A pnB̂m�g:

(4) Let Krs�p� be the family of pure subgroups of some B̂m.
(5) If p is not clear from the context we may write Bm� p�; B̂m� p�, etc.
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2.4 Claim. Assume that m � hmn : n < oi, t � htl : l < oi, tl � p and that the ideal

J 4
t;m;y

is proper (so that mn X$pÿ1�y�� is enough by 2.2(2)). Then the ideal I 1
m;y is proper

(and I 1
m;y is a y�-complete ideal ).

Proof. We de®ne a function h from
Q

l<o�ll � tl into B̂m. We let

h�h� � Sfpnxn
b : b A h�n� and n < og A B̂m� p�:

Clearly h is one-to-one and it su½ces to prove

��� if X A �J 4
t;m;y
�� then h 00�X � belongs to �I 1

m;y��.

So assume that X A �J 4
t;l;y
�� is given and suppose for a contradiction that

h 00�X� A I 1
m;y. So we can ®nd hYi : i < yi such that for such i < y we have Yi A I 0

m and

h�X �J6
i<y

Yi. Let Xi � hÿ1�Yi�. So h�Xi�JYi A I 0
m and hence h�Xi� A I 0

m . But as
J 4

t;l;y
is y�-complete and X A �J 4

t;l;y
�� we have Xi A �J 4

t;l;y
�� for some i < y, and so

without loss of generality h 00�X� A I 0
m . By the de®nition of I 0

m , for some n��� < o we
have

��� Bm V clB̂m
�hh 00�X�iB̂m

�JBm Z n���.

On the other hand, as X A �J 4
t;m;y
�� we have X B J 4

t;m
, and so from the de®nition of

J 4
t;m

in 2.1(1) we can ®nd hBn : n A Gi such that

(a) G A �o�@0 and Bn A �ln�@0 , and

(b) for n A G and for every k A �n;o� we can ®nd hnn;k
h : h A

Q
l A �n;k��o� tli as in (a)±

(c) of De®nition 2.1(1), with n, Bn, k here standing for l, B, k there.

For m A �n; k� and h A
Q

l A �n;m��o� tl we let nn;k
h be nn;k

h1
Z m whenever we have

h dh1 A
Q

l A �n;k��o� tl ; by clause (b) in ��� of 2.1 this is well de®ned. We ®x tempo-
rarily n A G and k A �n;o�. Let Ah � An;k

h A �lm�@0 where m � lg�h� be such that

fnn;k
h^hui�m� : u A �o� tmg � �Ah� tm

and without loss of generality (otp stands for `the order type')

��� otp�Ah� � o and nn;k
h^hui�m� � OPAh;o�u�

(where OPAh;o�i� � a if and only if i � otp�Ah V a�).
Now for m A �n; k� and h A

Q
l A �n;m��o� tl we de®ne

yh � yn;k
h

�
Xn

h�nn;k
r � : ht r A

Y
l A �n;k�

�o� tl and �El��lg�h�W l < k ! r�l�J �0; tl ��
o

where t denotes being an initial segment. So yh A B̂m and we shall prove by down-
ward induction on m A �n; k� that for every h A

Q
l A �n;m��o� tl we have (writing

P
l<m
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for
P

l A �n;m�)

r�m yh � �
Qkÿ1

l�m�tl � 1�� � �Pl<m

P
a A n n; k

h �l � plxl
a�mod pkB̂m.

Case 1. m � k.
In this case the product

Qkÿ1
l�m�tl � 1� is just 1, so the equation becomes

yh �
X
l<m

X
a A n n; k

h �l �
plxl

a mod pkB̂m:

Now the expression for yh is

Xn
h�nn;k

r � : h t r A
Y

l A �n;k�
�o� tl and �El��mW l < k ) r�l�J �0; tl ��

o
� h�nn;k

h � �
X
l<o

X
a A n n; k

h �l �
plxl

a

�
X
l<m

X
a A n n; k

h �l �
plxl

a � pk
� X

l A �k;o�

X
a A n n; k

h �l �
plÿkxl

a

�

and so the equality is trivial.

Case 2. n < m < k.
Here (with equalities in the equation being in B̂m, modulo pkB̂m), we have

®yh �
X
fyh^hui : u A �f0; . . . ; tmg� tmg �by the de nition of yh; yh^hui�

�
Xn� Ykÿ1

l�m�1

�tl � 1�
�� X

l<m�1

X
a A n n; k

h^hui�l�
plxl

a

�
: u A �f0; . . . ; tmg� tm

o
�by the induction hypothesis�

�
Xn� Ykÿ1

l�m�1

�tl � 1�
��X

l<m

X
a A n n; k

h^hui�l�
plxl

a

�
: u A �f0; . . . ; tmg� tm

o

�
Xn� Ykÿ1

l�m�1

�tl � 1�
� X

a AOPo;Ah �u�
pmxm

a : u A �f0; . . . ; tmg� tm

o
�dividing the sum

X
l<m�1

into
X
l<m

and
X
l�m

and noting what nn;k
h^hui�m� is�
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�
Xn� Ykÿ1

l�m�1

�tl � 1�
��X

l<m

X
a A n n; k

h �l �
plxl

a

�
: u A �f0; . . . ; tmg� tm

o

�
Xn� Ykÿ1

l�m�1

�tl � 1�
�
�pm xm

a �jfu : u A �f0; . . . ; tmg� tm and

jaVAhj A ugj : a is a member of Ah; moreover jaVAhjW tm

o
�collecting together terms with xm

a in the second sum�

�
� Ykÿ1

l�m�1

�tl � 1�
��X

l<m

X
a A n n; k

h �l �
plxl

a

�
� jfu : u A �f0; . . . ; tmg� tmgj

�
Xn� Ykÿ1

l�m�1

�tl � 1�
�
�pmxm

a � � ��tm � 1� ÿ 1� : a A Ah; jaVAhjW tm

o
� �tm � 1�

� Ykÿ1

l�m�1

�tl � 1�
�X

l<m

X
a A n n; k

h �l �
plxl

a � 0

�since tm � p and pm�1xm
a � 0�

�
�Yk

l�m

�tl � 1�
��X

l<m

X
a A n n; k

h �l �
plxl

a

�
:

Hence we have ®nished the proof of r�m.
Now as tl � 1 � p� 1 and pplxl

a � 0 in B̂m we obtain

r�0m yh �
P

l<m

P
a A n n; k

h �l � plxl
a mod pkB̂m.

Note that for m � n� 1 the sum
P

l<m is just
P

l�n. So, because for n A G the sub-
set Bn serves for every k A �n;o�, if u1; u2 A �Bn� tn are distinct, then for k A �n;o� we
have letting m � n� 1

yhu1i ÿ yhu2i �
X
l<m

X
a A n n; k

hu1i
�l�

plxl
a ÿ

X
l<m

X
a A n n; k

hu2i
�l�

plxl
a mod pkB̂m:

As this holds for every k A �n;o� we get equality. By the demands on nn;k
h (see

clause (b) above) we have yhu1i ÿ yhu2i B Bm Z n; but from the last sentence we have
yhu1i ÿ yhu2i A Bm Z �n�1�, contradicting ���. r2:4

2.5 De®nition. (1) Let I be an ideal on k (or just I JP�k� closed downwards,
I� � P�k�nI ). Write

UI �l� � minfjPj : PJ �l�Wk and for every f A kl
for some a A P we have fi < k : f �i� A ag A I�g:
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(2) For sW yW mW l let

cov�l; m; y; s� � minfl� jPj : P is a family of subsets of l each of
cardinality < m such that all X J l of cardinality < y
is contained in the union of < s members of Pg:

2.6 Claim. (1) For every lX$o, for some y < $o for every m A �$pÿ1�y�;$o� we have

(writing mn � m), UI 1
m; y
�l� � l (and hence UI 0

m
�l� � l).

(2) If cf�l� > @0, then for some y < $o, for every m A �$pÿ1�y�;$o� and l 0 < l we

have UI 1
m; y
�l 0� < l.

Proof. By 2.4, Im;y is a y�-complete proper ideal on a set of cardinality m@0 , for all m, y
as in the assumptions. From [11], for each l 0W l for some y � y�l 0� < $o for every
m A �y;$o� we have cov�l 0; m�; m�; y� � l 0, i.e. there is Pm J �l 0�m of cardinality Wl 0

such that if Y A �l 0�Wm then Y is contained in the union of < y members of Pm. As I 1
m;y

is a y�-complete ideal on a set of cardinality m it follows that UI 1
m; y
�l 0�W l 0jPmj � l 0

(and trivially UI 1
m; y
�l�X l). This proves (1).

In (2) we have cf�l� > @0, and so for some y < $o, for arbitrarily large l 0 < l we
have y�l 0�W y; and clearly the result follows. r2:6

2.7 Conclusion. If $o W m� < l � cf�l� < m@0 , then there is no universal member in

Krs�p�
l .

Proof. This follows from 2.5 and [8, 5.9].

We also have the following result.

2.8 Claim. Assume that the following conditions hold:

(a)
Q

l<o kl < m < l � cf�l�W l 0 < m@0 ;

(b) m� < l or at least for some P we have

���P jPj � l & �Ea A P��aJ l & otp�a� � m�
& �EE��E a club of l! �ba A P��aJE��;

(c) l 0 � UI 0
k
�l� < m@0 where k � hkl : l < oi; note that I 0

k depends on the prime p.

Then we can ®nd reduced separable abelian p-groups Ga A Krs�p�
l for a < m@0 such

that for every reduced separable abelian p-group G of cardinality l the following holds:
some Ga is not embeddable into G; also the number of ordinals a < m@0 such that Ga is

embeddable into G is Wl 0.
Moreover, each Ga is slender, i.e. there is no homomorphism from Zo into Ga with

range of in®nite rank.

Proof. The proof is the same as that of [8, 5.9 and 7.5].
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3. Non-existence of universals for @1-free abelian groups

The ®rst section dealt with Krtf
l and improved results in [8]. But the groups used there

are `almost divisible'. Now we ask what happens if we replace Krtf by a variant
avoiding this. We propose to consider the @1-free abelian groups where type argu-
ments like those in Section 1 break down. So the proof of [8] becomes relevant and it
is natural to improve it as in Section 2 (which dealt with Krs� p�). For diversity we use
a stronger ideal. We have not considered the problem for @1-free abelian groups of
cardinality l when @0 < l < 2@0 . So we concentrate here on torsion-free (abelian)
groups.

3.1 De®nition. (1) Let t � htl : l < oi, 2W tl < o. For an abelian group H, the t-
valuation is de®ned by

kxkt � inf
n

2ÿm :
Y
l<m

tl divides x in G
o
:

This is a semi-norm. We recall that dt�x; y� � kxÿ ykt. This semi-norm induces a
topology, called the t-adic topology. If tl � p for l < o, we may write p instead of t.

(2) Let clt�A;H� be the closure of A in H in the t-adic topology.
Let PCH�X� be the pure closure of X in H, that is

PCH�X� � fx A H : for some n > 0; nx belongs to hxiHg:

Let PCp
H�X� be the p-adic closure in H of the subgroup of H generated by X.

(3) Let Krtf �t � be the class of t-reduced torsion-free abelian groups, i.e. the groups
G A Krtf such that 7

n<o
�Qi<n ti�G � f0g; hence k ÿ kt induces a Hausdor¨ topology

on these groups. (Conversely, if G is torsion-free and the t-adic topology is Haus-
dor¨, then G A Krtf �t �.)

(4) If the t-adic topology is Hausdor¨, then G�t � is the completion of G with respect
to k ÿ kt. If tl � 2� l, this is the Z-adic completion.

The following continues the analysis in [8, 1.1] (which dealt with Krs�p�) and [8, 1.5]
(which dealt with Krtf ).

3.2 De®nition. We say that G has t-density m if it has a pure subgroup of
cardinalityW m which is t-dense, i.e. dense in the t-adic topology, but has no such
subgroup of cardinality < m.

3.1 Proposition. Suppose that

�a� mW lW m@0 ,

�b� G is an @1-free abelian group with jGj � l,

�g� t is as in 3.1 such that �El��bm > l � (tl divides tm).

Then there is an @1-free group H such that G JH, jHj � l and H has t-density m.
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Proof. Choose ln < m for n < o such thatY
n<o

ln X l; mX
X
n<o

ln; 2ln < ln�1

(so ln > 0 may be ®nite). Let fxi : i < lg list the elements of G. Let l 0n�1 � ln�1,
l 00 � m. Let hi A

Q
n<o ln for i < l be pairwise distinct such that hi�n� 1�X ln and

such that

i 0 j ) �bm��En��mW n) hi�n�0 hj�n��:

Without loss of generality m � fhi�n� : i < l; n < og. Let H be generated by G, xm
i

for i < l 0m, m < o, yn
i for i < l, n < o, freely except for the following relations:

(a) the equations of G;

(b) y0
i � xi �A G�;

(c) tnyn�1
i � xn

hi�n� � yn
i .

Fact A. H extends G and is torsion-free.

Proof. H can be embedded into the divisible hull of G � F , where F is the abelian
group generated freely by fxm

a : m < o and a < l 0mg.

Fact B. H is @1-free and moreover H=G is @1-free.

Proof. Let K be a countable pure subgroup of H. Now, as we can increase K, without
loss of generality K is generated by

(i) a pure subgroup K1 � fxi : i A Ig of G, where I is some countably in®nite subset
of l,

(ii) ym
i , xn

j for i A I , m < o and �n; j� A J, where J Jo� l is countable and

i A I ; n < o) �n; hi�n�� A J:

Moreover, the equations holding among those elements are deducible from the
equations of the following form:

(a)ÿ equations of K1;

(b)ÿ y0
i � xi for i A I ;

(c)ÿ tnyn�1
i � xn

hi�n� � yn
i for i A I , n < o.

We can ®nd hki : i A Ii such that ki < o and

�i0 j & i A I & j A I & nX ki & nX kj & i0 j ) hi�n�0 hj�n��:
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Now we know that K1 is free (being a countable subgroup of G ), and it su½ces to
prove that K=K1 is free. But K=K1 is freely generated by

fyn
i : i A I and n > kig

U fxn
a : �n; a� A J but for no i A I do we have n > ki; hi�n� � ag:

So K is free.

Fact C. H0 � hxn
i : n < o; i < l 0niH satis®es

(a) i < l) dt�xi;H0� � inffdt�xi; z� : z A H0g � 0,

(b) x A G ) dt�x;H0� � 0,

(c) x A H ) dt�x;H0� � 0.

Proof. First note that

���1 Y � fx A H : dt�x;H0� � 0g is a subgroup of H.

Also for every i < l and every n

���2 yn
i � xn

hi�n� � tnyn�1
i � xn

hi�n� � tnxn�1
hi�n�1� � tntn�1yn�2

i

�Pm
k�n�

Qkÿ1
l�n tl�xk

hi�k� � �
Qk

l�n tl�yk�1
i .

(This is proved by induction on mX n.) Note that as �El��bm > l � (ti divides tm) we
must have �El��bym� (tl divides tm) and hence �Ek��bym� (

Q
iWl tl divides

Qm
i�k ti).

Now ���2 implies

���3 yn
i A Y .

But xi � y0
i and hence (a) holds, and so (b) holds too as fxi : i < lg is dense in G.

Therefore G JY (by (b)), and xn
a A Y (as H0 JY and from the choice of H0) and

yn
i A Y by ���3. By ���1 clearly Y � H, as required in (c).

Fact D. jHj � l.

Fact E. The t-density of H is m.

Proof. The t-density is at most m as H0 has cardinality m and is t-dense in H, and we
now show that it is at least m.

De®ne a function h with domain the generators of H listed above, into H. Let
h�x� � 0 if x A G;
h�xm

a � � 0 if m > 0 or a < l0;
h�xm

a � � xm
a if m � 0 and l0 W a < l 00�� m�;

h�ym
i � � 0 if m < o, i < l.

This function preserves the equations de®ning H and hence induces a homomorphism
ĥ from H onto hRange�h�iH � hfx0

a : a < l 00; aX l0giH . Clearly ĥ�h�x�� � ĥ�x� for
the generators and hence ĥ � ĥ � ĥ. Therefore hfxn

a : a < l 00; aX l0giH is a direct
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summand of H and hence the dt-density of H is at least the dt-density of
hfxn

a : a A �l 00; l0�giH , which is l 00 � m. r3:3

We de®ne variants of the ideal constructed in De®nition 2.1.

3.4 De®nition. For l � hll : l < oi, t � htl : l < oi; 2W tl < o, we let J 5

t;l
be the set

of subsets X of
Q

l<o�ll � tl for which we cannot ®nd m��� < o, Y � hYm : m < o and

mXm���i, and Am � hAh : h A Ymi such that
(a) Ym J

Q
l<m �ll � tl ,

(b) Ym���J
Q

l<m��� �ll � tl is a singleton,
(c) hAh : h A Ymi is a sequence of pairwise disjoint subsets of lm each of order type o,
(d) Ym�1 � fĥ hui : h A Ym and u A �Ah� tmg,
(e) Ym J fn Z m : n A Xg.

We de®ne J 6

t;l
similarly but with m��� � 0, and we de®ne

J l

t;l;<y
�
n

X : for some a < y and Xb A J l

t;l
for b < a we have X J 6

b<a

Xb

o
:

Also let J l

t;l;y
� J l

t;l;<y�
.

3.5 Claim. (1) J
i�1�
t;l;<y1

J J
i�2�
t;l;<y2

when y1 W y2 and 4W i�1�W i�2�W 6.

(2) J i

t;l;y
is a y�-complete ideal for i � 4; 5; 6.

(3) If ll X$tlÿ1�y� then the ideal J i

t;l;y
is proper for i � 4; 5; 6.

Proof. The proofs of (1), (2) are easy and (3) is proved as in 2.4. r3:5

3.6 De®nition. Let l � hll : l < oi, t � htl : l < oi and suppose that 2W tl < o and
�En��bm > n��tnjtm�. We de®ne the following groups:

(A) B rtf
t;l

is the free (abelian) group generated by fxm
a : m < o; a < lmg;

(B) B rtf
t;l;n

is the subgroup of B rtf
t;l

generated by fxm
a : m < n and a < lmg;

(C) G rtf

t;l
is the pure closure in �B rtf

t;l
��t � of the subgroup of �B rtf

t;l
��t � generated by

B rtf

t;l
U
nX

m<o

�Y
l<m

tl

�
�xm
�h�l ���1� ÿ xm

�h�l ���0�� : h A
Y
l<o

�ll �2
o

(here our notation is that if e.g. h�l� � fa; bg, a < b then �h�l���1� � b,
�h�l���0� � a);

(D) B rtf

t;l
� hB rtf

t;l;n
: n < oi.
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To cover also the case s�En��bm > n��tnjtm� we can use

3.7 De®nition. Let @0 W ll W ll�1 for l < o. Let l � hll : l < oi, t � htl : l < oi,
2W tl < o, @0 W ll W ll�1, s�En��bm > n��tnjtm�. Let (A), (B), (D) be as in De®ni-
tion 3.6 and replace (C) by

(C) 0 we choose Y
� � hY �m : m < oi such that Y �m J

Q
l<m�ll �2;Y �0 � fh ig and for

each m there is a sequence hA�h : h A Y �mi of pairwise disjoint subsets of lm each

of cardinality lm such that Y �m�1 �6f�AY
h �2 : h A Y �mg. Let

Y �o �
n

h A
Y
l<o

�ll �2 : for every < o we have h Z m A Y �m
o
:

Let G rtf

t;l
be the abelian group generated by

B rtf

t;l
U fxh; yh; l : h A Y �o ; l < og

freely except for the equations which hold in B rtf

t;l
and

yh;0 � xh; tlyh; l�1 ÿ yh; l � xl
�h�l ���1� ÿ xl

�h�l ���0�:

3.8 De®nition. Assume

r�t
H;H

H � hHn : n < oi is an increasing sequence of abelian subgroups of H, such
that 6

n<o
Hn is dense in H with respect to the t-adic topology.

Then write

I 4; t

H;H
�
n

X JH : for some n < o; the intersection of the t-adic closure of

PCH�X� in H; clt�PCH�X�;H� with 6
l<o

Hl is a subset of Hn

o
;

I 4; t

H;H;<y
�
n

X JH : for some a < y and Xb A I 4; t

H;H
for b < a we have

X J 6
b<a

Xb

o
;

I 4; t

H;H;y
� I t

H;H;<y� :

3.9 De®nition. Assume t � htl : l < oi, 2W tl < o, and

r�t
H;H

H is Hausdor¨ in the t Z �k;o�-topology for each k < o, where t Z �k;o� �
htk�l : l < oi; further H � hHn : n < oi is an increasing sequence of abelian
groups, and 6

n<o
Hn JH is dense in the t Z �k;o�-adic topology for each

k < o.
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Then we let

(1) I 5; t

H;H
� fX JH : for some n��� < o, for every n A �n���;o� there is no y A Hn�1

such that: dt Z �n;o��y;PC�hXiH�� � 0 but dt Z �n;o��y;Hn� > 0g,
I 5; t

H;H;<y
� fX : there are a < y and Xb A I 5; t

H;H
for b < a such that X J6

b<a
Xbg.

Moreover I 5; t

H;H;y
� I 5; t

H;H;<y�
.

(2) I 6; t

H;H
(and I 6; t

H;H;<y
; I 6; t

H;H;y
) are de®ned similarly except that we require that

n��� � 0.

(3) I i; rtf

t;l
stands for I i; t

G rtf

t; l
;B rtf

t; l

where B rtf

t;l
� hB rtf

t;l;n
: n < oi.

3.10 Claim. Let l; t be as in 3.4. Then the following statements hold:

(a) r�t
G rtf

t; l
;B rtf

t; l

( from 3.9);

(b) G rtf

t;l
is @1-free; moreover G rtf

t;l
=B rtf

t;l;n
is @1-free for each n < o;

(c) I i; rtf

t;l;y
are y�-complete ideals for i � 4; 5; 6;

(d) if r�t
H;H

( from 3.9) and i A f4; 5; 6g then I i; t

H;H;y
is a y�-complete ideal.

Proof. This is straightforward; for i � 6 one uses an argument similar to that of
3.3. r3:10

The following lemma connects the combinatorial ideals de®ned above and the
more algebraic ideals de®ned in 3.8.

3.11 Claim. (1) Assume the following conditions:

r�1 t � htl : l < oi, 2W tl < o;

r�2 l � hll : l < oi, and ll > $1�y� for l < o.

Then the ideal I i; rtf

t;l;y
is proper for i � 4; 5; 6.

(2) Assume r�1 and

r�02 l � hll : l < oi, ll � @0; y � @0.

Then the ideal I i; rtf

t;l;y
is proper.

Proof. (1) If this is not true, we can ®nd Xa JL �: G rtf

t;l
for a < y such that

G rtf

t;l
�6

a<y
Xa and Xa A I i; rtf

t;l
. For aWo and h A

Q
l<a�ll �2 we let

xh �
X
m<a

�Y
l<m

tl

�
�xm
�h�n���1� ÿ xm

�h�n���0��:
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As in the proof of 2.4, we can apply a partition theorem on trees (see [9, Chapter XI,
3.5]) for the ideal Jl � ERI2

y�ll � (this ideal is, of course, y�-complete and non-trivial
as ll > 2y).

So we can ®nd hYm : m < oi; hAh : h A Ymi and a��� < y such that

(a) Ym J
Q

l<m�ll �2,

(b) Y0 is a singleton,

(c) Ah A �Jlg�h��� for h A Ym (so that Ah J �llg�h��2),

(d) Ym�1 � fĥ hui : u A Ah; h A Ymg,
(e) if h A Ym then h A fn Z m : xn A Xa���g.

We now prove by induction on k < o that

���k for any m < o, if h A Ym and AJAh is from �Jm�� then for some in®nite
A 0J lm for any a < b from A 0 and k < o we have

1k

a;b�
Q

l<m tl��xm
b ÿ xm

a � A clt�hXa���i;L� � �
Q

l<m�k tl�L:

For k � 0 this is trivial: the element �Ql<m tl��xm
b ÿ xm

a � belongs to �Ql<m�k tl�L.
For k � 1, to prove ���k�1 we are given m < o, h A Ym and A 0JAh;A

0 A �Jh��,
and we have to ®nd fa; bg A A 0 such that 1k�1

a;b holds. For l A �m;o�, as Jl is an ideal

we can ®nd A 00n A �Jl�� for n A Yl such that A 00n JAn and the statement 1k

a;b holds for
every fa; bg A A 00n or for no fa; bg A A 00n and n � h implies A 00n JA 0n. Because ���k
holds, for fa; bg A A 00n we have 1k

a;b. After renaming, without loss of generality we
have A 00n � An. As Ah A �Jm��, by the choice of Jm we can let g0 < g1 < g2 < � � � be in
Ah. So for each j < o, let hj A Ym�k�1 (yes, not hj A Ym�1!) be such that hj Z m � h,
hj�m� � fgj ; gj�1g. By (e) above there are nj such that hj dnj A

Q
l<o�ll �2 and

(i) xnj
A Xa���.

Now from the de®nitions of xhj
; xnj

we have the following statements:.

(ii) xhj
� xnj

mod�Ql<m�k�1 tl�L;

(iii) if l A �m� 1;m� k � 1� and j < o then

xhjZ �l�1� ÿ xhjZ l A clt�hXa���i;L� �
� Y

i<l�k

ti

�
L

J clt�hXa���i;L� �
� Y

i<m�k�1

ti

�
L

(the ®rst inclusion comes from the induction hypothesis as the di¨erence is
�Qi<m�l ti��xl

�hj�l���1� ÿ xl
�hj�l���0��, and the second holds as m� 1W l);
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(iv) xhj
ÿ xhjZ �m�1� A clt�hXa���i;L� � �

Q
i<m�k�1 ti�L

(we use (iii) for l � m� 1; . . . ;m� k, noting that lg�hj� � m� k � 1);

(v) xhjZ �m�1� A clt�hXa���i;L� � �
Q

i<m�k�1 ti�L
(from (i)� (ii)� (iv));

(vi)
PfxhjZ �m�1� : j <

Q
i<m�k�1 tig A clt�hXa���i;L� � �

Q
i<m�k�1 ti�L

(from (v));

(vii) �Qi<m ti��xm
gj���
ÿ xm

g0
� A clt�hXa���i;L� � �

Q
i<m�k�1 ti��L for j��� �Qi<m�k�1 ti

(from (vi) because

Xn
xhjZ �m�1� : j <

Y
i<m�k�1

ti

o

�
Xn

xhjZm �
�Y

i<m

ti

�
�xm

gj�1
ÿ xm

gj
� : j <

Y
i<m�k�1

ti

o

�
Xn

xhjZm : j <
Y

i<m�k�1

ti

o
�
�Y

i<m

ti

�Xn
�xm

gj�1
ÿ xm

gj
� : j <

Y
i<m�k�1

ti

o
�as hj Z m does not depend on j and using obvious arithmetic�

�
� Y

i<m�k�1

ti

�
� xhj���Zm �

�Y
i<m

ti

�
�xm

gj���
ÿ xm

g0
�

A
�Y

i<m

ti

�
�xm

gj���
ÿ xm

g0
� �

� Y
i<m�k�1

ti

�
L�;

(viii) if r A Ym and a < b are in Ah

then

�Y
i<m

ti

�
�xm

b ÿ xm
a � A clt�hXa���i;L� �

� Y
i<m�k�1

ti

�
L

(from (vii) and the choice of the Ym, Ah �h A Ym;m < o�).
So we have carried out the induction on k.
(2) The proof of this is easier and it will be omitted. r3:11

3.12 Claim. Assume the following conditions:

r�1 t � htl : l < oi and 2W tl < o;

r�2 ll > $1�y�;
r�3 cov�l; �Ql<o ll��; �

Q
l<o ll��; y��W l.
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Then UJ 6

t; l; y

�l� � l and UI 6

t; l; y

�l� � l.

Proof. This follows from the previous claims 3.10, 3.11 (and the relevant de®nitions
3.6±3.9).

3.13 Conclusion. For every lX$o for some y < $o, for every k A �$1�y�;$o� for

every ln A �$1�y�; k� we have

UI 6

t; l; y

�l� � l � UJ 6

t; l; y

�l�:

Proof. This follows from the previous claim and [11] (and is similar to 2.5). r3:13

3.14 Claim. Assume the following conditions:

(a)
Q

l<o ll < m < l � cf �l�W l 0W l 00 < m@0 ;

(b) m� < l, or at least for some P,

���P jPj � l and �Ea A P��aJ l & otp�a� � m�
and �EE��E a club of l! �ba A P��aJE��;

(c) l 00 � UI 6

t; l

�l 0� < m@0 , where tm �
Q

l<m l! or at least l 00 � UJ 6

l; t

�l 0�;
(d) cov�l 00; l�; l�; l� < m@0 or at least Uid a�P��l 00� < m@0 , where P satis®es the

requirement ���P.

Then we can ®nd @1-free abelian groups Ga of cardinality l for a < m@0 such that for

every @1-free abelian group G of cardinality l 0 or just G A Krtf
l 0 �t ] the following holds:

some Ga is not embeddable into G; also the number of ordinals a < m@0 for which Ga is

embeddable into G is at most cov�l 00; l�; l�; l� (or WUid a�P��l 00� at least).

Proof. The proof is as in 2.8; note that `@1-free' implies that k ÿ kt is a norm.

3.15 Conclusion. If $o W m� < l � cf�l� < m@0 then in Krtf
l there is no member uni-

versal even just for K@1-free
l .

Proof. This is straightforward.

3.16 Remark. In Section 2 we can use arguments parallel to those in 3.11.

3.17 Remark. For l � @0 there is no universal member in Krtf
l . In fact, for any

QHP� let GQ be the subgroup of Qxl0
p
fQxp : p A P�nQg generated by

fpÿnx : p A QgU fqÿnxp : p A P�nQ and n < o; and q A P�nfpgg
U fpÿn�xÿ xp� : n < o and p A Qg:

So GQ A Krtf
@0

, and (see De®nition 1.3) P�x;GQ� � Q; and Pÿ�x;GQ� � P�nQ hence
(see 1.4) if h embeds GQ into G A K trf then P�h�x�;G� � Q. As the number of possi-
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ble subsets Q is 2@0 the statement follows easily. This argument gives an alternative
proof to 1.2, but the proof there looks more amenable to generalization.

Acknowledgement. We thank two referees and Mirna Dzamonja and Noam Green-
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