Algebra univers. **58** (2008) 243–248 0002-5240/08/020243 – 06, *published online* February 22, 2008 DOI 10.1007/s00012-008-2065-1 © Birkhäuser Verlag, Basel, 2008

Algebra Universalis

On Depth and Depth⁺ of Boolean Algebras

SHIMON GARTI AND SAHARON SHELAH

ABSTRACT. We show that the Depth⁺ of an ultraproduct of Boolean Algebras cannot jump over the Depth⁺ of every component by more than one cardinal. Consequently we have similar results for the Depth invariant.

1. introduction

Monk [2] has dealt systematically with cardinal invariants of Boolean algebras. In particular he dealt with the question how an invariant of an ultraproduct of a sequence of Boolean algebras relates to the ultraproduct of the sequence of the invariants of each of the Boolean algebras. That is, the relationship of $\operatorname{inv}(\prod_{\epsilon < \kappa} \mathbf{B}_{\epsilon}/D)$ with $\prod_{\epsilon < \kappa} \operatorname{inv}(\mathbf{B}_{\epsilon})/D$. One of the invariants he dealt with is the depth of a Boolean algebra, Depth(**B**). We continue [7] here, obtaining weaker results without "large cardinal axioms". On related results see [1], [6], [3]. Further results on Depth and Depth⁺ by the authors are contained in [4].

Definition 1.1. Let **B** be a Boolean Algebra.

Depth(**B**) := sup{ θ : $\exists \bar{b} = (b_{\gamma} : \gamma < \theta)$, increasing sequence in **B**}.

Dealing with questions of Depth, Saharon Shelah noticed that investigating a slight modification of Depth, namely - Depth⁺, might be helpful (see [7] for the behavior of Depth and Depth⁺ above a compact cardinal).

Definition 1.2. Let B be a Boolean Algebra.

Depth⁺(**B**) := sup{ θ^+ : $\exists \bar{b} = (b_{\gamma} : \gamma < \theta)$, increasing sequence in **B**}.

This article deals mainly with Depth^+ , in the aim to get results for the Depth. It follows [7], both in the general ideas and in the method of the proof.

Let us take a look at the main claim of [7]:

Presented by S. Koppelberg.

Received April 25, 2006; accepted in final form April 3, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 06E05, 03G05.

Key words and phrases: Boolean algebras, Depth, ultraproducts.

Research supported by the United States-Israel Binational Science Foundation. Publication 878 of the second author.

S. Garti and S. Shelah

Algebra univers.

Claim 1.3. Assume

244

(a) $\kappa < \mu \leq \lambda$. (b) μ is a compact cardinal. (c) $\lambda = \operatorname{cf}(\lambda)$. (d) $(\forall \alpha < \lambda)(|\alpha|^{\kappa} < \lambda)$. (e) $\operatorname{Depth}^+(\mathbf{B}_i) \leq \lambda$, for every $i < \kappa$. (f) $\mathbf{B} = \prod_{i < \kappa} \mathbf{B}_i / D$.

Then Depth⁺(**B**) $\leq \lambda$.

So, λ bounds the Depth⁺(**B**), where **B** is an ultraproduct of the Boolean Algebras \mathbf{B}_i , if it bounds the Depth⁺ of every \mathbf{B}_i . That requires some reasonable assumptions on λ , and also a pretty high price for that result — you should raise your view to a very large λ , above a compact cardinal. Now, the existence of large cardinals is an interesting philosophical question. You might think that adding a compact cardinal to your world is a natural extension of ZFC. But, mathematically, it is important to check what happens without a compact cardinal (or below the compact, even if the compact cardinal exists).

In this article we drop the assumption of a compact cardinal. Consequently, we phrase a weaker conclusion. We prove that if λ bounds the Depth⁺ of every \mathbf{B}_i , then the Depth⁺ of \mathbf{B} cannot jump beyond λ^+ .

We thank the referee for many helpful comments.

2. Bounding Depth⁺

Notation 2.1. (a) κ, λ are infinite cardinals.

- (b) D is an ultrafilter on κ .
- (c) \mathbf{B}_i is a Boolean Algebra, for any $i < \kappa$.
- (d) $\mathbf{B} = \prod_{i < \kappa} \mathbf{B}_i / D.$

We now state our main result:

Theorem 2.2. Assume

(a) $\lambda = \operatorname{cf}(\lambda)$, (b) $(\forall \alpha < \lambda)(|\alpha|^{\kappa} < \lambda)$, (c) $\operatorname{Depth}^+(\mathbf{B}_i) \leq \lambda$ for every $i < \kappa$. Then $\operatorname{Depth}^+(\mathbf{B}) \leq \lambda^+$.

Remark 2.3. We can improve 2.2 (b), demanding only $\lambda^{\kappa} = \lambda$. We intend to give a detailed proof in a subsequent paper.

Corollary 2.4. Assume

Sh:878

Vol. 58, 2008

On Depth and Depth⁺ of Boolean Algebras

245

(a) $\lambda^{\kappa} = \lambda;$ (b) Depth(\mathbf{B}_i) $\leq \lambda$, for every $i < \kappa$.

Then $\text{Depth}(\mathbf{B}) \leq \lambda^+$.

Proof. By (b), Depth⁺(\mathbf{B}_i) $\leq \lambda^+$ for every $i < \kappa$. By (a), $\alpha < \lambda^+ \Rightarrow |\alpha|^{\kappa} < \lambda^+$. Now, λ^+ is a regular cardinal, so the pair (κ, λ^+) satisfies the requirements of Theorem 2.2. So, Depth⁺(\mathbf{B}) $\leq \lambda^{+2}$, and that means that Depth(\mathbf{B}) $\leq \lambda^+$. \Box

Remark 2.5. If λ is inaccessible (or even strong limit, with cofinality above κ), and Depth(\mathbf{B}_i) $< \lambda$ for every $i < \kappa$, you can easily verify that Depth(\mathbf{B}) $< \lambda$, using Theorem 2.2 and simple cardinal arithmetic.

Proof of Theorem 2.2. Let $\langle M_{\alpha} : \alpha < \lambda^+ \rangle$ be a continuous and increasing sequence of elementary submodels of $(\mathcal{H}(\chi), \in)$ for sufficiently large χ with the following properties:

- (a) $(\forall \alpha < \lambda^+)(\|M_{\alpha}\| = \lambda),$
- (b) $(\forall \alpha < \lambda^+)(\lambda + 1 \subseteq M_\alpha),$
- (c) $(\forall \beta < \lambda^+)(\langle M_\alpha : \alpha \leq \beta \rangle \in M_{\beta+1}).$

Choose $\delta^* \in S_{\lambda}^{\lambda^+}$ (:= { $\delta < \lambda^+$: cf(δ) = λ }), such that $\delta^* = M_{\delta^*} \cap \lambda^+$. Assume toward a contradiction that $(a_{\alpha} : \alpha < \lambda^+)$ is an increasing sequence in **B**. Let us write a_{α} as $\langle a_i^{\alpha} : i < \kappa \rangle / D$ for every $\alpha < \lambda^+$. We may assume that $\langle a_i^{\alpha} : \alpha < \lambda^+, i < \kappa \rangle \in M_0$.

We will try to create a set Z, in the Lemma below, with the following properties:

- (a) $Z \subseteq \lambda^+, |Z| = \lambda,$
- (b) $\exists i_* \in \kappa$ such that for every $\alpha < \beta, \alpha, \beta \in Z$, we have $\mathbf{B}_{i_*} \models a_{i_*}^{\alpha} < a_{i_*}^{\beta}$.

Since $|Z| = \lambda$, we have an increasing sequence of length λ in \mathbf{B}_{i_*} , so Depth⁺(\mathbf{B}_{i_*}) $\geq \lambda^+$, contradicting the assumptions of the claim.

Lemma 2.6. There exists Z as above.

Proof. For every $\alpha < \beta < \lambda^+$, define:

$$A_{\alpha,\beta} = \{ i < \kappa : \mathbf{B}_i \models a_i^\alpha < a_i^\beta \}$$

By the assumption, $A_{\alpha,\beta} \in D$ for all $\alpha < \beta < \lambda^+$. For all $\alpha < \delta^*$, let A_α denote the set A_{α,δ^*} .

Let $\langle v_{\alpha} : \alpha < \lambda \rangle$ be increasing and continuous, such that for every $\alpha < \lambda$,

- (i) $v_{\alpha} \in [\delta^*]^{<\lambda}$ for every $\alpha < \lambda$,
- (ii) v_{α} has no last element, for every $\alpha < \lambda$,
- (iii) $\delta^* = \bigcup_{\alpha < \lambda} v_{\alpha}.$

Sh:878

S. Garti and S. Shelah

Algebra univers.

Let $u \subseteq \delta^*$, $|u| \leq \kappa$. Define

$$S_u = \{\beta < \delta^* : \beta > \sup(u) \text{ and } (\forall \alpha \in u) (A_{\alpha,\beta} = A_\alpha) \}.$$

Now define

246

 $C = \{\delta < \lambda : \delta \text{ is a limit ordinal and} \\ (\forall \alpha < \delta)[(u \subseteq v_{\alpha}) \land (|u| \le \kappa) \Rightarrow \sup(v_{\delta}) = \sup(S_u \cap \sup(v_{\delta}))]\}.$

Since $\lambda = cf(\lambda)$ and $(\forall \alpha < \lambda)(|\alpha|^{\kappa} < \lambda)$, and since $|v_{\delta}| < \lambda$ for all $\delta < \lambda$, C is a club set of λ .

The fact that $|D| = 2^{\kappa} < \operatorname{cf}(\lambda) = \lambda$ implies that there exists $A_* \in D$ such that $S = \{\alpha < \lambda : \operatorname{cf}(\alpha) > \kappa \text{ and } A_{\sup(v_{\alpha})} = A_*\}$ is a stationary subset of λ .

C is a club and S is stationary, so $C \cap S$ is also stationary. Choose $\delta_0^1 = \min(C \cap S)$. Choose $\delta_{\epsilon+1}^1 \in C \cap S$ for every $\epsilon < \lambda$ such that $\epsilon < \zeta \Rightarrow \sup\{\delta_{\epsilon+1}^1 : \epsilon < \zeta\} < \delta_{\zeta+1}^1$. Define δ_{ϵ}^1 to be the limit of $\delta_{\gamma+1}^1$, when $\gamma < \epsilon$, for every limit $\epsilon < \lambda$. Since C is closed, we have

- (a) $\{\delta^1_{\epsilon} : \epsilon < \lambda\} \subseteq C;$
- (b) $\langle \delta_{\epsilon}^1 : \epsilon < \lambda \rangle$ is increasing and continuous;
- (c) $\delta^1_{\epsilon+1} \in S$, for every $\epsilon < \lambda$.

Lastly, define $\delta_{\epsilon}^2 = \sup(v_{\delta_{\epsilon}^1})$, for every $\epsilon < \lambda$. Define, for every $\epsilon < \lambda$, the family

$$\mathfrak{A}_{\epsilon} = \{ S_u \cap \delta^2_{\epsilon+1} \setminus \delta^2_{\epsilon} : u \in [v_{\delta^2_{\epsilon+1}}]^{\leq \kappa} \}.$$

We get a family of non-empty sets, which is downward κ^+ -directed. So, there is a κ^+ -complete filter E_{ϵ} on $[\delta_{\epsilon}^2, \delta_{\epsilon+1}^2)$, with $\mathfrak{A}_{\epsilon} \subseteq E_{\epsilon}$, for every $\epsilon < \lambda$.

Define, for any $i < \kappa$ and $\epsilon < \lambda$, the sets $W_{\epsilon,i} \subseteq [\delta_{\epsilon}^2, \delta_{\epsilon+1}^2)$ and $B_{\epsilon} \subseteq \kappa$, by:

$$W_{\epsilon,i} := \{\beta : \delta_{\epsilon}^2 \le \beta < \delta_{\epsilon+1}^2 \text{ and } i \in A_{\beta,\delta_{\epsilon+1}^2}\},\$$
$$B_{\epsilon} := \{i < \kappa : W_{\epsilon,i} \in E_{\epsilon}^+\}.$$

Finally, take a look at $W_{\epsilon} := \cap \{ [\delta_{\epsilon}^2, \delta_{\epsilon+1}^2) \setminus W_{\epsilon,i} : i \in \kappa \setminus B_{\epsilon} \}$. For every $\epsilon < \lambda, W_{\epsilon} \in E_{\epsilon}$, since E_{ϵ} is κ^+ -complete, so clearly $W_{\epsilon} \neq \emptyset$.

Choose $\beta = \beta_{\epsilon} \in W_{\epsilon}$. If $i \in A_{\beta, \delta^2_{\epsilon+1}}$, then $W_{\epsilon,i} \in E^+_{\epsilon}$, so $A_{\beta, \delta^2_{\epsilon+1}} \subseteq B_{\epsilon}$ (by the definition of B_{ϵ}). But, $A_{\beta, \delta^2_{\epsilon+1}} \in D$, so $B_{\epsilon} \in D$, and consequently $A_* \cap B_{\epsilon} \in D$, for any $\epsilon < \lambda$.

Choose $i_{\epsilon} \in A_* \cap B_{\epsilon}$, for every $\epsilon < \lambda$. You choose λ i_{ϵ} -s from A_* , and $|A_*| = \kappa$, so we can arrange a fixed $i_* \in A_*$ such that the set $Y = \{\epsilon < \lambda : \epsilon \text{ is an even ordinal, and } i_{\epsilon} = i_*\}$ has cardinality λ .

The last step will be as follows: define $Z = \{\delta_{\epsilon+1}^2 : \epsilon \in Y\}$. Clearly, $Z \in [\delta^*]^{\lambda} \subseteq [\lambda^+]^{\lambda}$. We will show that for $\alpha < \beta$ from Z we get $\mathbf{B}_{i_*} \models a_{i_*}^{\alpha} < a_{i_*}^{\beta}$. The idea is that if $\alpha < \beta$ and $\alpha, \beta \in Z$, then $i_* \in A_{\alpha,\beta}$.

Sh:878

Vol. 58, 2008

Why? Recall that $\alpha = \delta_{\epsilon+1}^2$ and $\beta = \delta_{\zeta+1}^2$, for some $\epsilon < \zeta < \lambda$ (that's the form of the members of Z). Define

$$U_1 = S_{\{\delta_{\epsilon+1}^2\}} \cap [\delta_{\zeta}^2, \delta_{\zeta+1}^2) \in \mathfrak{A}_{\zeta} \subseteq E_{\zeta}.$$
$$U_2 = \{\gamma : \delta_{\zeta}^2 \le \gamma < \delta_{\zeta+1}^2 \text{ and } i_* \in A_{\gamma, \delta_{\zeta+1}^2}\} \in E_{\zeta}^+.$$

So, $U_1 \cap U_2 \neq \emptyset$.

Choose $\iota \in U_1 \cap U_2$. Now the following statements hold:

- (a) $\mathbf{B}_{i_*} \models a_{i_*}^{\alpha} < a_{i_*}^{\iota}$. [Why? Well, $\iota \in U_1$, so $A_{\delta_{\ell+1,\iota}^2} = A_{\delta_{\ell+1}^2} = A_*$. But, $i_* \in A_*$, so $i_* \in A_{\delta^2_{\ell+1,i}}$, which means that $\mathbf{B}_{i_*} \models a_{i_*}^{\delta^2_{\ell+1}} (= a_{i_*}^{\alpha}) < a_{i_*}^{\iota}]$.
- (b) $\mathbf{B}_{i_*} \models a_{i_*}^{\iota} < a_{i_*}^{\beta}$. [Why? Well, $\iota \in U_2$, so $i_* \in A_{\iota,\delta_{\ell+1}^2}$, which means that
 $$\begin{split} \mathbf{B}_{i_{*}} &\models a_{i_{*}}^{\iota} < a_{i_{*}}^{\delta_{\zeta+1}^{2}} (= a_{i_{*}}^{\beta})]. \\ \text{(c)} \ \mathbf{B}_{i_{*}} &\models a_{i_{*}}^{\alpha} < a_{i_{*}}^{\beta}. \text{ [Why? By (a)+(b)]}. \end{split}$$

So, we are done.

Without a compact cardinal, we may have a 'jump' of the Depth⁺ in the ultraproduct of the Boolean Algebras (see [5, §5]). So, we can have $\kappa < \lambda$, $\text{Depth}^+(\mathbf{B}_i) \leq \lambda$ for every $i < \kappa$, and $\text{Depth}^+(\mathbf{B}) = \lambda^+$. We can show that if there exists such an example for κ and λ , then you can create an example for every regular θ between κ and λ .

Claim 2.7. Assume

- (a) $\kappa < \lambda, D$ is an ultrafilter on κ
- (b) Depth⁺(\mathbf{B}_i) $< \lambda$, for every $i < \kappa$
- (c) Depth⁺(**B**) = λ^+
- (d) $\theta \in \text{Reg} \cap [\kappa, \lambda).$

Then there exist Boolean algebras \mathbf{C}_j , $j < \theta$, and a uniform ultrafilter E on θ such that Depth⁺(\mathbf{C}_i) $\leq \lambda$ for every $j < \theta$ and Depth⁺(\mathbf{C}) := Depth⁺($\prod \mathbf{C}_i/E$) = λ^+ .

Proof. Break θ into θ sets $(u_{\alpha} : \alpha < \theta)$ such that for every $\alpha < \theta$,

(a) $|u_{\alpha}| = \kappa$, (b) $\bigcup_{\alpha < \theta} u_{\alpha} = \theta$, (c) $\alpha \neq \beta \Rightarrow u_{\alpha} \cap u_{\beta} = \emptyset$.

For every $\alpha < \theta$, let $f_{\alpha} : \kappa \to u_{\alpha}$ be one to one, onto and order preserving. Define D_{α} on u_{α} in the following way: if $A \subseteq u_{\alpha}$, then $A \in D_{\alpha}$ iff $f_{\alpha}^{-1}(A) \in D$. For θ itself, define a filter E_* on θ in the following way: if $A \subseteq \theta$, then $A \in E_*$ iff $A \cap u_\alpha \in D_\alpha$ for every (except, maybe $< \theta$ ordinals) $\alpha < \theta$. Now, choose any ultrafilter E on θ , such that $E_* \subseteq E$.

S. Garti and S. Shelah

Define $\mathbf{C}_{f_{\alpha}(i)} = \mathbf{B}_i$, for every $\alpha < \theta$ and $i < \kappa$. You will get $(\mathbf{C}_j : j < \theta)$ such that Depth⁺(\mathbf{C}_j) $\leq \lambda$ for every $j < \theta$. But, we will show that Depth⁺(\mathbf{C}) $\geq \lambda^+$ (remember that $\mathbf{C} = \prod_{i < \theta} \mathbf{C}_i / E$).

Well, let $(a_{\xi} : \xi < \lambda)$ testify Depth⁺(**B**) = λ^+ . Recall, a_{ξ} is $\langle a_i^{\xi} : i < \kappa \rangle / D$. We may write $f_{\alpha}(a_{\xi})$ for $\langle f_{\alpha}(a_{i}^{\xi}) : i < \kappa \rangle / D_{\alpha}$, where $\alpha < \theta$. Clearly, $(f_{\alpha}(a_{\xi}) : \xi < \lambda)$ testifies Depth⁺(\mathbf{C}^{α}) = λ^{+} where $\mathbf{C}^{\alpha} := \prod_{i < \kappa} \mathbf{C}_{f_{\alpha}(i)} / D_{\alpha}$.

Now, $\langle (f_{\alpha}(a_{\xi}) : \alpha < \theta) : \xi < \lambda \rangle / E$ is an increasing sequence in **C**.

Remark 2.8. (1) Claim 2.7 applies, in a similar fashion, to the Depth invariant.

(2) Claim 2.7 is useful for comparing Depth(C) to $\prod_{i < \theta} \text{Depth}(C_i)/E$, when $\lambda^{\theta} = \lambda.$

References

- [1] Menachem Magidor and Saharon Shelah, Length of Boolean algebras and ultraproducts, Mathematica Japonica 48 (1998), 301-307. http://arxiv.org/abs/math/9805145. [MgSh:433]
- [2] J. Donald Monk, Cardinal Invariants of Boolean Algebras, volume 142 of Progress in Mathematics, Birkhäuser Verlag, Basel-Boston-Berlin, 1996.
- [3] Andrzej Roslanowski and Saharon Shelah, Historic forcing for Depth, Colloquium Mathematicum 89 (2001), 99-115. http://arxiv.org/abs/math/0006219. [RoSh:733]
- [4] Saharon Shelah, manuscript, . [Sh:F754]
- Saharon Shelah, More constructions for Boolean algebras, Archive for Mathematical Logic [5] 41 (2002), 401-441. http://arxiv.org/abs/math/9605235. [Sh:652]
- Saharon Shelah, On ultraproducts of Boolean Algebras and irr, Archive for Mathematical [6] Logic 42 (2003), 569-581. http://arxiv.org/abs/math/0012171. [Sh:703]
- Saharon Shelah, The depth of ultraproducts of Boolean Algebras, Algebra Universalis 54 [7](2005), 91-96. http://arxiv.org/abs/math/0406531. [Sh:853]

Shimon Garti

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel e-mail: shimonygarty@hotmail.com

SAHARON SHELAH

Institute of Mathematics The Hebrew University of Jerusalem Jerusalem 91904, Israel and Department of Mathematics Rutgers University New Brunswick, NJ 08854, USA e-mail: shelah@math.huji.ac.il

248