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COLORING FINITE SUBSETS OF UNCOUNTABLE SETS
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(Communicated by Andreas R. Blass)

Abstract. It is consistent for every 1 ≤ n < ω that 2ω = ωn and there is
a function F : [ωn]<ω → ω such that every finite set can be written in at
most 2n − 1 ways as the union of two distinct monocolored sets. If GCH
holds, for every such coloring there is a finite set that can be written at least
1
2

∑n
i=1

(n+i
n

)(n
i

)
ways as the union of two sets with the same color.

1. Introduction

In [6] we proved that for every coloring F : [ωn]<ω → ω there exists a set
A ∈ [ωn]<ω which can be written at least 2n − 1 ways as A = H0 ∪H1 for some
H0 6= H1, F (H0) = F (H1), and that for n = 1 there is in fact a function F for
which this is sharp. Here we show that for every n < ω it is consistent that 2ω = ωn
and for some function F as above for every finite set A there are at most 2n − 1
solutions of the above equation. We use historic forcing, which was first used in
[1] and [7], then in [5] and [4]. Under GCH, we improve the positive result of
[6] by showing that for every F as above some finite set can be written at least

Tn = 1
2

∑n
i=1

(
n+i
n

)(
n
i

)
ways as the union of two sets with the same F value.

With the methods of [6] it is easy to show the following corollary of our inde-
pendence result. It is consistent that 2ω = ωn and there is a function f : R → ω
such that if x is a real number then x cannot be written more than 2n − 1 ways
as the arithmetic mean of some y 6= z with f(y) = f(z). ((y, z) and (z, y) are not
regarded as distinct.)

Notation. We use the standard set theory notation. If S is a set, κ a cardinal, then
[S]κ = {A ⊆ S : |A| = κ}, [S]<κ = {A ⊆ S : |A| < κ}, [S]≤κ = {A ⊆ S : |A| ≤ κ}.
P (S) is the power set of S. If f is a function, A a set, then f [A] = {f(x) : x ∈ A}.

2. The independence result

Theorem 1. For 1 ≤ n < ω it is consistent that 2ω = ωn and there is a function
F : [ωn]<ω → ω such that for every A ∈ [ωn]<ω there are at most 2n − 1 solutions
of A = H0 ∪H1 with H0 6= H1, F (H0) = F (H1).
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For α < ωn fix a bijection ϕα : α → |α|. For x ∈ [ωn]<ω define γi(x) for
i < k = min(n, |x|) as follows: γ0(x) = max(x),

γi+1(x) = ϕ−1
γ0(x)

(
γi
(
ϕγ0(x)[x ∩ γ0(x)]

))
,

and γ(x) = {γ0(x), . . . , γk−1(x)}.
So, for example, if n = 0 then γ(x) = ∅, if n = 1, x 6= ∅, then γ(x) = {γ0(x)} =

{max(x)}.

Lemma 1. Given s ∈ [ωn]≤n, there are at most countably many x ∈ [ωn]<ω such
that γ(x) = s.

Proof. By induction on n.

Let Φ(s) =
⋃
{x : γ(x) ⊆ s}, a countable set for s ∈ [ωn]<ω.

Definition. The two sets x, y ∈ [ωn]<ω are isomorphic if the structures (x;<,
γ0(x), . . . , γk−1(x)), (y;<, γ0(y), . . . , γk−1(y)) are isomorphic, i.e., |x| = |y| and the
positions of the elements γi(x), γi(y) are the same.

Notice that for every finite j there are just finitely many isomorphism types of
j-element sets.

The elements of P , the applied notion of forcing, will be some structures of the
form p = (s, f) where s ∈ [ωn]<ω and f : P (s)→ ω.

The only element of P0 is 1P = (∅, 〈∅, 0〉); it will be the largest element of P . The
elements of P1 are of the form p = ({ξ}, f) where f(∅) = 0 6= f({ξ}) for ξ < ωn.

Given Pt, p = (s, f) is in Pt+1 if the following is true. s = ∆ ∪ a ∪ b is a
disjoint decomposition. p′ = (∆ ∪ a, f ′) and p′′ = (∆ ∪ b, f ′′) are in Pt, where
f ′ = f |P (∆ ∪ a), f ′′ = f |P (∆ ∪ b). There is π : ∆ ∪ a → ∆ ∪ b, an isomorphism
between (∆ ∪ a,<, P (∆ ∪ a), f ′) and (∆ ∪ b,<, P (∆ ∪ b), f ′′). π|∆ is the identity.
For H ⊆ ∆ ∪ a the sets H and π[H] are isomorphic. a ∩ Φ(∆) = b ∩ Φ(∆) = ∅.
f − f ′ − f ′′ is one-to-one and takes only values outside Ran(f ′) (which is the same
as Ran(f ′′)). P =

⋃
{Pt : t < ω}. We make p ≤ p′, p′′ and the ordering on P is the

one generated by this.

Lemma 2. (P,≤) is ccc.

Proof. Assume that pα ∈ P (α < ω1). We can assume by thinning and using the ∆-
system lemma and the pigeonhole principle that the following hold. pα ∈ Pt for the
same t < ω. pα = (∆∪ aα, fα) where the structures (∆∪ aα, <, P (∆∪ aα), fα) and
(∆ ∪ aβ , <, P (∆ ∪ aβ), fβ) are isomorphic for α, β < ω1, {∆, aα : α < ω1} pairwise
disjoint. We can also assume that if π is the isomorphism between (∆ ∪ aα, <, fα)
and (∆ ∪ aβ , <, fβ) then H and π[H] are isomorphic for H ⊆ ∆ ∪ aα. Moreover, if
we assume that ∆ occupies the same positions in the ordered sets ∆∪ aα (α < ω1)
then π will be the identity on ∆. As Φ(∆) is countable, by removing countably
many indices we can also assume that Φ(∆) ∩ aα = ∅ for α < ω1. Now any pα and
pβ are compatible, as we can take p = (∆ ∪ aα ∪ aβ , f) ≤ pα, pβ where f ⊇ fα, fβ
is an appropriate extension, i.e., f − fα − fβ is one-to-one and takes values outside
Ran(fα).

Lemma 3. If (s, f) ∈ P and H0, H1 ⊆ s have f(H0) = f(H1), then H0, H1 are
isomorphic.
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Proof. Set (s, f) ∈ Pt. We prove the statement by induction on t. There is nothing
to prove for t < 2. Assume now that (s, f) ∈ Pt+1, s = ∆∪a∪ b, π : ∆∪a→ ∆∪ b
as in the definition of (P,≤). As f(H0) is a value taken twice by f , both H0 and
H1 must be subsets of either ∆ ∪ a or ∆ ∪ b. We are done by induction unless
H0 ⊆ ∆ ∪ a and H1 ⊆ ∆ ∪ b (or vice versa). Now H0 and π[H0] are isomorphic
and f(H0) = f(π[H0]) = f(H1), so by the inductive hypothesis π[H0] and H1 are
ismorphic, and then so are H0, H1.

Lemma 4. If (s, f) ∈ P , H0, H1 ⊆ s, f(H0) = f(H1), x ∈ H0 ∩ H1, then x
occupies the same position in the ordered sets H0, H1.

Proof. Similarly to the proof of the previous lemma, by induction on t, for (s, f) ∈
Pt. With similar steps, we can assume that (s, f) = (∆∪a∪b, f) ≤ (∆∪a, f ′), (∆∪
b, f ′′), H0 ⊆ ∆ ∪ a, H1 ⊆ ∆ ∪ b. Notice that x ∈ ∆. Now, as π(x) = x, x is a
common element of π[H0] and H1, and also f ′′(π[H0]) = f ′′(H1). By induction we
get that x occupies the same position in π[H0] and H1, so by pulling back we get
that this is true for H0 and H1.

Lemma 5. If (s, f) ∈ P , A ⊆ s, 0 ≤ j ≤ n, then A can be written at most 2j − 1
ways as A = H0∪H1 with H0, H1 distinct, f(H0) = f(H1), and |γ(H0)∩γ(H1)| ≥
n− j.

Proof. By induction on j and, inside that induction, by induction on t, for (s, f) ∈
Pt. The case t < 2 will always be trivial.

Assume first that j = 0. In this case our lemma reduces to the following state-
ment. There are no H0 6= H1 such that f(H0) = f(H1) and γ(H0) = γ(H1). In the
inductive argument we assume as usual that s = ∆∪ a∪ b and so (s, f) ∈ Pt+1 was
created from (∆∪a, f ′) and (∆∪b, f ′′), H0 ⊆ ∆∪a, H1 ⊆ ∆∪b. As γ(H0) = γ(H1),
γ(H0) ⊆ ∆, but then, as Φ(∆) ∩ a = ∅, H0 can have no points outside ∆ and sim-
ilarly for H1, so we can go back, say to (∆ ∪ a, f ′) ∈ Pt, which concludes the
argument.

Assume now that the statement is proved for j and we have p = (s, f) ∈ Pt+1,
s = ∆ ∪ a ∪ b and p was created from p′ = (∆ ∪ a, f ′) and p′′ = (∆ ∪ b, f ′′). In
A ⊆ ∆ ∪ a ∪ b we can assume that y = A ∩ a 6= ∅, z = A ∩ b 6= ∅, as otherwise we
can pull back to p′ or p′′. But then, if A = H0 ∪ H1, then, if, say, H0 ⊆ ∆ ∪ a,
H1 ⊆ ∆ ∪ b hold, then necessarily H0 ∩ a = y, H1 ∩ b = z, so H0 = x0 ∪ y,
H1 = x1 ∪ z where x0 ∪ x1 = x = A ∩ ∆. We can create decompositions of
B = x ∪ π[y] ∪ z by taking B = π[H0] ∪ H1. But some of these decompositions
will not be different and it may happen that we get a non-proper (i.e., one-piece)
decomposition. This can only happen if π[y] = z, and then the two decompositions
A = (x0 ∪ y)∪ (x1 ∪ z) and A = (x1 ∪ y)∪ (x0 ∪ y) produce the same decomposition
of B, namely, B = (x0 ∪ z) ∪ (x1 ∪ z), and there is but one decomposition, A =
(x ∪ y) ∪ (x ∪ z), which cannot be mapped to a decomposition of B. If this (i.e.,
π[y] = z) does not happen, we are done by induction. If this does happen, we know
that γ(H0) = γ(x0 ∪ y) has an element in y (by the argument at the beginning
of the proof). As f(x0 ∪ y) = f(x1 ∪ z), by Lemmas 3 and 4, both H0 = x0 ∪ y
and H1 = x1 ∪ z have an element in the γ-subset, at the same positions which are
mapped onto each other by π. We get that γ(x0 ∪ z)∩ γ(x1 ∪ z) has at least n− j
elements, so by our inductive assumption we have at most 2j − 1 decompositions,
which gives at most 2 · (2j − 1) + 1 = 2j+1 − 1 decompositions of A.
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Let G ⊆ P be a generic subset. Set

S =
⋃
{s : (s, f) ∈ G}, F =

⋃
{f : (s, f) ∈ G}.

Lemma 6. There is a p ∈ P such that p ‖−− |S| = ℵn.

Proof. Otherwise 1 ‖−− sup(S) < ωn. By ccc, there is an ordinal ξ < ωn for which
1 ‖−− sup(S) < ξ, but this is impossible as there are conditions in P1 forcing that
ξ ∈ S.

Now we can conclude the proof of the theorem. If G is generic, and p ∈ G with
the condition p of Lemma 6, then in V [G] F witnesses the theorem by Lemma 5
(for j = n) on the ground set S. As |S| = ωn we can replace it by ωn.

3. The GCH result

Set

Tn =
1

2

n∑
i=1

(
n+ i

n

)(
n

i

)
.

So T1 = 1, T2 = 6, T3 = 31. In general, Tn is asymptotically c(3 + 2
√

2)n/
√
n for

some c.

Theorem 2 (GCH). If F : [ωn]<ω → ω, then some A ∈ [ωn]<ω has at least Tn
decompositions as A = H0 ∪H1, H0 6= H1, F (H0) = F (H1).

Proof. By the Erdős-Rado theorem (see [2], [3]) there is a set {xα : α < ω1} which
is (n− 1)-end-homogeneous, i.e., for some g : [ω1]<ω → ω, if α1 < · · · < αk < β1 <
· · · < βn−1 < ω1 then

f({xα1 , . . . , xαk , xβ1 , . . . , xβn−1}) = g(α1, . . . , αk).

Select S1 ∈ [ω1]ω1 in such a way that g(α) = c0 for α ∈ S1. Set γ1 = min(S1).
In general, if γi, Si are given (1 ≤ i < n), pick Si+1 ∈ [Si − (γi + 1)]ω1 so that
g(γ1, . . . , γi, α) = ci for α ∈ Si+1, and set γi+1 = min(Si+1). Given γ1, . . . , γn and
Sn, let γn+1, . . . , γ2n be the n least elements of Sn − (γn + 1).

Our set will be A = {xγ1 , . . . , xγ2n}. For 0 ≤ i < n the color of any (n + i)-

element subset of A containing xγ1 , . . . , xγi will be ci. We can select 1
2

(
2n−i
n

)(
n
i

)
different pairs of those sets which cover A. In toto, we get Tn decompositions of
A.
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