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ABSTRACT

We give a full solution to the question of existence of indiscernibles in

dependent theories by proving the following theorem: For every θ there is

a dependent theory T of size θ such that for all κ and δ, κ → (δ)T,1 iff

κ → (δ)<ω
θ . This means that unless there are good set theoretical reasons,

there are large sets with no indiscernible sequences.

1. Introduction

Indiscernible sequences play a very important role in model theory. Let us recall

the definition.

Definition 1.1: Suppose M is some structure, A ⊆ M , (I,<) is some linearly

ordered set, and α some ordinal. A sequence ā = 〈ai| i ∈ I〉 ∈ (Mα)I is called

indiscernible over A if for all n < ω, every increasing n-tuple from ā realizes

the same type over A. When A is omitted, it is understood that A = ∅.

A very important fact about indiscernible sequences is that they exist in the

following sense:
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Fact 1.2 ([TZ12, Lemma 5.1.3]): Let (I,<I), (J,<J) be infinite linearly or-

dered sets, α some ordinal, M a structure and A ⊆M . Suppose b̄ = 〈bj | j ∈ J〉
is some sequence of tuples fromMα. Then there exists an indiscernible sequence

ā = 〈ai| i ∈ I〉 of tuples of length α in some elementary extension N of M such

that:

� For any n < ω and formula ϕ, if M |= ϕ(bj0 , . . . , bjn−1) for every

j0 <J · · · <J jn−1 from J , then N |= ϕ(ai0 , . . . , ain−1) for every

i0 <I · · · <I in−1 from I.

This is proved using Ramsey and compactness.

Sometimes, however, we want a stronger result. For instance, we may require

that given any set of elements, there is an indiscernible sequence in it. This

gives rise to the following definition:

Definition 1.3: Let T be a complete first order theory, and let C be a monster

model of T (i.e., a very big saturated model). For a cardinal κ, n ≤ ω and an

ordinal δ, the notation κ→ (δ)T,n means:

� For every set A ⊆ Cn of size κ, there is a non-constant sequence of

elements of A of length δ which is indiscernible.

This definition was suggested by Grossberg and Shelah in [She86, p. 208,

Definition 3.1(2)] with a slightly different form.1

As we remarked above, the mere existence of indiscernibles as in Fact 1.2

follows from Ramsey. It is therefore no surprise that if a cardinal λ enjoys a

Ramsey-like property, then for any countable theory T we would have λ→(ω)T,n.

For a cardinal κ, denote by [κ]<ω the set of all increasing finite sequences of

ordinals below κ.

Definition 1.4: For cardinals κ, θ and an ordinal δ, the notation κ → (δ)<ω
θ

means:
� For every function f : [κ]<ω → θ there is a homogeneous sub-sequence

of order-type δ (i.e., there exists an increasing sequence 〈αi| i < δ.〉 ∈
δκ and 〈cn|n < ω.〉 ∈ ωθ such that f(αi0 , . . . , αin−1) = cn for every

i0 < · · · < in−1 < δ).

1 The definition there is: κ → (δ)T,n if and only if for each sequence of length κ (of n-

tuples), there is an indiscernible sub-sequence of length δ. For us there is no difference

because we are dealing with examples where κ �→ (μ)T,n. It is also not hard to see that

when δ is an infinite cardinal these two definitions are equivalent.
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Proposition 1.5: Let κ, θ be cardinals and δ ≥ ω a limit ordinal. If κ→ (δ)<ω
θ ,

then for every n ≤ ω and every theory T of cardinality |T | ≤ θ, κ→ (δ)T,n.

This will be proved below; see Proposition 5.1.

Definition 1.6: For an ordinal α, the Erdős cardinal κ(α) is the least non-zero

cardinal λ such that λ→ (α)<ω
2 .

The cardinal κ(α) may not always exist, indeed, it depends on the model of

ZFC we are in.

Fact 1.7 ([Kan09, Proposition 7.15]): Suppose α ≥ ω is a limit ordinal; then:

(1) For any γ < κ(α), κ(α) → (α)<ω
γ .

(2) κ(α) is an uncountable strongly inaccessible cardinal.

In [She86, p. 209] it is proved that there is a countable simple unstable theory

such that for a limit ordinal δ ≥ ω, if κ → (δ)T,1 then κ → (δ)<ω
2 . It is also

very easy to find such a theory with the property that if κ → (δ)T,1 then

κ → (δ)<ω
ω (T would be the model completion of the empty theory in the

language {Rn,m|n,m < ω} where Rn,m is an n-ary relation).

There it is conjectured that in dependent (NIP) theories (see Definition 2.1

below), such a phenomenon cannot happen:

Conjecture 1.8 ([She86, p. 209, Conjecture 3.3]): If T is dependent, then for

every cardinal μ there is some cardinal λ such that λ→ (μ)T,1.

By Proposition 1.5, if κ(μ) exists then Conjecture 1.8 holds for μ and every

theory T (regardless of NIP) with |T | < κ(μ).

In stable theories, Conjecture 1.8 holds in any model of ZFC:

Fact 1.9: For any λ satisfying λ = λ|T |, λ+ → (λ+)T,n.

This was proved by Shelah (see [She90]), and follows from the local character

of non-forking.

Conjecture 1.8 also holds in strongly dependent2 theories:

Fact 1.10 ([She12]): If T is strongly dependent, then for all λ ≥ |T |,
�|T |+(λ) → (λ+)T,n for all n < ω.

2 For more on strongly dependent theories, see Section 6.
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Conjecture 1.8 is connected to a result by Shelah and Cohen: in [CS09], they

proved that a theory is stable iff it can be presented in some sense in a free

algebra with a fixed vocabulary, allowing function symbols with infinite arity.

If this result could be extended to saying that a theory is dependent iff it can

be represented as an algebra with ordering, then this could be used to prove

Conjecture 1.8.

In the previous paper [KS12, Theorem 2.11], we have shown that:

Theorem 1.11: There exists a countable dependent theory T such that:

For any two cardinals μ ≤ κ with no uncountable strongly inaccessible cardi-

nals in [μ, κ], κ 
→ (μ)T,1.

Thus, if V is a model of ZFC without strongly inaccessible cardinals, then

Conjecture 1.8 fails in V (so this conjecture is false in general). Still, one might

hope that this is the only restriction. However, we show that in fact one needs

Erdős cardinals to exist. Namely, we show that there is a dependent theory, of

any given cardinality, such that the only reason for which Conjecture 1.8 could

hold for it is Proposition 1.5, thus getting the best possible result.

Main Theorem A: For every θ there is a dependent theory T of size θ such

that for all cardinals κ and limit ordinals δ ≥ ω, κ→ (δ)T,1 iff κ→ (δ)<ω
θ .

Note that by Fact 1.7, Main Theorem A is a generalization of Theorem 1.11.

It was unknown to us that in 2011 Kudăıbergenov proved a

related result, which refutes a strong version of Conjecture 1.8, namely, that

�ω+ω (μ+ |T |) → (μ)T,1. He proved that for every ordinal α there exists a

dependent theory (we have not checked whether it is strongly dependent) Tα

such that |Tα| = |α| + ℵ0 and �α (|Tα|) 
→ (ℵ0)Tα,1 and thus seem to indicate

that the bound in Fact 1.10 is tight. See [Kud11].

Acknowledgement. We would like to thank the anonymous referee for a very

careful reading and many useful remarks.

1.1. The idea of the proof. The theory T is a “tree of trees” with functions

between the trees. More precisely, for all η in the base tree S = 2<ω we have a

unary predicate Pη and an ordering <η such that (Pη, <η) is a discrete tree. In

addition, we will have functions Gη,ηˆ{i} : Pη → Pηˆ〈i〉 for i = 0, 1. The idea

is to prove that if κ 
→ (δ)<ω
θ then κ 
→ (δ)T,1 by induction on κ, i.e., to prove
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that we can find a subset of P〈〉 of size κ without an indiscernible sequence in

it. For κ regular but not strongly inaccessible or κ singular the proof is similar

to the one in [KS12]: we just push our previous examples into deeper levels.

The main case is when κ is strongly inaccessible.

We have a function c that witnesses that κ 
→ (δ)<ω
θ and we build a model

Mc. In this model, the base tree will be ω and not 2<ω, i.e., for each n < ω

we have a predicate Pn with tree-ordering <n and functions Gn : Pn → Pn+1.

In addition, P0 ⊆ κ. On Pn we will define an equivalence relation En refining

the neighboring relation (x, y are neighbors if they succeed the same element)

so that every class of neighbors (neighborhood) is a disjoint union of less than

κ many classes of En. We will prove that if there are indiscernibles in P0, then

there is some n < ω such that in Pn we get an indiscernible sequence 〈ti| i < δ.〉
that looks like a fan, i.e., there is some u such that ti ∧ tj = u and ti is the

successor of u, and in addition ti and tj are not En equivalent for i 
= j.

Now embed Mc into a model of our theory (i.e., now the base tree is again

2<ω), and in each neighborhood we send every En class to an element from

the model we get from the induction hypothesis (as there are less than κ many

classes, this is possible).

By induction, we get there is no indiscernible sequence in P0 and finish.

1.2. Description of the paper. In Section 2 we give some preliminaries on

dependent and strongly dependent theories and trees. In Section 3 we describe

the theory and prove quantifier elimination and dependence. In Section 4 we

deal with the main technical obstacle, namely the inaccessible case.

In Section 5 we prove the main theorem. In Section 6 we give a parallel result

for ω-tuples in strongly dependent theories.

2. Preliminaries

Notation. We use standard notation: a, b, c are elements, and ā, b̄, c̄ are finite

or infinite tuples of elements.

C will be the monster model of the theory (i.e., a very big, saturated model).

For a set A ⊆ C, Sn(A) is the set of complete n-types over A, and Sqf
n (A) is

the set of all quantifier free complete n-types over A. For a finite set of formulas

with a partition of variables, Δ(x̄; ȳ), SΔ(x̄;ȳ)(A) is the set of all Δ-types over A,

i.e., maximal consistent subsets of {ϕ(x̄, ā),¬ϕ(x̄, ā)|ϕ(x̄, ȳ) ∈ Δ& ā ∈ Alg(ȳ)}.
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Similarly, we define tpΔ(x̄;ȳ)(b̄/A) as the set of formulas ϕ(x̄, ā) such that

ϕ(x̄, ȳ) ∈ Δ and C |= ϕ(b̄, ā).

When α and β are ordinals, we use left exponentiation βα to denote the

set of functions from β to α, so as not to confuse with ordinal (or cardinal)

exponentiation. If there is no room for confusion and A and B are some sets,

we use AB instead. The set α<β is the set of sequences (functions)
⋃
{γα|γ < β}.

Similarly, for a set A, A<β =
⋃
{Aγ |γ < β}.

For a sequence s̄ (finite or infinite), we denote by lg(s̄) its length. If f is a

function from some ordinal α, then lg(f) = α.

Dependent theories. For completeness, we give here the definitions and ba-

sic facts we need on dependent theories.

Definition 2.1: A first order theory T is dependent (sometimes also NIP) if

it does not have the independence property: there is no formula ϕ(x̄, ȳ) and

tuples 〈āi, b̄s| i < ω, s ⊆ ω〉 from C such that C |= ϕ(āi, b̄s) iff i ∈ s.

We recall the following fact, which is a consequence of both the so-called

Sauer–Shelah lemma (apparently first proved by Vapnik and Chervonenkis, then

rediscovered by Sauer and again by Shelah in the model theoretic setting, more

or less at the same time) and the fact that if a theory has the independence

property then there is a formula ϕ(x, ȳ) with lg(x) = 1 that witnesses this:

Fact 2.2 ([She90, II, 4]): Let T be any theory. Then for all n < ω, T is

dependent if and only if �n if and only if �1 where for all n < ω,

�n For every finite set of formulas Δ(x̄, ȳ) with n = lg(x̄), there is a

polynomial f over N such that for every finite set A ⊆ M |= T ,

|SΔ(A)| ≤ f(|A|).

Strongly dependent theories. In [She12, She09], the author asks what is

a possible solution to the equation dependent / x = stable / superstable. There,

he discusses several possible strengthenings of NIP, namely stronglyl dependent

theories for l = 1, 2, 3, 4. These are subclasses of dependent theories and each

one refines the previous one. Strongly1 dependent theories are usually just

called strongly dependent, and strongly2 theories are sometimes called strongly+

theories. These two classes and related notions (such as dp-rank) were studied

much more than the other two, so we will not mention strongly3 or strongly4

dependent theories. For instance, strongly2 dependent groups are discussed in
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[KS13]. The theories of the reals and the p-adics are both strongly dependent,

but neither is strongly2 dependent.

Here are the definitions:

Definition 2.3: A theory T is said to be not strongly dependent if there

exists a sequence of formulas 〈ϕi(x̄, ȳi)〉 (where x̄, ȳi are tuples of variables), an
array 〈āi,j | i, j < ω〉 in C (where lg(āi,j) = lg(ȳi)) and tuples 〈b̄η| η : ω → ω〉
(lg(b̄η) = lg(x̄)) in C such that |= ϕi(b̄η, āi,j) ⇔ η(i) = j.

Definition 2.4: A theory T is said to be not strongly2 dependent if there ex-

ists a sequence of formulas 〈ϕi(x̄, ȳi, ȳi−1, . . . , ȳ0)| i < ω〉, an array 〈āi,j | i, j < ω〉
in C (where lg(āi,j) = lg(ȳi)) and tuples 〈b̄η| η : ω → ω〉 (lg(b̄η) = lg(x̄)) in C

such that |= ϕi(b̄η, āi,j , āi−1,η(i−1), . . . , ā0,η(0)) ⇔ η(i) = j.

See [She12, Claim 2.9] for more details.

We will use the following criterion:

Lemma 2.5: Suppose T is a theory such that for every number n < ω there

exists some number Nn < ω such that for every finite set of formulas Δ(x̄, ȳ)

with n = lg(x̄), there is a polynomial f over N of degree ≤ Nn such that for

every finite set A ⊆M |= T , |SΔ(A)| ≤ f(|A|). Then T is strongly2 dependent.

Proof. Suppose not; then by Definition 2.4, we have a sequence of formulas

〈ϕi(x̄, ȳi, ȳi−1, . . . , ȳ0)| i < ω〉 and an array 〈āi,j | i, j < ω〉. Suppose N =

Nlg(x̄) < K < ω. Let l be a bound on lg(āi,j) for i < K, and for j < ω

let Aj =
⋃
{
⋃
āi,j′ |i < K, j′ < j}. Let Δ(x̄; ȳ) = {ϕi(x̄, ȳi, . . . , ȳ0)|i < K}.

So the number of Δ-types over Aj is at least jK (as the number of functions

η : K → j). By assumption, |SΔ(Aj)| ≤ c · |Aj |N ≤ c · (l · j · K)N for some

c ∈ N. But for big enough j, c · (l · j ·K)N < jK—contradiction.

Trees. Let us remind the reader of the basic definitions and properties of trees.

Definition 2.6: A tree is a partially ordered set (A,<) such that for all a ∈ A,

the set A<a = {x|x < a} is linearly ordered.

Definition 2.7: We say that a tree A is well ordered if A<a is well ordered for

every a ∈ A. Assume now that A is well ordered.

• For every a ∈ A, denote lev(a) = otp(A<a)—the level of a is the order

type of A<a.
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• The height of A is sup{lev(a)| a ∈ A}.
• a ∈ A is a root if it is minimal.

• A is normal when for all limit ordinals δ, and for all a, b ∈ A, if 1)

lev(a) = lev(b) = δ, and 2) A<a = A<b, then a = b.

• If a < b then we denote by suc(a, b) the successor of a in the direction

of b, i.e., min{c ≤ b| a < c}.
• We write a <suc b if b = suc(a, b).

• We call A standard if it is well ordered, normal, and has a root.

For a standard tree (A,<), define a ∧ b = max{c| c ≤ a& c ≤ b}.

3. Construction of the theory

In this section we shall introduce the theory TS , attached to a standard tree S.

Then, for S = 2<ω, this theory (or a variant of it, given by adding constants)

will be the theory that will exemplify Main Theorem A.

In the first part, we construct the theory T ∀
S which is universal (i.e., all its

axioms are of the form ∀xϕ where ϕ is quantifier free). As we said in the

introduction, the idea is that for every η ∈ S, we have a predicate Pη, and

whenever η1 <suc η2 there is a function from Pη2 to Pη1 . Then we would

like to take a model completion TS of this theory (see below). If we put no

further restriction on the theory T ∀
S , this is easily done (using AP and JEP,

see below), and the model completion will be the theory of dense trees with

functions (if S is a finite tree, then it is even ω-categorical). This is what we

did in [KS12, Theorem 2.11], but this does not seem to suffice to deal with

inaccessible cardinals. For that reason we further complicate the theory by

making the trees discrete, adding successors and predecessors. This requires

some constraint on the functions involved—“regressiveness”—which is needed

for quantifier elimination.

Recall that for a given (first order) theory T in a language L, a model

companion of T is another theory T ′ in L such that every model of T can

be embedded in a model of T ′ and vice versa and in addition T ′ is model

complete, i.e., if M1 is a substructure of M2 and M1,M2 |= T ′, then M1 is an

elementary substructure of M2. A model companion of a theory is unique if it

exists. A model companion T ′ is called a model completion when for every

model M of T , T ′ ∪ Diagqf(M) is complete (Diagqf(M) is the theory in the
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language L ∪ {ca|a ∈M} that contains all atomic formulas that hold in M). If

T ′ is a model completion of T and T is universal, then T ′ eliminates quantifiers

for non-sentences. If in addition T has JEP (see below), then T ′ is complete.

For more, see, e.g., [Hod93].

A theory T has the joint embedding property (JEP) if given any two

models A, B of T , there is a model C and embeddings f : A→ C, g : B → C.

A theory T has the amalgamation property (AP) if given any three mod-

els A,B and C of T , and embeddings f : A → B, g : A → C, there is a model

D and embeddings h : B → D, i : C → D such that h ◦ f = i ◦ g.
By [Hod93, Theorem 7.4.1], if a universal theory T in a finite language is

uniformly locally finite (i.e., there is a function f : ω → ω such that for all

M |= T and finite A ⊆M , the size of the structure generated by A is f(|A|)) and
has AP and JEP, then it has a model completion T ′ which is also ω-categorical

(this is related to Fräıssé limits). In [KS12, Theorem 2.11] we used exactly

this criterion to construct the model completion. Here, however, substructures

are not finite (since we have the successor function), so we cannot apply this

theorem.

Instead, we show that the class of existentially closed models of T ∀
S is elemen-

tary (recall that a modelM of a theory T is an existentially closed model of

T if for any extension N ⊇ M such that N |= T , every quantifier free formula

ϕ(x) over M that has a realization in N has one in M). In fact we show that

every two existentially closed models of T ∀
S are elementary equivalent (this uses

the fact that T ∀
S has JEP). We call their theory TS. In the process we show

that TS also eliminates quantifiers. Thus, this is the model completion of T ∀
S .

In the second part, we show that TS is dependent, and that if S is finite then

it is strongly2 dependent (using Lemma 2.5 and quantifier elimination).

Finally, we add constants to the language so that its cardinality will be θ,

and call the resulting theory T θ
S .

The first order theory. The language:

Let S be a standard tree, and let LS be the language:

{Pη, <η,∧η, Gη1,η2 , sucη, preη, limη| η, η1, η2 ∈ S, η1 <suc η2},

where Pη is a unary predicate, <η is a binary relation symbol, ∧η and sucη are

binary function symbols, Gη1,η2 , preη and limη are unary function symbols.

Definition 3.1: Let L′
S = LS\{preη, sucη |η ∈ S}.
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The theory:

Definition 3.2: The theory T ∀
S says:

• (Pη, <η) is a tree.

• η1 
= η2 ⇒ Pη1 ∩ Pη2 = ∅.
• ∧η is the meet function: x ∧η y = max{z ∈ Pη| z ≤η x& z ≤η y} for

x, y ∈ Pη (so its existence is part of the theory).

• sucη is the successor function—for x, y ∈ Pη with x <η y, sucη(x, y) is

the successor of x in the direction of y. The axioms are:

– ∀x <η y(x <η sucη(x, y) ≤η y), and

– ∀x ≤η z ≤η sucη(x, y)[z = x ∨ z = sucη(x, y)].

• limη(x) is the greatest limit element below x. Formally,

– limη : Pη → Pη, ∀xlimη(x) ≤η x, ∀x <η y(limη(x) ≤η limη(y)),

– ∀x <η y(limη(sucη(x, y)) = limη(x)), ∀xlimη(limη(x)) = limη(x).

• Let the successor elements be those x’s such that limη(x) <η x, and

denote

Suc(Pη) = {x ∈ Pη| limη(x) <η x}.

• preη is the immediate predecessor function from Suc(Pη) to Pη —

∀x 
= limη(x)(preη(x) < x ∧ sucη(preη(x), x) = x).

• (regressiveness) If η1 <suc η2 then Gη1,η2 satisfies:

Gη1,η2 : Suc(Pη1) → Pη2

and if x <η1 y, both x and y are successors, and limη(x) = limη(y),

then Gη1,η2(x) = Gη1,η2(y).

• In all the axioms above, for elements or pairs outside of the domain of

any of the functions ∧η, limη, Gη1,η2 , sucη or preη, these functions are

the identity on the leftmost coordinate, so, for example, if (x, y) /∈ P 2
η ,

then x ∧η y = x.

Remark 3.3: We need the regressiveness axiom so that T ∀
S would have a model

completion. Indeed, suppose S = {0, 1} and we remove this axiom, and suppose

that T is a model completion of T ∀
S . Then every model of T is an existentially

closed model of T ∀
S . Suppose M |= T and a <M

0 b ∈ Suc(PM
0 ). Then if b

is greater than sucM0 (· · · (sucM0 (a, b))) for every finite number of compositions,

then there is some a <M
0 c <M

0 b in M such that GM
0,1(c) 
= GM

0,1(b) (because

there is an extension of M to a model of T ∀
S where such a c exists). So by
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compactness there is some n such that for every model M |= T and every

a <M
0 b ∈ Suc(PM

0 ), if b is greater than n successors of a, then there is some c

with a <M
0 c <M

0 b and GM
0,1(c) 
= GM

0,1(b). But there is a model M ′ of T ∀
S with

some a <M ′
0 b such that b is the (n+ 1)’th successor of a and GM ′

0,1 is constant

on the interval (a, b]. Since every model of T ∀
S can be extended to a model of T

this is a contradiction.

Model completion. Here we will prove the existence of the model completion

TS of T ∀
S .

Notation 3.4: If S1, S2 are standard trees, we shall treat them as structures

in the language {<suc, <}, so when we write S1 ⊆ S2, we mean that S1 is a

substructure of S2 in this language (which means that if b is the successor of a

in S1, it remains such in S2).

When M is a model of TS , we may write <, suc, etc. instead of sucη, <η etc.

or sucMη , <M
η etc. where M and η are clear from the context.

Remark 3.5: Let S be a standard tree. The following is not hard to see:

(1) T ∀
S is a universal theory.

(2) T ∀
S has the joint embedding property (JEP).

(3) If S1 ⊆ S2 then T ∀
S1

⊆ T ∀
S2

and, moreover, if M |= T ∀
S2

is existentially

closed, M � LS1 is an existentially closed model of T ∀
S1
.

We will need some technical closure operators.

Definition 3.6: Assume S is a finite standard tree.

(1) Suppose Σ is a finite set of terms from LS . We define the following

closure operators on terms:

(a) clS∧(Σ) = Σ ∪
⋃
{∧η(Σ

2)| η ∈ S} = Σ ∪ {t1 ∧η t2| t1, t2 ∈ Σ, η ∈ S}.
(b) clSG(Σ) = Σ ∪

⋃
{Gη1,η2(Σ)| η1 <suc η2 ∈ S}.

(c) clSlim(Σ) = Σ ∪
⋃
{limη(Σ)| η ∈ S}.

(d) cl0,S(Σ) = clSG(cl
S
lim(cl

S
∧(· · · (clSG(clSlim(clS∧(Σ))))))) where the num-

ber of compositions is the length of the longest branch in S.

(e) clSsuc(Σ) =
⋃
{sucη(Σ2) ∪ preη(Σ)| η ∈ S} ∪ Σ.

(f) clS(Σ) = cl0,S(clSsuc(Σ)).

(2) Denote cl(0),S = cl0,S and for a number 0 < k < ω, cl(k),S(Σ) =

clS(cl(k−1),S(S)).

(3) If t̄ = 〈ti| i < n〉 is an n-tuple of terms then clS(t̄) is clS({ti| i < n}),
and similarly define the other closure operators for tuples of terms.
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(4) For a model M |= T ∀
S , and ā ∈ M<ω, define cl0,S(ā) = (cl0,S(x̄))M (ā)

where x̄ is a sequence of variables in the length of ā. Similarly define

clS∧(ā), cl
S
lim(ā), cl

S
G(ā), cl

S
suc(ā) and cl(k),S(ā). For a set A ⊆ M , define

cl0,S(A) = cl0,S(ā) where ā is an enumeration of A, and similarly for

the other closure operators.

We will usually omit the superscript S when it is clear from the context.

Claim 3.7: Assume S is a finite standard tree. For A ⊆ M |= T ∀
S , cl0(A)

is closed under ∧η, limη and Gη1,η2 for all η and η1 <suc η2 in S. So it

is the substructure generated by A in the language L′
S (recall that L′

S =

LS\{preη, sucη |η ∈ S}).

Proof (sketch). Note that cllim(cl∧(A)) is closed under limη and ∧η for all η ∈ S.

For n < ω, let cl0(n)(A) = clG(cllim(cl∧(· · · (clG(cllim(cl∧(A))))))) where

there are n compositions. For η ∈ S, let r(η) = |{ν ∈ S| ν ≤ η}|, so cl0 =

cl0,(max{r(η)| η∈S}).
Let B ⊇ A be the closure of A in M under ∧η, limη and Gη1,η2 for all η and

η1 <suc η2 in S. Then B is in fact cl0,(ω)(A) =
⋃
{cl0,(n)(A)|n < ω}. Now,

by induction on r(η) it is easy to see that B ∩ Pη = cl0,(r(η))(A) ∩ Pη. Hence

B = cl0(A).

Claim 3.8: Assume S is a finite standard tree. For every k < ω, there is

a polynomial fS
k such that for every finite subset A of a model M of T ∀

S ,

| cl(k)(A)| ≤ fS
k (|A|). Moreover, we can choose fS

k so that it is linear (i.e.,

of degree 1).

Proof. The fact that fS
k exists is trivial. For the moreover part, letting U =

{∧, G, lim, suc}, it is enough to show that there are {d� ∈ N|� ∈ U} such that

for every finite A, � ∈ U , | cl�(A)| ≤ d� · |A|.
We can choose dlim = 2 and dG = 2|S|2 .
For � = ∧, note that for all a ∈M ,

cl∧(A ∪ {a}) = cl∧(A) ∪ {a,max{a ∧η b|b ∈ A}}

where a ∈ Pη (this follows from the fact that if a∧ b < b∧ b′ then a∧ b′ = a∧ b).
So by induction on |A|, | cl∧(A)| ≤ 2|A|.
For � = suc, note that for a ∈ M such that for no b ∈ A, b ≥ a,

clsuc(A ∪ {a}) ⊆ clsuc(A) ∪ {a, preη(a), sucη(a′, a)} where a ∈ Pη and

a′ = max{b ∈ A|b <η a} (it may be that this set is empty or that a is a
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limit element, so the closure may be smaller). Hence by induction on |A|,
| clsuc(A)| ≤ 3|A|.

Remark 3.9: Note that although the degree of fS
k in Claim 3.8 is 1, the coeffi-

cients do depend on k and S.

Definition 3.10: Assume S is a finite standard tree.
(1) For a term t of LS , we define its successor rank as follows: if suc

and pre do not appear in t, then rsuc(t) = 0. For two terms t1, t2:

rsuc(sucη(t1, t2))=max{rsuc(t1), rsuc(t2)}+1, rsuc(preη(t1))=rsuc(t1)+1,

rsuc(t1 ∧ t2) = max{rsuc(t1), rsuc(t2)}, rsuc(Gη1,η2(t1)) = rsuc(t1) and

rsuc(limη(t1)) = rsuc(t1).

(2) For a quantifier free formula ϕ in LS , let rsuc(ϕ) be the maximal rank

of a term appearing in ϕ.

(3) For k < ω and an n-tuple of variables x̄, denote by Δx̄,S
k the set of all

atomic formulas ϕ(x̄) in LS such that for every term t in ϕ, t ∈ cl(k)(x̄).

Note that since cl(k)(x̄) is a finite set, so is Δx̄,S
k .

Claim 3.11: Suppose S is a finite standard tree. Assume thatM |= T ∀
S , n < ω,

ā ∈Mn and x̄ a tuple of n variables. Then cl(k)(ā) = {tM (ā)| rsuc(t(x̄)) ≤ k}.

Proof. The inclusion ⊆ is clear. The other direction follows by induction on k

and t.

For instance, suppose rsuc(t(x̄)) = k and t = Gη1,η2(t1); then by induction

there is some t2 ∈ cl(k)(x̄) such that tM1 (ā) = tM2 (ā). If t2(ā) /∈ Suc(PM
η1

),

then tM2 (ā) is not in the domain of GM
η1,η2

and so tM (ā) = tM2 (ā). If tM2 (ā) ∈
Suc(PM

η1
), then by the proof of Claim 3.7, there is some

t3(x̄) ∈ cl0,(r(η1))(clsuc(cl
(k−1)(x̄))) such that tM2 (ā) = tM3 (ā) (if k = 0, then

t3(x̄) ∈ cl0,(r(η1))(x̄)). So t4 = Gη1,η2(t3) ∈ cl(k)(x̄) and tM (ā) = tM4 (ā). If

t = s1 ∧η s2, then by induction there are s3, s4 ∈ cl(k)(x̄) such that tM (ā) =

sM3 (ā) ∧η s
M
4 (ā). Since cl(k)(ā) is closed under ∧ (by Claim 3.7), there is some

s5 ∈ cl(k)(x̄) such that tM (ā) = sM5 (ā).

Definition 3.12: Suppose S is a finite standard tree and k < ω. LetM1,M2 |=T ∀
S .

(1) Suppose n < ω and ā ∈ Mn
1 , b̄ ∈ Mn

2 . We say that ā ≡S
k b̄ if there is

an isomorphism of L′
S-structures from cl(k)(ā) to cl(k)(b̄) taking ā to b̄

(recall that L′
S = LS\{preη, sucη |η ∈ S}). In this notation we assume

that M1,M2 are clear from the context.
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(2) If A ⊆ M1, B ⊆ M2 are two finite subsets of M1 and M2, we write

A
S,f−−→
k

B when f extends some L′
S-isomorphism f ′ : cl(k)(A) → cl(k)(B)

such that f ′(A)=B. So this is equivalent to saying thatB={f(a)|a∈A},
〈a| a ∈ A〉 ≡S

k 〈f(a)| a ∈ A〉 and f � cl(k)(A) witnesses this.

Recall (from the notation section in the beginning of Section 2) that for a

finite set of formulas Δ, by writing Δ(x̄; ȳ) we mean that we assign to it a

partition of the free variables appearing in it. In that case, for b̄ of the same

length as x̄, tpΔ(x̄;ȳ)(b̄/A) is the set of formulas ϕ(x̄, ā) such that ϕ(x̄, ȳ) ∈ Δ,

ā ∈ Alg(ȳ) and C |= ϕ(b̄, ā). If the partition (x̄; ȳ) is clear, then we omit it from

the notation.

Recall also that Δx̄,S
k is the set of all atomic formulas ϕ(x̄) in LS such that

for every term t in ϕ, t ∈ cl(k)(x̄).

Definition 3.13: Suppose S is a finite standard tree. For M |= T ∀
S , ā ∈ M<ω,

A ⊆M a finite set, and k < ω, let tpS
k (ā/A) = tpΔx̄ȳ,S

k
(ā/A) where lg(x̄) = lg(ā)

and ȳ is of length |A|. This is the k-type of ā over A.

In Definitions 3.10, 3.12 and 3.13, we omit S from the superscript when it is

clear from the context.

Claim 3.14: Suppose S is a finite standard tree. Assume M1,M2 |= T ∀
S . As-

sume that ā ∈Mn
1 , b̄ ∈Mn

2 for some n < ω, x̄ a tuple of n variables and assume

k < ω. Then the following are equivalent:

(1) ā ≡k b̄.

(2) tpk(ā) = tpk(b̄).

(3) For every quantifier free formula ϕ(x̄) in LS with rsuc(ϕ) ≤ k,

M1 |= ϕ(ā) ⇔M2 |= ϕ(b̄).

(4) The tuples 〈t(ā)| t ∈ cl(k)(x̄)〉 and 〈t(b̄)| t ∈ cl(k)(x̄)〉 have the same

quantifier free type in L′
S .

Proof. (1) implies (2): assume ā ≡k b̄ and f : cl(k)(ā) → cl(k)(b̄) is an L′
S-

isomorphism taking ā to b̄. It is easy to see by induction on t and k that for

every term t ∈ cl(k)(x̄), f(t(ā)) = t(b̄), and so tpk(ā) = tpk(b̄).

(2) implies (3): this follows from Claim 3.11—for every term t(x̄) with rank

rsuc(t) ≤ k there is a term t′ ∈ cl(k)(x̄) such that M1 |= t′(ā) = t(ā). By

induction on k and t, one can show that, since tpk(ā) = tpk(b̄), M2 |= t′(b̄) =
t(b̄) and this suffices. For instance, suppose t = s1∧η s2. By induction, there are
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s3, s4 ∈ cl(k)(x̄) such that sM1
1 (ā) = sM1

3 (ā) and sM1
2 (ā) = sM1

4 (ā) and the same

equations hold withM2 instead ofM1 and b̄ instead of ā. Since cl(k)(ā) is closed

under ∧, there is some s5 ∈ cl(k)(x̄) such that M1 |= s3(ā) ∧η s4(ā) = s5(ā), so

sM1
5 (ā) = max{sM1(ā)|s ∈ cl(k)(x̄),M1 |= s(ā) ≤η s3(ā), s4(ā)}.

By (2), the same equation holds if we replace M1 with M2 and ā with b̄. Since

cl(k)(b̄) is closed under ∧, it follows that M2 |= s3(b̄) ∧η s4(b̄) = s5(b̄).

(3) implies (4): since formulas in L′
S do not increase the successor rank, this

is clear.

(4) implies (1): the map taking t(ā) to t(b̄) for every term t ∈ cl(k)(x̄) is a

well defined isomorphism of L′
S structures.

Similarly, we have:

Claim 3.15: Suppose S is a finite standard tree. Let M |= T ∀
S , n < ω, ā, b̄ ∈

Mn, x̄ a tuple of n variables and k, k1, k2 < ω.

(1) If ā ≡k b̄, then there is a unique isomorphism that shows it. Namely,

for each t ∈ cl(k)(x̄), the isomorphism f must satisfy f(t(ā)) = t(b̄).

(2) Assume k2 ≥ k1. Then ā ≡k2 b̄ implies ā ≡k1 b̄.

(3) If āā′ ≡k b̄b̄
′ then ā ≡k b̄.

(4) If ā ≡k+1 b̄, witnessed by f , then cl(ā)
S,f−−→
k

cl(b̄).

(5) If S′ ⊆ S, and ā ≡S
k b̄ then ā ≡S′

k b̄ (when ā and b̄ are considered as

tuples in M1 � LS′ and M2 � LS′).

Before proceeding to prove the main quantifier elimination lemma, let us give

two more important definitions:

Definition 3.16: Suppose S is a standard tree. Suppose M |= T ∀
S , η ∈ S and

a, b ∈ PM
η . We say that the distance between a and b is n if a <η b and b is

the n-th successor of a or vice-versa. We say the distance is infinite if for no

n < ω the distance is n. Denote this by d(a, b) = n.

For a set A ⊆M |= T ∀
S , we denote by Suc(A) the set of all successors in A.

Definition 3.17: Suppose S is a standard tree, η ∈ S, M |= T ∀
S and A ⊆M . Let

RA
η ⊆ Suc(A)2 be the following relation: (x, y) ∈ RA

η iff lim(x) = lim(y) and x

and y are comparable (x <η y or y ≤η x). Let ∼A
η be the transitive closure of

RA
η (so it is an equivalence relation on Suc(A)).
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So the equivalence relation ∼η determines the function Gη,η′ for η <suc η
′

from S: if a, b ∈ PM
η for M |= T ∀

S and a ∼M
η b, then Gη,η′(a) = Gη,η′(b).

Lemma 3.18 (Quantifier elimination lemma): For every finite standard tree S,

and m1, n, k < ω, there is m2 = m2(m1, k, S) < ω such that if:

• M1,M2 |= T ∀
S are existentially closed,

• ā ∈Mn
1 and b̄ ∈Mn

2 ,

• ā ≡m2 b̄,

then for all c̄ ∈Mk
1 there is some d̄ ∈Mk

2 such that c̄ā ≡m1 d̄b̄.

(Note that m2 does not depend on n.)

Proof. The proof is by induction on |S|. Given S, we will show that the lemma

holds for all m1 and k. Without loss of generality k = 1: by induction one can

choose m2(m1, k + 1, S) = m2(m2(m1, k, S), 1, S). We may also assume that

m1 > 0.

We may assume that m2(m1, k, S
′) > max{m1, k, |S′|} for all S′ � S (by

enlarging m2 if necessary).

For |S| = 0 the claim is trivial because T ∀
S is just the theory of a set with no

structure.

Assume 0 < |S|. Let η0 be the root of S, S0 = {η0} and partition S as

S =
⋃
{Si| i < m} where for i ≥ 1, the Si’s are the connected components of S

above η0 (note that Si ⊆ S, see Notation 3.4). Let

m2 = m2(m1, 1, S) = max{2m2(m1,K, Si)| 1 ≤ i < m}+ 2m1 + 1

where K = 3.

Suppose M1,M2, ā and b̄ are as in the lemma and let c ∈M1.

By assumption there is a unique L′
S-isomorphism f : cl(m2)(ā) → cl(m2)(b̄).

For i ≤ m, let PSi =
∨
{Pη| η ∈ Si}, Ai = cl(m1)(ā) ∩ PM1

Si
and Bi =

cl(m1)(b̄) ∩ PM2

Si
.

Since ā ≡m2 b̄, it follows that cl
(m2(m1,K,Si))(ā)

f−−−−−−−−→
m2(m1,K,Si)

cl(m2(m1,K,Si))(b̄)

and in particular Ai
Si,f−−−−−−−−→

m2(m1,K,Si)
Bi (see Claim 3.15 (4) and (5)).

We divide into cases:

Case 1. c /∈ PM1
η for every η ∈ S.

Here finding d is easy due to the fact thatM1 andM2 are existentially closed.

Case 2. c ∈ PM1

Si
for some 1 ≤ i ≤ m.
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Ai
Si,f−−−−−−−−→

m2(m1,K,Si)
Bi (as subsets of M1 � LSi and M2 � LSi), so by the in-

duction hypothesis (and by Remark 3.5 (3)) we can find d ∈ M2 and extend

f � cl(m1)(Ai) to an L′
Si
-isomorphism f ′ : cl(m1)({c} ∪ Ai) → cl(m1)({d} ∪ Bi)

taking c to d. Note that f ′ is also an L′
S-isomorphism. It follows that

f � cl(m1)(ā) ∪ f ′ � cl(m1)(cā)

is an L′
S-isomorphism from cl(m1)(cā) to cl(m1)(db̄) that shows that cā ≡m1 db̄

(note that PM1

Sj
∩ cl(m1)(āc) = Aj for j 
= i and that if x ∈ cl(m1)(āc) ∩ PM1

Si

then x ∈ cl(m1)({c} ∪ Ai), and so the domain is indeed cl(m1)(cā)).

Case 3. c ∈ Pη0 .

For notational simplicity, let < be <η0 , lim be limη0 , ∼ be ∼η0 and ∧ be ∧η0 .

Let A′
0 = cl(0)(ā) ∩ PM1

η0
(so this is the closure of ā inside Pη0 under ∧ and

lim), B′
0 = cl(0)(b̄) ∩ PM2

η0
, F = cl(m1)(A′

0 ∪ {c}) ∩ PM1
η0

and ηi = min(Si) for

1 ≤ i ≤ m.

Note that F is really just cl(m1)
suc (cl(0)(A′

0 ∪ {c})).
Say that an element of F is new if it is a successor and is not ∼F -equivalent

to any element from A0 (note: A0 and not A′
0). We will prove the following

claim:

Claim I: (1) There are at most K many ∼F -equivalence classes of new

elements in F . For each one choose a representative. Enumerate them

as 〈cl| l < K ′〉 for K ′ ≤ K.

(2) There is a model M ′
3 of T ∀

S0
, an L′

S0
-isomorphism f ′ and d′ ∈ M ′

3 such

that M ′
3 ⊇ PM2

η0
, f ′ � A0 = f , A′

0 ∪ {c} S0,f
′

−−−→
m1

B′
0 ∪ {d′} and f ′(c) = d′

(so the domain of f ′ is F ).
(3) Moreover, for l < K ′, f ′(cl) are pairwise non-∼M3-equivalent and they

are not ∼M3 -equivalent to any element from Suc(PM2
η0

).

Suppose first that Claim I holds.

For 1 ≤ i ≤ m let cil = Gη0,ηi(cl).

Fix 1 ≤ i ≤ m. By assumption, Ai
Si,f−−−−−−−−→

m2(m1,K,Si)
Bi, so by the induction

hypothesis there are dil ∈ M2 for l < K ′ and an L′
Si
-isomorphism gi extending

f � cl(m1)(Ai) such that gi(c
i
l) = dil and Ai∪{cil|l < K ′} Si,gi−−−→

m1

Bi∪{dil |l < K ′}.

Sh:975



76 I. KAPLAN AND S. SHELAH Isr. J. Math.

Claim II: There exists a model M3 |= T ∀
S satisfying PM3

η0
= P

M ′
3

η0 , M3 ⊇ M2

and GM3
η0,ηi

(f ′(cl)) = dil for l < K ′ and 1 ≤ i ≤ m.

Proof of Claim II. Since M ′
3 |= T ∀

S0
, M2 |= T ∀

S and P
M ′

3
η0 ⊇ PM2

η0
, the only thing

we must show is that Gη0,ηi defined in Claim II is well defined and can be

extended to a regressive function. This follows directly from Claim I (3).

Define

g = f � cl(m1)(ā) ∪ f ′ � cl(m1)(āc) ∪
⋃

{gi � cl(m1)(āc)| 1 ≤ i < m}.

We claim that g is an L′
S-isomorphism extending f � cl(m1)(ā) from cl(m1)(āc)

to cl(m1)(ād′) sending c to d. It is easy to see that g is well defined as a

function. To see that it is an L′
S-isomorphism we only need to show that if

e ∈ cl(m1)(āc) is a successor and 1 ≤ i ≤ m, then GM3
η0,ηi

(f ′(e)) = gi(G
M1
η0,ηi

(e)).

Suppose e ∼F b where b ∈ A0; then f
′(e) ∼M3 f ′(b), GM1

η0,ηi
(e) = GM1

η0,ηi
(b) and

GM3
η0,ηi

(f ′(e)) = GM3
η0,ηi

(f ′(b)). Now we are done since

GM3
η0,ηi

(f ′(b)) = GM2
η0,ηi

(f(b)) = f(GM1
η0,ηi

(b)) = gi(G
M1
η0,ηi

(b)).

Suppose e is new. Then e ∼F cl for some l < K ′. But then GM1
η0,ηi

(e) =

GM1
η0,ηi

(cl) = cil , and gi(c
i
l) = dil , while f ′(e) ∼M3 f ′(cl), so GM3

η0,ηi
(f ′(e)) =

GM3
η0,ηi

(f ′(cl)) = dil by Claim II.

So cā ≡m1 d
′b̄, i.e., tpm1

(cā) = tpm1
(d′b̄), and if Ψ is the conjunction of all

formulas appearing in tpm1
(cā) then M3 |= ∃xΨ(xb̄). As M2 is existentially

closed there is some d ∈M2 such that Ψ(db̄), i.e., cā ≡m1 db̄.

We will be done once we prove Claim I.

Proof of Claim I. Again we need to divide into cases:

Case i. c ∈ A′
0: there is nothing to do.

Case ii. c is in a branch of A′
0, i.e., there is c < y ∈ A′

0 and assume y is minimal

in this sense (it exists since A′
0 is closed under ∧). We again divide into cases:

Case a. There is no x ∈ A′
0 below c. This means that c < x for all x ∈ A′

0,

and even for all x ∈ A0 (since for all x ∈ A0, there is x′ ∈ A′
0 such that

lim(x) = lim(x′)), and that y = lim(y). There is exactly one ∼F -class of

new elements, which is [suc(c, y)]∼F . In this case (2) and (3) are easy: just

let d′ be a new element below PM2
η0

with the same distance from its limit as
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d(c, lim(c)) (which can be infinite, and if d(c, lim(c)) > 2m1, we can choose

d(d′, lim(d′)) = 2m1 + 1).

Case b. There is some x ∈ A′
0 such that x < c. Assume x is maximal in this

sense.

If lim(x) < lim(y), then necessarily lim(x) ≤ x < c < lim(y) = y. If lim(x) <

lim(c), then there is one ∼F -class of new elements—[suc(c, y)]∼F . Again (2)

and (3) are easy: let lim(d′) be a new limit element below f(y) and above all

elements fromM2 below f(y) and let d′ be with the right distance from lim(d′).
If lim(x) = lim(c), then there are no new ∼F -classes. Moreover, we can choose

M ′
3 =M2 � LS0 and d′ ∈M2.

If lim(x) = lim(y) (so also = lim(c)), then again there are no new ∼F -classes.

For (2) and (3), we must make sure that the distance between f(x) and f(y) is

big enough, so that we can place d′ in the right spot between them. In F\A0

we may add m1 successors to c in the direction of y and m1 predecessors. This

is why we chose m2 ≥ 2m1 + 1.

Case iii. c starts a new branch in A′
0, i.e., there is no y ∈ A′

0 such that c < y.

In this case, let c′ = {max(c ∧ b)| b ∈ A′
0}. Note that if there is an element in

cl∧(A′
0 ∪ {c})\A0 ∪ {c}, it must be c′. Adding c′ falls under Case ii above (if

it is indeed new), so the ∼F -classes of new elements will be those which come

from c′ as before, and perhaps more. Namely, it can be that lim(c) < c′ (so
lim(c) = lim(c′)) in which case that is all, or we should add [suc(lim(c), c)]∼F

and [suc(c′, c)]∼F .

By the previous case, we can first find M ′′
3 ⊇ PM2

η0
, an L′

S0
-isomorphism f ′′

and d′′ ∈M ′′
3 such that f ′′ � A0 = f , A′

0∪{c′} S0,f
′

−−−→
m1

B′
0∪{d′′} and f ′′(c′) = d′′.

Then we can just add a new branch starting at d′′ to construct M ′
3.

Claim 3.19: Let S be a finite standard tree. For every formula ϕ(x̄) (with free

variables) there is a quantifier free formula ψ(x̄) such that for every existentially

closed model M |= T ∀
S , we have M |= ψ ≡ ϕ.

Proof. It is enough to check formulas of the form ∃yϕ(y, x̄) where ϕ is quantifier

free and lg(x̄) = n > 0. Let k = rsuc(ϕ). Letm = m2(k, 1, S) from Lemma 3.18.

By Claim 3.14, if M1,M2 |= T ∀
S are existentially closed and ā ∈M1, b̄ ∈M2 are

of length n and ā ≡m b̄, then M1 |= ∃yϕ(y, ā) iff M2 |= ∃yϕ(y, b̄).
Assume |Δx̄

m| = N and let {ϕi| i < N} be an enumeration of Δx̄
m. For every

η : N → 2, let ϕm
η (x̄) =

∧
i<N ϕ

η(i)
i (x̄) (where ϕ0 = ¬ϕ and ϕ1 = ϕ).
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Let

R = {η : N → 2| ∃ e.c. M |= T ∀
S & ∃c̄ ∈M(M |= ϕm

η (c̄) ∧ ∃yϕ(y, c̄))}.

Let ψ(x̄) =
∨

η∈R ϕ
m
η (x̄). By Claim 3.14 it follows that ψ is the desired

formula.

Corollary 3.20: If M1 and M2 are two existentially closed models of T ∀
S ,

then M1 ≡M2 and their theory eliminates quantifiers.

Proof. Assume first that M1 ⊆ M2; then M1 ≺ M2: for formulas with free

variables it follows directly from the previous claim, and for a sentence ϕ we

consider the formula ϕ ∧ (x = x).

Now the corollary follows from the fact that the theory is universal (so every

model can be extended to an existentially closed one) and has JEP.

Definition 3.21: Let S be a finite standard tree. Let TS be the theory of all

existentially closed models of T ∀
S .

From Corollary 3.20 and the definition of model completion, we deduce:

Corollary 3.22: Let S be a finite standard tree. Then TS is the model

completion of T ∀
S . The theory TS eliminates quantifiers. Thus T ∀

S has AP.

NIP. In this section we will show that TS is dependent. The idea is to count

the number of Δ-types for finite Δ over a finite set of parameters A, and to

show that this number is polynomial in |A|. Thus, from Fact 2.2 it follows that

TS is dependent. In fact, we will show that we can find such polynomials fΔ

such that their degree does not depend on Δ, but only on the number of free

variables and on S. From this, by Lemma 2.5 we will conclude that TS is not

just dependent but even strongly2 dependent.

Definition 3.23: Suppose S is a finite standard tree. Assume A ⊆M |= TS is a

finite set and k < ω.

(1) We say that a, b ∈M are k-isomorphic over A, denoted by a ≡S
A,k b

iff for some (any) enumeration ā of A, aā ≡S
k bā.

(2) Similarly for tuples from M<ω.

Claim 3.24: Suppose S is a finite standard tree. Assume M |= T ∀
S , k < ω,

A ⊆ M is finite and ā, b̄ ∈ M<ω. Then ā ≡A,k b̄ iff tpk(ā/A) = tpk(b̄/A) iff
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for every quantifier free formula ϕ(x̄) over A such that rsuc(ϕ) ≤ k,

M |= ϕ(ā) ↔ ϕ(b̄).

Proof. Follows from the definitions and from Claim 3.14.

Proposition 3.25: Assume |S| = 1 and k < ω. Then there is a polynomial

pk over N such that for every model M |= T ∀
S and for every finite set A ⊆ M ,

|{M/ ≡A,k}| ≤ pk(|A|). Moreover, we can choose 〈pk| k < ω〉 so that pk is linear

for all k.

Proof. As |S| = 1, we can forget the index η and write <, lim, etc. instead of

<η, limη, etc.

Suppose M |= T ∀
S . Given a < b ∈M , the k-distance between them is defined

by
dk(a, b) = min{d(a, b), 2k + 1}.

Assume a ∈M and A ⊆M is finite.

Let B = cl(0)(A) and l = |B|. Recall that l ≤ fS
0 (|A|) where fS

0 is a linear

function (see Claim 3.8). We will divide the possible k-isomorphism type of a

over A into finitely many cases, and in each case the number of possible types

will be linear in l (so linear in |A|).
Case 1. a /∈ P . Here there is no structure, so the number of types is |A|+ 1.

Case 2. a ∈ P , and there is some b ∈ B such that a ≤ b. We further divide

into sub-cases:

Case i. a ∈ B. In that case there are at most l types.

Case ii. There is no b ∈ B such that b < a. In that case, since B is closed

under ∧, a is smaller than b for all b ∈ B. In this case it is enough to know the

k-distance between a and lim(a). So there are 2k + 1 types.

Case iii. There is some b ∈ B such that b < a. Choose b0, b1 ∈ B such that b1

is minimal with the property that a < b1 and b0 is maximal such that b0 < a.

Since B can also be viewed as a finite graph-theoretic tree and as such has l−1

edges, we have at most l − 1 such pairs.

Case a. lim(b0) < lim(b1). Note that it follows that lim(b1) = b1.

Case 1. lim(b0) < lim(a). Then the type is determined by the k-distance

between a and lim(a), so there are at most 2k + 1 types here.

Case 2. lim(b0) = lim(a). The type is determined by the k-distance between

a and b0, so again there are at most 2k + 1 types.
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Case b. lim(b0) = lim(b1). In this case lim(b1) = lim(a). The type is deter-

mined by the k-distance between a and b0 and the k-distance between a and

b1. So totally there are at most 4k + 2 types.

So in this case (Case iii) there are at most (l − 1) · (4k + 2) many types.

Case 3. a ∈ P , and there is no b ∈ B such that a ≤ b. Let a′=max{a ∧ b|b∈B}.
Since there is some b ∈ B such that a′ ≤ b, the number of possible k-isomorphism

types of a′ over A is bounded by h(l) where h is a linear map. Fix tpk(a
′/A).

Case i. lim(a) = lim(a′). Here the type is determined by the k-distance

between a and a′, so there are at most 2k + 1 types.

Case ii. lim(a) > lim(a′). Here the type is determined by the k-distance

between a and lim(a), so there are at most 2k + 1 types.

So in this case (Case 3) there are at most h(l) · (4k + 2) types.

Definition 3.26: Let S be a finite standard tree, and n < ω. Say that S is

n-nice if there is a number N < ω and a sequence of polynomials 〈pSk | k < ω〉
over N, whose degrees are bounded by N such that for every model M |= T ∀

S

and finite A ⊆ M , |{Mn/ ≡A,k}| ≤ pSk (|A|). Say that S is nice if it is n-nice

for all n < ω.

From Proposition 3.25 we get:

Corollary 3.27: If |S| = 1, then S is 1-nice.

Lemma 3.28: Suppose S is a 1-nice finite standard tree. Then it is nice.

Proof. We may restrict our attention to models of TS (i.e., existentially closed

models of T ∀
S ), since every model of T ∀

S extends to a model of TS , and the

number of k-isomorphism types can only increase.

The proof is by induction on n. For n = 1 this is the assumption, so assume

it holds for every l ≤ n. Fix some polynomials 〈pk,l| k < ω, 0 < l ≤ n〉 that

witness l-niceness for all l ≤ n. We will show that the polynomials defined by

pSk,n+1(X) = pk′,n(X)·pk,1(X+1) with k′ = m2(k, n, S) (see Lemma 3.18) bound

the number of k-isomorphism types. By induction, their degree is bounded by

a constant number, regardless of k.

We use Claim 3.24, namely that we can identify the number of k-isomorphism

types and the number of k-types (see Definition 3.13).
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Suppose A is a finite subset of a model M |= TS . For every k,m < ω let

Δm
k = Δx̄ȳ

k where lg(x̄) = m and lg(ȳ) = |A|. Let Q = SΔn+1
k

(A). For each

type r ∈ Q, choose a realization (ār, br) where lg(ār) = n. Let E be the

equivalence relation on Q defined by r E r′ iff br ≡A,k′ br′ . Without loss of

generality, for all r, r′ ∈ Q, if r E r′ then br = br′ : choose representatives

〈ri| i < l〉 for all the E-classes. Fix some i < l and r E ri. Enumerate A

as ā. Since brā ≡k′ bri ā, by Lemma 3.18 there is some ā′r ∈ Mn such that

ārbrā ≡k ā′rbri ā, i.e., ārbr ≡A,k ā′rbri , so we can replace (ār, br) by (ā′r, bri).
Now for each E-equivalence class C ⊆ Q, the map r �→ tpS

k (ār/A ∪ {br}) from
C to SΔn

k
(A∪{br}) is injective, so |C| ≤ pSk,n(|A|+1). The number of E-classes

is bounded by pSk′,1(|A|), so we are done.

Theorem 3.29: Suppose S is a finite standard tree. Then it is nice.

Proof. The proof is by induction on |S|. For |S| = 1 it follows from Proposition

3.25 and Lemma 3.28 (and for |S| = 0 it is obvious).

Assume 1 < |S|. By Lemma 3.28, it is enough to show that S is 1-nice.

Let η0 be the root of S, S0 = {η0} and let S =
⋃
{Si| i < m} where for

1 ≤ i < m the Si’s are the connected components of S above η0. For i ≤ m, let

PSi =
∨
{Pη| η ∈ Si}. For i<m, let ηi=min(Si). Suppose 〈pik,n| k, n < ω, i < m〉

witness that Si are nice. Suppose the degree of pik,n is bounded by Nn for all

k, n < ω and i < m. We may assume that pik,n ≤ pik,n+1 and Nn ≤ Nn+1 for all

k, n < ω and i < m.

Assume A ⊆ M |= T ∀
S is finite and a ∈ M . We will divide the possible k-

isomorphism types of a overA into finitely many cases. In each case we will have

a polynomial bound (in terms of |A|) on the number of types. This polynomial

will have degree at most m ·NK where K = 3. Since M,A and a were arbitrary

this will show that S is 1-nice.

Let Ai = cl(k)(A) ∩ PM
Si

.

Case 1. a /∈ PM
η for all η ∈ S. In that case there are at most |A|+ 1 types.

Case 2. a ∈ PM
ηi

for some 1 ≤ i < m. It is enough to determine tpSi

k (a/Ai).

If tpSi

k (a/Ai) = tpSi

k (b/Ai), then a ≡Ai,k b (by Claim 3.24), so there is an L′
Si

isomorphism f ′ : cl(k)(Aia) → cl(k)(Aib) taking a to b and fixing Ai. Define

f : cl(k)(Aa) → cl(k)(Ab) by

(f ′ � cl(k)(A ∪ {a}) ∩ PM
Si

) ∪ (id � cl(k)(A)).
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This is an isomorphism. Now, note that |Ai| ≤ fSi

k (|A|) which is linear in |A|
(see Claim 3.8), and the number of types over Ai is bounded by pik,1(|Ai|) ≤
pik,1(f

Si

k (|A|)).

Case 3. a ∈ Pη0 . Let B = A ∩ PM
η0

. First we determine tpS0

k (a/B); for this we

have at most p0k,1(|A|) many possibilities. Fix one such type.

Suppose a ≡S0

B,k b. Let f
′ be an L′

S0
-isomorphism such that

B ∪ {a} S0,f
′

−−−→
k

B ∪ {b}, f ′ fixes B and takes a to b.

Let F = cl(k)(A ∪ {a})∩ PM
η0

and F ′ = f ′(F ), so that f is an L′
S0

isomorphism

between F and F ′. By Claim I (1) in the proof of Lemma 3.18, there are at most

K (i.e., 3) ∼F
η0
-classes in F that are not already in cl(k)(A); suppose there are

K ′ ≤ K such classes. Let b̄ be an enumeration of B, and ȳ a tuple of variables

of the same length. If 〈ti(x, ȳ)| i < K ′〉 are terms from cl(k),S0(xȳ) such that

the new classes are exactly {[ti(a, b̄)]∼F
η0
|i < K ′}, then the new classes in F ′ are

{[ti(b, b̄)]∼F ′
η0

|i < K ′}. This means that we can fix such terms depending only

on tpS0

k (a/B). Now it is enough to determine tpSi

k (〈Gη0,ηi(tl(a, b̄))| l < K ′〉/Ai)

for each 1 ≤ i < m.

Indeed, suppose that a, b and f ′ are as above and moreover, for each 1 ≤
i < m, 〈Gη0,ηi(tl(a, b̄))| l < K ′〉 ≡k,Ai 〈Gη0,ηi(tl(b, b̄))| l < K ′〉. Let gi be an

L′
Si
-isomorphism fixing Ai witnessing this. Then

id � cl(k)(A) ∪ f ′ ∪
⋃

1≤i<m

(gi � cl(k)(A ∪ {a}) ∩ PM
Si

)

is an L′
S-isomorphism showing that a ≡k

A b. This follows from the fact that if

e ∼F
η0
e′ then Gη0,ηi(e) = Gη0,ηi(e

′).
In this case there are at most p0k,1(|A|) ·

∏
1≤i<m pik,K(fSi

k (|A|)) types (here

we used the assumption that pik,K′ ≤ pik,K).

Corollary 3.30: Suppose S is a finite standard tree. Then TS is strongly2-

dependent.

Proof. We will apply Lemma 2.5.

Let Δ(x̄; ȳ) be a finite set of formulas. By quantifier elimination, we may

assume that Δ is quantifier free. Let k = max{rsuc(ϕ)|ϕ ∈ Δ} and m =

|SΔ(x̄;ȳ)(A)|. Let {c̄i| i < m} be a set of tuples satisfying all the different types

in SΔ(x̄;ȳ)(A) in some model M of TS . If i 
= j then tpk(c̄i/A) 
= tpk(c̄j/A)
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(by Claim 3.24), so m ≤ |{M lg(x̄)/ ≡A,k}|, and hence we are done by Theorem

3.29.

So far we mostly assumed that S is finite. Now we will let S be any standard

tree.

Corollary 3.31: Suppose S is a standard tree. If M |= T ∀
S , then since

Th(M) =
⋃

{Th(M � LS0)|S0 ⊆ S& |S0| < ℵ0},

by Remark 3.5, Corollary 3.20 is true in the case where S is infinite. So TS is

well defined in this case as well and it is in fact
⋃
{TS0|S0 ⊆ S& |S0| < ℵ0}. It

eliminates quantifiers and is dependent.

Adding Constants. We want to find an example of every cardinality, and so

we add constants to the language. For a cardinal θ, the theory T θ
S will be TS

augmented with the quantifier free diagram of a model of T ∀
S of cardinality θ.

The simplest thing to do is to add θ-many constants that do not belong to any

Pη. The problem with this approach is that the induction would not work in

the proof of the main theorem. So instead we put a tree of constants in every

Pη. Formally:

Definition 3.32: Let S be a standard tree. For a cardinal θ, let

Lθ
S = LS ∪ {eη,i| i < θ, η ∈ S}

where {eη,i| i < θ, η ∈ S} are new constants. Let T ∀,θ
S be the theory T ∀

S with the

axioms stating that for all η, η1, η2 ∈ S and i, j, i′, j′ < θ such that η1 <suc η2,

• eη,i ∈ Pη,

• i 
= j ⇒ eη,i 
= eη,j ,

• i 
= j, i′ 
= j′ ⇒ eη,i ∧η eη,j = eη,i′ ∧η eη,j′ ,

• η1 <suc η2 ⇒ Gη1,η2(eη1,i) = eη2,i,

• limη(eη,i ∧ eη,j) = eη,i ∧ eη,j and

• sucη(eη,i ∧ eη,j , eη,i) = eη,i.

Corollary 3.33: Suppose S is a standard tree.

(1) T ∀,θ
S has JEP and AP.

(2) T ∀,θ
S has a model completion — T θ

S — that is complete, dependent and

has quantifier elimination.
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(3) Given any model M |= T ∀
S , there is a model M ′ |= T ∀,θ

S satisfying

M ′ � LS ⊇M .

(4) If S is finite then T θ
S is strongly2 dependent.

Proof. (1) This follows from Corollary 3.22 (noting that JEP for T ∀,θ
S follows

from AP for T ∀
S ).

(2) Since TS is the model completion of T ∀
S and T ∀,θ

S is the quantifier free

diagram of a model of T ∀
S , T

θ
S = TS ∪ T ∀,θ

S is a complete theory. Since we only

added constants, T θ
S is dependent and has quantifier elimination.

(3) This follows from JEP for T ∀
S .

(4) This follows from Corollary 3.30.

4. The inaccessible case

In this section we will deal with the main technical obstacle in proving Main

Theorem A. The proof, which will be described in Section 5, is by induction

in the following sense: for S = 2<ω, cardinals κ, θ and a limit ordinal δ ≥ ω

such that κ 
→ (δ)<ω
θ , we will find a model M |= T ∀,θ

S
and a set A ⊆ PM

〈〉 of size

|A| ≥ κ with no non-constant indiscernible sequence in Aδ. We are allowed to

use induction since λ 
→ (δ)<ω
θ for all λ < κ. We divide into cases, namely κ ≤ θ,

κ singular and κ regular but not strongly inaccessible. The main problem is in

the remaining case, i.e., when κ is strongly inaccessible. In all other cases, the

proof will follow by induction without using explicitly the fact that κ 
→ (δ)<ω
θ .

Assumption 4.1: Assume for this section that θ < κ are cardinals, δ ≥ ω is a

limit ordinal and that κ is strongly inaccessible such that κ 
→ (δ)<ω
θ .

This section is divided into two subsections.

In the first subsection we define a class T of models of T ∀,θ
ω (here S = ω, with

the tree structure being the usual order on ω). We will analyze sequences of

elements in models in T that are close to being indiscernible. There are two main

results here. The first (Proposition 4.13) says that sequences (of singletons) that

are closed to being indiscernible can have two forms: “almost increasing” and

“fan”. “Almost increasing” means that si∧si+1 < si+1∧si+2, and “fan” means

that si ∧ sj is constant. The second result (Corollary 4.16) deals with applying

a specific definable map on sequences. Given an almost increasing sequence s̄,

let H(s̄) = t̄ where ti = G(suc(lim(si ∧ si+1), si+1)) (where G is some Gn,n+1,
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recall that here S = ω). We will show that if applying H again and again we

always get an almost increasing sequence, then this almost increasing sequence

will satisfy suc(lim(ti ∧ ti+1), ti) = ti.

In the second subsection we will construct a model in T that uses explicitly

a witness of κ 
→ (δ)<ω
θ . For this model, P0 = κ. We will show, applying the

analysis, that if we have an indiscernible sequence in P0 such that applying

H to it again and again results in almost increasing sequences, then there is

a homogeneous sub-sequence of κ of length δ, contradicting the assumption.

So after applying H finitely many times we must get a fan. This model will

come equipped with equivalence relations on the trees Pn, which refines the

neighboring relation (x, y are neighbors if they succeed the same element). The

point is that the number of classes inside a given neighborhood will be less than

κ. This will enable us to use the induction hypothesis in the proof of Main

Theorem A.

The models in T will be standard in the following sense:

Definition 4.2: Suppose S is a standard tree. Call a model of T ∀
S standard if for

every η ∈ S, (Pη, <η) is a standard tree, and ∧η, limη, sucη are all interpreted

in the natural way (so limη(a) is the greatest element ≤ a of a limit level).

Let us fix some notation:

Notation 4.3: Suppose S is the standard tree ω with the usual ordering. Assume

M |= T ∀
S and x, y ∈ PM

η .

(1) When we say indiscernible, we shall always mean indiscernible for quan-

tifier free formulas.

(2) We say that x ≡ 0 (mod ω) when x = lim(x). For n < ω, we say that

x ≡ n+1 (mod ω) where x 
= limη(x) and preη(x) ≡ n (mod ω). Note

that for a fixed n, the set {x|x ≡ n (mod ω)} is quantifier free definable.
In addition, if M is standard, then for every x there is some n < ω

such that x ≡ n (mod ω) (where n is the unique number satisfying

lev(x) = α+ n for a limit ordinal α).

(3) Say that x ≡ y (mod ω) if there is n < ω such that x ≡ n (mod ω) and

y ≡ n (mod ω).

(4) Instead of Gn,n+1 we write Gn.
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Analysis of indiscernibles in T .

Definition 4.4: Let T be the class of models M |= T ∀
ω that satisfy:

(1) M is standard (see Definition 4.2).

(2) For t ∈ Pn, lev(Gn(t)) ≤ lev(t).

(3) Gn : Suc(Pn) → Suc(Pn) (i.e., we demand that the image is also a

successor).

(4) If 〈si| i < δ〉 is an increasing sequence in Suc(Pn) such that si ≡ sj

(mod ω) for all i < j < δ, then i < j ⇒ Gn(si) 
= Gn(sj).

Notation 4.5: For M ∈ T and n < ω:

(1) We say that s, t ∈ PM
n are neighbors, denoted by t Enb s when

{x|x < t} = {x|x < s}.

This is an equivalence relation. As Pn is a normal tree, for t of a limit

level its Enb-class is {t}.
(2) Let Suc(M) =

⋃
{Suc(PM

n )|n < ω}.
(3) s̄, t̄ and r̄ will denote δ-sequences, e.g., s̄ = 〈si| i < δ〉.
(4) If s̄ is contained in some PM

n and n is clear from the context or insignif-

icant, then we write < instead of <n etc.

Definition 4.6: Recall that given δ∗ ≥ ω and an indiscernible sequence s̄ =

〈si| i < δ∗〉, its quantifier free Ehrenfeucht–Mostowski type (or in short, quan-

tifier free EM-type) is defined as 〈tpqf(s0, . . . , sn−1)|n < ω〉. In general, a

quantifier free EM-type is a sequence p̄ = 〈pn|n < ω〉 such that pn ∈ Sqf
n (∅).

We need the following generalization of indiscernible sequences for T :

Definition 4.7: A sequence s̄ = 〈si| i < δ〉 is called nearly indiscernible (in

short NI ) if:

(1) There is n < ω and an EM-type p̄ = 〈pk ∈ Sqf
k (∅)| k < ω〉 such

that if i0 < · · · < ik−1 < δ and ij + n ≤ ij+1 for all j < k, then

(si0 , . . . , sik−1
) |= pk. (So for δ∗ ≤ δ every sub-sequence 〈sij | j < δ∗〉

with ij + n ≤ ij+1 < δ is indiscernible and its quantifier free EM-type

is p̄.) We call this property sparseness.

(2) For i, j < δ and k < ω, tpqf(si, . . . , si+k) = tpqf(sj , . . . , sj+k). We call

this property sequential homogeneity.
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Definition 4.8: A sequence s̄ = 〈si| i < δ〉 is called hereditarily nearly indis-

cernible (in short, HNI) if:

For every term σ(x0, . . . , xn−1), the sequence t̄ = 〈ti| i < δ〉 defined by ti =

σ(si, . . . , si+n−1) is NI.

Remark 4.9: If s̄ is HNI then it is NI, and for every term σ(x0, . . . , xn−1), the

sequence t̄ = 〈ti| i < δ〉 defined by ti = σ(si, . . . , si+n−1) is HNI. Indeed, for

any term τ(x0, . . . , xk−1), let

τ ′(x0, . . . , xn+k−2) = τ(σ(x0, . . . , xn−1), . . . , σ(xk−1, . . . , xn+k−2));

then the sequence r̄ = 〈ri| i < δ〉 defined by ri = τ(ti, . . . , ti+k−1) is equal to

τ ′(si, . . . , si+n+k−2), thus it is NI.

Example 4.10: If s̄ = 〈si| i < δ〉 is indiscernible, then it is HNI.

Proof. Suppose σ(x0, . . . , xn−1) is a term. If ti = σ(si, . . . , si+n−1), then any

sub-sequence of t̄ = 〈ti| i < δ〉, where the distance between two consecutive

elements is at least n, is an indiscernible sequence with a constant quantifier

free EM-type. This shows sparseness.

For sequential homogeneity, note that for a quantifier free formula ϕ,

ϕ(ti, . . . , ti+k) = ϕ(σ(si, . . . , si+n−1), . . . , σ(si+k, . . . , si+n+k−1)).

Let i, j < δ. As tpqf(si, . . . , si+n+k−1) = tpqf(sj , . . . , sj+n+k−1), it follows

that

tpqf(ti, . . . , ti+k) = tpqf(tj , . . . , tj+k).

Definition 4.11: Assume M ∈ T .

(1) ind(M) is the set of all non-constant indiscernible sequences s̄∈Suc(M)δ.

(2) HNind(M) is the set of all non-constant HNI sequences s̄ ∈ Suc(M)δ.

(3) ai(M) is the set of sequences s̄ such that for some n < ω, s̄ ∈ (PM
n )δ

and si∧ si+1 < si+1 ∧ si+2 (ai stands for “almost increasing”, note that

if s̄ is increasing then it is here).

(4) indf (M) is the set of all sequences s̄ ∈ ind(M) such that si ∧ sj is

constant for all i < j < δ (f stands for “fan”).

(5) indi(M) is the set of all increasing sequences s̄ ∈ ind(M).

(6) indai(M) = ind(M) ∩ ai(M).

(7) Define HNindf (M), HNindi(M) and HNindai(M) similarly, but we de-

mand that the sequences are HNI.
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From now on, assume M ∈ T .

Remark 4.12: If s̄ ∈ ai(M), then si∧si+n = si∧si+1 for all 2 ≤ n < ω and i < δ

(prove by induction on n, using the fact that if a∧ b < b∧ b′ then a∧ b′ = a∧ b).

Proposition 4.13: HNind(M) = HNindai(M) ∪HNindf (M).

Proof. Assume that s̄ ∈ HNind(M). Since s̄ is NI, there is some n < ω that

witnesses sparseness. As for i < j < k, si ∧ sj is comparable with sj ∧ sk,

by Ramsey there is an infinite subset A ⊆ ω that satisfies one of the following

possibilities:

(1) for all i < j < k ∈ A, si ∧ sj = sj ∧ sk, or
(2) for all i < j < k ∈ A, si ∧ sj < sj ∧ sk.

(Note that it cannot be that sj∧sk < si∧sj because the trees are well ordered.)
Assume (1) is true.

It follows that if i < j < k < l ∈ A then si ∧ sj = sj ∧ sk = sk ∧ sl.

If n ≤ j − i, k − j, l − k, then by the choice of n, the same is true for all

i < j < k < l < δ where the distances are at least n. Moreover, given i < j, k < l

such that n ≤ j− i and n ≤ l− k, then si ∧ sj = smax{j,l}+n ∧ smax{j,l}+2n, and

the same is true for sk ∧ sl. It follows that si ∧ sj = sk ∧ sl.
Choose some 0 < i < n.

Assume for contradiction that s0 ∧ si < si ∧ s2i; then by sequential homo-

geneity 〈siα|α < δ〉 ∈ ai(M). In this case, by Remark 4.12, s0 ∧ si < si ∧ s2i =
si∧sni+i. But s0∧sni+i = si∧sni+i, and so on the one hand s0∧si < s0∧sni+i,

and on the other hand s0 ∧ sni+i ≤ si—together it’s a contradiction.

It cannot be that s0 ∧ si > si ∧ s2i since the trees are well ordered.

So (again by the sequential homogeneity) it must be that s0 ∧ si = si ∧ s2i =
· · · = sni ∧ sni+i. So necessarily s0 ∧ si ≤ s0 ∧ sni, but in addition s0 ∧ sni =
s0∧sni+i (since the distance is at least n) and so s0 ∧ si = sni ∧ sni+i ≥ s0 ∧ sni,
and hence s0 ∧ si = s0 ∧ sni = s0 ∧ sn.

It follows that si0 ∧ si0+i = si0 ∧ si0+n = s0∧ sn for every i0 < δ. This is true

for all i such that i0 + i < δ and so si ∧ sj = s0 ∧ sn for all i < j < δ. So in this

case s̄ ∈ HNindf (M).

Assume (2) is true. Assume that i < j < k ∈ A and the distances are at least

n. Then, as si ∧ sj < sj ∧ sk, it follows from sparseness that 〈snα|α < δ〉 ∈
ai(M) and that 〈s0, sn+1, s3n, s4n, . . .〉 ∈ ai(M). In particular, by Remark 4.12,

s0 ∧ sn = s0 ∧ s3n = s0 ∧ sn+1.
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If s0 ∧ s1 < s1 ∧ s2, then s̄ ∈ HNindai(M) by sequential homogeneity and we

are done, so assume this is not the case.

It cannot be that s0 ∧ s1 > s1 ∧ s2 (because the trees are well ordered).

Assume for contradiction that s0 ∧ s1 = s1 ∧ s2. By sequential homogeneity

it follows that s0 ∧ s1 = sn ∧ sn+1. We also know that s0 ∧ sn = s0 ∧ sn+1,

and together we have s0 ∧ s1 = s0 ∧ sn+1, and again by sequential homogeneity,

sn ∧ s2n+1 = sn ∧ sn+1, and so sn ∧ s2n+1 = s0 ∧ sn—a contradiction (because

the distances are at least n).

Definition 4.14: Define the function H : HNindai(M) → HNind(M) as follows:

given s̄ ∈ HNindai(M), let H(s̄) = t̄ where ti = G(suc(lim(si ∧ si+1), si+1)).

(Recall that G = Gn where the sequence s̄ is contained in PM
n .)

Remark 4.15: H is well defined: if s̄ ∈ HNindai(M) then H(s̄) is in HNind(M).

This is because t̄ = H(s̄) is not constant—by Clause (4) of Definition 4.4 (it

is applicable: the sequence 〈si ∧ si+1| i < δ〉 is NI and increasing, so there

is some n < ω such that si ∧ si+1 ≡ n (mod ω) for all i < δ, and hence

〈lim(si ∧ si+1)| i < δ〉 is increasing).

As usual, we denote H(0)(s̄) = s̄ and H(n)(s̄) = H(H(n−1)(s̄)) for n > 0.

Corollary 4.16: Let s̄∈HNindai(M). If for no n<ω, H(n)(s̄)∈HNindf (M),

then for all n < ω, H(n)(s̄) ∈ HNindai(M). Moreover, in this case there exists

some K<ω such that for all n≥K, if t̄=H(n)(s̄) then suc(lim(ti ∧ ti+1), ti)= ti.

Proof. By Proposition 4.13, it follows by induction on n < ω that H(n)(s̄) ∈
HNindai(M) and so H(n+1)(s̄) is well defined.

For n < ω, let s̄n = H(n)(s̄), and let us enumerate this sequence as s̄n =

〈sn,i| i < δ〉.
lev(lim(sn,0 ∧ sn,1)) < lev(sn,0) because lev(sn,0) is a successor ordinal (by

Clause (3) of Definition 4.4) while lev(lim(x)) is a limit ordinal for all x ∈M .

So lev(suc(lim(sn,0 ∧ sn,1)), sn,1) ≤ lev(sn,0), and so by Clause (2) of Defini-

tion 4.4,

〈lev(sn,0)|n < ω〉

is a ≤-decreasing sequence.

Hence there is some K < ω and some α such that lev(sn,0) = α for all K ≤ n.

Assume without loss of generality that K = 0.
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Let n < ω. We know that

lev(sn+1,0) ≤ lev(suc(lim(sn,0 ∧ sn,1), sn,1))
= lev(suc(lim(sn,0 ∧ sn,1), sn,0))
≤ lev(sn,0).

But the left-hand side and the right-hand side are equal and

suc(lim(sn,0 ∧ sn,1), sn,0) ≤ sn,0,

so

suc(lim(sn,0 ∧ sn,1), sn,0) = sn,0.

By sequential homogeneity, suc(lim(sn,i ∧ sn,i+1), sn,i) = sn,i for all i < δ, as

desired.

Constructing a model in T . By Assumption 4.1, we have a function

c : [κ]<ω → θ that witnesses the fact that κ 
→ (δ)<ω
θ (the letter c stands for “col-

oring”). Fix c, and also a pairing function (a bijection) pr : θ× θ → θ and pro-

jections π1, π2 : θ → θ (defined so that π1(pr(α, β)) = α and π2(pr(α, β)) = β).

For us, 0 is considered to be a limit ordinal. For an ordinal α, let Lim(α) =

{β < α|β is a limit}.

Definition 4.17: F = Fθ,κ is the set of triples f = (d,M,E) = (df ,Mf , Ef ) such

that:

(1) M is a standard model of T ∀
{∅} and M = PM

∅ (i.e., M is just a standard

tree). Some notation:

(a) We write <f instead of <Mf

∅ etc., or omit f when it is clear from

the context.

(b) Let Suclim(M) be the set of all t ∈ Suc(M) such that lev(t)− 1 is

a limit.

(2) E is an equivalence relation refining Enb (see Notation 4.5). Moreover,

for levels that are not α+ 1 for limit α it equals Enb. By normality E

is equality on limit elements, so it is interesting only on Suclim(M).

(3) For every Enb equivalence class C, |C/E| < κ.

(4) d is a function from {η ∈ Suclim(M)<ω| η(0) < · · · < η(lg(η)− 1)} to θ.

(5) We say that f is hard if there is no increasing sequence of elements s̄

of length δ from Suclim(M) such that:

Sh:975



Vol. 202, 2014 A DEPENDENT THEORY WITH FEW INDISCERNIBLES 91

For all n < ω there is cn < θ such that for every i0 < · · · < in−1 < δ,

d(si0 , . . . , sin−1) = cn.

Example 4.18: Consider (κ,<) as a standard tree. Let

fc = (c � Suclim(κ), κ,=) ∈ F.

Then fc is hard.

Definition 4.19: Let f=(df ,Mf , Ef )∈F, let x be a variable and A ⊆ Suclim(Mf )

be a linearly ordered set.

(1) Say that p is a d-type over A if p is a consistent set of equations of the

form

d(a0, . . . , an−1, x) = ε where n < ω, ε < θ and a0 < · · · < an−1 ∈ A.

(2) Consistency here means that p does not contain a subset of the form

{d(a0, . . . , an−1, x) = ε, d(a0, . . . , an−1, x) = ε′}

for ε 
= ε′.
(3) Say that p is complete if for every increasing sequence 〈a0, . . . , an−1〉

from A there is such an equation in p.

(4) If B ⊆ A, then for a d-type p over A, let

p � B = {d(a0, . . . , an−1, x) = ε ∈ p| a0, . . . , an−1 ∈ B}.

(5) For t ∈ Suclim(Mf ),

dtp(t/A) = {d(a0, . . . , an−1, x) = ε|
a0 < · · · < an−1 ∈ A, an−1 < t, df (a0, . . . , an−1, t) = ε}.

For an element t ∈ Suclim(M), t |= p means that t satisfies all the

equations in p when we replace d by dp.

(6) Let Sd(A) be the set of all complete d-types over A.

Now we define the function g from F to F.

Definition 4.20: For f = (Mf , df , Ef ) ∈ F, define g = g(f) = (Mg, dg, Eg) ∈ F

by:

• Mg is the set of pairs a = (Γ, η) = (Γa, ηa) such that:
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(1) There is α < κ such that

η : α → Suclim(Mf ) and Γ : Lim(α) → Sd(Mf ).

Denote lg(Γ, η) = lg(η) = α. If α is a successor ordinal, let l(Γ,η) =

η(α − 1) ∈Mf .

(2) For β < α limit, Γ(β) ∈ Sd({η(β′)|β′ ≤ β}).
(3) If 0 < α, then η(0) |= Γ(0) � ∅.
(4) For β′ < β < α, η(β′) <f η(β) (η is increasing in Mf ).

(5) If β′ < β < α are limit ordinals, then Γ(β′) ⊆ Γ(β).

(6) If β′ < β < α and β′ is a limit ordinal, then η(β) |= Γ(β′).
(7) For β < α, there is no t <f η(β) that satisfies

(a) t ∈ Suclim(Mf ),

(b) η(β′) <f t for all β
′ < β,

(c) t |= Γ(0) � ∅, and
(d) t |= Γ(β′) for all limit β′ < β.

(8) The order on Mg is (Γ, η) <g (Γ′, η′) iff Γ � Γ′ and η � η′ (where
� means first segment). This defines a standard tree structure on

Mg.

It follows that for a = (Γ, η), lev(a) = lg(a).

• dg is defined as follows: suppose a0 <g · · · <g an−1 ∈ Suclim(Mg) and

ai = (Γi, ηi).

Let ti = lai = ηi(lg(ai) − 1) and p = Γn−1(lg(an−1) − 1). Let ε ∈ θ

be the unique color such that d(t0, . . . , tn−1, x) = ε ∈ p. Then

dg(a0, . . . , an−1) = pr(ε, c(lev(a0), . . . , lev(an−1))).

• Eg is defined as follows: (Γ1, η1) Eg (Γ2, η2) iff

– lg(η1) = lg(η2), so equals some α < κ,

– η1 � β = η2 � β,Γ1 � β = Γ2 � β for all β < α (so they are

Enb-equivalent),

– Γ1(0) � ∅ = Γ2(0) � ∅, and
– if α = β + n for β ∈ Lim(α) and n < ω, then for all α0 < α1 <

· · · < αk−1 < β,

d(η1(α0), . . . , η1(αk−1), η1(β), x) =ε ∈ Γ1(β) ⇔
d(η2(α0), . . . , η2(αk−1), η2(β), x) =ε ∈ Γ2(β).
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Note that it follows that if 1 < n, and (Γ1, η1) E
nb (Γ2, η2), then

Γ1(β) = Γ2(β) and η1(β) = η2(β), so they are E-equivalent.

In the next claims we assume that f ∈ F and g = g(f).

Remark 4.21: lev(a) = lg(a) for a ∈ Mg and a Enb b iff lev(a) = lev(b) and

a � α = b � α for all α < lev(a).

Claim 4.22: g ∈ Fθ,κ and moreover it is hard.

Proof. The fact that Mg is a standard tree is trivial. Also, E refines Enb by

definition.

We must show that the number of E-classes inside a given Enb-class is

bounded.

Given a (partial) d-type p over Mf and t ∈Mf , let p
t be the set of equations

we get by replacing all appearances of t by a special letter ∗.
Assume that A is an Enb-class contained in Suclim(Mg), and that for every

a ∈ A, lev(a) = α+ 1 where α is limit. Assume a ∈ A and let

B = {∗} ∪ im(ηa)\{la}

(since A is an Enb-class, this set does not depend on the choice of a). Consider

the map ε defined by a �→ Γa(α)
la . Then, a, b ∈ A are E equivalent iff ε(a) =

ε(b). Therefore, this map induces an injective map from A/E to this set of

types. The size of this set is at most 2|B|+θ+ℵ0. But |B| = |α| < κ, and θ < κ

by assumption, so |A/E| < κ (as κ is a strong limit).

g is hard: if s̄ = 〈si| i < δ〉 is a counterexample, then 〈lev(si)| i < δ〉 would

be a homogeneous sub-sequence, contradicting the choice of c.

Proposition 4.23:

(1) For all a ∈ Suc(Mg), levMg(a) ≤ levMf
(la).

(2) Assume t ∈ Suclim(Mf ). Then there is some a = (Γ, η) ∈ Suc(Mg) such

that la = t.

Proof. (1) Let levMg(a) = α. Then 〈pref (ηa(β))|β < α〉 is an increasing se-

quence below la, hence α ≤ levMf
(la).

(2) Let Γ be the set of ordinals γ for which there is a sequence 〈(Γα, ηα)|α < γ〉
such that for every α < γ:

� (Γα, ηα) ∈Mg; lg(ηα) = α; it is an increasing sequence in <g; ηα(β) < t

for β < α and, if β is a limit, then Γα(β) = dtp(t/{ηα(β′)|β′ ≤ β}).
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We try to construct such a sequence 〈(Γα, ηα)|α < γ〉 as long as we can. By (1),

levMf
(t) + 1 /∈ Γ, so γ < κ and γ must be a successor ordinal. Let β = γ − 1.

Define η = ηβ ∪ {(β, t)}, Γ = Γβ unless β is a limit, in which case let Γ(β) be

any complete type in x over {η(β′)|β′ ≤ β} containing
⋃

{Γβ(β
′)|β′ ∈ Lim(β)} ∪ {d(x) = df (t)}.

By construction, (Γ, η) ∈Mg.

Now we build a model in T using F:

Definition 4.24: (1) Define f0 = fc (see Example 4.18), and for n < ω, let

fn+1 = g(fn).

(2) Define Pn =Mfn , dn = dfn and En = Efn .

(3) Let Mc =
⋃

n<ω Pn (we assume that the Pn’s are mutually disjoint).

So PMc
n = Pn.

(4) Mc |= T ∀
ω when we interpret the relations in the language as they are

induced from each Pn and in addition:

(5) Define GMc
n : Suc(Pn) → Suc(Pn+1) as follows: let a ∈ Suc(Pn) and

a′ = suc(lim(a), a). By Proposition 4.23, there is an element (Γ, η)a ∈
Suc(Pn+1) such that l(Γ,η)a = a′. Choose such an element for each a,

and define GMc
n (a) = (Γ, η)a.

Corollary 4.25: Mc ∈ T .

Proof. All the demands of Definition 4.4 are easy. For instance, Clause (2)

follows from Proposition 4.23. Clause (4) follows from the fact that if 〈si| i < δ〉
is an increasing sequence in Pn such that si ≡ sj (mod ω), then

〈suc(lim(si), si)| i < δ〉

is increasing, so lGn(si) 
= lGn(sj) for i 
= j.

Notation 4.26: Again, we do not write the index fn when it is clear from the

context (for instance, we write d(s0, . . . , sk) instead of dfn(s0, . . . , sk)).

The following lemma and corollary will show that starting with any HNI

sequence in Mc, by applying H to it many times, we must get a fan.

Lemma 4.27: Assume that s̄ ∈ HNindai(Mc) and t̄ = H(s̄) ∈ HNindai(Mc)

(see Definition 4.14) satisfy that for all i < δ:

• suc(lim(si ∧ si+1), si) = si, and
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• suc(lim(ti ∧ ti+1), ti) = ti.

Then, letting ui = suc(lim(si ∧ si+1), si+1) and vi = suc(lim(ti ∧ ti+1), ti+1) for

i < δ:

(1) 〈d(ui)| 1 ≤ i < δ〉 is constant.
(2) d(ui0 , . . . , uin) = π1(d(vi0 , . . . , vin−1)) for 1 ≤ i0 < · · · < in < δ (recall

that π1 is defined by π1(pr(i, j)) = i).

Proof. (1) By definition, ti = G(ui). Denote ti = (Γi, ηi). As 〈ti ∧ ti+1| i < δ〉
is an increasing sequence (because t̄ ∈ HNindai(Mc)), 0 < lev(t1 ∧ t2). Let

p = Γt1∧t2(0) � ∅. Then p = Γi(0) � ∅ for all 1 ≤ i (it may be that t1 ∧ t0 = ∅
and in this case we have no information on t0). Assume that p = {d(x) = ε}
for some ε < θ. Then, by Definition 4.20, Clauses (3) and (6), d(ηi(β)) = ε for

all 1 ≤ i < δ and β < lg(ηi). As ui = lti we are done.

(2) Denote vi = (Γ′
i, η

′
i). By our assumptions on t̄, ti E

nb vi, hence if t̄ is

increasing then v̄ = t̄. Assume that it is not increasing. Then ti ∧ ti+1 < ti

so lim(ti ∧ ti+1) = ti ∧ ti+1. Let αi = βi + 1 = lev(ti) = lg(η′i); then βi is a

limit ordinal and ti � βi = vi � βi. So for 1 ≤ i, Γ′
i(0) � ∅ = Γi(0) � ∅ = p and

Γ′
i � βi = Γi � βi.
Note that for 1 ≤ i, lti and lvi are both below ui+1 = lti+1 (as vi ≤ ti+1

and lti = ui < ui+1), that they both satisfy p and that they both satisfy the

equations in Γ(β) for each limit β < βi, so if, for instance, lti < lvi , we will have

a contradiction to Definition 4.20, Clause (7).

So, in any case (whether or not t̄ is increasing), we have lvi = lti = ui.

By choice of v̄ and the assumptions on t̄, v̄ is increasing so d is defined on

finite subsets of it.

Assume 1 ≤ i0 < · · · < in < δ. Then for every σ < θ, by the choice of d in

Definition 4.20:

� π1(d(vi0 , . . . , vin−1)) = σ iff

� d(lvi0 , . . . , lvin−1
, x) = σ ∈ Γ′

in−1
(βin−1) iff

� d(lvi0 , . . . , lvin−1
, x)=σ∈Γ′

in (βin−1) (because Γ′
in �αin−1 =Γ′

in−1
�αin−1)

iff

� d(lvi0 , . . . , lvin−1
, lvin ) = σ (this follows from Clause (6) of Definition

4.20) iff

� d(ui0 , . . . , uin) = σ (because lvi = ui).
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Corollary 4.28: If s̄ ∈ HNindai(Mc), then there must be some n < ω such

that H(n)(s̄) ∈ HNindf (Mc) (see Definition 4.14).

Proof. If not, by Corollary 4.16, for all n < ω, H(n)(s̄) ∈ HNindai(Mc). More-

over, there exists some K < ω such that for all K ≤ n, if t̄ = H(n)(s̄) then

suc(lim(ti ∧ ti+1), ti) = ti. Without loss, K = 0 (i.e., this is true also for s̄).

Claim: If s̄ is such a sequence, then for all n < ω, d(ui0 , . . . , uin−1) is constant

for all 1 ≤ i0 < · · · < in−1 < δ where ui = suc(lim(si ∧ si+1), si+1) for i < δ.

Proof of claim. Prove by induction on n using Lemma 4.27.

But this claim contradicts the fact that for all k < ω, fk is hard.

The next lemma and corollaries are the main conclusion of this section:

Lemma 4.29: If s̄ ∈ HNindai(Mc) and t̄=H(s̄) ∈ HNindf (Mc), then ¬(vi E vj)

for i < j < δ where vi = suc(lim(ti+1 ∧ ti), ti).

Proof. Let t = t0 ∧ t1, so t = ti ∧ tj for all i < j < δ. Let ui = suc(t, ti). As

ti 
= tj for i < j < δ, ui 
= uj. In addition

lui ≤ lti = suc(lim(si ∧ si+1), si+1) ≤ si+1 ∧ si+2

and 〈si ∧ si+1| i < δ〉 is increasing, so lui and luj are comparable.

First assume that α = lev(t) > 0. Then Γt(0) = Γti(0) for i < δ. For all

i < j < δ, lui |= Γuj (0) � ∅, lui is greater than ηuj (β) = ηt(β) for all β < α

and lui |= Γuj (β) = Γt(β) for all limit β < α. So by Definition 4.20, Clause (7),

lui = luj , so ηui = ηuj for all i < j < δ.

But since ui 
= uj , it necessarily follows that Γui 
= Γuj . If α = β + 1 for

some β, then by definition of the function g, Γui = Γui � α = Γt (because Γ was

defined only for limit ordinals). So necessarily α is a limit, and it follows that

lim(t) = t so vi = ui. Now it is clear that Γvi(α) 
= Γvj (α) and, by definition of

E, ¬(vi E vj) for all i < j < δ.

If α = 0, then as before vi = ui (because lim(t) = t). We cannot use the same

argument (because Γt(0) is not defined), so we take care of each pair i < j < δ

separately. If Γvi(0) � ∅ = Γvj (0) � ∅, then the argument above will work and

¬(vi E vj). If Γvi(0) � ∅ 
= Γvj (0) � ∅, then ¬(vi E vj) follows directly from the

definition.

Finally we have
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Corollary 4.30: If s̄ ∈ HNindai(Mc), then there is some v̄ ∈ HNindf (Mc)

such that vi = suc(lim(vi), vi), vi E
nb vj but ¬(vi E vj) for i < j < δ.

Proof. By Corollary 4.28, there is some minimal n < ω such that

t̄ = H(n+1)(s̄) ∈ HNindf (Mc).

Let vi = suc(lim(ti+1∧ti), ti) for i < δ. By Lemma 4.29, we have that vi E
nb vj

but ¬(vi E vj) for i < j < δ (in particular vi 
= vj). So necessarily t = ti ∧ tj is

a limit and vi = suc(t, vi).

Corollary 4.31: If there is some s̄ ∈ ind(Mc) such that si ∈ PMc
0 for all

i < δ, then there is some v̄ ∈ indf (Mc) such that vi ∈ Suclim(Mc), vi E
nb vj

but ¬(vi E vj) for i < j < δ.

Proof. Since P0 = κ, any sequence s̄ in ind(Mc) in P0 must be increasing. So

by the last corollary there is some v̄ ∈ HNindf (Mc) like there. But then by

sparseness (see Definition 4.7) there is some n < ω such that 〈vni| i < δ〉 is

indiscernible.

Remark 4.32: In this section it becomes clear why we needed to use discrete

trees and not dense ones (as in [KS12]). In Corollary 4.31, we started with an

increasing sequence in P0 = κ, and then applied a definable map on it, to get

a new HNI sequence s̄, but this sequence might be almost increasing and not

increasing (i.e., in indai). Since we wanted the coloring function d to be defined

on increasing sequences, we needed again to get an increasing sequence, so this is

done by taking si∧si+1. This sequence is increasing, but in order for the coloring

d to affect the coloring of the original sequence (as in Lemma 4.27), we need this

definable map to give us a successor of si∧si+1. Trial and error has shown that

adding the function “successor to the meet” instead of just successor results in

losing AP, so we needed the successor function. The predecessor function is not

necessary (in existentially closed models, if x > limη(x), x has a predecessor),

but there is no price to adding it, and it simplifies the theory a bit.

5. Proof of the main theorem

In this section we prove Main Theorem A.

We start with the easy direction.
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Proposition 5.1: Let κ, θ be cardinals and δ ≥ ω a limit ordinal. If κ→ (δ)<ω
θ ,

then for every n ≤ ω and every theory T of cardinality |T | ≤ θ, κ→ (δ)T,n.

Proof. For convenience, let x̄i for i < ω be disjoint n-tuples of variables and let

L(T ) be the set of formulas in T in {x̄i|i < ω}.
Let 〈āi| i < κ〉 be a sequence of n-tuples in a model M |= T . Define

c : [κ]<ω → L(T ) ∪ {0} as follows:

Given an increasing sequence η ∈ κ<ω, if lg(η) is odd, then c(η) = 0. If not,

assume it is 2k and that η = 〈αi| i < 2k〉. If āα0 · · · āαk−1
≡ āαk

· · · āα2k−1
,

then c(η) = 0. If not, there is a formula ϕ(x̄0, . . . , x̄k−1) such that M |=
ϕ(āα0 , . . . , āαk−1

)∧¬ϕ(āαk
, . . . , āα2k−1

), so choose such a ϕ and define c(η) = ϕ.

By assumption there is a sub-sequence 〈āαi | i < δ〉 on which c is homogeneous.

Without loss, assume that αi = i for i < δ.

It follows that 〈āi| i < δ〉 is an indiscernible sequence:

Suppose there are some i0 < i1 < · · · < i2k−1 < δ such that āi0 · · · āik−1

≡

āik · · · āi2k−1
. Since δ is limit there are some ordinals i2k, . . . , i3k−1 such that

i2k−1 < i2k < · · · < i3k−1 < δ.

Since c is homogeneous, there is a formula ϕ such that c(〈ik, . . . , i3k−1〉) =

c(〈i0, . . . , i2k−1〉) = ϕ, meaning that

M |= ϕ(āi0 , . . . , āik−1
) ∧ ¬ϕ(āik , . . . , āi2k−1

)

and

M |= ϕ(āik , . . . , āi2k−1
) ∧ ¬ϕ(āi2k , . . . , āi3k−1

)

—a contradiction.

Now let i0 < · · · < ik−1 < δ be any increasing sequence. Let j < δ be

greater than ik−1. Then āi0 · · · āik−1
≡ āj · · · āj+k−1 ≡ ā0 · · · āk−1 and we are

done.

From now on let S = 2<ω.

As in Notation 4.3, when we say indiscernible, we mean indiscernible for

quantifier free formulas.

The proof uses the following construction:

Construction A: Assume S′ ⊆ S is such that ν ∈ S′ ⇒ ν � k ∈ S′ for every

k ≤ lg(ν). Assume N |= T ∀,θ
S′ and that for every ν ∈ S′, if νˆ〈ε〉 /∈ S′ for

ε ∈ {0, 1}, we have a model Mε
ν |= T ∀,θ

S
. We may assume all models are

disjoint. We build a model M |= T ∀,θ
S

such that M � Lθ
S′ ⊇ N and: for every
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ν ∈ S′ and ε ∈ {0, 1} such that νˆ〈ε〉 /∈ S′ and for every η ∈ S, PM
νˆ〈ε〉ˆη = P

Mε
ν

η .

In general, for every symbol Rη from Lθ
S
, let RM

νˆ〈ε〉ˆη = R
Mε

ν
η . For instance,

eM
νˆ〈ε〉ˆη,i = e

Mε
ν

η,i for i < θ and GM
νˆ〈ε〉ˆη1,νˆ〈ε〉ˆη2

= G
Mε

ν
η1,η2 for η1 <suc η2.

The last thing that remains to be defined is GM
ν,νˆ〈ε〉. After we have defined

it, M is a model. Moreover, for every tuple ā ∈M ε
ν and for every quantifier free

formula ϕ from Lθ
S
, there is a formula ϕ′ generated by concatenating νˆ〈ε〉 to

every symbol appearing in ϕ such thatM ε
ν |= ϕ(ā) iffM |= ϕ′(ā). In particular,

if I ⊆M ε
ν is an indiscernible sequence in M , it is also such in M ε

ν .

Main Theorem A follows immediately from Proposition 5.1 and:

Theorem 5.2: Let S = 2<ω. For any cardinals θ, κ and a limit ordinal δ ≥ ω,

κ→ (δ)T θ
S
,1 iff κ→ (δ)<ω

θ .

Proof. We shall prove the following: for every cardinal κ and limit ordinal δ ≥ ω

such that κ 
→ (δ)<ω
θ , there is a model M |= T ∀,θ

S
and a set A ⊆ PM

〈〉 of size

|A| ≥ κ with no non-constant indiscernible sequence in Aδ. That will suffice

(because M can be extended to a model of T θ
S
).

The proof is by induction on κ. Note that if κ 
→ (δ)<ω
θ then also λ 
→ (δ)<ω

θ

for λ < κ. The case analysis for some of the cases is very similar to the one

done in [KS12], but we repeat it for completeness.

Case 1. κ ≤ θ. Let M |= T ∀,θ
S be any model and A = {eM〈〉,i| i < θ}.

Case 2. κ is singular. Assume that κ =
⋃
{λi| i < σ} where σ < κ and λi < κ

for all i < σ.

Assume that N0, A0 are the model and set given by the induction hypoth-

esis for σ. For all i < σ, let Mi, Bi be the models and sets guaranteed by

the induction hypothesis for λi. Let N1 be a model of T ∀,θ
S containing Mi as

substructures for all i < σ (it exists by JEP) and A1 =
⋃
{Bi| i < σ}.

Assume that {ai| i < σ} ⊆ A0 and that {bj|
⋃
{λl| l < i} ≤ j < λi} ⊆ Bi are

enumerations witnessing that |A0| ≥ σ, |Bi| ≥ λi\
⋃
{λl| l < i}.

LetM ′ |= T ∀
{〈〉} be the standard model (see Definition 4.2) with PM ′

〈〉 = κ and

<M ′
〈〉 = ∈.
Let N |= T ∀,θ

{〈〉} be a model such that N � L{〈〉} ⊇ M ′. Use Construction

A to build a model M |= T ∀,θ
S

with M0
〈〉 = N0 and M1

〈〉 = N1, and define the
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functions GM
〈〉,〈0〉 and G

M
〈〉,〈1〉 as follows: for a limit α < κ and 0 < n < ω, define

GM
〈〉,〈0〉(α+ n) = amin{j<σ|α<λj} and GM

〈〉,〈1〉(α+ n) = bα.

Let A = κ = PM ′
〈0〉 . Assume that s̄ = 〈si| i < δ〉 is an indiscernible sequence

contained in A.

Obviously it cannot be that s1 < s0. Assume that s0 < s1. There are limit

ordinals αi and natural numbers ni such that si = αi+ni, i.e., si ≡ ni (mod ω).

By indiscernibility, ni is constant, and denote it by n. So 〈suc(s2i, s2i+1) =

s2i + 1| i < δ〉 is an indiscernible sequence of successor ordinals.

〈G〈〉,〈0〉(s2i + 1)| i < δ〉 must be constant by the choice of A0, and assume

it is ai0 for i0 < σ. It follows that α2i ∈ λi0\
⋃
{λl| l < i0}. This means that

G〈〉,〈1〉(s2i + 1) = bα2i ⊆ Bi0 for all i < σ, and so α2i must be constant. This

means that 〈s2i| i < δ〉 is constant so also s̄.

Case 3. κ is regular but not strongly inaccessible. Then there is some λ < κ

such that 2λ ≥ κ.

LetM0 |= T ∀,θ
S and A0 ⊆ PM0

〈〉 satisfy the induction hypothesis for λ. Assume

that A0 ⊇ {ai| i ≤ λ} where ai 
= aj for i 
= j.

Let M ′ |= T ∀
{〈〉} be a standard model such that PM ′

〈〉 = 2≤λ ordered by first

segment.

Let N |= T ∀,θ
{〈〉} be any model such that N � L{〈〉} ⊇M ′. We use Construction

A to build a model M |= T ∀
S using N and M0

〈〉 =M1
〈〉 =M0. We need to define

the functions G〈〉,〈0〉 and G〈〉,〈1〉:
For f ∈ PM ′

〈〉 such that lg(f) = α + n for some limit α and n < ω, define

GM ′
〈〉,〈0〉(f) = aα. There are no further limitations on the functions GM ′

〈〉,〈0〉 and

GM ′
〈〉,〈1〉 as long as they are regressive.

Let A = 2≤λ = PM ′
〈〉 . Assume for contradiction that 〈si| i < δ〉 is a non-

constant indiscernible sequence contained in A.

It cannot be that s1 < s0, because by indiscernibility, we would have an

infinite decreasing sequence.

It cannot be that s0 < s1:

In that case, 〈si| i < δ〉 is increasing. For all i < δ, let ti = suc(s2i, s2i+1).

The sequence 〈ti| i < δ〉 is an indiscernible sequence contained in Suc(PM
〈〉 )

and so ti ≡ n (mod ω) for some constant n < ω. Hence 〈lg(ti) − n| i < δ〉
is increasing and 〈G〈〉,〈0〉(ti) = alg(ti)−n| i < δ〉 is a non-constant indiscernible

sequence contained in A0—a contradiction.
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Denote ri = s0 ∧ si+1 for i < δ. This is an indiscernible sequence, and by the

same arguments, it cannot decrease or increase. But since ri < s0, it follows

that ri is constant.

Assume that s0 ∧ s1 < s1 ∧ s2; then s1 ∧ s2 < s2 ∧ s3 and so

s2i ∧ s2i+1 < s2(i+1) ∧ s2(i+1)+1 for all i < δ,

and again—〈s2i ∧ s2i+1〉 is an increasing indiscernible sequence—we reach a

contradiction.

Similarly, it cannot be that s0 ∧ s1 > s1 ∧ s2. As both sides are smaller than

or equal to s1, it must be that

s0 ∧ s2 = s0 ∧ s1 = s1 ∧ s2.

But this is a contradiction (because if α = lg(s0 ∧ s1) then

|{s0(α), s1(α), s2(α)}| = 3,

but the range of these functions is {0, 1}).
Case 4. κ is strongly inaccessible.

Assume that Mλ, Aλ are the models and sets given by the induction hypoth-

esis for λ < κ. We may assume they are disjoint. Let N be a model of T ∀,θ
S

containing Mλ for λ < κ (N exists by JEP), and let A =
⋃
{Aλ|λ < κ} ⊆ N .

Recall that we have a function c : [κ]<ω → θ that witnesses the fact that

κ 
→ (δ)<ω
θ , and that in Definition 4.24 we defined a model Mc of T ∀

ω . Let

Nc |= T ∀,θ
ω be a model such that Nc � Lω ⊇Mc. Let S

′ = 1<ω (finite sequences

of zeros). We may think of Nc as a model of T ∀,θ
S′ . Denote 0n = 〈0, . . . , 0〉 where

lg(0n) = n.

We use Construction A and S′ to build a model M of T ∀,θ
S

:

• For all n < ω, let M1
0n = N .

• Define GM
0n,0nˆ〈1〉 as follows:

– Recall that PM
0n ⊇ PMc

n = Mfn . Assume that B ⊆ Suclim(P
Mc
n ) is

an Enb class. By definition, |B/Efn | < κ.

– Choose some enumeration of the classes {ci| i < |B/Efn |}, and an

enumeration A|B/Efn | ⊇ {ai| i < |B/Efn |} of pairwise distinct ele-

ments. Now, GM
0n,0nˆ〈1〉 maps every class ci (i.e., every element

in ci) to ai. It is easy to see that if a Enb b are distinct in

Suclim(P
Mc
n ), then a and b are not ∼Mc-equivalent (see Definition
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3.17). This means that GM
0n,0nˆ〈1〉 is well defined. Outside of PMc

n ,

define GM
0n,0nˆ〈1〉 arbitrarily as long as it is regressive.

Let A = Suclim(P
Mc

〈〉 ), i.e., A = Suclim(κ). Assume for contradiction that A

contains a δ-indiscernible sequence.

By Corollary 4.31, there is n<ω and an indiscernible sequence v̄ in Suclim(P
M
0n)

such that for i < j < δ, vi E
nb vj but ¬(vi E vj). So 〈GM

0n,0nˆ〈1〉(vi)| i < δ〉 is a
non-constant indiscernible sequence in A|[v0]Enb/Efn |—a contradiction.

Remark 5.3: Why in the definition of g (Definition 4.20) did we demand that

the image of η is in Suclim and that Γ is defined only in limit levels? Had we

given Γ the freedom to give values in every ordinal, then the “fan” (i.e., the

sequence in indf ) which we obtained in Lemma 4.29 might not have been in a

successor to a limit level, so we would have no freedom in applying G on it. As

Γ is relevant only for limit levels, the coloring was defined only on sequence in

Suclim, so we needed η to give elements from there.

6. Strongly dependent theories

As we said in the introduction, in [She12] it is proved that �|T |+(λ) → (λ+)T,n

for strongly dependent T and n < ω.

In [KS12] we show that in RCF there is a similar phenomenon to what

we have here, but for ω-tuples: there are sets from all cardinalities with no

indiscernible sequence of ω-tuples up to the first strongly inaccessible cardinal.

This explains why the theorem mentioned was only proved for n < ω.

The example we described here is not strongly dependent, but it can be

modified a bit so that it will be, and then give a similar theorem for strongly

dependent theories (or even strongly2 dependent), but for ω-tuples.

Theorem 6.1: For every θ there is a strongly2 dependent theory T of size θ

such that for all κ and δ, κ→ (δ)T,ω iff κ→ (δ)<ω
θ .

Proof. Right to left follows from Proposition 5.1.

For n < ω let Sn = 2≤n and let T θ
n be the theory T θ

Sn
(see Corollary 3.33). Let

T be the theory
∑

n<ω T
θ
n : the language is {Qn|n < ω}∪{Rn|R ∈ Lθ

Sn
} where

Qn are unary predicates, and the theory says that they are mutually disjoint

and that each Qn is a model of T θ
n . It is easy to see that this theory is complete

and has quantifier elimination. Denote S = 2<ω as before. If M is a model of
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T θ
S
, then M naturally induces a model N of T (where QN

n = (M ×{n}) � Lθ
Sn

).

For all a ∈M , let fa ∈
∏

n<ω Q
N
n be defined by fa(n) = (a, n) for n < ω. Now,

if A ⊆ PM
〈〉 is any set with no δ-indiscernible sequence, then the set {fa| a ∈ A}

is a sequence of ω-tuples with no indiscernible sequence of length δ.

By Corollary 3.33, it follows that each Tn is strongly2 dependent, and so also

T (this can be seen directly by Definition 2.4, or use an equivalent definition

using mutually indiscernible sequences [She12, Definition 2.3] and [She12, Claim

2.8 (3)]).
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[Kud11] K. Zh. Kudăıbergenov, Independence property of first-order theories and indis-

cernible sequences, Matematicheskie Trudy 14 (2011), no. 1, 126–140.

[She86] S. Shelah, Around Classification Theory of Models, Lecture Notes in Mathematics,

Vol. 1182, Springer-Verlag, Berlin, 1986.

[She90] S. Shelah, Classification Theory and the Number of Nonisomorphic Models, sec-

ond edition, Studies in Logic and the Foundations of Mathematics, Vol. 92, North-

Holland, Amsterdam, 1990.

[She09] S. Shelah, Dependent first order theories, continued, Israel Journal of Mathematics

173 (2009), 1–60.

[She12] S. Shelah, Strongly dependent theories, Israel Journal of Mathematics, to appear.

[TZ12] K. Tent and M. Ziegler, A Course in Model Theory, Lecture Notes in Logic, Vol. 40,

Cambridge University Press, 2012.

Sh:975



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




