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We define the concept of a logic frame, which extends the concept of an abstract logic by adding the concept of a
syntax and an axiom system. In a recursive logic frame the syntax and the set of axioms are recursively coded.
A recursive logic frame is called complete (recursively compact, ℵ0-compact), if every finite (respectively:
recursive, countable) consistent theory has a model. We show that for logic frames built from the cardinality
quantifiers “there exists at least λ” completeness always implies ℵ0-compactness. On the other hand we show
that a recursively compact logic frame need not be ℵ0-compact.
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1 Introduction

For the definition of an abstract logic and a generalized quantifier the reader is referred to [4, 13, 14]. Undoubt-
edly the most important among abstract logics are the ones that have a complete axiomatization of validity. In
many cases, most notably when we combine even the simplest generalized quantifiers, completeness of an ax-
iomatization cannot be proved in ZFC alone but depends of principles like CH or �. Examples of logics that
have a complete axiomatization are:

1. the infinitary language Lω1ω (see [10]);

2. logic with the generalized quantifier1) (see [27])

∃≥ℵ1xϕ(x, �y ) ⇔ |{x : ϕ(x, �y )}| ≥ ℵ1;

3. logic with the cofinality quantifier (see [24])

Qcof
ℵ0
xy ϕ(x, y, �z ) ⇔ {〈x, y〉 : ϕ(x, y, �z )} is a linear order of cofinality ℵ0;

4. logic with the cub-quantifier (see [24])

Qcub
ℵ1
xy ϕ(x, y, �z ) ⇔ {〈x, y〉 : ϕ(x, y, �z )} is an ℵ1-like linear order in which a cub of initial

segments have a sup;

5. logic with the Magidor-Malitz quantifier, assuming � (see [15]),

QMM
ℵ1

xy ϕ(x, y, �z ) ⇔ ∃X (|X | ≥ ℵ1 ∧ (∀x, y ∈ X)ϕ(x, y, �z )).

The extension L(∃≥κ) of first order logic was introduced by Andrzej Mostowski in 1957 [18]. Here ∃≥κ is the
generalized quantifier

M � ∃≥κxϕ(x,�a ) ⇔ |{b ∈M : M � ϕ(b,�a )}| ≥ κ.
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1) This quantifier is usually denoted by Q1.
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Mostowski asked whether L(∃≥κ) is ℵ0-compact (i. e. every countable set of sentences, every finite subset of
which has a model, has itself a model) and observed that L(∃≥ℵ0) is not. In 1963 Gerhard Fuhrken [7] proved
that L(∃≥κ) is ℵ0-compact if ℵ0 is small for κ (i. e. if λn < κ for n < ω, then

∏
n<ω λn < κ). His proof was

based on the observation that the usual Łoś Lemma
∏

n<ω Mn/F � ϕ⇔ {n < ω : Mn � ϕ} ∈ F

for ultrafilters F on ω and first order sentences ϕ can be proved for ϕ ∈ L(∃≥κ) if ℵ0 is small for κ. The ℵ0-com-
pactness follows from the Łoś Lemma immediately.

Vaught [27] proved ℵ0-compactness of L(∃≥ℵ1) by proving what is now known as Vaught’s Two-Cardi-
nal Theorem and Chang [5] extended this to L(∃≥κ+

) by proving (ω1, ω) → (κ+, κ), when κ<κ = κ. Jensen [9]
extended this to all κ under the assumption GCH+�κ, which he showed to follow from V = L. Keisler [11] pro-
ved with a different method ℵ0-compactness of L(∃≥κ) for κ a singular strong limit cardinal. This led to the im-
portant observation that if V = L holds and every regular cardinal is a successor cardinal (i. e. there are no weakly
inaccessible cardinals), thenL(∃≥κ) is ℵ0-compact for all κ > ω. We still do not know if this is provable in ZFC:

Open Problem 1.1 Is it provable in ZFC that L(∃≥κ) is ℵ0-compact for all κ > ω? In particular, is it
provable in ZFC that L(∃≥ℵ2) is ℵ0-compact?

The best result today towards solving this problem is:

Theorem 1.2 [26] It is consistent, relative to the consistency of ZF that L(∃≥ℵ1 , ∃≥ℵ2) is not ℵ0-compact.

Our approach is to look for ZFC-provable relationships between completeness, recursive compactness and
ℵ0-compactness in the context of a particular logic in the hope that such relationships would reveal important
features of the logic even if we cannot settle any one of these properties per se. For example, the ℵ0-compactness
of the logic Lωω(∃≥ℵ1 , ∃≥ℵ2 , ∃≥ℵ3 , . . .) cannot be decided in ZFC, but we prove in ZFC that if this logic is
recursively compact, it is ℵ0-compact. We show by example that recursive compactness does not in general
imply ℵ0-compactness.

2 Logic frames

Our concept of a logic frame captures the combination of syntax, semantics and proof theory of an extension of
first order logic. This is a very general concept and is not defined here with mathematical exactness, as we do not
prove any general results about logic frames. All our results are about concrete examples.

Definition 2.1

1. A logic frame is a triple L∗ = 〈L,�L,A〉, where 〈L,�L〉 is a logic in the sense of [4, Definition 1.1.1], A is
a class of L∗-axioms and L∗-inference rules. We write �A ϕ if ϕ is derivable using the axioms and rules in A,
and call a set T of L∗-sentences A-consistent if no sentence together with its negation is derivable from T .

2. A logic frame L∗ = (L,�L,A) is recursive if
(a) there is an effective algorithm which gives for each finite vocabulary τ the set L[τ ] and for each ϕ ∈ L[τ ]

a second order2) formula which defines the semantics of ϕ;

(b) there is an effective algorithm which gives the axioms and rules of A.
3. A logic frame L∗ = 〈L,�L,A〉 is a 〈κ, λ〉-logic frame, if each sentence contains less than λ predicate,

function and constant symbols, and |L[τ ]| ≤ κ whenever the vocabulary τ has less that λ symbols altogether.

4. A logic frame L∗ = 〈L,�L,A〉 is
(a) complete if every finite A-consistent L∗-theory has a model;

(b) recursively compact if every A-consistent L∗-theory, which is recursive in the set of axioms and rules,
has a model;

(c) (κ, λ)-compact if every L∗-theory of cardinality ≤ κ, every subset of cardinality < λ of which is
A-consistent, has a model;

(d) κ-compact, if it is (κ, ω)-compact.

2) Second order logic represents a strong logic with an effectively defined syntax. It is not essential, which logic is used here as long as
it is powerful enough.
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Note that

ℵ0-compactness ⇒ recursive compactness ⇒ completeness.

The weakest condition is thus completeness. We work in this paper almost exclusively with complete logic frames
investigating their compactness properties. In the following definition we use the concept of “possible universe”.
By this we mean an inner model or a forcing extension. The exact meaning of this concept is not at all critical for
our results. We do not want to use “provable in ZFC” instead because we have ordinal parameters. For example,
the logic L(∃≥κ) has κ as a parameter.

Definition 2.2 A logic frame L∗ = 〈L,�L,A〉 has
1. finite recursive character if for every possible universe V ′,

V ′ � (L∗ is complete ⇒ L∗ is recursively compact);

2. finite character if for every possible universe V ′,

V ′ � (L∗ is complete ⇒ L∗ is ℵ0-compact);

3. recursive character if for every possible universe V ′,

V ′ � (L∗ is recursively compact ⇒ L∗ is ℵ0-compact).

Finite (recursive) “(κ, λ)-character” means finite (respectively recursive) character with “ℵ0-compact” replaced
by “(κ, λ)-compact”. “Strong character”, means (κ, ω)-character for all κ.

An extension of first order logic by finitely many generalized quantifiers has finite recursive character (see [4]).

Example 2.3 Let

L(∃≥κ+
) = 〈L(∃≥κ+

),�L(∃≥κ+),A(∃≥κ+
)〉,

where

M � ∃≥κxϕ(x, �y ) ⇔ |{x : M � ϕ(x, �y )| ≥ κ

and A(∃≥κ+
) has as axioms the basic axioms of first order logic and

1. ¬∃≥κ+
x (x = y ∨ x = z);

2. ∀x (ϕ → ψ) → (∃≥κ+
xϕ→ ∃≥κ+

xψ);

3. ∃≥κ+
xϕ(x, . . .) ↔ ∃≥κ+

y ϕ(y, . . .), where ϕ(x, . . .) is a formula of L(∃≥κ+
) in which y does not occur;

4. ∃≥κ+
y∃xϕ→ ∃x∃≥κ+

y ϕ ∨ ∃≥κ+
x∃y ϕ;

and Modus Ponens as the only rule. The logic L(∃≥κ+
) was introduced by Mostowski [18] and the above frame

for κ = ℵ0 by Keisler [12]. The logic frameL(∃≥κ+
) is an effective 〈ω, ω〉-logic frame. The logic frameL(∃≥ℵ1)

is ℵ0-compact, hence has finite character for a trivial reason. If κ = κ<κ, then by Chang’s Two-Cardinal Theo-
rem, L(∃≥κ+

) is ℵ0-compact, in fact (κ, ω)-compact (see [22]). If V = L, then L(∃≥κ+
) is (κ, ω)-compact for

all κ (Jensen [9]).

Example 2.4 Suppose κ is a singular strong limit cardinal. Let

L(∃≥κ) = 〈L(∃≥κ),�L(∃≥κ),A(∃≥κ)〉,
where A(∃≥κ) has as axioms the basic axioms of first order logic, a rather complicated set of special axioms
from [11] (no simple set of axioms is known at present), and Modus Ponens as the only rule. The logic
frame L(∃≥κ) is (λ, ω)-compact for each λ < κ (see [11, 22]).

Example 2.5 Suppose κ is strong limit ω-Mahlo3) cardinal. Let

L(∃≥κ) = 〈L(∃≥κ),�L(∃≥κ),A(∃≥κ)〉,
where A(∃≥κ) has as axioms the basic axioms of first order logic, axioms given in [20], and Modus Ponens as
the only rule. The logic frame L(∃≥κ) is (λ, ω)-compact for each λ < κ (see [21, 22]).

3) κ is 0-Mahlo if it is regular, (n + 1)-Mahlo, if there is a stationary set of n-Mahlo cardinals below κ, and ω-Mahlo if it is n-Mahlo
for all n < ω.

www.mlq-journal.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Sh:790



154 S. Shelah and J. Väänänen: Recursive logic frames

Example 2.6 Suppose κ is a regular cardinal. Let

L(Qcof
κ ) = 〈L(Qcof

κ ),�L(Qcof
κ ),A(Qcof

κ )〉,

where M � Qcof
κ xy ϕ(x, y, �z ) if and only if {〈x, y〉 : M � ϕ(x, y, �z )} is a linear order of cofinality κ,

and A(Qcof
κ ) has as axioms the basic axioms of first order logic, the axioms from [24], and Modus Ponens as the

only rule. The logic frame L(Qcof
κ ) is fully compact, i. e. (κ, ω)-compact for all κ, hence has finite character for

a trivial reason (see [24]).

Example 2.7 Let

L(Qcub
ℵ1

) = 〈L(Qcub
ℵ1

),�L(Qcub
ℵ1

),A(Qcub
ℵ1

)〉,

where M � Qcub
ℵ1
xy ϕ(x, y, �z ) if and only if {〈x, y〉 : M � ϕ(x, y, �z )} is an ℵ1-like linear order in which a cub

of initial segments have a sup, and A(Qcub
ℵ1

) has as axioms the basic axioms of first order logic, and axioms
from [3]. The logic frame L(Qcub

ℵ1
) is ℵ0-compact (see [24]), hence has finite character for a trivial reason. We

shall give explicit axioms for this logic frame later.

Example 2.8 Magidor-Malitz quantifier logic frame is

L(QMM
κ ) = 〈L(QMM

κ ),�,AMM
κ 〉,

where

QMM
κ xy ϕ(x, y, �z ) ⇔ ∃X (|X | ≥ κ ∧X ×X ⊆ {〈x, y〉 : ϕ(x, y, �z )})

and AMM
κ is the set of axioms and rules introduced by Magidor and Malitz in [15]. The logic frame L(QMM

κ+ ) is
an effective 〈ω, ω〉-logic frame. The logic frame L(QMM

κ+ ) is complete, if we assume �, �κ and �κ+ , but there
is a forcing extension in which L(QMM

ℵ1
) is not ℵ0-compact [1].

Example 2.9 Let

Lκλ = 〈Lκλ,�Lκλ
,Aκλ〉,

where Aκλ has as axioms the obvious axioms and Chang’s Distributive Laws, and as rules Modus Ponens,
Conjunction Rule, Generalization Rule and the Rule of Dependent Choices from [10]. This an old example
of a logic frame introduced by Tarski in the late 50’s and studied intensively, e. g. by Karp [10]. The logic
frame Lκλ is a 〈κκ, κ〉-logic frame. It is effective and (µ, ω)-compact for all µ, if κ = λ = ω. It is complete,
if κ = ω1, λ = ω. The logic frame Lκλ is complete also if

1. κ = µ+ and µ<λ = µ, or

2. κ is strongly inaccessible, or

3. κ is weakly inaccessible, λ is regular and (∀α < κ)(∀β < λ)(αβ < κ),
(see [10]) although in these cases the completeness is not as useful as in the case of Lωω and Lω1ω. Lκλ is not
complete if κ = λ is a successor cardinal (D. Scott, see [10]). Lκλ is not (κ, κ)-compact unless κ is weakly
compact, and then also Lκκ is (κ, κ)-compact. Lκλ is not (µ, κ)-compact for all µ ≥ κ unless κ is strongly
compact and then also Lκκ is. The logic frame Lκλ is not of finite (κ, κ)-character, unless κ = ω, since it is in
some possible universes complete, but not (κ, κ)-compact.

Example 2.10 Let ℵ0 < κ < λ be strongly compact cardinals. A sublogic L1 of Lλλ, extending L(∃≥κ), is
defined in [8]. This logic is like Lλλ in that it allows quantification over sequences of variables of length< λ, but
instead of conjunctions and disjunctions of length < κ, the logic L1 allows conjunctions and disjunctions over
sets of formulas indexed by a set in a κ-complete ultrafilter on a cardinal < λ. The logic L1 is (µ, ω)-compact
for µ < κ, (µ, λ)-compact for all µ, has the interpolation property and other nice properties.

The definition of logic frames leaves many details vague, e. g. the exact form of axioms and rules. Also the
conditions of a recursive logic frame would have to be formulated more exactly for any general results. Going
into such details would take us too much astray from the main purpose of this paper.
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3 Logics with recursive character

We now investigate the following quite general question involving an infinite sequence (κn)n<ω of uncountable
cardinals:

Question 3.1 For which sequences (κn)n<ω of uncountable cardinals is the logic L(∃≥κn)n<ω ℵ0-compact?

As the preceding discussion indicates we cannot expect a general solution in ZFC. Extreme cases are
1. κn = ℵ1 for all n < ω,

2. ℵ0 is small for each κn,

3. some κn is the supremum of a subset of the others,
where we have a trivial solution (in case 2. we have Łoś Lemma and therefore ℵ0-compactness, and in case 3. we
have an easy counter-example to ℵ0-compactness).

Let us call a logic recursively compact if every recursive set of sentences, every finite subset of which has
a model, itself has a model. Naturally this concept is meaningful only for logics which possess a canonical
Gödel numbering of its sentences. Let us call a logic recursively axiomatizable if the set of (Gödel numbers of)
valid sentences of the logic is recursively enumerable. By a result of Per Lindström [14] (see also [4]) any recur-
sively axiomatizable logic of the form L(∃≥κn)n≤m is actually recursively compact. This raises the question:

Question 3.2 For which sequences (κn)n<ω of uncountable cardinals is the logic L(∃≥κn)n<ω recursively
axiomatizable?

We give an axiomatization A of L(∃≥κn)n<ω. We do not know in general whether this A is recursive (or
recursively enumerable). We give a combinatorial characterization of sequences (κn)n<ω for which the logic
frame (L(∃≥κn)n<ω,�,A) is complete.

In the presence of an axiomatization A we can redefine our compactness properties. Rather than requiring that
every finite subtheory has a model we can require that every finite subtheory is A-consistent in the sense that no
contradiction can be derived from it by means of the axioms and rules of A. It turns out that this change is not
significant in the sense that in our main result we could use either. However, this modified concept of compactness
reveals an interesting connection between completeness and compactness: we can think of completeness (every
consistent sentence has a model) as a compactness property of one-element theories. In this sense recursive
compactness is a strengthening of completeness.

For example, if A∗ is the Keisler axiomatization (from [12]) for L(∃≥ℵ1), it is consistent that 〈L(∃≥ℵ2), A∗〉
is complete (this follows from GCH), and it is also consistent that 〈L(∃≥ℵ2), A∗〉 is incomplete (this follows
from (ℵ1,ℵ0) � (ℵ2,ℵ1) which is consistent by [16]). However, we know it has provably finite character (see
Proposition 3.19).

The main result of this paper (proved in Corollary 3.24) is the following:

Theorem 3.3 Suppose (κn)n<ω is a sequence of uncountable cardinals. There is a canonical axiomatiza-
tion A of L(∃≥κn)n<ω such that the logic frame 〈L(∃≥κn)n<ω,�, A〉 has recursive character.

It is noteworthy that the above theorem is a result in ZFC. The proof is based on formulating a partition theo-
retic equivalent condition for the ℵ0-compactness (equivalently recursive compactness) of L(∃≥κn)n<ω.

There is a basic reduction of generalized quantifiers of the form ∃≥κ to first order logic. This was established
by Fuhrken [6]. A model 〈M, . . . , A,<, . . .〉 is called λ-like if 〈A,<〉 is a λ-like linear order (i. e. of cardinality λ
with all initial segments of cardinality< λ). Fuhrken established a canonical translation ϕ �−→ ϕ+ of L(∃≥κ) to
first order logic so that

ϕ has a model ⇔ ϕ+ has a κ-like model.

Thus the questions of axiomatization andℵ0-compactness ofL(∃≥κ) were reduced to questions of axiomatization
and ℵ0-compactness of first order logic restricted to κ-like models.

If κ = λ+, the reduction is slightly simpler. Then we can use (κ, λ)-models, i. e. models 〈M, . . . , A, . . .〉,
where |M | = κ and |A| = λ. The study of model theory of (κ, λ)-models makes, of course, sense also if κ �= λ+

even if this more general case does not arise from a reduction of L(∃≥κ).
There is an immediate translation of the logic L(∃≥κn)n<ω to first order logic on models that have for

each n < ω a unary predicate Pn and a κn-like linear order <n on Pn. Let us call such models (κn)n<ω-like
models. Mutatis mutandis, our approach applies also to logics of the form L(∃≥κn)n<m.
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For easier notation we fix 〈An, <n〉 such that the sets An are disjoint and for each n the structure 〈An, <n〉
is a well-order of order type κn. We say that 〈a0, . . . , an〉 ∈ [

⋃
n<ω An]<ω is increasing if its restriction to

any 〈Am, <m〉 is increasing in 〈Am, <m〉.
Definition 3.4 A triple

F = 〈〈Ea : a ∈ ⋃
n<ω An〉, 〈〈An, <n〉 : n < ω〉, 〈hn : n < ω〉〉,

where
(E1) each Ea is an equivalence relation on [

⋃
n<ω An]<ω such that equivalent sets have the same cardinality;

(E2) if a ∈ An, the number of equivalence classes of Ea is < κn;

(E3) hn : [
⋃

n<ω An]<ω −→ An;
is called a (κn)n<ω-pattern.

Let us now try to use the pattern to construct a (κn)n<ω-like model. Let us assume that our starting theory T
has the property that every finite subset has a (κn)n<ω-like model. We assume the vocabulary L of T has
cardinality< min{κn : n < ω}. Let L∗ be the Skolem-expansion of L and T ∗ the Skolem-closure of T . Let ca,
a ∈ ⋃

n<ω An, be new constant symbols. Let <n be the predicate symbol the interpretation of which we want to
be κn-like. Consider the axioms
(T1) T ∗ (Skolem-closure of T );

(T2) cα <n cβ for α <n β in An;

(T3) Pn(ca) for a ∈ An;

(T4) Pm(t(ca0 , . . . , can)) → t(ca0 , . . . , can) <m chm({a0,...,an}), where 〈a0, . . . , an〉 ∈ [
⋃

n<ω An]<ω is in-
creasing and t is a Skolem-term;

(T5) t(ca0 , . . . , can) = t(cb0 , . . . , cbn) ∨ (¬(t(ca0 , . . . , can) <m ca) ∧ ¬(t(cb0 , . . . , cbn) <m ca)) for all Sko-
lem-terms t and all increasing 〈a0, . . . , an〉, 〈b0, . . . , bn〉 ∈ [

⋃
n<ω An]<ω such that {a0, . . . , an}Ea{b0, . . . , bn},

whenever a ∈ Am.
Let Σ be an arbitrary finite subset of (T1) – (T5). Let M be a (κn)n<ω-like model of Σ ∩ T ∗. Let Dm be

the set of a ∈ Am such that ca occurs in Σ. Let us expand M to a model M′ by adding interpretations to all the
constants ca, a ∈ ⋃

n<ω An, in such a way that they increase in 〈PM
m , <M

m 〉 with a ∈ PM
m and are cofinal in <M

m .
The model M′ and Σ induce in a canonical way a (κn)n<ω-pattern

(1) F ′ = 〈〈E′
a : a ∈ ⋃

n<ω An〉, 〈〈An, <n〉 : n < ω〉, 〈h′n : n < ω〉〉
as follows: If a ∈ Am, then define for increasing 〈a0, . . . , an〉, 〈b0, . . . , bn〉 ∈ [

⋃
n<ω An]<ω

{a0, . . . , an}E′
a{b0, . . . , bn} ⇔ M′ � t(ca0 , . . . , can) = t(cb0 , . . . , cbn)

∨ (¬(t(ca0 , . . . , can) <m ca) ∧ ¬(t(cb0 , . . . , cbn) <m ca)),
for all Skolem-terms t occurring in Σ,

and

h′m({a0, . . . , an}) = min{b ∈ Am : t(ca0 , . . . , can)M′
<m cM

′
b for all

Skolem-terms t occurring in Σ}.

We now stop for a moment to contemplate on the concept of identity. An ω-cardinal identity is a triple

(2) I = 〈〈Ea : a ∈ ⋃
n<ω Dn〉, 〈〈Dn, <n〉 : n < ω〉, 〈hn : n < ω〉〉,

where:
(I1) The 〈Dm, <m〉 are disjoint finite linear orders, Dm = ∅ for all but finitely many m. The cardinality

of
⋃

n<ω Dn is called the size of I. The smallest l such that Dm = ∅ for m > l is called the length of I.

(I2) EachEa, a ∈ Dm, is an equivalence relation on P(Dm) such that equivalent sets have the same cardinality.

(I3) hm : [
⋃

n<ω Dn]<ω −→ Dm is a partial function.
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An example of an ω-cardinal identity is the restriction

F�D = 〈〈Ea�D : a ∈ D ∩ ⋃
n<ω Dn〉, 〈〈Dn, <n〉�D : n < ω〉, 〈hn�D : n < ω〉〉

of (κn)n<ω-pattern to a finite D. An ω-cardinal identity

I = 〈〈Ea : a ∈ ⋃
n<ω Dn〉, 〈〈Dn, <n〉 : n < ω〉, 〈hn : n < ω〉〉

is a subidentity of another ω-cardinal identity

I′ = 〈〈E′
a : a ∈ ⋃

n<ω D
′
n〉, 〈〈D′

n, <n〉 : n < ω〉, 〈h′n : n < ω〉〉,
in symbols I ≤ I′, if there is an order-preserving mapping π :

⋃
n<ω Dn −→ ⋃

n<ω D
′
n such that

(S1) π�Dm : 〈Dm, <m〉 −→ 〈D′
m, <

′
m〉 is order-preserving;

(S2) for {d0, . . . , dn}, {d′0, . . . , d′n} ∈ [
⋃

n<ω Dn]n,

if {d0, . . . , dn}Ea{d′0, . . . , d′n}, then {πd0, . . . , πdn}Eπa{πd′0, . . . , πd′n};

(S3) πhm({d0, . . . , dn}) ≤′
m h′m({πd0, . . . , πdn}) if {d0, . . . , dn} ∈ [

⋃
n<ω Dn]n.

Let I(F) be the set of all subidentities of F�D for finite D. We write (κn)n<ω → (I) if I belongs to I(F)
for every (κn)n<ω-pattern F . Let I((κn)n<ω) be the set of all I such that (κn)n<ω → (I), i. e.

I((κn)n<ω) =
⋂{I(F) : F is a (κn)n<ω-pattern}.

Definition 3.5 A (κn)n<ω-pattern F is fundamental if I(F) = I((κn)n<ω).
Suppose now that there is a fundamental (κn)n<ω-pattern F . Let us see how we can finish the construction of

a κ-like model for T . We built up a (κn)n<ω-pattern F ′ from the model M′. Since F is fundamental, there is a
finite set D′ such that F�D ≤ F ′�D′. Thus M can be expanded to a model of Σ.

To sum up, we have proved the following result:

Theorem 3.6 If there is a fundamental (κn)n<ω-pattern, then first order logic on (κn)n<ω-models is λ-com-
pact for all λ < min{κn : n < ω}. In particular, L(∃≥κn)n<ω is λ-compact for all λ < min{κn : n < ω}.

The question of existence of fundamental (κn)n<ω-patterns is, of course, quite difficult. Let us recall some
earlier results obtained by means of a construction of a fundamental pattern:

Theorem 3.7

1. If ℵ0 is small for κ, then L(∃≥κ) is λ-compact for all λ < κ (see [22]).

2. If λω = λ and κ ≥ λ, then first order logic on (κ, λ)-models is λ-compact. In particular, then L(∃≥λ+
) is

λ-compact (see [22]).
3. If �ω(λ) ≤ κ, then first order logic on (κ, λ)-models is λ-compact (see [28]).
4. If cf(κ) ≤ λ < κ, λ singular, κ singular strong limit, then first order logic on (κ, λ)-models is recursively

axiomatizable and λ-compact (see [23]).
5. If κ is singular strong limit, L(∃≥κ) is λ-compact and recursively axiomatizable for each λ < κ (see [23];

see [19] for details).
6. If κ is ω-Mahlo, then L(∃≥κ) is λ-compact and recursively axiomatizable for each λ < κ (see [21]).

If ℵ0 is small for each κn, then a simple enumeration argument gives a fundamental (κn)n<ω-pattern.

Corollary 3.8 [22] If ℵ0 is small for each κn, then first order logic on (κn)n<ω-like models is λ-compact
for all λ < min{κn : n < ω}. In particular, then L(∃≥κn)n<ω is λ-compact for all λ < min{κn : n < ω}.

If each κn is singular strong limit and no κn is a supremum of some of the others, then there is a funda-
mental (κn)n<ω-pattern E , and I((κn)n<ω) is recursive and independent of the cardinals κn [23] (see [19] for
details). Thus we have:

Corollary 3.9 [23] If each κn is singular strong limit and no κn is a supremum of some of the others,
then L(∃≥κn)n<ω is λ-compact and recursively axiomatizable for each λ < min{κn : n < ω}.
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Example 3.10 L(∃≥�ω·n)0<n<ω is λ-compact and recursively axiomatizable for all λ < �ω .

Example 3.11 The logic L(∃≥�ω·n)0<n≤ω fails to be ℵ0-compact for trivial reasons. Still every fragment
containing only finitely many generalized quantifiers is ℵ0-compact.

If each κn is ω-Mahlo, then any κ-pattern is fundamental.

Corollary 3.12 [21] If each κn is ω-Mahlo, then L(∃≥κn)n<ω is λ-compact and recursively axiomatizable
for each λ < min{κn : n < ω}.

The results of this section could have been proved also for a finite sequence (κn)n<m of uncountable cardinals,
with obvious modifications.

3.1 The character of L(∃≥κn)n<ω

Our goal in this section is to give the axioms A of L(∃≥κn)n<ω and prove that 〈L(∃≥κn)n<ω,A〉 has recursive
character. Since L(∃≥κn)n<ω is the union of its fragments L(∃≥κn)n<m, where n < ω, we first introduce an
axiomatization of L(∃≥κn)n<m and discuss its completeness.

3.1.1 Logic with finitely many quantifiers

Keisler gave a simple and elegant complete axiomatization for L(∃≥ℵ1) based on a formalization of the principle
that if an uncountable set is divided into non-empty parts, then either there are uncountably many parts or one
part is uncountable. If κ = κ<κ, this works also for L(∃≥κ+

), but it certainly does not work for L(∃≥κ) if κ is
singular. Keisler gave a different axiomatization for L(∃≥κ) when κ is a singular strong limit cardinal. We give a
general axiomatization Am for L(∃≥κn)n<m, whatever (κn)n<m is, plus a criterion when this is complete. The
question whether Am is a recursive axiomatization remains open. In certain cases we can assert its recursiveness.
We use this axiomatization to prove the finite character of the logic frame 〈L(∃≥κn)n<m,Am〉.

In fact, we do not give the axioms of Am explicitly but only give a criterion for their choice. Because of
the nature of this criterion the set of Gödel numbers of the axioms is recursively enumerable. The method
of “straightening Henkin-formulas” introduced by Barwise [2], could be used to turn our criterion into an explicit,
albeit probably very complicated, set of axioms.

We defined above what it means for a (κn)n<m-like model to induce a (κn)n<m-pattern. If we have a
model that is not necessarily (κn)n<m-like, it may fail to induce a (κn)n<ω-pattern but it still induces some
ω-cardinal identities. The concept of inducing an identity is defined as follows: The model M of a vocabu-
lary L∗ ∪ {ca : a ∈ ⋃

n∈N
An}, L containing unary predicates Pn, n ∈ N, and the finite set Σ of first order sen-

tences in the vocabulary of M induce the ω-cardinal identity

I = 〈〈Ea : a ∈ ⋃
n<ω Dn〉, 〈〈Dn, <n〉 : n < ω〉, 〈hn : n < ω〉〉

defined as follows: Let Dn be the set of a ∈ An for which ca occurs in Σ. If a ∈ Dm, then define for increa-
sing 〈a0, . . . , an〉, 〈b0, . . . , bn〉 ∈ [

⋃
n<ω Dn]<ω

{a0, . . . , an}E′
a{b0, . . . , bn} ⇔ M′ � t(ca0 , . . . , can) = t(cb0 , . . . , cbn)

∨ (¬(t(ca0 , . . . , can) <m ca) ∧ ¬(t(cb0 , . . . , cbn) <m ca)),
for all Skolem-terms t occurring in Σ,

and

h′m({a0, . . . , an}) = min{b ∈ Dm : t(ca0 , . . . , can)M′
<m cM

′
b for all

Skolem-terms t occurring in Σ} (or undefined).

This concept is the heart of our axiom system Am. Suppose ϕ is a sentence in L(∃≥κn)n<m. Fuhrken introduced
a reduction method by means of which there is a first order sentence ϕ+ in a larger vocabulary such that ϕ has a
model if and only if ϕ+ has a (κn)n<m-like model.

Definition 3.13 A sentence ϕ of L(∃≥κn)n<m in the vocabulary L is said to be Am-consistent, if for
all I ∈ I((κn)n<m) and all finite Σ ⊆ {ϕ+}∗ there is a model M of Σ such that M and Σ induce I. The set Am

of axioms of L(∃≥κn)n<m consists of all sentences ϕ of L(∃≥κn)n<m for which ¬ϕ is not Am-consistent.
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The definition of the axiomsAm may seem trivial as we seem to take all “valid” sentences as axioms. However,
whether all “valid” sentences are actually axioms depends on whether we can prove the completeness of our
axioms. Also, while there is no obvious reason why the set of valid sentences should be recursively enumerable
in I((κn)n<ω), the set Am of axioms certainly is.

Lemma 3.14 Suppose ϕ is a sentence of L(∃≥κn)n<m and ϕ has a model. Then ϕ is Am-consistent.

P r o o f. Suppose I ∈ I((κn)n<m) and Σ ⊆ {ϕ+}∗ is finite. Suppose M is a (κn)n<ω-like model of Σ.
Then M and Σ induce a (κn)n<ω-pattern F . Since I ∈ I((κn)n<ω), there is a finite D such that I ≤ F�D.
Thus M and Σ induce I.

Lemma 3.15 If there is a fundamental (κn)n<m-pattern, then every Am-consistent sentence of L(∃≥κn)n<m

has a model.

P r o o f. Supposeϕ is an Am-consistent sentence ofL(∃≥κn)n<m. Let F be a fundamental (κn)n<m-pattern.
Let T = {ϕ+}. It suffices to show that the theory (T1) – (T5) constructed from F and T is finitely consistent.
Let Σ be a finite part of (T1) – (T5) and let D be the set of a ∈ ⋃

n<ω An for which ca occurs in Σ. Note, that if
we let I = F�D, then I ∈ I((κn)n<m). By assumption, Σ∩T ∗ has a model M such that M and Σ induce F�D.
Thus M can be expanded to a model of Σ.

Proposition 3.16 If every Am-consistent sentence of L(∃≥κn)n<m has a model, then there is a fundamen-
tal (κn)n<m-pattern.

P r o o f. Let I be an arbitrary ω-cardinal identity, as in (2). Let the size of I be k and length of I be l. Let
⋃

i≤l Di = {d1, . . . , dk},
and let �s denote a sequence 〈si : i ≤ l〉 of natural numbers ≤ k. We will say that {a0, . . . , al} ∈ {d1, . . . , dk} is
of type �s if the intersection of {a0, . . . , al} with Di has size si for each i ≤ l. Consider the following sen-
tences of L(∃≥κn)n<m in a vocabulary consisting of a unary predicate Pi, a binary predicate <i and function
symbols F�s

i and H�s
i for each i < m and n ≤ k. Let σI be the conjunction of:

1. 〈Pn, <n〉 is a κn-like linear order for n < m.

2. F�s
i is a function mapping sets {a0, . . . , al} of type �s to Pi for n < k and i < m.

3. The range of F�s
i is bounded in Pi.

4. H�s
i is a function mapping sets {a0, . . . , al} of type �s to Pi for n < k and i < m.

5. There are no x0, . . . , xl of type �s which would satisfy

(a) F�s
i (xr0 , . . . , xrn) = F�s

i (xr′
0
, . . . , xr′

n
)∨(F�s

i (xr0 , . . . , xrn) ≥i da∧F�s
i (xr′

0
, . . . , xr′

n
) ≥i da) whenever

〈dr0 , . . . , drn〉, 〈dr′
0
, . . . , dr′

n
〉 ∈ [

⋃
n<ω

Dn]<ω

are increasing of type �s, {dr0 , . . . , drn}Ea{dr′
0
, . . . , dr′

n
}, and a ∈ Di, and

(b) xh({dr0 ,...,drn}) ≤i H
n
i (xr0 , . . . , xrn) whenever h({dr0 , . . . , drn}) ∈ Di.

Any model M of σI and any choice of a cofinal suborder 〈A′
n, <n〉 of 〈Pn, <n〉M of type κn (for n < ω) gives

rise to a (κn)n<m-pattern F ′ as in (1), where for a ∈ A′
i

{a0, . . . , an}E′
a{b0, . . . , bn} ⇔ if (Fn

i )M(a0, . . . , an) <i a or (Fn
i )M(b0, . . . , bn) <i a,

then (Fn
i )M(a0, . . . , an) = (Fn

i )M(b0, . . . , bn),

and

h′i({a0, . . . , an}) = (Hn
i )M(a0, . . . , an).

We have written into the sentence σI the condition that I is not in I(F ′). On the other hand, if I /∈ I((κn)n<m),
it is easy to construct a model of σI. Moreover, if I0, . . . , In /∈ I((κn)n<m), it is not hard to construct a model
of σI0 ∧ · · · ∧ σIn .
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Let In, n < ω, be a list of all I /∈ I((κn)n<m). Without loss of generality, this list is recursive in Am. Sup-
pose the set of valid L(∃≥κn)n<m-sentences is recursively enumerable in Am. Now we use an argument (due to
Per Lindström [14]) from abstract model theory. Let A be a set of natural numbers which is co-recursively enu-
merable in Am but not recursively enumerable in Am. Say,

n ∈ A⇔ ∀k ((n, k) ∈ B),

whereB is recursive in Am. Let P be a new unary predicate symbol and θn the first order sentence saying that P
has exactly n elements. Let T be the theory

{θn → σIi : (∀k ≤ i)((n, k) ∈ B)},
and let C = {n : T � ¬θn}. We show that C ⊆ A. Suppose that T � ¬θn. If n /∈ A, then there is k such
that (n, k) /∈ B. Let M be a model of {σIj : i < k} ∪ {θm}. If θn → σIi ∈ T , then i < k, whence M � σIi .
So M � T , a contradiction. Since C is recursively enumerable in A, there is n ∈ A \ C. Thus there is M � T
such that M � θn. Since ∀k ((n, k) ∈ B), the sentence θn → σIi is in T , and thereby true in M for every i.
Since M � θn, M � σIi for all i. Let F be the (κn)n<m-pattern that M gives rise to. F is necessarily a funda-
mental (κn)n<m-pattern.

Summing up:

Theorem 3.17 Suppose (κn)n<m is a sequence of uncountable cardinals. The following conditions are equiv-
alent:

1. Am is a complete axiomatization of L(∃≥κn)n<m.

2. 〈L(∃≥κn)n<m,Am〉 is recursively compact.

3. L(∃≥κn)n<m is λ-compact for all λ < min{κ0, . . . , κm−1}.

4. There is a fundamental (κn)n<m-pattern.

Corollary 3.18 〈L(∃≥κn)n<m,Am〉 has finite character.

We do not know if Am is recursive, except in such special cases as in Corollaries 3.9 and 3.12.
Recall the definition of I(κ+, κ) in [26] and [19].

Proposition 3.19

1. Suppose that I(κ+, κ) is recursive, and that either A∗ is recursive or there exists a universe V ′ ⊇ V in
which 〈L(∃≥κ+

), A∗〉 is recursively compact, then 〈L(∃≥κ+
), A∗〉 has finite character.

2. Suppose that 〈L(∃≥ℵ1), A∗〉 is coherent (i. e. if a sentence has a model, then it is consistent with A∗).
Then 〈L(∃≥κ+

), A∗〉 has finite character.

P r o o f.
1. Suppose 〈L(∃≥κ+

), A∗〉 is complete. Let Φ ∈ L(∃≥κ+
) say in the language of set theory that σI holds for

all I /∈ I(κ). Since I(κ+, κ) is recursive, this can be written in L(∃≥κ+
). We show that Φ is consistent with the

axiomsA∗: If A∗ is recursive, 〈L(∃≥κ+
), A∗〉 is recursively compact and there is a fundamental (κ+, κ)-pattern,

whence Φ is consistent with A∗. On the other hand, if there is a universe V ′ in which 〈L(∃≥κ+
), A∗〉 is recur-

sively compact, then in V ′ there is a fundamental (κ+, κ)-pattern, and hence in V ′ the sentence Φ is consistent
with A∗. Thus Φ is consistent with A∗ also in V . By completeness Φ has a model. Thus there is a fundamental
(κ+, κ)-pattern and 〈L(∃≥κ+

), A∗〉 is ℵ0-compact.
2. Completeness implies (ℵ1,ℵ0) → (κ+, κ). We know that I(ℵ1,ℵ0) is recursive (see [25]). I(κ+, κ) is

also recursive, since (ℵ1,ℵ0) → (κ+, κ) implies I(ℵ1,ℵ0) = I(κ+, κ). Now we use part 1.

Corollary 3.20 The logic frame 〈L(∃≥κ+
), A∗〉, where A∗ is the Keisler axiomatization for L(∃≥ℵ1) and κ

is an arbitrary cardinal, has finite character.

3.1.2 Logic with infinitely many quantifiers

The axioms A are simply all the axioms Am, m < ω, put together.

Proposition 3.21 If 〈L(∃≥κn)n<ω,A〉 is recursively compact, then there is a fundamental (κn)n<ω-pattern.
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P r o o f. Let In, n < ω, be a list of all I /∈ I((κn)n<ω). Without loss of generality, this list is recursive in A.
Note that if I /∈ I((κn)n<ω), then there is m such that I /∈ I((κn)n<m), so we can use the sentences σIn .
Let T be the set of all σIn , n < ω. This theory is recursive in A and it is finitely consistent. Hence it has a model.
The (κn)n<ω-pattern the model M gives rise to is clearly fundamental.

Theorem 3.22 Suppose (κn)n<ω is a sequence of uncountable cardinals. The following conditions are equiv-
alent:

1. A is a complete axiomatization of L(∃≥κn)n<ω.

2. For every m < ω there is a fundamental (κn)n<m-pattern.

Theorem 3.23 Suppose (κn)n<ω is a sequence of uncountable cardinals. The following conditions are equiv-
alent:

1. 〈L(∃≥κn)n<ω ,A〉 is recursively compact.

2. L(∃≥κn)n<ω is λ-compact for all λ < min{κn : n < ω}.

3. There is a fundamental (κn)n<ω-pattern.

Corollary 3.24 〈L(∃≥κn)n<ω,A〉 has recursive character.

Example 3.25 If κn = �ω·n for 0 < n ≤ ω, then 〈L(∃≥κn)n<ω ,A〉 is complete but not ℵ0-compact and
thereby does not have finite character.

Above we investigated �κ-like models and related them to logic frames arising from generalized quantifiers.
Similar results can be proved for models with predicates of given cardinality and also for models with a linear
order in which given predicates have given cofinalities, but these results do not have natural formulations in terms
of generalized quantifiers.

4 A logic which does not have recursive character

We show that there is a logic frame L∗ which is recursively compact but not ℵ0-compact. We make use of the
quantifier QSt from [24]. To recall the definition of QSt we adopt the following notation:

Definition 4.1 Let A = (A,R) be an arbitrary ℵ1-like linearly ordered structure. We use H(A) to denote the
set of all initial segments of A. A filtration of A is a subset X of H(A) such that A =

⋃
I∈X I and X is closed

under unions of increasing sequences. Let D(A) be the filter on H(A) generated by all filtrations of A.

Definition 4.2 The generalized quantifier QSt is defined by A � QStxy ϕ(x, y,�a ) if and only if (A,Rϕ),
where Rϕ = {(b, c) : A � ϕ(b, c,�a )}, is an ℵ1-like linearly ordered structure such that

{I ∈ H(A) : I does not have a sup in Rϕ} /∈ D(A).

The generalized quantifier QCub, definable in terms of QSt and ∃≥ℵ1 , is defined by A � QCubxy ϕ(x, y,�a ) if
and only if (A,Rϕ), where Rϕ = {(b, c) : A � ϕ(b, c,�a )}, is an ℵ1-like linearly ordered structure such that

{I ∈ H(A) : I does not have a sup in Rϕ} ∈ D(A).

It follows from [24] and [3] thatLωω(QSt) equipped with some natural axioms and rules is a completeℵ0-com-
pact logic frame.

Definition 4.3 If S ⊆ ω1, then the generalized quantifier QSt
S is defined by A � QSt

S xy ϕ(x, y,�a ) if and only
if Rϕ is an ℵ1-like linear order of A with a filtration {Iα : α < ω1} such that

(∀α < ω1)(Iα has a sup in Rϕ ⇔ α ∈ S).

The syntax of the logic LSt is defined as follows: LSt extends first order logic by the quantifiers ∃≥ℵ1 , QSt and
the infinite number of new formal quantifiers QSt

Xn
(we leave Xn unspecified).

If we fix a sequence 〈S0, S1, . . .〉 and let QSt
Xn

be interpreted as QSt
Sn

, we get a definition of semantics of LSt.
We call this semantics the 〈S0, S1, . . .〉-interpretation of LSt. ThusLSt has a fixed syntax and fixed axioms, given
below, but many different semantics, depending on our interpretation of 〈X0, X1, . . .〉 by various 〈S0, S1, . . .〉.

Definition 4.4 We call a finite sequence σ = 〈S0, S1, . . . , Sn〉 (or an infinite sequence 〈S0, S1, . . .〉) of subsets
of ω1 stationary independent, if all finite Boolean combinations of the sets Si are stationary.

If ϕ is a formula and d ∈ 2, let (ϕ)d be ϕ, if d = 0, and ¬ϕ, if d = 1. If S ⊆ ω1, then (S)d is defined similarly.
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Definition 4.5 The axioms of A are:
(Ax1) The usual axioms and rules of L(Q1).
(Ax2) QStxy ϕ(x, y, �z ) → “Rϕ is an ℵ1-like linear order”.

(Ax3) QSt
Xn
xy ϕ(x, y, �z ) → QStxy ϕ(x, y, �z ).

(Ax4) Independence Axiom Schema: Any non-trivial Boolean combination of the set Sn interpreting the Xn is
stationary, i. e. Φ → Ψ, where Φ is the conjunction of the formulas

(a) “Rϕ is an ℵ1-like linear order”;

(b) QSt
Xi
xy (ϕ(x, y, �z ) ∧ ¬θi(x, �z ) ∧ ¬θi(y, �z )), i = 0, . . . , l;

and Ψ is the conjunction of the formulasQStxy (ϕ(x, y, �z ) ∧ ∧
i<l(θ(y, �z ))η(i)), for all η : l −→ 2.

(Ax4) Pressing Down Axiom Schema:

[QStxy ϕ(x, y, �u ) ∧ ∀x∃z (ϕ(z, x, �u ) ∧ ψ(x, z, �u ))]
→ ∃z QStxy (ϕ(x, y, �u ) ∧ ψ(x, z, �u ) ∧ ψ(y, z, �u )).

The axioms of LSt
ω1ω are the above added with the usual axioms and rules of Lω1ω.

Definition 4.6 Suppose 〈S0, S1, . . .〉 is stationary independent. We define a new recursive logic frame

LSt(S0, S1, . . .) = 〈LSt(S0, S1, . . .),�,A〉,
where A is as in Definition 4.5. Let LSt

ω1ω(S0, S1, . . .) be the extension of LSt(S0, S1, . . .) obtained by allowing
countable conjunctions and disjunctions.

The standard proof (see e. g. [3]) shows:

Lemma 4.7

1. The logic frames LSt(S0, S1, . . .) and LSt
ω1ω(S0, S1, . . .) are complete for all stationary indepen-

dent 〈S0, S1, . . .〉.
2. ϕ ∈ LSt(S0, S1, . . .) has a model in an 〈S0, S1, . . .〉-interpretation for some stationary indepen-

dent 〈S0, S1, . . .〉 if and only if ϕ has a model in an 〈S0, S1, . . .〉-interpretation for all stationary indepen-
dent 〈S0, S1, . . .〉.

An immediate consequence of Lemma 4.7 is that the set Val(LSt) of sentences of LSt which are valid under
〈S0, S1, . . .〉-interpretation for some (equivalently, all) stationary independent 〈S0, S1, . . .〉 is recursively enu-
merable, provably in ZFC, and the predicate “ϕ has a model”, where ϕ ∈ LSt

ω1ω, is a ΣZFC
1 -definable property

of ϕ.
By making different choices for the stationary independent 〈S0, S1, . . .〉, we can get logics with different

properties. Clearly there is a trivial choice of 〈S0, S1, . . .〉 for which LSt fails to have ℵ0-compactness. On the
other hand, CH fails if and only if there is a choice of 〈S0, S1, . . .〉 which will make LSt ℵ0-compact. We make
now a choice of 〈S0, S1, . . .〉 which will render LSt(S0, S1, . . .) recursively compact but not ℵ0-compact.

Let us fix a countable vocabulary τ which contains infinitely many symbols of all arities. Let Tn, n < ω, list
all A-consistent recursive LSt-theories in the vocabulary τ . Let τn be a new disjoint copy of τ for each n < ω.
Let τ∗ consist of the union of all the τn, the new binary predicate symbol<∗, and new unary predicate symbolsPn

for n < ω. For any η : ω −→ 2 let ψη ∈ LSt
ω1ω be the conjunction of the following sentences of the vocabulary τ∗:

(a) Tn translated into the vocabulary τn.

(b) “<∗ is an ℵ1-like linear order of the universe”.

(c) QSt
Xn
xy (x <∗ y ∧ Pn(x) ∧ Pn(y)).

(d) ¬∃x (
∧

n(Pn(x))η(n)).
Lemma 4.8 There is η : ω −→ 2 such that ψη has a model.

P r o o f. Let Γ consist of the sentences (a) – (c). By Lemma 4.7, Γ has a model M of cardinality ℵ1 in the
〈S0, S1, . . .〉-interpretation for some stationary independent 〈S0, S1, . . .〉. Get a new η : ω −→ 2 by Cohen-for-
cing. Then in the extension V [η]

⋂
n(Sn)η(n) = ∅.
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Thus V [η] satisfies the Σ1-sentence

(3) ∃η (ψη has a model).

By the Levy-Shoenfield Absoluteness Lemma and Proposition 4.7 there is η in V such that (3) holds in V .

Now let 〈S∗
0 , S

∗
1 , . . .〉 be stationary independent such that ψη has a model M∗ in the 〈S∗

0 , S
∗
1 , . . .〉-interpre-

tation.

Theorem 4.9 The recursive logic frame LSt(S∗
0 , S

∗
1 , . . .) is recursively compact but not ℵ0-compact.

P r o o f. Suppose T is a consistent recursive theory inLSt. W. l. o. g. T = Tm for somem < ω. Thus M∗ � τn

gives immediately a model of T . To prove thatLSt is notℵ0-compact, let T be a theory consisting of the following
sentences:

(i) “<∗ is an ℵ1-like linear order”.

(ii) QSt
S∗

n
xy (x <∗ y ∧ Pn(x) ∧ Pn(y)) for n < ω.

(iii) QStxy (x <∗ y ∧ P (x) ∧ P (y)).
(iv) ∀x (P (x) → (Pn(x))η(n)) for n < ω.

Any finite subtheory of T contains only predicates P0, . . . , Pm for some m, and has therefore a model: we
let Pi = S∗

i for i = 0, . . . ,m and

P = (P0)η(0) ∩ · · · ∩ (Pm)η(m).

On the other hand, suppose 〈A,<∗, P, P0, P1, . . .〉 � T . By (ii) there are filtrations 〈Dn
α : α < ω1〉 of <∗ and

clubs En such that for all n and for all α ∈ En

{α < ω1 : Dn
α has a sup in 〈A,<∗〉} = S∗

n.

By (iii) there is a filtration 〈Fα : α < ω1〉 of <∗ such that

B = {α < ω1 : Fα has a sup in P}
is stationary. Let E∗ ⊆ ⋂

nEn be a club such that Cα = Dn
α = Fα for α ∈ E∗ and n < ω. Let δ ∈ E∗ ∩ B

and a = supFδ. Then a ∈ P , hence a ∈ ⋂
n(Pn)η(n) by (iv). As a = supDn

δ for all n, we have a ∈ ⋂
n(S∗

n)η(n),
contrary to the choice of η. We have proved that theory T has no models.

Thus LSt(S∗
0 , S

∗
1 , . . .) does not have finite character. We end with an example of a logic which, without

being provably complete, has anyhow finite character: Recall that �S for S ⊆ ω1 is the statement that there are
sets Aα ⊆ α, α ∈ S, such that for any X ⊆ ω1, the set {α ∈ S : X ∩ α = Aα} is stationary.

Definition 4.10 Let L� be the extension of Lωω by ∃≥ℵ1 , QSt and QSt
S , where

S =

⎧⎪⎨
⎪⎩

∅ if there is no bistationary S with �S,

ω1 if there is a bistationary S with �S but no maximal one,

S if S is a maximal bistationary S with �S .

We get a recursive logic frame L� = 〈L�,�,A〉 by adapting the set A to the case of just one bistationary set.

Theorem 4.11 L� has finite character.

P r o o f. Let us first suppose there is no bistationary S with �S. Then the consistent sentence

“< is an ℵ1-like linear order” ∧QStxy (x < y) ∧QSt
S (x < y)

has no model, so L is incomplete. Suppose then there is a bistationary S with �S but no maximal one. Then the
consistent sentence

“< is an ℵ1-like linear order” ∧QStxy (x < y ∧ P (x)) ∧QSt
S (x < y ∧ ¬P (x))

has no model, so L is again incomplete. Finally, suppose there is a maximal bistationary S with �S. Now L is
ℵ0-compact by an analog of Lemma 4.7.
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Our results obviously do not aim to be optimal. We merely want to indicate that the concept of a logic frame of-
fers a way out of the plethora of independence results about generalized quantifiers. The logic Lωω(∃≥ℵn+1)n<ω

is a good example. The results about its ℵ0-compactness under GCH and ℵ0-incompactness in other models
of set theory leave us perplexed about the nature of the logic. Having recursive character reveals something
conclusive and positive, and raises the question, do other problematic logics also have recursive character. Our
logic LSt is the other extreme: it is always completely axiomatizable, but a judicious choice of 〈S0, S1, . . .〉
renders it recursively compact without being ℵ0-compact.

Open Question 4.12 Does the Magidor-Malitz logic L(QMM
1 ) have recursive character?

L(QMM
1 ) is ℵ0-compact whenever � holds (see [15]). But L(QMM

1 ) may fail to be ℵ0-compact (see [1]). The
question is whether L(QMM

1 ) is ℵ0-compact in every model in which it is recursively compact.
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