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Abstract. We prove that the Sacks forcing collapses the continuum mném-
swering the question of Carlson and Laver. Next we prove that if a proper forcing
of the size at most continuum collapsesthen it forcesé,,,.

0 Introduction

In 1979 Baumgartner and Laver proved that after addingSacks reals (by
the countable support iteration) to a model of CH one gets a model in which
the Sacks forcing forces CH (see theorem 5.2 of [2]). The question arose when
the Sacks forcing may collapse cardinals and which of them. In 1989 Carlson
and Laver posed a hypothesis that the Sacks forcing collapses the continuum at
least onto the dominating number(see [3]). In the same paper they proved
that, assuming CH, the Sacks forcing foregs,. In the present paper we give
an affirmative answer to the question of Carlson and Laver proving that the
continuum is collapsed at least onto a cardinal number called #férevhen a
Sacks real is added. The cardirtdf is one of the cardinal invariants laying
between the unbounded numbgrand the dominating number which were
introduced in [7]. After we got the answer we proved thatif = w; then
the Sacks forcing force$,,. That naturally suggested the question if this is an
accident and the answer we obtained says that it is a reflection of a more general
theorem.

The main result of this paper says that if a proper forcing noloof size
not greater than the continuum collapsestheniFp ., .

Notation.  Our notation is rather standard and is compatible with that of [5] or
[4]. However, there are some exceptions. In a forcing nafiave writep < q to
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say that “the conditiom is stronger thap”. The canonicalP-name for a generic
filter is denoted byl or justI'. For a formulap of the forcing language and a
conditionp € P we say thaip decidesp (p || ) if eitherp I- ¢ or p IF —.

A forcing notion (, <) satisfies the Axiom A of Baumgartner (see [1]) if
there are partial orders,, on P (for n € w) such that

l.p<pqifandonlyifp<q

2. if p<ps1qthenp <pq

3. if a sequencép, : n € w) C P satisfies (M € w)(pn <n pn+1) then there
exists a conditiorp € P such that{n € w)(pn < p).

4. if .2 C P is an antichainp € P, n € w then there exists a conditiap € P
such thap <, g and the se{r €. : q andr are compatible}s countable.

It is well known that if P satisfies the Axiom A thei® is proper.
The size of the continuum is denoted bywe will use the quantifiersv(°n)
and (?°n) as abbreviations for

Am e w)(vn >m) and Fm € w)(In > m),

respectively. The Baire space of all functions fromw to w is endowed with
the partial order<*;

f<"g < (F*n)(f(n) <g).
A family F C w¥ is unbounded ing®, <*) if
—(3g € W) (VF € F)(f <" g)
and it is dominating in%, <*) if
(Vg € w)@Ef € F)(g <™ ).

The unbounded number is the minimal size of an unbounded family in the
partial order %, <*), the dominating numbe is the minimal size of a domi-
nating family in that order (for more information about these cardinals see [10]
or [7]).

The set of all infinite subsets af is denoted by J]“. A tree on.%" is a
set of finite sequenceb C Z<Wsuchthas CteT impliess € T. A tree
T on. %" is perfect if for eachs € T there aretp,t; € T extendings, both in
T and such that neithdp C t; nort; C t. The body '] of a treeT is the set
{xe.Z¥:(Vn ew)(XIn € T)}.

1 Antichains of skew trees

The Sacks forcings consists of all perfect tree§ C 2<%. These trees are
ordered by inclusion (a stronger tree is the smaller one).TFarS andt € T
we say that ramifies in T (or t is a ramification point in T) whenever both™0
andt™1 are inT. Fors € TN 2", n < k we say thas ramifies in T below kf
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there ist € T of length less thak — 1 such thats C t andt ramifies inT. A
nodet € T is a ramification point of rank in T if t ramifies inT and exactly
n initial segments ot ramify in T. Orders<, on § are defined by

T <, T if and only if
T < T’ andift € T is a ramification point of the rank n thent € T’.

The Sacks forcing together with orders<,, (for n € w) satisfies Axiom A of
Baumgartner (see [1]).

ForTeSandtc TweputT)={seT:sCtortCs}.

Definition 1.1. Atree T € S is skewif for each n € w at most one node from
T N 2" ramifies in T.

Clearly the set of all skew perfect trees is densé.in

Carlson and Laver proved that CH impligs <.,. A detailed analysis of
their proof shows that the result can be formulated as follows.

Theorem 1.2 (T.Carlson, R.Laver, [3]). Assume thal = w; and every max-
imal antichain.# C S consisting of skew trees is of the size
Thenlkg &, -

Since skew trees are very small (e.g. their bodies are both meager and null) the
guestion appeared if the second assumption is always satisfied. The answer is
negative:

Theorem 1.3. 1t is consistent that there exists a maximal antich@in, : o <
w1} C S such that each tree,Tis skew whilev; < .

Proof. Let T = (To * @ < agp) be a sequence of skew trees < w; and let
S ={T €S: (Va < a)(T,, T are incompatible }. We define a forcing notion

(T): B
Conditionsare triples §, F, S) such that

F C 2=N s a finite skew tree of height € w,
S=(S:teFn2"), tCroot(]) andS € ..

The orderis defined by

(n% F°,S% < (n%,FL,SY if and only if

F1n® =F%and (¢ € F'n2M0)(3s € Fn2M)(S! = (89)s)
Claim 1.3.1. The forcing notior@(f) satisfies the ccc.
Why? Suppose that(n', F',S) 1 i < wy) C Q(T). First we findA € [w1]“,
n € w and a finite skew tre& C 2=N of the heightn such that for each € A

we haven' =n,F' = F. Next we findA’ € [A]“1, n* > n and a finite skew tree
F* C 2" such thatF* N 2" =F N 2" and for each € A’
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each node € F N 2" ramifies inF* (belown*) and

§N2s" o (F).
For eacht € F n 2" choose two distinck(t), r(t) € (F*) n2"". Leti,j € A'.
Fort € FN2" putSy, = (S andSy, = (§)w- Clearly (m,F*, S*) € Q(T)
and this condition is stronger than both (F', S') and (d,F!,S!). The claim
is proved.

Suppose thaG C Q(‘IT) is a generic filter oveN. Then a density argument
shows thatlTg = (J{F : (3n,S)((n,F,S) € G)} is a skew perfect tree. L&k,
be the canonical)(T)-name for the tref¢.

Claim 1.3.2.  If (n,F,S) e Q(T),te Fn2"
then(n,F,S) I+ “Tr, S are compatible”.

Why? Suppose hF?,S% € Q(T), to € Fon2"°. Taken? such that, ramifies
in 2 below n'. Take two distinct extensiont§, t of to, tJ,t3 € S2N 2" and
fort € (F°N 2”0) fix an extensiort® D t, t* € S, Put
Fl={tYim:m<n}u{tyim:m<ni=01}, §t = (P, Si = (33)%.
Then (', F1,S) € Q(T) is a condition stronger tham{, F°, S%) and
(nLFLSY IF i e Tr NS
Since%, Sé C S0 easy density argument proves the claim.

Claim 1.3.3.  IFgq (Ya < ao)(T,, Trare incompatible).

Why? Leta < ag, (0,F,S) € Q(T). Since eacts (fort € F n2") is incom-
patible with T, we findn* > n andu(t) € § N 2" fort € F N 2" such that
u(t) ¢ T,. Let

Fr={v®)Im:m<n*t e FN2"} andS}, = (S)u for t € F N 2",

Then (n*,F*,S*) > (n,F,S) and fo*, F*,S*) I- TrN T, C F*. The claim is
proved. _

Now we start withV | —CH. Let (P,,Q, : a < w1) be the finite support
iteration such that

Fo Qo =0Q((Ts: 8 < a))

where T} is the541-name for the generic tree added By. LetG C I, be a
generic ovelV. SincelP,,, satisfies ccc (by Claim 1.3.1) we hav§G] F —-CH.
By Claim 1.3.3,(TS : o < wy) is an antichain ir. We claim that it is a maximal
antichain (inV[G]).

Suppose that is a P,,,-name for an element df. ThenT is alP,-name for
somea < wi. Assume thap € P, is such that

p lky, (Voo < wi)(T, T, are incompatible).
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Take ap > « such thatp € P,,. Since
P Ik, (Va < ag)(T, T, are incompatible)

we can extend to q = p U {(ao, (0, {0}, (TY)} € P.,. It follows from claim
1.3.2thag I, “T,.,, T are compatible” - a contradiction. The theorem is proved.
O

2 When Sacks forcing forces CH

In this section we show that if = w; thenlkgCH, and hence applying the result
of the next section we will be able to conclulite <,,, providedd = w;. [To be
more precise, if CH holds thehg ¢, by Theorem 1.2 of Carlson and Laver. If
we are in the situation af = w; < ¢ then, by Corollary 2.6¢ is collapsed tav;
and hencev; is collapsed (by forcing witl). Now Theorem 3.4 applies.] This
answers the question of T.Carlson and R.Laver (see [3]).

We start with the following general observation.

Lemma 2.1.  LetP be a forcing notiong a cardinal. Suppose that there exist
antichains. 4, C I for { <  such that

*) (Vp e P)EC < r)({g €. #¢:p <q}|=|P)).
Thenlkg [PY| < k.

Proof. For each{ < k, by an easy induction, one can construct a function
¢¢ i 4 — P such that for everp,p’ € P

if [{a€.¢:p<aq}f =P
theng¢(q) = p’ for someq € . 2¢, q > p.

Now let ¢ be aP-name for a function froms into BV such that

qlk¢(Q) = ¢e(a) for ¢ <r, qe. 2.

Clearly for eachp, p’ € P, if ( < x witnesseg*) for p then there ig] > p such
thatq IF ¢(¢) = p’. Consequentlyty rng(¢) = PV and we are done. O

Thus to prove that the Sacks forcing collapses continuum we will construct
the respective sequence of antichaingirmhe sequence will be produced from
a special family of subsets ofs]*

For a setX € [w]¥ let ux : w oM X be the increasing enumeration of the

setX.
Definition 2.2. (1) A family .7 C [w]¥ is dominating infw]¥ if

(VY €[w]?)EX € 7)n)([ux (), ux (N + )N Y| > 2).
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(2) Afamily.7 C [w]% is weakly dominating ifw]¥ if for every setY ¢ [w]¥
EX e 73NV <2)(|[ux(@ +]), px (2 +j +1)) N Y| > 2).

() b*=min{}|7|:.7 C [w]¥is weakly dominating.

Remarks. 1) Note that if.7 is a dominating family in{]% then{ux : X €

.7 } is a dominating family in the ordet”, <*). And conversely, i C w¥ is

a dominating family of increasing functions; , = {f (n), f (f (n)), f (f (f(n)))...}

(for f eF,new) then{X; n: f €F,n€w} is a dominating family in{]%“. In
particular the minimal size of a dominating family in]f) is the dominating
numberp. Clearly each dominating family is weakly dominating. Consequently
b <.

2) We have the following inequalities:

b < b* <min{|X| : X C 2¥ is not meage.

Moreover, the inequalityy < b*© is consistent with ZFC (see [7}*¢ is the
cardinalo(S;.) of that paper).

3) One can replace>* 2” in the definition of a weakly dominating family (and
6*) by “> 1” (and replace the function— 2' by any other increasing function)
and still the results of this section could be carried on (with this G&y. The
reason why we use this definition bf¢ is that it fits to a more general schema of
cardinal invariants studied in [7]. For example note that the unbounded number
b equals to

min{|7]: 7 C [w]¥ & (VY €[w]*)3EX €. 7)3¥1)(|[ux (i), px(+1)NY| > 2)}

and “> 2" in the above cannot be replaced by 1”.

Definition 2.3. Let T € S, X € [w]¥. We say that the conditiol weakly obeys
the setX if

(3%i)(vVj <2)(vt €T N 2@ *DY(tramifies inT below ux (2 +j + 1)).

Lemma 2.4. Suppose X [w]¥. Then there exists an antichaiz C S such
that
(*x) if T € S weakly obeys X theS € .4 : T < S}| =v«.

Proof. Let {T, : & < ¢} = {T € S : T weakly obeysX} be an enumeration
with ¢ repetitions. Let{h, : @ < ¢} C w® be a family of functions such that

(Va<o)(vi <w)(ha(i) < 2') and Fa <8< ) (Vi) (ha(i) # hs(i)).

Since T, weakly obeysX we have that for infinitely many, for eachj < 2
each node e T, N 2x2*) ramifies inT, below ux(2' +j +1). Consequently,
for eacha < ¢ we can construct a conditid®, > T,, such that for every € w:
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if somet € S, N 2@ *) ramifies belowux (2 +j +1),j < 2
thenj =h,(i).

Note that {>°n)(h,(n) # hz(n)) implies that conditions,, S3 are incompatible.
Thus. 4 = {S, : @ < ¢} is an antichain. Clearly thisZ works. O

Theorem 2.5.  Ikg ¢ =|(b*)Y|.

Proof. Sincellg ¢ =|c¢"| it is enough to show that

I “there exists a functiom from (6*€)¥ onto¢"”.
By the definition of the cardinab*™ there exists a sequen¢¥, : ¢ < b™) C
[w]¥ which is weakly dominating. Apply Lemma 2.4 to construct antichains
¢ C S such that

if T €S weakly obeysX: then|{S e .4, :T <S}| =c.
Since each tre§ € S weakly obeys some, we can conclude the assertion
from Lemma 2.1. O

Corollary 2.6.  Assume thad = w;. Thenl-gCH.

The Marczewski ideals is ac-ideal of subsets of the Cantor spaceé. This
ideal is connected with the Sacks forcing. It consist of all #ets 2% such that

(VT € S)AT' > T)([T'INnA=10),

where [T]={x € 2% : (vn € w)(x|n € T")}.
Some connections between the Marczewski idgaand the Sacks forcing
were established in [6].

Corollary 2.7.  add(.%) < b*e

Proof. The crucial fact for this inequality is the existence of a seque{n@ :
¢ < b*) C S of maximal antichains ir$ such that

(VT € )3 < b*)([TI\ (J{[S]: S €. ¢;} #0).

For this first, as in the proof of Theorem 2.5, find antichaidg C S for { < b™
such that
(VT €S)EC < b™)({S€. 4. : T <S} =¢).

Now fix ¢ < b*. To construct ¢; take an enumeratiofiT, : o < ¢} of S and
an enumeratioqT; : o < ¢} of {T € S: [{Se .4, : T < S}| =c}. Next by
induction ona < ¢ choose tree§, € S and branches, € 2% such that (for
a < ¢):

Xo € [Ta1\ Up<alSsl.

either (B € .4:)(S, > S) or. 4. U{S,} is an antichain,
if T, is incompatible with allSs (for 8 < «) thenS, > T,,
S, is incompatible with eacl®s; for 5 < o and
[Se]N{xs: 8 <a}=0.
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At stagea < ¢ we easily find a suitable, € [T}] since continuum many
members of 4. is stronger thaT; and eaclSs (for 5 < «) is either stronger
than some member ofZ; or incompatible with all elements ofZ,. (Remember
that two conditionsS, T € S are incompatible irf if and only if [S] N [T] is
countable.) If the conditio,, is compatible with som&g for 8 < « then we
putS, = Sg. Otherwise we choosB € S such thafl, andS are compatible and
eitherS € .4, or S is incompatible with all members ofZ.. As each perfect
set contains continuum many disjoint perfect sets we can find &treeT,, S
such that§,] N {xs : 8 < a} = 0.

Then{S, : a < ¢} = .¢; is a maximal antichain (note that there could be
repetitions in{S, : « < ¢}). The pointsx, (for o < ¢) witness that no [J] is
covered by J{[S] : S € . 4;}.

Now, having antichains#; as above, we pub; = J{[T]: T € .4;}. Since
/’Z is a maximal antichain the complementAf is in the ideal /5. Moreover,

for eachT € S there is¢ < b*¢ with [T]\A; # 0. Hence |J (2¥\A¢) ¢ .%.
(<b*e
0

Remark. Recently P. Simon has proved that in the results of these section one
can replaces*¢ by the unbounded number

3 Collapsew; — the continuum will fall down

In this section we will prove that if the Sacks forcing (or any proper forcing of
size < ¢) collapsesw; then it forces$,,. First we will give combinatorial tools
needed for the proof. Let us start with fixing some notation.

For an ordinalx by I1S(x) we will denote the set of finite incresing sequences
with values ink. x stands for a “sufficiently large” cardinal#Z () is the family
of all sets hereditarily of the cardinality less thgn

For( < wi let ¢ ={e§ : n € w} be an enumeration.
Let §2={6 < wp: cf(6) =w} fori =0,1.

Lemma 3.1 (S.Shelah, see 2.3 of [9]). There exists a (“club—guessing”) se-
quenceC = (Cs : 6 € S2) such that

1. Gs C 4, supCs =9,

2. the order type of Cis w,

3. for every closed unbounded subset Ewgfthere existd € SOZ such that
Cs CE.

We fix a club—guessing sequen€e= (Cs : § € §2) as in 3.1. Fors € S let
Cs = {ad : n € w} be the increasing enumeration.

Definition 3.2.  Let¢ € § and let¢ < w; be limit.
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1. A sequencgN, : n € IS(w)) is a semi-(¢, §-creature (for the sequenc€)
if
a) N, is a countable elementary submodel .8¢(x), N, N w1 € ¢ and
Unew Nnin Nwy = ¢ for every increasing functioh € w*,
B) if n CvthenN, < N,,
7) Nn Nwy € 048 U Un<|h(n)[af;(n)v O‘f](n)+1)v
6) for eachn < Ih(n) the intersectioN, N [y, a’.1) is NON empty.
2. Let P be a forcing notionX € .72 (x). A (¢, 6)-creature forP, X is a system
{(N,), 7, ky) 1 1 € IS(w)} such that
a) the sequencéN, : n € IS(w)) is a semi-(, 6)-creature and
X, P, <p,w2, w1, ... € Ny,
B) ky € w, {elf :k < k,} € N,, and for every increasing functiom € w*
the sequencekq, : N € w) is unbounded,
v) 7, is a function such that dom(y < [P x w]=%, for eachk € w the set
{p € P: (p,k) € dom(z,)} is an antichain inP and rng(s) C 2,
0) if n C v thenk, <k, andr, C 7,.
3. Let CRg(]P,X) be the family of all (, 6)-creatures foiP, X.

Remarks. 1. A P-name for a subset @f < w; can be thought of as a function
7 such that rng C 2 and dom C P x ¢ has the following property:

for each¢ € ¢ the set{p € : (p, &) € domr} is an antichain irP

(and then for§,&) e i p - £ € 7if 7(p,&) =1 andp I+ € ¢ 7 otherwise). If
the forcing notionP is proper every such a nhame can be (above each condition)
forced to be equal to a countable name.

2. Thus in a (,)-creature{(N,, 7,,k;) : n € IS(w)} for P the functionsr,

can be thought of as approximations of a name for a subsét bte that we
demand no relations between functions and modelsN,,. The last are only
“side parameters”. The parameter will decide above which conditions the name
is described by the functions determined by a branch through the creature.

Lemma 3.3.  For every Xe .7Z(x) and a closed unbounded set® w; for
some( € D andé € S? there exists a senft, 6)-creature(N,’ : 1) € IS(w)) such
that X € N

Proof. The following special case of Theorem 2.2 of [8] is a main tool for
constructing semi-creatures:

Claim 3.3.1(M.Rubin and S.Shelah, [8]). Suppose tha?" C w2< “is atree
such that for each noded .7~ the setsucc-(t) of successors of t is of the size
wy. Assume thap : .7~ — w. Then there exists a subtreg of .7~ such that

(Vt € . Z)(|succz(t)| = w2) and supp[2] < wi.

If additionally ¢ is increasing (i.e. tC s € .7 implies¢(t) < ¢(s)) then we can
demand thatim, ¢(x[n) is constant for all infinite branches & [.7g].

For v € I1S(S?) chooseN, such that
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(0) X € Ng;

(1) N, is an elementary countable submodel#f(x);
(2) N, Nwy €D, [max(v),wz) NN, # 0;

(3) if v Cw thenN, < N,.

Now we will inductively define a treeZ C IS(S?) and ordinalss, < w, for
v €.7 such that:

(4) if ve.7 then|sucer(v)| = w, and
(6) fve.7,¢,:S? ong succ(v) is the increasing enumeration of sye@)

then for everya € S2 andw € .7, w 2 v ¢, ()

N, Na C é,.

To start with we put) € .7. For eachv € IS(S?) let p, = sup(N, N v(0)).
Applying Claim 3.3.1 for eachh € S? we find a tree.7 (* C IS(S?) and
p® < a such that

(6) root(7 ™) = (a);
(7) each node extendin@:) hasw, successors i (),
(8) for eachv € .7 (@), p, < p°.

Applying Fodor’s lemma we findy and Ay such that

(9) Ag € [Sf142
(10) 6p = p™ for a € Ay.
We putAy = succ-(0) and we decide thatX )., C .7 ( for eacha € Ay.
Note that at this moment we are sure that{df(c)) € w thenN, N«a C
N, N ¢g(a) C by for eacha € S2.

Suppose we have decided that .7~ and (7), C.7 °.

Let ¢/, : S2 °™ succ.(v) be the increasing enumeration. For eack S?
we apply Claim 3.3.1 to fing™ < o and a tree7 v ¢.( C .7 such that

(11) root(77 ?:()) = v'¢) (a); )
(12) each node i * ¢ extendingu"¢/,(cr) hasw, successors iz v ¢u(@);
(13) for eachw € .77 %) w D v"¢/,(a) we have sup{,, N a) < p°.

Next we choosé, andA, such that

(14) A, € [SE¥2;
(15) 6, =p« for all a € A,.

We put sucg-(v) = ¢,[A,] and we decide that for € A,
(7 v g,0) €7 v ¢y (a)

Note that at this moment we are sure thatiE .7, v"¢,(a) C w thenN,Na C
N, NS C b, whereg! (8) = ¢, () (clearlya < 3). This finishes the construction
of the tree. 7 (satisfying (4), (5)).
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Forve.7 let(, =N, Nw; € D. We apply Claim 3.3.1 once again to find
( < w; and a tree7 * C.7 such that each node i * hasw, successors in
.7 * and for eachw-branchz through.7* we have sup{g, : n € w} = (. Then
¢ eD.Forve.7*lety, : S ontg succ-«(v) be the increasing enumeration
and leté) = sup(N, Nwy). Let

E={6<wy: éislimit& (VwelSE)N.7*)(6, <6 & 65 < 6) &
& (Ve T NISEO)(VE<H)BEreS(B < v < vu(7) < )}

SinceE is a closed unbounded subsetusfwe find 6 € E such thatCs C E.

Now we may define the semi-(6)-creature we are looking for by construct-
ing an embeddingr : IS(w) — .7 * such that Ih(4n)) = Ih(n) and choosing
corresponding modelbl,(,). This is done by induction on the length of a se-
guencen € I1S(w):

Put () = 0. Note thatsy < af (asa§ € E).

Suppose we have definedn) € .7 * such thaté,q) < aﬁk_lﬂ, wheren =
(No, Ny, ..., Nk_1). Givenng > ng_1.

Take anyy € (af, , af 1) N'SE and putr(n™nk) = 7(n) " Yr((7) € .7 *. By the

choice ofy we haved ., n,) < aﬁwl'

Finally let N,» = Ny, for n € 1S(w).
Sincedy < af, 8% (ny)) < Qhe+1 WE have that for everyo € w
Niry Nw2 C ag U fag,, apea) and Niy N e, apeg) # 0
(we use here (2) and (5)). Similarly, 4= (no, ..., nk—1, k) € IS(w) then
Ny Nab, Caby fori <k and

NN [ap,ap ) # 0 for i <k.

Consequently the sequen¢d,” : 1 € I1S(w)) is a semi-(, §)-creature (and we
are done aX € N, (€D). O

Theorem 3.4.  AssumeP is a proper forcing notion|P| < ¢. Supposéty
|wY | = w1. Thenlkp .

Proof. Let IP be a proper forcing notion collapsing and of size|P| < ¢. Since
P collapsesv,; and|P| < ¢ we havec > w,. Let © be aP-name such that

b “O wy — w¥ is an increasing unbounded function”.

Our aim is to construct a sequen@ : ¢ < w;) of P-names which witnesses
$uw, in VE. In the construction we will use (6)-creatures which can be thought of
as countable “trees” of possible fragments of names for subset@&aether with
some parameters for controlling their behaviour). Each infinite branch through
the creature will define a (countable) name for a subsét biext we will choose
continuum many branches together with condition®.iOur choice will ensure
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that the conditions form an antichain ih and all antichains involved in the
name determined by a single branch (in important cases) are predense above the
corresponding condition. This will define the nanhg for a subset of. The
main difficulty will be in proving that the sequen¢A< : ¢ < wy) is (a name for)
a {.,—sequence. But this we will obtain right from the existence of creatures
which was proved in Lemma 3.3.

Before we define the namé&z we have to identify some creatures (as the
set CF§(}P>, ©) can be very large):

For a ¢, 6)-creatureS = {(N,, 7, k,) : 7 € IS(w)} € CRS(P, ©) let

ues)= (J Nyne
nelS(w)

ClearlyU (S) is a countable subset @fand hence there is at maspossibilities
for U(S). LetS' = {(N,, 7,,k}) 1 € IS(w)} € CRg(}P, ©),i =0,1. We say that
the creatures?, St areequivalent(S® = S') whenever
(i) U(S®=U(s? and
(i) for eachn € IS(w): NP NP =NINP, kY =k}, 70 =7} and

{A°NU(S% : A% € NP is a maximal antichain iP}

={A'NU(S") : At e N} is a maximal antichain if?}.
(Note that actually condition (ii) implies (i).) Since for eaghe IS(w) there is
at mostc possibilities fork,, 7, N, NP and{ANU(S) : A € N, is a maximal
antichain inlP} the relation= has at most equivalence classes.

The following claim should be clear:

Claim 3.4.1. LetS = {(N}, 7/ .k} :n € IS(w)} € CR}(®,0) (fori =0,1)

be equivalent creatures. Letdaw® be an increasing function. Then

1 Uneo Nri]rn is an elementary (countable) submodelZf (y),

2. Unew NS NP = Uy, N NP,

3.ifA% ¢ Nhorn is a maximal antichain ifP then for some maximal antichain
Al € N, we have AN U e, NS, =AY N Upe,, Nilins

4. {A° N Uneo, Nt © A% € Une,, Niq is @ maximal antichain inP}
= {A' N Unew Nijn : A € Upe,, Npj is @ maximal antichain inP},

5. if p € Pis (Upne,, Niyn, P)-generic then it iU, ¢, Nij, P)-generic.

Fix a limit ordinal { < wj.

We are going to define a nanikg for a subset of .

Suppose tha,.s CRS(P,0) # 0.

Letp' € P, S' € Uses CRS(,0) (for i < ¢) be such tha{(p',[S']=) :i <
¢} lists of all members of® x (Uﬁesoz CRg(}P, ©)/ =) with ¢ repetitions. Take any

family {h; :i < ¢} C w% of increasing functions such that for distiricj < ¢
the intersection rndx) N rng(h) is finite.
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Now for eachi < ¢ we putM; = Uy, Ny 1 7 = Unew Thin-

EachM; is a countable elementary submodel#f () and 7 is a function.
SinceP is proper we findy; € P such thatp; is (M;, P)-generic. If we can find
such a conditiorp; above the conditiop' then we also demanpl > p'. Note
thatM; Nwy = ¢ andM; Nw, C §' is cofinal iné' (what is a consequence of)(
(6) of Definition 3.2(1)), whereS' € S is such thatS' € CRg (P, ©). Hence

pi IF “rng(©1¢) € M; is unbounded irs'”.

If ' # 6 then the conditiong; , pj force inconsistent sentences (unboundness
of rng(O[¢) in &', &, respectively). If§' = 8 buti # j then the choice of
the functionsh;, by guaranties (by (Qy (6) of 3.2(1)) that setdvl; N [a,6") and
M; N [a, 6") are disjoint for somey < &'. Consequently if #j then pi,p are
incompatible.

Let. 4, be a maximal antichain i extending{p; : i < c} and letA: be a
name for a subset af such that for eachp( k) € dom(7)

pi - "if p € I thenAc(ef) = 7i(p, k)"

(we identify a subset of with its characteristic function).

If Uﬁe%z CRg(}P, ©) = ) then take any maximal antichain and a name for a
subset of¢.
We want to show that the sequer‘(@@ : ¢ < ws) is a(name for a).,-sequence.
For this suppose thaA is a [P-name for a subset af;, D is a P-name for a
closed unbounded subset®f, p € P. We have to prove:

Claim 3.4.2. There exist a limit ordinall < w; and a condition p € . 4
such that g > p and g H—“AC ANC & ¢eD”
To prove the claim we use Lemma 3.3 to find a seqni)-creature(N,’ : n €
IS(w)) such that®, AD,P,p,...€ Ny . Next:

let k, = min{l : q gN}

For eachn € IS(w) andk < k;, we fix a maximal an'uchalnﬁ’k in I’ such

that. 2% € N> and (v € .2 (p || e € A). Moreover we demand that C v
implies ﬁ"‘ = %’k (for k < kn) Now we define functions;,, for € 1S(w) by

dom(7) = Uy, (25 NN7) x {k}),
7,(p, k) = 1 if and only ifp IF € € A

It should be clear thas = {(N,;,7,,k;) : n € IS(w)} is a (,6)-creature for
IP, 0. Thus we findi < ¢ such thatS = S' andp = p' (whereS' € CR;(P, 9),

p' € IP are as in the definition of the antichairé, and the name‘\g) Then the
conditionp® = p;j € . %¢ iS (Une, Niy - P)-generic,p* > p' = p € Nj. The
nameA< agrees with decissions af, ;n (Or ﬁ’k ,)- By the genericity ofp* we

conclude thap* IF“AN ¢ = AC & CeD" Thus the claim is proved.

The theorem follows from the claim. O
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4 Laver forcing, Miller forcing, Silver forcing...

Results of the second section can be formulated for other forcing notions. With-
out any problems we can prove the respective facts for the Silver forcing (and
generally for forcing notions consisting of compact trees).

Recall that the Silver forcing notion consists of partial functipnsuch that
dom(p C w, w\dom(p) is infinite and rngf) C 2. These functions are ordered
by the inclusion.

Theorem 4.1. The Silver forcing notion forcesc*= |(6%€)V|".

We have to be more carefull when we work with treescanNevertheless
even in this case we get the similar result

The Laver forcing” consists of infinite tree$ C w<W% such that for each
t € T, root(T) Ct we have|sucg ()| = w.

Definition 4.2. We say that a conditiom € %~ weakly obeys setX € [w]¥
whenever for each ramification poihie T

@Fi)(vi < 2)(suca () N [ux(@ +j), ux(2 +]j + 1)) # 0).
Fix T € £. TakeXo € [w]* such that for each ramification pointe T
(vi)(suce (t) N [ux, (i), ixo (i + 1)) # 0).
Suppose thak ¢ [w]¥ is such that
@)V < 2)([ax (@ +)), px (@ +] + 1)) N Xo| > 2).

Then clearlyT weakly obeysX. Consequently if7 C [w]* is a weakly domi-
nating family thenT weakly obeys som& € .7 .

Suppose now that weakly obeysX € [w]¥ andh : w — w is such that
(vi)(h(i) < 2'). Then we can easily construct a conditibh > T such that

if t € TM is a ramification point iff", t'’n e T"andj < 2/, 2 +j <n <

2 +j+1

thenh(i) =]j.
Moreover, if hg,hy are such thaty(*i)(ho(i) # hi(i)) then the respective con-
ditions T, T are incompatible — their intersection has no node with infinitely
many immediate successors. Consequently we can repeat the proof of 2.4 and
we get

Theorem 4.3.  IFy ¢ =|(6%9)V|.

The argument above applies for the Miller forcing too. Recall that this order
consists of perfect tre€b C [w] <% such that

VMt eT)3seT)(t Cs & |sucg(s)| =w).
Thus we can conclude

Theorem 4.4. The Miller forcing collapses the continuum or(tg©)" .

AcknowledgementsSpecial thanks are due to the referee for very valuable comments.
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