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Abstract. We continue the works of Gurevich-Shelah and Lifsches-Shelah
by showing thatitis consistent with ZFC that the first-order theory of random
graphs is not interpretable in the monadic theory of all chains. Itis provable
from ZFC thatthe theory of random graphsis notinterpretable in the monadic
second order theory of short chains (hence, in the monadic theory of the real
line).

0. Introduction

We are interested in the monadic theory of order — the collection of monadic
sentences that are satisfied by every chain (= linearly ordered set). The
monadic second-order logic is the fragment of the full second-order logic
that allows quantification over elements and over monadic (unary) predicates
only. The monadic version of a first-order langudgean be described as

the augmentation of. by a list of quantifiable set variables and by new
atomic formulag € X wheret is a first order term and’ is a set variable.

It is known that the monadic theory of order and the monadic theory
of the real line are at least as complicated as second order logic ([GuSh2],
[Sh1]). The question that we are dealing with in this paper is related to the
expressive power of this theory: what can be interpreted in it?

In our notion of (semantic) interpretation, interpreting a thebiin the
monadic theory of order is defining models’Bfin chains. Some problems
about the interpretability power of the monadic theory of order, which is

* The second author would like to thank the U.S.—Israel Binational Science Foundation
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a stronger criterion for complicatedness, have been raised and answered.
For example, second order logic was shown to be even interpretable in the
monadic theory of order ([GuSh3]) but this was done by using a weaker,
non-standard form of interpretation: into a Boolean valued model.

Using standard interpretation ([GMS]) it was shown that it is consistent
that the second—order theory ©f is interpretable in the monadic theory
of ws (hence in the monadic theory of well orders). On the other hand, by
[GuSh], Peano arithmetic is not interpretable in the monadic theory of short
chains, (chains that do not embedl, <) and(w, >)) and in particular in
the monadic theory of the real line. In [LiSh] we filled the gap left by the
previous results and showed that it is not provable from ZFC that Peano
arithmetic is interpretable in the monadic theory of order.

Here we replace Peano arithmetic by a much simpler theory — the theory
of random graphs, and obtain the same results by proving:

Theorem. There is a forcing notio® such thatinl’*’, the theory of random
graphs is not interpretable in the monadic second-order theory of chains.

In fact we show that the mod@&l” in which Peano arithmetic is not
interpreted is a model in which the theory of random graphs is notinterpreted
(an exact formulation of the non-interpretability theorem is given in section
2).

The proof is similar in its structure to the proof in [LiSh]: we start by
defining, following [Sh], our basic objects of manipulation - partial theories.
Next, we present the notion of interpretation and the main theorem. We show
in Sect. 3 that an interpretation in a chaifi ‘concentrates’ on an initial
segmentD C C called a major segment. One of the main differences from
[GuSh] and [LiSh] is that the notion of a major segment is not as sharp
as there; this results in the need to apply more complicated combinatorial
arguments.

The most widely used idea in the proof is applying the operation of
shuffling subsets\,Y C C': given a partition ofC, (S; : j € J) and a
subsetz C J, the shuffling of X andY with respect taJ anda is the set:
Ujea(X NS5) UU;g (Y N Sj). One of the main results in [LiSh] was to
show that this operation preserves partial theories; this is stated and used
here as well.

To prove the main theorem we try to derive a contradiction from the
existence of an interpretation in a chdifi, <) € V. We start by making
two special assumptions: th@titself is the minimal major initial segment,
and thatC' is an uncountable regular cardinal. The spirit of the proof and
main tools are similar to [LiSh], but some of the techniques have to be
more tortuous. The proof in this case contains all the main ingredients and
disposing of the special assumptions is essentially a formality.
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Although we use many definitions and techniques from [Sh], [GuSh] and
[LiSh] we have tried to make this paper as self contained as possible. The
only main proof we have omitted is that of the theorem on preservation of
partial theories under shufflings, as its proof is quite long and involves ideas
that are not directly related to this paper.

1. Composition and preservation of partial theories

In this section we define formally the monadic theory of a chain and our
main objects of interest: its finite approximations (partial theories). We state
the useful properties of partial theories, namely the composition theorem
and the theorem about preservation under shuffling.

The monadic theory of a chain is defined to be the first order theory of
its power set.

Definition 1.1. Let (C, <) be a chain. Thenonadic second-order theory of
C is the first-order theory of the model

cmen — (P(C); C, <*, EM, SING)

whereP(C) is the power set of”, < andC are binary relations, SING and
EM are unary relations and:

(1) C™°" =SING(X) iff X is a singleton,

(1) C™" = X <*Yiff X ={z},Y = {y} (wherez,y € C) and
ClEr<y,

(i7i) C™" =EM(X) iff X =0,

(7v) Cisinterpreted as the usual inclusion relation between subsets of
C.

Remark. We denote the first order language aboveéy.on). However we
will be slightly informal about that and identify it with the monadic version
of the first-order language of order, L. Now eaghe L can be translated
to a first-order formulay’ € L(mon) by the rules:(3x)¢(x) (individual
quantification) will be translated t&X)[SING(X) & ¢/(X)] andz € Y

to SING(X) & (X C Y). So when we write” = ¢ (for ¢ € L) we mean
o™ = o' andz < yis translated a&X <* Y.

Notations 1.2. We denote individual variables by, y, z and set variables
by X,Y, Z. a,b, c are elements and, B, C are setsa and A denote finite
sequences having lengthlga) andlg(A). We will write a € C andA C C
instead ofa € 8@ C or A € 8AP(C), we may also writeiy € a or
Ap € A.

Next is the definition of the partial-theory of A in C
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Definition 1.3. Let (C, <) be a chain andl C C. We define
t=Th"(C; A)

by induction onn: B

forn = 0: t = {p(X) : ¢ € L(mon), pquantifier free, C™°" =
p(A)} _

forn=m+1: t={Th"(C;A"B): BC C}.

Lemma 1.4. (A) For every formulay(X) € L there is ann such that
fromTh"(C; A) we can decide effectively wheth@r= ¢)(A). We call the
minimal suchn the depth ofy) and writedp(v)) = n.
(B) For everyn and! there is a finite set of monadic formulas (effectively
computable fromm andl) ¥ (n,1) = {1(X) : m < m*, 1g(X) =1} CL
such that for any chain€', D andA C C, B C D of Iengthl the following
hold:

(1) dp(¥m(X)) < nform < m*,

(2) Th™(C; A) can be computed frofim < m* : C |= ., [A]},

(3) Th*(C; A) = Th"(D; B) iff for everym < m*, C | ¢Yp[A] <
D | | B].

Proof. In [Sh], Lemma 2.1. O

Definition 1.5. When¥(n, () is as in 1.4(B), for each chaifi andA C C

of lengthl we can identify TH(C; A) with a subset of?(n, [). Denote by
T,.; the collection of subsets af(n,l) that arise as some ThC; A) and
call it the set of formally possible, [)-theories

Remark. For givenn, I € N, each TH(C; A) is hereditarily finite, (where
lg(A) = I, C'isachain), and we can effectively compute the set of formally
possible theorie$,, ;. (See [Sh], Lemma 2.2).

Definition 1.6. If (C, <¢) and(D, <p) are chains the(C + D, <) is the
chain that is obtained by adding a copyDfafter C' (where< is naturally
defined).

If (I,<)is achainand(C;, <;) : i € I) is a sequence of chains then
> icr(Ci,<i) is the chain that is the concatenation of tigs along /
equipped with the obvious order.

GivenA = (A, ..., A;_1) andB = (Bq, ..., B;_1) we denote byl U
B the sequencédoU By, . .., A;_1UB;_1). The heavily used composition
theorem for chains states that the partial theory of a chain is determined by
the partial theories of its convex parts.

Theorem 1.7. (Composition theorem for chains). B
- @i C, C’, D and D' are chains,A C C, A’ C ¢', B C D and
B’ C D' are of the same length and if
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Th™(C; A) = Th™(C'; A)
and - -
Th™(D; B) = Th"™(D'; B')
then
Th"™(C + D; AUB) =Th"(C' + D'; A U B').
(2) If I'is achain andTh™(C;; A%) = Th™(D;; B?) for eachi € I (with
all sequences of subsets having the same length) then

Th™ ( ; Cy: ui[v) — Th™ ( ; D;: UiBZ) .

Proof. By [Sh] Theorem 2.4 (where a more general theorem is proved), or
directly by induction om. See also theorem 1.9 below. O

Using the composition theorem we can define a formal operation of
addition of partial theories.

Notation 1.8. (1) Whenty, ta, t3 € Ty, for somem, [ € N, thent; +t5 =
t3 means: there are chainsandD, andA C C, B C D such that

t1 = Thm(C, Ao, ce ,Alfl) & to = Thm(D, Bo, ce ,Blfl) &
ts = Th™(C + D;f_l U B)

(By the composition theorem, the choice@fand D is immaterial).

(2) >, TH™(Cy; AY) is TH™ (3,1 Cis Uier AY), (assuminglg(A?) =
lg(A7) for i, j € I).

(3) If Disasub-chainot’ andA C C'then TH(D; (AgND, A1ND,...))
is abbreviated by TR(D; A).

(4) Fora < b € CandP C C we denote by Th(C; P) [, the theory
Th™([a,b); P N [a,b)).

We conclude this part by giving a monadic version of the Feferman-
Vaught theorem. Note that the composition theorem is a consequence.

Theorem 1.9. For everyn,! < w there ism = m(n,l) < w, effectively
computable fromm and!, such that if

(1) Iisachain,

(13) (C;:i € I) isasequence of chains,

(ii7) fori € I, Q; C C; is of lengthl,

(iv) fort € T,y, Pr:={i € 1:Th"(C;; Q;) = t},

(v) P:= (P, :teT,,),
thenTh™ (3", ., Ci; UQ;) is computable fromTh™ (I; P).

Proof. This is theorem 2.4. in [Sh]. O
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Next we define semi—clubs and shufflings and we quote the important
preservation theorem.

Definition 1.10. Let A > X, be a regular cardinal

1) We say thatt C )\ is asemi—club subset oX if for every a < A with
cf(a) > No:

if o € athenthereis a club subsetaof C, suchthat’, C a and

if o € athen there is a club subsetef C, such thatC, Nna = 0.

(Note that\ and() are semi—clubs and that a clubC )\ is a semi—club
provided that the first and the successor pointd afre of cofinality< N.
Also, if a C )\ is a semi—club then \ a is one as well.)

2)LetX,Y C A, J={w; :i < A} aclub subset of\, and leta C \ be a
semi—club of\. We will define theshuffling ofX andY with respect ta:
and.J, denoted by X, Y]/, as:

(X, Y]] = (X N, i) U (VN [0, 0041))

i€a ia

3) WhenX,Y C )\ are of the same length, we defip€, Y]/ naturally.

4) We can naturally define shufflings of subsets of an ordineth respect
to a clubJ C § and a semi—club C otp(J).

6) a-Th™(\; P) is TH*(\; P, a) wherea C )\ is a semi—club.

The next theorem, which will play a crucial role in contradicting the
existence of interpretations, states that the result of the shuffling of subsets
of the same type is an element with the same partial theory. The proof of the
preservation theorem i of [LiSh] requires some amount of computations
and uses some auxiliary definitions that are not material in the other parts of
the paper. For example, the partial theories W(TH P), ATh™(3, (C; P))
anda-WA"(C; P) are used in the proof and even the formulation of the
theorem but we can avoid defining them by noticing that (for a large enough
m) a-Th™(C; P) computes all these partial theories. We also avoid the
definition of ann-suitable club (which relies on ATH. All the details can
be found of course in [LiSh].

Theorem 1.11 (preservation theorem)Let Py, P, C X be of lengthi,
n < w anda C A be a semi—club.

Then there are am = m(n,l) < wandaclubJ = J(n, Py, P;) C Asuch
that if X := [Py, P} then

(%) [a-Thm()\; By) = a-Th™(\, Pl)}

= [Th"(/\; Py) = Th(\; Py) = THY(A; X)]
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Moreover, there ig* = t*(P, P1) € T, such that, for every € J with
cf(7) = Ro,

(*x) [a-Thm()\;po) = a-Thm()\;Pl)} =

[TH" (% o) Tjo.y=TH"(As 1) o= T (3 X) Tgp=£°].
Proof. By [LiSh] 4.5, 4.12. 0

Definition 1.12. Let y, P, C \ be as above. Call a cluf C X an n-
suitable club forP, and P; if for every semi—clubz C A, (%) and (xx) of
1.11 hold.

Fact 1.13. For every finite sequende=(P; : P; C \, Ig(P,) =1, i < k)
and for everyn < w there is a clubJ C A that isn-suitable for every pair
fromP.

Proof. By [LiSh] 4.3, 4.4. O

2. Random graphs and uniform interpretations

The notion of semantic interpretation of a thedryin a theoryZ” is not
uniform. Usually it means that models @f are defined inside models of
T’ but the definitions vary with context. In [LiSh] we gave the general
definition of the notion of interpretation of one first order theory in another.
In our case, in which we deal with interpreting a class of theories, another
notion emerges, that ofuniform interpretation

First we define the theory ok -random graphs:

Definition 2.1. Let 1 < K < w. An undirected graply = (G,R) is a
K-random graphf

[AO,A1 C G & |Ag|,|A1] < K & Agn Ay = (2)}
= [Gx € G)(Va € Ag)(Vb € Ap)[zRa & mRb]}.

(When this holds we will say that separatesd, from A;).

Definition 2.2. (1) RGk is the theory of allK-random graphs (that is all

the sentences, in the first-order language of graphs, that are satisfied by
every K-random graph)RG?, is theory of all the infinite graphs that are
K-random.

(2) I'k is the class of all thé(-random graphs, (clearl < L < w =

Iy C I'k). Il is the class of infinité<-random graphs.

(3) I isthe clasg{I'k 1 <« k<w: Lf, IS {1 < K<w-
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The next definition is the one used in [LiSh]. It is applicable in dealing
with RG,,, but will have to be modified for dealing with finitely-random
graphs.

Definition 2.3. An interpretationof a modelG of RGk in the monadic
theory of a chainC' is a sequence of formulas in the language L of the
monadic theory of order

I=(UX,W), BE(X,Y,W), R(X,Y,W))

where:

1)U (X, W) is theuniverse formuldhat says which sequences of subsets
of C represent elements ¢f. We denote byCU the set{ X C C : C
U(X, W)}

2) E(X,Y, W) is theequality formulaan equivalence relation an’ .

We write A ~ B whenC |= E(A, B,W).

3) R(X,Y, W) is theinterpretation of the graph relatigra binary rela-
tion onCY which respects- i.e. “C = R(A, B,W)” depends only on the
E-equivalence classes of and 5.

4) W C C'is a finite set of parameters allowed in the interpreting for-
mulas.

5(CY/~,R) = g.

Definition 2.4. LetZ be an interpretation of in the monadic theory of a
chainC'.
Thedimensiorof the interpretation, denoted liy7), is1g(X ). We will
usually assume without loss of generality thgf') = d(Z) as well.
Thedepthof the interpretation, denoted by7), ismaxXdp(U), dp(E),
dp(R)}.

Definition 2.5. Let RG* be one of the theories defined in 2.2(1) dridbe
the respective class. We say tttat monadic theory of order interpref&*
(or I'*) if there is a chairC, a random grapy € I'* and an interpretation
I=(UX,W), E(X,Y,W), R(X,Y,W))with (CYV/ ~, R) = G.

Common notions of an interpretation of a the®iyn a theoryl’, demand
that every model off} is interpretable in a model df; (as in [BaSh]) or
that inside every model df, there is a definable model @i (see [TMR]).
Here we seem to require the minimum: a single model is interpreted in a
single chain. This is often useful, but not always:

Fact 2.6. For everyl < K < w there is a chairC' and a sequence such
thatZ is an interpretation of a model aRG’ (hence of RGk) in C'. (That
is, RGk, RGY, RGsn, RGY,, are interpretable in the monadic theory of
order).
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Proof. We shall demonstrate the construction fér= 2; the other cases
are similar.

LetC = (w, <), we will show that there is a one-dimensional interpre-
tation of an infinite model ofRG, in C without parameters. For that we
have to defind/(X), E(X,Y) andR(X,Y). Let:
UX)=[X={at&a>1]VI[X ={z,a,b} &2 € {0,1} & a,b>1];
EX,Y)=UX)&UY)&X =Y ;

R(X,Y):=U(X) & U(Y) and either:

(X ={a} &Y ={0,a,b} & a < b] Or

Y ={a} & X ={0,a,b} & a < b] or

(X ={b} &Y ={1,a,b} & a > b] or

Y ={b} & X ={1,a,b} & a > b]or

(X ={a} &Y ={z,c,d} &z € {0,1} & a & {c,d}] or

Y ={a} & X ={z,c,d} &z € {0,1} & a & {c,d}].

Clearly everything is expressible in L ai{ X, Y") defines on{ X C w :
(w,<) EU(X)} agraph relation that is 2-random. 0

Motivated by the previous fact we will define now the suitable modifi-
cation of the previous definitions. The idea is to interpret, in a uniform way,
an infinite set of random graphs.

Definition 2.7. A uniform interpretationof Iy, in the monadic theory of
order is a sequence

{(CK, I, WK> :KGA}

where

1) Ck is a chain,

2) A'is an infinite subset ob,

3)WK C Ok for K € A,

41 =(UX,Z2),B(X,Y,Z),R(X,Y,Z)) is a sequence of formulas in
L,

5)Ix = (UX,Wg),E(X,Y, W), R(X,Y,Wg)) is an interpretation
of a model of RG in Ck for K € A.

Givend andn in Nthere is only a finite number of possible interpretations
7 having dimensionl and deptm. The following is therefore clear:

Proposition 2.8. The following are equivalent:

(A) There is no uniform interpretation dff,, in the monadic theory of order.

(B) For everyn,d € N there isK* = K*(n,d) € Nsuch thatif K > K*

andZ is an interpretation of somg = RGx in a chainC, then either

d(Z) > dorn(Z) > n.

(C) For every sequencg = (U(X,Z), E(X,Y,Z), R(X,Y,Z)) there
C

is K* = K*(Z) < w such that there are no chai@’, W
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K* andG € I’k such that(U(X, W), E(X,Y, W), R(X,Y,W) is an
interpretation ofG in C. O

Our main theorem has therefore the following form:

Theorem 2.9. (Non-Interpretability Theorem). There is a forcing notiBn
such that ini’* the following hold:

(1) RG,, is not interpretable in the monadic theory of order.

(2) For every sequence of formulds= (U (X, Z), E(X,Y,Z), R(X,Y,

7)) thereisk* < w, (effectively computable frof), such that for no chain
C,W C C,andK > K* does(U(X,W), E(X,Y,W),R(X,Y,W))
interpret RG g in C.

(3) The above propositions are provable in ZFC if we restrict ourselves to
the class of short chains.

Remark. As anw-random graph ig(-random for everyx’ < w, an inter-
pretation of RG,, is a uniform interpretation of ,,. Therefore clause (1)
in the non-interpretability theorem follows from clause (2).

3. Major and minor segments

From now on we will assume that there exists (in the generic mioéehat

is defined later) a uniform interpretatiahof I, in the monadic theory

of order. For reaching a contradiction we have to find a large enéligh
K(Z) < w (a function of the depth and dimension ®j and show that

no chain interprets & -random graph b¥. The aim of this (and the next)
section is to gather facts that will enable us to compute an approgfiate
The main observation is that an interpretation in a cliaiftoncentrates”

on a segment (called major segment One of the factors in determining
the size of K will be the relation between the major segment and the other,
minor, segment.

Context3.1.Z = (U(X,W), E(X,Y,W), R(X,Y,W)) is an inter-
pretation of akK-random graplg = (G, R) on a chainC. W C C are
the parameters] = d(Z) = lg(X) = lg(W) is the dimension ofZ and
n = n(Z) is its depth.

Definition 3.2. A C Gisbigfor (K, K»)ifthereisB C Gwith|B| < K;
such that :

(x) for every disjoint paird;, A C G\ B with |[A; U As| < K there is
somex € A\ (A; U Ap) that separated; from As i.e. (A xRy) A
(/\yGAQ_ﬁx}%y}

When(x) holds we say thaB witnesses théK, K9)-bigness ofA.

yEAL

Non-bigness is an additive property:
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Proposition 3.3. Let A C G be big for (K, K2) and suppose thatl =
Ui <m Ai- Thenthere is an < m such thatA; is big for (K 4+ K2, Ka/m).

Proof. Let B C G (|B| < K;) witness the bigness ofl. Fori < m we
will try to define by induction counter-examples for bigness, that is a set
B; C G and a functiorh; so that:

(1) |Bi| < Ka/m,

(2)B; € G\ (BUU,,; By),

(3) hi:B; — {t, f},

(4) fornox € A; \ B; we have(Vy € B;)[zRy <> h(y) = t].

Suppose we succeed. L@t := {z : \/,(z € B; & hi(xz) =t)} andCy :=
{z:V,(z € Bi& hi(z) = f)}.But|C1UCy < K, C1UCy C G\ B
and of cours&”; N Cy = () so by the assumption ofi there is some: € A
that separate§’, from C,. Such anr belongs to some!; and it separates
C1 N B; from Cy N B;. This contradicts clause (4).

Therefore at some stage< m we can't defineB; and look atB* :=
BUUJ.Q. Bj;.Now|B*| < K +i-Ky/m < K;+ K, and “being unable to
continue” means: iB; C G\ B* and|B;| < K»/m then for every partition
of B; to B} and B? there is some: € A; \ B; such that( A c g1 2Ry) A
(Ayep2 "z Ry). Inother words A; is big for (K + K2, K2/m) (witnessed
by B*)Zas required. O

Notation 3.4. A C C is calleda representativeéf it represents an element

of Gi.e. if C = U(A, W) (of courselg(A) = d). The representatives

A, B C C are callecequivalentand we writeA ~ B if they represent the
same elementig i.e. if C = E(A, B,W). We use upper case letters such
asX, A, U; to denote representatives. The corresponding lower case letters
(z, a, u;) will denote the elements @ that are represented by the former.
Soe.gA~DB <= a=hb.

Definition 3.5. 1) A sub-chainD C (' is asegmentf it is convex (i.e.
r<y<z&xzzeD = yeD).

2) A Dedekind cubf C'is a pair(L, R) whereL is an initial segment of’,

Ris afinal segmentof, LN R=0andLUR =C.

3)LetA, B C C.We will saythatd, B coincide onespoutside)a segment
DCC,if AND=BnND (respAN(C\D)=Bn(C\D)).

4) Thebouquet sizef a segmenD C C denoted by# (D) is the supremum

of cardinalg S| whereS ranges over collections of nonequivalent represen-
tatives coinciding outsid®. Thus# (D) > n iff there are nonequivalent
representatived;, As, ..., A, coinciding outsideD.

Definition 3.6. Let D C C be a segment

1) D isi*-fatif #(D) > ¢*

2) D is (K1, K2)-major if there is a sefU; : i < i*} of representatives
coinciding outsideD and representing a subset®that is big for( K, K3).



Sh:527

284 S. Lifsches, S. Shelah

3) D is called( K1, K2)-minorif it not (K, K2)-major.

We denote by\/; the numberT, 34/ (i.e. the number of possibilities for
Th(C; X,Y, Z)).

Proposition 3.7. Let(L, R) be a Dedekind cutof’. If L[R]is (K1, K2)-
major thenR [ L] is not K3-fat whereKs = M;(K; + K») + 1.

Proof. Suppose(4; : i < i') demonstrate thak is (K1, K3)-major, i.e.
they represent &K, K»)-big set{a; : i < il) in G and 4; [gr= A*.
Assume towards a contradiction th@; : i < K3) demonstrate thaR is
Ks-fat(i.e.i < j < K3 = b; # b; andB; [= B*). Define an equivalence
relationEr on{0,1,...,i* — 1} by:

iELj = Th'(L; A;, B*,W) = Th*(L: A;, B*, ).

By the definition ofM1, £, has at mosd/; equivalence classes. By proposi-
tion 3.3 thereis” C {0,1,...,i* -1}, anEy equivalence class, such that
{A; :i € a*} represents 6K, + Ko, Ko/M;)-big subset ofj. Let B C G
witness the( K| + Ko, Ky/M;)-bigness of{a; : i € a’}. Since|B| <
(K1 + Ky) andK3 = M, (K + K2+ 1) we can choose sonje, jo < K3
with b;,,b;, ¢ B and with TH'(R; A*, B;,, W) = Th"(R; A*, B;,, W).
Now by the composition theorem 1.7, and the chmcefohnd]l,jg we
have for every € a’:

Th(C; Ay, By, W) = ThY(L; A, By, W) + Th*(R; A;, By, W)
=Th"(L; 4;, B*, W) + Th"(R; A*, B;,, W)
= Th"(L; A;, B*, W) + Th"(R; A*, Bj,, W) .

Therefore for every € a”
C &= R(A;, Bj,,W) < R(A;,Bj,,WV).
Sinceb;,, b;, ¢ B we get a contradiction toA is (K + K», Ko /M)-big

as witnessed by”. O
Notation 3.8. Let M, be |T}, 24|, M3 be My + 1 (= |T;, 34| + 1) and
M, be such that for every colouring: [M,]? — {0,1,...,6} there is a
homogeneous subset ¢0,1,..., M, — 1} of size M3, where[M,]? is

{{(i,7,k) : i < j <k < My}. (M, exists by Ramsey theorem).

The main lemma states that in every Dedekind cut one segment is major.
Now we have to make an assumption on the degree of randomngss of

Lemma 3.9. AssumeK > (Mj3)? (K is from “K-random”). Let (L, R)
be a Dedekind cut of”. Then eitherL or R is (K, K2)-major where

K, = K+( 17 and Ko = Wﬂ%
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Proof. G is (0, K)-big and let{U; : i < i*} be a list of representatives for
the elements ofj. Define a pair of equivalence relatiof% and EY on
i* = |G| by:

Y = TH(Li U, W) = Th(L; 0, W)
[z’E%j — THY(R;U;, W) = Th"(R; Uj,W)]

By the definition of M, each relation has M, equivalence classes; there-
fore by 3.3 there is a subsﬂtl C 4* and pair of theorie$t, t2) such that
{u; i€ A1}is (K ) = )-big and

1€ A = [Thn(L; Ui, W) =t & Thn(R; Uz,W) = tg].

Denote byX 'Y the tuple(X [.) U (Y [g).

() Fori,j € A; we haveC = U(U;"U;,W) (hencelU;"U; is a
representative).
Why? Becaus€’' |= U (U;, W) and by the composition theorem
Th(C; Ui, W) = T (L; Uy, W) + Th*(R; Uy, W) = t1 + by =
THY(L: Ty, W) + TH (R U, W) = T (C: T, AT, W),
Define a pair of relation&';, andEr on{U; : i € A;} by:

UiELUj < (37’ € Al)[Ui/\Ur ~ Uj /\Ur]
ﬁiERUj < (Hl € A1)[Ul /\Ui ~ UlAUj]
(ﬂ_) @ELU_] i_ (VT’ S Al)(UiAUT ~ Uj /\Ur) UZ‘ERUJ‘ = (\V/l S
ANONT ~T ATy,
Why? Suppos&, E.U;, U; "U, ~ U; "U, and letr; € A;.

Now TH'(R; U,, W) =ty = Th"(R; U,,, W) hence TH(R; U,,U,, W) =
Th"(R; U,,,U,,, W). By the composition theorem

Therefore TH(C; U; U, , U; "U,,, W) =Th"

hence

U; MUy ~ U0, = U; Oy, ~ U; Oy,
( ) ’Al/EL‘ < ]\4_4 OI"Al/ER| < My.

Otherwise, supposeX1, Xo, ..., Xu, 1) € {U; : i € Ay} is a sequence

of pairwiseE 1 -nonequivalent representatives and that Ya, ..., Yaz, 1)

C {U; : i € A} are pairwiseEg-nonequivalent. By«) we know that for
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everyi, j < M, there is somé(i, j) < i* with X; "Y; ~ U, ; ;). Define a
colouring f: [My]* — {0,1,...,6} by:

0 if h(i,i) = h(j, k)
1 if h(i,i) = h(k,7)
2 if h(j,7) = h(i, k)
f(i,5,k) =19 3 if h(j,j) = h(k,i)
4 if h(k,k) = h(i,j)
5 if h(k, k) = h(j,9)
\ 6 otherwise.

(If more then one of these cases occirsakes the minimal value.)

By the definition of M, there isB C M, with |B| = M3 such thatB is
homogeneous with respect foand we letf [gp= m. Is it possible that
m < 6? Suppose for example that = 0, and choosé < j < j; < k
from B. If f(i,5,k) = 0 = f(i,51,k) we haveh(i,i) = h(j,k) and
h(i,i) = h(jl,k). HenceX’i /\}71‘ ~ Xj /\Yk andXi /\Yi ~ le /\Yk. It
follows thatX; Y, ~ X, Y, and hencé\; E; X;, and this isimpossible.
The other five possibilities are eliminated similarly and we conclude that

f IB=6.

Let Ay :={l <i*: (Fi € B)(h(i,i) =)} andAs:={l <i*: (i #j €
B)(h(i,j) = 1)}. By the choice ofB and the above we haw, N A3 = (.
Note that|A;| < |B| = M3 < K and|A3| < |B|? = (M3)? < K. Hence
by the K-randomness of; there is somé& < i* such that

€Ay = CERULU,W) &l € A3 = C = -R(Uy, U, W)]
that is (asR respects-)
() i#j€B = C& ROy X"V, W) & ~R(0y, X, 'V}, W)].
By the definition of M3 = | B| we havei # j € B with
(x) Th™(R; Uy, Y;, W) = Th"(R; Uy, Y;, W).

But

+Thn(R7 Uk‘) }_/Z'a V_V) :by (*)
Thn(L; ﬁk, XZ', V_V) + Thn(R; Uk, ?}, W) = Th"((], ﬁk, XZ A _j, W)
Therefore:

C ': R(Uk,)_ﬁ /\YZ’,W) — C }: R(ﬁk,Xi /\Yj,W)

and this is a contradiction tg@), so(~) is proved.
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To conclude, assumed; /EL| < Mjy. Then, by 3.3 and au; : i €
A} is (K, ﬁ)-big, there isA C A; such that(u; : i € A)is (K +
ﬁ, Wﬂ%)-big and such that for eveiyj € A, U;E.U;. Fixk* € A,

and define a sequenc¥; : i € A) by:
Vile=U; 1L and V; [r="TU; Ir .

We want to show that for everye A we havel; ~ U;. Indeed, a¢/; E,U;
and by(3) we know that for every € Ay, Uy U, ~ U; U, and choosing
r = i we getUp"U; ~ U;"U; i.e. V; ~ U;. Hence(v; : i € A)is
(K1, K3)-big and all theV;’s coincide outsideR. HenceR is (K1, K»)-
major.

By a similar argument we geA;/Er| < My impliesL is (K, K3)-
major. O

Notation. K; and K> will be from now on the numbers from lemma 3.9
above.

The computations below will be useful in the following stages. For the
moment assume thétis finite.

Let (L, R) be a Dedekind cut of andK > (M3)? as before. First note
that asg is K-random we have

G| = #(C) > 22KV
By 3.9 we may assume thatis (K, K3)-major wherek; = K + K

(M3)?
andK, = (M;)(QM4. (The caseR is (K1, K2)-major is symmetric.) IfK is
big enough we get

K K
2K g =2 (K4 - VS K>Ky=—
! K+ anp) > 5> *2 = Gy,
and by the definition of K1, K2)-major
#(L) > oKa2 _ 2(1»121;(21»14.
By 3.7 Ris not M, (K + K») + 1-fat, i.e.,
B(R) < Mi(K1+ Ko) = Mi(K + —— + 2y <ok

it follows that
() #(L)/(#(R) +1)* > 252 /(4(M1)’ K* + A(M)K + 1)
— 9TR)W J(4(My)°K? + 4(M1)K + 1),
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Conclusion 3.10.For everyl < w there isK* = K*(l,n,d) < w such
that under the context in 3.1, if

K > K*,

(L, R) is a Dedekind cut of”,

M = M(K,n,d) denotes the bouquet size of the major segment,

m = m(K,n,d) denotes the bouquet size of other segment,
thenM/(m +1)? > |- K.

Proof. By the inequality(x) above and noting thal/;, M», M3 andM, do
not depend ork'. O

Remark. By 3.7, if K is big enough then the segment that is (¥t , K>)-
major is minor. We will always assume that.

If we assume that the interpreted grapts infinite then we can say that,
if K isbigenough, one segment will have an infinite bouquet size while the
other will have an a priori bounded bouquet size.

Lemma 3.11. For everyn,d < wthereisK™* = K*(n, d) < w such that if
Z, of dimensionl and depth, is an interpretation of an infinité-random
graphGonC and K > K*,
then there isn < w, that depends only of’, n andd, such that if (L, R)
is a Dedekind cut of”:

L (or R) has an infinite bouquet size,

R (or L) has bouquet size that is at mast

Proof. By lemma 3.9 (lettings* = (M3)?) we get that one of the segments

is (K1, K2)-major and hence has infinite bouquet size. From 3.7 we get that
the other segment is ndts-fat where K3 depends only o and the
interpretatior (i.e.n andd). The requiredn is thatK3, which is good for
every Dedekind cut. O

4. Semi-homogeneous subsets

Our next step towards reaching a contradiction is of a combinatorial na-
ture. In this section we introduce the notion of a semi-homogeneous subset
and show that the gap between the size of a set and the size of a semi-
homogeneous subset is reasonable.

Definition 4.1. Let K, ¢ < w, let] be an ordered set arfd[I]> — {0, ...,
ch.

1) We callT" C I right semi-homogeneous in | (fgrand K) if for every
i <i*fromTwehavel{jel:j>i f(i,5)=f(i)} > K.

2) We callT C I left semi-homogeneous in | (f¢rand K) if for every
i <i*fromT wehavel{j € I:j<i* f(j,i*) = f(i,i")} > K.
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3) We callT’ C I semi-homogeneousin | (fgrand K) if T is both right
semi-homogeneous and left semi-homogeneous.

4) We callT C I right—nice [left-nice]for S C I (and forf andK) if
Max(S)<Min(T) [Min(S)>Max(T")] and for everyj € T', S U {j} is right
semi-homogeneous [left semi-homogeneoudJin S.

Lemma4.2. Let K, ¢, I, f be as above. Suppo$f > c¢- N - K. Then,
there is a right semi-homogeneous sulse&t 1 of cardinality V.

Proof. Letig be Min(l) and7 C I be of cardinality> |/|—c¢- (K —1) such
thatT) is right—nice for{ip}, (just throw out every € I such thatf (io, 7)
occurs less thaK times, there being at most (KX — 1) suchj’s). Leti; be
Min(7Ty) andT; C Tp be right-nice fog; of cardinality> || —2¢- (K —1),
(use the same argument). Defifie:= {i, i1 }. Clearly, for everyj € 11,
Sy U{j} is right semi-homogeneous in

Proceed to defing (=Min(T}) ), T», Sz and so on. After definingx_o
and Tv_o we have thrown outN — 1) - ¢- (K — 1) elements and as
|I| > ¢- N - K we can defindx_1,iny—1 andSy_; which is the required
right semi-homogeneous subset. O

Lemma 4.3. Let K, c, I, f be as above. Supposg > ¢?- N - K? =
¢:(cNK)-K.Then, thereis a semi-homogeneous subsget! of cardinality
N.

Proof. Repeat the construction in the previous lemma tolgeC I, right
semi-homogeneous ihof cardinality> ¢- N - K and now takél’ C T*
left semi-homogeneous ifi of cardinality> V.

T is semi-homogeneous ih O

We return now to the previous section, and its context. Recall that, given
acut(L, R) we denoted b/ = M (K, n,d) the bouquet size of the major
segment and byn = m(K, n, d) the bouquet size of the minor segment.
Conclusion 4.4. In the context 3.1, for every, N < w there isK < w
such that if|I| > M(K,n,d) then for everyf: [I]> — {0,...,c} there
is a semi-homogeneous subsetlofC I, for f andm(K,n,d) + 1, with
|T| > N.

Proof. By lemma 4.3. we justneedto ensure tHatV - (m(K, n, d)+1)? <
M(K,n,d).i.e.M/(m + 1)* > ¢2- N. This holds by conclusion 3.10. 0

5. The forcing

The universé/ where no uniform interpretation exists is the same as in
[LiSh]. The forcing P adds generic semi—clubs to each regular cardinal
> Ng.

Context. V' = GCH
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Definition 5.1. Let A > R, be a regular cardinal

1)SC\ ={f: fra— {01}, a < A, cf(a) < Ny } where eachf,
considered to be a subset@for )\), is a semi—club. The order is inclusion.
(SoSC) adds a generic semi—club ).

2) @, will be aniteration of the forcing C', with lengthA\™ and with support
<A

3) P := (P, Qu: pt acardinal > Xq ) whereQ),, is forced to beQ),, if u is
regular, otherwise iti. The support of” is Easton’s: each conditigne P

is a function from the class of cardinals to names of conditions where the
classS of cardinals that are matched to non-trivial names is a set. Moreover,
whenk is an inaccessible cardingl,N x has cardinality «.

4) Py, P.), P<) are defined naturally. For example. is (P,, Q.:

Rg < p < A).

Discussion 5.2.Assuming GCH itis standard to see tiijt satisfies the. ™
chain condition and th&@ , and P, do not add subsets afwith cardinality
< A. Hence,P does not collapse cardinals and does not change cofinalities,
soV andV* have the same regular cardinals.
Moreover, for a regulan > Ny we can split the forcing into 3 parts,
P = Py« P, x P, whereP, is Py, P, is aPy-name of the forcing), and
P is aP,  P;-name of the forcing? y such that/* andV 0*"t have the
sameH (A ™).
In the next sections, when we restrict ourselve&{o\ ") it will suffice
to look only inV/ 7o*P1,

6. The contradiction (reduced case)

Collecting the results from the previous sections we will reach a contra-
diction from the assumption that (for a sufficiently larfg, the monadic
theory of some chaif in V¥, interprets a radom gragh € I'x.

As we saw in Sect. 3, an interpretation has a major segment. We will
show below that there is a minimal one (and without loss of generality the
segment is an initial segment). In this section we restrict ourselves to a
special case: we assume that the minimal major initial segment is the whole
chainC. Moreover, the chaid’ is assumed to be regular cardinakyy.

In the next section we will dispose of these special assumptions. How-
ever, the skeleton of those proofs will be the same as in this reduced case.

Definition 6.1. Assume thafC, <) interpretsG € I'x byZ. D C C'is a
minimal( K, K2)-major initial segment foZ if D is an initial segment of”
which is a( K1, K»)-major segment and no proper initial segmé&itc D
is (K1, K2)-major.



Sh:527

Random graphs in the monadic theory of order 291

Fact 6.2. Suppose thatC, <) interpretsG € I'x by Z, whereK andZ

satisfy the assumption of lemma 3.9. Then there is a cf@in<*) that

interpretsG by someZ* having the same dimension and depthZasuch
that there isD* C C* which is a minimal K, K2)-major initial segment
for Z*. (K1 and K5 are as in lemma 3.9).

Proof. (By [Gu] lemma 8.2). Letl be the union of all the initial segments
of C that are( K, K2)-minor (note that ifZ is minor andZ’ C L thenL’
is minor as well). If L is(K1, K3)-majorthenseD = L,C* =C,I* =7
and we are done.

Otherwise, letD = C'\ L, by lemma 3.9D is major. Now if there is a
proper final segmer®’ C D whichis(K;, K2)-major thenC'\ D’ is minor.
But(C'\ D’) D L, sothat is impossible by maximality &f. ThereforeD is
a minimal (K, Ky)-major (final) segment. Now také* to be the inverse
chain of C. Clearly D is a minimal( K, K3)-major initial segment for an
interpretatioriZ* of G (that is obtained be replacing' by * >’ in Z) having
the same depth and dimension. O

Sketch of the proof.Fixing an interpretatio (rather its depth and dimen-
sion) we are trying to show that & is large enough then i’ no chainC
interprets som¢ < 'k by Z. Towards a contradiction we choo&esuch

that
\/E>N0>N1>N2>N3>N4>N5>N6
with:
(1) N¢ = max{2,n1,n2,n3} + 1 (n1,n2,ns are defined in assumption 5
below).

(2) N5 — (Ng)3, i.e. a set of sizéV; has a homogeneous subset of size
for colouring triplets inta32 colours (exists by Ramsey theorem).

(3) N4 =ni- N5.

(4) N3 =2+ Ny.

(5) N2 — (N3)2, (exists by Ramsey theorem).

(6) N1 — (N2)3, (exists by Ramsey theorem).

(7)N0:n1'N1. _

We startwith asequenc¢®; : i < M) of representatives for the elements
of G (M = #(D) i.e. the bouquet size of a minimal major segment, in our
case itis#(C) = |G|, possibly infinite), and gradually reduce their number
until we get pairs that will satisfy (for a suitable semi—ctubnd a clubJ):

7 <j = [Ui,Uj];{ ~ Uz
These will be achieved at step=2, 3. In stepst, 5 we will get also:

[U;, U;]] ~ [U;, Ui
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Contradiction will be achieved when we show that sémeU;, ]! represents
two different elements.

Assumptions.Our assumptions towards a contradiction are as follows:
1.(C,<) € VP interpretyj € I'k byZ = (U(X, W), E(X,Y, W), R(X,
v, W),

lg( ),1g(Y) and w.l.o.glg(W) = d, n(Z) = n.
2. C itself is the minimal( K1, K2)-major initial segment foZ. Moreover,
C = ), aregular cardinal R,. For every proper initial segmei? C C
we have#(D) < Ks. (K1, K2 andK3 are fromSect. 3, they depend only
on K, n andd).
3.m(x) = m(x)(n + d,4d) is as in the preservation theorem 1.11.
4.J = (o 1 i < \) C XNisanm(x)—suitable club for all the representatives
that will be shuffled (there are only finitely many).C X is a semi—club,
generic with respect to every relevant element includin@gain, finitely
many), and see a remark later on.
5.n1, ny andns are defined as the number of possibilities for the following
theories (n(x) is as above):

= {a-TH"M(C; X, V) : X, Y C C, 1g(X),1g(Y) = d}|
= {a-TH"(C; XY, 2): X,Y,Z
C C, 1g(X),1g(Y),1g(Z) = d}}|
= {a-TH"(C; X, Y, 2,0): X,Y,Z,U
C O, 1g(X),1g(Y),1g(2),1g(U) =d}|
6. V'K > No. In addition,K is large forl := (n2)?- Ny - (2|T}, 34| +1)? a

in conclusion 3.10i.eM/(m + 1)% > [ - K2 (this is pOSS|bIe aBdepends
only onn(Z) andd(Z)).

To get started we need another observation that does not depend on the
special assumption on the minimal major segment.

Definition 6.3. SupposeD is the minimal( K1, K5)-major initial segment
for the interpretation. Theicinity of a representativé denoted by X] is
the collection of representatives

{Y :some Z ~ Y coincides withX outside some proper (hence minor)
initial segment ofD }.

Lemma 6.4. (1) Every vicinity X] is the union of at most = m (K, n, d)
(the bouquet size of a minor segment) different equivalence classes.
(2) FromTh”*d(D Uy, Us, W) we can compute the truth value ofl); is
in the vicinity of Uy”.

Proof. If (1) does not hold then there is a proper initial segmiehof the
minimal major initial segmenD with #(D’) > m which is impossible.
(2) is clear. 0
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We are ready now for a contradiction:
STEP 1: Let Ny, ..., Ng be as above and Iét be as in assumption 6.

Let (U; : i < M), be a list of representatives for the elementgjof 'y
that is interpreted b on C. Let f be a colouring of M]? into ny colours
defined by o
1(i,j) = a-Th"O(C; 03, U, W).
We would like to get a semi-homogeneous subsét/ofor f andm + 1

of sizeNy. If G is finite then this is possible by assumption 6 and conclusion
4.4, Of course iG is infinite (i.e.M > N;) we can even get a homogeneous
one.

_ Letthens’ C {0,..., M — 1} be semi-homogeneous and lookt: =
(U; :i € S'). As Ny = ny - N7 we can choose

B:=(U;:i€S8)

suchthas C $'is of size| N1 | and such that-Th™*)(C; U;, W) is constant
for everyi € S.

STEP 2: We start shuffling the members &f alonga and.J. Note that by
the choice ofB andm/(x) and by the preservation theorem

i,j €S = Th(C;U;, W) = Th"(C; [U;, U;]J, W).
It follows that the results of the shufflings are representatives as well, that is
i,jeS=CkEU(U,U;.,W).
Definefori < j € S
k(i §) = min{k: (k€S &[T, T ~ TV (k= M)}

By the choice ofN; there is a subset C S, of sizeN,, such that for every
U;,Uj, Uy withi < j < landi, j,l € A, the following five statements have
a constant truth value:

k(j,1) =i,
k(i 1) = J,
kG ) =
k(i,j) = Jj,
k(i,5) = L.

Moreover, if there is a pair < j in A such that(i, j) € A then:
either for every i < j from A, k(i,j) =1
or for every i < j from A, k(i,7) = j.

The reason is the following: suppose thét, 5) = v € A for somea <
from A. If v < athenk(j,l) =iforalli < j < [ from A butk is one
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valued. Similarly, the possibilities < v < g andj < ~ are ruled out. We
are left withy = o ory = g and apply homogeneity.

STEP 3: The aim now is to find a pair < j from A with k(i,j) € A.
Define A* to be the results of the shufflings:
A* = {k : (Hi < ] S A)([Uz,Uj]g ~ Uk)}

and it is enough to show that* N A # .
If not, as|A| = N, < K and|A*| < |A]* < K (we chose/K > Np),
there is a representatiié, such that

AC ERT, VA, WA N\ [CE-R(T;, Va, W),
i€A i€A*\A
As Ny > ns thereisi < j € A with:
a-Th" ) (C, T3, Va, W) = a-Th)(C; T, Va, W)
and by the preservation theorem
(%) Th™(C; [0, Uj], Va, W) = Th™(C; Uy, Va, W).
Now, [U;, U;]J ~ Uy, for somek € A* but by (x)
C = R([Uy, Va, W).

Therefore, by the choice df, we havek € A. It follows thatk € AN A*
S0 A* N A # () after all.
The aim is fulfilled and we may assume w.l.0.g that

1< cA= [Ui,Uj]gNUi.

STEP 4: The aim now is to show that
®i<jeA =[U,Ul] ~ 050 (= Ui Uil\,)-

Returning to the discussion ifiect. 5, we have mentioned so far only a
finite number of elements froﬂH(A*)VP, (including.J). Everything already
belongs ta (AT)V """ whereP, is P, andP; is aP,-name forQ, which
is an iteration of length\™ with support< \ (we assume that the ground
universel satisfies GCH). Moreover, an initial segmentféf« P, denoted
by Pyx P; |z adds allthe relevant elements and we can choose the semi—club
a as the one that is generated in tfith stage ofP;.
Let p € Py x P; be a condition that forces all the statements about the
representatives we mentioned sofar (eg.j € A = [U;, U] ~ U;). We

think aboup as a function with domaifi—1}UA* suchthap(—1) € Pyand
fora € A*, p(a) € SC,. under this notatiop(3) is an initial segment o
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andw.l.0.g amember & (and notaname for one). Let = Dom(p(3)).
We may assume thaf(y*) = Ny. Lety := o~ € J (socf(y) = Ny as
well).

By homogeneity of the forcingy := (anvy) U [(A\ a) N[y, A)]is a
semi—club of) that is also generic with respect to the relevant elements. We
denote from now on, fot/, V' C A,

UM = (Uny)U(VNly).

For proving we will show that:
(a) [U;, Uj]] ~ U; foralli < j from A4,
(B) [Ui,Uj]i\aAUk ~ Uy foralli,j, kfrom A,
(") [0, U150\, Ui ~ [U;, U3, forall i < j from A.

STEP 5: Let's prove the claims:

(a): By homogeneity of the forcing everything thatorces fora it forces
for b.

(6): Recall that for every, j, k € A we have

a-Th™)(C; T, W) = a-Th™™)(C, T;, W) = a-Th™)(C; Ty, W).

As m(x) = m(x)(n + d,4d) andy € J satisfiescf(y) = R we have by
the second part of preservation Theorem 1.11

Th (O [T:, U1, W) T,y = THHU(C; T W) To)
= Th**4(C; T,

W) lo,7) -
Similarly
ThH(C; Us, W) 1j0,5)= T (C; Ui, W) T0.)

and it follows that for every, j, k € A:

(1) Th*H(C; [T:, U510, W) To,0y= TH"HU(C; U, W) 10,1 -
Now by the composition theorem

ThH(Cs (U, U5]] MOk, W) = THH(C; (U3, U1, W) 1o )

+Th (O U, W) Ty

and this equals byf)
Th(C Uy, W) 1oy +THHHC; Uy, W) 1} 0= THH(C; Ui, W).

As the theories are equal andi@gis a representative, there is soine M
(not necessarily iM) such that

[U;, ;) " ~ T
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If [ = k everything is fine. Otherwise assurhe> k (symmetrically for
I < k) for a contradiction.

By the definition of vicinity we see thdf; € [Uy] and this is reflected
in Th*t4(C; U, U;, W). Nowk € A C S andS was chosen to be semi-
homogeneous ifi/. Therefore there arg < 11 < ... <, < M with

/\ Thetd(C; Ty, Uy, W) = ThH(C; Ty, U, W).
i<(m+1)

Hence

A (U € U]

i<(m4+1)

but by 6.4 a vicinity contains at most pairwise nonequivalent representa-
tives, a contradiction. We conclude that k.

Therefore, for every, j, k from A we have [U;, U] “Uj, ~ Uy. Sub-
stitutingi and; we get: for everyi, j, k from A, [U;, U] "Uy ~ Uy or:

[Us, Ujlawa "Ur ~ Uy
This is claim(3). B
(7): Now suppose < j are fromA. By definition, for everyP C C the the-

ory (A \ a)-Th™™*)(C; P) determines (andis determined ayJh"*) (C; P).
Therefore,

a- Thm(*)((]- Ui, v‘V) = a-Thm(*)(C- Uj, W)
Applying the preservation theorem ferand\ \ a we get

Th (O3 [T, U510, W) o) = Th”+d(c Ui, W) Tio)

and
Thn-i-d(c; [Uza Uj]i\a? W) F[O,'y) = Thn+d(
= Th™*4(

SO

Therefore, as Th*(C; P) determines Th*?(C; P, P):

(i) Thn+d(c' [Ulﬂ UA]i? [U U ]a? W) r[O,'y)
= Th(Cs (T3, Uil o0 [0 U130 W) 1oy -
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By («) and(3) we know that
U3, Ulo ~ Ui ~ [0, 0513\, "Ui

and the equivalence is reflected by T6'; [U;, Uj]j\a NU;, Uiy Ujlp, W).
Clearly TH' is determined by Th™. Hence:
Th"(C; Ui, U;)7 "Us, [U5, Usly) = (by (1))
T (C; [Us, U, (U3, U3l W) o
+Th™(C; U, (U, Uj]j\
= Th*(C; [U;, Uj]
+Th™(C; U;, [U
=Th"(C; [U;

C;
C,

I

Therefore

and(+y) is proved.
From () and(~) we conclude

U5, Uilf\a ~ Ui ~ [0, 0]
and® is proved.

STEP 6: By definition of No = |A|, N3 and N, there is a sub-sequence
of (U; : i € A) that will be denoted for convenience (while preserving the
order between the indices) Wy, : i < N3 = 2N,) such that for every
1< j<2Ngandr <[l < 2Ny:

(i) a-Th™™)(C; By, Py, W) = a-Th™™)(C; P,, B, W) (by defining a
colouring of pairs fromVs).

(ii) [P, P}}] ~ [Pi, Pj]y. ~ Pi (by steps 3 and 5).
Fori < N, let Q; a representative that satisfies

A (CERPLQLW)) A
a€li,2Ns—i)
A (€ ~R(P., Qi W)
a€[0,i)U[2Ng—i,2Ny)
As N, is big enough there i8 C {0,..., Ny — 1} with |T'| = Ng such that
if 3,7 € T then eithelQ;, Q] ~ Ql or [Q;, Q1] ~ Qj To getT repeat
steps 1, 2 and 3 while substitutiq@; : i < S’) by (Q; : i < N4), and

Ny, N1, Ny by Ny, N5 andNg respectively. Note that we lose generality by
chosing one of the possibilities.
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Now choose, j € T (by Ng > n3) such that
a_Thm(*) (Ca Ev P2N4—i7 Q’ia V_V) = a_Thm(*) (C7 Pjv P2N4—j7 Qj? V_V)

and shuffle along andJ:
Th"(C; Pi, Pan,—i, Qi, W) =
Th*(C; [Eﬂ ]?j]g7 [E2N4—i7 P_2N4—j]ga [Qiléj_]g7 ¥ Z =
T'(C; [Py, PiJY, [Pony—js Pany—il3) o [Qir Q51 W
but[P;, P;]] ~ P;, and by step 5,

[p2N47j7 p2N47i]§\a ~ p2N4*j'

Now from “[Q;, Q;]7 ~ Qi or [Qs, Q)] ~ Q;” and the equality of the
theories TH:

C k= (R(P;, Qi W) & R(Pan,—j, Qi)

or
Ck (-R(P;,Qj, W) & =R(Pany—j, Qj)-
Both possibilities contradict the choice of tg’s !

First remark. SoJ anda are chosen as follows: getting; : i € S) at
step 1 (S| = N;) choose for every subsett C S a representativé’, that
separatesU; : i € A) from (U; : i € S\ A) (some of these will be the
Q;’s from step 6).J is anm(x)-suitable for all these elements ands a
semi—club that is generic with respect to all of these. Clearly, only finitely

many elements are involved.

Second remark.Note that genericity was used only at stages 4 and 5 (i.e.
to prove[U;, U;] ~ [U;, UilY).
We proved the following:

Theorem 6.5. Let (U(X, Z), E(X,Y,Z), R(X,Y,Z)) be a sequence of
formulas of dimensiod and depth.
Then there i < w, that depends only ashandn such that, inl’*, for no
chainC and parameter$V C C:

(1) C'isisomorphic to a regular cardinal > R,

(ii) T = (U(X,W),E(X,Y,W),R(X,Y,W)) is an interpretation
for someg € I}, in C,

(131) C'is the minimal( K, K2)-major initial (or final) segment fof.

]
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7. Generality

Our aim in this section is to achieve full generality of the interpreting chain
C and its minimal initial major segmer?. There are three stages:

(I) D C C,D # CbutD is (isomorphic to) a regular cardinal> ¥,.

(II) D =C, D general.

(I1I) C andD are general.
Let us just remark that alway$(D) > X, otherwise we can prove the non
existence of interpretations even from ZFC.

We will elaborate on stages (1) and (I1), stage (ll) is a simple combination
of the techniques.

Chopping off the final segment.We are trying now to get a contradiction
from the same assumptions as in the previous section except for the follow-
ing: the minimal( K1, K)-major initial segmenD that is a regular cardinal

is not necessarily equal to the interpreting ch@inz and.J are therefore
subsets ofD.

The basic idea of the proof is thatif is fixed and known in advance
then to knowt; + ¢* all we need to know ig;. Heret; are the restrictions
of the information (partial theories) t® and¢* is the restriction ta” \ D
which can be assumd to be fixed, as many representatives coincide outside
D.

We do not specify the exact size &f (which should be slightly bigger
than in the previous case). It should be apparent howeverfhdepends
onn andd only and is obtained by repeated applications of the Ramsey
functions.

Preliminary step: Let(U; : i < |G|) alistof representatives for the elements
of G. By definition of D, we may assume thdt/; : i < M = #(D)) is

a list of representatives for @, K»)-major subset of; and all of them
coincide outsideD. DenoteD® := C'\ D and fori < M:

Ui* = UiﬂD,
Ue .= 0Z'QD@,
W*:=WnD,
We .= W nDe.

Definition 7.1. (1) Define onP(D) a unary relationU*(X) and binary
relationsX ~* Y andR*(X,Y), with arity d by:
U*(X) < CE=UXUU® W),
X~*Y < CEEXUU®YUU®W),
R*(X,Y) <= CERXUU®YUU®,W).
(Wheni, j < M for instance, therR* (U, U*) holds if and only ifC' =
R(U;, U;,W)).
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() If i,j < |G| andU; N D® = U; N D® we denote
[Ui, Uj]g = [UZ NnD, Uj N D]CJL U (Ul N D@)
(If 4,5 < M for instance thefil;, U;]; is [U7, U] U U).
Fact 7.2. H(A*)V" computes correctly-*, U* and R* froma-Th™(*)
Proof. Take forexample-*: X ~* Y isdetermined by Th(C; XUU®, YU

Ue,w) =
Th(D; X, Y, W*) + Th"(D®; U°,U®, W®).
The second theory is fixed for every, Y C D. Hence (e.g. by the finite

number of possibilities) all we need to know is the first theory, which is
computed correctly if(AT)V" from a-Th™(*), O

We proceed by immitating the previous proof:

STEP 1: DefineB’ := (U; : i € S') whereS’ C {0,...,M — 1} is
semi-homogeneous , and

B:Z(Ui:i€S>

such thatS C &', |S| finite and big enough, witla-Th™*)(D; T*, W*)
constant for € S.

STEP 2: Shuffle the members aB alonga andJ as in definition 7.1. Note
that by the choice oB and the preservation theorem

i,j €S = Th(C;U;, W) = Th"(C; [U;,U;]1, W)
and therefore the resuts are representatives as well i.e.
i,j €S =CREU(U,U]L,W).
Definefori < j € S
ki, §) == min{k: (k€S &[T, T ~ TV (k= M)}
equivalently
ki, §) == min{k L (k€ S& 07U ~ TV (k = M)}

Let A C S belarge enough, homogeneous with the colouring into 32 colours
we used before.

STEP 3: The aimis to find < j from A with k(i, j) € A. Let
A" = {k < ’g| : (Hi <jE A)([ﬁi,Uj]g ~ Uk)}
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and let's show thafi* N A # 0. )
Othewise, there is sonié, (not necessarilly from{U; : i« < M)) that
separates these two disjoint collections of representatives:

AIC ERU, VA, WA N\ [ClE~R(U, Va, W)].
i€A €A\ A
We may assume that there dre j from A with
a-Th™U)(C; Uy, Va, W) [p= a-Th™UN(C; U5, Va, W) | -
By the preservation theorem
(x) Th*(C; (Ui, U517, Va, W) o= Th*(C; Uy, Va, W) Ip
and in addition
() Th™(C; [Ty, U1, Va, W) [ pe = TH(D®; U, V4 N D®, W)
= Th"(C;U;, Va, W) I pa .
Now [U;, U;]? ~ Uy, for somek € A* but by (x) and(xx) and the compo-
sition theorem:
C = R([U;, Ujls, Va, W).

Therefore, by the choice df4, k € A. Ask € A*itfollowsthatA*NA # ()
after all.
As before we may conclude that, without loss of generality:

1<jeEA= [ﬁi,Uj]ZN U;
equivalently (and this is known even HE/()\JF)VP)

i<jed= (001 ~ U

STEPS 4,5: We work insideH(/\+)VP and concentrate ofU; : i € A).
The aim is to show that

® 1 <j €EA= [Uz*a U]ﬂg ~ [U;v Uz*]g

Letp € Py« P, be a condition that forces all the facts we showed so far
about~*, U* andR* and thelU;’s such as < j € A = [U},Us] ~ U;.
As before we define a generic semi—cluz A and show that:

() [UF,Uz)] ~* Uy for everyi < j from A,

(B) Uz, U;]X\QAU;; ~* U} for everyi, j, k € A,

(7) [UF, U713\, "UF ~* [UF, U3, for everyi < j from A.
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The proofs are exactly the same as in the previous section (substifiiting
W and~ by D, W* and~*), and from these facts we can dedugd_eaving

H(\T)V" we find that what we proved iti ” is:
®i<yjE A= [Ui,Uj]g ~ [Uj,Ui]g

STEP 6: As |A| is big enough we have a sub-sequencélaf: i € A)
that will be denoted for convenience (while preserving the order between
the indices) by(P; : i < Nj = 2N}) such that for every < j < 2N} and
r <[ < 2Nj (Nj is a sufficiently big number as usual):

(i) a-Th™™)(D; Py, Py, W*) = a-Th")(D; B, Pf, W)

(i6) Th"(D%; BS, PO, W) = Th*(D% P2, P2, W®) (P, N D% is
constant),

(i41) [Py, Pjld ~ [Py, Pjlxa ~ Pi. )
Fori < Nj let); arepresentative (not necessarily frobh : i < M)) that
satisfies:

A (CFRP.LQuW)) A
a€li,2K4—1)

A (CE-R(P.QW))

a€l0,i)U[2N}; —i,2N})

From theQ;’s extract(Q; : i € T'), with |T!| = NZ large enough such
that for everyi < j from T'!:

(a-TH" (D, Q1. W) = a-TH) (D, @5, 1))
& (Th(D®, QF, W) =Th" (D", @5, W)

whereQ: := Q; N D andQf := Q; N D®.
Fori < jin T denote

Qi Q51 = 1QF, @}l v Q7

and note that by the preservation theorem the results of the shufflings are
representatives for elements @fi.e.

i,j € T1 = C ): U([QZ,Q]]g,W)
Definek* (i, j) for i < j from T by
K (i, §) == min{k Dk e T & (Qi, Q51 ~ Qu) V (k= N;;)}_

There is a subsel’ C T! of size N, large enough, such that for all
Qi,Qj,Q; with ¢ < j < [ from T the following five statements have a
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constant truth valuet*(j,1) = 4, k*(i,1) = j, k*(i,5) = 4, k*(4, j)

k*(i,j) = l. Moreover, as usual if there aie< j in T with k*(4, j)

then either for every < jin T, k*(i,j) = i or for everyi < j
If there isn’t such a pair choodé- such that

/\[C ): R(Q%VT?W)] A /\ [C ): _'R([Qi,Qj]g,VT, W)]

ieT i<jeT

:j’
eT
inT,

asN¢ is big enough there are< j from 7" with:
a-Th"™)(D; Q7, Vr N D, W*) = a-Th")(D; Q3, VN D, W*)
Th*(D®; QP Vr N D®, W) = TN (D QF, Vp N D, W®)
By the preservation theorem and the composition theorem we get

(%) Th(C5[Qi, Q12, Vir, W) = Th™(C; Qi Vir, W).

ThereforeC' = R([Qs, Q;]7, Vr, W) which is a contradition.
_ It follows: eitheri,j € T = [Q;, Qjl] ~Qiori <jeT =
[Qi, Qi17 ~ Qj.
Now choose, j € T" such that o o
a-Th" ) (D; Py, Py, ;. QF, W*) = a-Th™)(D; P}, Py, . Q3 W*)
Th*(D®; Pi@a PZ@NZ—i’ Q§@7 We) =Th"(D®; Pj@7 Pz@Ng—jv Q?, we)
Shuffle alongz andJ and get a contradiction as before to the definition of
the@,’s.
We have proved the following:

Theorem 7.3. Let (U(X, Z), E(X,Y,Z),R(X,Y, Z)) be a sequence of
formulas of dimensiod and depth.
Then there ig{ < w, that depends only aiandn such that, ini’*, for no
chainC and parameter$V C C:

(i) T = (UX,W),E(X,Y,W),R(X,Y,W)) is an interpretation
forsomeg € I, in C,

(1) D, the minimal( K7, K2)-major initial (or final) segment foZ, is
isomorphic to a regular cardinak > X. O

Reduced shufflings:There are two main difficulties that face us in the gen-
eral context. The first one is that the preservation theorem is formulated only
in the context of well ordered chains. We can try and solve this by choos-
ing a cofinal sequence through the chain and shuffle along this sequence.
However the second difficulty is that a semi—club that has the cardinality
of c¢f(D) (whereD is the minimal major initial segment) can’t be generic
with respect to subsets @ when|D| > cf(D). The solution for both this
difficulties lies in the observation that what we really shuffle are not subsets
of the chain but rather partial theories.
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Suppose that we are given a chéinwith cf(C) = A > X, and some
A C C of lengthl. For simplicity we assume that the chains have a first
element mifC'). Choosing a cofinal sequenée= («; : i < A) in C such
thatag = min(C) and definings; := Th"(C, A) | ) we get by the
composition theorem that

Th'(C, A) =) s

1<

[ 41

Concentrating on the chaii\, <) we define a sequende = P; = (P, :
t € T,,;) where fort € T,,;, P, :== {i < XA : s; = t}. By the Feferman-
Vaught theorem (1.9) we know that T(C'; A) is determined by TH(\; P)
wherem = m(n, ) depends only on and!.

Lemma 7.4. Let C be a chain with cofinalith > Ry and letn,l € N.
Then, there aren(x),[(x), 5(x) € N, all depending only om and!, such
that

(a) there is a 1-1 functionY — P such that for everyd C C of
lengthi there isP; C X of lengthi(x) and Th"(C; A) is determined by
T (\; Py),

(b) 5(x) codes a Turing machine that computé#' (C; A) from Th™(*)
(A Pg).

Proof. Choose a cofinakl = (a; : i < \) C A (ap = min(C)). Let P; be
as above and(x) = |1}, ,|. Then (a) is clear from the previous discussion.
The computability in clause (b) is clear from the fact that.) ;) and T},
are both finite. O

Remark. Of course we don't really lose generality by assuming tHidias
a minimal element. IfC interpretsG by 7 and doesn't have one then we
can always construat™ = C' U {—oo} and interprelG on C* by some
Z* having the same depth and dimensib# 1 (add—oco as a parameter).
So instead of takind( = K (n,d) we useK = K(n,d + 1) for getting a
contradiction.

The discussions above justify the following definition:

Definition 7.5. Let n,d € N, and(t; : k < |T,4|) be the list of the
possibilitiesT;, 4.
(1) T = () P) is apre-chainif A > g is a regular cardinal and
P = (P : k < |T,4|) is a partition of.
(2) We identify (X, P) with (s; : i < \) wheni € P, <= s; = t;.
() ((A\, P), E) is aguesdor (C, A) if:
(1) E = (a; : 1 < A) C Xis cofinal inC andag = min(C),
(ii) A C C andlg(A) = d,
(iii) Th™(C; A) | = s;when(\, P) = (s; :i < \).

[avg,oi41)
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Next we claim that the guesses (which are well ordered chains of the
correct cardinality) represent faithfully the guessed chain.

Definition 7.6. Suppose that
(a) C is a chain with cofinality\ > g,
(b) A, B C C have length,
(€) E = (a; : i < \)is cofinal inC andag = min(C),
(d)yJ = (B;:7 <) C Aisacluband: C X a semi—club.
Thereduced shufflingf A andB alongE, J anda, denoted byA, B
is defined by:

[A, B]¥ = U (AN [ag;, ;) U U (BN g 08,11))
j€a jéa
Fact7.7.1f C, A, B, J anda are as above((\, P;), E) aguess fofC, A)
and((\, Pp), E) aguess fo(C, B) then

[P,ALPB] —P[AB}IE

Proof. Straightforward. O

Definition 7.8. ForC, A C C, E C C as above and C )\ a semi—club,
define

a-Thp(C; A) := a-Th™(\, Py)

Lemma 7.9. For everyn, d € N there isk(x) = k(n,d) € N such that if
1.Cisachain andf(C) = A > N,
2. A, B C C are of lengthd,
3. Eis cofinal inC,
4.0 C \is a semi—club,
then

a-ThE™(C; A) = o-THEY(C; B) = Th*(C; A) = Th*(C; B)
= Th*(C; [4, B)"F).

a

Proof. Let k(%) be k(m(x),|Tn,d|) wherem(x) is m(x)(n,d) from the
preservation theorem, arida, 3) is the “Feferman-Vaught” number as in
theorem 1.9. O

Lemma 7.10. Let (U(X, Z), E(X,Y,Z),R(X,Y, Z)) be a sequence of
formulas of dimensiod and depth.

Then there id{ < w, that depends only atiandn such that inV >, for
no chainC and parameter$V C C:

(i) T = (UX,W),B(X,Y,W),R(X,Y,W)) is an interpretation
for someg € I}, in C,

(7i) D, the minimal( K, K2)-major initial (or final) segment fofZ,
satisfiesf(D) = A > N,.
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Proof. We will follow the previous procedures, this time choosifigbig
enough with respect th(x) as above and not(x) as usual. Assume that
7 is an interpretation off € I'x and suppose firstthat = D.Fix E C C
cofinal, of order type\. As |E| = ), it belongs to the intermediaté’™<>.

Let (U; : i < |G|) a list of the representatives and after the preliminary

colouring we remain with a semi-homogeneous Bst= (U; : i € 5),

(IS| = N; big enough) having now the sameTh]g(*)(C; U;). Let By =

(V; : 5 < |S|™2) alist of the representatives for elements separating subsets
of B of size N> from their complements.

Let (A, Papn E) + a, 8,7 < N{2) be a list of all the guesses for
chains of the form
(C; AO,AI,AQ,W) with Az € BU By fori < 3.

ChooseJ C ), ak(x) suitable club for all the guesses, and a generic
semi—cluba C ). Start shuffling(U; : i € S) (i.e. the respective guesses).

A statement of the forni,, ~ U is translated to “TH™)(X; Py, Py,)) is
such thaC = E(U,, Ug, W)™

Repeating the usual stepswe (&t : i € A) suchthatw.l.o.§0;, U;]2"
~ U; for everyi < j from A. Using genericity we can show also that
[T, Ui]2" ~ U; as well.

Now choose a sequence of separating representdtives: < |A|/2)
from B; above (saJ is suitable for them as well) and get a contradiction as
usual.

In the caseD # C' we combine the above with the previous proof: the
result of the shuffling of a pair of representativés and U (coinciding

outsideD) is: B B B
{the result of the reduced shuffling 6f, " D andUs N D } |J {Us N

(C\ D)}.

And we work inD. O

As anw-random graph ig<-random for eacti’ < w we proved:

Theorem 7.11.In V' ':

A If (Ck, I, {Wk : K € A} ) is a uniform interpretation off g, in
the monadic theory of order anBi, C Ci are the minimal major initial
(or final) segments of the interpretations, thé(D ) < X, for every large
enoughk.

B.If Z=(UX,W),E(X,Y,W),R(X,Y,W)) is an interpretation
for RG,, inachainC and D C C is the minimal major initial (or final)
segment thenf(D) < X,. 0

In the next section we will show thatf(D) < X" is impossible even
from ZFC.
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8. Short chains

Recall that a short chain is a chain that does not enfbged<) and the
inverse chainwy,>). Our aim in this section is to prove, from ZFC, the
nonexistence of interpretations in short chains. In fact we show (and this
is the only possibility whert is short) the nonexistence of interpretations
with Cf(D) < No.

Definition 8.1. An interpretationZ of G € I'x in a chainC is ashort
interpretationif the minimal (K7, K3)-major initial (or final) segment for
Z, has cofinalityX.

The casef(D) < N is impossible:

Fact 8.2. Let Z be an interpretation of som@ € I'x in C. Let D be the
(K1, K2)-major initial segment. Then (if is sufficiently big with respect
to d(Z) andn(Z)), D does not have a last element.

Proof. When K is big enough we havé/ (K, n,d)/m(K,n,d) > 2 (by
3.10) and this is what we need. Nowiit = D’ U {z} wherex is the last
element ofD then, from the definitions, easi#(D)/#(D’) < 2. But D’
is minor and this is a contradiction. 0

Assumptions.From now on we are assuming towards a contradiction:
1. T = (UX,W),E(X,Y,W),R(X,Y,W) is an interpretation for
someg € 'k inachainC.n(Z) =n andd(Z) = d,
2. K = K(n,d) is big enough (we will elaborate later),
3. C has a minimal element (almost w.l.0.g by a previous remark),
4. C is the minimal major initial segment fdr,
5. Cf(C) == NU.

The next definition is the current replacementofx)-suitable club:

Definition 8.3. Let (U; : i < i*) be withU; C C, Ig(U;) = d. LetE =
(ay + k < w) C C beincreasing irC. E is anr-suitable sequence for
(U; wi < i) if
1. Eis cofinal inC andagy = min(C),
2. For everyi < j < i* there ist;; € T, 34 such that for every
0<k<w:
Th™(C; Ui, Uj, W) Tiag,ap)= tigs
3. For everyi < j < i* there iss; ; € 7,34 such that for every
O<k<l<w:
Th”(C; Ui, Uj, W) f[ak@l): Siyj.
r-suitable sequences exist:

Claim 8.4. 1. Suppose thdt’, V' C C are of lengthl andE = (o, : k <
w) is r—suitabl_e f(_)rU, V. Let E; C E beinfinite withag € E1. ThenE; is
r-suitable forU, V.



Sh:527

308 S. Lifsches, S. Shelah

2. LetU,V C C be as above and lé = («y, : k < w) be cofinal with
oo = min(C). Then there igz; C E that isr-suitable forU, V

3. For every finite family(U; : i < i*) with U; C C, 1g(U;) = d there
is anr-suitableE C C.

Proof. The first part is immediate. For proving 2. [é{ V, E be given. Let
f:[w\{0}]2 — | T’ 34| % |T> 34| be a colouring defined (far < k < I < w)
by

f(ka l) = <Thr(07 Uiu 0]7 W) [[ao,ak)) Thr(ca Ui7 Uj7 V_V) r[ak,al) >

Letu C w beinfinite, homogeneous with respecift{’. 3, is finite). Define
Ey :={ao} U{ag : k € u}.
The third part is immediate by 1. and 2. O

We will assumey/K > Ny > N; > N, > 0, all depending only on
n andd.

Let M = |G| and let(U; : i < M) be a list of representatives for the
elements ofj. Let f: [M]? — |T,,,4.34| be defined by

f(i,j) = Thn+d(C; Ui, Uj7 W)

We may assume that there§of size Ny, semi-homogeneous with respect
to f and(m + 1), wherem is the bouquet size of minor segments.

Let E = (ay : k < w) C C be(n + d)-suitable for(U; "W : i € S,
(by 8.4). LetS C S’ be of sizelV; such that for every < j andr < s from
S, and foreveny) < k <l < w:

Thn+d(ca Ui? U]u W) r[ag,ak): Thn+d(07 UT‘: US7 W) [ =t

[0, 00k)
and
Thtd(C; Ui, Uj, W) e s00) = Thtd(C, U,, Uy, W) g sc0) = 8-
This is possible by the definition afz + d)-suitability (and asVy is big
enough). By the composition theorem for evéry j in S:
ThH(C; U3, U, W) =t + ) s,
k<w

Definition 8.5. Foru C w define theshuffling of U; andU; alongu by

(U3, Ul := | (U 0 [a, 1) U (U5 0 [k, ag)
keu k&u

Claim 8.6. For everyi < jin S, for everyu C w, C' = U([U;, Uj]u, W).
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Proof. By suitability of £ and definition ofS there arg, andsg such that
for everyi € S:

(i) Th*(C; Ui, W) l(ag,a)= to foreveryd < k < w,

(it) TH(C;Us, W) ljag,.an= so foreveryd < k <1l <w,

(iii) Th*(C;U;, W) =to+ > jc\, 50
By the definition of shuffling, for every C w andi < j in S,

TH'(C; U3, Ujlu, W) = to + » _ so = Th"(C; U3, W).
k<w
ThereforeC = U([U;, Ujly, W). O
Define now:

e:={2k: k <w},
0:={2k+1:k<uw},

p:=w\{0},
q :={0}.
Let

k(i,§) == min{k (k€S &[T, Tjle ~T)V (k= yg|)}.

By bigness ofNN; there isA C S of size N, such that for every/;, U;, U,
with i < j < [ from A, the following, usual, five statements have the same
truth value:

k(j,1) =
k(i, )—J,
k(i,j) =
k(i, )—J,
k(i,j) =1.

Moreover, (the usual proof) if for some< j in A, k(i, j) € A then: either
for everyi < jin A, k(i,j) =i or foreveryi < jin A, k(i,5) = j.

Let's findi < jin A with k(i, j) € A: if we can't then there is somig,
that separates betweehy := {U; : i € A} and Ay := {U;: (Ji < j €
A)([Uz, Uj]e ~ Ul}. i.e.

A (c = R(Ui,VA,W)> .\ (c = ~R(T;, Va, W)).
UeA, U,eAs

We may assume thaf is suitable also fo/, (there are finitely many
possibilities forl/4 after choosindU; : i € S’)). As N» is big enough there
arei < jin Asuchthatforeverg < k <l <w

TH(C5 Ui, Vas W) Tiag,00)= T (C3T5, Vs W) T
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and
Th(C; Ui, Va, W) Ttag,an= TH(C; U5, Va, W) Tiagan) -
It follows that
Th(C; Ui, Va, W) = Th"(C; [U;, Ujle, Va, W)
and.A; N As # (), a contradiction. We conclude,
(¥) (3i < jin A) such that [U;, Ujle ~ U; or [U;, Ujle ~ Uj.

Fact 8.7. For everyi, j in A (infactinS"): [U;, U] ~ U; and[U;, Ujl, ~
Ui.

Proof. Let’s prove the first statement (the second is proved similarly). By
claim 8.6,[U;, U;], is a representative hence is equivalentidfor some

[ < |G|. Suppose that > j. By semi-homogeneity of’ (therefore ofA)
there argf < Iy <li... <l such that

N\ ThHC; T, ) = THH(C; T, D).
r<m-+1

By definition of ¢, U; belongs to the vicinity ofU;. As “belonging to the
vicinity” is determined by TH™¢ we getm + 1 pairwise nonequivalent
representatives ift/;]. This is impossible by lemma 6.4. The same holds if
we assumeé < j. Therefore we must conclude= j i.e. [U;,Uj], ~ Uj.

0

Returning to the representativEsandU; we got in(x) above, suppose
first that[U;, U;]. ~ U;. We will show that

(V) Ui, Ujle ~ Ui = [Us, Ujlo ~ [Ui, Ujlg,

(2) Ui, Ujle ~ [Us, Ujlo. o
It will follow that [U;, Ujle ~ [U;, Uj], and by the previous fadt; ~ U;
which is a contradiction.

For showing (1) it is enough to show that

Th™(C; U, Ui, Ujle, W) = Th™(C; [Us, Ujlo, [Us, Ujlg, W).
Remembering how$ was chosen we get
Thn(07 Uia [Ula Uj]@) W) r[ao,al): Thn(c7 Uia Ui) W) r[ao,al)
= Thn(C7 [UH Uj]oa [Ula Uj](p W) F[ao,al) .
Thn(c7 Ui)[ I3 _j]ea W) f[
= Thn(cﬂ U]7 U_]? W) r[agk,a2k+1)
= Th"(C; [Ui, Ujlo, [Us, Ujlgs W) T

C¥2k,a2k+1): Thn(C7 U’l? Ui? W) r[agk,a2k+1)

2k, Q2K+ 1)
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= Thn(C' Ul,U] ) a2k+1,a2k+2)
= Th"(C; [Us, Ujlo, (Ui, Ujly,

) r[042Ic+1,042k+2)

) I~[CY21c+170¢2k+2)

and THL(C, Ui, [Uu Uj]eu W) = Th”(C’, [Ul, Uj}o; [ﬁ“ Uj]qu W) follows
from the composition theorem.
For (2) note that

[o,01)
ral,ag)

Th(C; [T;, Ujle, Us, W) = TH(C; [U;
Ui
Ui

[
r[ag,ag)

and that

Th"(C; [U;, Ujo, Ui, W) = Th™(C5 [U; ao,az)
[ ) r[az,ag)
[ ) r[a3vo‘4)
)

[[ao,az)

+...= Th”(C; _Z',Ui,
U,

By the composition theorem:

Th"(C; [U U; ]e,Ui,W) =Th"(C; [Ui,Uj}O,Ui,W).
That is:

Collecting the results we get:
[Us, Uj]e ~ U; (this is the assumption),
Ui ~ [U;,Uj], (by (2) above),
(Ui, Ujlo ~ [UZ, Ujl, (by (1) above),
[},U] ~ U, (byfact8 7).
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ThereforeU; ~ U; a contradiction.

We are therefore forced to assume tfiat U;]. ~ U; but then we get the
same waylU; ~ [U;,Uj], (like (2) above),[U;,U;l, ~ [U;,U;l, (like (1)
above),[U;, U], ~ U; (by 8.7), and agaitv; ~ U;.

We assumed that is equal toD, the minimal major initial segment for
simplicity. However, ifD # C' then following previous procedures we can
easily chop offC'\ D and basically work insid®, getting a contradiction.

So we have eliminated the possibilities that were left by theorem 7.11
and proved:

Theorem 8.8. (Non-Interpretability Theorem). There is a forcing notiBn
such that ini’* the following hold:

(1) RG,, is not interpretable in the monadic theory of order.

(2) For every sequence of formulds= (U (X, 7), E(X,Y,Z), R(X,Y,

7)) thereisk* < w, (effectively computable frof), such that for no chain
C,W C C,andK > K* does(U(X,W), E(X,Y,W),R(X,Y,W))
interpret RG g in C.

(3) The above propositions are provable in ZFC. if we restrict ourselves to

the class of short chains. O
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