
Math. Proc. Camb. Phil. Soc. (2003), 134, 23 c© 2003 Cambridge Philosophical Society

DOI: 10.1017/S0305004102006096 Printed in the United Kingdom

23

Philip Hall’s problem on non-Abelian splitters
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Abstract

Philip Hall raised the following question which is stated in The Kourovka Note-
book [12, p. 88]: is there a non-trivial group which is isomorphic with every proper
extension of itself by itself? We will split the problem into two parts: we want to find
non-commutative splitters, that are groups G� 1 with Ext (G,G) = 1. The class of
splitters fortunately is quite large so that extra properties can be added to G. We
can consider groups G with the following properties: there is a complete group L
with cartesian product Lω%G, Hom (Lω, Sω) = 0 (Sω the infinite symmetric group
acting on ω) and End (L,L) = InnLx{0}. We will show that these properties ensure
that G is a splitter and hence obviously a Hall group in the above sense. Then we
will apply a recent result from our joint paper [9] which also shows that such groups
exist; in fact there is a class of Hall groups which is not a set.

1. Introduction

In one of his lecture courses at Cambridge in the 1960s Philip Hall investigated
the following class of groups, which are characterized by our first:

Definition 1·1. We will say that a group G is a Hall group if any extension H of
G is isomorphic to G provided G is normal in H and H/G%G.

John Lennox communicated in The Kourovka Notebook Hall’s question concern-
ing the existence of these Hall groups. We want to demonstrate the existence of
Hall groups using some terminology which recently turned out to be of particular
importance in module theory (and abelian groups) (see [10, 11]).
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24 Rüdiger Göbel and Saharon Shelah
Definition 1·2. A group G is a weak splitter if any extension of G by G splits. In

homological terms this is to say that Ext (G,G) = 1, or equivalently any short exact
sequence

1 −→ G
β−→ H

α−→ G→ 1

gives raise to a splitting map γ: G → H such that γα = idG. Here maps are acting
on the right. Hence H = kerα o Im γ%G o Im γ and if Im γ is also normal in H,
then we say that G is a splitter. Hence G/H with H/G%G implies H = G×N for
some normal subgroup N /H which is isomorphic to G.

Recall that G = N o U is the semidirect product of N and U , where N is normal
in G, and if also U is normal, then we write N ×U for the direct product. In the case
of abelian groups classical splitters are free abelian groups as well as torsion-free
cotorsion groups, which has been well known for a considerable time (see [4]). Recall
that an abelian group G+ is cotorsion-free if O is the only cotorsion subgroup of G
of equivalently G has no subgroups isomorphic to cyclic groups of order p, to the p-
adic integers Jp for any prime p and/or to the rationals Q (see also [1]). An arbitrary
group L is cotorsion-free if all its abelian subgroups are cotorsion-free. Other splitters
have only recently been constructed (see [10, 11]). They were also fundamental for
solving the flat cover conjecture for modules. Here we will study non-commutative
splitters, which are, however, obtained quite differently. Such groups will be based
on the following special case:

Definition 1·3. We will say that a group L� 1 is rigid if the following holds:

(i) L has trivial centre zL and is cotorsion-free.
(ii) Hom (Lω, Sω) = 0.

(iii) EndL = InnL x {0}.

Here Sω is the full symmetric group acting on a countable set ω = {0, 1, 2, . . . }.
AutL and InnL denote the automorphism group and the group of inner automor-
phisms of L, respectively. Moreover Hom (A,B) is the set of homomorphisms from
group A to group B, where 0 is the zero-homomorphism mapping any element to
1; in particular EndA = Hom (A,A) is the near endomorphism ring of A. Any rigid
group L has trivial centre and AutL = InnL, thus L is complete. By Aκ we denote
the cartesian power over the cardinal κ of the group A. Moreover, using these natural
definitions we have the possibility of finding Hall groups by means of our:

Main Theorem 1·4. If L is a rigid group and G%Lω, then the following holds.

(a) AutG = InnGo Sω.
(b) G is a splitter.
(c) G×G%G.

Here we note that many groups with (a) in Main Theorem 1·4 are constructed in
[2, 3, 6, 7] – in fact for arbitrary groups in place of Sω, but (b), (c) are also crucial.
We have an immediate:

Corollary 1·5. If L is a rigid group, then Lω is a Hall group.
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Philip Hall’s problem on non-Abelian splitters 25
In view of Theorem 1·4 it remains to demonstrate the existence of a rigid group.

In Section 3 we will provide the following result from [9] and sketch the essentials
of its (lengthy) proof in a few lines. We also note that condition (ii) of Definition
1·3 does not elucidate on group L itself, only on its infinite cartesian power. It
would be desirable for convenience and for aesthetic reasons to have a group-theoretic
condition immediately on L. This is established in Proposition 2·1 and leads to our
Main Theorem from [9] mentioned as Theorem 3·1 in the last section. Here are the
parts needed for application in the proof of our Main Theorem 1·4.

Theorem 1·6. For any infinite cardinals κ < µ with κ regular, µ = µκ and λ = µ+ >
2ℵ0 there is a group H with the following properties.

(i) H is a simple group of cardinality λ.
(ii) There is an element h ∈ H such that any element of H is a product of at most 4

conjugates of h.
(iii) H is rigid.

2. Proof of Main Theorem 1·4
Proof. Condition (c) is obvious because G×G = Lω × Lω%Lω = G.
In order to demonstrate (a) let Sω act naturally on ω and write G =

∏
n∈ω Len,

hence

x =
∏
n∈ω

xnen with xn ∈ L (2·1)

denotes a general element of G. Also let [x] = {n ∈ ω : xn� 1} denote the support
of x. Moreover

GA = {x ∈ G : [x] ⊆ A} ⊆ G for any A ⊆ ω.
If π ∈ Sω, then π induces an automorphism of G (also denoted by π) given by

π : G −→ G

(
x =

∏
n∈ω

xnen −→ xπ =
∏
n∈ω

xnπen

)
.

Hence Sω ⊆ AutG and if g ∈ G, then let

g∗ : G −→ G (x −→ xg∗ = g−1xg)

denote the inner automorphism, conjugation by g. Hence

G∗ = InnG = {g∗ : g ∈ G}
is normal in AutG and visibly G∗ w Sω = 1. The semidirect product

G∗ o Sω ⊆ AutG

is a subgroup of AutG and we claim that the two groups are equal. Let σ ∈ AutG
be a given automorphism and n,m ∈ ω. Then we define a homomorphism

σnm : L −→ L (x −→ xen −→ xenσ −→ (xenσ)m),

where clearly (xenσ)m is themth coordinate of xenσ =
∏
i∈ω(xenσ)iei as follows from

our equation (2·1). Using the canonical embedding

ιn : L −→ Len ⊆ G (x −→ xen)
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26 Rüdiger Göbel and Saharon Shelah
and the canonical projection

πm : G −→ L

(
x =

∏
n∈ω

xnen −→ xm

)
,

we can also say that

σnm = ιnσπm ∈ EndL.

From Definition 1·3(iii) we have σnm ∈ InnL x {0} and if σnm � 0 then there is
tσnm ∈ L such that σnm = t∗σnm. Let

Yσ = {(n,m) : ∃ t∗σnm = σnm},
hence

σnm = 0⇐⇒ (n,m) ∈ ω × ω \ Yσ.
Now we define An = {m ∈ ω : (n,m) ∈ Yσ} and claim that

the An (n ∈ ω) are pair-wise disjoint. (2·2)

If m ∈ An1 w An2 and n1 � n2 then (n1,m), (n2,m) ∈ Yσ. Take any xi ∈ L and
let yi = xieni (i = 1, 2). Hence [y1, y2] = 1 in G and [Lσn1m, Lσn2m] = 1 follows from
Lσnim = Leniσπm ⊆ L. If Lσnim = L, then [L,L] = 1 and L would be abelian, which
contradicts zL = 1� L. If Lσnim � L then σnim = 0 by Definition 1·3(iii), which
contradicts (ni,m) ∈ Yσ and (2·2) is shown.

Next we observe:

If x =
∏
i∈ω

xiei ∈ G and xn = 1 then xσπm = 1 for all m ∈ An. (2·3)

To see this, note that x ∈ Gω\{n}, G = G{n} × Gω\{n} and xσπm ∈ Gω\{n}σπm.
From

[G{n}, Gω\{n}] = 1

follows that Gω\{n}σπm and G{n}σπm commute, and m ∈ An implies that

G{n}σπm = Lσnm = L.

Hence Gω\{n}σπm = 1 from zL = 1 and in particular xσπm = 1.
Now we want to show that

|An| = 1 for all n ∈ ω. (2·4)

If An = 6 and 1� x ∈ L, then xenσπm = 1 for all m ∈ ω, hence xenσ = 1 and
1�xen ∈ ker σ contradicts σ ∈ AutG. If |An| > 1, then choose m1�m2 ∈ An and
define C = Gω\{m1,m2} and D = G{m1,m2}. Hence G = C×D,D%L×L and consider
the canonical projection πD : G → D. From (2·3) follows σπD � C = 0, and ιnσπD
maps L into D. This map is an isomorphism as follows from m1,m2 ∈ An, hence
Len % Lem1 ⊕ Lmn2 . The right-hand side has the outer automorphism switching
coordinates, while AutL = L∗ by Definition 1·3(iii). This is impossible, and |An| = 1
follows.

In the next step we show that ⋃
n∈ω

An = ω. (2·5)
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Philip Hall’s problem on non-Abelian splitters 27
Otherwise there is 1� y ∈ Gwith [y]w

⋃
n∈ω An =6. Let x ∈ G be the pre-image of y

under the automorphism σ, hence xσ = y. We want to show that x =
∏
n∈ω xnen = 1,

which is a contradiction. By (2·4) we can write An = {m}, hence

1 = ym = xσπm = xnσnm = xnt
∗
nm

using m ^ [y] and (2·3), for all n ∈ ω. We get xn = 1 and x = 1 follows. From (2·4)
and (2·5) follows that

π = πσ : ω → ω (n→ m) if An = {m}
is a permutation π ∈ Sω, and it is easy to see that

πσ−1 = (πσ)−1. (2·6)

We view πσ ∈ AutG as described at the beginning. If we replace σ by σ′ = σπ−1
σ

then πσ′ = id is obvious and σ′ acts component-wise on Len , inducing conjugations
t∗n for each n ∈ ω. If t =

∏
n∈ω tnen ∈ G and D = ×n∈ωLen is the restricted direct

product in G then σ′ � D = t∗ � D. Since L is cotorsion-free, G = Lω is also
cotorsion-free and thus stout as in [5]. It follows from [5, p. 49, theorem 4.1(4)] and
σ′ � D = t∗ � D that σ′ = t∗ on all of G thus σ = t∗πσ ∈ G∗ o Sω and (a) is shown.

It remains to demonstrate (b). Consider

1 −→ G
id−→ H

β−→M → 1 with M%G

and let γ : M → H be a map of representatives for β in H, that is xγβ = x for
all x ∈ M . If x ∈ M , then (xγ)∗ is an inner automorphism of H which induces an
automorphism α = (xγ)∗ � G of GCH. From (a) we have α = y∗xπx for some yx ∈ G
and πx ∈ Sω. If we replace γ by γ′ : M → H with xγ′ = y−1

x (xγ), then γ′ is again
a coset representation for β and if we call the new map γ again, then yx = 1 for all
x ∈M . Recall that

(xγ)∗ � G = πx for all x ∈M,

and consider the map

π : G→ Sω (x→ πx).

It is easy to check that π is a homomorphism, hence π ∈ Hom (G,Sω) = 0 by
Definition 1·3(ii), which sends every x to the identity in Sω. This is to say that
xγ ∈ cHG for all x ∈ H. Let C = cHG ⊆ H denote the centralizer of G in H.
From zG = 1 it follows that G w C = 1; moreover by the above, H is generated by
the normal subgroups G and C, hence H = G × C. By the exact sequence above
β � C : C → M %G is an isomorphism and we arrive at H%G × G; hence G is a
splitter.

Proposition 2·1. Let κ be a cardinal and K and L be groups with the following
properties.

(a) L is simple and |K| < |L|, moreover
(b) ∃ g ∈ L,m ∈ ω such that any x ∈ L is product of at most m conjugates of g.

Then Hom (Lκ,K) = 0.
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28 Rüdiger Göbel and Saharon Shelah
We derive:

Corollary 2·2. If L is a simple group of cardinality > 2ℵ0 such that EndL =
InnLx {0} and condition (b) of Proposition 2·1 holds, then L is rigid and Lω is a Hall
group.

Proof of the corollary. We can apply Proposition 2·1 for K = Sω, hence

Hom (Lω, Sω) = 0.

The group L is simple and large, so zL = 1 and L is rigid. By Corollary 1·5 it follows
that Lω is a Hall group.

Proof of Proposition 2·1. Let g ∈ L and m ∈ ω be as in (b). If G = Lκ and σ is any
homomorphism from Hom (G,K), then consider any x =

∏
i<κ eixi ∈ G. We want

to show that xσ = 1. By (b) these coordinates xi ∈ L of x can be expressed as

xi =
∏
j<ki

gyij (i < κ)

as products of ki 6 m conjugates of g. If Ak = {i < κ : ki = k}, then κ =
⋃
k6mAk

is a decomposition of κ and we may assume Ak = 6 for each k ∈ ω \ {ki; i ∈ κ}.
Using the earlier notation we show that G = GA1×· · ·×GAm is expressed as a direct
product. If ḡ =

∏
i<κ eig ∈ G is the canonical diagonal element of g ∈ L, then using

the elements yij , x, ḡ we get new elements

ȳkj =
∏
t∈Ak

etykj , ḡk =
∏
t∈Ak

etg, x̄k =
∏
t∈Ak

etxt ∈ GAk ,

which are restrictions of the old ones to Ak. In particular

zkj = ḡ
ȳkj
k ∈ GAk , x̄k =

∏
j<k

zkj and x =
∏
k6m

x̄k. (2·7)

Consider the canonical diagonal homomorphisms

ιk : L −→ GAk

(
x −→

∏
t∈Ak

etx

)
(k 6 m)

and note that gιk = ḡk, hence

ḡkσ = gιkσ = 1 from ιkσ ∈ Hom (L,K),

which is trivial because |K| < |L| and L is simple. From (2·7) follows xσ = 1 and
Hom (G,L) = 0.

3. A result from [9]

It remains to find simple groups L of cardinality |L| > 2ℵ0 such that EndL =
InnLx {0} with the extra property that there are g ∈ L,m ∈ ω and any element of
L is the product of at most m conjugates of g.

Relatives of these groups are constructed in [8, and references therein] for instance
in [2, 3, 6, 7]. However, they are not good enough for our purpose in this paper.
When working on [9] we noticed the connection to the Hall problem and extended
the construction in order to incorporate its use above.
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Philip Hall’s problem on non-Abelian splitters 29
Theorem 3·1. Let A be a family of suitable groups and κ < µ be infinite cardinals

such that κ is regular uncountable and µκ = µ. Then we can find a groupH of cardinality
λ = µ+ such that the following holds.

(i) H is simple. Moreover, if 1� g ∈ H, then any element of H is a product of at
most four conjugates of g.

(ii) Any A ∈ A is a subgroup of H and if A is not empty, then H[A] = H, where
H[A] is the subgroup of H generated by all subgroups of H isomorphic to A. If
A is empty, then we may assume that H is cotorsion-free.

(iii) Any monomorphism ϕ : A→ H for some A ∈A is induced by some h ∈ H, that
is there is some h ∈ H such that ϕ = h∗ � A.

(iv) If A′ ⊆ H is an isomorphic copy of some A ∈ A, then the centralizer cHA
′ is

trivial.
(v) Any monomorphism H → H is an inner automorphism.

For our application we can assume A = 6. Otherwise the following definition is
needed.

Definition 3·2. Let A be any group with trivial center and view A ⊆ Aut (A) as
inner automorphisms of A. Then A is called suitable if the following conditions hold:

(i) A� 1 is a finite group.
(ii) If A′ ⊆ Aut (A) and A′%A then A′ = A.
(iii) Aut (A) is complete.

Note that Aut (A) has trivial centre because A has trivial centre. Hence the last
condition only requires that Aut (A) has no outer automorphisms. It also follows
from this that any automorphism of A extends to an inner automorphism of Aut (A).
Recall the easy observation from [8] which is a consequence of the classification of
finite simple groups:

All finite simple groups are suitable.
Also note that there are many well-known examples of suitable groups which are

not simple. Just apply Wieland’s theorem on automorphism towers of finite groups
with trivial centre (see [14]).

The proof of Theorem 3·1 is a transfinite induction building the group H (which
has cardinal λ = µ+ the successor cardinal of µ) as a union of a chain of subgroups
Hα of cardinality µ. The inductive steps are separated by four disjoint stationary
subsets Si (0 6 i 6 3) of λ, where ordinals in S0 x S1 x S2 are limit ordinals of
cofinality ω while ordinals in S3 have cofinality κ. Passing from Hα to Hα+1 now
depends on the position of α. If α does not belong to one of these stationary subsets,
then Hα+1 = Hα ∗ αZ is just a free product of Hα with a (new) infinite cyclic group
αZ. If α belongs to one of the first three stationary subsets, then HNN-extensions
are used as in [13]. In case α ∈ S0 we must deal with the conjugacy problem for
condition (i) of the theorem. Here it is enough to ensure that all elements of infinite
order are conjugate and this is what HNN is designed for. Similarly we can deal
with conditions (ii) and (iii) by free products with amalgamated subgroups using
α ∈ S1 and α ∈ S2, respectively. An enumeration of elements with repetitions en-
sures that nothing is overlooked. Condition (iv), which is not needed here, is pure
group theory, a book-keeping proof by transfinite induction. The more complicated
demand is condition (v) of the theorem which is a strengthening for completion. As
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30 Rüdiger Göbel and Saharon Shelah
there are obviously more possible monomorphisms to deal with than elements in the
group, a combinatorial principle is needed, a Black Box must be applied which still
allows us to deal with the possible injections one after another while α runs with
repetitions through S3 (a set of ‘only’ λ elements) while enumerating partial injec-
tive maps on the set H. The basic tool is that the group H is built in such a way
that there are many elements h ∈ Hα with large abelian centralizers cHα(h) of cardi-
nality κ. These centralizers can be arranged to come from a rigid family of abelian
groups, this is to say from a theorem shown two decades ago for abelian groups in
[1, p. 465]:

Theorem 3·3. For each subset X ⊆ κ of the set (the cardinal) κ there is an ℵ1-free
abelian group GX of cardinal κ such that the following holds.

Hom (GX , GY ) =

{
Z : if X ⊆ Y
0: if X;Y.

The proof of the theorem on abelian groups uses an earlier Black Box from Shelah
(see also [1] for more details).

An abelian group is ℵ1-free if all its countable subgroups are free abelian.
These abelian groups are also visibly cotorsion-free. By the indicated construction
inductively it follows for A = 6 that each Hα hence H is cotorsion-free. Theorem
3·3 ensures that many centralizers are algebraically very different. And as
centralizers must be mapped under monomorphisms into a centralizer, an idea often
used for characterizing certain (automorphism) groups, it perhaps seems convinc-
ing that such a covering with a rigid system of abelian centralizers almost forces
monomorphisms to be conjugated. The details, however, are time consuming and are
done in [9].
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