The Journal of Symbolic Logic

THE

Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

On regular reduced products

Juliette Kennedy and Saharon Shelah

The Journal of Symbolic Logic / Volume 67 / Issue 03 / September 2002, pp 1169-1177
DOI: 10.2178/jsl/1190150156, Published online: 12 March 2014
Link to this article: http://journals.cambridge.org/abstract S002248120000949X
How to cite this article:
Juliette Kennedy and Saharon Shelah (2002). On regular reduced products . The Journal of Symbolic Logic, 67, pp 1169-1177 doi:10.2178/jsl/1190150156

Request Permissions: Click here

ON REGULAR REDUCED PRODUCTS*

JULIETTE KENNEDY ${ }^{\dagger}$ AND SAHARON SHELAH ${ }^{\ddagger}$

Abstract

Assume $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$. Assume M is a model of a first order theory T of cardinality at most λ^{+}in a language $\mathscr{L}(T)$ of cardinality $\leq \lambda$. Let N be a model with the same language. Let Δ be a set of first order formulas in $\mathscr{L}(T)$ and let D be a regular filter on λ. Then M is Δ-embeddable into the reduced power N^{λ} / D, provided that every Δ-existential formula true in M is true also in N. We obtain the following corollary: for M as above and D a regular ultrafilter over $\lambda, M^{\lambda} / D$ is λ^{++}-universal. Our second result is as follows: For $i<\mu$ let M_{i} and N_{i} be elementarily equivalent models of a language which has cardinality $\leq \lambda$. Suppose D is a regular filter on λ and $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$holds. We show that then the second player has a winning strategy in the Ehrenfeucht-Fraïssé game of length λ^{+}on $\prod_{i} M_{i} / D$ and $\prod_{i} N_{i} / D$. This yields the following corollary: Assume GCH and λ regular (or just $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$ and $2^{\lambda}=\hat{\lambda}^{+}$). For L, M_{i} and N_{i} be as above, if D is a regular filter on λ, then $\prod_{i} M_{i} / D \cong \prod_{i} N_{i} / D$.

§1. Introduction. Suppose M is a first order structure and F is the Frechet filter on ω. Then the reduced power M^{ω} / F is \aleph_{1}-saturated and hence \aleph_{2}-universal ([6]). This was generalized by Shelah in [10] to any filter F on ω for which B^{ω} / F is \aleph_{1}-saturated, where B is the two element Boolean algebra, and in [8] to all regular filters on ω. In the first part of this paper we use the combinatorial principle $\square_{\lambda}^{b^{*}}$ of Shelah [11] to generalize the result from ω to arbitrary λ, assuming $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow$ $\left\langle\lambda, \lambda^{+}\right\rangle$. This gives a partial solution to Conjecture 19 in [3]: if D is a regular ultrafilter over λ, then for all infinite M, the ultrapower M^{λ} / D is λ^{++}-universal.
The second part of this paper addresses Problem 18 in [3], which asks if it is true that if D is a regular ultrafilter over λ, then for all elementarily equivalent models M and N of cardinality $\leq \lambda$ in a language of cardinality $\leq \lambda$, the ultrapowers M^{λ} / D and N^{λ} / D are isomorphic. Keisler [7] proved this for good D assuming $2^{\lambda}=\lambda^{+}$. Benda [1] weakened "good" to "contains a good filter". We prove the claim in full generality, assuming $2^{\lambda}=\lambda^{+}$and $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$.

Regarding our assumption $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$, by Chang's Two-Cardinal Theorem ([2]) $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$is a consequence of $\lambda=\lambda^{<\lambda}$. So our Theorem 2 settles Conjecture 19 of [3], and Theorem 13 settles Conjecture 18 of [3], under GCH for λ regular. For singular strong limit cardinals $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$follows from \square_{λ}

[^0](Jensen [5]). In the so-called Mitchell's model ([9]) $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \nrightarrow\left\langle\aleph_{1}, \aleph_{2}\right\rangle$, so our assumption is independent of ZFC.

§2. Universality.

Definition 1. Suppose Δ is a set of first order formulas of the language L. The set of Δ-existential formulas is the set of formulas of the form

$$
\exists x_{1} \ldots \exists x_{n}\left(\phi_{1} \wedge \cdots \wedge \phi_{n}\right)
$$

where each ϕ_{i} is in Δ. The set of weakly Δ-existential formulas is the set of formulas of the above form, where each ϕ_{i} is in Δ or is the negation of a formula in Δ. If M and N are L-structures and $h: M \rightarrow N$, we say that h is a Δ-homomorphism if h preserves the truth of Δ-formulas. If h preserves also the truth of negations of Δ-formulas, it is called a Δ-embedding.

Theorem 2. Assume $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$. Let M be a model of a first order theory T of cardinality at most λ^{+}, in a language L of cardinality $\leq \lambda$ and let N be a model with the same language. Let Δ be a set of first order formulas in L and let D be a regular filter on λ. We assume that every weakly Δ-existential sentence true in M is true also in N. Then there is a Δ-embedding of M into the reduced power N^{λ} / D.
By letting Δ be the set of all first order sentences, we get from Theorem 2:
Corollary 3. Assume $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$. If M is a model with language $\leq \lambda$, and D is a regular ultrafilter on λ, then M^{λ} / D is λ^{++}-universal, i.e. if M^{\prime} is of cardinality $\leq \lambda^{+}$, and $M^{\prime} \equiv M$, then M^{\prime} is elementarily embeddable into the ultrapower M^{λ} / D.

We can replace "weakly Δ-existential" by " Δ-existential" in the Theorem, if we only want a Δ-homomorphism.
The idea behind the proof of Theorem 2 is roughly as follows: suppose $M=$ $\left\{a_{\zeta}: \zeta<\lambda^{+}\right\}$. We associate to each $\zeta<\lambda^{+}$finite sets $u_{i}^{\zeta} \subseteq \zeta, i<\lambda$, and represent the formula set Δ as a union of finite sets Δ_{i}. The proof involves a simultaneous recursion over λ^{+}and λ. At stage i, for each $\zeta<\lambda^{+}$we consider the Δ_{i}-type of those elements a_{τ} of the model whose indices lie in the set $u_{i}^{\zeta}, \zeta<\lambda^{+}$. This will yield a witness $f_{\tau}(i)$ in N at stage i, τ. Naturally, the sets u_{i}^{ζ} have to have some coherence properties in order for this to work. Our embedding is then given by $a_{\tau} \mapsto\left\langle f_{\tau}(i): i<\lambda\right\rangle / D$.

We need first an important lemma, reminiscent of Proposition 5.1 in [11]:
Lemma 4. Assume $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$. Let D be a regular filter on λ. There exist sets u_{i}^{ζ} and integers n_{i} for each $\zeta<\lambda^{+}$and $i<\lambda$ such that for each i, ζ
(i) $\left|u_{i}^{\zeta}\right|<n_{i}$
(ii) $u_{i}^{\zeta} \subseteq \zeta$
(iii) Let B be a finite set of ordinals and let ζ be such that $B \subseteq \zeta<\lambda^{+}$. Then $\left\{i: B \subseteq u_{i}^{\zeta}\right\} \in D$
(iv) Coherency: $\gamma \in u_{i}^{\zeta} \Rightarrow u_{i}^{\gamma}=u_{i}^{\zeta} \cap \gamma$

Assuming the lemma, and letting $M=\left\{a_{\zeta}: \zeta<\lambda^{+}\right\}$we now define, for each ζ, a function $f_{\zeta}: \lambda \mapsto N$.

Let $\Delta=\left\{\phi_{\alpha}: \alpha<\lambda\right\}$ and let $\left\{A_{\alpha}: \alpha<\lambda\right\}$ be a family witnessing the regularity of D. Thus for each $i<\lambda$, the set $w_{i}=\left\{\alpha: i \in A_{\alpha}\right\}$ is finite. Let $\Delta_{i}=\left\{\phi_{\alpha}: \alpha \in w_{i}\right\}$, and let u_{i}^{ζ}, n_{i} be as in the lemma.

We define a sequence of formulas essential to the proof: suppose $\zeta<\lambda^{+}$and $i<\lambda$. Let $m_{i}^{\zeta}=\left|u_{i}^{\zeta}\right|$ and let

$$
u_{i}^{\zeta}=\left\{\xi_{\zeta, i, 1}, \ldots, \xi_{\zeta, i, m_{i}^{\zeta}}\right\}
$$

be the increasing enumeration of u_{i}^{ζ}. (We adopt henceforth the convention that any enumeration of u_{i}^{ζ} that is given is the increasing enumeration.) Let $\bar{\theta}_{i}^{\zeta}$ be the Δ_{i}-type of the tuple $\left\langle a_{\xi_{i, i, 3}}, \ldots, a_{\xi_{5, i, m}}\right\rangle$ in M. (So every $\phi\left(x_{1}, \ldots, x_{m_{i}^{z}}\right) \in \Delta_{i}$ or its negation occurs as an element of $\bar{\theta}_{i}^{\zeta}$, according to whether $\phi\left(a_{\xi_{\zeta, i, 1}}, \ldots, a_{\xi_{5, i, m_{i}^{\zeta}}}\right)$ or $\neg \phi\left(a_{\xi_{5, i l}}, \ldots, a_{\xi_{\zeta, i, i m}^{\zeta}}\right)$ holds in M.) We define the formula θ_{i}^{ζ} for each i by downward induction on m_{i}^{ζ} as follows:

Case 1. $m_{i}^{\zeta}+1=n_{i}$. Let $\theta_{i}^{\zeta}=\wedge \bar{\theta}_{i}^{\zeta}$.
CASE 2. $m_{i}^{\zeta}+1<n_{i}$. Let θ_{i}^{ζ} be the conjunction of $\bar{\theta}_{i}^{\zeta}$ and all formulas of the form $\exists x_{m_{i}^{\varepsilon}} \theta_{i}^{\varepsilon}\left(x_{1}, \ldots, x_{m_{i}^{\zeta}}, x_{m_{i}^{\varepsilon}}\right)$, where ε satisfies $u_{i}^{\varepsilon}=u_{i}^{\zeta} \cup\{\zeta\}$ and hence $m_{i}^{\varepsilon}=m_{i}^{\zeta}+1$. If no such ε exists, θ_{i}^{ζ} is just the conjunction of $\bar{\theta}_{i}^{\zeta}$.

An easy induction, based on the fact that there is a uniform bound n_{i} on the sizes of the sets u_{i}^{ζ}, shows that for a fixed $i<\lambda$, the cardinality of the set $\left\{\theta_{i}^{\zeta}: \zeta<\lambda^{+}\right\}$is finite.

Let $i<\lambda$ be fixed. We define $f_{\varepsilon}(i)$ for $\varepsilon \in u_{i}^{\zeta}$ by induction on $\zeta<\lambda^{+}$in such a way that the following condition remains valid:

$$
\begin{equation*}
\text { If } \zeta^{*}<\zeta \text { and } u_{i}^{\zeta^{*}}=\left\{r_{\varepsilon_{1}}, \ldots, r_{\varepsilon_{k}}\right\} \text {, then } N \models \theta_{i}^{\zeta^{*}}\left(f_{\varepsilon_{1}}(i), \ldots, f_{\varepsilon_{k}}(i)\right) \tag{IH}
\end{equation*}
$$

Actually, $f_{\varepsilon}(i)$ gets defined once and for all at the first stage ζ such that $\varepsilon \in u_{i}^{\zeta}$. To define $f_{\varepsilon}(i)$ for $\varepsilon \in u_{i}^{\zeta}$, we consider different cases:

Case 1. $n_{i}=m_{i}^{\zeta}+1$.
CASE 1.1. $n_{i}=1$. Then there is nothing to prove, since u_{i}^{ζ} is empty.
CASE 1.2. $n_{i}>1$. Let $u_{i}^{\zeta}=\left\{\xi_{1}, \ldots, \xi_{m_{i}^{\zeta}}\right\}$. Since $m_{i}^{\zeta}+1=n_{i}$, the formula θ_{i}^{ζ} is the Δ_{i}-type of the elements $\left\{a_{\xi_{1}}, \ldots, a_{\xi_{m_{i}}}\right\}$. By assumption $\gamma=\xi_{m_{i}^{j}}$ is the maximum element of u_{i}^{ζ}. We note that for $\varepsilon \in u_{i}^{\zeta} \cap \gamma, f_{\varepsilon}(i)$ is already defined. By coherency, $u_{i}^{\gamma}=u_{i}^{\zeta} \cap \gamma=\left\{\xi_{1}, \ldots, \xi_{m_{i}^{\zeta}-1}\right\}$. Since $\gamma<\zeta$, we know by the induction hypothesis that

$$
N \models \theta_{i}^{\gamma}\left(f_{\xi_{1}}(i), \ldots, f_{\xi_{m_{i}^{\xi}-1}}(i)\right)
$$

As $u_{i}^{\zeta}=u_{i}^{\gamma} \cup\{\gamma\}$ and $m_{i}^{\gamma}<n_{i}-1$, the formula θ_{i}^{γ} contains the formula

$$
\exists x_{m_{i}^{\zeta}} \theta_{i}^{\xi}\left(x_{1}, \ldots, x_{m_{i}^{\xi}}\right)
$$

as a conjunct. Thus

$$
N \models \exists x_{m_{i}^{\xi}} \theta_{i}^{\zeta}\left(f_{\zeta_{1}}(i), \ldots, f_{\xi_{m_{i}^{\xi}-1}}(i), x_{m_{i}^{\xi}}\right) .
$$

Now let $b \in N$ witness this formula and set $f_{\gamma}(i)=b$.
CASE 2. $m_{i}^{\zeta}+1<n_{i}$. Let $u_{i}^{\zeta}=\left\{\xi_{1}, \ldots, \xi_{m_{i}^{\zeta}}\right\}$. We have that

$$
M \models \theta_{i}^{\zeta}\left(a_{\xi_{1}}, \ldots, a_{\xi_{m_{i}^{\zeta}}}\right),
$$

and therefore $M \vDash \exists x_{m_{i}^{\xi}} \theta_{i}^{\xi}\left(a_{\xi_{1}}, \ldots, a_{\xi_{m_{i}^{5}-1}}, x_{m_{i}^{\zeta}}\right)$. Let $\gamma=\max \left(u_{i}^{\zeta}\right)=\xi_{m_{i}^{\zeta}}$. By coherency $u_{i}^{\gamma}=u_{i}^{\zeta} \cap \gamma$ and therefore since $\gamma<\zeta$ again by the induction hypothesis we have that

$$
N \models \theta_{i}^{\gamma}\left(f_{\xi_{1}}(i), \ldots, f_{\xi_{m_{i}^{\xi}-1}}(i)\right)
$$

But then as in case 1.2 we can infer that

$$
N \vDash \exists x_{m_{i}^{5}} \theta_{i}^{\zeta}\left(f_{\xi_{1}}(i), \ldots, f_{\xi_{m_{i}^{\zeta}-1}}(i), x_{m_{i}^{\zeta}}\right) .
$$

As in case 1 choose an element $b \in N$ to witness this formula and set $f_{\gamma}(i)=b$.
It remains to be shown that the mapping $a_{\zeta} \mapsto\left\langle f_{\zeta}(i): i<\lambda\right\rangle / D$ satisfies the requirements of the theorem, i.e. we must show, for all ϕ such that $\phi \in \Delta$ or $\neg \phi \in \Delta$:

$$
M \models \phi\left(a_{\xi_{1}}, \ldots, a_{\xi_{k}}\right) \Rightarrow\left\{i: N \models \phi\left(f_{\xi_{1}}(i), \ldots, f_{\xi_{k}}(i)\right)\right\} \in D
$$

So let such a ϕ be given, and suppose $M \models \phi\left(a_{\xi_{1}}, \ldots, a_{\xi_{k}}\right)$. Let

$$
I_{\phi}=\left\{i: N \models \phi\left(f_{\xi_{1}}(i), \ldots, f_{\xi_{k}}(i)\right)\right\} .
$$

We wish to show that $I_{\phi} \in D$. Let $\alpha<\lambda$ so that ϕ is ϕ_{α} or its negation. It suffices to show that $A_{\alpha} \subseteq I_{\phi}$. Let $\zeta<\lambda^{+}$be such that $\left\{\xi_{1}, \ldots, \xi_{n}\right\} \subseteq \zeta$. By Lemma 4 condition (iii), $\left\{i:\left\{\xi_{1}, \ldots, \xi_{n}\right\} \subseteq u_{i}^{\zeta}\right\} \in D$. So it suffices to show

$$
A_{\alpha} \cap\left\{i:\left\{\xi_{1}, \ldots, \xi_{n}\right\} \subseteq u_{i}^{\xi}\right\} \subseteq I_{\phi}
$$

Let $i \in A_{\alpha}$ such that $\left\{\xi_{1}, \ldots, \xi_{n}\right\} \subseteq u_{i}^{\zeta}$. By the definition of θ_{i}^{ζ} we know that $N \models \theta_{i}^{\zeta}\left(f_{\xi_{1}}(i), \ldots, f_{\xi_{k}}(i)\right)$. But the Δ_{i}-type of the tuple $\left\langle a_{\xi_{1}}, \ldots, a_{\xi_{k}}\right\rangle$ occurs as a conjunct of θ_{i}^{ζ}, and therefore $N \models \phi\left(f_{\xi_{1}}(i), \ldots, f_{\xi_{k}}(i)\right)$
§3. Proof of Lemma 4. We now prove Lemma 4. We first prove a weaker version in which the filter is not given in advance:

Lemma 5. Assume $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$. Then there exist sets $\left\langle u_{i}^{\zeta}: \zeta<\lambda^{+}, i<\right.$ $\operatorname{cof}(\lambda)\rangle$, integers n_{i} and a regular filter D on λ, generated by λ sets, such that $(i)-(i v)$ of Lemma 4 hold.

Proof. By [11, Proposition 5.1, p. 149] the assumption $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$is equivalent to:
$\square_{\lambda}^{b^{*}}$: There is a λ^{+}-like linear order L, sets $\left\langle C_{a}^{\zeta}: a \in L, \zeta<c f(\lambda)\right\rangle$, equivalence relations $\left\langle E^{\zeta}: \zeta<c f(\lambda)\right\rangle$, and functions $\left\langle f_{a, b}^{\zeta}: \zeta<\lambda, a \in L, b \in L\right\rangle$ such that
(i) $\bigcup_{\zeta} C_{a}^{\zeta}=\left\{b: b<_{L} a\right\}$ (an increasing union in ζ).
(ii) If $b \in C_{a}^{\zeta}$, then $C_{b}^{\zeta}=\left\{c \in C_{a}^{\zeta}: c<_{L} b\right\}$.
(iii) E^{ζ} is an equivalence relation on L with $\leq \lambda$ equivalence classes.
(iv) If $\zeta<\xi<c f(\lambda)$, then E^{ξ} refines E^{ζ}.
(v) If $a E^{\zeta} b$, then $f_{a, b}^{\zeta}$ is an order-preserving one to one mapping from C_{a}^{ζ} onto C_{b}^{ζ} such that for $d \in C_{a}^{\zeta}, d E^{\zeta} f_{a, b}^{\zeta}(d)$.
(vi) If $\zeta<\xi<c f(\lambda)$ and $a E^{\xi} b$, then $f_{a, b}^{\zeta} \subseteq f_{a, b}^{\xi}$.
(vii) If $f_{a, b}^{\zeta}\left(a_{1}\right)=b_{1}$, then $f_{a_{1}, b_{1}}^{\zeta} \subseteq f_{a, b}^{\zeta}$.
(viii) If $a \in C_{b}^{\zeta}$ then $\neg E^{\zeta}(a, b)$.

This is not enough to prove Lemma 5, so we have to work a little more. Let

$$
\Xi_{\zeta}=\left\{a / E^{\zeta}: a \in L\right\}
$$

We assume, for simplicity, that $\zeta \neq \xi$ implies $\Xi_{\zeta} \cap \Xi_{\xi}=\emptyset$. Define for $t_{1}, t_{2} \in \Xi_{\zeta}$:

$$
t_{1}<\zeta t_{2} \Longleftrightarrow\left(\exists a_{1} \in t_{1}\right)\left(\exists a_{2} \in t_{2}\right)\left(a_{1} \in C_{a_{2}}^{\zeta}\right)
$$

Proposition 6. $\left\langle\Xi_{\zeta},\left\langle_{\zeta}\right\rangle\right.$ is a tree order with $c f(\lambda)$ as the set of levels.
Proof. We need to show (a) $t_{1}<_{\zeta} t_{2}<\zeta t_{3}$ implies $t_{1}<_{\zeta} t_{3}$, and (b) $t_{1}<_{\zeta} t_{3}$ and $t_{2}<_{\zeta} t_{3}$ implies $t_{1}<_{\zeta} t_{2}$ or $t_{2}<_{\zeta} t_{1}$ or $t_{1}=t_{2}$. For the first, $t_{1}<_{\zeta} t_{2}$ implies there exists $a_{1} \in t_{1}$ and $a_{2} \in t_{2}$ such that $a_{1} \in C_{a_{2}}^{\zeta}$. Similarly $t_{2}<_{\zeta} t_{3}$ implies there exists $b_{2} \in t_{2}$ and $b_{3} \in t_{3}$ such that $b_{2} \in C_{b_{3}}^{\zeta}$. Now $a_{2} E^{\zeta} b_{2}$ and hence we have the order preserving map $f_{a_{2}, b_{2}}^{\zeta}$ from $C_{a_{2}}^{\zeta}$ onto $C_{b_{2}}^{\zeta}$. Recalling $a_{1} \in C_{a_{2}}^{\zeta}$, let $f_{a_{2}, b_{2}}^{\zeta}\left(a_{1}\right)=b_{1}$. Then by (vi), $a_{1} E^{\zeta} b_{1}$ and hence $b_{1} \in t_{1}$. But then $b_{1} \in C_{b_{2}}^{\zeta}$ implies $b_{1} \in C_{b_{3}}^{\zeta}$, by coherence and the fact that $b_{2} \in C_{b_{3}}^{\zeta}$. But then it follows that $t_{1}<_{\zeta} t_{3}$.

Now assume $t_{1}<_{\zeta} t_{3}$ and $t_{2}<_{\zeta} t_{3}$. Let $a_{1} \in t_{1}$ and $a_{3} \in t_{3}$ be such that $a_{1} \in C_{a_{3}}^{\zeta}$, and similarly let b_{2} and b_{3} be such that $b_{2} \in C_{b_{3}}^{\zeta} . a_{3} E^{\zeta} b_{3}$ implies we have the order preserving map $f_{a_{3}, b_{3}}^{\zeta}$ from $C_{a_{3}}^{\zeta}$ to $C_{b_{3}}^{\zeta}$. Letting $f_{a_{3}, b_{3}}^{\zeta}\left(a_{1}\right)=b_{1}$, we see that $b_{1} \in C_{b_{3}}^{\zeta}$. If $b_{1}<_{L} b_{2}$, then we have $C_{b_{2}}^{\zeta}=C_{b_{3}}^{\zeta} \cap\left\{c: c<b_{2}\right\}$ which implies $b_{1} \in C_{b_{2}}^{\zeta}$, since, as $f_{a_{3}, b_{3}}^{\zeta}$ is order preserving, $b_{1}<_{L} b_{2}$. Thus $t_{1}<\zeta, t_{2}$. The case $b_{2}<_{L} b_{1}$ is proved similarly, and $b_{1}=b_{2}$ is trivial.

For $a<_{L} b$ let

$$
\xi(a, b)=\min \left\{\zeta: a \in C_{b}^{\zeta}\right\} .
$$

Denoting $\xi(a, b)$ by ξ, let

$$
t p(a, b)=\left\langle a / E^{\xi}, b / E^{\xi}\right\rangle
$$

If $a_{1}<_{L} \cdots<_{L} a_{n}$, let

$$
t p\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)=\left\{\left\langle l, m, t p\left(a_{l}, a_{m}\right)\right\rangle \mid 1 \leq l<m \leq n\right\}
$$

and

$$
\Gamma=\left\{t p(\vec{a}): \vec{a} \in^{<\omega} L\right\}
$$

For $t=t p(\vec{a}), \vec{a} \in{ }^{n} L$ we use n_{t} to denote the length of \vec{a}.
Proposition 7. If $a_{0}<_{L} \cdots<_{L} a_{n}$, then

$$
\max \left\{\xi\left(a_{l}, a_{m}\right): 0 \leq l<m \leq n\right\}=\max \left\{\xi\left(a_{l}, a_{n}\right): 0 \leq l<n\right\}
$$

Proof. Clearly the right hand side is \leq the left hand side. To show the left hand side is \leq the right hand side, let $l<m<n$ be arbitrary. If $\xi\left(a_{l}, a_{n}\right) \leq \xi\left(a_{m}, a_{n}\right)$, then $\xi\left(a_{l}, a_{m}\right) \leq \xi\left(a_{m}, a_{n}\right)$. On the other hand, if $\xi\left(a_{l}, a_{n}\right)>\xi\left(a_{m}, a_{n}\right)$, then $\xi\left(a_{l}, a_{m}\right) \leq \xi\left(a_{l}, a_{n}\right)$. In either case $\xi\left(a_{l}, a_{m}\right) \leq \max \left\{\xi\left(a_{k}, a_{n}\right): 0 \leq k<n\right\}$.

Let us denote $\max \left\{\xi\left(a_{l}, a_{n}\right): 0 \leq l<n\right\}$ by $\xi(\vec{a})$. We define on Γ a two-place relation \leq_{Γ} as follows:

$$
t_{1}<_{\Gamma} t_{2}
$$

if there exists a tuple $\left\langle a_{0}, \ldots a_{n_{2}-1}\right\rangle$ realizing t_{2} such that some subsequence of the tuple realizes t_{1}.

Clearly, $\left\langle\Gamma, \leq_{\Gamma}\right\rangle$ is a directed partial order.
Proposition 8. For $t \in \Gamma, t=t p\left(b_{0}, \ldots b_{n-1}\right)$ and $a \in L$, there exists at most one $k<n$ such that $b_{k} E^{\xi\left(b_{0}, \ldots, b_{n-1}\right)} a$.

Proof. Let $\zeta=\xi\left(b_{0}, \ldots, b_{n-1}\right)$ and let $b_{k_{1}} \neq b_{k_{2}}$ be such that $b_{k_{1}} E^{\zeta} a$ and $b_{k_{2}} E^{\zeta} a, k_{1}, k_{2} \leq n-1$. Without loss of generality, assume $b_{k_{1}}<b_{k_{2}}$. Since E^{ζ} is an equivalence relation, $b_{k_{2}} E^{\zeta} b_{k_{1}}$ and thus we have an order preserving map $f_{b_{k_{2}}, b_{k_{1}}}^{\zeta}$ from $C_{b_{k_{2}}}^{\zeta}$ to $C_{b_{k_{1}}}^{\zeta}$. Also $b_{k_{1}} \in C_{b_{k_{2}}}^{\zeta}$, by the definition of ζ and by coherence, and therefore $f_{b_{k_{2}}, b_{k_{1}}}^{\zeta}\left(b_{k_{1}}\right) E^{\zeta} b_{k_{1}}$. But this contradicts (viii), since $f_{b_{k_{2}}, b_{k_{1}}}^{\zeta}\left(b_{k_{1}}\right) \in C_{b_{k_{1}}}^{\zeta} . \dashv-$

Definition 9. For $t \in \Gamma, t=t p\left(b_{0}, \ldots b_{n-1}\right)$ and $a \in L$ suppose there exists $k<$ n such that $b_{k} E^{\xi\left(b_{0}, \ldots, b_{n-1}\right)} a$. Then let $u_{t}^{a}=\left\{f_{a, b_{k}}^{\zeta\left(b_{0}, \ldots, b_{n-1}\right)}\left(b_{l}\right): l<k\right\}$ Otherwise, let $u_{t}^{a}=\emptyset$.

Finally, let D be the filter on Γ generated by the λ sets

$$
\Gamma_{\geq t^{*}}=\left\{t \in \Gamma: t^{*}<_{L} t\right\}
$$

We can now see that the sets u_{t}^{a}, the numbers n_{t} and the filter D satisfy conditions (i)-(iv) of Lemma 4 with L instead of λ^{+}: Conditions (i) and (ii) are trivial in this case. Condition (iii) is verified as follows: Suppose B is finite. Let $a \in L$ be such that $(\forall x \in B)\left(x<_{L} a\right)$. Let \vec{a} enumerate $B \cup\{a\}$ in increasing order and let $t^{*}=t p(\vec{a})$. Clearly

$$
t \in \Gamma_{\geq t^{*}} \Rightarrow B \subseteq u_{t}^{a}
$$

Condition (iv) follows directly from Definition 9 and Proposition 8.
To get the Lemma on λ^{+}we observe that since L is λ^{+}-like, we can assume that $\left\langle\lambda^{+},<\right\rangle$is a submodel of $\left\langle L,<_{L}\right\rangle$. Then we define $v_{t}^{\alpha}=u_{t}^{\alpha} \cap\{\beta: \beta<\alpha\}$. Conditions (i)-(iv) of Lemma 5 are still satisfied. Also having D a filter on Γ instead of on λ is immaterial as $|\Gamma|=\lambda$.

Now back to the proof of Lemma 4. Suppose u_{i}^{ζ}, n_{i} and D are as in Lemma 5, and suppose D^{\prime} is an arbitrary regular filter on λ. Let $\left\{A_{\alpha}: \alpha<\lambda\right\}$ be a family of sets witnessing the regularity of D^{\prime}, and let $\left\{Z_{\alpha}: \alpha<\lambda\right\}$ be the family generating D. We define a function $h: \lambda \rightarrow \lambda$ as follows. Suppose $i<\lambda$. Then let

$$
h(i) \in \bigcap\left\{Z_{\alpha} \mid i \in A_{\alpha}\right\} .
$$

Now define $v_{\alpha}^{\zeta}=u_{h(\alpha)}^{\zeta}$. Define also $n_{\alpha}=n_{h(\alpha)}$. Now the sets v_{α}^{ζ} and the numbers n_{α} satisfy the conditions of Lemma 4.
§4. Is $\square_{\lambda}^{b^{*}}$ needed for Lemma 5? In this section we show that the conclusion of Lemma 5 (and hence of Lemma 4) implies $\square_{\lambda}^{b^{*}}$ for singular strong limit λ. By [11, Theorem 2.3 and Remark 2.5], $\square_{\lambda}^{b^{*}}$ is equivalent, for singular strong limit λ, to the following principle:
\mathcal{S}_{λ} : There are sets $\left\langle C_{a}^{i}: a<\lambda^{+}, i<c f(\lambda)\right\rangle$ such that
(i) If $i<j$, then $C_{a}^{i} \subseteq C_{a}^{j}$.
(ii) $\bigcup_{i} C_{a}^{i}=a$.
(iii) If $b \in C_{a}^{i}$, then $C_{b}^{i}=C_{a}^{i} \cap b$.
(iv) $\sup \left\{o t p\left(C_{a}^{i}\right): a<\lambda^{+}\right\}<\lambda$.

Thus it suffices to prove:
Proposition 10. Suppose the sets u_{i}^{ζ} and the filter D are as given by Lemma 5 and λ is a limit cardinal. Then \mathcal{S}_{λ} holds.

Proof. Suppose $\mathscr{A}=\left\{A_{\alpha}: \alpha<\lambda\right\}$ is a family of sets generating D. W.l.o.g., \mathscr{A} is closed under finite intersections. Let λ be the union of the increasing sequence $\left\langle\lambda_{\alpha}: \alpha<c f(\lambda)\right\rangle$, where $\lambda_{0} \geq \omega$. Let the sequence $\left\langle\Gamma_{\alpha}: \alpha<c f(\lambda)\right\rangle$ satisfy:
(a) $\left|\Gamma_{\alpha}\right| \leq \lambda_{\alpha}$
(b) Γ_{α} is continuously increasing in α with λ as union
(c) If $\beta_{1}, \ldots, \beta_{n} \in \Gamma_{\alpha}$, then there is $\gamma \in \Gamma_{\alpha}$ such that

$$
A_{\gamma}=A_{\beta_{1}} \cap \cdots \cap A_{\beta_{n}} .
$$

The sequence $\left\langle\Gamma_{\alpha}: \alpha<c f(\lambda)\right\rangle$ enables us to define a sequence that will witness δ_{λ}. For $\alpha<c f(\lambda)$ and $\zeta<\lambda^{+}$, let

$$
V_{\zeta}^{\alpha}=\left\{\xi<\zeta:\left(\exists \gamma \in \Gamma_{\alpha}\right)\left(A_{\gamma} \subseteq\left\{i: \xi \in u_{i}^{\zeta}\right\}\right)\right\} .
$$

Lemma 11. (1) $\left\langle V_{\zeta}^{\alpha}: \alpha<\lambda\right\rangle$ is a continuously increasing sequence of subsets of ζ, $\left|V_{\zeta}^{\alpha}\right| \leq \lambda_{\alpha}$, and $\bigcup\left\{V_{\zeta}^{\alpha}: \alpha<c f(\lambda)\right\}=\zeta$.
(2) If $\xi \in V_{\zeta}^{\alpha}$, then $V_{\xi}^{\alpha}=V_{\zeta}^{\alpha} \cap \xi$.

Proof. (1) is a direct consequence of the definitions. (2) follows from the respective property of the sets u_{i}^{ζ}.

Lemma 12. $\sup \left\{o t p\left(V_{\zeta}^{\alpha}\right): \zeta<\lambda^{+}\right\} \leq \lambda_{\alpha}^{+}$.
Proof. By the previous Lemma, $\left|V_{\zeta}^{\alpha}\right| \leq \lambda_{\alpha}$. Therefore $\operatorname{otp}\left(V_{\zeta}^{\alpha}\right)<\lambda_{\alpha}^{+}$and the claim follows.

The proof of the proposition is complete: (i)-(iii) follows from Lemma 11, (iv) follows from Lemma 12 and the assumption that λ is a limit cardinal.

More equivalent conditions for the case λ singular strong limit, D a regular ultrafilter on λ, are under preparation.
§5. Ehrenfeucht-Fraïssé-games. Let M and N be two first order structures of the same language L. All vocabularies are assumed to be relational. The Ehrenfeucht-Fraïssé-game of length γ of M and N denoted by EFG_{γ} is defined as follows: There are two players called I and II. First I plays x_{0} and then II plays y_{0}. After this I plays x_{1}, and II plays y_{1}, and so on. If $\left\langle\left(x_{\beta}, y_{\beta}\right): \beta<\alpha\right\rangle$ has been played and $\alpha<\gamma$, then I plays x_{α} after which II plays y_{α}. Eventually a sequence $\left\langle\left(x_{\beta}, y_{\beta}\right): \beta<\gamma\right\rangle$ has been played. The rules of the game say that both players have to play elements of $M \cup N$. Moreover, if I plays his x_{β} in $M(N)$, then II has to play his y_{β} in $N(M)$. Thus the sequence $\left\langle\left(x_{\beta}, y_{\beta}\right): \beta<\gamma\right\rangle$ determines a relation $\pi \subseteq M \times N$. Player II wins this round of the game if π is a partial isomorphism. Otherwise I wins. The
notion of winning strategy is defined in the usual manner. We say that a player wins EFG_{γ} if he has a winning strategy in EFG_{γ}.

Note that if II has a winning strategy in EFG_{γ} on M and N, where M and N are of size $\leq|\gamma|$, then $M \cong N$.

Assume L is of cardinality $\leq \lambda$ and for each $i<\lambda$ let M_{i} and N_{i} be elementarily equivalent L-structures. Shelah proved in [12] that if D is a regular filter on λ, then Player II has a winning strategy in the game EFG_{γ} on $\prod_{i} M_{i} / D$ and $\prod_{i} N_{i} / D$ for each $\gamma<\lambda^{+}$. We show that under a stronger assumption, II has a winning strategy even in the game $\mathrm{EFG}_{\lambda^{+}}$. This makes a big difference because, assuming the models M_{i} and N_{i} are of size $\leq \lambda^{+}, 2^{\lambda}=\lambda^{+}$, and the models $\prod_{i} M_{i} / D$ and $\prod_{i} N_{i} / D$ are of size $\leq \lambda^{+}$, then by the remark above, if II has a winning strategy in $\mathrm{EFG}_{\lambda^{+}}$, the reduced powers are actually isomorphic. Hyttinen [4] proved this under the assumption that the filter is, in his terminology, semigood.

Theorem 13. Assume $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$. Let L be a language of cardinality $\leq \lambda$ and for each $i<\lambda$ let M_{i} and N_{i} be two elementarily equivalent L-structures. If D is a regular filter on λ, then Player II has a winning strategy in the game $\mathrm{EFG}_{\lambda^{+}}$on $\prod_{i} M_{i} / D$ and $\prod_{i} N_{i} / D$.

Proof. We use Lemma 4. For simplicity assume L is finite. (The general case follows from the regularity of D.) If $i<\lambda$, then, since M_{i} and N_{i} are elementarily equivalent, Player II has a winning strategy σ_{i} in the game $\mathrm{EFG}_{n_{i}}$ on M_{i} and N_{i}. We will use the set u_{i}^{ζ} to put these short winning strategies together into one long winning strategy.

A "good" position is a sequence $\left\langle\left(f_{\zeta}, g_{\zeta}\right): \zeta<\xi\right\rangle$, where $\xi<\lambda^{+}$, and for all $\zeta<\xi$ we have $f_{\zeta} \in \prod_{i} M_{i}, g_{\zeta} \in \prod_{i} N_{i}$, and if $i<\lambda$, then $\left\langle\left(f_{\varepsilon}(i), g_{\varepsilon}(i)\right): \varepsilon \in u_{i}^{\zeta} \cup\{\zeta\}\right\rangle$ is a play according to σ_{i}.

Note that in a good position the equivalence classes of the functions f_{ζ} and g_{ζ} determine a partial isomorphism of the reduced products. To see this, suppose $\left\langle\left(f_{\zeta}, g_{\zeta}\right): \zeta<\xi\right\rangle$ is a good position, $\phi\left(x_{1}, \ldots, x_{k}\right)$ is atomic and

$$
I_{\phi}=\left\{i: M_{i} \models \phi\left(f_{\alpha_{1}}(i), \ldots, f_{\alpha_{k}}(i)\right)\right\} \in D .
$$

We wish to show that $I_{\phi}^{\prime}=\left\{i: N_{i} \models \phi\left(g_{\alpha_{l}}(i), \ldots, g_{\alpha_{k}}(i)\right)\right\} \in D$. By Lemma 4, if $\gamma<\lambda^{+}$is such that $B=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subseteq \gamma$, then $J_{\gamma}=\left\{i: B \subseteq u_{i}^{\gamma}\right\} \in D$. Thus $J_{\gamma} \cap I_{\phi} \in D$, and for each $i \in J_{\gamma},\left\langle\left(f_{\varepsilon}(i), g_{\varepsilon}(i)\right): \varepsilon \in u_{i}^{\gamma}\right\rangle$ is part of the play according to σ_{i}. Thus for each such $i, i \in I_{\phi} \leftrightarrow i \in I_{\phi}^{\prime}$ i.e. $J_{\gamma} \cap I_{\phi}=J_{\gamma} \cap I_{\phi}^{\prime}$, whence $I_{\phi}^{\prime} \in D$.

The strategy of player II is to keep the position of the game "good", and thereby win the game. Suppose ξ rounds have been played and II has been able to keep the position "good". Then player I plays f_{ξ}. We show that player II can play g_{ξ} so that $\left\langle\left(f_{\zeta}, g_{\zeta}\right): \zeta \leq \xi\right\rangle$ remains "good". Let $i<\lambda$. Let us look at $\left\langle\left(f_{\varepsilon}(i), g_{\varepsilon}(i)\right): \varepsilon \in u_{i}^{\xi}\right\rangle$. We know that this is a play according to the strategy σ_{i} and $\left|u_{i}^{\xi}\right|<n_{i}$. Thus we can play one more move in $E F_{n_{i}}$ on M_{i} and N_{i} with player I playing $f_{\xi}(i)$. Let $g_{\xi}(i)$ be the answering move of II in this game according to σ_{i}. The values $g_{\xi}(i)$, $i<\lambda$, constitute the function g_{ξ}. We have shown that II can maintain a "good" position.

Corollary 14. Assume GCH and λ regular (or just $\left\langle\aleph_{0}, \aleph_{1}\right\rangle \rightarrow\left\langle\lambda, \lambda^{+}\right\rangle$and $2^{\lambda}=$ λ^{+}). Let L be a language of cardinality $\leq \lambda$ and for each $i<\lambda$ let M_{i} and N_{i} be two
elementarily equivalent L-structures. If D is a regular filter on λ, then $\prod_{i} M_{i} / D \cong$ $\prod_{i} N_{i} / D$.

REFERENCES

[1] M. Benda, On reduced products and filters, Ann. Math. Logic, vol. 4 (1972), pp. 1-29.
[2] C. C. Chang, A note on the two cardinal problem, Proceedings of the American Mathematical Society, vol. 16 (1965), pp. 1148-1155.
[3] C.C. Chang and J. Keisler, Model theory, North-Holland.
[4] T. Hyttinen, On к-complete reduced products, Archive for Mathematical Logic, vol. 31 (1992), no. 3, pp. 193-199.
[5] R. Jensen, The fine structure of the constructible hierarchy, with a section by Jack Silver, Ann. Math. Logic, vol. 4 (1972), pp. 229-308.
[6] B. Jónsson and P. Olin, Almost direct products and saturation, Compositio Mathematica, vol. 20 (1968), pp. 125-132.
[7] J. Keisler, Ultraproducts and saturated models, Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings. Ser. A 67 (=Indagationes Mathematicae 26), (1964), pp. 178-186.
[8] J. Kennedy and S. Shelah, On embedding models of arithmetic of cardinality \aleph_{1} into reduced powers, to appear.
[9] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic, vol. 5 (1972/73), pp. 21-46.
[10] S. Shelah, For what filters is every reduced product saturated?, Israel Journal of Mathematies, vol. 12 (1972), pp. 23-31.
[11] ——, "Gap 1" two-cardinal principles and the omitting types theorem for $L(Q)$, Israel Journal of Mathematics, vol. 65 (1989), no. 2, pp. 133-152.
[12] ——, Classification theory and the number of non-isomorphic models, second ed., NorthHolland Publishing Co., Amsterdam, 1990.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HELSINKI HELSINKI, FINLAND
E-mail: juliette.kennedy@helsinki.fi
INSTITUTE OF MATHEMATICS
HEBREW UNIVERSITY
JERUSALEM, ISRAEL
E-mail: shelah@math.huji.ac.il

[^0]: Received May 3, 2001; revised February 10, 2002.
 *This paper was written while the authors were guests of the Mittag-Leffler Institute, Djursholm, Sweden. The authors are grateful to the Institute for its support.
 ${ }^{\dagger}$ Research partially supported by grant 1011049 of the Academy of Finland.
 \ddagger Research partially supported by the Binational Science Foundation. Publication number 769.

