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In this note we prove and disprove some chain conditions in type definable
and definable groups in dependent, strongly dependent and strongly2 dependent
theories.
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1. Introduction

This note is about chain conditions in dependent, strongly dependent and strongly2 dependent theo-
ries.

Throughout, all formulas will be first order, T will denote a complete first order theory, and C will be
the monster model of T—a very big saturated model that contains all small models. We do not differentiate
between finite tuples and singletons unless we state it explicitly.
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Definition 1.1. A formula ϕ(x, y) has the independence property in some model if for every n < ω there are
〈ai, bs | i < n, s ⊆ n〉 such that ϕ(ai, bs) holds iff i ∈ s.

A (first order) theory T is dependent (sometimes also NIP) if it does not have the independence property:
there is no formula ϕ(x, y) that has the independence property in any model of T . A model M is dependent
if Th(M) is.

A good introduction to dependent theories appears in [2], but we shall give an exact reference to any fact
we use, so no prior knowledge is assumed.

What do we mean by a chain condition? Rather than giving an exact definition, we give an example of
such a condition—the first one. It is the Baldwin–Saxl lemma, which we shall present with the (very easy
and short) proof.

Definition 1.2. Suppose ϕ(x, y) is a formula. Then if G is a definable group in some model, and for all c ∈ C,
ϕ(x, c) defines a subgroup, then {ϕ(C, c) | c ∈ C} is a family of uniformly definable subgroups.

Lemma 1.3. (See [3].) Let G be a group definable in a dependent theory. Suppose ϕ(x, y) is a formula and
that {ϕ(x, c) | c ∈ C} defines a family of subgroups of G. Then there is a number n < ω such that any finite
intersection of groups from this family is already an intersection of n of them.

Proof. Suppose not, then for every n < ω there are c0, . . . , cn−1 ∈ C and g0, . . . , gn−1 ∈ G (in some model)
such that ϕ(gi, cj) holds iff i �= j. For s ⊆ n, let gs =

∏
i∈s gi (the order does not matter), then ϕ(gs, cj) iff

j /∈ s—this is a contradiction. �
In stable theories (which we shall not define here), the Baldwin–Saxl lemma is even stronger: every

intersection of such a family is really a finite one (see [7, Proposition 1.4]).
The focus of this note is type definable groups in dependent theories, where such a proof does not

work.

Definition 1.4. A type definable group for a theory T is a type—a collection Σ(x) of formulas (maybe over
parameters), and a formula ν(x, y, z), such that in the monster model C of T , 〈Σ(C), ν〉 is a group with ν

defining the group operation (without loss of generality, T |= ∀xy∃�1z(ν(x, y, z))). We shall denote this
operation by ·.

In stable theories, their analysis becomes easier as each type definable group is an intersection of definable
ones (see [7]).

Remark 1.5. In this note we assume that G is a finitary type definable group, i.e. x above is a finite
tuple.

Definition 1.6. Suppose G � H are two type definable groups (H is a subgroup of G). We say that the
index [G : H] is unbounded, or ∞, if for any cardinality κ, there exists a model M |= T , such that
[GM : HM ] � κ. Equivalently (by the Erdős–Rado coloring theorem), this means that there exists (in C)
a sequence of indiscernibles 〈ai | i < ω〉 (over the parameters defining G and H) such that ai ∈ G for all i,
and i < j ⇒ ai · a−1

j /∈ H. In C, this means that [GC : HC] = |C|. When G and H are definable, then by
compactness this is equivalent to the index [G : H] being infinite.

So [G : H] is bounded if it is not unbounded.

This leads to the following definition:
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Definition 1.7. Let G be a type definable group.

(1) For a set A, G00
A is the minimal A-type definable subgroup of G of bounded index.

(2) We say that G00 exists if G00
A = G00

∅ for all A.

Shelah proved:

Theorem 1.8. (See [9].) If G is a type definable group in a dependent theory, then G00 exists.

Even though fields are not the main concern of this note, the following question is in the basis of its
motivation. Recall

Theorem 1.9 (Artin–Schreier). (See [6, Theorem VI.6.4].) Let k be a field of characteristic p. Let � be the
polynomial Xp −X.

(1) Given a ∈ k, either the polynomial � − a has a root in k, in which case all its roots are in k, or it is
irreducible. In the latter case, if α is a root then k(α) is cyclic of degree p over k.

(2) Conversely, let K be a cyclic extension of k of degree p. Then there exists α ∈ K such that K = k(α)
and for some a ∈ k, �(α) = a.

Such extensions are called Artin–Schreier extensions.

The first author, in a joint paper with Thomas Scanlon and Frank Wagner, proved:

Theorem 1.10. (See [4].) Let K be an infinite dependent field of characteristic p > 0. Then K is Artin–
Schreier closed—i.e. � is onto.

What about the type definable case? What if K is an infinite type definable field?
In simple theories (which we shall not define), we have:

Theorem 1.11. (See [4].) Let K be a type definable field in a simple theory. Then K has boundedly many
AS extensions.

But for the dependent case we only proved:

Theorem 1.12. (See [4].) For an infinite type definable field K in a dependent theory there are either un-
boundedly many Artin–Schreier extensions, or none.

From these two we conclude:

Corollary 1.13. If T is stable (so it is both simple and dependent), then type definable fields are AS-closed.

The following, then, is still open:

Question 1.14. What about the dependent case? In other words, is it true that infinite type definable fields
in dependent theories are AS-closed?

Observing the proof of Theorem 1.10, we see that it is enough to find a number n, and n+1 algebraically
independent elements, 〈ai | i � n〉 in k := Kp∞ , such that

⋂
i<n ai�(K) =

⋂
i�n ai�(K). So the Baldwin–Saxl

applies in the case where the field K is definable. If K is type definable, we may want something similar.
But what can we prove?
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A conjecture of Frank Wagner is the main motivation question.

Conjecture 1.15. Suppose T is dependent, then the following holds:

� Suppose G is a type definable group. Suppose p(x, y) is a type and 〈ai | i < ω〉 is an indiscernible
sequence such that Gi = p(x, ai) � G. Then there is some n, such that for all finite sets, v ⊆ ω, the
intersection

⋂
i∈v Gi is equal to a sub-intersection of size n.

Let us refer to � as Property A (of a theory T ) for the rest of the paper. So we have

Fact 1.16. If Property A is true for a theory T , then type definable fields are Artin–Schreier closed.

In Section 2, we deal with strongly2 dependent theories (this is a much stronger condition than merely
dependence), and among other things, prove that Property A is true for them.

In Section 3, we give some generalizations and variants of Baldwin–Saxl for type definable groups in
dependent and strongly dependent theories (which we define below). One of them is joint work with Frank
Wagner. We prove that Property A holds for theories with bounded dp-rank.

In Section 4, we provide a counterexample that shows that Property A does not hold in stable theories,
so Conjecture 1.15 as it is stated is false.

Question 1.17. Does Property A hold for strongly dependent theories?

2. Strongly2 dependent theories

Notation 2.1. We call an array of elements (or tuples) 〈ai,j | i, j < ω〉 an indiscernible array over A if for
i0 < ω, the i0-row 〈ai0,j | j < ω〉 is indiscernible over the rest of the sequence ({ai,j | i �= i0, i, j < ω})
and A, i.e. when the rows are mutually indiscernible.

Definition 2.2. A theory T is said to be not strongly2 dependent if there exists a sequence of formulas
〈ϕi(x, yi, zi) | i < ω〉, an array 〈ai,j | i, j < ω〉 and bk ∈ {ai,j | i < k, j < ω} such that:

• The array 〈ai,j | i, j < ω〉 is an indiscernible array (over ∅).
• The set {ϕi(x, ai,0, bi) ∧ ¬ϕi(x, ai,1, bi) | i < ω} is consistent.

So T is strongly2 dependent when this configuration does not exist.
Note that the roles of i and j are not symmetric.

(In the definition above, x, zi, yi can be tuples, the length of zi and yi may depend on i.)
This definition was introduced and discussed in [11] and [10].

Remark 2.3. By [11, Claim 2.8], we may assume in the definition above that x is a singleton.

Fact 2.4. (See [11, Claim 2.9].) An equivalent definition is T is not strongly2 dependent if there exists an
array 〈ai,j | i, j < ω〉, a set A and some finite tuple c such that:

• The array 〈ai,j | i, j < ω〉 is an indiscernible array over A.
• For i0 < ω, the row āi0 := 〈ai0,j | j < ω〉 is not indiscernible over

⋃
i<io

āi ∪ c.

Proposition 2.5. Suppose T is strongly2 dependent, then it is impossible to have a sequence of type definable
groups 〈Gi | i < ω〉 such that Gi+1 � Gi and [Gi : Gi+1] = ∞ (see Definition 1.6).
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Proof. Without loss of generality, we shall assume that all groups are type definable over ∅. Suppose there
is such a sequence 〈Gi | i < ω〉. Let 〈ai,j | i, j < ω〉 be an indiscernible array such that for each i < ω, the
sequence 〈ai,j | j < ω〉 is a sequence from Gi (in C) such that a−1

i,j′ · ai,j /∈ Gi+1 for all j < j′ < ω. We can
find such an array because of our assumption and Ramsey (for more details, see the proof of Corollary 2.9
below).

For each i < ω, let ψi(x) be in the type defining Gi+1 such that ¬ψi(a−1
i,j′ · ai,j). By compactness, there

is a formula ξi(x) in the type defining Gi+1 such that for all a, b ∈ C, if ξi(a) ∧ ξi(b) then ψi(a · b−1) holds.
Let ϕi(x, y, z) = ξi(y−1 · z−1 · x). For i < ω, let bi = a0,0 · · · · · ai−1,0 (so b0 = 1).

Let us check that the set {ϕi(x, ai,0, bi)∧¬ϕi(x, ai,1, bi) | i < ω} is consistent. Let i0 < ω, and let c = bi0 .
Then for i < i0, ϕi(c, ai,0, bi) holds iff ξi(ai+1,0 · · · · · ai0−1,0) holds, but the product ai+1,0 · · · · · ai0−1,0
is an element of Gi+1 and ξi is in the type defining Gi+1, so ϕi(c, ai,0, bi) holds. Now, ϕi(c, ai,1, bi) holds
iff ξi(a−1

i,1ai,0 · · · · · ai0−1,0) holds. So if ϕi(c, ai,1, bi) holds then, since ξi(ai+1,0 · · · · · ai0−1,0) holds, by the
choice of ξi we get

ψi

([
a−1
i,1ai,0 · · · · · ai0−1,0

]
· [ai+1,0 · · · · · ai0−1,0]−1),

i.e. ψi(a−1
i,1 · ai,0) holds—a contradiction. �

Remark 2.6. It is well known (see [7]) that in superstable theories the same proposition holds.

The next corollary already appeared in [11, Claim 0.1] with definable groups instead of type definable
(with proof already in [10, Claim 3.10]).

Corollary 2.7. Assume T is strongly2 dependent. If G is a type definable group and h is a definable homo-
morphism h : G → G with finite kernel then h is almost onto G, i.e., the index [G : h(G)] is bounded (i.e.
< ∞). If G is definable, then the index must be finite.

Proof. Consider the sequence of groups 〈h(i)(G) | i < ω〉 (i.e. G, h(G), h(h(G)), etc.). By Proposition 2.5,
for some i < ω, [h(i)(G) : h(i+1)(G)] < ∞. Now the corollary easily follows from:

Claim. If G is a group, h : G → G a homomorphism with finite kernel, then [G : h(G)] + ℵ0 =
[h(G) : h(h(G))] + ℵ0.

Proof. Let H = h(G). Easily, one has [H : h(H)] � [G : H].
We may assume that [G : H] is infinite. Let ker(h) = {g0, . . . , gk−1}. Suppose that [G : H] = κ but

[H : h(H)] < κ. So let {ai | i < κ} ⊆ G are such that a−1
i · aj /∈ H for i �= j. So there must be some

coset a · h(H) in H such that for infinitely many i < κ, h(ai) ∈ a · h(H). Let us enumerate them as
〈ai | i < ω〉. So for i < j < ω, let C(ai, aj) be the least number l < k such that there is some y ∈ h(G) with
y−1a−1

i aj = gl. By Ramsey, we may assume that C(ai, aj) is constant. Now pick i1 < i2 < j < ω. So we have
y−1a−1

i1
aj = (y′)−1a−1

i2
aj for some y, y′ ∈ H, so y−1a−1

i1
= (y′)−1a−1

i2
and hence a−1

i1
ai2 = y(y′)−1 ∈ H—

a contradiction. �
Corollary 2.8. If K is a strongly2 dependent field (or even a type definable field in a strongly2 dependent
theory) then for all n < ω, [K× : (K×)n] < ∞.

Corollary 2.9. Let G be a type definable group in a strongly2 dependent theory T .

(1) Given a family of uniformly type definable subgroups {p(x, ai) | i < ω} such that 〈ai | i < ω〉 is an
indiscernible sequence, there is some n < ω such that

⋂
j<ω p(C, aj) =

⋂
j<n p(C, aj). In particular,

T has Property A.
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(2) Given a family of uniformly definable subgroups {ϕ(x, c) | c ∈ C}, the intersection
⋂
c∈C

ϕ(C, c)

is already a finite one.

Proof. (1) Assume without loss of generality that G is defined over ∅. Let Gi = p(C, ai), and let Hi =⋂
j<i Gi. By Proposition 2.5, for some i0 < ω, [Hi0 : Hi0+1] < ∞. For r � i0, let Hi0,r =

⋂
j<i0

Gj ∩Gr (so
Hi0+1 = Hi0,i0). By indiscernibility, [Hi0 : Hi0,r] < ∞. This means (by definition of H00

i0
) that H00

i0
� Hi0,r

for all r > i0. However, if Hi0,i0 �= Hi0,r for some i0 < r < ω, then by indiscernibility Hi0,r �= Hi0,r′ for all
i0 � r < r′, and by compactness and indiscernibility we may increase the length ω of the sequence to any
cardinality κ, so that the size of Hi0/H

00
i0

is unbounded—a contradiction. This means that Hi0+1 ⊆ Gr for
all r > i0, and so

⋂
i<ω Gi =

⋂
i<i0+1 Gi.

(2) Assume not. Then we can find a sequence 〈ci | i < ω〉 of elements of C such that
⋂
j<i

ϕ(C, cj) �=
⋂

j<i+1
ϕ(C, cj).

By Ramsey and compactness (see e.g. [12, Lemma 5.1.3]), there is an indiscernible sequence 〈ai | i < ω〉 such
that for any n, and any formula ψ(x0, . . . , xn−1), if ψ(a0, . . . , an−1) holds then there are i0 < · · · < in−1
such that ψ(ci0 , . . . , cin−1) holds. In particular, ϕ(C, ai) defines a subgroup of G and

⋂
j<i ϕ(C, aj) �=⋂

j<i+1 ϕ(C, aj). But this contradicts (1). �
As further applications, we show that some theories are not strongly2 dependent.

Example 2.10. Suppose 〈G,+, <〉 is an ordered abelian group. Then its theory Th(G,+, 0, <) is not strongly2

dependent.

Proof. We work in the monster model C. Let Gd = {x ∈ C | ∀n < ω(n | x)}, so it is a type definable divisible
ordered subgroup of G. Note that since G is ordered, it is torsion free, so Gd is a Q-vector space. We shall
define a descending sequence of infinite type definable groups Gi

d � Gd for i < ω such that [Gi
d : Gi+1

d ] = ∞,
which contradicts Proposition 2.5. Let G0

d = Gd, and suppose we have chosen Gi
d. Let ai ∈ Gi

d be positive.
Let Gi+1

d = Gi
d ∩

⋂
n<ω(−ai/n, ai/n). This is a type definable subgroup of Gi

d. The sequence 〈k · ai | k < ω〉
satisfies (k − l) · ai /∈ (−ai/2, ai/2) for any k �= l, and by Ramsey (as in the proof of Corollary 2.9 (2)) we
get [Gi

d : Gi+1
d ] = ∞. �

Example 2.11. The theory Th(R,+, ·, 0, 1) is strongly dependent (it is even o-minimal, so dp-minimal—see
Definitions 3.8 and 3.5 below). However it is not strongly2 dependent.

Example 2.12. The theory Th(Qp,+, ·, 0, 1) of the p-adics is strongly dependent (it is also dp-minimal), but
not strongly2 dependent. The valuation group (Z,+, 0, <) is interpretable.

Adding some structure to an algebraically closed field, we can easily get a strongly2 dependent theory
which is not stable.

Example 2.13. Let L = Lrings∪{P,<} where Lrings is the language of rings {+, ·, 0, 1}, P is a unary predicate
and < is a binary relation symbol. Let K be C (so it is an algebraically closed field), and let P ⊆ K be a
countable set of algebraically independent elements, enumerated as {ai | i ∈ Q}. Let M = 〈K,P,<〉 where
a <M b iff a, b ∈ P and a = ai, b = aj where i < j. Let T = Th(M).
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Claim 2.14. T is strongly2 dependent.

Proof. Note that T is axiomatizable by saying that the universe is an algebraically closed field, P is a subset
of algebraically independent elements and < is a dense linear order on P (to see this, take two saturated
models of the same size and show that they are isomorphic).

Let us fix some terminology:

• When we write acl, we mean the algebraic closure in the field sense. When we say basis, we mean a
transcendental basis.

• When we say that a set is independent/dependent over A for some set A, we mean that it is depen-
dent/independent in the pregeometry induced by cl(X) = acl(AX).

• dcl(X) stands for the definable closure of X.

We work in a saturated model C of T .
Suppose X is some set. Let X0 be some basis for X over P , and let dclP (X) be the set of p ∈ P such

that there exists some minimal finite P0 ⊆ P with p ∈ P0 and some x ∈ X such that x ∈ acl(P0X0). Note
that this set is contained in dcl(X) (since P is linearly ordered) and that it does not depend on the choice
of X0.

For a set (or a tuple) A, let AP = dclP (A).

Subclaim. Suppose M1 = (K1, P1, <1) and M2 = (K2, P2, <2) are two saturated models of T and A ⊆ K1 is a
small set. Suppose that K1 = K2 and (AP1 , <P1) = (AP2 , <P2). Then there is an isomorphism f : M1 → M2

fixing A ∪AP1 .

Proof. Let τ : P1 → P2 be any isomorphism fixing AP1 . Since both P1\AP1 and P2\AP1 are algebraically
independent over A, τ ∪ (id � A) is an elementary map in the field language. This map can be extended to
an automorphism f of K1, which is the desired isomorphism. �

Let tpK(a/A) be the type of a � (Aa)P (considered as a tuple, ordered by <C) over A∪AP in the field
language, and tpP (a/A) the type of the tuple (Aa)P over AP in the order language.

Subclaim. For finite tuples a, b and a set A, tp(a/A) = tp(b/A) iff tpP (a/A) = tpP (b/A) and tpK(a/A) =
tpK(b/A).

Proof. Denote by K the field structure of C. There is an automorphism σ of K that maps a � (Aa)P to
b � (Ab)P and fixes A ∪ AP pointwise. Since tpP (a/A) = tpP (b/A), the restriction σ � AP ∪ (Aa)P is
order preserving. Let C′ = (K,σ(P ), σ(<)). By the first subclaim, there is an isomorphism τ : C′ → C fixing
Ab ∪ (Ab)P . Now, τ ◦ σ is an automorphism of C that takes a to b and fixes A. �

Suppose that 〈ai,j | i, j < ω〉 is an indiscernible array over a parameter set A as in Definition 2.2 and
that c is a singleton such that:

• The sequence I0 := 〈a0,j | j < ω〉 is not indiscernible over Ac, and moreover tp(a0,0/Ac) �= tp(a0,1/Ac).
• For i > 0, the sequence Ii := 〈ai,j | j < ω〉 is not indiscernible over c ∪

⋃
k<i Ik ∪A.

Suppose that c /∈ acl(APa0,0a0,1). Then, by the second subclaim, tp(ca0,0/A) = tp(ca0,1/A)—a contradic-
tion. So c ∈ acl(APa0,0a0,1). Increase the parameter set A by adding the first row 〈a0,j | j < ω〉. So we may
assume that c ∈ acl(AP ). Since c ∈ acl(A(Ac)P ), we may replace c by a finite tuple contained in (Ac)P and
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assume that c is a finite tuple of elements in P (here we use the fact that in general, if I is indiscernible
over C then it is also indiscernible over acl(C)).

Expand all the sequences to order type ω∗ +ω+ω. Let B =
⋃
{ai,j | i < ω, j < 0∨ω � j}∪A. For each

i < ω and 0 � j < ω, let aPi,j be dclP (ai,jB) considered as a tuple ordered by <C, and let BP = dclP (B).
Then 〈aPi,j | 0 � i, j < ω〉 is an indiscernible array over BP and 〈ai,j � aPi,j | 0 � i, j < ω〉 is an indiscernible
array over B ∪BP .

As both the theories of dense linear orders and algebraically closed fields are strongly2 dependent (this
is easy to check), by Fact 2.4 there is some i0 such that 〈aPi0,j | 0 � j < ω〉 is indiscernible over cBP ∪
{aPi,j | i < i0, 0 � j < ω} in the order language and 〈ai0,j � aPi0,j | 0 � j < ω〉 is indiscernible over
cB ∪BP ∪ {ai,j � aPi,j | i < i0, 0 � j < ω} in the field language.

Let C =
⋃
{ai,j | i < i0, 0 � j < ω}. We must check that 〈ai0,j | 0 � j < ω〉 is indiscernible over BCc.

Let us show, for instance, that tp(ai0,0/BCc) = tp(ai0,1/BCc). For this we apply the second subclaim. For
each 0 � i, j < ω, let a′i,j be a basis for ai,j over BP . Then, by indiscernibility, {a′i,j | i < i0, 0 � j < ω} is
a basis for C over BP (this is why we expanded the sequences). Now it follows that dclP (BCc) =

⋃
{aPi,j |

i < i0, 0 � j < ω} ∪ BP ∪ c. Similarly, for j � 0, dclP (ai0,jBCc) = aPi0,j ∪ dclP (BC) ∪ c. By the second
subclaim above, we are done. �
Remark 2.15. With the same proof, one can show that if T is strongly minimal, and P = {ai | i < ω} is an
infinite indiscernible set in M |= T of cardinality ℵ1, the theory of the structure 〈M,P,<〉 where < is some
dense linear order with no end points on P , is strongly2 dependent.

We finish this section with the following conjecture:

Conjecture 2.16. All strongly2 dependent groups are stable, i.e. if G is a group such that Th(G, ·) is strongly2

dependent, then it is stable.

Example 2.10 and Corollary 2.9 show that this might be reasonable. This is related to the conjecture of
Shelah in [11] that all strongly2 dependent infinite fields are algebraically closed.

3. Baldwin–Saxl type lemmas

The next lemma is the type definable version of the Baldwin–Saxl lemma (see Lemma 1.3). But first,

Notation 3.1. If p(x, y) is a partial type, then |p| is the size of the set of formulas ϕ(x, z1, . . . , zn) (where zi
is a singleton) such that for some finite tuple y1, . . . , yn ∈ y, ϕ(x, y1, . . . , yn) ∈ p. In this sense, the size of
any partial type over ∅ is bounded by |T |.

Lemma 3.2. Suppose G is a type definable group in a dependent theory T .

(1) If pi(x, yi) is a type for i < κ (yi may be an infinite tuple), |
⋃
pi| < κ, and 〈ci | i < κ〉 is a sequence of

tuples such that pi(C, ci) is a subgroup of G, then for some i0 < κ,
⋂

i<κ pi(C, ci) =
⋂

i<κ, i�=i0
pi(C, ci).

(2) In particular, given a family of uniformly type definable subgroups, defined by p(x, y), and C of size |p|+,
there is some c0 ∈ C such that

⋂
c �=c0

p(C, c) =
⋂

c∈C p(C, c).
(3) In particular, if {Gi | i < |T |+} is a family of type definable subgroups (defined with parameters), then

there is some i0 < |T |+ such that
⋂
Gi =

⋂
i�=i0

Gi.

Proof. (1) Without loss of generality pi(x, yi) are closed under finite conjunctions. Let Hi = pi(C, ci).
Suppose not, i.e. for all i < κ, there is some gi such that gi ∈ Hj iff i �= j. If d1, d2 ∈ Hi then d1 · gi · d2 /∈
Hi. Hence by compactness there is some formula ϕi(x, ci) ∈ pi(x, ci) such that for all such d1, d2 ∈ Hi,
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¬ϕi(d1gid2, ci) holds. Since |
⋃
pi| < κ, we may assume that for i < ω, ϕi is constant and equals ϕ(x, y).

Now for any finite subset s ⊆ ω, let gs =
∏

i∈s gi (the order does not matter). So we have ϕ(gs, ci) iff
i /∈ s—a contradiction.

(2) and (3) now follow easily from (1). �
In (2) of Lemma 3.2, if C is an indiscernible sequence, then the situation is simpler:

Corollary 3.3. Suppose G is a type definable group in a dependent theory T . Given a family of uniformly
type definable subgroups, defined by p(x, y), and an indiscernible sequence C = 〈ai | i ∈ Z〉,

⋂
i�=0 p(C, ai) =⋂

i∈Z
p(C, ai).

Proof. Assume not. By indiscernibility, we get that for all i ∈ Z,
⋂

j �=i p(C, aj) � p(C, ai). Let I be an
indiscernible sequence which extends C to length |p|+. Then by indiscernibility and compactness the same
is true for this sequence. This contradicts Lemma 3.2. �
Remark 3.4. The above corollary is in the kernel of the proof that G00 exists in dependent theories.

If T is strongly dependent, and C is indiscernible, we can even assume that the order type is ω. Let us
recall,

Definition 3.5. A theory T is said to be not strongly dependent if there exists a sequence of formulas
〈ϕi(x, yi) | i < ω〉 and an array 〈ai,j | i, j < ω〉 such that:

• The array 〈ai,j | i, j < ω〉 is an indiscernible array (over ∅).
• The set {ϕi(x, ai,0) ∧ ¬ϕi(x, ai,1) | i < ω} is consistent.

So T is strongly dependent when this configuration does not exist.

Remark 3.6. This definition is not exactly the original definition given in [11, Definition 1.2], but it is
equivalent to it by [11, Definition 1.2].

Lemma 3.7. Suppose G is a type definable group in a strongly dependent theory T . Given a family of type
definable subgroups {pi(x, ai) | i < ω} such that 〈ai | i < ω〉 is an indiscernible sequence and p2i = p2i+1 for
all i < ω, there is some i < ω such that

⋂
j �=i pj(C, aj) =

⋂
j<ω pj(C, aj).

In particular, this is true when p is constant.

Proof. Without loss of generality pi(x, yi) are closed under finite conjunctions. Let Hi = pi(C, ai). Assume
not, i.e. for all i < ω, there exists some gi ∈ G such that gi ∈ Hj iff i �= j. For each even i < ω we find
a formula ϕi(x, y) ∈ pi(x, y) such that for all d1, d2 ∈ Hi, ¬ϕi(d1gid2, ai). Let n < ω, and consider the
product gn =

∏
i<n, 2|i gi (the order does not matter). Then for odd i < n, ϕi−1(gn, ai) holds (because

ϕi−1 ∈ pi−1 = pi by assumption), and for even i < n, ¬ϕi(gn, ai) holds. By compactness, we can find g ∈ G

such that ϕi−1(g, ai) holds for all odd i < ω and ¬ϕi(g, ai) for all even i < ω. Now expand the sequence by
adding a sequence 〈bi,j | j < ω〉 after each pair a2i, a2i+1. Then the array defined by ai,0 = a2i, ai,1 = a2i+1
and ai,j = bi,j−2 for j � 2 will show that the theory is not strongly dependent. �

If the theory is of bounded dp-rank, then we can say even more.

Definition 3.8. A theory T is said to have bounded dp-rank, if there is some n < ω such that the following
configuration does not exist: a sequence of formulas 〈ϕi(x, yi) | i < n〉 where x is a singleton and an array
〈ai,j | i < n, j < ω〉 such that:
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• The array 〈ai,j | i < n, j < ω〉 is an indiscernible array (over ∅).
• The set {ϕi(x, ai,0) ∧ ¬ϕi(x, ai,1) | i < n} is consistent.

T is dp-minimal if n = 2.

Note that if T has bounded dp-rank, then it is strongly dependent.

Remark 3.9. All dp-minimal theories are of bounded dp-rank. This includes all o-minimal theories and the
p-adics.

The name is justified by the following fact:

Fact 3.10. (See [13].) If T has bounded dp-rank, then for any m < ω, there is some nm < ω such that a config-
uration as in Definition 3.8 with nm replacing n is impossible for a tuple x of length m (in fact nm � m ·n1).

Lemma 3.11. Let G be type definable group in a bounded dp-rank theory T .
Given a family of type definable subgroups {pi(x, ai) | i < ω} such that 〈ai | i < ω〉 is an indiscernible

sequence and p2i = p2i+1 for all i < ω, there is some n < ω and i < n such that
⋂

j �=i, j<n pj(C, aj) =⋂
j<n pj(C, aj).
In particular, if pi is constant (say p) and 〈ai | i < ω〉 is an indiscernible set, then

⋂
i<ω p(C, ai) =⋂

i<n p(C, ai).
In particular, T has Property A.

Proof. The proof is exactly the same as the proof of Lemma 3.7, but we only need to construct gn for n

large enough. �
Another similar proposition:

Proposition 3.12. Assume T is strongly dependent, G a type definable group and Gi � G are type definable
normal subgroups for i < ω. Then there is some i0 such that [

⋂
i�=i0

Gi :
⋂

i<ω Gi] < ∞.

Proof. Assume not. Then, for each i < ω, we have an indiscernible sequence 〈ai,j | j < ω〉 (over the
parameters defining all the groups) such that ai,j ∈

⋂
k �=i Gk and for j1 < j2 < ω, a−1

i,j1
·ai,j2 /∈ Gi. Note that

if d1, d2, d3 ∈ Gi, then d1 ·a−1
i,j1

·d2 ·ai,j2 ·d3 /∈ Gi, since Gi is normal. By compactness there is a formula ψi(x)
in the type defining Gi such that for all d1, d2, d3 ∈ Gi, ¬ψi(d1 ·a−1

i,j1
·d2 ·ai,j2 ·d3) holds (by indiscernibility it

is the same for all j1 < j2). We may assume, applying Ramsey, that the array 〈ai,j | i, j < ω〉 is indiscernible
(i.e. the sequences are mutually indiscernible). Let ϕi(x, y) = ψi(x−1 · y).

Now we check that the set {ϕi(x, ai,0) ∧ ¬ϕi(x, ai,1) | i < n} is consistent for each n < ω. Let c =
a0,0 · · · · · an−1,0 (the order does not really matter, but for the proof it is easier to fix one). So ϕi(c, ai,0)
holds iff ψi(a−1

n−1,0 · · · · · a−1
i,0 · · · · · a−1

0,0 · ai,0) holds. But since Gi is normal, a−1
i,0 · · · · · a−1

0,0 · ai,0 ∈ Gi, so the
entire product is in Gi, so ϕi(c, ai,0) holds. On the other hand, ψi(a−1

n−1,0 · · · · · a−1
i,0 · · · · · a−1

0,0 · ai,1) does
not hold by the choice of ψi. �

The following corollary is a weaker version of Corollary 2.8:

Corollary 3.13. If G is an abelian definable group in a strongly dependent theory and S ⊆ ω is an infinite
set of pairwise co-prime numbers, then for almost all (i.e. for all but finitely many) n ∈ S, [G : Gn] < ∞.
In particular, if K is a definable field in a strongly dependent theory, then for almost all primes p,
[K× : (K×)p] < ∞.
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Proof. Let K ⊆ S be the set of n ∈ S such that [G : Gn] < ∞. If S\K is infinite, replace S with S\K.
For i ∈ S, let Gi = Gi (so it is definable). By Proposition 3.12, there is some n ∈ S such that [

⋂
i�=n Gi :⋂

i∈S Gi] < ∞. If [G : Gn] = ∞, then there is an indiscernible sequence 〈ai | i < ω〉 of elements of G,
such that a−1

i · aj /∈ Gn. Suppose S0 ⊆ S\{n} is a finite subset and let r =
∏

S0. Then 〈ari | i < ω〉 is
an indiscernible sequence in Gr ⊆

⋂
i∈S0

Gi such that a−r
i · arj /∈ Gn. So by compactness, we can find such

a sequence in
⋂

i�=n Gi—a contradiction. �
Remark 3.14. The above proposition and corollary can be generalized (with almost the same proofs) to the
case where the theory is only strong. For the definition, see [1].

Remark 3.15. This corollary generalizes in some sense [5, Proposition 2.1] (as they only assumed finite
weight of the generic type). And so, as in [5, Corollary 2.2], we can conclude that if K is a field definable
in a strongly stable theory (i.e. the theory is strongly dependent and stable), then Kp = K for almost all
primes p.

Problem 3.16. Is Proposition 3.12 still true without the assumption that the groups are normal?
Note that in strongly dependent2 theories, this assumption is not needed. Let Hi =

⋂
j<i Gi. Then

[Hi : Hi+1] < ∞ for all i big enough by Proposition 2.5. But this implies [
⋂

j �=i Gj :
⋂

j Gj ] < ∞.

3.1. κ-Intersection

This part is joint work with Frank Wagner.

Definition 3.17. For a cardinal κ and a family F of subgroups of a group G, the κ-intersection
⋂

κ F is
{g ∈ G | |{F ∈ F | g /∈ F}| < κ}.

The following proposition shows that in some sense, the intersection of a family of uniformly type definable
subgroups can be understood via its κ-intersection and a small intersection.

Proposition 3.18. Let G be a type definable group in a dependent theory. Suppose

• F is a family of uniformly type definable subgroups defined by p(x, y).

Then for any infinite regular cardinal κ > |p| (in the sense of Notation 3.1), and any subfamily G ⊆ F,
there is some G′ ⊆ G such that

� |G′| < κ and
⋂
G is

⋂
G′ ∩

⋂
κ G.

Remark 3.19. In the context of the proposition, this means that G′ has the property that for every subset
G′′ ⊆ G such that |G\G′′| < κ,

⋂
G =

⋂
G′ ∩

⋂
G′′.

Proof of Proposition 3.18. Let κ be such a cardinal. Assume that there is some family G = {Hi | i < κ},
which is a counterexample of the proposition. For g ∈ G, let Jg = {i < κ | g ∈ Hi}. So g ∈

⋂
κ G iff

|κ\Jg| < κ.
For i < κ we define by induction gi ∈

⋂
κ G, Ii ⊆ κ, Ri ⊆ κ and αi < κ such that:

(1) R0 = [0, α0) and for 0 < i, Ri =
⋃

j<i Rj ∪ [[supj<i αj , αi) ∩
⋂

j<i Ij ] (so Ri ⊆ αi).
(2)

⋂
j�i Jgj ⊆ Ri ∪ Ii (so by the definition of

⋂
κ, and by the regularity of κ, |κ\(Ri ∪ Ii)| < κ).

(3)
⋂

κ G ∩
⋂

j<i Hαj
⊆

⋂
α∈Ri

Hα.
(4) Ii ∩ [0, αi] = ∅.
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(5) Ii is ⊆-decreasing.
(6) αi is <-increasing.
(7) Ii ⊆ Jgi .
(8) For j < i, gi ∈ Hαj

, gj ∈ Hαi
and gi /∈ Hαi

.

Let α0 < κ be minimal such that there is some g0 ∈
⋂

κ G\Hα0 (it must exist, otherwise
⋂

κ G =
⋂
G). Let

I0 = {j > α0 | gα0 ∈ Hj}.
For α0, (2), (3), (4), (7) and (8) are true, by the definition of

⋂
κ and the choice of α0.

Suppose we have chosen gj , Ij and αj (so Rj is already defined by (1)) for j < i.
Let J =

⋂
j<i Ij . Choose gi ∈ (

⋂
κ G∩

⋂
j<i Hαj

)\Hαi
where αi ∈ J is the smallest possible such that this

set is nonempty. Suppose for contradiction that we cannot find such αi, then
⋂

κ G∩
⋂

j<i Hαj
⊆

⋂
α∈J Hα,

so
⋂
κ

G ∩
⋂
j<i

Hαj
∩

⋂
j∈κ\J

Hj =
⋂

G.

Let J ′ = J ∪
⋃

j<i Rj , then by (3),
⋂
G equals

⋂
κ

G ∩
⋂
j<i

Hαj
∩

⋂
j∈κ\J ′

Hj .

Note that
⋂

j<i(Rj ∪ Ij) ⊆ J ′, so by the regularity of κ, and by (2), |κ\J ′| < κ, so we get a contradiction.
Let Ii = {αi < j ∈ J | gi ∈ Hj}, and let us check the conditions above.
Conditions (4)–(7) are easy.
Condition (2): By induction we have

⋂
j�i

Jgj =
⋂
j<i

Jgj ∩ Jgi ⊆ J ′ ∩ Jgi ⊆ Ri ∪ (J ∩ Jgi).

But by (4) and the definition of Ri, letting α = supj<i αj , we have

J ∩ Jgi ⊆
[
[α, αi) ∩

⋂
j<i

Ij

]
∪ Ii ⊆ Ri ∪ Ii.

Condition (3) is true by the minimality of αi:
⋂

κ G ∩
⋂

j<i Hαj
⊆

⋂
β∈J∩[α,αi) Hβ , so by the induction

hypothesis, we are done.
Condition (8): We show that gj ∈ Hαi

for j < i. We have that αi ∈ J so also in Ij which, by (7), is a
subset of Jgj , so gj ∈ Hαi

.
Finally, we have that for each i, j < κ, gi ∈ Hαj

iff i �= j. But by Lemma 3.2, there is some i0 < |p|+
such that

⋂
i�=i0

Hαi
=

⋂
i<|p|+ Hαi

—a contradiction. �
Remark 3.20. So far we have not found applications for this proposition, but it seems like a very nice
proposition in its own right, and it might turn out to be useful.

4. A counterexample

In this section we shall present an example that shows that Property A does not hold in general dependent
(or even stable) theories.

Let S = {u ⊆ ω | |u| < ω}, and V = {f : S → 2 | |supp(f)| < ∞} where supp(f) = {x ∈ S | f(x) �= 0}.
This has a natural group structure as a vector space over F2 = Z/2Z.
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For n,m < ω, define the following groups:

• Gn = {f ∈ V | u ∈ supp(f) ⇒ |u| = n},
• Gω =

∏
n Gn,

• Gn,m = {f ∈ V | u ∈ supp(f) ⇒ |u| = n & m ∈ u} (so G0,m = 0),
• Hn,m = {η ∈ Gω | η(n) ∈ Gn,m}.

Now we construct the model:
Let L be the language (vocabulary) {P,Q} ∪ {Rn | n < ω} ∪ LAG where LAG is the language of abelian

groups, {0,+}; P and Q are unary predicates; and Rn is binary. Let M be the following L-structure: its
universe is Gω

∐
ω, PM = Gω (with the group structure), QM = ω and Rn = {(η,m) | η ∈ Hn,m}. Let

T = Th(M).
Let p(x, y) be the type {Rn(x, y) | n < ω}. Note that since Hn,m is a subgroup of Gω, for each m < ω,

p(M,m) is a subgroup of Gω (and this remains true in elementary extensions).

Claim 4.1. Let N |= T be ℵ1-saturated. For any m < ω, and any distinct α0, . . . , αm ∈ QN ,
⋂

i�m p(N,αi)
is different than any sub-intersection of size m.

Proof. We show that
⋂

i�m p(N,αi) �
⋂

i<m p(N,αi) (the general case is similar). More specifically, we
show that ⋂

i<m

p(N,αi)\
⋂
i�m

Rm(N,αi) �= ∅.

By saturation, it is enough to show that this is the case in M , so we assume M = N . Note that if
η ∈

⋂
i�m Rm(M,αi), then η ∈ Hm,αi

for all i � m. So for all i � m, u ∈ supp(η(m)) ⇒ |u| = m & αi ∈ u.
This implies that supp(η(m)) = ∅, i.e. η(m) = 0. But we can find η ∈

⋂
i<m p(M,αi) such that η(m) �= 0.

For instance let η(n) = 0 for all n �= m while |supp(η(m))| = 1 and η(m)({α0, . . . , αm−1}) = 1. �
Next we shall show that T is stable. For this we will use κ-resplendent models. This is a very useful

(though not a very well known) tool for proving that theories are stable, and we take the opportunity to
promote it.

Definition 4.2. Let κ be a cardinal. A model M is called κ-resplendent if whenever

• M ≺ N ; N ′ is an expansion of N by less than κ many symbols; c̄ is a tuple of elements from M and
lg(c̄) < κ.

There exists an expansion M ′ of M to the language of N ′ such that 〈M ′, c̄〉 ≡ 〈N ′, c̄〉.
The following remarks are not crucial for the rest of the proof.

Remark 4.3. (See [8].)

(1) If κ is regular and κ > |T |, and λ = λ<κ, then T has a κ-resplendent model of size λ.
(2) A κ-resplendent model is also κ-saturated.
(3) If M is κ-resplendent then M eq is also such.

The following is a useful observation:

Claim 4.4. If M is κ-resplendent for some κ, and A ⊆ M is definable and infinite, then |A| = |M |.
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Proof. Enrich the language with a function symbol f . Let T ′ = T ∪ {f : M → A is injective}. Then T ′ is
consistent with an elementary extension of M (for example, take an extension N of M where |AN | = |M |,
and then take an elementary substructure N ′ ≺ N of size |M | containing M and AN ). Hence we can
expand M to a model of T ′. �

The main fact is

Theorem 4.5. (See [8, Main Lemma 1.9].) Assume κ is regular and λ = λκ + 2|T |. Then, if T is unstable
then T has > λ pairwise nonisomorphic κ-resplendent models of size λ.3 On the other hand, if T is stable
and κ � κ(T ) + ℵ1 then every κ-resplendent model is saturated.

Proposition 4.6. T is stable.

Proof. We may restrict T to a finite sub-language, Ln = {P,Q, } ∪ {Ri | i < n} ∪ LAG.
Our strategy is to prove that our theory has a unique model in size λ which is κ-resplendent where

κ = ℵ0, λ = 2ℵ0 . Let N0, N1 be two κ-resplendent models of size λ.
By Claim 4.4, |QN0 | = |QN1 | = λ and we may assume that QN0 = QN1 = λ.
Let G0 = PN0 and G1 = PN1 with the group structure. For i < n, j < 2 and α < λ, let Hj

i,α =
{x ∈ Gj | RNj

i (x, α)}. This is a definable subgroup of Gj . For k � n, let Gk
j =

⋂
α<λ, i�=k, i<n Hj

i,α. In our
original model M , this group is {η ∈ Gω | ∀i �= k, i < n(η(i) = 0)}. Note that Gj =

∑
k<n Gk

j , and that
Gk0

j ∩
∑

k<n, k �=k0
Gk

j = Gn
j (this is true in our original model M , so it is part of the theory). We give each

Gk
j the induced L-structure Nk

j = 〈Gk
j , λ〉, i.e. we interpret R

Nk
j

i = Ri ∩ (Gk
j × λ).

Since these groups are definable and infinite, their cardinality is λ, and hence their dimension (over F2)
is λ. In particular there is a group isomorphism fn : Gn

0 → Gn
1 . Note that fn is an isomorphism of the

induced structure on Nn
j = 〈Gn

j , λ〉 (because it is trivial).

Subclaim. For k < n, there is an isomorphism fk : Gk
0 → Gk

1 which is an isomorphism of the induced
structure Nk

j = 〈Gk
j , λ〉 and extends fn.

Assuming this claim, we shall finish the proof. Define f : G0 → G1 by: given x ∈ G0, write it as a
sum

∑
k<n xk where xk ∈ Gk

0 , and define f(x) =
∑

k<n fk(xk). This is well defined because if
∑

k<n xk =∑
k<n x

′
k then

∑
k<n(xk − x′

k) = 0 so for all k < n, xk − x′
k ∈ Gn

0 and

∑
k<n

(
fk(xk) − fk

(
x′
k

))
=

∑
k<n

(
fk
(
xk − x′

k

))
=

∑
k<n

(
fn

(
xk − x′

k

))

= fn

(∑
k<n

xk − x′
k

)
= fn(0) = 0.

It follows similarly that f is a group isomorphism. Also, f is an Ln-isomorphism because if RN0
i (a, α) holds

for some i < n, α < λ and a ∈ G0, then write a =
∑

k<n ak where ak ∈ Gk
0 . Since RN0

i (a, α) holds and
RN0

i (ak, α) holds for all k �= i, it follows that RN0
i (ai, α) holds, so RN1

i (fk(ak), α) holds for all k < n, and
so RN1

i (f(a), α) holds. The other direction is similar.

Proof of Subclaim. For a finite set b of elements of λ, let Lj
b = Gk

j ∩
⋂

α∈b H
j
k,α. For m � k + 1, let Kj

m =∑
|b|=m Lj

b (as a subspace of Gk
j ), so Kj

m is not necessarily definable (however Kj
0 = Gk

j and Kj
k+1 = Gn

j

3 In fact, by [8, Claim 3.1], if T is unstable there are 2λ such models.
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are). This is a decreasing sequence of subgroups (so subspaces), Gk
j = Kj

0 � · · · � Kj
k+1 = Gn

j . Now it is
enough to show that:

Subclaim. For m � k+ 1, there is an isomorphism fm : K0
m → K1

m which is an isomorphism of the induced
structure 〈Kj

m, λ〉 which extends fn.

Proof. The proof is by reverse induction. For m = k + 1 we already have this. Suppose we have fm+1 and
we want to construct fm. Let b ⊆ λ be of size m. If m = k, then it is easy to see that |Lj

b/(K
j
m+1 ∩Lj

b)| = 2
(this is true in M), so there is an isomorphism gb : L0

b/(K0
m+1 ∩ L0

b) → L1
b/(K1

m+1 ∩ L1
b).

Assume |b| < k. In our original model M , Lb ⊆ Kk, but here one can find infinitely many pairwise
distinct cosets in Lj

b/(K
j
m+1 ∩ Lj

b). Indeed, we can find a type in λ infinitely many variables {xi | i < λ}
over b saying that xi ∈ Lb and xi−xj /∈ Km+1 for i �= j—for all r < ω, it will contain a formula of the form

∀(z0, . . . , zr−1)∀t<r(ȳt)
([ ∧

t<r

(
zt ∈ Lȳt

∧ |ȳt| = m + 1
)]

→ xi − xj �=
r−1∑
t=0

zt

)
.

To show that this type is consistent, we may assume that b ⊆ QM so we work in our original model M . For
such r and b, choose distinct η0, . . . , ηl−1 ∈ Gω such that for s, s′ < l:

• ηs(i) = 0 for i �= k.
• |supp(ηs(k))| = r + 1.
• u1 ∈ supp(ηs(k)) & u2 ∈ supp(ηs′(k)) ⇒ u1 ∩ u2 = b (s might be equal to s′ but u1 �= u2).

Then {ηs | s < l} is such that ηs1 , ηs2 satisfy the formula above for all s1 �= s2 < l: if not, there are
z0 ∈ Lc0 , . . . , zr−1 ∈ Lcr where |ct| = m + 1 such that

∑
t<r zt = ηs1 − ηs2 . We may assume that

⋃
t<r

supp
(
zt(k)

)
= supp

(
ηs1(k) − ηs2(k)

)
= supp

(
ηs1(k)

)
∪ supp

(
ηs2(k)

)
,

but then for t < r, |supp(zt(k))| � 1 by our choice of ηs and this is a contradiction.
Now, let N ′

j be an elementary extension of Nj with realizations D = {ci | i < λ} of this type, and we
may assume |N ′

j | = λ. Then, add a predicate for the set D, and an injective function from N ′
j to D. Finally,

by resplendence of Nj , |Lj
b/(K

j
m+1 ∩ Lj

b)| = λ.
Hence it has a basis of size λ, and let gb : L0

b/(K0
m+1 ∩ L0

b) → L1
b/(K1

m+1 ∩ L1
b) be an isomorphism of

F2-vector spaces.
Note that fm+1 � K0

m+1 ∩ L0
b is onto K1

m+1 ∩ L1
b (this is because fm+1 is an isomorphism of the induced

structure). We can write Lj
b = (Kj

m+1∩L
j
b)⊕W j where W j ∼= Lj

b/(K
j
m+1∩L

j
b), so gb induces an isomorphism

from W 0 to W 1. Now extend fm+1 � K0
m+1 ∩ L0

b to f b
m : L0

b → L1
b using gb.

Next, note that {Lj
b | b ⊆ λ, |b| = m} is independent over Kj

m+1, i.e. for distinct b0, . . . , br, Lj
br

∩∑
t<r L

j
bt

⊆ Kj
m+1. Indeed, in our original model M , the intersection Lbr ∩

∑
t<r Lbt is equal to

∑
t<r Lbr∪bt ,

so this is true also in Nj (in fact, this is true for every choice of finite sets bt—regardless of their size).
Define fm as follows: given a ∈ K0

m, we can write a =
∑

b∈B ab where ab ∈ Lb for a finite B ⊆ {b ⊆ λ |
|b| = m}, and define fm(a) =

∑
f b
m(ab). It is well defined: if

∑
b∈B xb =

∑
b′∈B′ yb′ , then for b1 ∈ B ∩ B′,

b2 ∈ B\B′ and b3 ∈ B′\B, (xb1 − yb1), xb2 , yb3 ∈ K0
m+1, so

∑
b∈B

f b
m(xb) −

∑
b′∈B′

f b′

m(yb′) =
∑

b∈B∩B′

fm+1(xb − yb) +
∑

b∈B\B′

fm+1(xb) −
∑

b∈B′\B
fm+1(yb) = 0.

It follows similarly that fm is a group isomorphism.
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We check that fm is an isomorphism of the induced structure. So suppose a ∈ K0
m, α < λ and i < ω. If

i �= k, then since Kj
m ⊆ Gk

j for j < 2, both RN0
i (a, α) and RN1

i (f(a), α) hold. Suppose RN0
k (a, α) holds. Write

a =
∑

b∈B ab as above. Then, as a ∈ L{α} ∩
∑

b∈B Lb =
∑

b∈B Lb∪{α}, we may assume that b ∈ B ⇒ α ∈ b.
So by definition of fm, RN1

k (fm(a), α) holds. The other direction holds similarly and we are done. �
Note 4.7. This example is not strongly dependent, because the sequence of formulas Rn(x, y) is a witness
of that the theory is not strongly dependent. So as we said in the introduction, it is still open whether
Property A holds for strongly dependent theories.
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