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ABSTRACT 

We investigate categoricity of abstract elementary classes without any 
remnants of compactness (like non definability of well ordering, existence of 
E.M. models, or existence of large cardinals). We prove (assuming a weak 
version of GCH around X) that if ~ is categorical in A, A +, LS(J~) ~_ A and 

has intermediate number of models in A ++, then ~ has a model in A +++. 
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1.10). We deal also with the definable weak diamond, and intro- 
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30 S. SHELAH Isr. J. Math 

[We define the class K 3 of triples (M, N,a )  representing types in 

,S(M) for M C K~, and star t  to investigate it, dealing with the 

weak extension property,  the extension property, minimality, re- 
duced types (except for minimality, in the first order case, these 

hold trivially). Our aims are to have the extension property or at 
least the weak extension property for all triples in K 3, and the den- 

sity of minimal triples. The first property makes the model theory 
more like the first order case, and the second is connected with cat- 

egoricity. We star t  by proving the weak extension proper ty  under 

reasonable assumptions.  We prove the density of minimal triples 

under the strong assumption K)~+3 = ~ and an extra  cardinal arith- 

metic assumption (2 A+ > A++). In the end, under the additional 

assumption KA+3 = 0 we prove that  all triples have the exten- 
sion proper ty  and that  we have disjoint amalgamation in K~. Now 

the assumption K~+3 = 0 does no harm if we just  want to prove 

Theorem 0.2. The reader willing to accept these assumptions may 
skip some proofs later. The  proof of the extension proper ty  makes 
essential use of categorlcity in A+.] 

3. Non-structure  . . . . . . . . . . . . . . . . . . . . . . .  66 

[We try to present clearly and in some generality the construction on 

many models in )`++ based on knowledge of models of size )`+ and 
)`, using weak diamond on )`+ and on )`++. This is done by forming 

a tree (]lS/n : r/ E ~++>2) with hS/n an ~ - i n c r e a s i n g  continuous 

sequence of members  of K~ with limit (.Ji<~+ M~ increasing with 

r / (and  an additional restriction). Actually )`+ can be replaced by a 

regular uncountable )`' (so IIM~II = A is replaced by IIM~II < A').] 
4. Minimal types . . . . . . . . . . . . . . . . . . . . . . .  88 

[We prove that  every member  of K~ has the extension property,  by 
proving it for minimal triples. We use: if Me C K~ and for every 
minimal p C $(M0)  the set ,-,¢>p(M1) has cardinality ~ )`+, then 
the M C Kx+ is saturated for minimal types and hence the number  

of minimal types in $(M1)  is ~ )`+ (for M1 C K~),  which is a step 
toward stability in )`.] 

5. Inevitable types and stabili ty in )` . . . . . . . . . . . . . .  93 

[We continue to "climb the ladder",  using the amount  of s t ructure  

we already have (and sometimes categoricity) to get more. We s tar t  

by assuming there are minimal types, and show that  some minimal  

types are inevitable, construct  Pi E S ( N i )  minimal (i _~ )`+) both 

strictly increasing continuous and with Po,P~ inevitable, and then as 

in the proof of the equivalence of saturat ivi ty and model homogene- 

ity, we show N~ is universal over No. We can then deduce stabili ty 

in )`, so the model in )`+ is saturated.  Then we note that  we have 
disjoint amalgamation in K~.] 

6. A proof for J~ categorical in )+2 . . . . . . . . . . . . . . .  98 

[We give a shortcut  to proving the main theorem by using stronger 
assumptions.  If i()`+2, K)  = 1 and I()`+3, K)  -- 0, then for some 

triple (M, N, a) C K~+,  a is essentially algebraic over M,  i.e. this is 
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Vol. 126, 2 0 0 1  CATEGORICITY IN TWO SUCCESSIVE CARDINALS 31 

a maximal triple. Now first assuming for some pair Mo _~ M2 in 
K), we have unique (disjoint) amalgamation for every possible M1 
with M0 ~_~ M] E K~ (and using stability), we get a pair of models 
in )~+ which contradicts the existence of maximal triples. We then 
use the methods of §3 to prove that there are enough cases of unique 

amalgamation.] 

7. Extensions and conjugacy . . . . . . . . . . . . . . . . .  102 
[We investigate types. We prove that in 8(N),  N E Kx the follow- 

ing: reduced implies inevitable, and that non-algebraic extensions 

preserve the conjugacy classes (so solving the realize/materialize 

problem). Hence if {Ni : i < a) is <~-increasing in Kx and A 
divides a, then Na is (A, cf(a))-saturated over No.] 

8. Uniqueness of amalgamation in ~q;~ . . . . . . . . . . . . . .  108 
[We have by §6 that some pairs M~ <~ M~ in ~%, satisfy M~ <~ 

M1 =~ M~, M1, M~ has unique (disjoint) amalgamation. Now if we 

have a _<~-increasing continuous sequence (Ni : i < ct> such that 

(Ni, Ni+l ) ~ (~Ir~, M~ ), w e  can amalgamate No, M1, N~ whenever 
No _<~ M1, step by step. So some uniqueness is preserved and Na 
can be any (A, cf(a))-saturated model over No. When we require 

also saturativity of Mi and of the resulting model, we get a non- 

forking relation denoted NFx,6. We define the general nonforking 

relation NFx by closing NFx 3 downward. So we succeed to define 

a relation which should behave as a nice nonforking relation. But 

we have to work to prove that this relation satisfies the expected 

properties, first for the "saturated" version and then in the general 
case by a diagram chase.] 

9. Nice extensions in Kx+ . . . . . . . . . . . . . . . . . .  119 
[As we have a notion of "nonforking" amalgamation in Kx, we can 

use it to build _<.~-extensions M1 E K~+ for any given Mo C Kx+. 
This defines naturally a two-place relation <_~+ on K),+: "being a 
nice <~-submodel ' .  We investigate it and variants. In particular, 

we prove the existence of disjoint amalgamation for it.] 
10. Non-structure for <-x+ . . . . . . . . . . . . . . . . . .  123 

[Instead proving that all disjoint amalgamations in Kx are nonfork- 
ing ones, we prove that on Kx+ the relation <~,+ is the same as 

_<~, which is just as good for our purpose. Toward this we assume 
a failure and get many pairwise non-isomorphic models in Kx+2 , 

contradicting an assumption of 1.2(2). But once we have that _<2 
agrees on K:~+ with -<x+ we have disjoint amalgamation in Kx+ , 

which suffices for building a model in K x+a.] 

References . . . . . . . . . . . . . . . . . . . . . . . . .  126 

O. Introduct ion  

M a k o w s k i  [Mw85] is a r e a d a b l e  a n d  g o o d  e x p o s i t i o n  c o n c e r n i n g  c a t e g o r i c i t y  in 

a b s t r a c t  e l e m e n t a r y  c lasses  a r o u n d  N1. 
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Our primary concern is: 

PROBLEM 0.1: Can we have some (not necessarily much) classification theory 

for reasonable non-first order classes Y~ of models, with no uses of even traces of 

compactness and only mild set theoretic assumptions? 

Let me try to clarify the meaning of Problem 0.1. 

What is the meaning of "mild set theoretic assumptions?" We are allowing 

requirements on cardinal arithmetic like GCH and weaker relatives. Preferably, 

assumptions like diamonds and squares and even mild large cardinals will not be 

used (apart from cases provable in ZFC, or in ZFC plus allowable assumptions). 

In fact we try to continue [Sh 88], where results about the number of non- 

isomorphic models in R1 and R2 of a sentence ¢ E L~I,~ are obtained. Now in 

[Sh 88] the theorem parallel to the present one is proved assuming 2 g° < 2 ~1 , so 

it is quite natural to use such assumptions here. 

What is the meaning of "some classification theory?" While the dream is to 

have a classification theory as "full" as the one obtained in [Shc], we will be 

glad to have theorems speaking just on having few models in some cardinals or 

even categoricity and at least one model in others. E.g. by [Sh 88] if ¢ C L~,~  

satisfies 1 _< I(R1,¢) < 2 ~ (and 2 ~° < 2 ~x) then I(R2,¢) > 0. Here I (# ,~ )  is 

the number of models in ~ of cardinality #, up to isomorphism. 

What are "reasonable non-first order classes?" This means we allow classes of 

"locally finite" or "atomic" structures, or structures "omitting a type",  or more 

generally the class of models of a sentence in L~,~, (i.e. allowing conjunction < 

but quantification only over a finite string) but not one restricting ourselves to 

e.g. well orderings. In fact, we use "abstract elementary classes" from [Sh 88] 

(reviewed below). 

What is the meaning of "uses traces of compactness?" For non-first order 

classes we cannot use the powerful compactness theorem, but there are many 

ways to get weak forms of it: one way is using large cardinals (compact cardinals 

in Makkai Shelah [MaSh 285], or just measurable cardinals as in Kolman Shelah 

[K1Sh 362], and in [Sh 472]). Another way is to use "non-definability of well 

ordering" which follows from the existence of Ehrenfeucht-Mostowski models, 

and also from ¢ E L~I,~ having uncountable models (used extensively in [Sh 

88]). Our aim is to use none of this and we would like to see if any theory is left. 

Above all, we hope the proofs will initiate classification theory in this case, 

so we hope the flavour will be one of introducing and investigating notions of a 

model theoretic character. Proofs of, say, a descriptive set theory character, will 

not satisfy this hope. 
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It seems to us that this goal is met here. We prove (see 6.12): 

THEOREM 0 . 2 : ( 2  "x < 2 "~+ < 2)~++). Let ~ be an abstract elementary class. I f ~  

is categorical in A, A + and A ++ then I(A+3,~) > 0. 

Here A +3 --- A +++ and in general R +z means R~+Z. 

Of course, the eategoricity in three successive cardinals is a strong assumption. 

Now note that  in [Sh 88], the categoricity in Ro is gained "freely", so the gap is 

smaller than seems at first glance. Still it is better to have 

THEOREM 0.3: I f ~  is categorical in A and A + with A > R0 and 1 < I(A ++, ~) < 

2 ;~++ , then I(A +3, ~) > 0 provided that A > ~ or there is no normal ideal on 

A + (a very weak assumption). 

Note however: 

(a) A silly point: at exactly one point in the proof of 0.3 we assume A > Ro (in 

the proof of 4.6). This is silly as our intent is to prove for general A what 

we know for A = R0 by [Sh 88]; however, there we assume .~ is PC~,,~o , 

a reasonable assumption, but one which is not assumed here. We shall 

complete this in [Sh 603, §4], so we do not mention the assumption A > R0 

in theorems relying on 4.6. Also A = R0 can serve instead of A _> ~ using 

[Sh 88]. 

(fl) More seriously, at some point we assume toward a contradiction that 

K~+3 = @ in order to prove the density of the set of minimal triples. This 

is fine for proving Theorem 0.2, but is not desirable if we want to develop 

a classification theory. This will be dealt with in [Sh 615]. 

(9') Concerning #wd(A+2): in 6.12 we assume that R0 < A < 2:1~ and there is 

no normal ideal on A + (or just a specific normal ideal, as the one of the 

weak diamond is not). This is a very weak set theoretic assumption, see 

[Sh F368] for elimination. 

We present below, as background, the following open questions which appeared 

in [Sh 88], for J~ an abstract elementary class, of course, e.g. the class of models 

of ¢ E L~+~ with the relation M _<~ N being M -<c N f o r / :  a fragment of 

L~+,~o to which ¢ belongs. In [Sh 87a], [Sh 875], [Sh 88] we prove: 

(*)3 categoricity (of ¢ E L~I,~(Q) ) in R1 implies the existence of a model of ¢ 

of cardinality lq2; 

(*)4 if n > 0, 2 ~° < 2 ~1 < . . .  < 2 ~", ¢ C naJl,W and 1 <_ I(Rt,  ¢) < p~g(Ng) for 

1 < g < n, then ¢ has a model of cardinality lq~+l. 

Now the problems were: 
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Problem (1) Prove (*)3, (*)4 in the context of an abstract elementary class 

which is PC~ o. 

Problem (2) Parallel results in ZFC; e.g. prove (*)3 when 2 ~° = 2 ~1. 

Problem (3) Construct examples; e.g. ~ (or ¢ E L~ol,~), categorical in 

R0, R I , . . . , R  n but not in R~+I. 

Problem (4) If J~ is PC), (and is an abstract elementary classt), and is categorical 

in A and A +, does it necessarily have a model in A++? 

Concerning Problem 3, by Hart Shelah [HaSh 323],2.10(2) + 3.8 there is ¢~ C 

/2~1,~ categorical in R0, R1, . . . ,  Rk-1, but not categorical in A if 2 ~ > 2 ak-1 . 

The direct motivation for the present work is that Grossberg asked me (Oct. 

94) some questions in this neighborhood, in particular: 

Problem (5) Assume K = Mod(T) (i.e. K is the class of models of T),  T c_ 

L~I,~,IT I = A, I (A,K)  = 1 and 1 _< I (A+,K)  < 2 ~+. Does it follow that 

I (A++,K)  > 0? 

We think of this as a test problem and much prefer a model theoretic to a 

set theoretic solution. This is closely related to Problem 4 above and to [Sh 88, 

Theorem 3.7] (where we assume categoricity in A +, do not require 2)` < 2 ~+ but 

take A = No or some similar cases) and [Sh 88, Theorem 5.17(4)] (and see [Sh 

88, 5.1,4.5] on the assumptions) (there we require 2)` < 2 x+, 1 _< I(A +, K)  < 2 )̀ + 

and A = R0). 
As said above, we are dealing with a closely related problem. Problem 0.1 was 

stated a posteriori but is, I think, the real problem. 

In a first try we used more set theory, i.e. we used the definitional weak 

diamond on both A + and A ++ (see Definition 2.13) and things like "a nice equiv- 

alence relation on P(A) has either few or many classes" (see §2). Here we take a 

model theoretic approach. 

We feel that this paper provides a reasonable positive solution to Problem 0.1, 

with a classification theory flavor. We shall continue in [Sh 600] toward a parallel 

of [Sh 87a], [Sh 87b]. Grossberg and Shelah, in the mid-eighties, started to write 

a paper (following [Sh 87a], [Sh 87b]) to prove that: if ¢ E Lx+,~ has models of 

arbitrarily large cardinality, and is categorical in #+" for each n and if # > A and 

2 "+= < 2 "+n+l for n < w, then ¢ is categorical in every p' > #; this is a weak 

form of the upward part of Los' conjecture. See Makkai Shelah [MaSh 285] on 

T C_ £~,~ where n is a compact cardinal; where we get downward and upward 

theorems for successor cardinals which are sufficiently bigger than n +  IT]. On the 

t With LS(~) <_ A of course. 
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downward part, see [KlSh 362], [Sh 472] which deals with a downward theorem 

for successor cardinals which are sufficiently larger than n + ITI when the theory 

T is in the logic £. ,~ and n is measurable. See also [Sh 394] which deals with 

abstract elementary classes with amalgamation, getting similar results with no 

large cardinals. 

Part  of §1 and §3 have a combinatorial character. Most of the paper forms the 

content of a course given in Fall '94 (essentially without §3, §9, §10). The paper 

is written with an eye to developing the model theory, rather than just proving 

Theorem 0.2. 

0.4 CONJECTURE: Any abstract elementary class with arbitrarily large models 
is categorical in every large enough cardinality or is not categorical (but has a 

model) in every iarge enough cardinaIity (probably in ZFC). 

On abstract elementary classes see [Sh 88] and [Sh 300, II, §3]. To make the 

paper self-contained, we will review some relevant definitions and results. We 

thank Gregory Cherlin for improving the writing of §1 §3 and for breaking 3.25, 

3.26 and 3.27 into three proofs. 

This work is continued in [Sh 600] and more. 

Review: Abstract elementary classes 

0.5 CONVENTIONS: 1i = (K,_<~), where K is a class of r-models for a fixed 

vocabulary ~- = rK = v~ and _<n is a two-place relation on the models in K. We 

do not always strictly distinguish between K and (K, <__n). We shall assume that 

K, _<n are fixed, and M _<.~ N =* M, N E K; and we assume that the following 

axioms hold. When we use <.~ in the sense of elementary submodel for first order 

logic, we write < c ~ .  

0.6 De~nition: N is called an abstract elementary class if: 

Ax 0: The validity of M C K or of N _<~ M depends on N and M only up to 

isomorphism---in the second case, isomorphism of the pair. 

Az I: If M _<n N then M C N (i.e. M is a submodel of N). 

Ax II: <<_.~ is transitive and reflexive on K.  

Az I l I :  If A is a regular cardinal, Mi (i < A) is _<~-increasing (i.e. i < j < ,~ 

implies Mi ~_~ Mj) and continuous (i.e. for limit ordinals 6 < A we have M5 = 

Ui<(~ Mi) then M0 _<.~ U/<~ Mi. 
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Ax IV: If A is a regular cardinal, Mi (i < A) is <:~-increasing continuous, 

Mi <~ N then Ui<~ Mi _<~ N. 

Ax V: If Mo C Mt and Me <~ N for g = 0, 1, then M0 _<~ Mr. 

A x V I :  There is a cardinal )~ such that: if A C N and IAI < )~ then for 

some M <~ N we have A C_ IMI and IIMll _< )~. We define the LSwenheim 

Skolem number LS(~) as the least such ~ with A _> H .  For simplicity we assume 

M E K ~ IIMII >_ LS(~). 

Notation: K~ = {M E K :  IIM]I = )~} and K<~ = U~<~ K~. 

£w,~ is first order logic. 

A theory in £(r) is a set of sentences from £(7"). 

O. 7 Definition: The embedding f :  N --+ M is a ~-embedding or a _<~-embedding 

if its range is the universe of a model N '  _<~ M (so ]:  N ~ N ~ is an isomorphism 

(onto)). 

Very central in [Sh 88], but peripheral here, is: 

0.8 Definition: (1) For a logic Z: and vocabulary 7", L:(T) is the set of/:-formulas 

in this vocabulary. 

(2) Let T1 be a theory in £~,~(7"1),T C_ 71 vocabularies, F a set of types in 

£~,~(71) (i.e. for some m, a set of formulas ~(xo , . . .  ,Xm-1) E £~,~(7-t)). Then 

we let EC(Tt,  F) = {M : M a 7-1-model of T1 which omits every p ~ F}. 

(3) PCT(T~, F) = PC(T~, F, 7-) 

= {M : M is a T-reduct of some Mt E EC(T1, F)}. 

(4) We say that ~ i s  PC~ if for some T1,T2, F1, F2 and 7" 1 and T2 we have: Te is a 

first order theory in the vocabulary 7"e, Fe is a set of types in the vocabulary 7"~ and 

g = PC(T1, FI, T~) and {(M, N ) :  M _<~ N, M, g E K} = PC(T2, F2, T') where 

7"' = T~ U {P} (P  a new one place predicate) and ITel < l~-el + No <_ ),, IFel <_ # 

for ~ = 1, 2. If # = A, we may omit it. 

0.9 Example: If 1-1 = T, Tt ,F are as above, and (K,_<~) is defined by K =: 

EC(T1, F), <_~ =:-<~: . . . .  then the pair satisfies the Axioms from 0.6 and LS(~) <_ 

ITll + S0 + IT, I. 

0.10 Example: V = L. Let cf(A) _> ~t, n < w then for some ¢ C L~+,w we have: 

¢ has no model of cardinality ,k +('*+1), and is categorical in A +'~ (i.e. has one 

and only one model up to isomorphism). 
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Let M* = (L~+~, E,i)i<~ and let ¢ be 

A {  ~ : ~ is a first order sentence which M* satisfies} 

37 

0.11 LEMMA: Let I be a directed set (i.e. partially ordered by <_, such that any 

two elements have a common upper bound). 

(1) I f  Mt is defined for t E I,  and t ~ s E I implies Mt ( ~  M8 then for every 

t E I we have Mt <_~ UsEI Ms E .f~. 

(2) I f  in addition t E I implies Mt <_~ N then Us~I Ms <_~ N.  

Proof: By induction on ]I] (simultaneously for (1) and (2)), or see [Sh 88, 1.6]. 

~0.11 

0.12 LEMMA: 
(1) Let 7-1 = T U {F/z : i < L S ( ~ )  and n < w}, F• an n-place function 

symbol (assuming, of course, Fff ~ T). I f  M1 is an expansion of M to a 

Tl-model and ~z E aIM I for some n, let Ma be the submodel of M with universe 

{Fi'~(~) : i < LS(~)}. Every model M from K can be expanded to a Tl-model 

M1 such that: 

(A) Ma ~_~ M for any ~ E n[M[ and ~z E n(Ma); 

(B) E nlMI then lIM lt _< 
(C) i fb  is a subsequence of ~ (even up to rearrangement), then M~ <_~ M~; 

(D) for every N1 C_ M1 we have N1 F v <_~ M (this follows). 

(2) If  N <_~ M is given, then we can choose the expansion M1 so that clauses 

(A) (D) hold and 

(E) N = N1 [ T for some N1 C_ M1. 

Proof: We define, by induction on n, the values of Fff(~) for every i < LS(Y~), 

& E '~[M[ such that & C_ N ~ Ma C N when we are proving (2). By A x V I  there 

is an Ma <_~ M, t[Ma[[ <_ LS(~)  such that [Mal includes 

U{M~ : b a subsequence of ~ of length < n} U 5 

and Ma does not depend on the order of ~. Let [Ma[ = {ci : i < io < LS(Y~)}, 

and define F[~(~) = ci for i < io and Fin(~) = Co for i0 _< i < LS(~)  (so we can 

demand "Fi '* is symmetric"). 

Clearly our conditions are satisfied: if b is a subsequence of ~ then M~ _<~ Ms 

by Ax  V. Clearly clause (D) (hence clause (E)) holds by 1.11(2). Io.12 
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0.13 LEMMA: (1) There is a set F of types in Ew,w(rl) (where rl is as in Lemma 
IDK.~2LS~ -'~ ) 0.12) such that K = PC(O, F, r). So K is a - - -ns(n)  -class, see Detinition 0.8(4). 

The types above consist of quanti~er-free formulas and even basic ones. 

(2) Moreover, if N1 C_ M1 6 EC(O, F), and N, M are the r-reducts of N1, M1 
respectively then N <_si M. Also, i[ N <_.~ M then there is an rl-expansion M] 
of M and a submodel N1 of M1 such that M1 • EC(O, F) and N1 [ r = N. 

p ( 7 ( 2  cs('~) 
(3) Also {(M, N) : N <_~ M} is a --~ns(si) )-c/ass, hence A is as well. 

Proof." (1) Let Fn be the set of complete quantifier free n-types p (x0 , . . . ,  xn-1) 

in £~o,~o(rl) such that: if M1 is an Ll-model, & realizes p in M1 and M is the 

L-reduct of M1, then M~ <r~ Ma • Si for any subsequence of b of & Recall that  

Me (for e • "~iMll) is the submodel of M whose universe is {Fro(e) : i < LS(50} 

(and there are such submodels) and subsequence include permutation. 

Let F be the set of p which are complete quantifier free n-types for some n < co 

in £~,~(rl) and which do not belong to F~. So if M 1 is in PC(O,F, rl) then 

by 0.12 we have M1 [ r • K hence PC(O,F,L) C_ K and by 0.12(1) we have 

K C_ PC(O, F, L). 
(2) The first phrase is proven as in (1). For the second phrase, use 0.12(2). 

(3) Follows from (2). ~. la  

0.14 Conclusion: There is rl with r C_ rl and Irll < LS(Y 0 such that: for any 

M C K and any vl-expansion M1 of M which is in EC({~, F), 

N, C_ M1 ~ N1 [ "r <R M, 

N1 C_N2C_M1 ~ N 1  [ T < ~ N 2  IT. 

0.15 Conclusion: If, for every a < (2LS(Si) +, K has a model of cardinality > "1~ 

then K has a model in every cardinality > LS(Yi). 

Proo[: Use 0.13 and the value of the Hanf number for: models of a first order 

theory omitting a given set of types, for languages of cardinality LS(K) (see 

[Sh c, VII, §5] and history there). 6.15 

0.16 Definition: For ~ regular > LS(Yi) and N E J~ we say N = (N~ : a < ~} 

is a representation of N if N is <n-increasing continuous, IIN~II < ~ and N = 

(_J~<~ Na. If A = #+ then, if not said otherwise, we require NN~II = #. 

How will we define types and, in particular, the set S(M) of complete types 

over M, when no formulas are present? If we have a "monster model" ~ we can 

use automorphisms; but any such "monster" is far down the road. So we will 

"chase diagrams" in K~ (being careful not to use excessively large models). This 
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gives us a relation of "having the same type" we call E~ t, but this relation in 

general is not transitive (if we do not have amalgamation in K~). So Eg will be 

defined as the transitive closure of E~ t. 

0.17 Definition: (1) The two-place relation E~v ~ is defined on triples (M, N, a) 

with M fixed, M <~ N ~ KtlMII, and a ~ N by: 

(M, N1, a l )E~ (M, N~, a2) iff there is N E KIIMII and <.n -embeddings 

fe :N t  ~ N for g = 1, 2 such that: 

f l  I M = idM = f2 [ h i  and f l(al) = f.~(a2). 

Let EM be the transitive closure of E~ t. 

(2) For # > LS(~) and M C K ,  we define S(M)  as {tp(a, M, N) : M _<~ N C 

K~ and a C N} where tp(a, M, N) = (M, N, a)/EM. 

(3) We say "a rea l izes  p in N" if a E N, p C $ (M)  and for some N'  C K ,  we 

have M <~ N'  <~ N, a C N' ,  and p = tp(a, M, N') .  

(4) We say "a2 s t r o n g l y  rea l izes  (hi, N 1 , a l ) / E ~  in N" if for some N 2, a 2 we 

have M <~ N 2 <~ N, a2 C N 2, and (M, N I , a l ) E ~  (M, N2,a2). 

(5) We say Mo C ~ is an a m a l g a m a t i o n  base  if letting ~ = ]IM0]l we have: 

for every M1, M2 E ~ and _<~-embeddings fe : Ado -+ Me (for g = 1, 2) there is 

M3 C ~ and <~-enlbeddings ge : Me --+ M3 (for g = 1, 2) such that gl o f l  = 

g 2 ° f 2  - 
(6) We say R is s t ab le  in A if LS(~) < A and for all M C Kx we have 18(M)I < A. 

0.18 Observation: If M is an amalgamation base then EM = E ~ ,  and we have: 

"a strongly realizes (M, N, b)/E~tl in N" iff "a realizes (M, N, b)/EM". 

0.19 Definition: (1) ~ has the A-ama lgama t ion  p r o p e r t y  or has amalgama- 

tion in ~, if every M0 E R~ is an amalgamation base (see 0.17(5) above). 

(2) N is un ive r sa l  over M when: M <.n N and if M <~ N'  E K<IINII then 

N '  can be <.~-embedded into N over M; so M is an amalgamation base if 

IINII--IIMII, 
(3) ~ has universal extensions in A i_f for every M E K~ there is N such that: 

(a) M < ~ N ~ K ~ ,  

(b) N is universal over M. 

(4) N1, N2 have a joint embedding if for some N C K there are <.~-embeddings 

he of Ne into N for ~ = 1, 2. Let JEPu (JEP) means this holds for N1, N2 in K~ 
(in K). 

Sh:576



40 S. SHELAH Isr. J. Math .  

(5) &x has u n i q u e  (d i s j o in t )  a m a l g a m a t i o n  (or ~ has unique (disjoint) amal- 

gamat ion in ,k) when: if M[ E Kx for ~ < 2, i  < 4, and for i = 1,2 we have 

hf, o is a <~-embedding of Mo t into Me,, ht,i is a _<~-embedding of M[ into 

M3 t, ht3,1 o htl,o = ht3,2 o h~, o and Rang(he3,1) M Rang(he3,2) = Rang(h~3,1 o h~,o) and 

for i < 3, fi  is an isomorphism from M ° onto M) ,  fo C_ f l ,  fo C_ f2 then for some 

N E K~ there  are R-embedding he : Me3 ~ N such tha t  ho o h ° = hi o h~ i, for 3,i 
i = 1,2. 

(6) Let p~ E ,.S(M~) for ~ = O, 1. We say Po _< Pl  i f  Mo ~_~ M1 and for some 

N and a we have M1 <_~ N E KliM~ll+LS(Yt),a ~ N and tp(a,M~,N) = Pt for 

= 0,1. We also write P0 = P~ [ M0 (Po is unique knowing Mo,M],p~ hence 

pl [ Mo is well defined). 

0.20 CLAIM: 

(1) I f f i  is categorical in ,k (see Definition 0.25(2)) and LS(Y~) <_ A then: there is 

a model in K~+ i___ff for some (equivalently, every) model M E K~ there is N such 
that M <~ N E K~ i__ff for some (equivalently every) M E K~ there is N such 

tha t  M <~ N E K;~+. 

(2) If  ~ has amalgamation in ,k, LS(Y~) < A, and Mo <_~ M1 are in K~ with 

Mo <_y~ No E K~+ then we can find h and N1 such that No <_~ N1 E K~+ and h 

is a <_~-embedding of M1 into N1 extending idMo. We can allow No E K~ with 
# > A ifYt has amalgamation in every A t E [A, p). 

(3) Assume ~ has amalgamation in ,k and LS(Y~) <_ ,k. If Mo <_ M1 are from K:~ 

and Po E S(Mo) then we can find an extension Pl E S(M1) of po. 

Proof: (1) For "if", we can choose by induction on i < A + models Mi E K~, _<~- 

increasing continuous, Mi ~ Mi+l;  for i = 0 use Kx+ ~ 0, for i limit take union, 

for i = j + 1 use the previous sentence; so Mx+ = U{Mi : i < ,k+} E Kx+ as 

required. For the "only if" direction use 0.12. 

(2), (3) Left to the reader. Io.2o 

0.21 Remark:  We can here add the content of 6.5, 6.7, 6.12. 

0.22 Definition: (1) For ,k > LS(Yi) we say "N E ~ is , k - s a tu ra t ed"  if for every 

M _<~ N of cardinali ty < A, if M _<~ N t E K<~ and a I E N ~ then some a E N 

strongly realizes (M, N ' ,  a ' ) /E~  (in the interesting c a s e s / E M  suffices). 

(2) We say "N E ~ is , k - s a tu r a t ed  a b o v e  # (or is ,k-saturated > #)" if above 

we restrict ourselves to M of cardinali ty > #. If we omit ,k we mean ,k = [[NII. 

(Cf. (,k, ~)-saturated in Definition 0.28, 0.29 below.) 
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0.23 FACT: (1) If LS(Yt) _< # < A, A is regular, ~ has the amalgamation 

property in every #' E [#,A), and for all M E K[~,~) we have [$(M)[ _< A 

and A = cf(A), then there is some M E Kx saturated above it. 

(2) Assume A > p _> LS(~)  and N E K>x and ~ has amalgamation in Kt,1, 

for every #1 E [#, A). Then: N is A-saturated above # iff for every M _<~ N of 

cardinality < A but _> #, every p E $ (M)  is realized in N (i.e. for some a E N 

we have tp(a, M, N) = p). 

(3) If LS(~)  <_ #o <_ Pro <- P' <- # and M is #-saturated above/to,  then it is 

#r-saturated above p~. If LS(~)  _</to < # then: M is p-saturated above/to iff 

for every A E [#0, #), M is A+-saturated above A. 

Proof: Check. 

0.24 Definition: The type p E $ (M)  is local  when: for any directed partial 

order I and models Mt <_~ M for t E I with I ~ t <_ s ~ Mt <_~ Ms and 

M = UtcI Mr, and any p' E S(M)  i_f (p [ Mt = p' [ Mr) for all t E I then p = pr. 

We say M is local  if every p E S ( M )  is, and ~ is local  if every M E ~ is. We 

can add "above it" as in Definition 0.22(2). 

0.25 Definition: (1) I (A,K)  = I(A,~) is the number of M E Kx up to 

isomorphism. 

(2) J~ (or K) is categorical  in A if I(A, K) = 1. 
(3) IE(A,J~) = sup{[K r] : K r C_ K ~ a n d f o r M  # N in K ~ , M  is not _<~- 

embeddable into N}. Abusing notation, if we write IE(A, K) _> it, we mean that 

for some K '  C_ Kx as above, ]K'[ _> it, and similarly for = it. If there is a problem 

with attainment of the supremum we shall say explicitly. 

0.26 THE MODEL-HOMOGENEITY = SATURATIVITY LEMMA: Let A > it >_ 

LS(Yl) and M E K .  

(1) M is A-saturated above # i f f M  is (:D~, A )-homogeneous above it, which means: 

for every N1 <_~ N2 E K such that it <_ [[NI[] _< [[N2[[ < A and N1 <_~ M,  there 

is a <_~-embedding f of N2 into M over N1. 

(2) I f  M1, M2 E K ~ are A-saturated above it < A and for some N1 < ~ M1, N2 < ~ 

M2, both of cardinality E fit, A), we have N1 ~ N2 then M1 ~- M2; in fact, any 

isomorphism f from N1 onto No. can be extended to an isomorphism from M1 

onto M2. 

(3) I f  in (2) we demand only "M2 is A-saturated" and M1 E K<_~ then f can be 

extended to a <_~-embedding from M1 into Me. 

(4) In part (2) instead of N1 ~- N2 it suffices to assume that NI and N2 can be 

<_~-embedded into some N E K ,  which holds if  ~ has the JEP or just  JEP , .  
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Proof: (1) The "if' direction is easy as A > LS(A). Let us prove the other 

direction. 

By 0.23(3) without loss of generality A is regular, moreover N2 has cardinality 

IINlll. 
Let IN21 = {hi : i < t;}, and we know ~ =: IINlll = IIN211 < A. We define by 

induction on i <_ ~, N~, N~, fi such that: 

(a) N~ _<~ N~ and IIN~II = ~, 

(b) N~ is _<h-increasing continuous in i, 
(c) N~ is _<h-increasing continuous in i, 

(d) fi is a 5~-embedding of N~ into M, 

(e) fi is increasing continuous in i, 

(f) a i C N ~  +1, 

(g) N O = N1, N ° = N2, f0 = idN1, 
(h) N[ and N~ has cardinality a. 

For i = 0, clause (g) gives the definition. For i limit let: 

N~ = [.Jj<i N~ and 

N~ = [.Jj<i Nj  and 

= fJ. 

Now (a)-(f) continues to hold by continuity (and IIN~II < A as ), is regular). 

For i successor we use our assumption; more elaborately, let M~ -1 _<n M 

be f i_l(N[ -1) and Mi2-1,gi_l be such that gi-1 is an isomorphism from N~ -1 
onto M~ -1 extending fi-~, so M[ -* <~ M~ -~ (but without loss of generality 
M~ -1 N M = M~-I).  Now apply the saturation assumption with M,M~ -1, 
tp(gi- l (a i -1) ,  M[ -1, M~ -1) here standing for N, M,p there (note: hi-1 • N2 = 
N ° C_ N~ -1 and A > ,~ = IIN~-~ll = IIM~-~ll and IIM~-~ll --[[g~-l[[ _> IIN°ll = 
[[Nll[ > # so the requirements including the requirements on the cardinali- 

ties in Definition 0.22 hold). So there is b • M such that tp(b,M~ -1, M) = 
tP(gi-1 (hi-l),  M~ -1, M~-I). Moreover (if ~ has amalgamation in # the proof is 

slightly shorter) remembering the second sentence in 0.22(1) which speaks about 

"strongly realizes" there is b E M such that b strongly realizes 
(M~-I,M~-, at , g~-l(a~-~))/EMt_~ in M. This means (see Definition 0.17(4)) that 

for some M['* we have M~ -1 ~_~i M~'* _<~ M and 
{ A/f i--1 ll/fi--1 at i--1 i,* gi-1 (ai-1))EM~-, (M1 M 1 , b). This means (see Definition \z '*  1 , ~w 2 , 

0.17(1)) that M~'* too has cardinality ~ and there is M~'* • K~ such that 
M: and there are <_ -embeddings of M:'* into 
over M~ -1 respectively, such that h~(gi_l (hi-l))  :- h~ (b). 

Now changing names, without loss of generality h~ is the identity. 
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Let N~, hi be such that N~ -1 _<.~ N~, hi an isomorphism from N~ onto M2'* 

extending gi-1. Let N[ = hT 1 o h~(M~'*) and fi = (h~) -1 o (hi [N~). 

We have carried the induction. Now f~ is a _<~- embedding of N~ into M over 

N1, but IN21 = {ai: i < n} C N~, so f~ [ N2 : N2 --4 M is as required. 
(2), (3) By the hence and forth argument (or see [Sh 300, II, §3] = [Sh h, II, §3]). 

(4) Easy, too. Io.23 

0.27 Remark: Note that by 0,26(2), if M is #-saturated above po and ~ has the 

JEPpo then ~ has A-amalgamation for each A E [/to, #). 

0.28 Definition: Fix A _> t~ with n regular. 

(i) We say that NI C K~ is (A, t~)-saturated over No or that (NI, c)ceNo is (A, t~)- 

saturated (and A-saturated of cofinality t~ means (A, t~)-saturated) if: there is a 

sequence (Mi : i < t~) which is ~-increasing continuous with Mo = N,/~I~ = NI 

and Mi+l E K~ universal over Mi (see 0.19(2), hence each Mi is an amalgamation 

base). 
(2) If we omit ~, we mean ~ -- cf(A); (A, a)-saturated means (A, cf(a))-saturated; 

and N1 is (A, 1)-saturated over No means just No <~ N1 are in K~; "N1 is (A, ~)- 

saturated" means "for some No E K~, Nx is (A, ~)-saturated over No. 

0.29 CLAIM: Fix A >_ ~ with ~ regular. 

(1) I f  N1, N2 are (A, ~)-saturated over N,  then N1, N2 are isomorphic over N O.e. 

the (A, ~)-saturated model over N E K:~ is unique over N).  

(2) I f  K~ # O,A > ~ = c t~)  and over every M E K~ there is N with M <~ 

N E K~ universal over M,  then for every N C K:~ there is N1 E K~ which is 

(A, ~)-saturated over N.  

(3) I f  ~), has amalgamation and ~ is stable in A (i.e. M E K~ ~ IS(M)I <_ A) 

then every M E Kx has a universal extension (so part (2) 's conclusion holds). 

Proof: See [Sh 300, Ch. II] or check ((3) is 0.32(3)(a)). I0.2~ 

We do not need at present but recall from [Sh 88]: 

0.30 CLAIM: There is v' D_ r U {Po,P1,P'2,c} of cardinality <_ LS(Y  0 with c an 
individual constant, with Pt unary predicates, and a set F of quantifier free types 

such that: 

(a) if  M'  C PC~, (O, F) and Me = (M' [ 7) [ pM' for g = O, 1, 2, then 

Me C K,  Mo <_~ MI,  Mo ~_~ M2, c M' C ~I2, and 

N' C_ M' ~ (N' [ v) [ P[q' <_~ Me, and there is no b ~ MI satisfying: 

® for every ~ E ~> (PoM'), letting Na be the v~-submodel o f M  ~ generated 

by ~ and M e = Me I (Me M Na), we have M[ <_~ Me, and b strongIy 
realizes tp( c M' o 2 1 , Ma, M a ) in M-~, 

Sh:576



44 S. SHELAH Isr. J. Math. 

(b) i f  M /  for ~ = 0, 1,2 and c axe as in (a) and Mo = M1 M M2, then for some 

M'  we have clause (a). 

Proo~ Should be clear; see [Sh 88], [Sh 394]. m0.30 

0.31 Remark: 

(1) Claim 1.26 enables us to translate results of the form: the existence of a 
two cardinal with omitting types model in A2 implies the existence of one in 
A1, provided that types are local in the sense that p • S ( M )  is determined by 

(p [ N : N _<~ M, IINll __ A). 
(2) This enables us to prove implications between cases of A-categoricity, if we 
have a nice enough theory of types as in [Sh c, VIII, §4]; if we have in A2 a 
saturated model, categoricity in A1 implies categoricity in A2. Also (if we know a 
little more) categoricity in A2 is equivalent to the non-existence of a non-saturated 
model in A2. 

0.32 CLAIM: (1) Assume M n ~_yt M n + l , M n  • K x , R  has amalgamation in A. 

l f  pn • $ (Mn) ,pn  <_ P~+I (i.e. Pn = Pn+l [ Mn, see 0.19(6)), then there is 

p E s(Un<~ Mn) such that n < w ~ Pn ~_ P. 

(2) I f  (Mi : i <_ 5) is <_n-increasing continuous, Pi • S(M~), (j < i ~ pj <_ Pi), 

Pi = tp(ai, Mi, Ni) and hi,j is a <_n-embedding of Nj  into Ni (for j < i < 5) such 

that hi,j I Mj  = idMj,hi,j(aj) = ai, then there isp~ e $(M~),i  _< 5 ~ Pi _< P~. 
(3) I f  ~ has amalgamation in A and is stable in A (i.e. M E K~ ~ [8(M)[ _< A), 

then 

(a) every M E K~ has a universal extension; 

(b) for every M • Kx and regulax 0 <_ A there is N • Kx which is (A, 0)- 
saturated over M.  

Proo£" Straightforward; similar to the proof of 0.26. 

1. W e a k  diamond 

1.1 Definition: 

(1) 

Fix ), regular and uncountable. 

WDmTId(~,S,  2) = {A :A C_ I I  X~, and for some function F with 
aES 

domain U ~(2<)') mapping ~(2 <~) into X~, 
a<A 

for every ~ E A, for some f E A(2 <~) the set 

{5 • S : ~(~) = F ( f  [ 6)} is not stationary}. 
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(Note: WDmTId stands for weak diamond target ideal.) 1 
Here we can replace 2 <x by any set of this cardinality, and so we can replace 

f C x(2 <x) by f l , . - .  , f~ E x(2<x) with F being n-place. 

(2) 
g 

COVwdmt(/~ , S,  )~) ~-~ Min~[P[ 
[ 

(3)WDmTId<u(A, S, 2) = {A 

(4) 

:pC_ WDmTId(A,S, 2) and H X ~ C -  U A}.  
a<A AUP 

: for some i* < # and Ai C WDmTId(A, S, )~) for 

i < i* we have A C_ U A l l .  
i<i* 

) 

WDmId<u(A,)~) = {S C_ A: COVwdmt(,~, S,~) < ~t}. 

(5) Instead of "< #+" we may write #; if we omit # we mean (2<~). If 2 is 

constantly 2 we may omit it; if X~ = 21~1 we may write pow instead of ~. 

(6) Let ].twd()k , ~ )  : COVwdmt(~ , )~, )~). 

(7) We say that the weak  d i a m o n d  holds on A if A ~ WDmId(A). We may 

omit ~ when it is constantly 1. 
By [DvSh 65], [Sh b, XIV, 1.5, 1.10(2), 1.18(2), 1.9(2)] (presented better in 

[Sh f, AP,§I], note: 1.2(4) below relies on [Sh 460]) we have: 

1.2 THEOREM: 
(1) I[A = Ra,2 ~° < 2~1,p _< (2 ~°) or even 20 = 2 <~ < 2~,p = (2°) +, or just: for 

some 0, 2 0 = 2 <:~ < 2 ~', p _< 2 ;~, and X <~ < # for X < #, then A ~ WDmld<u(A ). 

If  in addition (*)<rex below holds, then A ~ WDmld<u(),,pow), where: 
(*)~,~ there are no Ai E [/z] ~+ for i < 2 x such that i ~ j ~ [Ai N Aj[ < Ro 

and (*)<~,~ means (,)~,~ holds for X < #. 

(2) I f #  _< )~+ or cf([pl] <-x,C_) < # for pl < # & cf(#) > fl or # <_ (2<x) + 
then WDmld<,(A, ~) is a normal ideal on A. If  this ideal is not trivial, then 

A = cf(A) > Ro,2 <;~ < 2 :~. 
(3) A sufficient condition for (*)<~,,a is: 

(4) Another sufficient condition for (*)<,,~ is: 

(b) p_<2  & 

1 In [Sh b, AP,§I], [Sh f, AP,§I] we express COVwd,,t(A, S) > it* by allowing f(0) E 
it* <# .  
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1.3 Remark: (1) So if cf(2 ~) < # (which holds if 2 x is singular and # = 2 x) then 

(*)<u,x implies that there is A C_ x2, ]A I < 2 x, A ~ WDmTId(A). 

(2) Some related definitions appear in 1.13; we use them below (mainly 

DfWD<u(A)), but as in a first reading it is recommended to ignore them, the 

definition is given later. 

(3) We did not look again at the case (Va < A)(T' < 2 <~ < 2~). 

As in [Sh 88, 3.5], ([Sh 87a, 1.7], [Sh 875, 6.3]): 

1.4 CLAIM: Assume A ~ WDmld<~(A) or at least D/WD<u(A) (where A = 

c~A) > No) and ~ is an abstract elementary c/ass. 

(1) Assume .~ is categorical in X, A = X +, and J~ has a model in A (if LS(~) <_ X 

this is equivalent to: the model M E K x is not <_~-maximal). Assume [urther Yt 

does not have the amalgamation property in X. Then for any )Vii E ~ for i < 

i* < #, there is N E J~ not <_~-embeddable into any Mi (and the assumptions 

of part (2) below holds). 

(2) AssumeU.  E K<x fort  E x>2, M.  = U~<eg(.)Mnr(a+l), u ' ~  ~ U~ _<~ U . ,  
and Mn^(o),Mn-o) cannot be amalgamated over M~ (hence M n # Mn^(t)). Set 

Mn =: Ua<~ Mnr~ t'or r/E x2. Clearly M n belongs to K~. For the DfWD<u(A) 
version assume also 

(*) (Mn : 7/ E x>2) is definable (even just by ~ ,~ )  in f13 = 

e, 

Then [or anyNi  E ~x t 'ori < i* < #, there i s~  E ~2 such that: M n is not 

<n-embeddable into any Ni. 

(3) In part (2), if LS(~) <_ A we can allow Ni E K~, f f ~ i < i ,  c£([~¢i] ~, C_) < #. 

(4) Assume only A ~ WDmId<u(A,~). Part (2) holds if M n is defined [or 

E O~<xl-li<a Xi, and¢ < ( < Xi, ~ E YIj<iXj ~ Mn'(,),Mn'(¢) cannot be 
amalgamated over M n. 

(5) Similarly/'or a DfWD version. The assumption of Part (4) (hence the con- 

clusion of Part (2)) holds if we assume that t:or M E Kx, i < A there are Xi <_n- 

extensions of M in Kx, which pairwise cannot be amalgamated over M. 

(6) Assume A = cf(A), 2 x > 2 <x = 2 0 , and)/i = 2 (0) and A >_ =1~. Then 

A E WDrald<2~ (A,)~), hence if < Mn : r/ E Us YI~<~ x~ > are as in (4) then 

I{M. u: V e I-I.<~ MX.}I : 2 ~. 

Proo~ (1) It is straightforward to choose Mn E K x for ~ E ~2 by induction on 

a, as required in part (2). Then use part (2) to get the desired conclusion. 

(2) Without loss of generality the universe of Ni is A and the universe of M,  

is an ordinal 7, such that ~/ E a>2 ~ % < A and ~/ E a2 ~ 7~ = A. The 
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reader can ignore the "DfWD<~, (A)" version (ignoring the h~'s, g) if he likes. For 

a < A and rl E ~2 let the function h~ be h~(i) = M~I(i+I ) for i < [gO?). Let 
(M~ : 7/ E x>2} be the <~-first such object. For each i < i* we define Ai C_ ~2 
by Ai = {rl E x2 : M~ can be _<~-embedded into Ni}. 

For r I E Ai choose fi: M, --+ Ni, a _<~- embedding, hence f~ E hA. We also 

define a function Fi from Ua<x(a2 x aA) to {0,1} by: 

Fi(rl, f )  is 0 if f is a <~ -embedding of M~ into Ni with range C_ gg(~) 

which can be extended to a <.~ -embedding of M~ (0) into Ni, 

Fi(~, f )  is 1 otherwise. 

Now for any ~/E Ai, the set 

E = {(~ < A : 7nr6 = 6 and f~ r (~ is a function from ~ to (~} 

is a club of A. For every (~ E E clearly F(~ [ (~,f~ r (~) = ~((~) (as Mn-(o),Mn-(1) 
cannot be amalgamated over M~). 

Hence (for the "Def' version see Definition 1.13(2) using 1.14(1), 1.14(3)) we 

have Ai E WDmWIdDee(A). As i* < # clearly Ui<i. Ai E WDmIdD~f(A) and 

hence by assumption of the claim A2 7t Ui Ai. Take r/E ~2\ Ui<i* Ai. Then Mn 
is as required. 

(3) Without loss of generality the universe of Ni is hi. Let Pi C_ [n/]:~ be a set of 

minimal cardinality such that (VB)[B C_ ~i & I B] _< A ~ (3B' E 7)i)(B C_ B')]. 

As LS(N) <_ A we can find for each A E 7~i a model N~ _<~ Ni of cardinality A + 

whose universe includes A. Now apply part (2) to {N~ : i < i* and A E Pi}. 
(4), (5) Same proof. 111.4 

We give three variants of the preceding: 

1.5 CLAIM: (1) Assume 

(*)1 A =  cT(A) > N o a n d  

(a) M n is a z-model of cardinality < A for r/E ~>2 and 
(b) for each ~ E x2, (M~ta : a < A) is C_-increasing continuous with union, 

called M~ E K, of cardinality A; 

(c) if~ E x>2, r/^(~) ~ Pe E ~2 for ~ = 1, 2 then Mpl , Mp2 are not isomor- 
phic over M~. 

(*)2 A q~ WDmId<,(A). 

Then I(A,K) >_ #, and in fact we can find X C_ ~2 of cardinality >_ # such that 
{Mp : p E X} are pairwise non-isomorphic. 
(2) Assume 
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(,)d like (*)1 in part (1) but in addition 

(d) (M~ : ~7 E ;~>2) is definable in 98 = ~ x .  
(,)d A ¢ DfWD<,(A).  

Then the conclusion of part (1) holds. 

(3) The parallel of 1.4(4) holds. 

Proo~ (1) Let {Ni : i < i*} be a maximal subset of {Mp : p C x2} consisting of 

pairwise non-isomorphic models, and use the proof of 1.4(2) with fv : Ni ~- M, .  

(2), (3) Left to the reader. ]1.5 

1.6 CLAIM: (1) Assume 

(*)1 M~ C K<~ for 71 E ~>2, (M~r~ : a _< eg(~?)) is <_~-increasing continuous, 

and i f5 < A, /]1(~) <lye E 52 for ~ = 0, 1 then Mvo, Mvl  are not isomorphic 

over M ,  (or just the same for rf = A; by LS this is weaker). 

(*)2 A = ct'(A) > R0, A ~ WDmld<,(A),  and A is a successor cardinal, or at 

/east there is no A-saturated normal ideal on A, or at least WDmld(A) is 

not A-saturated (which holds i f  for some 8 < A, {5 < A : ct~5) = 8} 

WDmld(A)). 

Then there is A C_ x2,[A[ = 2 ~ such that: i f  ~1 ~ ~2 are in A then (taking 

M ,  = U~<x M , I , )  

(a) M,I ~ M,: fori ~11 ~ ~12 C A and 

(fl) i f  (2x) + < 2 x for X < A then we can also achieve: M,I cannot be _<~- 

embedded into My2. 

(2) Under the assumptions of 1.4(1) we can find (M,  : ~/ E ;~>2) as in the 

assumption of 1.4(2). 

(3) Under the assumption of 1.4(2) the assumption of 1.6(1) holds. 

(4) Under the assumption of l .6(1)  we have I (A,~)  = 2 ;~ and if  (2x) + < 2 ~ then 

XE(A, ~) = 2 ~. 

(5) The parallel of 1.4(4) holds (for non-isomorphism). 

Proof of 1.6: (1) The proof of [Sh 88, 3.5] works (see the implications preceding 

it). More elaborately, we divide the proof into cases according to the answer to 

the following: 

What about strengthening the result to "M,~ is not _<~-embeddable into M~2"? 
Even if we strengthen (*)1 to: 

(*)~ M~^(1) cannot be _~n -embedded into Mo over M~ when r/i(0) ___ v E ~>2 

it will not help. Think of the case E M, is an equivalence relation with w ~ equiv- 
alence classes (An,n : n < u), M~ = ~ ( M ~  I An,~) and each M~ I (Un An,~) is 
universal in ~x. 
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Question: Is there  7/* E x>2 such tha t  for every v sat isfying 7" _~ v E x>2 there  

are Po, Pl E x>2 such that :  v<po,  v ~ PI,  and for any vo, vl C x2 satisfying peA~,e 
(for ~ = 0, 1), the models  M.o,  M .  1 are not  isomorphic  over M:o? 

We can find a function h : ~>2 ~ x>2, such that:  

(a) the function h is one-to-one,  preserving ,~ and (h(v))^(g) _~ h(v^(~)) (so 

for v C x2 we let h(v) = U~<x h(v [ a);  

(b)yes when the answer to the question is yes, it is exemplified by 7/* = h ( 0 )  and 

Mh(,^(0)), Mh(,^(1)) cannot  be a m a l g a m a t e d  over Mn. (for every v C x>2); 

(b)n o when the answer to the question above is no, h ( 0  ) = 0 , e  < 2 and if 

v^(g) _<1 Po, v^(g) "~ Pl then Mh(po), Mh(pl) are not isomorphic  over Mh(,). 
Note tha t  by t rans i t iv i ty  of ~M,, wlog h(rl)A(g) ,~ h(~A(f)).  Wi thou t  loss of 

general i ty h is the identity, by renaming (and we can preserve ( , ) f  of 1.5(2) in the 

relevant case). Also clearly Mn^(e ) ~ M n (by the non-ama lgamat ion  assumpt ion) .  

Case 1: The  answer is yes. We do not use the non A-saturat ion of WDmId(A)  in 

this case. 

For any 7/C ~2 and _<h-embedding g of M 0 into M n =: ~J~<~ Mni~ , let 

A~,g =:  {u C x2 : there is a _<n - i somorphism of M .  onto M n extending g}, 

A n =: {u • ~2 : there is a _<n - i somorphism of M ,  onto Mn}. 

So: IAn,9[ _< 1 for any g and ~ • A n (as if ul, u2 • An,g are distinct then for some 

ordinal  a < A and u • ~2 we have u =:  u0 [ a = ul [ a ,  u0(a) # ul(a) and use 

the choice of h(u'(/~))).  

Since A n = U{A~,g : g is a < n  -embedding  of M 0 into Mn}, we have ]An] < 

AIIMo* II < 2<x. Hence we can choose by induction on ~ < 2 ~, 7/¢ • ~'2\ U~<~ An~ 
(existing by cardinal i ty  considerat ions as 2 <~ < 2~). Then  ~ < ~ ~ Mn¢ ~ Mnc , 
so we have proved clause (a) .  

Case 2: The  answer is no. 

Again, wi thout  loss of general i ty Mn has as universe the ordinal  7n. 

Let (Si : i < A) be a par t i t ion  of ~ to sets, none of which is in WDmId(A) .  For 

each i we define a function Fi as follows: 

i f S • S i , ~ , u • ~ 2 , 7 7 = 7 ~ = ~ , a n d f : 6 ~ ( ~ t h e n  

Fi(~,,, f )  = 0 if we can find r / , ,  • x2 s.t. ~1 (0),~ ~ and v 1(0) ~ v~ s.t. 

f can be extended to an i somorphism of M onto Mvl, 

Fi(o,v, f)  = 1 otherwise.  

So as Si q~ WDmId(A) ,  for some ~ ~ x2 we have: 
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(.) for every ~ • x2, u • x2 and f • hA the following set of ordinals i < A is 

stationary: 

{5 • s~:  F~(~ I5 ,~  1 5,1 I5) = ~*(5)}. 

Now for any X C_ A let ~ x , P x  • ~2 be defined by: 

if a • Si then i • X ~ ~ lx (a )  = 1 - ~ ( a ) , i  ¢ X ~ ~?x(a) = 0 and 

}O x . :  l]{ 2i:iE X )u{ 2i+ l :i~ X ) . 

NOW we show 
(*)~ if X, Y C_ A, and X ~ Y then M p x  is not <n-isomorphic to Mpy. 

Clearly (,) '  will suffice for finishing the proof. 

Assume toward a contradiction that f is a _<n-isomorphism of Mpx onto M~r ; 

as X ~ Y there is i such that i • X ~ i ~ Y so there is j • (2i,2i + 1} such 

that P x  [ S j  = (1 - ~ ( a )  : a • S j )  and pr  [ S j  is identically zero. Clearly 

E = {5 : f maps 5 into (f} is a club of A and hence Sj N E # q}. 

So if 5 • Sj FIE then f extends f [ M~I~ and is a _<n-isomorphism of it onto 

Mpr. 
Now by the choice of F j  we get 

5 e s~ n E ~ F~(px I 5, Pr I 5, / I ~) = Px (5) = 1 - ~; (5). 

But this contradicts the choice of y~. 

(2), (3), (4), (5). Check, similarly. |1.6 

1.7 CONCLUSION: (1) Assume 
(*)1 for y • ~>2, M~ • K<~ and (M~ra :c~ < eg(~)) is <n-increasing continuous 

and M~(1) cannot be <n-embedded into M~ over M~ when ~^(0 / ~ u E 

~>2 and (M~ : ~? • ~>2) is definable in ~;  
(.)d WDmidDef(A) or DfWD+(A) is not A-saturated (which holds if there is no 

normal A-saturated ideals on A (which holds for non-Mahlo A) and holds if 

for some 0, {5 < A: cf(5) = 0} is not in the ideal). 

Then the conclusion of 1.6 holds. 

From the Definition below, we use here mainly "superlimit". 

1.8 Det ln i t ion:  (1) M E ~ is a supe r l imi t  if 
(a) for every N E ~l~ satisfying M _<n N there is M'  • K~ such that N _<n 

M ' , N  ~ M r, and M = M'; 

(b) if 5 < A + is limit, (M/ : i < 6) is _<n-increasing and Mi --- M (for i < 5) 

then LJi<~ Mi - M. 
(2) For O C_ {# : ~0 _< P _< A, it regular} we say M • ~i), is a (A, O)-super l imi t  

if: 
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(a) clause (a) from part (1) holds and 

(b) if Mi ~ M is (<~)-increasing for i < p • O then Ui<u Mi ~ M. 

(3) For S C A + we say M E ~ is a ()~, S)-s t rong l imi t  if: 

(a) clause (a) from part (1) holds; 

(b) there is a function F from U~<~+ ~(K~) to K~ such that: 

(ct) for any sequence (Mi : i < a) if ct < A+,Mo = M, Mi is <~- 

increasing, and Mi C ft~, then j < a ~ Mj <~ F((Mi  : i < a)), 

(/~) if (Mi : i < A +) is _<~-increasing, M0 = M, Mi C ~ ,  and for i < 

~,Mi+l <~ F((My : j <_ i+1))  <~ Mi+2 then {3 C S[Ui<6 Mi ~ M }  
is not stationary. 

(4) M is a (A, ~)-limit if there is a function F as in 3b(a) such that: 

(a) if (Mi : i < ~) is a <x-increasing continuous sequence in K~, 

F(5:/ [ (i + 1)) _<.~ Mi+a then Ui<~ Mi -~ M,  

(b) there is at least one such sequence. 

(5) M is a (~ ,a ) - super l imi t  is defined similarly, but with F omitted and 

Mi+ ~ M 1 ~ 

1.9 CLAIM: (1) In 1.4(1) we can replace the categoricity of J~ in X by "J~ has a 

super limit model in X" which is not an amalgamation base (see De~nition 1.8). 

In this case the assumption of 1.4(2), and of 1.6(1) holds. 

(2) We can weaken (in 1.6(5)) the existence of superlimit to "for some a = 

cf(a) <_ X there is a (X, {a})-superlimit model which is not an amalgamation 

base", provided that we add {5 < A : cf(5) = a} ~ WDmId<t,(;~ ) (but for 2.9(1) 

we need now "WDmld<,  (A) + {5 < A : cf(5) ~ ~} is not A-saturated". I f  there 

is S c_ {8 < )~ : cf(5) = ~}, which belongs to I[~1 but not to WDmld<,()~), we 

can weaken the model theoretic requirement to: there is a (X, {a})-medium limit 
(see [Sh 88, Definition §3]) but not used here. 

1.10 CLAIM: Assume 2 ~ < 2 ~+. 

(0) I fN (an abstract elementary class) is categorical in )~, LS(N) <_ )~, I()~ +, ~) < 
2 x+, then N:~ has amalgamation. 

(1) If  N (an abstract elementary class) is categorical in A, LS(~t) < )~ and 1 < 

IE()~+,~i) < 2 a+ but K~++ = 0 then N has amalgamation in )~. 

(2) Assume N has amalgamation in A, LS(~)  <__ ~, Kx+ ¢ ~ and Kx++ = ~. Then 

there is M ~ Kx+ saturated above ~. 

(3) I f  M is p-saturated above )~, LS(Ji) <_ tt <__ ~o < )~ and ~ has amalgamation 

in every )~) ~ [)~0, A) then M is p-saturated above ;~o. 
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1.11 Remark: If I(A+,J~) < 2 ~+, then the assumption Nx++ = ~ is not used in 

part (1) of 1.10; this is 1.6(1) + (2). Also if (2x) + < 2 x+ then the assumption 

K~++ = O is not needed in part (1) of 1.10; by 1.6(1) + (2) (note (b) of 1.6(1)). 

Proof: (0) By 1.6(1) applied to ~+. 

(1) If not, we can choose for r/ E x+>2 a model M r E J~x such that 

[v ~ r/ ~ M.  _<~ Mr], and M~A(o),M~A{I) cannot be amalgamated over Mn. 
If (2x) + < 2 x+ we are done by 1.6(1), so assume (2x) + = 2 x+. For each ~ E ~+2 

let M r =: Ua<x+ M~f~, and let N~ E ~ +  be such that M~ <~ N~,N~ is <~- 

maximal (exists as ~x++ = ~). Now we choose by induction ~ < (2x)+,~¢ E ~+2 

such that M~¢ is not _<~-embeddable into N~ for ~ < { (exists by 1.4(2)). So 

necessarily for ~ < {, N~¢ is not _<a-embeddable into Nn~ (as M~¢ _<~ N~¢ ). Also, 

for ~ < ~, N~ is not _<~-embeddable into N~¢ as otherwise, by the maximality of 

N~,  this implies N~ ~ N~.  So {N~ : { < 2 x+ } exemplifies IE()~ +, K) = 2 x+, 

contradicting an assumption. 

(2) A maximal model in Kx+ will do by 0.20(2). 

(3) Easy. IHo  

$ $ $ 

1.12 Discussion: Instead of Weak Diamond we now discuss Definable Weak 

Diamond, which is weaker but suffices. 

Compare [MkSh 313], where many Cohen subsets are added to A and a 

combinatorial principle about amalgamation of configurations (Ms : s C n, s 7~ n) 

is obtained. 

We are interested here in the case n = 1 

n = 2, there even more definability can be 

This is particularly interesting when we 

theory; combining 2 ~ = 2 x+ with definable 

played a major role in the preliminary try 

(ordinary amalgamation); in §3, also 

required. 

look at results under some other set 

weak diamond on A + is helpful. This 

for this work. 

1.13 Definition: (1) In Definition 1.1 we add the superscript ~ if we restrict 

ourselves to functions F E 3 c. 

(2) Fix a model ~ whose universe includes A and has a definable pairing function 

on A, and a logic £ closed under first order operations and substitution; also allow 
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" M  E J~" and "M _<~ N" in the formulas, if it is not said otherwise. Let 

,~-'Def = {F  : for some g C hA and/ t  (h.  : ~/C ~>2) where 

h .  : [g(~) -4 A and hnr 9 C_ h.  for/3 < gg(~) 

and for some sequence ~ = {Ca : a < A), with 

~/,~ C £ for a < A the following holds for every a < A and 

f • " (2<~) :  F ( f )  = 1 iff (~3, a ,g ,  hf)  ~ ¢ ,  iff F ( f )  ~ 0}. 

(3) The version of weak diamond from 1.1, restricted to the class 9 r of 1.13(2), 

is called the (~3, £ ) -de f in i t iona l  version. If £ is £a.~ we may omit it. If ~ has 

the formt (7-/(X), • ,  <x,* ~) we write ~e f (~ ]  or ~DCf(~) instead of .T'Def~3,/2 or 9r~ el, 

respectively. If we omit X, we mean X = (2x) + and we may put Def(x) or Def 

instead of uD~f(x) or 5 cDef in the superscript. Having the definitional version or 

the de f inab le  weak  d i a m o n d  for/~ means ,~ ~ WDmIdDef(A). 

(4) Let DfWD<u(~ ) mean that with ~ = (7-/(X),E,<~,A,#) we have ,~ 

WDmIdD<~e(A). Instead of "< #+" we write "#" and instead of "2 <:~'' we may 

write nothing. 

(5) Let DfWD+u(£) mean DfWD<u(.~ ) together with the principle ~)x below; 

we adopt the same conventions as in (4) concerning #: 

(~)~ if for ~ E ~>2, M,  is a T~-model of cardinality < )~, (M,I~ : a <_ gg(rl) ) 

is C-increasing continuous, for 71 • ~2 we let Mn = U~<a M,  Ia and for 

r/7~ u • ~2, M,  and M,  are not isomorphic over M0, then { M q / - :  ~/• ~2} 

has cardinality 2 ~ (note that 2 0 = 2 <~ < 2 ~ implies that). 

1.14 CLAIM: 

(1) Assume £ first order or at least is definable enrichment of  first order. 
In the definition ^¢ , F D e f  u~J-~,z:, we can replace "for every a < A " by "for a club of  

a < fl". In the definition of 5 vDef we can let 9 • x(~>2) and h,  : [g(r/) -4 h>2. 

In any case WDmId~< ~ ( A ) increases with .7: and is C_ WDmld<~ ( A ), similarly for 

W D m  TId~< u ( A ). 

(2) I f U  = 9v~ ef and M _< (2<:~) + or (V/t, < #)(if([#~]-<~, C_) < #) & el(#) > .~ 

then WDmId-~u(A) is a normal ideal (but possibly is equal to P(A)) .  

(3) Assume V ~ "A = X+,X <~ = X,# > ,V' and P is the forc/ng notion of  

adding # Cohen subsets to X (i.e. {9 : g a partial function from # to {0} with 

domain of  cardinality < X}). Then in V p we have WDmIdD<euf(A ) is the ideal of  
¢: (*~V p non-stat ionary subsets of  A; i.e. with f8 = (7-l(X) . . . .  #, for any X. Also ~ 

of  Definition 1.13(5) holds. 

~ We mean "for every such ~3" (but easily if H(A +) E H(X) it does not matter). 
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Remark: In 1.14(1) we use the assumption on L:; anyhow not serious: reread 

the definition 1.1(1). 

Proof: (1), (2) By manipulating the h's (using the pairing function on A). 

(3) See [MkSh 313] or think. (The point is that we can break the forcing, first 

adding ¢ and g (or the < # ones) and then (read 1.1(1)) choose y E x2 as 

g r [7,7 + A) not "used before". Now for any candidate f E x(~>2) for a club of 

6 < A, 7(6) = g('y + 6) is not used in the definition of f r 5, hf [ ~ so stationarily 

often ~?(5) "guesses" rightly.) I1.14 

1.15 CLAIM: (I) I f2  e = 2 <x < 2 ~ then DIVVD+(A). 

(2) DYWD<~(,k) holds when A q~ WDmId<~(A) (see 1.2 for su~cient conditions). 

1.16 Discussion: We hope to get successful "guessing" not just on a stationary 

set, but on a positive set for the same ideal for which we have guessed; i.e. there 

is I a normal ideal on )~ such that for A E I + there is ~ E ¢2 guessing/-positively; 

this is connected to questions on A+-saturation. For more see [Sh 638]. 

We phrased the following notion originally in the hope of later eliminating 

~twd() 0 (i.e. using 2 x instead of ~twd(,~)). 

1.17Definition: (1) 

UDmId<~,(A) = {S c_C_ A : for some i* < # and Fi E 9 r (for i < i*) 

for every ~/E s2 there are f E x(2 <x) and i < i* 

and a club E of A such that: 

for every 6 E E we have: 

6 E S ~ ~1(6) = F i ( f  r 6), 

6 E A \S  ~ 0 = F~(f r (~)}. 

(2) We omit tt if p = 1. 

(3) BAJ:(A) is defined as the family of S C_ A such that  for some F E ~- and 

= l s  the condition above holds. 

1.18 CLAIM: Assume ~ = :F Def. 

(1) In the definition 1.17(1) we can replace f E ~(2 <~) by f E ~2 or f E ~(~>2). 

(2) UDmldY(A) is a normal ideal on A (but possibly is P(A)). 

(3) BAY(A) is a Boolean a/gebra of subsets of A including a11 non-stationary 

subsets of A and even UDmldY(A), and is closed under unions of < A sets and 

even under diagonal union. 

(4) If  S E BAY(A)  and F E Y then for some ~ E s2 we have: 
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(*) for every f C ~(~>2) we have 

{5 E S:  ~(5) = F ( f  r 5)} ~ 0 rood UDmIdY(A). 

(5) UDmId~<,(A) C_ WDmId~<,(A) C_ WDmId<,(A) and they increase with ~ and 
A E UDmIdY<,(A)ca A e WDmldY<,(A). 

Proo~ Straightforward. I1.18 

1.19 Discussion: Remember 

(*)i If V ~ ")~ = ~<x & 2 x = X+,,, I? is the forcing notion of adding # > X + 

Cohen subsets to X then in V <, any equivalence relation on P(A) definable 

with parameters X C_ X and ordinals which has at least X ++ equivalence 

classes has at least p equivalence classes, 

and (see [Sh 311], weaker see [Sh 237a]). 

(*)2 ZFC is consistent with CH+ for some stationary, costationary S C_ Wl we 

have 

(a) WDmId(R1) = {A C al I : A\S  is not stationary}, 

(b) ;D~ 1 + S is R2-saturated, 

and (see [Sh 587]): 

(*)3 ZFC + GCH is consistent with {5 < R2 : cf(5) = R1} E WDmId(l%) 

and (see [Sh 208]): 

(*)4 ZFC + 2 ~1 < 2 ~2 is consistent with {5 < R2 : cf(5) = R0} E WDmId(l%). 

See more on weak diamond [Sh 638]. 

2. First at tempts  

Given amalgamation in ~x (cf. 1.10(0)) we try to define and analyze types p E 

$(M) for M C Kx. But types here (as in [Sh 300]) are not sets of formulas. They 

may instead be represented by triples (M, N, a) with M _<~ N and a E N \ M .  
We look for "nice" types (i.e. triples) and try to prove mainly the density of the 

set of minimal types. 

To simplify matters we allow uses of stronger assumptions than are ultimately 

desired (e.g. 2 x+ > A ++ and/or  K~+3 = 0). These will later be eliminated. 

However the first extra assumption is still a "mild set theoretic assumption", 

and the second is harmless if we think only of proving our main theorem 0.2 and 

not on subsequent continuations. 

So the aim of this section is to show that we can start to analyze such classes 

and introduce some basic notions: triples, minimal triples, reduced, the (weak) 

extension property. 
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2.1 HYPOTHESIS: J~ is an abstract elementary class. 

2.2 CLAIM: Assume 
(*)~ K is categorical in A; 1 _< I(A +, K) < 2 )`+ ; LS(~) <_ A and: 2 x < 2 )`+ , or at 

/east the definable weak diamond holds for A + holds. 
Then 
(1) ~)` has amalgamation. 
(2) If  I(A ++, K)  = 0 then ~ has a model in A + which is universal homogeneous 

above A, hence saturated above A (see 0.22(2)). 

(3) IfI(A++,K) = 0 then M • KA =~ IS(M)[ < A +. 

Proof: (1) If amalgamation fails in K)` and 2)` < 2 x+, then the assumptions 

of 1.4(1) hold with A + in place of A. Hence by 1.6(2) the statement (*)1 of 

1.6(1) (see there) holds and easily also (*)2 of 1.6(1), hence by 1.6(4) we have 

I (A+,K)  = 2 ~+, a contradiction. If 2 )  ̀ = 2 )`+, we are using the variants from 
1.13. 
(2) As I (A++,K)  = 0 < I (A+,K) ,  there is M • K)`+ which is maximal. If M is 

not universal homogeneous above A then there are No, N1 • K)` with No _<n M 
and No <~ N1 such that N1 cannot be _<~-embedded into M over No. Use 
0.20(2) to get a contradiction. 

(3) Follows from (2). m2.2 

2.3 Definition: 

(1) (a) 
(b) 
(c) 

(d) 

(e) 

K 3 = {(Mo,Ml,a) : Mo <_~t M1 are both in K;~ and a • MI\Mo}.  

(Mo, Mi,a) < if . = a',Mo M ,M1 

(Mo, M1, a) <h (M~, M~, a') if h(a) = a', and for £ = 0, 1 we have: 

h r Me is a _<n -embedding of Mt into M~. 

(Mo, MI,a)  < (M;,M;,a') i_f (Mo,Ml,a) <_ (M;,MI,a) 

and Mo ~ M~. 

Similarly <h .  

(2) (Mo, M1, a) E K 3 has the weak  e x t e n s i o n  p r o p e r t y  if there is (M~, M~, a) 

e K 3 such that (M0, MI, a) _< (M~, M~, a) and Mo ~ M~. 

(3) (M0, M1, a) E K 3 has the e x t e n s i o n  p r o p e r t y  if: for every No E ~qx and 

_<n-embedding f of Mo into No there are N1, b and g such that: (Mo, M1, a) <g 
(No, N1, b) E K~ and g _D f (so g(a) = b and g is a <n-embedding of M1 into 

N1). 
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2 .4  CLAIM: Assume 
(,)3 LS(N) <_ )h K is categorical in I and in A+, and 1 < I(A++, K). 

Then every (Mo, M1, a) E K 3 has the weak extension property, that is: 
if Mo <_~ M1 are in K~ and a E MI\Mo, then we can find M~, M~ in ~x such 
that: Mo <~ M~ hence Mo ¢ M~ and (Mo, M~, a) <_ (M~, M~, a). 

Proof'. We can choose (Ni, a/:  i < ,~+) such that: 
(a) Ni E Kx is _<n -increasing continuous in i; 

(b) hi is an isomorphism from M1 onto Ni+l such that hi(Mo) = Ni, hi(a) = 

ai.  

Now as a e MI\Mo clearly i < j < )~+ ~ ai E Ni+l <_~ Nj and aj ~ Ni hence 

Ui<x+ Ni E K~+. 
By 0.20(1) applied to )~+ there are M~ <.~ M~ in K~+, M~ ¢ M~, and there is 

b E M~\M~. As K is categorical in ,~+, without loss of generality M~ = U~<;~+ N~. 

Let )~ be large enough and ~ -~ (7-/(X) E, <~) be such that I C_ ~ ,  I1~11 - -  

and {Ni, a~ : i < t+), M~, M~, b and the definition of N belong to ~B. 
Let 5 -- ~ N 1 +, so (f E (t, ,~+) is a limit ordinal and 

N5 _<~ N~+I _<~ M;, 

N5 _<~ (M; N ~)  _<~ M;, 

 nM; 
NS-F1 N (M; N ~)  = Ns, 

so for some N we have: 

N E ~ ,  N _<.~ M;, and (N5+1 U (M; N ~))  _C N 

so (see Definition 2.3(1) above) 

(N~, N6+1, as) _<~ (M~ n ~ ,  N, as), 

and b witnesses that Na ~ M~ n ~.  

As (Mo, M1, a) ~ (Na, Na_kl , aa), the result follows. 

2.5 Detlnition: (1) (Mo, M1, a) E K~ is minimal  when: 

~.4 

if (Mo, M1, a) _<h, (~I~, M[, ae) e K~ for g = 1, 2, 

and hi f 11//o = h2 [ Mo 

then tp(al ' 1 , M~, M 1 ) = tp(a2, M~, M~). 
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(2) (Mo, M1, a) E K~ is r e d u c e d  when: 

if (Mo, M1, a) <_ (M~, M~, a) E ~ then M~ M M 1 = M O. 

(3) We say p E $(Mo) is min imal ,  where Mo E Ka, if for some a, M1 we have: 

p = tp(a, Mo, M1) and (Mo, Ml,a) E K~ is minimal. 

(4) We say p E S(Mo) is r e d u c e d  where Mo E K~, if for some a, M1 we have 

p = tp(a, Mo, M1) and (Mo, Ml,a) E K~ is reduced. 
(5) We say p E $ (M)  where M E Ka, is a lgebra ic  if for no c E M is p = 

tp(c, M, M). 

2.6 FACT: (1) For every (Mo, M1, a) E K~ there is a reduced (M~, M~, a) such 

(M~,MI,a) E K~. that: (Mo, MI, a) < ' ' 
(2) Assume ((Mo,~, MI,~, a) : a < 5) is an increasing sequence of members of 

K~. 
(a) if 5 < A + thent (Mo,a, Ml,,~,a) <_ (U~<5 Mo,~,U/3<~ Ml,~,a) E K~ for 

a<5.  
(h) If5 = )~+ the result may be in K~+: if {a < (5 : Mo,~ # Mo,~+l} is cofinal, 

this holds. 
(c) If 5 < A + and each (Mo,a,Ml,~,a) is reduced then so is 

(U,<~ Mo,3, Uf3<~ Mid3, a). 
(3) If (Mo, M1, a) _< (M~, M~, a) are in K~ and the first triple is minimal then so 

is the second. 
(4) If (Mo, M1, a) < (M~, M~, a) are in K~ then tp(a, Mo, M1) < tp(a, M~, M~) 

(see Definition 0.19(6)). 
(5) If K~ has amalgamation, then: (Mo, M1, a) E K~ is minimal if and only if: 

(*) If (Mo, M1, a) ~---he (M~, M~, ae) E K~ 3 for g = 1, 2 and hi I Mo = h2 [ Mo 

then tp(al,  M~, M~) = tp(a2, M~, M~). 
(6) If there is no maximal member 2 of K 3 and there are No <~ NI in K~, then 

there are N O <~ N 1 in ~ + .  

(7) If every triple in K 3 has the weak extension property, and there are No <~ N1 

in J~A, then there are N O <~ N 1 in Rx+. 

(8) If LS(J~) _< A and every triple in K~ has the extension property and K 3 # 0 

then no M E Kx+ is <~-maximal hence K~++ # O. 

(9) If LS(&) <_ A and K~+ # $, then g~  # ¢. 
(10) Assume Kx has amalgamation. If (Mo, M1, a) E K 3 and p = tp(a, Mo, M) 
is minimal, then (Mo, Ml,a) is a minimal triple (i.e. in Definition 2.5(3) we 

t If we deal with an increasing sequence of types, the existence of univ is not clear. 
2 This will be applied for A +. 
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can replace 'for some '  by 'for all'. Also, p is minimal  i__ff for no N do we have 

M0 < ~  N E K and p has more  than  one non-algebraic  extension in $ ( N ) .  

Proof: Easy. Note tha t  par t  (7) is 2.4. 

2.7 CLAIM: Assume (*)~+ + (*)~ (i.e. the hypothesis of 2.2 and 2.4) and 2 x+ > 

A ++,  and Kx+3 = 0. 

Then in ~a x the m i n i m a / t r i p l e s  are dense (/.e. above every triple in K~ there 

is a minimal one). 

Remark: We do not  intend to adopt  the hypotheses  "2 x+ > ,k++",K~,+a = 

indefinitely. They  will be el iminated in §3. 

Proof: If not, we can choose by induction on a < A +, for ~ E 52 a triple 
0 1 (M~, M~, an) and hn,~ for u _~ ~/such that :  

(i) o 1 K 3, (M n , M n , an) E 
(ii) u ,~ r 1 ~ (M °, M 1, a~,) <_h,,~ (M °, M~, an) , 

(iii) u0 < ul < u2 ~ h,~,~o = h ~  ,/Jl O hi. 1 ,l/0 , 

M 1 (iv) (M°.(e), n~(e>,hn~(t),~ [ M  °) for g = 0,1 are equal, 

(v) tp(an~(o ) M ° M 1 o M 1 ' n'(O), n~(o)) ¢ tp(an-(1),M~.(1),  n~0)); this makes  sense as 
MO M o ~/ (0) m_ r^(1) ,  

(vi) if ~ E ~2 and 6 < A+ is a limit ordinal,  then Mn t = [.J~<, hn,nt~(Mntt~ ) for 

= 0, 1, 

(vii) ( M ° > ,  M I > ,  a<>)  E K~ is a triple above which there is no minimal  one. 

This  is s t raightforward:  for a = 0 choose a triple in K a above which supposedly 

there is no minimal  triple; in limit a take limits of d iagrams (chasing the h's); in 

successor a ,  use non-minimal i ty  and 2.6(5). 

Let M* E Nx++ be sa tu ra ted  above A (exists by 2.2(2) so it is necessarily 

homogeneous  universal  above A +, hence above A; note: A there s tands  for A + 

here). 

We choose by induction on a < A + for ~ E ~2, a _<~-embedding 97 of M ° into 

M* such that :  

u < r/=~ 9,  = g7 o hn,,,  

gnu(o) = gn 'o)"  

This  is clearly possible. Let N ° = M* [ Rang(gn).  For r/ E ~+2 let N ° = 

M* [ [.J~<~+ Rang(gnt~ ) and let gn = LJ~<~+ g~r~. Chasing arrows we can 

M ° M 1 anta},hnr~,nt~ : a < /3 < A+), say find for r~ E ~+2 a limit to (( nI~' , t ~ '  

(Mn,° Mn ,1 an ) E K~+, and hn,, for u ~ ~ as usual. Let f ,  be the function f rom M ° 
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into M* such that for a < A + we have f~ohn,nla = gn" So f~ is a _<~-embedding 

of M ° into M*. So we can extend fn to f+ ,  a <y~-embedding of M 1 into M*. 

Let a~ = f+(an) for ,1 E x+2. 

As 2 ~+ > A ++ for some~o ~ ~1 we havea*no = an~'* So for s o m e a  < A +, 

r/0 [ a = 7/1 I a but ~0(a) ~ ~l(a),  without loss of generality 71t(a) = ~ and by 

clause (v) above we get a contradiction. I2.7 

2.8 CLAIM: (1) Assume (,)2 or just 

(,)2- y~ has amalgamation in A and LS(~) <_ A. 

If Mo <_~ No E K~ and (Mo, Ml,a) E K~ then there is N E K<_~+ such that: 

No <_~ N and for every c E N satisfying tp(c, Mo,N) = tp(a, Mo,M1), there 

is a <_g-embedding h of M1 into N extending idMo such that h(a) = c and 

N ~ K~+ ~ N is a <y~-maxima/member of K~. 

(2) Assume Mo <_~ No E Kx and (Mo, M1, a) E K 3 and every triple in K 3 has 

the weak extension property. Then there is N E K~+ such that: No <_~ N and 

for every c E N either for some N' E K~ we have No U {c} C_ N' <_~ N and 

c does not strongly realize tp(a, Mo, M1) or there is an <_~-embedding h of M1 

into N extending idMo such that h(a) = c. 

(3) We can in parts (1), (2) have No E K~+. 

Proo~ (1) We choose, by induction on a < A +, a model Na E K~ increasing (by 

_<s0 continuous such that: for a even N~ ~ N~+I if N~ is not <~-maximal, and 

for a odd let /3a = M i n { / ~ : f l = a + l o r / ~ < a a n d t h e r e i s c E  Nfl such that 

there is no _<y~-embedding h of M1 into Na extending iduo such that h(a) = c 

but for some N E K~, Na _<~ N and there is a _<~-embedding h of M1 into N 

extending idM0 such that h(a) = c}, and if/~a _< a then choose N exemplifying 

this and let Na+l = N. By the definition of type we are done. 

(2) Same proof; note that  the non _<s~-maximality of Na (and hence N) follows 

by a weak extension property. 

(3) By using 0.20(2) repeatedly A + times. 12.s 

2.9 CLAIM: Assume (*)2 or just: 

(*)2- Y~ has amalgamation for A and LS(Y~) <_ A. 

(1) Assume that above (Mo,M,,a) E K~ there is no minimal member of K3; 

then (Mo, M1, a) itself has the extension property. 
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(2) I f  (Mo ,Ml ,a )  E K3,Mo ~.~ N E K and the number of c E N such that 

tp( c, Mo, N)  = tp( a, Mo, M1) is > A then (M o, M1, a) has the extension property. 

(3) Assume above (Mo, M1, a) E g~  3 there is no minimal member o r g y ;  then 

(*) for some N we have: Mo <_~ N and N is as required in part (2). 

2.10 Remark: (1) See 2.3(3). 

(2) Note that (.)~ is from 2.2 and (*)~ ~ (*)~- by 2.2. 

Proo£ (1) Follows by part (2) and (3). 

(2) By 0.12(1)(D). Without loss of generality N has cardinality ~+ and also is 

as in 2.8. By 0.20(2) for any M~ such that Mo _<n M~ E K~ there is N I , N  <_n 

N1 E Kx+ and a <n-embedding h of M~ into N1 extending idMo. Now some 

c E N\h (M~)  realizes tp(a, Mo, M1) so (by the use of 2.8) there is an embedding 

hc of M1 into N extending idMo such that he(a) = c. Lastly let N~ _~n N1 be of 

cardinality A and including Rang(he) U Rang(h) (send a to c via he). So modulo 

chasing arrows we have proved that (M0, M1, a) has the extension property for 

the case M~ E Kx, M0 _<n M~, which was arbitrary so we are done. 

(3) We first prove 

(*)0 For some M0 +, Mo ~_n M + E Kx and tp(a, Mo, M1) has > ~ extensions in 

S(Mo +) (in fact > min{2 u : 2  u >A}). 

Proofo f (* )o:  Let M o,Mnl,an,hn.(q,  E ~+>2 and u _<1 7]) be as in the proof 

of 2.7 (i.e. satisfy (i)-(vi) there) and M°> = Mo, M<I> = M1. Let # = 
Min{# : 2 ~ > ~}, so t~>2 has cardinality <_ ~ and # < ~. Let ">2 = {7/¢ : ~ < ~*} 

be such that  7/~ ,~ ~¢ ~ ( < ~ and so (* < ~+ and without loss of generality is 

a limit ordinal. Now we can choose by induction on ( < (* a model M~ E K~ 
and, if ~ < (*, also a function gn¢ such that: 

(a) M~ is _<n-increasing continuous in (, 

(/3) M ~ = M  0 = M o ,  
(2/) gn¢ is a <_n-embedding of M°¢ into M~*+I , 
(5) if ~ ,~ ~¢ then g~ o hnc,~ = g~,  

(5) if ~ < ~o, ~ < ~1,7]~o ~--- ~ ^ (0) ,  ?~, : 7]~ ̂  (1) then (M~* o = M* and) gn,o - 

gr~ 1 • 

So for r/ E "2 we can find g~, a _<n-embedding of M ° into M~., such that 

g~ o h~,nl ~ = gnI~ for every a < p. We also can let 

o o 1 S(M . P,7 = gn[tp(an,Mn,Mn)] E [ Rang(g~)), 

o < E S(M~.)  (possible as Nx has amalgamation by and find Pn such that Pn - P~ 

2.2(1) if (.)2 holds and by (*)~- otherwise). 
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For ~ E "2 and a _< # let N°r,  ~ = M~. F Rang (gnr~). Clearty for ~ E "->2, N g 
is well defined; 7/~ u E "->2 =~ N o _<R NO; and N°.(o) = N°^(1). Also letting, 
f o r ~ E U 2 a n d a < p ,  t he type  o be o o o $ (N  ° ) i s w e l l  _ P ~  P~ r N~t~ we have: p~ E 
defined, ~ ~ u E ">-2 ~ pO _< pO and P~(o)° ¢ P~ (̂1)0 . Hence for rio ¢ ~/1 from "2 

we have pn o ¢Pm- So I{q E S(M~.) :  q [Mo =P}I -> 2u > ~. Let Mo + = M~.. 

Proof of(*): We choose by induction on i < ~+, Ni E Kx which is _<R-increasing 

continuous, No = Mo + (M + is from (*)o above) and for each i some ci E Ni+l 

realizes over No = M + a (complete) extension ofp  = tp(a, Mo, M1) not realized 

in Ni. There is such a type by clause (*)o above and there is such an Ni+l as 

has amalgamation in A. Clearly ei ~ Ni and so Ui<:~+ Ni is as required. I2.9 

2.11 CLAIM: Assume (,)2- (from 2.9; that is J~ has amalgamation in )~ and 
LS(~) < ~). 

If (Mo, M1, a) < (M~, M~, a) are from K~, and the second has the extension 
property, then so does the first. 

Proof: Use amalgamation over Mo: if Mo _<R No E Kx we can find N~ such 

that M~ _<~ N~ E K~ and there is a <R-embedding of No into N~ over Mo. Now 
use "(M~, M~, a) has the extension property" for N~. 12.11 

Now we introduce 

2.12 Definition: For any models M, Mo E Kx, any type p E $(Mo) and 
f0:  Mo onto • ) M we let Sp(M) = SPM = {fo(f(P)) : f E AUT(Mo)}. Note: lSO 

S~u does not depend on fo- If K is categorical in £,$p(M) is well defined 

for every M E K~. We write also Stp(a,Mo,M1)(M) or 8(Mo,M,,a)(M ) when 
(Mo, M1, a) e 

2.13 CLAIM: Assume (*)2- + (*)~+ + (*)~ + 2~+ < 2x++ + K~+3 = ~. I f  
( Mo, M1, a) E K 3 is minimal then it has the extension property. 

Remark: Instead of 2 x+ < 2 x++, we can just demand the definable weak 
diamond. 

Proof" Assume not. By the previous two claims (2.9(1), 2.11) we may assume 

that (Mo, Ml,a) is minimal. As J~ has amalgamation in ~+ by 2.2(1), there is 

M* E K~++, which is saturated above ~+ (as K~+~ = 0), hence M* is saturated 

above ), (by 1.10(3)). By 2.6(1) + 2.11, without loss of generality 

~)0 (Mo, Ml ,a)  is reduced. 
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Let h: M0 ~ M* be a _<~-embedding and let p = tp(a, Mo,M1). If h(p) is 

realized in M* by _> A+ elements we are done by 2.9(2). So assume 

~1 h(p) is realized by _< A members of M*. 

Similarly 

(~+ q is realized by _< A members of M* for q = g(tp(a,M~,' M 1')) if g is a 

<~-embedding of M~ into M* and (M~, M~,a) > (M0, Ml,a). 

Next we prove 

~)2 for some reduced (M~,M~,a) _> (Mo,Ml ,a )  from K~ we have 

I8(iS,i;,a)(MD)l > A +. 

Proof of (~2: If not, we build two non-isomorphic members of Kx+ as follows. 

First: Choose by induction on i < A +, (N0,i, NI#, a) 6 K 3 reduced (see 2.6(1)), 

increasing continuously (see 2.6(2)), with No,i # No,i+l,(No,o, Nl,o,a) = 
(M0, M1, a); this is possible as (No,/, Nl,i, a) G K~ has the weak extension prop- 

erty (by 2.4 see 2.3(1)). Let N 1 = Ui<A+ No,i. 
Second: Choose by induction on i < A+,N ° <.~ M*,iIN°l[ = A,N ° strictly 

increasing continuous such that: 

(*) for every/~ < A+,i < A +, and q c: S(Noj,NI,~,a)(N~) for some 7 6 (fl, A +) 
there are no N', N ° <_~ N' c: K~ and c 6 N ' \ N  ° such that c realize q. 

This is straightforward by ~ 1  + ~ 2  and bookkeeping. Let N O = Ui<x+ N°. 

By categoricity of Kx+ there is an isomorphism g from N 1 onto N °, so E = 

{5 < A + : g maps N0,~ onto N ° } is a club of A +. Now let 5* G E, and apply (*) 

for/~ = 5*, q = g(tp(a, No.5*, N1,5.)) to get V- Choose 5 6 E which is > % Now 

NI,~ gives a contradiction. | ~ 2  

Without loss of generality 

~3 ]S(Mo,M,,a)(Mo)] > £+ and p = tp(a, Mo, M1). 

Next we claim 
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@4 If M • K)~, M _<~ M*, F C U{$p(M') : M'  _<~ M, IIM'll : A}, Irl __ ~+, 
then 

F* =: {q • Sv(M) :there is M' ,  M <~ M',  IIM']] = A, 

M ~ realizes q but no c • M~\M realizes any r • F} 

has cardinality A ++, in fact ISp(M)\r*l < A +. 

Proof of ~4: Without loss of generality [M*[ = A ++ (i.e. the universe of M* 

is A++). For every q E Sp(M) there is a triple (Mo,Ml,q, aq) isomorphic to 

(M0, M1, a) (hence reduced) such that tp(aq, M0, MI,q) = q. As M* is saturated 

above A, by 0.26 without loss of generality Ml,q <_~ M*. 
Without loss of generality 6 < A ++ & (A + divides 8) =~ M~ =: M* r 6 _<a M*. 

Now 

(*)o ql ~ q~ ~ aq~ ~ qq2 and 
(*)1 a q ¢ 6 & 6 < A  ++ &A + d i v i d e s 6 ~ M l , q M M ~ = M .  

[Why? As (M, MI,q, aq) is reduced.] 

Now if r C F, say r E Sp(M"), then by ~)1 we know Ar = {c E M* : 

c realizes r} has cardinality _< A and hence A = U{Ar : r E F} has cardinality 

A +, so we can find 6 < A ++ divisible by A + such that A C_ 6. But (by ~)3) we 

have ]$p(M)[ > A +, hence we can find q[6] E Sp(M) such that aq(~) ~ 6, hence 

(M, M 1,q[~], aq[~]), exemplifies the conclusion of ~4"  I ~ 4  

Final contradiction: By ~ 4  we can construct 2 ~+ non-isomorphic members of 

K~+ using 1.6(1) as follows. We choose by induction on a < )~+, for every r/E a2, 
1 such that: the model M n and the types p0,pr 

(a) M<> = M0, 
(b) M n E Kx, 
(c) (Mrr ~ : 3 _< gg(~)) is <~-increasing continuous, 

(d) Pr E Sv(Mri3), 
(e) for 3 _< a, we have p°,pl n E $(Mr) and: M n realizes Pn* I3 iff 3 < a &: ~ = 

If a = 0 or a is a limit, there is no problem to define M r for ~ E ~2. If 

M r is defined, we can choose, by induction on i < )~++, (Nr#,ar,i) such that 

(M~, Nn#, an,i ) E K 3, tp(ar,i, M~, Nn,i ) C Sp(M~) and Nn# omits any 

q • {Pt~I 3 : 3 < ~g(r/),l ~ ~(/~)} U {tp(b, Mn,Nn,j) : j < i and b • Nn, j and 

tp(b, Mn, Nn,j) • Sp(Mr) }. By (~4 we can choose (Nn,j, an,j). 
Hence ]Wr# I _~ ~, where Wr,i = {j < ~++ : for someb • Nr# we have 

tp(b, Mr, Nr,i ) = tp(ar,j, Mr, Nr,j ) }. 
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Hence we can find i < j < A ++ such that i ~ W~,j & j ~ W,,i.  Let M,  A(0> = 
• o :  M, ,Nn , i ) , p~= Nmj). N~,i, Mv^<I ) = Nn,j,pn tp(a,,i, tp(amj,Mn, 

Let, for 7/E :~+2, Mn = [J~<~+ M~r,, and apply 1.6(1). ~.12 

2 . 1 4  CONCLUSION: [(,)2- + (,)2+ + (*)2 + 2~+ < 21++ + KX+3 = 0]. 

Every (Mo, Ma, a) E K 3 has the extension property. 

Proo~ By 2.11 and 2.9 + 2.12. I2.14 

2.15 Remark: Conclusion 2.14 says in other words: if 

(a) LS(~)  <_ A, 

(b) K is categorical in A and in A +, 
A++ (c) 1 < I ( ~  + + , K ) < 2  , 

(d) K~+3 is empty, 

(e) 2 a+ < 2 ~++ (or just definable weak diamond), 

(f) ~ has amalgamation in A, 

then every triple (Mo, M1, a) in K 3 has the extension property. 

2.16 CLAIM: [(*)2' in other words LS(~) < A; ~ categorical in A and in A+; and 

1 _< I(A ++,K) < 2~++]. 
If Mo <_~ M1 are in K~ then we can find a < A + and (Ni : i ~_ a) which is 

<_~-inereasing continuous, Ni E Kx, (Ni ,Ni+l,ai)  E K 3 is reduced, Mo = No, 

and M1 ~_~ N~. 

Proof: If not, we can contradict categoricity in Kx+ (similar to the proof of ~ 2  

during the proof of 2.12). 

Without loss of generality M0 ~ Mx. We choose, by induction on i < A +, 
N ° E K~, <n-increasing continuous such that (N o N O "~ - ~ i ,  i+1) = (Mo, MI) (possible 
by 2.6(9) and the categoricity of K in A). Let N o = Ui<x+ NO. 

We choose, by induction on i < A +, N } E Kx, <y~-increasing continuous and 
ai such that (N/1 N 1 , i+~, ai) E K~ is reduced and let N ~ = [Ji<x+ N } (possible by 
2.6(1) and the categoricity of K in A). So by the categoricity in A + without loss 
of generality N 1 = N °, hence for some (fl < 62 < A + we have 

N~I : N  1 N O = N  1 
61 ' 62 02" 

o o By changing names (N~l,N~l+l) = (/~lo,M1) and so (Ns,+i : i <_ 52 - 51) is as 

required. "2.16 

2 . 1 7  CONCLUSION: [(,)2- + (,)~+ + (*)2 + 21+ < 2~++ + Ka+3 = O, i.e. the 

assumption of 2.14]. 
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Kx has disjoint amalgamation (M2, M1 are in disjoint amalgamation over M0 

in M3 if Mo <_~ Me _<~ M3, M1 M M2 = Mo). 

Proof." By 2.16 and iterated applications of 2.14. Ih.l~ 

3. N o n - s t r u c t u r e  

The first major aim of this section is to prove the density of minimal types using 

as set theoretic assumptions only 2 ~ < 2 ~+ < 2 ~++ h'om cardinal arithmetic. The 

second aim is to prepare for a proof of a weak form of uniqueness of amalgamation 

in J~. Our aim is also to explain various methods. The proofs are similar to the 

ones in [Sh 87b, §6]. 

The immediate role of this section is to get many models in A ++ from the 

assumption "the minimal triples in K 3 are not dense": in 3.25 we get this under 

some additional assumptions, and in 3.27 we get it using only the additional 

assumption I(A, K +3) = 0, which suffices for our main theorem (this does not 

suffice for the theorem of [Sh 6001, see there on this). 

But the section is prepared in a more general fashion, so let us first explain two 

general results concerning the construction of many models based on repeated 

"failures of amalgamation" or "nonminimality of types". 

In 3.19, we give a construction assuming the ideal of small subsets of A + (that 

is WDmId(A+)) is not A++-saturated, as exemplified by (S~ : a < A++>. We 

build for rl E (~+~)>2 models Mn E K~+ such that M n = U~<~+ M,,~, IM,,I = 

A x (1 + ~g~) and u ,~ T/=> M~ <~. M, r Building M n- (t), manufacture M~^ (t> as a 

limit of models (Mn-(e>, a : a < A+), a representation of Mn.(e>, usually in a way 

predetermined simply, except when a E Stg(n ) and ~ = 1, and then we consult a 

weak diamond sequence. This is like 1.6(1), but there we use our understanding 

of models in K~ to build many models in K~+ while here we build models in 

Kx++, thus getting 2 ~+2 models in A +2. We even get 2 (~+:) models in K),+2 with 

none _<n-embeddable into any other. 

A second proof 3.23 is like 1.4(1) in the sense that we get only close to 2 ~++ 

models. It is similar to [Sh 87b, 6.4], and the parallel to [Sh 87b, 6.3] holds here. 

So we have to find an analog of [Sh 87b, definition 6.5, 6.7]. But there we use 

fullness on the side (meaning: M E K~ is full over N E K~ if N _<~ M, and 

(M, c)cEN is saturated), but we do not have this yet. 

We still have not explained the framework of this section. In 3.1-3.5 we present 

construction frameworks C, which involve sequences of models of length _< A each 

of cardinality < A and, in particular, define local and nice C. In our applications 

here, A + plays the role of A (and < A + is specialized to = A). 
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Then in 3.6 3.8 we present examples of such frameworks. Our intention is 

to use the limit of a sequence (Ma : a < A / as an approximation to a model 

of cardinality A +. For this we define in 3.10-3.11 a successor relation (next 

approximation),  modulo a "< A-amalgamation choice function"; this is denoted 

2f/1 <~t 2f/2. Iterating it we get the quasi-order _<F (see 3.13). In 3.14 we 
- -  F 1 

define the key coding properties (of an amalgamation choice function F for the 

framework C). The intention is that  these coding properties suffice to build 

many non-isomorphic models in A+. In 3.17 we give the "atomic step" for this 

construction. 

In 3.18 we prove the existence of 2 ~+ non-isomorphic models, using the A- 

coding property. As we do not have this in some applications we have in mind, 

we next turn to the weak A-coding property in 3.19 as well as the weak (local) 

A-coding property and corresponding properties of F (all in Definitions 3.20 and 

3.22), connect them (3.21), and prove that  there are many models in 3.23. 

Lastly, 3.25 and 3.27 deal with our concrete case: if the minimal triples in ~3 

are not dense, then in most cases failures of amalgamation lead to the A+-coding 

property and hence to many models in cardinality A++. 

Note generally that  we mainly axiomatize the construction of models in A +, 

not how we get 2f/', 2fl <at 2f/' --F,a C Seq~, that  is coding properties; for the last 

point, see the examples just cited. 

Later, in 6.10, we shall need again to use the machinery from this section, in 

trying to prove that  there are enough cases of disjoint amalgamation in ~ .  

We may want to turn the framework presented here into a more general one. 

See more in [Sh 603]. 

3.1 CONTEXT: (1) J~ is an abstract  elementary class. 

(2) But =M or =~ is just an equivalence relation, i.e. for M E K , = M  is an 

equivalence relation on ]MI, moreover a congruence relation relative to all 

relations (and function symbols which we ignore) in T(M), that  is for R C T(M) 

an n-ary relation, we have 

A a~ =M bi ~ (ao,. . .  , an - l )  C R M =- (b0,. . .  ,bn-1) E /~M. 
e<:n 

We let IIMII = ](M)/=M I and 

t¢~,, = { M :  IMI has # elements and IMI/=M has A elements}. 

K<~,<t, are defined naturally, K<~ = K<~,<~ etc 
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(3) Now the meaning of _<n should be clear but M <~ N means (M E K, N E K 
and) M C N and M~ =M<_~ N~ =N and 3a E N[a/ =N~ (M/ =N)], i.e. 

(3a E N)(Vb E M ) ( , a  =N b). 
(4) K 3 = { (M,N,a) :  M <_~ N are from K~,x and a E i , ( a /  =N) ~ (M/  =N)}. 

(5) In this context "R is an isomorphism relation from M1 onto M2" means that  

(a) RE_M1 xM2,  
(b) al =M1 bl & a2 =M2 b~ ~ alRa2 o blRb2, 

(c) (Vx E M1)(3y E M2)xRy, 
(d) (Vy E M2)(3x E M1)xRy, 
(e) if Q E T(M1) = T(M2) is an n-place relation and a~Rbe for ~ = 0 , . . .  ,n - 1 

then (a0 , . . . , an-1)  E QM, +.~ (b0,. . . ,bn-1) E QM2, 
(f) alRa2 & blRb2 ==~ (al ---M1 bl ~=~ a2 =M2 b2). 

3.2 EXPLANATION: The need of 3.1(2) is just to deal with amalgamations which 

are not necessarily disjoint. If we use disjoint amalgamation, we can omit 3.1(2) 

below in Definition 3.10, a disappears so F is four place and use K~ instead of 

Kx,~. This is continued in [Sh 603, 2.17t]. Maybe 3.1 would be better understood 

after reading 3.10, after clause (c). 

3.3 Definition: Let A be regular uncountable and R an abstract elementary class. 

A A-construction framework C = (R+, Seq, <_*) means (we shall use it below 

with A + playing the role of A): 
(a) 7 + = T+(~I +) is a vocabulary extending T. ~i + is an abstract elementary 

class satisfying axioms I, II, III from 0.6 and M ___y~+ N ~ M I T <_~ N [ 7. 
~ r the rmore  J~+ = J~+x. As above, equality (in r) is just a congruence 

relation. 

(b) Seq = U~_<~ Seq~ where, for a _< A, Seq~ is a subset of 

{Y/I : M = (Mi : i < a), Mi G ~+~ is _<~+ -increasing continuous}. 

For a = A we require further that M~ : M  has cardinality A, where M = 

U i < z  Mi. 
(c) _<* is a three place relation on triples x, y, t written x ~ y for x, y E Seq 

and t a set of pairwise disjoint closed intervals of ~g(x). 

We require: 

(d) Seq is closed under isomorphism and initial segments. 
(e) If 2~/1 _~ ~/2 and ~/E Ut then M~ _~+ M~ and hence M~ [ T _~ M 2 [ v 

and "~ < ~g(~/2). 

(f) If ~/1 <~ 57/2, s C_ t, and 1~/2 ~ ~/3 E Seq then ~/1 _<~ ~/3. 
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(g) If t is a set of closed pairwise disjoint intervals of ~g(2f/) and _~/• Seq  then 

£ <-; M. 

3.4 Convention/Definition: 

(1) From now on C will be a A-construction framework. 

(2) I f / Q  • Seq~ then we let Jr/ = (M/ : i < A) and M =: Ui<~ M/; similarly 

with f /x  = (M/X : i < A). 

(3) K~ r = {(~/, f ) : - ~ / •  Seq~ and f :  A -~ A}. 

(4) If (_~le, f e) • K~, ~ for g = 1,2 then (.~/1 f l)  <- (~f2,f2) means that: for some 

club E of A, we have 
(a) 5 • E =~ f~(5) < f2(5) and 

(b) M1 -<~t M 2  where t = tE,fl = {[5,5+ f1(5)] : 5 • E}. 

(5) Seq  ~ = {~I • Seq  : Ui IM~I is a set of ordinals < A+}; similarly for Seq~. 
(6) K~, s = {(2f/, f) • Kqr :  _M • Seq~}. 

(7) C is local (respectively, revised local) if the following clauses (a), (b), (c) 

hold: 

(a) 2~/= (Mi:  i < a) ~ Seqa iff: 

(a) 2f/is <-y~+-increasing continuous in t~+~, 

(/~) i + 1 < a ~ (M~, Mi+I) • Seq 2, 
(7) if a = A then ]M/ =M [ = A (recall i = Ui<x Mi); 

(b) for 21~/1 ,/~/2 • Seq  and t a set of pairwise disjoint closed intervals contained 

in gg(ffi ~) we have: 

f /1  _<~ /~/2 i__ff [71,72] • t implies 

- 2  (a) 3  ̀• h i ,  3`2] ~ M~ <~+ M~, 
1 1 * <M~, M~+I), (3) in the local case: 9/ • [3`1,72) ::~ (M~,M¢÷I) -~<{[0,1]} 2 2 . 

in the revised local case: if gg(~/ll),gg(f/i 2) < A then "7 • [71,3'2] 

<M~, M b  <iI0,1]} <MS M2), and generally for some club E of A, 3  ̀• 
1 M~> * (M~,U~<~ Mb (and [3'1,72] & 7 < ~ • E ~ (M~,, U~<,~ <-{[o,111. 

if t g (£  t) = at < 5 then Us<5 MJ means Us<~, M~); 

(c) if (M0 ~,M~) • Seq2 for ¢ < ;* < A, (M0 ~ : ( <- ;*) and (M~ : ( < (*) are 
_<~+-increasing continuous for g = 0, 1, and ~ < (* :=~ (Mo ~, M~) <-~[0,q} 

(M~o+I,M~I +1) then (M°,M °) <-~[0,1]} (M~o*,M~" ) • Seq2. 
So intervals [a, a] • t are essentially irrelevant for the local version; they just 
require M 1 <~+ M~. In the revised local version it is natural to add monotonicity 

for -<{[o,8}- 
(8) For a <- A we say C is closed for a if: 
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(a) M =  (Mi : i < (2) • Seq iff fl < (2 ~ M [ ( f l + l ) • S e q ,  

(fl) if ]17/e = (M[ : i < (2t) • Seq for ~ = 1,2 and (2 = (21 < (22, then 

~/1 __~ j~2 ¢:~ ~/1 ___~; ~/2 ~ (2. 

(9) C is disjoint if: /~/1 <-t* ]~I2, [71,72] • t ,7  • [71 ,72) implies M ¢ = M~+ll NM2. 
C is truly disioint if: /~7/1 _<;/~/2, [71,72] • t, 7 • [71,72] implies Me = M 1 M M.~. 

(10) In K~, r, we say (.AT/, f) is a m.u.b. (minimal upper bound) of ((M {, f{) : { < 6) 

if 
(a) ~ < 6 ~ (_AT/~, f~) _< (/~7/, f) and 

(b) for any (/Q, f ') satisfying (a), for some club E of A we have: if (2 • E and 

j < f((2) then f((2) < f'((2) and Mc,+j <~+ M'  

When we require an increasing sequence in K qr to be continuous we mean that 
a m.u.b, is used at limits. 

(11) We say (3 is explicitly local if it is local and 

(d) if (* < A is a limit ordinal, (M~o, M~) • Seq2 for ~ < ~* and for ~ = 0, 1 the 

sequence (Me ~ : ( < (*) is _~-increasing continuous, Mt ¢ <~+ Mt C , and 

< ~ _< (* :* (Mo ~, M~) ---~[o,1]} (M0 ~, MS) then (U¢<¢* M0 ¢, U¢<¢* M~) is 

(My, 
(12) C is closed if it is closed for every ordinal _< A. 

(13) (3 is semi (respectively almost) closed, as witnessed by G, if: 

(a) C is closed for every limit ordinal 6 < A; 

(b) G is a function from Seq<A to Seq<x such that ~/<~ G(/~7/); 

(c) M = (Ma : (2 < A) belongs to Seqx if M obeys G, which means: fl < A =~ 
I/3 E Seq~ and {(2 < A : G(/~7/ I (2) ~/~/} is unbounded in A; 

(d) in the almost closed version, we add: G(-AI) depends on U / ~ / =  Ui<lg~ Mi 
only. 

(14) (3 is A-nice if 

(a) _< is a transitive on K~r; 

(b) any increasing continuous sequence in K~ ~ of length < A + has a m.u.b. (see 

part (10)) (not necessarily unique); 

(c) C is closed (see part (12)). 

(15) C is almost A-nice (as witnessed by G) is defined similarly, replacing "closed" 

by "almost closed" (witnessed by G). 

3.5 CLAIM: Let C be a local (or revised local) A-construction framework. 
(1) I f  (~I e, f~) • K~ r for f = 1, 2 and E is a club of A + and (*) below then 
(/~rl, f l)  _< (/Q2, f2) when 
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(*) i f5 • E then M~+ i = M~+~ fori  <_ f1(6) and f1(5) _< f~((~); in the "revised 

local" version assume in addition that ]tl ~ = M 2. 

(2) _< is a transitive and reflexive relation on Kqff ". 

(3) Any  increasing continuous sequence of pairs from K~ ~ of length < A + has a 
minimal upper bound. 

(4) If, in addition, C is explicitly local (see Definition 3.4(11)) then any increasing 

sequence in K~ ~ of length < A + has a lub. 

(5) C is A-nice (hence, in particular, A-dosed). 

Proof: (1) Check clause (b) of Definition 3.4(7) and Definition 3.4(4). 

(2) Use clauses (b), (c) of Definition 3.4(7)). In (c) take ~* = 2. 

(3) Without loss of generality the elements of the sequence are (2f/~, f~) C K~ r 

for ~ < #, where # is a regular cardinal < A. For ~ < ( < #, let E~,¢ be a closed 

unbounded subset of A exemplifying Definition 3.4(4) for (Jl;/~, f~) _< (2f/¢, f¢). 

First, when # < A, let E C N~<¢<, E~,¢ C ), be a closed unbounded subset of 

A such that c~ E E ~ o~ + (sups<, f~(c~)) + 1 < Min(E\(c~ + 1)). Second, when 

# = A let E C_ {(f < A : 6 C N~<¢<~ E~,¢} C_ A be a closed unbounded subset of A 

such that (~ C E ~ c~ + sup~<~ f~(c~) + 1 < Min(E\ (a  + 1)). We concentrate on 

the first case for notational simplicity. Let E = {(~i : i < A} with cti increasing 

continuous with i. Notice that  for every i, ~ < ~ < # ~ f~(o~i) _-< f¢(oq). Let 

E* = {i : ~i = i}. We now define 2f /=  (Mj : j  < A) by defining Mj by induction 

on j .  I f j  = (~j • E* let Mj = U~<, Mj ~- If a < j < (~ + f~(c~) for some c~ • E* 

and some ~ < #, let ~' = sup{~ : (~ + f~(c~) < j} and set Mj = U~>~, Mj ~. If 
j = sup~(o~ + f~(oe)) for some a • E and j > a + f~(c~) for each ~ < #, let 

Mj = U~<j M~. Finally, if j < A does not fall under any of the previous cases, 
let Mj = U~<, M ~ .  

We claim that M • Seqx. One checks that 2f/is continuous and increasing, the 
main point being that if a • E* and a < j~ < ct + f~l (a) _< je < a + f~: (a) for 

~1 <~2 < # , t h e n  M~ < Mg ~ < Mg: One must also check that (Mj,Mj+~) • 

Seq~ for all j .  This follows from clause (c) of Definition 3.4(7). 

Let f be defined by f(cti) = sup{f((ozi) : ~ < it} if i • E* and f(ai)  = 0 
otherwise. Clearly (/~/~, f~) _< (Jr/, f) for ~ < p. 

What about being a _<-m.u.b.? Assume that ( /~ ' , f ' )  ~ K~ ~ and ( < it 

(~fl~, f~) _< (~I', f '). So for each ( < # some club E~ of A exemplifies Definition 
3.4(4), and let E'  =: ~ < ~  E~ M E*, a club of A. 

Now for (~ • E'  we have (V~ < it)(f~(5) _< if(g)), hence f(6) = sup~<, f~(6) _< 

f'(5), so ~ • E '  ~ f(6) _< f'(6). Similarly ~ • E '  & j _< f(i) ~ Mh+y <_~ M~+N. 

So clearly (~-I, f) _< (ffI', f') and (~/, f) is a minimal u.b. (see Definition 3.4(10)!). 
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(4) As in the proof of part (3), let ((-~/~, f~) : ~ < #} be as therein and let (M, f) 

be constructed as above. For proving it is a lub, let ( M e , f  e) _< (_~/',ff) for 

< #, and define E ~ as there. For 5 E E ' , j  < f(6) we have ((M~+j,M~+j+I) : 

E (~,#+l, P)) is <~[o,q}-increasing continuous and (M~+j,M~+j+I) -<i[0,1]} 

(M~+i,M~+j+I) for ~ E (~ , j+ l ,#) ,  so as C is explicitly local by clause (d) in 

Definition 3.4(11) we have 

<{[o,11} 

as required. 

The proof for the case # = A is similar, using diagonal intersection. 

(5) Left to the reader. I3.5 

It may clarify matters if we introduce some natural cases of C. We shall use 

the forthcoming C o in our construction of many models in ~x+2. 

3.6 Definition: For ~ E {0, 1,2} and A = cf(A) > LS(~ ) ,  let C = C~,~ consist 

of 

(a) T + = T, R+ = {M E ~<x : if A is a successor cardinal then [[M[[ + = A} 

(with =M being equality), 

(b) Seq~ = { / ~ / : / ~ / =  (Mi : i < a) is a <_~-increasing continuous sequence of 

members of ~<~ and if a = A then Ui<~ Mi has cardinality A}, 

(c) M <~ N when: 

(a) 1~I -- (Mi : i < a*}, fi[ = (Ni : i < #*} are from Seq, 

(#) if [71,72] E t then: 

(i) 7 e [71,72] My 
(ii) if ~ -- 1, then in addition 7 E [71,72) ~ Mx -- M~+I A N~, 

(iii) if ~ = 2, then in addition 7 E [71,~2) ~ Mz = M A N~ where 

M = Ui<a. Mi. 

1 C 2 Note that C~,z, ~,z are interesting when we have disjoint amalgamation in the 

appropriate cases. 
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3.7 FACT: 

(1) If ~ = 0 or 1, then C e is an explicitly local A-construction framework (hence Yt,)~ 

A-nice by 3.5(5)) and ~+ satisfies axioms I VI. 

(2) If g = 0 or 2, then C e is an explicitly revised local A-construction framework 

(hence A-nice by 3.5(5)) and ~+ satisfies axioms I-VI. 

3.8 Detinition: If A = el(A) > LS(~) then C a consists of: n,,k 

(a) v + = T U {P ,<} ,~+  is the set of (M, pM,<  M) where M E j~<)~,pM C_ 
M, <M a linear ordering of p U  (but = u  may be as in 3.1(2)) and M1 -<n+ 

M2 iff (M1 1 7-) <_n (M2 [ T) and M1 _C M2, 

(b) Seqa = {_]~/ : M = (Mi : i < a) is an increasing continuous sequence of 

members of ~+ and (Mi r r : i < a) is _<h-increasing, and for i < j < a : 
pM~ is a proper initial segment of (pM~, <Mj) and there is a first element in 

the difference}, we denote the <M'+l-first element of pM,+l \pM, by ai []k/I, 

(d) /~/ <~' 2 if[ 57/ = (Mi : i < a*),/V = (Ni : i < a**) are from Seq, t is 

a set of pairwise disjoint closed intervals of a* and for any [a,/3] E t we 

have (/~ < a* and): "y C [a,/~) ~ My _<n N~ & a~[J~/] ~ N~, moreover 

[M] = 

3.9 FACT: C 3 is an explicitly local and revised local A-construction framework 

(hence A-nice by 3.5(5)) and J~+ satisfies axioms I-VI. 

We now introduce amalgamation choice functions. The use of "F  a 

A-amalgamation choice function" is to help use the weak diamond, by taking 

out most of the freedom in choosing amalgams. This gives possibilities for cod- 
ing (3.14, 3.17). 

3.10 Detinition: (1) We say that  F is a A-amalgamation choice function for the 

construction framework C i_f F is a five place function satisfying: 

(a) if Me E K+~ for e < 3, Mo _<n+ M~, M0 <~+ M2, M1 M M2 = Mo (before 
dividing by =M*);a E M2 and (Vb E M0)[-~a =M~ b]; and A is a set such 

that AUIM1 [UIM21 is a set of ordinals then F(M0, M1, M2, A, a), if defined, 

is a member N of Yt + with universe A L3 IMp[ t3 [M21, which _<n+-extends 
M1 and M2 and (a /=N)  ~ (M1/ =N); 

(b) [uniqueness] if (M0, Mi, M2, A, a) and (M~, M~, M~, A ~, a') are as above and 

in the domain of F, f is an order preserving mapping from A t3 [MI[ U IM2[ 

onto A' t_)[M~I t3 [M~[ and, for technical reasons, (Va,~ E Dom(f) [a ,~  < 

A + -+ a =/3 + 1 - f(a)f(l~) + 1] (see 3.21(2)'s proof) such that f I Me is 
an isomorphism from Me onto M~ for ~ = 0, 1, 2 (so preserving = u ~  and its 
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negation) and f (a) = a' then f is an isomorphism from F( Mo, M1, M2, A, a) 
onto F(M;, M~, M~, A', a'); 

(c) if F(xo,xl,x2,x3,x4) is well defined then xo,xl,x2,x3,x4 are as in part 
(a). 

Observe that as M1 A 21//2 = Mo in (a), if we do not have disjoint amalgamation 

then we are forced to allow =N to be a nontrivial congruence. 

(2) If F is defined whenever the conditions in part (a) hold and A\MI\M: has 

large enough cardinality then we say F is full (if A = #+, it suffices to demand 

A\MI\M2 has cardinality #). 
(3) We say F has strong uniqueness if 

(d) if (M0, M1, M2, A, a) and (M~, M~, M~, A', a') are as above and in the do- 

main of F and for g = 0,1,2 we have Re is an isomorphism relation 

from Me onto M~ such that Ro = R1 ('1 (Mo x M~) = R2 ('1 (Mo x M~) 
and [A\MI\M2[ = IA'\M£\M6I, then there is an isomorphism relation R 

from M = F(Mo, M~, Me, A, a) onto M'  = F(M~, M~, M6, A', a) such that 

Re = R A (Me x Me) for g = 0,1,2. 

3.11 Definition: Assume C is a A-construction framework and F is a 
A-amalgamation choice function for C. Let (~re, fe) • K~r for g = 1, 2. 
(1) (j~/1 fl) <at (j~/2 f2) (if we omit a, this means for some a; "at" stands for F,a 
atomic extension; we may write <at instead o f  at --F,a <F,a) means that: 

(a) (2f/1,f 1) _< (2f/2,f2), 

(b) for some club E of ,~, for every 5 • E taking ed =: [~, 6 + f1(5)] we have 

(*) if fl < 3' are successive members of e~ then: 

M2= F(M~,M~,M~,[M~I,a), 

(**) IM~I = IMl[ U [M~l u {i E M2:  i an ordinal not in IM~[ U IMJl and 
otp(IM~2l Cl i\IM¢I\IMJl ) < IIM~II}, 

(* * *) [IM~II = Min{llNII : N = F(M~,  MJ, M~, INh a)}. 
A suitable club E may be called a witness for the relation. Implicit in clause (b) 
is a C M 2 and -,(3b)(b C M 1 & a =M2 b). 
(2) (,AT/' f ') -<F (if/", f") means that: there is a sequence ((/f/;, f ; )  : ~ -< () such 

that: 
(a) ~ < ,X +, 
(b) ( ~ ¢ , f ¢ )  • K2 r is _<-increasing continuous in ¢ (remember Definition 

3.4(10)), 
(c) for each ~ < ~ we have (2f/~, f~) <~  (2f/i+l, f~+l), 

(d) (2f/', f ') = (2f/, fo) and (2fl", f") = (2f/~, f~). 
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A club E which witnesses all the relations in (c), or at least each of them is 

witnessed by some end segment of E, is called a witness for the relation _<F. 

(3) <F,~ is defined similarly to part (1) but we demand in clause (b) only that 
e6 C_ [~,~ + f2(6)] is closed and {5,5 + f2(~)} C_ e~; the requirement from clause 

(a) is unchanged and we require also: 

if/~ C [6,6 + f2(5)] then M~ = M 2 max(e~N(~+l))" 

, < . a t , *  Then define <--F by iterating --'F • 

(4) We may replace F by F, a family of such functions. Then in each case in 

3.11(2)(c) we use one such F. F* is the family of all such F's.  
(5) (j~,/1 f l )  <F,a (kT12,f 2) means that for some (/17/,f) we have (/~fl fl) <at , - - F , a  

(M, f)  _~F (_/~2, f2). 

(6) We define mub as in 3.4(10). 

at at,* , 3.12 Remark: (I) What we prove below on <F,a, <_F also holds for <F,a, <--F" 
(2) Note: using F rather than F may help in proving cases of Definition 3.20, 

but we can use one F which codes all members of F by asking on A\MI\M2, 
though artificially. 

(3) We can replace F by (F n : ~ a sequence of ordinals of length < A, 7/(1 + i) < 

2, ~(0) < 2<~), each F n with uniqueness 3.10(3) and (**) of 3.11(1)(5) is replaced 
by M 2 = fnr~(M~, M 1, M~, IM~I, a), and omit (* * *) there. 

3.13 CLAIM: I f  C is nice, then on K]  r, <F is a quasi-order, and every increasing 

continuous sequence of length less than A + has a mub. 

Proof: Check. m3.13 

3.14 Definition: (1) We say a &-amalgamation choice function F for K+ has 
the A-codin 9 property for C if: Seqx ~ 0, and for every /~/1 C Seq~, function 

fl  : A -+ A, and S C_ A we can find /17/2,7 C Seqx for ~ • ~2 with 7/ extending 

0h\s, that is 7/ [ (A\S) being constantly zero, a function f2 : A -+ A such that 
f l  < ~  f2,f2 [ (A\S) = fl  [ (A\S) and an element a n of M 2'n (usually a n = a) 

such that: 
(*)1 (JlT/1,f 1) <at (/Q2,n,fl --F,a ) for all ~ extending Oaks, and ~ [ a = u I a =a 

M 2'n [ a  = M e'" [ a; and ( ~ l , f ~ )  • Kf f  implies (~2,~, f~) • K~S. 

(*)2 for some club E of A the following is impossible: for some ~3, ~74 • a2 

extending 0:~\s, for g = 3,4 we have (jp/1, f2) <_F,~e (/1F/e fe) witnessed by 

a club Ee, we have (abusing our notation we are dividing by the equality 

eongrugence) f e a  _<~-embedding of M 2'n~ [ r into M e [ ~- over M 1, and 
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for some 6 E E C1 E3 r ' l  E4 C1 S we have 217/3 [ 5 = 2f/4 [ 6, a 3 E M~ '~3 , a 4 C 
= a/r2'n4 and M~'n4,f3(a 3) = /4(a4), f3 [ 6 f4 r 6, f3 [ M~ 'n3 = f4 [ ~,-~ , 

E {3,4} ~ Rang( f /  [ M 2,m) C Mst,~/3 [ 6 = 714 [ 6,?~3(6) ~ T]4(6). 

(2) We say tha t  F has the weak A-coding proper ty  if above we restrict  ourselves 

to the cases f l  [ S = 0s.  We can even restrict  ourselves to the cases f l  C ~ C C_ ~A 

provided tha t  0~ C .7- and we demand f2 C 5 r .  

(3) If we replace F by F,  a family of such functions, it means we use Definition 

3.11(4). 

(4) We say t~ has a coding proper ty  if some A-amalgamation choice function F 

has this property.  Typically, the actual  choice of F is irrelevant as long as its 

domain is sufficiently rich. 

3.15 OBSERVATION: The  restrict ion above to ~ such that  ~ extends 0~\s is 

na tura l  bu t  inessential, as we can extend the definition of M 2'~ to all ~? in ~2 by 

defining M 2,n = M 2'~' where ~' [ S = ~ [ S and ~ [ () , \S) is constant ly zero. 

Then  the same propert ies will hold. 

3.16 Remarks: 
(1) For a local construct ion framework C in 3.14(1) the conditions (*)1 and (*)2 

can be replaced by local requirements.  For example,  in condition (*)1, we may 

take 3.4(7b) into account.  

(2) In 3.14(*)2 a sufficient condition for the impossibility of the s ta ted conditions 

on E,7/3,~ 4 and 5, where ?~3 [ 5 = 7~ 4 I 6 = ?~, say, is tha t  there  is ~ E M~ '~ so 

that:  
(*)3 tp(O~, A/rl ~/[2,~3~ .,.~+f2(5),.,.  j -# tp(g, a/j1 a//'2J?4 ""~+r~(~), "" )" 

We can even allow g to be infinite here, say a full listing of M~ 'n. 

To see tha t  this suffices, suppose tha t  we also have the conditions of 3.14(*)2. 
a ,r2~v/~ Then  for g = 3, 4 as ~ + j + l  is given by 

M 6 + j + I ,  " " 5 + j  ' lV l s+j+l  

where j < f2(5), we find ~6+f~(~) = ~5+f~(~) = M*, say. 

Since M 2,'~ and M ~,n~ can be amalgamated  over M*, we have 

tp(f3  (a), M~+f2(~), M area) = tp(f4(g) ,  M~+F~(~ ), M4"4) .  

On the other  hand, by (*)2 we have 

~/rl  ?l/[ed?e "~ tp(g, M~+f2(~), M 2'~u) = tp(fe(g) ,  ~v15+f2(5), ~,- , 

and this gives a contradiction.  
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(3) To understand Definitions 3.14(1,2) you may look at the places they are 

verified, such as 3.25 and 3.27. Also see 3.21(3,4). 

(4) The next lemma deduces from the criterion in 3.14(1) another one which is 
natural for use in a non-structure theorem. 
(5) Note that 3.14(1) implies: for every ( M l , f  1) there is (3-I2,f2) such that 
(j~l,fl) <at_F,a (/~/2, f2) and M~ # M 2 and even M~/ _M~,_ , M~/  = M2~ are not 

equal. 

(6) In Definition 3.14(1) we can replace <~ta by <F or <g,a with no harm as 

<g,a satisfies the requirement on <~t and starting from it we again get <F. F,a 
(7) In (*)2 of Definition 3.14(1) for some function H depending on (3-/1, f l )  we 

may add the further restriction: g E {3, 4} and a < ~ implies ~ E H(I~I e [ a, fe I 

Me) when the latter is a club of A; i.e. this weakening of the demand does not 

change the desired conclusions. 

(8) We can weaken the demand in (*)2 of 3.14(1) to extensions which actually 

arise but this seems more cumbersome. While the adaptation is straightforward, 

we have no application in mind. 

(9) In 3.14(1), (*)2 we may strengthen the requirement by excluding the case 

where the club E is allowed to depend on ?]. That is, we consider quadruples 

(E,J, 3-i n, fn, fn) for ?] E ~2 such that (A-11, f~) _<F (AT/n, f~) is witnessed by a 

club E'J in A and f~ is a _<.~-embedding of M 2,n I ~" into M~ [ ~- over M 1. We 

require: 

(*).~ for no ?]3,?]4 C ~2 and 6 E E ~3 ME ~ N E n S  do we have: 

?]3 [ ~ = ?]4 I (~, ?]3((~ ) ~ ?]4((~), f3 [ (~ ---- f4 [ (~; 

1~I2,,,3 i [(~,(~+ f2((~)] = /~f2,n4 i [(~,~+ f3((~)]; 

fm[M~'nt] C M~ '~ for g = 3,3. 

(10) In 3.14 we can also require the models M 1, M 2,n to have universes A(1 + a) 

and A(1 + a + 1) respectively for some a, with A(1 + a) G M 0 . This will not 

change much. 

3.17 LEMMA: Assume (3p)(A = #+ & 2u < 2 "+) or at least the definitional 

weak diamond on A holds. Assume C is A-nice, J = WDmIdDef(A). 

If  the A-amalgamation choice function F has the A-coding property, then it has 
the explicit (A, J)-coding property, which means: i f  (3-i1,~1) E K qs and S C A 

satisfies S ~ J then we can find (/~/-2, f2) C K~ s such that: 

(a) (3-I1, f l)  <~  (3-12,fa) and fl  I (A\S) = f2 I (A\S), 
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(b) if (/~/~,f ~) _<F (/~f3,f3) E K~ s then M 2 I v  cannot be <~-embedded into 

M3 f T over M ~. 

Proo~ The proof is straightforward once you digest the meaning of weak 

diamond. 

Let S = A. Suppose (.~/2,n : ~/~ ~2) and f2 are as in 3.14(1), taking note of 

3.15. Then we claim there is u ~ ~2 for which 3.17 holds on taking 217/~ to be 

~/2'~. Assume toward a contradiction that this fails for each ~,. Then clause (b) 

fails, and for each ~ ~ ~2 we have some 2~/3,~ and f3,~ with: 

(]~fl, f2) ~ F  (]~3,v, f3,v) witnessed by a club E ~; 

f~ : M2'~ [ ~- ~ M3'V 1 7" over M 1 I ~- a <~ -embedding. 

Now by the definition of WDmIdDef(A) we can find ~3 ~ Y4 in ~2 and 5 E 

E ~3 NE TM ME* MS with E* = {a < A limit: ~ < a implies ~+f2 (~), fl+f~ (5) < a}, 

as forbidden in (*)2 of 3.14(1). I3.17 

Now we can give a reasonable non-structure theorem. 

3.18 THEOREM: Assume C is A-nice, (3#)(A = #+ & 2 ~ < 2 ~+) & 2 x < 2 ~+, or 
at least DWD(A), and DWD+(A+). Let J = WDmIdDef(A). 

I f F  has the (A, J)-coding property, then I(A +, ~) _> 2 x+ . 

Proof: We choose by induction on a < A +, for every 7/ E a2, a pair (_]t~/n, f ~) 

such that: 
(a) (M ' ,  f ' )  ~ g~, s, 

(b) if u ,~ ~ then (/~/', f~) _<F (M ~, f~), 
(c) (2~7/',f') <at (.~/,'(o),f,A(0)), --F,a,-(o) 
(d) (2~/n,~n) (at  (/~fr/'(1),fr/^(1)), 

--F,a,-(1) 
(e) if gg(~) is a limit ordinal and (/~/n,~n'(0)) _<f (/~/',f') then M n'(1) [ T 

cannot be _<~-embedded into M ~ [ T over M ' ,  

(f) if a is limit ordinal, then (/~/', fn) is a _<f-mub of ((]~/,Ii, f,[i) : i  < a). 

For a = 0 note that  as Seqx ~ ¢ also Seq[ ~ O, hence K~ s ~ O by 3.3(d). 

For a limit use 3.6, 3.10. For a = ;3 + 1, ~ a limit ordinal and v E Z2, define 

(/17/~(e), f ~'(e)) for g = 0,1 by 3.17. If a = fl + 1,~ non-limit, use 3.16(3). Let 

Mn = U~<x+Mn[~ [ r for r/ c (x+)2. Now note {an[(i+l)/ =M' :  i < A +} C_ 

M ' /  =M" are pairwise distinct so M ~ E K~+. Now we can apply 1.6 (with A + 

here standing for A there). I3.1s 
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Unfortunately, in some interesting cases we get only weak coding. 

3.19 THEOREM: Assume C is A-nice, (3#)(A = #+ and 2 ~ < 2 x < 2 ~+ and 

WDmId(A +) is not A+-saturated (or at /east DfWD(£), DfWD+(A +) and 
WDmld  per ( A ) is not A +-saturated)). 

I f  F has the weak A-coding property (see Definition 3.14(2)), or a t / eas t  the 

parallel of the conclusion of 3.17, then I(A +, K) >__ 2 x+. 

Proof: We can find <S~ : ~ < A+} such that: 

S ;  c A ,  

and 
S~ =: S * + I \ S ;  ~ WDmldder(A). 

We again choose by induction on a < A+ for every 7/C ~2 a pair (217/', f") such 

that: 
(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

(/V/', f ' )  C K~ s, 

if v ~ q then (2~ ~, fv) _<F (217/u, f ' ) ,  

f '  r (A\&g(,)) = O~\s,~(,), 
(~/n, f , )  <at (lf/,~<0), f, '(0)), 

F,a~(o) 
(/~/n, fn) <at (/l~/v^(i), fn), 

F, av~(1 ) 

if (2f/n,f ' ' (°)) _<g (2f/',f ') then M '~<0 [ T cannot be _<~-embedded into 

M' I v over M ' ,  
(g) if c~ is a limit ordinal then (2f/n, f , )  is a _<F-mub of ((5:/vii, fnri) : i  < a). 

Again there are no problems (the difference is in clause (c)). Then ";ve apply 

1.6(1) (or 1.7(1)). 113.19 

We may like more specific sufficient conditions for many models; we explore 
this in 3.20, 3.21, 3.22, 3.24 which, however, are not used here. 

3.20 Definition: (1) We say a A-amalgamation choice function F for C has the 
vat. 3 local A-coding property for C if: 

+ ~+ [MlJ CI (*)1 Assume {Mo, MI) C Seq  2, Mo _<~+ No C A<x, M1 U No C_ , and 
[Nol = IMo[ and a e No,a~ =No~ (Mo/ =No) (i.e. (Vb e Mo)(-,a =No b)). 

Then we can find N 1, N 2 E N+x such that: 

(a) N 1 = F(Mo, M1,No, INtl ,a),  

3 There is no clear relation between "var. local" and "local" A-coding in spite of the 
name. 
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(b) (No,N 1) E Seq2 and (No,N 2) E Seq2, 

(c) M1 <n+ N 1 and M1 _<n+ N 2, and a~ =N2c {b/ =N2: b C 2141}, 

(d) N 1 r T, N 2 r T are contradicting 4 amalgamations of M1 r T, No [ T 

over M0 r T; i.e. for no N', h do we have: (N 1 [ T) <~ N' E ~<~ and 

h is a _<n-embedding of N 2 into N ~ over M1 U No; or at least 

(d)- (N 1, N 2) is a T-contradicting pair of amalgamations of M1, No over 

Mo which just says: if N 1 _<~+ N E ~+~ then there is no <~- 

embedding h of N 2 r v into N r T over M1 U No (i.e. is the identity 

on M1 and on No). 

(Note: This is not necessarily symmetric; and we use just the T-reducts of N 2, Mo, 

M1, No so we can replace them by N 2 I T, M0 r T, M1 r T, No r T respectively.) 

(2) We say that a A-amalgamation choice function F for C has the local A-coding 

property if: 

(*)~ if /~/  = (Mj : j < A) E Seq~, R = (Nj : j <_ 5 + i) C Seqs+i ,a  C No, 
(a/ =N,~+i) ¢ M~+i/ __--M~+i and _~/ [ ( 5 + i + 1 )  -<i[~,~+i]} N, and N~+j+I = 

F(Ma+j, M6+j+], N6+j, [g~+j+l ], a) for j < i, then for some il, is E (i, A) 
and R e = (N~ e : a < 5 + i t )  C Seqz+i~ for g = 1,2 we have: 

(a) R e [ ( 5 + i + l ) - - R f o r g = l , 2 ,  

(b) f o r j  C [ 5 + i , 5 + i l )  we have N)+ 1 -- E(Mj,Mj+I,N),INI+xl,a),  
(c) M~+i2 <n+ N 2 and a~ =N2¢ {b/ --g2" b e M1}, 

- -  ( ~ + i 2  ' - -  " 

(d) N~+i, [ T, N~+i2 [ T are contradictory amalgamations of M~+i~ [ V 
and N~ I T over M~ [ T, or at least 

(d)- (N~+il , N~+i2) are v-contradictory amalgamations of M~+i(.) and N~ 
over M~ where i(*) : Min{il,i~}. 

(So if i = 0, this gives us a possibility to amalgamate, helpful for 

i • A\ U~E[6, 6 + f(5)].) 
(3) We say that a A-amalgamation choice function F for C has the weaker local 
A-coding property for C if: 

(*)3 as in part (2) but i = 0. 

(4) In (1), (2), (3) above we say C has Tar. local or the local or the weaker local 

coding property respectively, if we omit the mention of F meaning for some F 

(clause (a) in  (*)1, clause (b) in (*)2). 

3.21 CLAIM: (1) If F has the var. local A-coding property for C or F has 
the local A-coding property for C then F has the weaker local A-coding property 
for C. 

4 Of course, we may consider only ones in "legal" extensions. We can also note that 
for the intended use, the disjointness is automatic (so 3.1(2) is not needed). 
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(2) Assume 

(a) C is a local A-construction framework, 

(b) F has the local A-coding (or the vat. A-coding) (or weaker A-coding) 
property for C. 

Then for some F r we have: 

(a) F ,  too, is a A-amalgamation choice function for C, 

(/3) if F(N0, N1, N2, A, a) is well defined and its T-reduct is <~ M E K<~ 

and A C_ A' C_ A+,[A'[ < A, then for some A",A'  C_ A" C_ A+,[A"[ < 

A, and F'(No,N1,N2,A",a) is well defined and F(No,N1,N2,A,a) <_~+ 

N A" a) I t ,  F'(No,N1,N2,A" a) and M <_~ F'(No, 2, , 

(7) F' has the local or vat. local or weaker local (respectively as in (b)) 

A-coding property for C. 

(3) If C is local (A-construction framework), F a A-amalgamation choice function, 

with the vat. (or just weaker) local A-coding property and A ~ WDmId(A), then 

F has the weak A-coding property (hence under the set theoretic assumptions of 

3.19, I(A +, R) >_ 2~+). 

(4) If C is local (A-construction framework), F a A-amalgamation choice function, 

with the local A-coding property and A ¢ WDmId(A), then F has the A-coding 

property (hence under the set theoretic assumptions of 3.18, we have I(A +, ~) _> 
2~, +" 

Remark: The parallel of part (2) holds for local and weaker local property if F 

acts on sequences. See Definition 3.22 below. 

Proof." (1) Check. 

(2) Concerning clause (/~) we use the "for technical reasons" in clause (b) of 
Definition 3.10(1). 

(3) Like the proof of 1.4, 1.6 or of 3.23. 

(4) Check. "3.21 

In this context we may consider 

3.22 Definition: We say that F is a A-amalgamation choice function for 
sequences, for C, if: 

(a) if x = F(xl ,x2,x3,x4,xh,x6) is defined then for some a x , a 2 , a 3 , a  < A 
we have xe = JVI e E Seq~ for g < 3, j~/1 ,~/~/2 t = x4 is a set of pairwise 

disjoint intervals C_ ai,/17/1 <~' /17/3,A -=- x5 a set of < A ordinals < A +, 

x = 1~I c Seq~, Ms has universe A, 2kI 1 -~u{[~1,~2]}/~/, 

(b) [uniqueness] as in Definition 3.10. 
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A companion to 3.19, with no assumption on the non-saturation of an ideal 

but with a weaker result is 

3 . 2 3  CLAIM:  Assume: 

(a) (3/, < A)(2 u = 2 <a < 2~),2 x < 2 ~+ or at least we have the definable weak 

diamond for A and A+; and 2 <~ _ A +. 

(b) C is a nice (A-construction framework). 

(c) F is a A-amalgamation choice function for C. 

(d) F has the weaker local A-coding property for A. 

(e) M 1 E Seq~, M~ r T <_~ M where M E Kx+l. 

Then letting f E X+A + be constantly zero, for 1VI 2 we have (/~/1, f) _<F (/~/2, f) 

and M 2 I T cannot be <_h-embedded into M 2. 

Proo~ Straightforward using 2.4. 
Wlog [MI[ = A +, [M2[ = A ++. It is enough to choose by induction on a < A + 

a sequence/V/' for rl E ~2 and ordinal/3~ < A + such that: 
(a) /V/' E Seq~, M 1 < M~, /3, -- 
(b) /17/an has universe (Mz, [ [A +, A + + 7~)) where 7~ < A +, 

(d) if 6 = lg(r/) is a limit ordinal, then a~. = U~<6 ~3.re and/3.~(o) =/3naO) 

and ~lA'~?a(1) ?l/fr/l(0) -'-~+1 --~+1 cannot be amalgamated over M ~ U M~. 
' , 8 , ^ ( o  ) 

This is possible by 3.21(3). 
Having the Mv,~/E ~>2 we get the conclusion by 1.5 (see 1.2(2)). I3.23 

3.24 Remark: (1) If we are just interested in I (A+,K) rather than also in 

IE(A +, K),  then we can change the definition of r-contradictory to: 

N 1, N 2 are T-contradictory amalgamations of M1, N over M0 if M0 _<~+ 

M1 <~+ N e,M0 <~+ No _<~+ N e,Mo = MI MN0 and there are no 
NI,,N2, E ~q+<~ such that: W e <_~+ We, and N, 1 [ T,N, 2 I T are isomor- 

phic over M1 U No. 

(2) Note that  it is unreasonable to assume that we will always use the local 

versions: e.g. if we have a superlimit model in ~qx+ and we want to have M E 

Seq~ ~ Ma superlimit, we have to add some global condition (see [Sh 600]). Also 

possibly we will have in the construction (i.e. in 3.18 or 3.19) that ff/n has two 

"contradictory" extensions ff/~(0), ff/~'0) (see clauses (e) and (f) in their proof) 

only when cf(gg0?)) = 0, where S = {~ :~ < A + and cf(~) = 0} ~ WDmId(A); 

or even gg(~l) E S, for a given S E WDmId(A) +. We shall deal with such cases 

when needed. 

We intend to continue this elsewhere. 
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3.25 LEMMA: Let t~ be an abstract elementary c/ass with LS(~) << )~ which is 

categorical in )~ and in )~+, with 1 < I( ,k++,K) < 2 ~++ . Assume that 2 ~ < 

2 x+ < 2 ~++ , or at least that the definitional weak diamond holds for both )~+ 

and )~++. 

If  there is a model in K~+ which is saturated over ~, then the minimal triples 

are dense in K~. 

Proo~ Let C be C~,~+ (see Definition 3.6) hence C is explicitly local ,k- 

construction framework (by 3.7(1)). Suppose toward a contradiction that above 

(M*,N*,a*) C K 3, there is no minimal triple. We claim in this case that 

there is a $+-amalgamation choice function F for C with the )~+-coding prop- 

erty, with domain the quadruples (Mo,M1, M2,A,b) such that: (M*,N*,a) 

embeds in (M0, M2,b); A and the universes of M1,M2 are contained in ~++; 

IA\(IMll U IM21)I = ,k; and M0 <~ M1, Ms. Then applying 3.17 and 3.18 we get 

a contradiction. 

We first make two observations concerning triples (M,N,b)  lying above 

(M*, N*, b). Any such triple has the extension property by 2.11 (or just 2.9(1)) 

and hence we can manufacture a ,k+-amalgamation choice function with the 

specified domain. Furthermore, there is M'  E K~+ with M _<~ M'  such that 

tp(a, M, N) has more than one extension to M', by the failure of minimality. 

Let us show that any A+-amalgamation choice function F with the specified 
0 domain has the A+-coding property on C = C~,~+. 

Let M 1  E SeqA+ and let f l  : )~ ~ A. For any set S we must find sequences 

]f/s,v (depending on S) as in 3.14(1). The approach will be to first build suitable 

M s,n for all ~ C ~2, independent of S, then restrict appropriately given S. 

Let M 1 = Ui M/1- Then M 1 C N~+ and by our assumptions M 1 is therefore 

saturated over A. Hence we may suppose M* _<~ M 1. We may also suppose 

that the universe of M 1 is an ordinal, and we may choose a subset A s of A ++ 

which is the union of an increasing continuous sequence A~ (for a < A +) so that: 

A~ A IM~I = IM~I and Ag\IM~I and As a + l  \ (  A2 U IMP+l)) have cardinality A and 

wloglN*l \ ]M* I = Ag. Let E be the club: 

{(~<A: f o r a < ( ~ ,  we h a v e a + f l ( a ) + l < ( ~ } .  

We now define triples (M~,N~,a*) for all r/ E i2, by induction on i, together 

with ordinals a n satisfying the following conditions: 

(a) for any ~1 C i2, the s e q u e n c e  (M~rj,NT~[j,a*) for  j <_ i is increasing and 

continuous; and similarly the a n are increasing and continuous. 

(b) (M~>,N~>,a*) = (M*,N*,a*). 
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(c) M,~ = M~, and the universe of N~ is A ~ .  

(d) If 6 E E,r] E ~2 and a n = 5, then: 
(dl) for i < f1(6) and q < u E &+i+12, the model N* is given by F applied 

1 N* M 1 using 2 to amalgamate M~+~+ 1 and ~I(~+~) over ~+~, As+i+ 1 and 

keeping a* out of M~*+i+l, 
(d2) for all u,u' E ~+f~(5)+12 extending ~ if u' ~ u, then for some /3, 

tp(a*, M~, N*) ~ tp(a*, M/~, N*), 

(d3) for non-zero i < f1(6) and u such that t/<u • ~+i2 we have M* = M 1 

and a~ = aeg(~,) = aT + i = a~ + i (so M* = M~+i) , 
(d4) for non-zero i < f1(6) and u,p • ~+i2 such that ~/~u & r/<p we have 

N* : N; ,  call it N 1. 

While carrying the definition the main point is guaranteeing clause (d). So let 

• 52 and assume that a T = 5 • E*. First we define by induction on i _< fl  (5) a 

model N~, i such that N 1 has universe A~+i, N~, i is _<~-increasing, M~+ i _<n N~, i 

and N10 = N~ and f,  i < f l  (6), then 

1 F(M~+i ' 1 1 2 * N~,i+ 1 = Ms+i+1, NT,i, A6+i+l, a ). 

Next we choose by induction on i _< f1(6), for each p • i2, an ordinal/3~,e • 

[5 + f1(6), A +) and model N~, o such that: 

(i) Nl,o • Kx has universe A 2 
N 1 

(ii) M ~ <_~ N~,p and (a*/=N.,~) ¢ M ~ . , . / =  ..., 
(iii) /3.,<> = 6 + fl(6), 

(iv) pl '~ p~ :*/3,~,~ </3,~,~ & N,~,p~l <~ N,~,p~, 
(v) i limit =~ Nl,p 1 = U¢<i N~,pK, 

(vi) /3T,oA<O> = /3T^p~<~> and 

• 1 l - ~ * m 1 N 1 tp(a ,M~,,.<o>,N,~,p-<o>)¢ ~p(a , ~,,_<~>, v,o'<l>)" 

There is no problem to carry the definition. Now let 

a , .  o = 6 + i = t g ( ~ ^ p )  

OtT^P = ~T ,P  
M;Ap= M 1 A  

Nn~p = N~, i 

i fp  E i2 and i _< fl(5), 
if p E f1(~)+12, 
i fp  E i2, i _< f1(6) + 1, 

i fp  E i2 and i _< f1(6), 

if p E fl (5)+11. 

Now check. 
Having carried the induction for ~ E ;~+2 we let 2~/2'~ = {N~r ~ : a < A + ) and 

f2 = fx + 1. We have to check that  the demand in Definition 3.14 holds. 
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Note that this is essentially the proof mentioned in 3.16(9). 

By our initial remarks there is little difficulty in carrying out this induction. 

We then set/~/2,,1 = (N~[ i : i < A +} for 7] E ~+2. Given a set S C_ A + we consider 

]~/2,~ for ~/E ~+2 extending 0h\s, together with the function f2 equal to f l  ÷ 1 

on S and to fl  on S. We claim that the two conditions of Definition 3.21(1) are 

met. 

The first of these is a condition on the type of construction allowed and, of 

course, it has been obeyed, notably in (dl) above: 

, <at (/~/2,~ fl);  and M 2,~ r a is determined by 77 [ a. (,i,)1 (/~/1 f l ) - -g ,a  

The second condition referred to a club E, which can be the intersection of the 

club we have defined above with {5 : a5 = 5}. This condition goes as follows: 

(*)2 it is impossible to find sequences 7/3,~ 4 (extending 0x\s), extensions 
(~i l, f2) <_F (]~/3 f3), (/~/4, f4) witnessed by clubs E 3, E 4 (i.e. E ~ is the 

intersection of the clubs which witness the atomic relations _<~ implicit in 

_<F), and embeddings fe : M "2'ne --+ M e (g = 3 or 4) over M 1 such that for 
some 5 E E N E 3 V/E 4 VI S we have: 

(i) /~/3 [ (c~ + f2(5) + 1) = .~/4 I (5 + f2(5) + 1); 

(ii) f3 [ 5 = f 4  (5; 

(iii) ~a 1 5 = ~4 1 5 (call the restriction 7/) and ~3(5) ~ r]4(5); 
2,1/ 

(iv) f3, f4 are equal on M~ ; and 

(v) for ~ = 3, 4, fe maps M~ '~ into M~. 

Suppose on the contrary we have r/3, ~/4 (extending 0x\s),(]l~/1, f2) ~F (_~/3, fa), 
(2~/4 f4), E 3, E 4, f3, f4 and 5 as above. 

Let 2V/-- M~+f2(~).3 It follows from condition (i) and the fact that 5 belongs to 

the witnessing clubs E 3, E 4 that ]~/ 4 ---- M~+f2(~ ). Then f3, f4 provide embeddings 

of N*u3 ~(5+f~(5)+1) and N*,]ai(5+fi(cf)_bl) into M which agrees on N~* (hence on a*) 
and on M~. By 3.16(2) we are done. 13.25 

3.26 LEMMA: Let ~ be an abstract elementary c/ass with LS(~) < A which is 

categorical in A and in A +, with 1 < I (A++,K) < 2 x++. Assume that 2 ~ < 
_~++ 

2 ~+ < 2 , or at least that the det~nitional weak diamond holds for both A + 
and A ++. 

Then: 

(*) for any M ~ K~+ and any triple (M °, N °, a °) in K 3 with M ° <_~ M,  we 

can find sequences M = (Mi : i < A+},N = (N~ : i < A+> such that 

(a) ( U ° , N ° , a  °) = (Mo,No,a°); 

(b) (M~, N~, a) is increasing and continuous in K3; 

(c) the union of the M~ is M; 
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(d) the set S(](/I, fi[, a) is stationary in A +, where S(/~/, ~r, a) is the set of 

< A + such that for some j > ~ for all i >_ j 

i f  we have (Mj, Ni,  a) <_ (Mi, N ~, a) for e = 1, 2 then we can 

amalgamate N 1 and N 2 over M U N~. 

Proof Otherwise, we claim that any full A+-amalgamation choice function will 

have the A+-coding property. 

Let _~/E Seqx+, f : A + -~ A + and S C_ A + be given. Then as K is categorical 

in A +, we may suppose that M is the union of the Mi. As in the proof of 3.25 

we try to define a~, (M~, N~, a) with failure of amalgamation as obtained there. 

Now by our assumption toward contradiction for every 7/ C ~2 for some club 

E ,  of A + for every S C E~, defining N* , ,r(~+f(~)+l) we have two "contradictory" 

amalgamations of N~r ~ and M~, r(~+f(~)+l). So as there we get I(A ++, K) = 2 ~++ 

contradicting an assumption. ]]3.26 

3.27 LEMMA: Let ~ be an abstract elementary class with LS(R) <_ A which is 

categorical in A, A + and A ++ and with no model in cardinality A +3. 

Suppose that there is no model in K~+ saturated above A and that: 

(*') for any M E K~+ and any triple (M °, N °, a °) in K 3 with M ° <_~ M, we 

can find sequences _~/-- (Mi : i < A+),/~- = (Ni : i < A +) such that 

(a) ( M ° , N ° , a  °) = (Mo,No,a°); 

(b) (Mi, Ni, a) is increasing and continuous in K3; 

(c) the union of the Mi is M; 

(d) the set S(/17/, IY, a) is stationary in A +, where S(/f/,  1V, a) is the set of 

< A + such that for some j > ~ for all i >_ j 

if  we have (Mj, Nj, a) <_ (Mi, N t, a) for £ = 1, 2 then we can 

amalgamate N 1 and N 2 over Mi U N~. 

Then the minimal triples are dense in K~. 

Proo~ Suppose that there is no minimal triple above (M*,N*,a*) .  It suffices 

to show that there is no maximal model in Kx++ and, as Kx++ is categorical, 

this will follow from the existence of a single pair of models (M', N')  in Kx++ 

with M I <~ N ~. So it suffices to show: 

every triple (M, N, a) in K3+ has a proper extension in K~+, 

as the desired pair (M ~, N')  can then be built as the limit of an increasing 

continuous chain. 

Fix (M, N, a) in K~+. As there is no model saturated over A in Kx+, there is 

some Mo in K~ over which there are more than A + types. By A-categoricity we 
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may suppose M0 _<~ M. Fix a triple (Mo,No,b) in K~ for which tp(b, Mo,No) 
is not realized in M. 

Apply (#) to M and (Mo,No, b) to get sequences ~ o , ~ o  of length A+ as in 

(#) and (Mo,No) = (M°,N°) .  Let S -- S(M-°,N°,b). As J~ is categorical in A, 

wlog M = i ° = U M°. Let i a = U No. As ~ has amalgamation in A+ we may 
suppose M 1, N _<~ N 1 with N 1 C J~;~+. 

We can also choose an increasing continuous sequence (M[, N[,a*) for i < 

)~+ beginning with (M*,N*,a*) such that each (M[,N~,a*) is reduced and 

tp(a*, M[, N~) has more than one extension in S(M[+I) , using the failure of min- 

imality and 2.7(1). By categoricity we may suppose M = U M[. Set M 2 = U N~. 
By amalgamation we may suppose M2,N 1 <~ N 2 C K~+. 

We claim that one of the triples (M1,NI,a) or (M2,N2,a) is a proper 
extension of (M,N,a) as (M,N,a) <_ ( M t , N  ~) this means that M ~ M 1 or 

M ~ M 2. Suppose on the contrary that a belongs to both M 1 and M 2. 

Represent N 2 as the union of a continuous _<~-inereasing chain (N* : i < A+) 

of models in K~. Let E be 

{ i < ) ~ + : M  ° = M ~ ; N * M M = M ° ; N / * M M  I = N ° ; N * M M  2=N~};  

it is a club in A+. 

Fix 5 E E M S such that a is in N ° and N~; exists as S is stationary and 

a C M 1 MM 2. We show now that a* E N 0. Now (M~,N~,a*) is reduced. If 

a* ~ N 0 then (N0, N~, a*) lies above (MJ, Nj, a*) and hence by the latter being 

reduced N 0 M Nj C_ Mj; but the element a witnesses the failure of this condition 
n o t i n g a C M j  a s a C M .  Sol*  E N  O. 

Let j > 5 be chosen in accordance with the definition of S(M, N, b) and let 

i > j~ > j be such that j~ E E. As tp(a*, M~,, N~,) has more than one extension 

to Mj,+a, the same applies to M[. However, M[ = M ° and M~, = M °, and 

thus tp(a*, M~,, N 2) = tp(a*, M~, N~) = tp(a*, M~,, NO,) has more than one 

extension over M °. Thus, M ° and N~, may be amalgamated in two incompatible 

ways over M~,, getting N + and N - ,  say (in fact, moreover, the models N + and 
N -  cannot be amalgamated over Mi preserving the images of a*). Furthermore 

both (M °~ , N +, b) and (M °, N - ,  b) lie above (M °, N °, b) in K~+, that is, b is 

not mapped into M °, because M does not realize tp(b, Mo, No). However, this 

contradicts the definition of S, as the triples (M °, N +, b) and (M °, N - ,  b) cannot 

be amalgamated over (M °, N0) since a* belongs to N °. I3.27 

3.28 THEOREM: Let fl be an abstract elementary class with LS(fi) <_ )~ which is 
categorical in A and in A + with 1 <_ I(A ++, K) < 2 x++. Assume that 2 ~ < 2 x+ < 

2 x++ , or at least that the definitional weak diamond holds for both )~+ and )~++. 
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Then under either of the following assumptions, the minimal triples are dense 
in K3 : 

(A) K is categorical in A ++ and has no model in cardinality A+3; 

(B) there is a model saturated above A in cardinality A +. 

Proof: If assumption (B) holds, use 3.25; so assume (A). Now by the previous 

lemmas 3.26, 3.27 the conclusion follows. Note that (, ') of 3.27 is exactly the 

negation of (*) of 3.26. ~3.28 

3.29 Remark: This will be proved without the additional assumptions (A, B) in 

[Sh 603]. In any case this does not affect the proof of Theorems 0.2, 0.3. 

3.30 CLAIM: Let ~ be an abstract elementary class with LS(YO <_ )~ which is 
~)~++ 

categorical in A and in A +, with 1 <_ I(A ++, K) < 2 , and with no model in 

cardinality A +3. Assume that 2 ~ < 2 x+ < 2 x++ . 

Then the minimal triples are dense in K 3. 

Proof: I f 2  x+ > A ++ we get the conclusion by 2.7. I f 2  x+ -- A ++, then as 

2 x < 2 x+ we have 2 x = A +. Thus, there is a model in Kx+ which is saturated 

above A, and Lemma 3.28 applies. |3.30 

4. M i n i m a l  t y p e s  

We return to the analysis of minimal types initiated in 2.12. We use from §2 only 

2.1, 2.6 and 2.9, so there are repetitions. 

4.1 HYPOTHESIS: 

(a) ~ is an abstract elementary class with LS(Y~) < A (for simplicity K<~ = 0). 

(b) ~ is categorical in A, A + with K~+2 ¢ 0 (note: (a) + (b) = (,)3 of 2.4). 

(c) ~ has amalgamation in A (2.2(1)), so by (a)+(c), we have (,)2 from 2.9, 

hence ~ satisfies the model theoretic properties which were deduced in 2.4- 

2.6 and 2.9 in particular: 

(i) every (M, N, a) E K~ has the weak extension property 2.4; 

(ii) criteria for the extension property 2.9; 

(iii) basic definitions and properties 2.3, 2.6. 

4.2 Definition: (1) If p E S ( N ) , N  E K~ and N'  E K~ remember (from 

Definition 2.13) 

Sp(N') = {f(p) : f is an isomorphism from N onto N'} 
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and let 

$>p(N') = {q E S(N') : q not algebraic (i.e. not realized by anyc  E N')  and, 

for some N"  E K;~, N" <_~ N ~, 

we have q F N" E Sp(N")}.  

(2) We say the type p E $ (N)  is A-algebraic if ]]NI] _< A, and for every M such 

that N <~ M we have A > I{c E M : t p ( c , N , M )  ~- p)]. 

4.3 CLAIM: If  (Mo, M1, a) E K 3 is minimal, then it has the extension property. 

Proo~ Let p* -= tp(a, Mo, M1), and assume it is a counter-example. We note: 

(~1 For some M* we have Mo _<~ M* E Kx but for no M + and b do we have 

M* <_~ M + E K~, b E M + \ M  * and b realizes p*. 

[Why? If not for every N, Mo _<~ N E K~, we can find N1, N _<~ N1 E K~ 

and b E N I \ N  which realizes p*. Hence (as Y~;~ has amalgamation in A) we 

can find N2 such that N1 _<~ N2 E K~, and g a _<h-embedding of M1 into 

N2 extending idMo such that g(a) = b. This proves the extension property.] 

~ 2  If p E $>p. (N) and N E K~ and N _<.~ N* E K,  then the set of elements 

of b E N* realizing p has cardinality _</~. 

[Why? by 4.1(c)(ii); so indirectly 2.9(2).] 

~)3 I f N  E Kx, then IS>_p.(N)[ > A +. 

Proof of (~3: If N forms a counterexample, as K is categorical in A and using 

(~2 we can find (Ni : i < A+), _<.~-increasing continuous sequence of members of 

Kx such that: 

(*) for every a < A + and q E $_>p.(Na), for some/3 = /~q < A + we have: for 

no N' ,  b do we have NZ <~ N' E K~, b E N' \N~ and b realizes q. 

So Nx+ = U/<~+ Ni has the property 

(**) if N '  = (N" : a < ,~+) is a representation of Nx+ , then for a club of ~ < ,~+ 

for every q E $>p. (N~) for a club of ~ E (5, A+), for no N', b do we have: 

N~ <<~ N' E K~, b E N' \N~ and b realizes q. 

On the other hand, we can choose by induction on a < A + a triple (N0,~, NI,~, a) 

E K 3 increasing continuous in a such that (No,0,Nl,o,a) -- (Mo, Ml ,a )  and 

No,~ ~ No,~+l (existence by the weak extension property; i.e. 2.4 = 4.1(c)(i)). 

Now No,x+ = U~<~+ No,~ E Kx+ does not satisfy the statement (**): 

(No,~ : a < A +) is a representation of No,~+, and for every a, tp(a, No,~, Nx,~) ex- 

tend tp(a, No,o, Nl,o) = tp(a, Mo,M1) = p*, hence tp(a, No,~,Nl,~) 
E $>_p. (No,~) satisfies: for every ~ E (a,,~+), there is N',No,z <_~ N' and 

some b E N'\No,z realizes tp(a, No,a, Nl,a); simply choose (N',  b) = (NI,~, a). 
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So N0,x+,Nx+ cannot be isomorphic (as one satisfies (**) the other not). But 

both are in K~+, contradicting the categoricity of ~ in A +. I®3 

To finish the proof of 4.3 it is enough to prove 

4.4 CLAIM: [f p* E S(Mo) i8 minimal, Mo E Kx, then N E K~ ~ IS>_p.(N)[ < 
)~+. 

Proof: By 4.6 and 4.7 below. Note that 8>_p. (N) has the same cardinality for 

every N E Kx. 

4.5 CLAIM: (1) If  N1 ~_y~ N2 are in K x and pl E 8(N1) is minimal and is omitted 

by N2 then pl has a unique extension in S(N2), call it p2, and pl E S>_p. (N1) 

~2 E S>p. (N2) and P2 is minimal]. 

(2) If  N1 <_~ N2 are in Kx ,p l  E S(N1) minimal, then PI has at most one non- 

a/gebraic extension in S(N2) called P2, it is minimal and Pl E S>_v. (N1) ~ P2 E 

S>_v* ( N2 ) . 

(3) (Continuity) If  (Ni : i ~_ a) is a ~_~-increasing continuous sequence of mem- 

bers of K~,pi E S(Ni),po minimal, pi E S(Ni)  extends Po and is non-algebraic, 

then (Pi : i <_ a) is increasing continuously. 

Proof of 4.5: Easy. E.g., 

(3) If i < j _ a then pj r Ni is well defined, it belongs to S(Ni), also it 
is non-algebraic and extending P0, hence by the uniqueness (=4.5(1)) we have 
p~ = pj [ N~. If 5 < a,p~ E S(N~) extends Pi for i < 5; if p~ E S(N~) extends 

each pi (i < 5) then it extends Po and is non-algebraic, hence by uniqueness 

p~ = p~. L.5 

4.6 CLAIM: I f N  E g x , 8  C_ 8(N) and 18] > A +, then we can find N* ,Ni  in K~ 

(for i < A ++) such that: 

(a) N <_s~ N* <~ Ni, 

(/3) for no i0 < il < A ++ and ce E Ni t \N*  (for g = 0,1) do we have 

tp(eo, g* ,g io )  = tp(c l ,N* ,Ni l )  

(3') there are ai E Ni (for i < A ++) such that tp(ai, N, Ni) E S is not realized 

in N* (and they are pairwise distinct). 

Remark: We use here less than Hypothesis 4.1: 

(.) Y~ is abstract elementary class with amalgamation in A, categorical in A, 

K~+ ¢ O. 

The same applies to 4.7. 
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Proo~ Without loss of generality INI = A; now choose by induction on a < 

A ++, N~, N~, am such that: 

(A) N~ E K~+ has a set of elements A × (1 + a) and N~ is <_~-increasing 
continuous in a,  

(B) /~m = (N~ : i < A +) is a representation of N~ (i.e. is _<~-increasing 

continuous, IIN~II _< A and Nm = (Ji<~+ N~), 

(C) for a < A ++ successor, if i < j < A+,p C S(N~) is realized in Nj a and 

is A-algebraic (see Definition 4.2(2)) then for no N f, b do we have Nj ~ <~ 

N ~ C K~ and b C N~\N~ realizes p (actually not needed), 

(D) N = N0 ° <_~ No and am • Nm+l\Nm realizes some p~ • $ not realized in 
N~, 

(E) if R0 < cf(a) < A t h e n f o r j  < A + let Mff = ( . J z e c N f ; i f C i s c l u b o f a  

such that any/31 </32 from C, N/~ = N f  2 (-1N~ (any two such O's give 
the same result), 

(F) for each a < A ++, for a club E ° of ordinals i < A + we have (N~, N~ +1, a~) 

is "almost reduced", that is: 

(*)i for every (i • E ° and) b • N~+I\N~ the type tp(b,N~,N.~ +1) is not 

realized in Nm (a key point). 

There is no problem to carry out the construction (possible ~ has amalgamation 

in A and, concerning clause (F), as tp(am, N[ ~, N~ +1) extends tp(am, N, N~ +1) 

which is not realized in Nm). Let w~ =: {/3 : N/~+1 n NZ+I ~ NZ}, so necessarily 

Iw~l < A,w~ is increasing continuous in i < A + and a = ~i<~,+ w~ and for/3 < a 

let 

i(/3, a) = Min{i :/3 • w~}. 

Now for every a • S* =: {3 < A ++ : cf(~) = A+}, the set 

Em =: {i < A + :i limit , N  _<~ N~+l,am E N/~+1, and for every/3 < a 

i f / 3 e w ~  t h e n N ~ = N ~ A N z  and f o r j < i  

the closure of w~ (in a) is included in w~ and 

/31 </~2 &/31 e w~ &/32 • w~ ~ i(/31,/3e) < i} 

is a club of A +. 

As we can assume A > R0 (ignoring A = R0 as was treated earlier in [Sh 

88] though for a PCe 0 class, or see [Sh 603], §4), we can choose jm • Em such 

that cf(jm) = R1 and let (~m = sup(wj' ); now wj~ is closed under w-limits (as 

(w~ : j <__ a / is increasing continuous, j < a @ closure(w~) C_ wja+l) and 

R1 = cf(otp w~) ,  so there is (/3~ : s < wl) increasing continuous with limit 
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6a,/~c E w -~, so e < ~ < w, => N~" = N~'  M NZ. and easily Nj  ~ M N~. = Ng" , 
hence 

jEC 

so N~. = Mf :  (see [Sh 351, §41). 

By the Fodor lemma for some i f , a*  and stationary S C S*,a E S* ~ ja = 

j* &: 5a = 5*. So for all a E S, N; .  axe the same, say N*. So N* E K~, for a E S, 
q~ = tp (a~ ,N* ,N~  +1) extend p~(E $). Also, if r E 8(N*) is realized in Ny +1, 

say by b (for some a E S), then no member of U{N~+I\Ng. :/~ E S N a }  realizes 

it (holds by clause (G)). So the sets Fa = {tp(b, N y , N ~ .  +1) : b E N~.+I\N *} 

for a E S are pairwise disjoint and each has a member extending p~ E 8 (as 

exemplified by a~ and Pa is not extended by any p E Uz<~ FZ (as p~ is not 

realized in Na)). ~4.6 

4.7 CLAIM: Assume p* is a counterexample to 4.4. 

(1) I f N  E K x , r  C_ $>p.(N),IF I <_ A + then 

{p E 8>_p. (N) : for some N',  N <_~ N'  E Kx and some b E N '  

realizes p but no b E N'  realizes any q E F} 

has cardinality >_ A ++. 
(2) We can find N E Kx+, and N i , N  <~ Ni E Kx+ for i < 2 ~+ such that the 

set F i = { tp(a, N, Ni) : a E Ni } axe pairwise distinct, in fact, no one embeddable 

into another (so we get I(A +, J~) = 2 x+ and if(2x) + < 2 x+ then IE(A +, #i) = 2 x+, 

thus contradicting the categoricity in A + from the assumptions). 

Prool6 (1) Apply 4.6 with N and S_>p. (N) here standing for N and S there, 

so we get N*,N~ (i < l ++) and M* such that N* <_~ Ni E J~x, and Fi = 

{ tp(a ,N*,Ni)  : a E N i \N*}  are pairwise disjoint and there are Pi E Fi,Pi [ N E 

S_>p. (N) pairwise distinct; now Pi is not algebraic, hence Pi E S>_p. (N*). As K 

is categorical in ~, without loss of generality N* = N, so all but <_ A + of the 

models Ni can serve as the required N'.  

(2) Now by part (1) of 4.7 we can choose, by induction on i < A +, 

((N,, r , ) :  ~/E i2> such that: 

(a) N,  E Kx and F,  C_ Uj<iS>_p,(N.rj) a n d  [F,[ _< A, 
(b) if v < ~l then N,  _<~ N~ and F,  C__ F, ,  

(c) some p E F,-(0) is from S ( N , )  and is realized in N,~(I) (similarly for 

F," (1), N,A(o)), 
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(d) if i is a limit ordinal, then N,j = Uj<i N~IJ and Fv = Uj<i F~[j. 
The successor case is done by 4.7(1) (you may object that  the type in F~ is 

not from S_>p. (Nu) but from Uj<i S>_p. (NvIj); however, they are minimal see 

4.5(1)). For ~/E x+2 let Nv = Ui<~+ NvIi. Now by 1.4(2), {Nv/---: y E x+2} has 
cardinality 2 x+, contradiction. Concerning IE,  see 1.6(1). Ih.7, $4.4, $4.3 

4.8 CLAIM: (1) If Mo E K~,M1 E K~+, and Mo <_~ M1 then every minimal 
p E S(Mo) is realized in M. 

(2) Every M1 E Kx+ is saturated at least for minimal types (i.e. if Mo <_~ M1, 
Mo E K~ and M1 E K~+ then every minimal p E $(Mo) is realized in M1). 

(3) I[ M E K~ then {p E $(M) : p minimal} has cardinality <_ )~+. 

Proo~ (1) Let N = (N~ : a < A +) be a represen ta t ionofN~+ E K~+. Let 

N E Kx,p E $(N) be minimal. We ask: 

(,)p is there a club of a < A + such that every q E S>_p(Na) is realized in A+? 

By 4.4 there is N~+ E Kx+ for which the answer is yes, hence, as ~ is categorical 

in ,k +, this holds for N~+. So this holds for every minimal p. Now if N I _<~ 
N;~+, N I E K;~ and p E S(N ~) is minimal then for some a, N r <_~ Na and for 

every fl E [a, A+), p has a unique non-algebraic extension pz E 8(Nz) (which 

necessarily is minimal, exists by 2.1). Now p~ E 8>p(Nz), hence for a club of 

13 < A+,pz is realized in N~+, so we have finished the proof of part (1). 

(2) By part (I). 
(3) Follows by part (1). I4.s 

From 4.3, 2.9(1) we can conclude 

4.9 CONCLUSION: Every (M0, Ml ,a)  E K 3 has the extension property. 

5. Inevitable types  and stability in 

5.1 HYPOTHESIS: Assume the model theoretic assumptions from 4.1 and 

(d) there is a minimal member of K~ 3 (follows from the conclusion of 3.30). 

5.2 Det~nition: We call p E S(N) inevitable if: N _<~ M & N ~ M ~ some 

c E M realizes p. We call (M, N, a) E K~ inev i tab le  if tp(a, M, N) is inevitable. 

Now using 4.3 4.8 we shall deduce 
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5.3 CLAIM: (1) / f  there is a minimal triple in K 3, then there is an inevitable 

p = tp(a,N, N1) with (N, NI,a) E K 3 minimal. 

(2) Moreover, if Po E S(No) is minimal, No E K~ then we can find N1, No 
<_~ NI E K;~ such that the unique non-algebraic extension PI Of pO in S(N1) is 

inevitable. 

Proof of b.3: (1) Follows by part (2). 

(2) Let (Mo,Ml,a) E K 3 be minimal andpo = tp(a, Mo, M1). We try to choose 

by induction on i a model Ni such that: No = Mo,Ni E K~ is _<n-increasing 

continuously and Ni omits Po, Ni ~ Ni+~. If we succeed, Ui<~+/vi is a member 

of K~+ which is non-saturated for minimal types, contradicting 4.8(2). As for 

i = 0, i limit we can define, necessarily for some i we have Ni but not Ni+l. 

Now Po has a unique non-algebraic extension in S(Ni) which we call Pi and Po 

has no algebraic extension in S(Ni).  [Why? As Ni omits Po.] So Pi is the unique 

extension of P0 in $(Ni) [by 4.5(1)], and so 

(*) if Ni ~_n N I E K~ and N ~ ~ N, then Pi is realized in N I. 

By L.S. we can omit "N ~ E K~", so (Ni,Pi) are as required. I5.3 

5.4 FACT: Inevitable types have few (_~ A) conjugates (i.e. for p E S(Mo) 

inevitable Mo E K~,M1 E g~ we have [$p(M1)[ ~_ A), moreover [{p E S(N)  : 

p inevitable}[ < A for N E K~. 

Proof'. Easy. 

The following construction shall play a central role in this paper. 

5.5 CLAIM: For any limit a < A +, we can find (Ni : i <_ a) and (Pi : i <_ a) such 

that: 

(i) 
(ii) 

(iii) 

(iv) 

(v) 
(vi) 

(vii) 

Ni E K~, 

Ni is ~_n-increasing continuous, 

Pi E S(Ni) is minimal, 

Pi increases continuously (see 4.5(3)), 

Po is inevitable, 

Pa is inevitable, 

Ni ~ Ni+l, moreover some c E Ni+l \Ni  realizes Po (hence pi). 

Remark: Why not just try to build a non-saturated model in order to prove 

5.5? It works, too. 

Proo~ Choose N o <n N 1 in K;~+ (so N O ~ N1); such a pair exists as K;~+2 ~ 0. 

Let N ~ = Ui<~+ N[ with N[ E K~ being <n-increasing continuously in i. Now 
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Eo = {(~<A + :N~ ¢ N 2  a n d N ~ A N  O = N  ° } i s a c l u b o f A  +. Without loss of 

generality Eo = A +. 
For each c E N I \ N  °, the set 

Xc : :  {i < A + : c  E N/1 and (N °, N~, c) is minimal} 

is empty or an end segment of A +, hence 

E 1 --~ {(~ </~q- :(i) ¢~ limit and  N~ ~ N °, 

(ii) if i < ~ and p E $ ( N  °) is minimal inevitable 

and realized in N ° \ N  ° then it is 

realized in N~\N  ° (actually automatic), 

(iii) if c E N~ \ N  O (hence 3i < (~, c E N]) and Xc 

is non-empty then (~ E Xc and min(X~) < 5} 

is a club of A + (see 5.4). 

Now for (~ E El,  we have N ° <~ N~, so by 5.3(1) there is c~ E N~\N~ such 

that: 

(N °, N~, c5) is minimal, 

tp(c5, N °, N~) is inevitable. 

As ~ is limit, for some i < 5, c E N 1, also 5 E Xc, hence there is j such 

that: i < j < ~ & j E Xc hence (N °, N 1, c) is minimal; choose such j~, c~. Let 

= cf(~) = cf(a) _< A, so for some j*, c* we have 

S = {(~ E E1 : cf((~) = ~, j~ = j*, c5 = c* } 

is stationary in A +. 

Choose e closed C_ E1 of order type a + 1 with first element and last element 

in S; for ~ E [j*,A +) let pc = tp(c*,N~,N~). (In fact, we could have: all 
non-accumulation members of e are in S; no real help.) 

Now (N~,p¢ : ~ E e) is as required (up to re-indexing)(clause (viii) holds by 

clause (ii) in the definition of El).  I5.5 

5.6 CLAIM: Assume (Ni,pi : i <_ a) is as in 5.5, a < A divisible by A. Then any 
p E S(No) is realized in N~, moreover N~ is universal in Kx over No. 

Proof: (Similar to the proof of 0.26; which is [Sh 300, II, §3]). 

Let No <~ Mo E K~, a E Mo\No; we shall show that tp(a, No, Mo) is realized 
in N~. 
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Let a = [.Ji<c, Si, {Si : i < a} pairwise disjoint, each Si unbounded in a, 
divides otp(Si) and Min(Si) _> i. We choose by induction on i _< a the following: 

N~, M 1, hi, (a¢ : ¢ E Si) (the last one only if i < a) 

such that: 
(a) 
(b) 
(c) 
(d) 
(e) 

(f) 
(g) 

(h) 
For i 

N~ _<~t M/1 are in Kx, 

N~ is <_~-increasing continuous in i, 

M~ is _<~-increasing continuous in i, 
(N1,M 1) = (No, Mo), 

{a¢ : ~ E Si) is a list of {c E M 1 : c realizes Po}, 

hi is an isomorphism from Ni onto N~, 

j < i ~ h j C _ h i a n d h 0 =  idNo, 
ai E N~+ 1 (note: M~ V/N~+ 1 ~ N~ in general). 
= 0: See clauses (d), (g), 

N(~ = No, MI = Mo, h o = i d g o .  

F o r i = l i m i t :  Let N~ = Uj<iN~ and M/1 = Uj<iM~ and hi = U j < i h j  and 
lastly choose (a¢ : ~ ~ Si) by clause (e). 

For i = j + 1: Note aj is already defined; it belongs to M ) and it realizes po. 

Case 1: aj E N) (so clause (h) is no problem). 
Use amalgamation on Nj, Ni, M) and the mapping idNj, hi, i.e. 

Ni > M) 

idNj I lidN  
N j h ' ) N  1 

Case 2: 

Then tp(aj ,  NJ, M 1) is not algebraic, extending the minimal type Po E $(No). 

Also by clause (viii) of 5.5 there is c E Ni\Nj  which realizes Po. As Po E $ (N)  is 

minimal 
hj (tp(c, Nj, Ni)) = tp(aj ,  N 1, M)) ,  

so acting as in Case 1 we can also guarantee hi(c) = aj, so aj E Rang(h/) = N 1 

as required. 

In the end we have N~ <_~ M~. If N~ = i ~ ,  then h~ 1 [ Mo = h~ I [ M~ = 
h~ 1 [ N 1 show that M0 can be embedded into N~ over No as required. So assume 
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N 1 <n M~. Now p~ C S(N~) is inevitable hence h~(p~) C S(N~) is inevitable. 

Hence some d • M_I\N~ realizes h~(p~), hence d realizes h~(p~) r NI = Po; also 

a is a limit ordinal, so for some i < a, d • M 1, hence for some ( • Si we have 

a¢ = d, hence 

d = a¢ • N~+ 1 C_ N~, 

contradicting the choice of d. So we are done. [5.6 

5.7 CONCLUSION: If N • Kx then: 

(a) [S(Y)[ = A, 

(b) there is N 1 , N  <n N1 •/'()~ such that N1 is universal over N in Ka, 

(c) for any regular ~ _< ), we can demand that (N,,c)ccN is (A,~)-saturated 

(see 0.28(1)). 

5.8 Remark: In fact amalgamation in A and stability in A (i.e. (a) of 5.7) implies 

(b) and (c) of 5.7. 

5.9 CONCLUSION: The N • K~+ is saturated above A (i.e. over models in Ka!). 

5.10 CLAIM: Assume ~ = cf(a) <_ A. There are N o , N I , a , N + , N  + such that 

(i) (No, N1, a) • K 3 and 

(ii) (No, N1, a) ~ (g: ,  gl +, a) • K 3 and 

(iii) No + is (A, ~)-saturated over No, 

(iv) tp(a, No, N1) is minimal inevitable and 

(v) tp(a, No+, N +) is minimal inevitable. 

Proof: As in the proof of 5.5 because 

E2 = {5: for every i < 5, N ° is saturated overNi of cofinality cf(5)} 

is a club of A +. 15.1o 

5.11 CLAIM: (1) In K~ we have disjoint amalgamation. 

(2) If M <_~ N are in Kx and p • S (M)  non-algebraic then for some N',  c we 

have: N <n N '  • Ka and e • N ' \ N  realizes p. 

Proof: (1) First note: 

~) if M _<n N in Ka we can find a < A +, and sequence (Mi : i <_ a) which 

is <_n-increasing continuous, and (ai : i < a) such that (Mi, Mi+I, ai) is 

minimal and reduced and N <st Ms, M = Mo. 

[Why? There is a minimal reduced pair, hence we can find (Mi : i < A +) _<n- 

increasing continuous, (M~, Mi+l, hi) minimal reduced and M = Mo. So by 5.9 
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we know Ui<x+ Mi E Kx+ is saturated, hence we can embed N into Ui<~+ Mi 
over N so this embedding is into some M~, a < A+.] 

Therefore given M <_~ M 1,M 2, without loss of generality M e = M~e , 

((M[, a~): i _< ae) as above, and start to amalgamate using the extension prop- 

erty and "reduced". 

(2) Follows from part (1). 15.11 

5.12 Remark: We could prove 5.11 earlier using "reduced triples". I.e. note 
that  for some (M 1 : i < ~+) E Seq:~+ 1 [C~,x+], for each i for some a the triple 

(M}, M}+I, a) E K~ is reduced. Hence if M _<~ N from Kx, for some 37/= (Mi: 
i _< a), < ~-increasing continuous, (Mi, Mi+I, bi) E K~ is reduced, Mo = M, N _< 
M~ E K~ (otherwise find (M/2 : i < A +) E Seq~+[C~,~+] with (Mi, Mi+l) ~- 
(M, N), hence M 1 : Ui<;~+ M1 M2 i ,  = Ui<x+ M~ are non-isomorphic members 
of K),+, contradiction). Now prove by induction on/~ _< a that if M _<~ No E Kx 

then No, M/~ has disjoint amalgamation over Mo = M (i.e. we need to decompose 

only one side). 

5.13 Question: If M E Kx,p E £(M)  is minimal, is it reduced? Or at least, if 

Mo <~ M1 are in Kx,pl E S(M~) is non-algebraic, Po = Pl [ Mo,Po is minimal 

and reduced, is also pl reduced? 

It is probably true and would somewhat simplify our work, but we have to go 

around it fulfilling our aims (here and in [Sh 600]). Now 5.5 is an approximation. 
It can be proved if A < A s° or there are E.M. models. 

6. A proof for ~ ca tegor ica l  in A +2 

6.1 HYPOTHESIS: Assume the model theoretic assumptions from 4.1 + 5.1, and 

so the further model theoretic properties deduced in §4 + §5. We use 4.8 heavily. 

rzuniq (has un ique  (disjoint) 6.2 Detinition: (1) We say (M0, M1, M2) E . .x 

a m a l g a m a t i o n  in Kx) when 

(a) M0, M1, M2 E K~; 

(b) M0 _<~ M1 and Mo _<~ M2; 
(c) if for i = 1, 2 we have gi. Mt ~ Ni E Kx such that: 

(i) giea _<~-embedding, 

(ii) g~ C_ g] and g~ C_ g.~ for i = 1, 2, 

(iii) Rang(g~)n Rang(g.~) = Rang(g~) (disjoint amalgamation) for i = 1, 2, 

then we can find N E Kx and <~-embeddings 

f i : N i - + N  for i = 1,2 
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such that 

A s 1 : s2°g  • 
e<3 

~2,uq he the class of pairs (Mo, M2) such that Mo _<.a M2 are both (2) Let ..~ 
-uniq K 3'uq be in K~ and [/14o _<~ M1 e K~ ~ (Mo, M1,/142) E /(~ ] and let 

h ~2'uq satisfying Mo ~ 5/2. the class of pairs (Mo, M2) C *.~ 

~-uniq then 6 . 3  CLAIM:  (1) If(Mo, M1,M2) C ~ 
h.-uniq (a) (Mo, M2, M1) E . .~ , 

h*uniq (b) i f  Mo <_.~ M.'2 <_.~ M2 then (Mo ,M1 ,M~)  E *'x " 

(2) Assume  Mo <_~ M2 are from Kx  and M1 C t(~ is universal over Mo. Then 
h~2,uq h~uniq (Mo, M2) c - ~  ~ (Mo, M~,M._,) ~ ~.~ 

Proof." (1)(a) Trivial. 

(b) Chase arrows (using disjoint amalgamation, i.e. 5.11). 

(2) Follows by 6.3(1)(a)+(b) and the definition. 16.3 

6.4 LEMMA: Suppose 

~-uniq such that Mo ~ M.2 and M1 is universal ~) there is ( Mo, M1, M2 ) E ~. ~ 

over Mo. 

Then: there are N o <.~ N 1 in K~+ such that: 
(a) N O # N 1, 

(b) for every c C N 1 \ N  o there is M = M~ satisfying N o <_.~ M <~ N 1 and 

N ° ¢ M a n d e E N  I \ M .  

Proof: Choose (N o : i < A+), a sequence of members of K:~ which is 
_<~-increasing continuous, such that: 

N O N O ~ ~ (Mo, 512). i , i+1) = 

So N ° # NO+,, hence No = Ui<~+ No E Kx+, and without loss of generality 

]Nol = A +. 
We now choose, by induction on i < A +, N 1 and 3li,c for c C N ~ \ N ,  ° such 

that: 

(a) N ° _<~ N,! C K~ and i ° # N),  

(b) N• is _<h-increasing continuous in i, 

(c) j < i ~ NJ M N ° = N ° , m o r e o v e r N ~ M i N o i = N  o , 
(d) N o ___~ M,,c <~ n~, 
(e) c • Mi,c, 

(f) N ° • Mi,c, 
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(g) if j < i and c E N I \ N  ° then Mi,~ M N 1 = Mj,c. 
For i = 0: Choose N~ such that N ° <~ N}, (X:, C)ceNO saturated (any cofinality 

will do); then by disjoint amalgamation it is easy to define the Mo,c (remembering 
clause (c)). 

For i limit: Straightforward. 

For i = j + 1: First we disjointly amalgamate getting N~ E Kx such that N ° < 

N ' , N  1 N" and IN'I n INol = IN°I (as set of elements). Let be such that: 

N~ _<~i N/I E Kx, 

(N}, C)ceN~ is saturated (any cofinality will do), 

IN 'l n INol = IN°I. 

Lastly, we shall find the Mi,c'S; the point is that  (N o, Ni ,0 Nil ) E ~Tcuniqx (by 

6.3(2)). 

By ~} and Claim 6.3 we could have done the amalgamation in two steps and 

use uniqueness. Then by uniqueness of saturated extensions embed the result 
inside N 1 and similarly deal with new c's. 

Now let N1 --: Ul<)~+ N~ and for c E NI\No let Mc = U{Mix : c E N~}; they 
are as required. ~.4 

Remark: The proof of 6.5 below is like [Sh 88, proof of 2.8 stage (c)]. The aim 

is to contradict that under I(A +3, ~) = 0 there are maximal triples. 

6.5 CONCLUSION: Assume ~ has amalgamation in A+. With ~ of 6.4, then 

there is no maximal triple (M, N, a) in K~+. 

Proof: We can get by 6.4 a contradiction. 
[Why? Assume (No, N2, a) E K3+ maximal, (N °, N 1) as in the conclusion (i.e. 

(a) + (b)) of 6.4; by categoricity in X+ without loss of generality No = N O and let 

N1 = N 1 • Now J~ has amalgamation for )~+, so there are N E Kx+ and f such that 

f :  N2 ~ N is a _<~-embedding of N2 into N over No and N1 _<~ N. If f(a) ~ N1, 
then (No, N2, a) <I  (Nt, N, f(a)) contradict maximality. If .f(a) E N1, then 

Mr(a) is well defined (see 6.4) and (No, N2, a) <S (Mr(a), N, f(a)) contradicts 

maximality.] |6.5 

6.6 Remark: (1) Another proof is to replace the assumption "~ has amalga- 

mation in A+" by "I(A+2,K) < 2 ~+2''. We start with No, N1,N2,a as above 

and build, for every S C_ A+2 a sequence (M~ : a < A+~) of members of Kx+, 
S S S ,~ which is _<~-increasing continuous, and a E S ~ (M~, M~+I, a~) = (No, N2, a), 

and c~ 6 A+2\S =~ (M~',M~+I) "~ (No,N1) which are as in (a)+(b) of 6.4. Let 
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MS = Uo~<4+2 MS E K~+2 and from M s /  ~- we can reconstruct S/D4+2. So 

here we use I(A +2, K)  < 2 ~+~ but no need for the definitional weak diamond for 

A++. 

(2) Note that if 2 a+ < 2 4++ then the assumption of 6.6(1) implies the assumption 

of 6.5. 

6.7 CLAIM: Assume 

( .)  24 < 24+ < 2 ;~++ (or a t / eas t  the defnitional weak diamond for A +, A ++) 

and 

(**) (a)WDmId(A +) is not a A++-saturated ideal, or 

(3 )K~+3  = 0 a n d  -~(~+ = 2 4 > ~).  
I f ~  of 6.4 fails, we get I(A+e,K) _> 24+~. 

Proof: First, if (**)(a) holds then by 3.19 and 6.8 below we get the conclu- 

sion. Second, if K:~+3 = 0 and 24+ > A ++ then there is M~ E K4++ which 

is _<~-maximal hence saturated (above A + and above A as ~i4+ and ~4 have 

amalgamation), and let M~ _<~ M2, M1 E Kx+; now by the proof of 6.7 as 

A ¢ WDmIdu(A +) for # = A +3 by 1.2(2) second case (as in 3.23) there is a _<~- 

extension of M1 in K~+ not _<~-embeddable into M2. Third, if 24+ = A ++ then 

necessarily A < 2 a < 24+ = A ++ so 2 :~ = A +, so by [Sh 460], if A _> ~ then %+ 

hence WDmId(A +) is not A++-saturated, a case we have dealt with. Together 

we are done. 116.7 

The following serves to prove 6.7. 

6.8 CLAIM: Assume M E Kx ~ Is(m)[ 5_ A. 

I f  K~ 'uq = 0 (see Definition 6.2(2)), then there is an amalgamation choice 
o function F for C = Ca4+,  with the weak A +-coding property. 

Proof: The point is that i f ~ / =  (Ms : a < A +) E Seq4+[C] and a < A+,M~ <.~ 

N E K4, then for some 3 E (a,A +) we have: 
fcuniq w3'uq 0 necessarily (Ms MZ, N) ~ ..~, MZ is universal over Ms, so as . .~ 

and the rest should be clear. 

Of course, we use the extension property. ~.8 

6.9 Remark: We can work in the context of §3; we need the existence of a 

saturated (equivalently super limit) M E K:~+. We now say how to replace 

ttwd(A +2) by 2 4+5. 
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6.10 CLAIM: (1) Assume each M E KA+ is saturated above 1. 

If (M, N, a) E K~, it and every (M', N', a) E K~ above it has the extension 
property, but for every (M", N", a) >_ (N, N, a) (all in K~) for some M* >_~ M" 
from Kx, in amalgamation (M*, N*, a) >_ (M r', N 'r, a) the type of M * u  N inside 

N* is not determined, then some F (actually F*) has the 1+-coding property. 
(2) If  above we just require that the type of M* UN" inside N* is not determined, 
then some F (actually F*) has weak A+-coding. 
(3) We can restrict ourselves to disjoint embedding. 

6.11 DISCUSSION: We get IE(A+2,N) = 2 ~+~ when (2x+) + < 2 x+~. See more 
in [Sh 600]. 

We now prove 0.2. 

6.12 THEOREM: Assume (*) of 6.7 (or at least the conclusion of 6.7). Then 
1(I +2, K) = 1 =~ 1(t  +3, K) > O. 

Remark: As in [Sh 88, §3]. 

Proof: By 0.20(1) it is enough to show that for some M E K;~++ there is M r, 

M _<n M r E K:~++, M ~ M I. [Why? As then we can choose by induction on 

i < I +3 models Mi E K~+2, _<.c-increasing continuous, Mi ~ Mi+l, for i = 0 

use KA+2 ~ O, for i limit take union, for i = j + 1 use the previous sentence; so 
Mx+3 = U{Mi:  i < 1 +3} E Kx+a as required.] 

By 6.7, the statement @ of 6.4 holds so we can find (N °, N 1) as there, hence 

by 6.5 there is in K~+ no maximal member. This implies (easy, see 2.6(6)) that 

there are M* <~ N* from Kx+2 such that M* ¢ N* which, as mentioned above 

(by categoricity in 1+), suffices. 16.12 

7. Ex t ens ions  and  con jugacy  

7.1 HYPOTHESIS: Assume the model theoretic assumptions from 4.1+5.1 and 

the further model theoretic properties deduced since then (but not in 6.7, 6.12), 
or just 

(a) ~ is an abstract elementary class, 

(b) J~ has amalgamation in A, 

(c) ~ is categorical in 1 (can be weakened), 

(d) ~ is stable in I (see 5.7, clause (a)), 

(e) there is an inevitable p E S(N) for N E K~ (holds by 5.3), 

(f) the basic properties in type theory. 
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We now continue toward eliminating the use of I(A ++, K)  = 1 (in 6.12), and 

give more information. We first deal with the nice types in S ( N ) , N  E K:~, 

in particular the realize/materialize problem which is here: if N1 _<~ N2 are 

in Ka,pe C S(Ne) is minimal, Pl _< P2, are they conjugate? (i.e. does p2 C 

sm (N2)?). 

7.2 CLAIM: If N C Kx and p C S (N)  is minimal and reduced or just p is reduced 

(see Definition 2.3(7)), then p is inevitable. 

Proof: Suppose N ,p  form a counterexample. We can then find N1 and a such 

that N <~ N1 E Kx ,a  E N I \ N  and p = tp(a,N,  N1) and (N, NI ,a)  is reduced. 

As p is not inevitable, there is N2 such that: N <_~ N2 C Kx, N ¢ N2 but no 

element of No realizes p. By amalgamation in Kx, without loss of generality 

there is N3 E Kx such that ~ E {1, 2} =* Ne <.q Na. By 5.3 (i.e. 7.1(e)) there 

is q E S(N) ,  which is inevitable so there are c~ E Ne with q = tp(ce,N, Nt) 

for ~ C {1,2}. By the equality of types (and amalgamation in Kx) there is 

N + E K,  a <n-extension of N1 and a _<n-embedding f of N~ into N + over 

N such that f(c2) = cl; so without loss of generality N + = N3 and f is the 

identity, hence cl = c2. Now a ~t N2 as p = tp(a,N,  N1) is not realized in N2. 

So (N, NI,a)  <_ (N2,N3,a) and N2 M N I \ N  ¢ 0, contradicting "(N, NI,a)  is 

reduced". I7.2 

7.3 CLAIM: (1) If  t~ = Cf(t~) <_ A and 29 = (N i : i < a;I;} is an <_n-increasingly 

continuous sequence, Ni C Kx, Ni+l universal over N~, and p E S(N~, )  is mini- 

ma• reduced (or minimal inevitable) then for some i < wa we have p [ Ni E S(Ni)  

is minima/(so p is the unique, non-algebraic extension of p F Ni in S ( N ~ )  (and, 
of course, there is one)). 

(2) If A >_ ~ = cf(a), 29 = (Ni : i < ~) is <~-increasing continuous in Kx and p E 

S(N~) is minimaI and reduced and the set Y =: {i < a : Ni+l is (;~, a)-saturated 

over Ni} is unbounded in ~ then for every large enough i C Y there is an isomor- 

phism f from Ni+l onto N~ which is the identity on Ni and 

(*) f mapsp I J~i+l E S(Ni+I) top  e S ( X . ) .  

Hence as p is minimal reduced, so is p [ Ni+l. 

Proof." (1) We can choose (N °, N/1, a) e K 3 for i < A + reduced, G-increasing 

continuous such that N o • N°+I. Let Ne = U i<x+ N[. As in the proof of 5.5 for 

c E NI\No,  

It.* = {j < A+: c C Nj 1 and tp(e, N °, N))  is minimal} 
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is empty or is an end segment of A + and 

E = {5 < A + : i f c • N ~  a n d I *  # 0 t h e n l * M 5  

is an unbounded subset of 5; and if a < 5 

then, for some/3 • (a, 5), N~ is universal over N ° 

and if Pr is one of the properties reduced and/or  

inevitable and/or  minimal and there is i _> 5 such that 

(N°i, Nli, c) has Pr, then there are arbitrarily 

large such i < 5} 

is a club of ),+; for the universality demand in the definition of E use categoricity 

in A +. Let 5 E acc(acc(E)),cf(5) = ~, let (a¢ : ~ < w~) be an increasing 

continuous sequence of ordinals from E with limit 5, now set a ~  = 5 and 

Y~ =: Y ° , .  

So there is an isomorphism f from N ~  onto N O  such that for every ( < wt; 

we have N°2, <~ f(N~2, ) <~ N°2,+, (so if ( is a limit ordinal, then N°¢ = 

N°2, = f(N¢)),  so without loss of generality f is the identity. As p E S ( N ~ )  is 

inevitable (by assumption or by 7.2) and N ~  = N O  <~ N1 , for some c E 

NL \N° w e h a v e p  = s o f o r s o m e 9  < w e h a v e c  • 

As p is minimal (by assumption) clearly 5 E Iv, but 5 • E so Min(Ic) < 5; but Iv 
is an end segment of A +, hence without loss of generality for some ( < w~ we have 

= a¢ • Ic. So for ~ • ((,w,¢), both p • $ ( N ~ )  and p [ N~ • ,S(N~) are non- 

algebraic extensions of the minimal p [ N °, E S (N° , )  and N°¢ <~ N~ <~ N ~ ,  

all in K~, so we have proved part (1). 

(2) Without loss of generality every ( < n is in Y. We can find (N~ : ( _< ~ )  

as in part (1), moreover satisfying "N~+ 1 is (A, a)-saturated over N¢" and such 

that: for every ~ < ,¢ we have N¢ = N'¢. So again choose ( < ~ as there; we set 

/3 = a~¢ • I c. If ~ E Y and ,¢~ > (, clearly by the uniqueness of ()t, ~)-saturated 

models there is an isomorphism f from N~+I = N'~(~+I) onto N~ = N'~  over 

N~ = N'~,  and f ( p  [ N~+I) = p is proved as above by the uniqueness of the 

non-algebraic extension. I73 

7.4 CLAIM: (1) If  M0 <_~ M1 al"e in K)~ and the types Pe • S(Me) are minimal 

reduced, for ~ = O, 1 and Po = pl [ Mo then PO, Pl are conjugate (i.e. there is an 

isomorphism f from Mo onto M1 such that f(Po) = Pl). 

(2) I f  in addition M <_~ Mo and Mo, M1 are (,k, n)-saturated over M, then Po,Pl 

are conjugate over M.  
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Remark: Note that p minimal (or reduced) implies that  p is not algebraic. 

Proof: (1) Let ((N ° ,N.~,a) : i < A +) and E be as in the proof of 7.3 and 

n = cf(n) _< A. For each 6 E S~ =: {a < ;~+ : a E E a n d c f ( a )  = ~}, and 

minimal reduced p E S(N~),  we know that  for some ip < 6,p r N°p is minimal 

reduced [why? by 7.3(1),(2)] and some qp E 8 ( N ° )  is conjugate to p say by gp 

an isomorphism from N~ onto N°p. For n = cf(a) < )~, q E 8(N°) ,  i < )~+, r E 
S ( N  °) minimal let 

A~:~ = {6 < A+: there is a type p such that r C p E 8(N~) ,p  non-algebraic 

(this determines p),p minimal reduced, ip = i, qp = q 

(and clearly p [ N ° = r) and cf(6) = n}. 

Next let 

E1 = {6 < )~+ : for every n = cf(n) _< ,~, 

r, q E 8 ( N  °) and i < 6, if A~:~ is well defined and 

unbounded in ~+ then it is unbounded in 6}. 

So if 61 E E l , n  = cf(61),pl E 8(N°1) is minimal reduced, then we can find 

6o < 61,cf(6o) = a, and po • 8(N°o) minimal reduced with qpl = qpo,ipl = 
ipo,Po [ N°~o = Pl [ N°~l ; call it r, it is necessarily minimal. 

As Pl,P0 extend r,N°vo = N O  <~ N~o <~ N ° ,  necessarily Pl = Po I N° o, and 

also they are both conjugate to qpo = qp~, hence they are conjugate. 

Next we prove 

(*) if Mo <~ M1 are in K~, M1 is ()~, n)-saturated over Mo, p~ E 8(Mo) is 

minimal reduced and P'o - < P'I • 8(M1),p'1 non-algebraic, then Po,' P l' are 

conjugate. 

Above we have a good amount of free choice in choosing Pl • S(N~ 1 ) (it should 

be minimal and reduced) so we could have chosen Pl to be conjugate to p~, i.e. in 

'-qp'o (N°~); now also the corresponding Po is conjugate to Pl, hence Po is conjugate 

to p~, so we can find an isomorphism fo from 11//o onto N°o, fo(P'o) = Po, and 

extend it to an isomorphism f l  from M1 onto NO, so necessarily fl(P~) = Pl (as 

Pl is the unique non-algebraic extension of P0 in S(M~I )). As P0, Pl are conjugate 

through (gpl)-2 o gpo, also p~, p~ are conjugate. So (.)  holds. 

Now assume just Mo _<n M1 are in K~,po • S(Mo) minimal reduced, Pl • 

$(M1) the unique non-algebraic extension ofpo and it is reduced (and necessarily 

minimal). There is M2, M1 <__n M2 • Kx, M2 is (A, n)-saturated over M1, hence 

also over Mo, and let p~ be the unique non-algebraic extension of Pl in S(M2); 

hence P2 is also the unique non-algebraic extension of Po in S(M2). 
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Using (.) on (Mo, M2,po,p2) and on (M1,M2,pl ,p2)  we get that po,p2 are 

conjugate and that Pl,Ps are conjugate resp., hence Pl,Ps are conjugate, the 

required result. 

(2) A similar proof. |7.4 

7.5 CLAIM: (1) Assume M1 ~ M2 are in K~ and M2 is (A,a)-saturated over 

2141. I f  pl E $(M1) is minimal and reduced, then P2, the unique non-algebraic 

extension of pl in $(M2),  is reduced (and, of course, minimal). 

(2) There is no need to assume '~ol reduced". 

Proof: (1) We can find (Ni : i _< a), an <~-increasingly continuous sequence in 

Kx such that Ni+l is (A, tc)-saturated over Ni and N~ = M1. So by 7.3(1),(2), 

for some ~ < a we have: Ps [ N; is minimal and for some isomorphism f from 

Ni+l onto N.  we have f (Pl  I N¢) = Pl and f I N; = idN¢. Also M1,N;+I 
are isomorphic over N~ (as both are (A, a)-saturated over it), hence there is 

an isomorphism g from N;+I onto Ms over N i. Now Pl = f(Pl [ Ni+I) and 

f2 =: g(Pl [ Ni+l)  are non-algebraic extensions of Pl I N; which are minimal, 

hence Pl = Ps I M1 and ps is as mentioned in 7.5. Now g o f -1  show that pl,pS 

are conjugate, so as pl is reduced also Ps is reduced. 

(2) Easy, as we can find N, M1 <_~ N, q E $ ( N )  extends Pl and is minimal 

reduced; without loss of generality N _<n Ms and Me is (A, a)-saturated over N, 

and apply part (1). 117.5 

7.6 CLAIM: Assume 

(a) N~,j ~ K~, for i _< 5~, j <_ 5s, 

(b) (Ni j  : j <_ 52) is <_n-increasingly continuous for each i <_ 51, 

(c) (Nij  : i < 51) is <_~-increasingly continuous for each j _< 52, 

(d) (Ni,j : i <_ 51,j C 5s) is smooth, i.e. 

Yi , , j  1 A Ni2,j 2 : /min{ i l , i 2}  [') Ymin(jl,j2}, 

(e) giwl,jd_l is universal over Ni,j+l U Ni+l,j (i.e. gid-l,j+ 1 is universal over 

some N[+I,j+ 1 where Ni,j+l U N~+I,j C_ N[+I,j+I) , 

(f) 51 is divisible by cf(hs) × A × w (and even easier if51 = 1!). 

Then N~I ,~ 2 is (A, ct~ 51) )-saturated over Ni,52 for i < 51. 

Proof: Without loss of generality 52 = cf(52). [Why? Let (a~ : ¢ <_ cf(52)) 

be increasingly continuous with limit 52 such that [c limit ~ a~ limit], and use 

N~,e = Ni,a~ .] So 51 is divisible by 52 × A x w. 
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For i < 51,j  < 52 let Mi j , AI[ j be such tha t  ][f i+l , jUMi j+l C ~[i,j <_~ M '  • < 

Mi+l,j+l and M '  • is (A, cf(A))-saturated over Mi,j. Clearly (M~.~ : c < 52) is <~-  z,3 

increasing ( though not continuous),  and M'~I,E+I is (A, a ) -sa tura ted  over M',~. 

Let  p* C 3(M~2,~2) be reduced and minimal, so tha t  3152,52 = Ue<52 M~,e, for 

some c < 52, p* [ M ' ~  is minimal hence p* [ N~+,e+l is minimal, so by renaming 

p = p* [ N0,0 is minimal. 

For i < 51,j  _< &. let Pi,j C ,-.q(Ni,j) be the unique non-algebraic extension o f p  

in S(Ni , j ) ,  so it is minimal. Now for i < 51, note tha t  (M'+~,~ : c < 52) is _<~- 

increasing (not continuous!) and M~+~+I,~+ 1 is (A, ef(A))-saturated over M '  i+e,e 

and U~<52 M[+~,~ = U~<~2 N~+s+l,~+l = Ni+~,~2, hence by 7.5(2) we know tha t  

Pi+~2,~2 is reduced (and minimal).  In fact, similarly c~ < 51 & cf(a) = cf(he) 

P~,~2 is reduced. As N/+I.j+~ ¢ Ni+l,j U Ni,j+l and clause (d) (smoothness) 

necessarily N~+~2,~ 2 <~ N~+~+~,~, hence some c C N~+~:+1,~2\N~+~,~2 realizes 

Pi+~2,~. So if a < 51 is divisible by 52 x A and has cofinality cf(52) and fl < c~, 

then by 5.6, N~,~ is universal over NZ,~ ~. As 51 is divisible by cf(he) x A x w we 

are done. 1~.6 

7.7 LEMMA: (1) For every N ~ K~+ we can find a representation 2V = 

(Ni : i < A+), with Ni+l being (A, cf(A))-saturated over Ni. 

(2) I f  for f = 1,2 we have N e = (N[ : i < A +) as in part (1) then there is 

an isomorphism f from N ~ onto N 2 mapping N ] onto N~ for each i < A +. 

Moreover, for any i < A + and isomorphism g from N /  onto N~ ~ we can find an 

isomorphism f from N ~ onto N 2 extending g and mapping  Nj t onto N]  for each 

j ~ [i, A+). 

(3) I f  N ° <_~ N ~ are in K~+ then we can find representations IY e of N e as in (1) 

with N ° = N O n N ~  (so N ° <<~ N t ) .  

(4) For any strictly increasing function f : A + -+ A +, we can find Ni,e for 

i < A  + , e _ < A x  ( l + f ( i ) )  such that: 

(a) Ni,~ ~ Kx, 

(b) (Ni,~ : e _< A x (1 + f( i )))  is strictly <_s~-increasing continuous, 

(c) for each ¢, (Ni,~ : i ~ [i~, A+)) is a representation as in (1) where ie = 

Min{i : e _< A x (1 + f( i))},  

(d) i re  < A x (1 + f ( i ) )  and i < j < A + then Nj,~ A Ni,Xx(~+r(i)) = Ni,~, 

(e) Ni+l,e+l is (A, Ro)-saturated over Ni+l,, U Ni,s+l. 

Proo~ Straightforward.  

(4) First  use f ' :  A + ~ A +, which is if(i) = A ~ x f(i) .  Then  define the Ni,~ for 

¢ < A x (1 + f ' ( i ) ) ;  i < A +. "Forget" about  "Ni+~,~ is (A, ef(A))-saturated over 

N~,e . . . .  , remember  we have disjoint amalgamat ion by 5.11. Now by 7.6, even for ¢ 
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limit divisible by A 3 we get Ni+~,e is (A, cf(A))-saturated over Ni,~, so renaming 

all is O.K. lb.7 

We can deduce the following claim using 7.6, but to keep the door open to other 

uses we shall not use it. 

7.8 CLAIM: If  ~ = c[(~e) <_ A, and N~ is (fl, nl)-saturated over N for ~ = 1, 2, 

then N1, N2 are isomorphic over N.  

Proo~ We can define by induction on i _< A x ~1, and then by induction on 

j _< A x t¢2, Mi,j such that: 
(a) Mi,j C K;~, 

(b) Mo,o -- N, 
(c) il _< i & j l  _< j ~ Mi~,j~ <~ Mi,j, 

(d) Mi~,jl A Mi2,j2 = Mmin{il,i2},min{j 1,j2}, 
(e) Mi,j is <n-increasing continuous in i, 
(f) Mi,j is <n-increasing continuous in j ,  

(g) Mo,j # M0,j+I, 

(h) Mi+x,o # Mi,o, 
(i) Mi+l,j+l is universal over Mi+l,j U Mi,j+l. 

There is no problem with 5.11 (1) (using the existence of disjoint amalgamation). 
Now M~×~,~×.  2 is the union of the strictly <n-increasing sequence 

(Mo,o)^(Mx×i,A×~2 : i < I';1), hence by 7.6 is (A, al)-saturated over Mo,o = N,  
hence MA×.~,x×. 2 ------N NI. Similarly MA×~,~×. 2 is the union of the strictly 
<_n-increasing sequence (Mo,o)^(MA×~,;~×j : j  < a2), hence is (A, a2)-saturated 
over Mo,o = N, hence Mx×~,~×~ 2 ---N N2. Together N1, N2 are isomorphic over 

N. mr.s 

7.9 CLAIM: For any M* < n N* in K~ we can find v, an ordinal power of A which 

is < A + and (M1 : i <_ v), <_n-increasing continuous st (Mi, Mi+l) ~- (M*, N*) 

and My is (A, v)-saturated over Mi for every i < v. 

Proof: By the categoricity in A. 

8. Uniqueness  of  amalgamat ion  in ~ 

We deal in this section only with K~. We want to, at least, approximate unique 
[(3,uq amalgamation using as starting point ~ of 6.4 (see also 6.7), i . e . . ~  # {3. 

8.1 HYPOTHESIS: (1) Assume hypothesis 7.1, so 

(a) ~q is an abstract elementary class, 

(b) ~q has amalgamation in A, 
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(c) J~ is categorical in A (can be weakened), 

(d) J~ is stable in A (see 5.7, clause (a)), 

(e) there is an inevitable p • S(N) for N • K~ (holds by 5.3), 

(f) the basic properties in type theory. 

(2) (M*,N*) is some pair in v3'uq ~.:~ = {(Mo, M2) : M0 <~ M2 are in Kx 
/cuniq" equivalently and for every M1,Mo <_~ M1 • Kx ~ (Mo,M1,M2) • ~ , 

for some M1, (M0, MI, M2) are as in @ of 6.4} (eventually the choice does not 
= It( 2,uq matter  if each time, instead of ~ (M*,N*), we write • " 'x , see 8.11; but if 

we start with this definition then the uniqueness theorems will be more cumber- 

some). 

(3) Lastly let v be as in 7.9 for our (M*, N*). 

8.2 Definition: Assume 6 = (61,52,53), 51 a limit ordinal < A + but 62,53 are 

< A + and may be 0. We say that NF:~,3(No,N1,N2,N3) (we say N1,N2 are 

s a t u r a t e d  by  and  s m o o t h l y  a m a l g a m a t e d  in N3 over No for ~) when: 

(a) Nt • K:, for t • {0, 1, 2, 3}, 

(b) No <~ Ne <~ N3 for g = 1, 2, 

(e) N a n  N2 = No (i.e. in disjoint amalgamation), 

(d) N1 is (A,cf(51))-saturated over No, 

(e) N2 is (A,cf(62))-saturated over No; if 62 = 1 this means just No <~ N2, 

(f) there are Nl,i,N2,i for i _ v x 61 (called the witness) such that: 

(a) Nl,o = No, N1,~×61 = N1, 

(9) N2,o = N2, 
(7) (Nt,i : i  _< v x 51) is <.~-increasing continuous for g = 1,2, 

(6) (Nt#,Nx,i+l) '~ (M*,N*), 
(e) N2,i A N1 = Nl,i, 
(~) N3 is (A,cf(63))-saturated over N2,,X~l; if 63 = 1 this means just 

N2,V×~l _<~ N3. 

Discussion: Why this definition of NF? We need a nonforking notion with the 

usual properties. We first describe a version depending on (3o, 61,62) and get 

N F  = NF:~,3; 5 works like a scaffold---eventually 5 disappears. Clearly if there 

is such a notion, it should agree with the Definitions 8.2 and 8.3. 

N3 
8.3 Detinition: (1) We say N1 W N2 (or N1, N2 are s m o o t h l y  a m a l g a m a t e d  

No 
over No inside Nz or NF~(No,N1,N.2, N3)) Lf we can find Mt C Ka (for g < 4) 

such that: 

(a) NFa,(a,a,a)(Mo, M1, M2, M3), 
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(b) Ne _<~ Me for t < 4, 

(c) No = Mo, 

(d) M1, M2 are (A, cf(A))-saturated over No (follows by (a); see clauses (d), (e) 

of 8.2). 

8.4 CLAIM: (1) Assume ~ = (51,52,~3),6~ a limit ordinal < A + and Ne C K~ for 

< 3, and N1 is (A, ct(51))-saturated over No and N2 is (A,ct(52))-saturated over 

No and No <_~ N1, No <_~ N.2 and for simplicity N1 N N2 = No. Then we can 

find N3 such that NF~,~(No, N1, N2, N3). 

(2) Moreover, we can choose any (Nl,i : i <_ v x 61) aS in 8.2(f)(a), (7), (5) as 

part of the witness. 

Proo~ Straightforward (remembering 5.6, 7.9 (and uniqueness of the (A, cf(51))- 

saturated model over No)). |s.4 

8.5 CLAIM: In Definition 8.2, if  53 is a limit ordinal, then without loss of 

generality (even without changing (Nl,i : i ~ v × 61)) 

(g) N2#+1 is (A,cf(52))-saturated o v e r  N:+  1 U N 2 (which means it is (A,cf(52))- 

saturated over some N,  w h e r e  N:+  1 U N/2 C N _<~ N2,i+x). 

Proof: So assume NF~,~(No, NI, N2, N3) holds as witnessed by (Nt,i : i _< v x fi~ / 
for ~ = 1, 2. Now we choose by induction on i _< v x 61 a model M2# E Kx such 

that: 

(i) N2# _< M2#, 
(ii) M2,o = N2, 

(iii) M2,i is _<y~-increasing continuous, 

(iv) M2,i N N2,vxS1 -- Y2,i, moreover M2,i N N3 = N2,i, 

(v) M2,i+1 is (A,cf(62))-saturated over M2,i U N2,i+1. 

There is no problem to carry the definition. Let M3 be such that M2,,×5, 

_<~ M3 G Kx and M3 is (A,cf(53))-saturated over M2,x×5,. So both M3 

and N3 are (A,cf(53))-saturated over N2,,×5~, hence they are isomorphic over 

N2,v×5,, so let f be an isomorphism from M3 onto N3 which is the identity over 

.N2,.×~. Clearly (Nl,i : i <_ v x 51) , (f(M2,i) : i <__ v x 51) are also witnesses for 

NF~3(No, N1, N2, N3) satisfying the extra demand (g). ms.5 

8.6 CLAIM (Weak Uniqueness): Assume that for x E {a,b}, we have 
X 2: NF~,~ (N~, N1, N~, N~) as witnessed by (YlXi : i <_ v x 5~), (N~X# : i < v x 6~) 

a n d  61 = :  = = cf(6 ) a n d  d(6 ) = ct[6 ) > So. 

Suppose further that fe is an isomorphism from N~ onto N b for ~ -- 0, 1, 2; 

moreover: fo C_ f~, fo C_ 12 and f~ (N~,i) -- Nbl,~. 
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Then we can find an isomorphism f from N~ onto Nb3 extending f l  U f : .  

Proo~ Without  loss of generality Nf,  i+ 1 is (A, cf(8~))-saturated over N ~ 1,i+1 U 
N X ¢ , ,  2,i (by 8.5: note  the "without  changing the Nl,i  s there).  Now we choose by 

induction on i < v x 81 an isomorphism gi from N ~ onto N b such that:  gi is 
- -  2,i 2,i 

increasing in i and gi extends (f l  I Nta, i) U f2. 
For i = 0 choose go -- f2 and for i limit let gi be Uj<ig j  and for i = j + 1 

use (NLi  , Nl,i+l)  -- (M*, N*)  (see 8.2) and the ext ra  saturat ion clause (g). Now 

we can extend g~×~ to an isomorphism from N~ onto N b as N~ is (A, cf((i3))- 

sa tura ted  from N~,,×5, (for x E {a,b}); note that ,  knowing 8.6, possibly the 

choice of (Nl,i  : i < v x (il) mat ters .  18.6 

Now we prove an "inverted" uniqueness 

8.7 CLAIM: Suppose  that 

(a) for x b} have NFx, o (Ng, 
(b) ~x = ( (i~ , (i~, 8~ ), (i~ = 852, (i~ = 8~,cf( (i~ ) = ef( (ib3), all l imit ordinals, 

(c) fo is an isomorphism from Ng onto N~, 
(d) f l  is an isomorphism from N[  * onto N b, 

(e) f2 is an isomorphism from N.~ onto N~, 

(f) fo C_ f l  and fo C_ f2. 
Then there is an isomorphism from N2 onto Nba extending f l U f'2. 

Before proving this claim, we have 

8.8 SUBCLAIM: (1) For any limit ordinals (i~,(i~,(i~ _< A we can find M i j  (for 

i <_ v x (i~ and j <_ v x 5~) and M3 such that: 

(A) Mi,j e Kx,  

(B) il <_ i2 & j l  <_ j2 ~ Mil,jl  ~_~ Mi2,j2, 
(C) i f  i <_ v x (il is a l imit  ordinal and j < v x 52 then Mi,j = U¢<i Mi , j ,  
(D) if  i < v x (it and j < v x 82 is a limit ordinal then Mi,j = U~<j Mi,~, 

(E) (Mo, j ,Mo, j+l)  ~- ( M * , N * ) ,  

(F) (Mi,o, Mi+~,o) ~- (M*,  N*) ,  
(G) for il,io. <_ v x 81 and j l ,  j2 <_ v x (i2 we have 

Mq,j l  A Mi2,j 2 : Mmin{il,i2},min{jl,j2), 

(H) M~×, i ,vx ,  2 <_~ M3 E K~ moreover M3 is (A, cf(53))-saturated over 

Mvxst,vx52, 
(I) Mo,j+~, is (A, v ' ) -saturated over Mo,j and Mi+v,o is (A, v)-saturated over 

Mi,o for i < v x (it, j < v x (i2- 
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(2) Moreover, it is O.K. i f  (Moj  : j <_ v x 5~), (Mi,o : i <_ v x 5~) are pregiven 

as long as both are <_~-increasing continuous in Six satisfying (E)+(F)+(I )  and 

Mo,,×~ A Mv×~,o -- Mo,o. 

Proof: (1) For i = 0 and for j = 0 this is done by 7.9. Otherwise this is done by 

induction on i and for fixed i by induction on j .  For i limit use clause (C) (and 

check). For j limit use clause (D) and if j -- ~ + 1 use the existence of disjoint 

amalgamation (i.e. 5.11). 

Lastly, choose M3 C Kx which is (A, cf(5~))-saturated over M v × ~ , , × ~ .  

(2) Similar to (1). Is.s 

Proof  of 8.7: Let Mi, j ,M3 be as in 8.8. For x E {a,b) as 

N F x , ~  (N~, N~,  N~,  N~) ,  we know that there are witnesses (Nl~,i : i <_ v x 5~), 

(N~,i : i _< v x 5~) for this, so (NlX, i : i < v x 5~) is _<~-increasing continuous and 

(N  ~ N ~ ~ ,~ N a 1,i, 1,i+lJ = (M*,N*) .  Therefore ( 1,i : i < vxh~)  is _<~-increasingcontinu- 

ous sequences with each successive pair isomorphic to (M*, N*), hence by 8.8(2), 

without loss of generality, there is an isomorphism gl from N~,vx~  onto Mv×~,  

mapping N ~ onto Mi 0; remember N~,.×~ = N~. Let go = gl [ N~ = gl I N a 1,i , 1 ,0 ,  

so go o f o  I is an isomorphism from No b onto M0,0. 

As 5 5 = 5~, using 8.8(2) fully, without loss of generality there is an isomorphism 

g2 from ND,,×5~ onto M0,~×~ mapping gb,j  onto Mo,j (for j < v x 5~) and g2 

extends go o f o  1. 
Now we want to use the weak uniqueness 8.6 and for this note: 

(a) NF:~,~o (N~, g~ ,  N~, N~) as witnessed by (Nla, i : i <_ v x 5~), 

(N~,i : i _< v x 51). 

[Why? An assumption.] 

(/~) NF~2o(Mo,o,M,×~7,o, M o , , × ~ , M a  ) as witnessed by the sequences 

(Mi,o : i <_ v x 51), (Mi,v×~ : i <_ v x 5~). 

[Why? Check.] 

(~) go is an isomorphism from N~ onto M0,o. 

[Why? See its choice.] 

(6) gl is an isomorphism from N~ onto M~×5~,0 mapping Nal,i onto Mi,o for 

i _< v × 5~ and extending go. 

[Why? See the choice of gl and of go.] 

(c) g2 o f2 is an isomorphism from N~ onto M0,,×~ extending go. 

[Why? f2 is an isomorphism from N~ onto N b and g~ is an isomorphism 

from N1 b onto Mo,v×~ extending go o f o  ~ and f0 C_ f2.] 

So by 8.6 there is an isomorphism g~ from N~ onto M3 extending gl and g2 o f2. 

We next want to apply 8.6 to the Nb's; so note: 
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NF , b(Nbo, b b b N1,N.~,N~) as witnessed by (N~, i : i _< v x 5~), 

(N ,i : i _ < .  × 

(/~)' NFx,sb(Mo,o, Mo,vx~,Mvx~,o,M3 ) as witnessed by the sequences 

(Mo,j : j <_ v x 5.~), (Mvxs~,j : j <_ v x 6~). 
(3')' go o (f0) -1 is an isomorphism from No b onto Mo,o. 

[Why? Check.] 

((f)' g2 is an isomorphism from N1 ~ onto Mo,,x~ mapping N~,j onto M0,j for 

j <_ v x 5~ and extending go o ( f l ) - l .  

[Why? See the choice of g2: it maps N~,j onto Mo,j.] 
(e)' gl o (fl) -1 is an isomorphism from N~ onto M~,x~8 extending g0- 

[Why? Remember f l  is an isomorphism from N~ onto N~ extending f0 

and the choice of gl: it maps N[ ~ onto M~xd?.o. ] 

So there is an isomorphism g~ from Na b onto Ms extending g2, fl  o (fl)  -~ . 
Lastly, (gab) -1 o g~ is an isomorphism from N~ onto Nab (chase arrows). Also 

( ( g b ) - i  o g 3 ) [ N ~  b -1  a a =(ga)  (g3 [ i ~ )  

= (gb)-lg I = ((gb)-I [ M,  xsr,0) o gl 

= r = o 

---- ( / 1 0  (gl) -I) 0 g l  ---- f0 .  

Similarly ((g3b) -1 o g~) [ N~ = f.). So we have finished. ~.7 

8.9 CLAIM (Uniqueness): Assume for x C {a,b} we have 
x x x NF~,8~ (N~), N1, N~, N~ ) and ct~5~) = cf(51b), c~6~) = cf(5~), cf(5~) = cf(6~), 

all 5~ limit ordinals. 
If fe is an isomorphism from N~ onto N~ for g < 3 and fo C_ fl ,  fo C_ f2 then 

there is an isomorphism f from N2 onto N~ extending fl, f2. 

c c I~  5~ ~ Proof: Let ~ = (51,52,53) = \ 2, l ,  3); by 8.4 there are N[ (for t~ < 3) such 

that NFx,8~ (Ng, N~, N~, N~). There is for x C {a, b} an isomorphism g~) from N~ 

onto N~ (as K~ is categorical in A) and, without loss of generality, go b = g~ o f0. 
Similarly, for x E {a, b} there is an isomorphism g~ from N~ onto N~ extending 

g~ (as N~ is (A, cf(5~))-saturated over N~ and also N~ is (A, cf(5~))-saturated over 

N G and cf(5~) = cf(5~) = cf(5~)) and, without loss of generality, g~ = g~ o f l .  

Similarly, for x ~ {a, b} there is an isomorphism g~ from N~ onto N[ extending 

g~ (as N~ is (A, cf(5~))-saturated over N~ and also N~ is (A, cf(5~))-saturated 

over Ng and cf(5~) = cf(5~) = cf(5~)) and, without loss of generality, g~ = g~ o f2. 

So by 8.7 for x 6 {a, b} there is an isomorphism g~ from N~ onto N~ extending 

g~ and g~. Now (g~)-~ og~ is an isomorphism from N~ onto N~ extending f~, f~ 

as required. IIs.9 
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8.10 CONCLUSION (Symmetry): If NF:~,(~,~,~)(No,N1,N2, N3) then 

NF.x,(5:,51 ,,f~)(No, N2, N1, N3). 

Proof." By 8.7 (and 8.9). 

8.11 CLAIM: In Definition 8.2 we can replace (Nl,i,N~,i+~) = (M*,N*) by 
(N;,i,N~,i+~) E K 3'uq. 

Proo~ Like the proof of 8.7 (get (Mi,o, Mi+l,O) ~- (M*,N*),  (Mo,j,Mo,j+l) 
K3'uq), but as we shall not use it, we do not elaborate. ~S.l~ 

Now we turn to smooth amalgamation (not necessarily saturated, see Definition 

8.3). 

8.12 CLAIM: (1) If NF~,~(No, Ni,N:,N3) and each ~5~ is limit then 

N Fx ( No, N~ , N2 , N3) (see Definition 8.3). 

(2) In Definition 8.3 we can add: 

(d) + M~ is ()L c[(A))-saturated over No and, moreover, over Ne, 

(e) M3 is ()L cf()~))-saturated over Mi UM2 (actually, this is given by (f)(~) of 
Definition 8.2). 

Proof'. (1), (2). By 8.8 we can find Mi, j for i _< v × (51 + A), j _< v× 
(62 + ~) for 5' =: (61 + )~,62 + ~,53) and choose M~ E Kx which is 

(A, cf(53))-saturated over M,×JI,,×~ 2. So NF~,~(Mo,o, M~,×~,o, Mo,~×a2, M~); 
hence by 8.9, without loss of generality, Mo,o = No, M~x~,o = N~,Mo,~x52 = 
N2, and N3 = M~. Lastly, let M3 be ()Lcf(A))-saturated over M~. Now 

clearly also NF),,(,h+),,,~+;~,,~+~,)(Mo,o, M.x(~l+X),o, Mo,.x(~2+~), M3) and No = 

Mo,o, N1 = M~×~2,0 <_~ Mv×(~2+~),o,N2 = Mo,~×~2 _<~ Mo,.×(~2+x) and 
M.X(~A+A),o is (A, cf(A))-saturated over M.×,~,o and Mo,.x(~+A) is (A, cf(A))- 
saturated over Mo,v×52 and N3 = M~ _<~ M3. So we get all the requirements for 

NF~(No,N1,N2,N3) (as witnessed by (Mo,o, Mvx(5~+:9,0,Mo,v×(,2+~),M3)). 
118.12 

8.13 CLAIM (Uniqueness of smooth amalgamation): If NF~ (N~, N~, N~, N~) 

for x E {a, b}, fe an isomorphism from N~ onto N~ for ~ < 3 and fo C_ fl ,  fo C f2 
then fl  U f2 can be extended to a <a-embedding of N~ into some <a-extension 
of N b, so if N~ is ()~, a)-saturated over N~ U N~ for x = a, b, we can extend 

fl  U f2 to an isomorphism from N~ onto N3 b. 

Proof: For x E {a,b} let the sequence (M~ : g < 4) be a witness 
to NF~(N~,N~,N x N x~ 2, 3 J as in 8.3, 8.12(2), so in particular 
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NF~,<~,~,X> (M~, M~, M~, M~). By chasing arrows and uniqueness, i.e. 8.7, with- 

out loss of generality M~ = M~ for ~ < 4 and f0 = idN 3. As M~ is (A, cf(A))- 
saturated over N~ and also over N~ and fl is an isomorphism from N~ onto 
N1 b, clearly there is an automorphism gl of M~ such that fl  C_ gl, hence also 
idNj = fo C fl C gl. Similarly there is an automorphism g~ of M~ extending 

f2 hence f0. So ge C AUT(M~) for ~ = 1,2 and gl [ M~ = f0 = g2 [ M~. By 
the uniqueness of NFx,<:~,x,; 9 (i.e. Claim 8.9) there is an automorphism g4 of M~ 

extending gl U g> This proves the desired conclusion. ~8.13 

8.14 CLAIM: Assume 

(a) 5 = ((51, (52, ~3}, (5e < A + is a limit ordinal for g = 1, 2, 3; No <~ Ne <_~ N3 

for g = 1, 2 and 

(b) Ne is (fl, cf(he))-saturated over No for ~ = 1, 2, 

(c) N3 is cf((5a)-saturated over NIt.) N2. 

Then NFx  (No, N~, N2, N3) iff NF~,a (No, N~, N2, N3). 

Proof: The "if' direction holds by 8.12(1). For the "only if' direction, by 
the proof of 8.12(1) (and Definitions 8.2, 8.3) we can find Me (g <_ 3) such that 
NFx,a(Mo, M1, M2, M3) and clauses (b), (c), (d) of Definition 8.3 hold, so by 8.12 

also NF~(Mo, M1, M2, M3). Easily, there is for ~ < 3 an isomorphism fe from Me 

onto Ne such that f0 = fe [ Me. By the uniqueness for smooth amalgamation 
(i.e. 8.13) we can find an isomorphism f3 from 2143 onto N3 extending fl  U f2. 

So as NF~,a(Mo, M1, M2, M3), also NF~,a, (/0(M0), fa(M1), f3 (M2), fa(M3)); i.e. 

NF~,a(No, N1,N2,Na ) as required. |s.14 

8.15 CLAIM (Monotonicity): I fNF~(No ,N1 ,N2 ,N3)  and No <_~ N~ _<~ N1 and 
No <_~ N~ <_s~ N2 and N~ O N~. C_ N~ <_~ N3 then NFx(No,  N~,N~,N~). 

Proof: Read Definition 8.3. 

8.16 CLAIM (Symmetry): NF~(No,N1 ,N2 ,N3)  
N F~ ( No, N2, N1, N3) holds. 

Proof: By Claim 8.10 (and Definition 8.3). 

8.17 CLAIM: Assume a < A + is an ordinal and for x C {a,b,c} the sequence 

(N~ : i <_ a) is a <_~-increasing sequence of members of Ka, for x = a, b 

the sequence is <~-increasing continuous for i < a , N  b A N~ = N~ 

N ~ D N  a = N .a , ,  N~ <_~ N~i <~ N~ and N[ is (A, ,q)-saturated over N~i and 
NF~,a~ a ~ c (N~ ,Ni+I,N~,N~+I) (so i < a ~ N~ <_~ Nb+l) where ~i = <(5~, 52 (53i) 
sequence of limit ordinals, i < a ~ (5~+~ = (ha,, and for i < 0 limit, cf((5 a) = 

holds if  and onlv if 
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= a n d  = = T h e n  

NF~,~ (Y3, g~ ,  No b, Ne). 

Proof'. Use uniqueness of 8.9; lastly use 8.9 to show N b is (~, cf(a))-saturated 

over N a U Nob. ~8.17 

8.18 CLAIM: Assume that a < A + and for x E {a,b} we have (N~ : i <_ a) is a 
<n-increasing continuous sequence of members of Kx. 

(1) I f  NF~(Na,Na+I, Nbi , Nbi+lj~ f°r each i <  a then NF~(N~,Na,  Nob, Nb). 
(2) I f  al < A+,a2 < A + and Mi,j (i <_ a l , j  <_ a2) satisfy clauses (A), (B), (C), 
(D) of 8.8, and for each i < a l , j  < a2 we have: 

Mi+l,j+l 

Mi'j+l U Mi+l ,j, 
Mi,j 

then 

Proof: 

Case A: 

Ya+l U N/b for i < a. 
We can choose, for i ~ a, N c E KA such that 

(a) N b _<n N c _<~ Nb+I,N c is (A,6o2)-saturated 

N Fx,<6o,6o,6o> ( N?, N?+ I, N[ , N/b+l), 

(b) N e E K~ is (A, 6~)-saturated over N~. 

Motl ~2 

Mi,0 U Mo,j for i <_ al , j < al . 
M0,o 

(1) We first prove special cases and use them to prove more general cases. 

Na+l is ()~,5~)-saturated over N a and Nb+I is ()~,(~)-saturated over 

over N b, and 

(Possible by uniqueness, i.e. 8.13, and monotonicity, i.e. 8.15). Now we can use 

8.17. 
Case B: For each i < a we have: Na+l is (~, ~i)-saturated over N~. Let 5~ = 

(~i, ~, :~). 
We can find a _<n-increasing sequence (M~ : i <_ a / for x E {a, b, c}, continuous 

for x = a,b such that i < a ~ M b _<n Me _<~ Mb+I and M b _<~ M e and 

NF~3, (M~, M~+I, M[, M/b+l) by choosing Ma, M/b, M~ by induction on i. By 

Case A we know that NF~(M~, M a, Mbo, M e) holds. 

We can now choose an isomorphism f~ from N~ onto M~ (exists, as K is 

categorical in )~) and then a _<~-embedding of No b into Mob extending ]~. Next 

we choose, by induction on i _< a, fa  an isomorphism from N a onto M a such 

that: j < i ~ f ]  C_ fa ,  possible by "uniqueness of the ()~, ~i)-saturated model 

over M a'' (see 0.29). 
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Now we choose, by induction on i < a, a <_n-embedding fb of N b into M b 

extending fa  and fb for j < i. For i = 0 we have done it, for i limit use Uj<i fb, 

and lastly for i a successor ordinal let i = j + 1. Now we have 
(*)2 NF),(M~, M~+l, fb(Nb), Mb+l). 

[Why? Because NF:~,3,(M~, ~//a+l ,M[,-] t lb+l  ) by the choice of the M~X's, 

hence by 8.14 we have NF:~(M?, M~+I, M[, Mb+I) and, as M~ <_y~ fb(Nb) <_ 
M b, M c, by 8.15 we get (*)2.1 

By (*)2 and the uniqueness of smooth amalgamation, i.e. 8.13, there is 

f/b as required. Hence without loss of generality fb is the identity, so 

we have N 3 = M~,N 2 = M2,N ~ <_~ M3, N ~ <_~ M~; also as noted above 

NFx(M~,M a,M b,M b) holds, so by monotonicity, i.e. 8.15, we get 

N Fx ( N~ , N 2, N b, N~) as required. 

Case C: General case. 

We can find M[ for g < 3, i <__ a such that: 

(a) M[ • Kx, 

(b) for each g < 3, M[ is <s~-increasing in i, 

(c) M ° = N a,  

(d) M[++11 is (A,A)-saturated over M[+ 1 U M[ +1 for g < 2, i < a, 

(e) NFx(M[,M[+I,M[+I,M[ +1) for g < 2,i < a, 

(f) M0 e+l is (A, A)-saturated over Mo t for g < 2, 

(g) for g < 2 and i < a limit we have 

M[ +1 is (A,A)-saturated over U M.~ +'U Me i ,  
j<i  

(h) for i < a limit we have 

Now 

(*)4 

(,)5 

) ,,UMj',M  ' . 
j< i  j< i  

[How? As in the proof of 8.8.] 

note: 

M[ +1 is (A, cf(v x (1 +/) ) ) -sa tura ted over M[. 
[Why? If i = 0 by clause (f), if i is a successor ordinal by clause (d) and if 

i is a limit ordinal, then by clause (g).] 

For i < a, NFx(M°,M°+I,M.y,My+,). 
[Why? We use Case B for a = 2 with M °, M°i+l, M1,, Mli+1 , M'2,, M~+ 1 here 

standing for N~, N b, N~, N b, N~, N b there.] 

Now we continue as in Case B (using fa  = idN? and defining by induction on 

i a _<y~-embedding fb of N b into Me). 
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(2) For each i by part (1) the sequences (Mz,i : 15 < a l ) ,  (i~,i+l :/~ -< O~1) we get 
M~I,i+I i ~ l , i + l  

M~1 ~J Mo,i+l, hence by symmetry (i.e. 8.13) we have Mo,i+l ~J M,l,i. 
Mo# Mo,i 

Applying part (1) to the sequences (Mo,j : j -< a2), (MaI,j : j -< ~2) we get 

Mo,~: ~J M~l,o, hence by symmetry (i.e. 8.13) we have M~,o ~J Mo,~2; 
Mo,o Mo,o 

by monotonicity, i.e. 8.15 (or restriction of the matrix), we get the desired 

conclusion. 118.18 

8.19 CONCLUSION: Assume (N[ : i -< a) is -<n-increasing continuous for 

= 0,1 where N [ E  Kx and NI+] is (A,a~)-saturated over N°+l U N~ and 

NF x ( N°, NI , N°+ I , N~+ I ). 
Then N~ is ()~, cf (~i< a ai))-saturated over N ° U N~ (if a is a limit ordinal, 

"N1+1 is universal over NO+] U N 1'' suffices). 

Proof'. The case a not limit is trivial, so assume a is a limit ordinal. We choose, 

by induction on i _< a, a sequence (M~,e : ¢ _< ¢(i)) such that: 

(a) (Mi,e : 6 _< ¢(i)) is (strictly) <n-increasing continuous, 

(b) N ° _<n Mi,e _<n N}, 

(c) N ° = Mi,o, 
(d) c(i) is (strictly) increasing continuous in i, 

(e) j < i & ¢ - < ¢ ( j ) ~ M i , ~ A N  ) =Mj,~,  
(f) E(0) = 1, Mi,1 = N 1, 

(g) for i > 0, ), divides ~(i), 

(h) i~ <_n ii-Fi,¢(i)+l. 
If we succeed, then c(a) is divisible by A and (Mi,~ : c -< c(a)) is (strictly) <n- 
increasing continuous, M,,o = N °, and M~,~(a) _<n N~, but it includes N/1 for 

i < a hence (as a is a limit ordinal) it includes U~<a N1 = N1; and by 7.6 we 
N~, U N~) conclude that N~ = M~,c(a) is (A, cf(a))-saturated over Ma4 hence over o 1 

(both -~ Ma,i). 
For i = 0 and i limit there is not much to do. For i successor we use 8.20 

below. 

8.20 CONCLUSION: (1) If NFA(No,N1,N2,N3) and (Mo,~ : c  _< ¢(*)) is _<n- 

increasing continuous, No -<n Mo,~ <_n M2 then we can find (Ml,e : ¢ _< ~(*)) 

and N~ such that: 

(a) N3 <n N~ ~ K~, 
(b) (M1,E : ¢ -< ~(*)} is _<n-increasing continuous, 

(c) MI,~ N N2 = M0,~, 
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(d) N1 <~ MI,e ~ N~, 

(e) if Mo,o = No then Ml,0 = N. 

(2) If N3 is universal over N1 U N2, then without loss of generality N3 = N~. 

Proof: (1) Straightforward by uniqueness. 

(2) Follows by (1). I8.19, I8.20 

119 

9. Nice  ex tens ions  in K~+ 

9.1 HYPOTHESIS: Assume Hypothesis 8.1. 

So by §8 we have reasonable control on smooth amalgamation in K~. We use 

this to define "nice" extensions in K~+. This is treated again in §10. 

9.2 Definition: (1) Let M0 <~+ M1 mean: 

(a) Me E K~+, for ~ = 0, 1, 

(b) we can find ]17/e = (M t : i < A+}, a representation of M e, so M[ E K), 

(and My is <~-increasing continuously and Me = Ui<x+ My) such that: 
for i < 

(2) Let Mo <++,a M1 mean Mo ~ +  M1 by some witnesses M[ (for i < A +, e < 2) 

such that NF),,(~,,,~>(M °, M°+,, M~, M~+I). If a = )% we omit it. 

9.3 CLAIM: (1) If Mo <_*~+ M1 and 217/~ = <M[ : i < A +) is a representation of 

Me (as in 8.18) then for some dub E of A +, for every a < /~ from E we have 
NF~(M°,M~,M~,M~) .  

(2) Similarly for <+;~+,~," if Mo <*;~+,,~ M1 , f i  t = (iV/[ : i < A +) a representation 

of Me for £ = 1,2 then for some dub E of A + for every a </3 from E we have 

NFx,(cf(a),l,cf(a)> (M °, M/~, M 1, M~). 

(3) The a in Definition 9.2(2) does not matter. In fact, if (M[ : i < A +) are as 

in 9.2(1), then for some club E of A + we have: a E E ~ M~ M M0 = M ° and 

a < 3 & a E E &:/3 E E ~ [M~ is cf(3)-saturated over M~ U M~]. 

Proof: (1) Straightforward by 8.18. 

(2) Easy using 9.19. 

(3) By 8.19. (We could have used 7.8.) ~.3 

9.4 CLAIM: (1) For every n = cf(n) _< A and Mo E K~+ for some M1 E Kx+ we 

+ M1 have Mo <~+,~ . 

(2) <_~+ and <+ * • ~+,~ are transitive and M~ <~+,~+ N ~ M <_~+,~ N. 

(3) If  Mo <_~ M~ <_~ M2 and Mo <_*~+ M2 then Mo <_*~+ M~. 
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(4) [transitivity] If  Mo _~+<* M1 <~+,,~+ Me then Mo <~-+,~ 3//2. 

Proof: (1) Let (M ° : i < A+> be a representation of M0 such that M°+l is 

(A, ~)-saturated over M °. We choose, by induction on i, M 1 E K;~ such that 

(M/1 : i < A +) is <~-increasing continuously, M ° <~ M/1, M/1 A M0 = M ° and 

NF~,<~,I,~>(M °, M°+l, M~, M}+I). We can do it by 7.7(4). 

(2) Concerning <++,~ use 9.3 and 8.18 (i.e. transitivity for smooth amalgama- 

tions). Now the proof for _<~+ is similar. 

(3) By monotonicity for smooth amalgamations, i.e. 8.15. 

(4) Routine verification. 19.4 

9.5 CLAIM: (1) I fMo <_*~+ Me for f  = 1,2,~ = cf(~) < A anda E M2\Mo then 
for some M3 and f we have: M1 <x+,~+ Mu and f is an _<~-embedding of M2 
into Ma over Mo with f(a) ~ M1, moreover, f(M2) <_*~+ M3. 

+ (2) [uniqueness] Assume Mo <x+,~ Me for f = 1, 2; then there is an isomorphism 
f from M1 onto 342 over Mo. 

Proof: We first prove part (2). 

(2) By 9.3(1) + (2) there are representations 2~/e = <Mei : i < A +) of Me for 

e < 3 such that: Mei ~ Mo = MOt and NF),,(n,cf(a×i),,~)(M °, M°+l, Me, M/+I). 
Now we choose, by induction on i < A, an isomorphism fi from M 1 onto M~, 

increasing with i and being the identity over M °. For i = 0 use "MOt is (A, a)- 

saturated over M ° for e = 1, 2" which holds by 7.1. For i limit take unions, for i 
successor ordinal use uniqueness Claim 8.9. 

Proof of part (1): Let ~ = R0, by 9.4(1) there are for g = 1, 2 models N~* E K~+ 
+ 117/e such that  Me <x+,~ N~*. Now let = (M[ : i < A +) be a representation of Me 

for e = 0, 1, 2 and let ~e = (N[ : i < A + ) be a representation of N~ for g = 1, 2. 

By 9.4(4) and 9.3(3), without loss of generality NF~(M °, M°+l, M[, M/e+1) for 

g = 1,2 and NF~,<~,I,~>(M[,M[+I,N[,N[+x), respectively. Now clearly No t is 

(A, a)-saturated over MOt, hence over M ° (for g = 1, 2), so there is an isomorphism 

fo from No 2 onto N~ extending idMo o and f(a) ~ M 1 . 
We continue as in the proof of part (2). In the end f = [.Ji<x+ fi is an 

isomorphism of N2 onto N1 over M0 and as f~(a) is well defined and in N~\M~, 

clearly f(a) = fo(a) q~ M1, as required. 19.5 

9.6 CLAIM: If  t~ is a limit ordinal < A +2 and (Mi : i < ~) is a <_*~+-increasing 
continuous then Mi <_*~+ (Jj<~ Mj for each i < ~. 

Proof: We prove it by induction on (f. Now if C is a club of 5 with i E C, 

then we can replace (My : j < 5) by (Mj : j E C) so, without loss of generality, 
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5 = cf((f), hence 5 < A+; clearly it is enough to prove Mo _<~,+ Uj<~ Mj. Let 

(M~ : ( < A+) be a representation of Mi. 

CaseA: 5 < A  +. 

Without loss of generality (see 9.3(1)) for every i < j < 5 and ( < A + we 
have: M~ M Mi M~ and i i = NF:~(M~,M¢+I,M~,M~+I). Let M~ : [-Ji<5 Mi¢, 
so (M~ : ~ < A+) is a _<~-increasingly continuous sequence of members of Ka 

with limit Ms, and for i < 6, M~ N Mi = M~. By symmetry (see 8.16) we 
have i i+1 ~%i+1 ~ NFx(M¢,M¢ , i <_~_ M~+I, so as (M~ : i < 5), (M~+ 1 : i < 5) are 
increasingly continuous by 8.18 we know NF)~(Mg,M2,Mg+I,Mg+I) , hence by 

symmetry (8.16)we have NF)~(Mg, M(~+I,Mg,M~+I). 
So (Mg: ~ < A+), (M2 : ~ < A+) are witnesses to Mo -<i+ M5. 

CaseB: 5 = A  +. 

By 9.3(1) (using normality of the club filter, restricting to a club of A + and 

renaming), without loss of generality for i < j < 1 + ~ < 1 + ~ < A+ we have 

M~ M i i  = M~, and NF;~(M~, M~,M~,i J M~). Let us define M~ + = ej<lTi Mj. 

So (M~ + : i < A +} is a representation of M)+ = M5 and continue as before. 

I9.6 

9.7 CLAIM: Assume Mo <++,~ M2 and a E M~\Mo, and for some N <~ Mo we 
have: N E Kx and tp(a,N, M2) is minimal. Then we can find M1, j~/o = (Mo,i : 
i < A+), ~/1 _ _  ( M I #  : i < A+) such that: 

(a) 2f/° is a _<~-representation of Mo, 

(b) 2f/1 is a representation of MI(E Kx+ ),a E MLi, for a/1 i, 

(c) /1/Io _<n M1 _<~ M2, 

(d) for i < A + we have NFx,(x,x,1)(Mo,i,Mo,i+l,MLi, Ml,i+l ) (hence M~,i = 
Me+~,~ n Me), 

(e) (Mo,i ,  Mx,i, a) E K~ is minimal and reduced. 

Proof: Let (Mo,i : i < A+), (M2, i : i < A +) be representations of Mo, M2 
respectively, as required in 9.2(2), and without loss of generality N _<n Mo,o and 

a E M2,o. We now choose, by induction on ~ < A +, an ordinal i(~) and models 

MI,i(¢) , 2~i3,i(¢) such  t h a t :  

(A) i(~) < A + is increasing continuous in ( and a E M2,i(o)\Mo,i(o),N <~ 
Mo,i(o), 

(B) M0#(¢) _<n Ml,i(¢) _<.q M3,i(¢) and M2,i(¢) <~ M3,i(¢), 

(C) a E Ml,i(o) and (Mo#(¢), M~,i(¢), a) is minimal and reduced, 

(D) for ~ < ~ and (e,m) e {(0,1),(0,2),(1,3),(2,3)} we have 

NF),(Me#(~), Me,~(¢), ~m,~((), Mm,i(¢)), 
(E) M1,i(¢), M3,i(¢) is _<.~-increasing continuous in 4- 
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For ~'-- 0 note that, for i(0) < )~+,a E M2#(o) and M2,i(o) is universal over 

Mo,i(o). 
For ~ limit let i(~) = U~< i i(~) and Ml,i(¢) = U~<¢ MI,i(I). 
For ~ = ~ + 1, there is i(~) C (i(~), A +) and a model N¢ such that MI#(~) _<n 

N~ C K~ and _<n-embedding f of Mo,i(¢) into N ¢ , f  r Mo,i(~) the identity and 
(f(Mo#(~)), Ni,  a) is minimal and reduced. By uniqueness (i.e. Claim 8.2) we can 
find such N satisfying (~M)(N <_n M E K~ & MI#(;) _<n M). So we can carry 

the induction. 
Lastly, by uniqueness of <+ ~,~ we can make M3 = [.J~<)~+ M3,i(~) to be <_~ M2 

as required. 119.7 

9.8 Definition: If (Mo, M1, a) are as in 9.7(a)-(e) we say (M0, M1, a) is A +- 
local ly  r e d u c e d  nice and minimal (A+-l.r.n.m.). We omit "nice" if we omit 

clause (d). 

9.9 CLAIM: _/1 c (Mo, M1, a) is A+-l.r.n.m. then (Mo, M1, a) E K~+ is reduced. 

Proof: Check. 

We can also have 

9.10 CLAIM: M 0 <  + Ml if and onlv if  we can find ( M~ aj:j<A+×t~)such 
that: 

(a) M~ is <n-increasing continuous (in K~+ ), 
(b) (M;,  M;+I, aj) is A+-l.r.n.m., 
(c) M~ = Mo, M* = M1 
(d) for some N <_ Mo~ N C K~ and minimal reduced p C S(N), for every j, 

aj rea/izes p. 

Proof: We can find (Mj* : j _< A + × t~) satisfying clauses (a), (b) and (d). Clearly 
if (N~:  a < A +) is <n-increasing continuous in Kx, N ° _<~ N~, p =tp(a,  N °, N~) 
is minimal then for club of a, tp(a, N °, N~) in a minimal reduced extension of p. 

Hence 5.6, easily M~ <+ M~+. Now by the uniqueness (= 9.5(2)) + categoricity 

of K in A +, we are done. |9.10 

9.11 CLAIM: In (K~+, <~+) we have disjoint amalgamation. 

Proof." First redo 9.5 assuming (Mo, Ml,ae) for [ = 1,2 is A+-l.r.n.m., and 

getting al ¢ f(M2),  f(a2) ¢ M1 (just embed both into some M*, M + <~+,~ M*; 

and we can start with this). By 9.9 we get M1 f~ f(M.2) = Mo, so we have disjoint 

amalgamation. By 9.10 and chasing arrows we get it in general. |0.~1 

Remark: This is like the proof of disjoint amalgamations in 5.11. 
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10. N o n - s t r u c t u r e  for  <~+ 

123 

10.1 HYPOTHESIS: Assume hypothesis 8.1 and the further model theoretic 

properties deduced since then (including 6.7 but not 6.12). 

It would have been nice to prove all disjoint amalgamations in K~ are NF:~, 
but this is, at this point, not clear. But as we look upward (i.e. we want to 

prove the statement on K>~+) and <~+ is very nice, it will be essentially just 

as well if for M , N  E K),+ we have M <~ N ~ M <~+ N. Our intention is 

to assume M* <~ N* is a counterexample of this statement and we would like 

to say that in a sense this implies the existence of many types over M* so that 

we can construct many models in A +2. Note: Building models in K~+, K~++ by 

approximations in K~ is nice if we use the smooth amalgamation but we do not 

have it for non-smooth ones. So we shall use M* E K~+ being saturated so it 

has many automorphisms. 

10.2 CLAIM: (1) Assume Mt <_~ M2 are in K~+. Then we can find Mo E Kx+ 

such that Mo <+ M1 and Mo <_*~+ M2. 
(2) Also we can find (Mo# : i < A+), an <_~-increasingly continuous sequence 

of members of K~+ such that Mo,i <~+ Mo,i+l and Ui<x+ Mo,i = MI and 
i < A+ ~ M0,i < * M~. --~+ 

~-3,uq be from 8.1(2). Let (Me,i : i < A+) be a represen- Proo[: Let (M*,N*) E ~'x 
tation of Me for g = 1, 2 and, without loss of generality, Me,i+1 is (A, A)-saturated 

over Me,i for g = 1, 2 and M2, i C1 M1 = Ml,i. 
(1) Now choose, by induction on i, Mo,i such that: 

(a) mo,i <_~ ml,i ,  
(b) Mo,i is <.c-increasing continuous, 

(C) M0,i+I CI Ml,i = A/0,i, 

(d) M1,i+1 is (A, cf(A))-saturated over Ml,i tO Mo,i+l, 

(e) (Mo,i, Mo,i+l) ~ (M*,N*). 
There is no problem to carry the definition. Now let Mo = Ui<;~+ Mo,i, so 

2140 <~+ M] and Mo _<~+ M2 are checked by their definitions noting clause (e), 

the choice of (M*, N*) and the definition of NF>, in 8.2. 

(2) We choose, by induction on i < A +, (M*,i : c <_ 1 + i) such that: 

(a)  M ~ + i ,  i : M 1 , A x ( t + e ) x i ,  

(b) for each e the sequence (M~*,j : ¢ _< j _< i) is _<~-increasing continuous, 

(c) for each i the sequence (M~* i : c _< 1 + i) is _<h-increasing continuous, 

e,. ~/[~,j I ,~ I , i ,J1 
(e) M/+l, i+ ~ is (a, cf(a x (1 + e)))-saturated over M2,i+ 1 U M~*+l,i , 
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(f) NFA,<;~,I,)~)(i*,i, M*+l,i,/*,i+1, Me*+l,i+l), 
(g) for e < 1 + i  we have NF~(M*,i,/*,i+1,/2,,~x;~xi,/2,),x)~x(i+l))- 

For i = 0, i limit, there is no problem; for i = j + 1 first choose Ni,~ _~n 

Ml,~x~xi+~xg for ~ _~ v, <n-increasing continuous, Ni,¢ C K~,,Ni,o = MI,j 
(= il*+i,i), (Ni,g, Ni,¢+l) ~- (M*, N*) and Ni,¢+l A M2,xx~xi+~x¢ = Ni,~,;. 

Now by 7.9, without loss of generality Ni,~ is ()~,)~)-saturated over MI,j, and 

we choose it as M~+j,i, and we choose M* 1#+1 as Ml+i#; note that clauses (a) 
and (f) hold. Now we can find M~,i for c < 1 + j as in 8.8 and use uniqueness of 

the (A, A x (1 +/))-saturated model o v e r  MI,j. |10.2 

10.3 CONCLUSION: Assume M _~ N are from Kx+. If (Mi : i < A +) is <~+- 

increasing continuous and, for each i for some Ni, we have Mi <++ -hTi ___~+ Mi+l 
then for some (M', N')  we have: 

(M', N') ~ (M, N), 

M ' =  U Mi, 
~<~ 

i < )~+ ~ Mi <_*~+ N'. 

Proof: By 10.2(2) and by the implication M a <~+ M b _<++ M ~ ~ M a <++ M ~ 

and by the uniqueness of M "  over M'  when M'  <++ M".  |1o.3 

10.4 LEMMA: If ~y{I K~+ is not <_*~+ then I(A+2,K) = 2 ~+2. 

Proof." Let S C_ {~ < A +2 : cf(6) = A +} be stationary. We shall construct 

below a model Ms ~ Kx+: such that, from the isomorphism type of M s,  we can 

reconstruct S/Dx+2; this clearly suffices. Choose M _<yi N from K~+ such that 

-~(M <~+ N), so by 9.4(3), without loss of generality, [N\M I = A +. 

We choose by induction on a < A +~ a model M s such that: 

(a) M~ s ~ Kx+ has universe A x (1 + a), 

(b) for < .  we have 

(c) i f a = / ~ + l , ~ ¢ S t h e n M ~ < 5  M2, 

(d) if a =/~ + 1,Z e S then (M~,M2)  ~ (M,N),  

(e) i f ~ < a , / ~ ¢ S t h e n M ~ _ < ~ +  M s . 

We use freely the transitivity (9.4(4)) and continuity (9.6) of _<~ and 

[M" <~ M ~ <_~ M ~ in Kx,-~(M ~ <~+ M ~ =V ~(M" _<~,+ MC)] (9.4(3)). 

The cases a = 0, (~ is a limit ordinal and a =/~ + 1,/~ ~t S present no problem. 

For a = f~+ 1,/~ ~ S, so cf(~) = )~+. Let (7i : i < A + ) be increasing continuous 

with limit/~ and cf(7~ ) < A +, hence 7~ ~ S. By 8.2(2), without loss of generality, 

M~, <~+ M~+~. Now use 10.3 (and the uniqueness (9.5(2))). 11~0.4 
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10.5 CONCLUSION: Assume I(A +2, K)  < 2 ~+2 (in addition to hypothesis 10.1). 

Then 

(1) _<~+=_<~[ g~+, 
(2) (K~+, <~) has disjoint amalgamation, so no M E KA+2 is <~-maximal, 
(3) Kx+3 ~t O. 

Proo~ (1) By 10.4. 
(2) By 9.11 (and part (1)). 

(3) By 10.5(2) and 2.6(8), with A there replaced by A + here. 11o.5 

So we have finally proved the main theorem. Though not directly contributing 

to our main theme, we remark on some more consequences of _<~[ K~+ ~_<~+. 

10.6 CLAIM: (*)o Ca (*)1 where 

(*)o for some M <_~ N from K~+, we do not have M <_*~+ N,  

(*)1 for some M <_~ N from K~+ we have: 

i f  a E N \ M  then tp(a, M, N)  is not realized in any M such that 

M* <_*~+ M C K~+. 

lO.7De~nition: Assume Mo <~ M1 are in K~+, and Y/I t = (Me,i : i < A +) is a 
<~-representation of Me for g = 0, 1. Let 

(a) S o ( $ / ° , ~ / l )  = 

{6 < A + : MI,~ I-I Mo = Mo,, and not NFA(Mo,~, M0,~+l, MI,~, M1)}, 
(b) 81 (Mo, M1) = So(-£/°, -1141)/D~+ (well defined), 

(c) J is the normal ideal on A + generated by sets of the form So(M °, M1), 
where M °, M 1 are as above. 

10.8 COMMENT: An earlier try for 10.4 was: 
(1) For every S E J for some/p /o  M 1 as in 10.7 we have S = So(/Q °, _117/1). 

(2) If $1 = S I ( M ° , M  1) is stationary, then for some _117/ = (Mi : i < A+), a 

representation of M = Ui<A+ M~ E Kx+ for every S C_ $1 for some /17/~, we 
have /17/' = (M~ : i < A+),M1 <~ M l = [-Ji<x+ MI,, M'I, N M  = M~ and 
So(/17/,/Q1) = SmodD~+.  

(3) If <_~,+#_<~t[ K~+ and I(A +2, K) < 2 ~+2 then for some stationary S C A + we 
have: 

(a) I)x+ I S is A++-saturated, 
(b) .~/o,/17/1 as in 10.3 implies $1 (_117/°, 117/1) C_ S mod Dh+. 

(4) If _<~+#<_~[ K~+ and 2 ~ < 2 x+ < 2 ~+2 then I(A+2,K) = 2 A+2. 

Prooi~ (1) First we prove only "S C So(.117/°,/17/1) ''. Easy, as ~t~+ has 
amalgamation and 
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if Mo <~ M1 <~ M2 are in KA+, /~/e representing the So(J~f°,_]~/1) C 

So(M °, YF). 
Now for equality use part (2). 

(2) Similar to the proof of 10.2. 

(3) Suppose S* = $1(~I °, 1~/2) is stationary; let S = (S~ : a < A ++ ) be such that 

S~ E J. We can build a model M 3 C Ka+2 and a representation (M~ : a < A++) 

such that 

S1 (Ma, Ma+l) = S~/D~,++. 

(4) By part (3) (using the proof of part (2)). 
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