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Abstract. We investigate the existence of strong colorings on successors of singular cardi-
nals. This work continues Section 2 of [1], but now our emphasis is on finding colorings of
pairs of ordinals, rather than colorings of finite sets of ordinals.

1. Introduction

The theme of this paper is that strong coloring theorems hold at successors of
singular cardinals of uncountable cofinality, except possibly in the case where the
singular cardinal is a limit of regular cardinals that are Jonsson in a strong sense.

Our general framework is that λ = µ+, where µ is singular of uncountable
cofinality. We will be searching for colorings of pairs of ordinals < λ that exhibit
quite complicated behaviour. The following definition (taken from [2]) explains
what “complicated” means in the previous sentence.

Definition 1.1. Let λ be an infinite cardinal, and suppose κ + θ ≤ µ ≤ λ.
Pr1(λ, µ, κ, θ) means that there is a symmetric two–place function c from λ to
κ such that if ξ < θ and for i < µ, 〈αi,ζ : ζ < ξ〉 is a strictly increasing sequence
of ordinals < λ with all αi,ζ ’s distinct, then for every γ < κ there are i < j < µ

such that

ζ1 < ξ and ζ2 < ξ �⇒ c(αi,ζ1 , αi,ζ2) = γ. (1.1)

Just as in [1], one of our main tools is a game that measures how “Jonsson” a
given cardinal is.

Recall that a cardinal λ is a Jonsson cardinal if for every c : [λ]<ω → λ, we
can find a subset I ⊆ λ of cardinality λ such that the range of c�I is a proper subset
of λ. A reader seeking more background should investigate [4] and [3] in [5].
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598 T. Eisworth, S. Shelah

Definition 1.2. Assume µ ≤ λ are cardinals, γ is an ordinal, n ≤ ω, and J is an
ideal on λ. We define the game Gmn

J [λ,µ, γ ] as follows:
A play lasts γ moves.
In the αth move, the first player chooses a function Fα : [λ]<n → µ, and the

second player responds by choosing (if possible) a subset Aα ⊆ λ such that

• Aα ⊆ ⋂
β<α Aβ

• Aα ∈ J+
• ran(Fα�[Aα]<n) is a proper subset of µ.

The second player loses if he has no legal move for some α < γ , and he wins
otherwise.

In the previous definition, if J = J bd
λ then we may omit it. Note that it causes

no harm if we use a set E of cardinality λ instead of λ itself; in this case, we write
Gmn

J [E,µ, γ ].
Note that λ is a Jonsson cardinal if and only if Player I does not have a winning

strategy in the game Gmω[λ, λ, 1]. One may view the lack of a winning strategy
for Player I in games of longer length as a strong version of Jonsson-ness or a weak
version of measurability — if λ is measurable, then Player II can make sure her
moves are elements of some λ–complete ultrafilter.

The following claim investigates how the existence of winning strategies is
affected by modifications to the game; the proof is left to the reader.

Claim 1.3.

(1) If µ′ ≤ µ and the first player has a winning strategy in Gmn
J [λ,µ, γ ], then

she has a winning strategy in Gmn
J [λ,µ′, γ ].

(2) Suppose we weaken the demand on the second player to

“(∃ζ < λ)[ran(Fα�[Aα \ ζ ]<n)is a proper subset of µ].” (1.2)

If cf(λ) ≥ γ and J ⊇ J bd
λ , then the first player has a winning strategy in the

revised game if and only if she has a winning strategy in the original game.
(3) If J is γ –complete, then the same applies to the case where we weaken the

demand on the second player to

“(∃Y ∈ J )[ran(Fα�[Aα \ Y ]<n) is a proper subset of µ].” (1.3)

(4) We can allow the second player to pass, i.e., to let Aα = ⋂
β<α Aβ (even if

this is not a legal move) as long as we declare that the second player loses
if the order–type of the set of moves where he did not pass is < γ .

(5) If Player I has a winning strategy in Gmn
J [λ,µ, γ ] for every µ < µ∗ where

µ∗ is singular and γ > cf(µ∗) is regular, then Player I has a winning strat-
egy in Gmn

J [λ,µ∗, γ ]. We can weaken the requirement that γ is regular and
instead require that cf(γ ) > cf(µ∗) and ωγ = γ .

In Section 2 of [1], the existence of winning strategies for Player I in variants
of the game is investigated. We will prove one such result here; the reader should
look in [1] for others.
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Coloring Theorems 599

Claim 1.4. If 2χ < λ < �(2χ )+(χ) then Player I has a winning strategy in
Gmω[λ, χ, (2χ )+].

Proof. At a stage i, Player I will select a function Fi : [λ]<ω → χ coding the
Skolem functions of some model Mi .

For the initial move, we let the model M0 have universe λ, and include in our
language all relations on λ and all functions from λ to λ of any finite arity that are
first order definable in the structure 〈H(λ+),∈, <∗

λ+〉 with the parameters χ and λ.
For subsequent moves, Mi is an expansion of M0 with universe λ that has all

relations on λ and all functions from λ to λ of any finite arity that are first order
definable in the structure 〈H(λ+),∈, <∗

λ+〉 from the parameters χ , λ, M0, and
〈Aj : j < i〉.

To obtain the function Fi , we let 〈F in : n < ω〉 list the Skolem functions of Mi

in such a way that F in has mi(n) ≤ n places. Let h : ω → ω be such that for all n,
h(n) ≤ n and h−1({n}) is infinite. We then define

Fi(u) =
{
F ih(|u|)({α ∈ u : |u ∩ α| < mi(n)}) if this is < χ

0 otherwise
(1.4)

The point of doing this is that whenever Player II chooses Ai , we know that
ran(Fi�[Ai]<ω) will look like the result of intersecting an elementary submodel
of Mi with χ ; in particular, this range will be closed under the functions from Mi .

Note that M0 (and all expansions of it) has definable Skolem functions and
so for any i and A ⊆ λ, the Skolem hull of A in Mi (denoted by SkMi

(A)) is
well–defined.

Let 〈(Fi, Ai) : i < (2χ )+〉 be a play of the game in which Player I uses this
strategy (with Mi the model corresponding to Fi). For each i, define

αi = min{α :
∣
∣SkM0(Ai) ∩ �α(χ)

∣
∣ > χ}. (1.5)

By the choice ofM0 andMi , clearly α(i) is a successor ordinal or a limit ordinal
of cofinality χ+, and

| SkM0(Ai) ∩ �αi (χ)| ≤ 2χ . (1.6)

Since Ai ⊆ Aj for i > j , we know the sequence 〈αi : i < (2χ )+〉 is non–
decreasing. Furthermore, for each i we know

αi < min{β : λ ≤ �β(χ)} < (2χ )+. (1.7)

This means that the sequence 〈αi : i < (2χ )+〉 is eventually constant, say with
value α∗. Let i∗ be the least ordinal < (2χ )+ such that αi = α∗ for i ≥ i∗.

Proposition 1.5. If i∗ ≤ i < (2χ )+, then SkM0(Ai+1)∩ �α∗(χ) is a proper subset
of SkM0(Ai) ∩ �α∗(χ).
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600 T. Eisworth, S. Shelah

Proof. Note that i∗, α∗, and �α∗(χ) are all elements ofMi+1 as they are definable
in 〈H(λ+),∈, <λ+〉 from the parameters M0 and 〈Aj : j ≤ i〉. Furthermore,

γ ∗ := min{γ < λ : | SkM0(Ai) ∩ γ | = χ} (1.8)

is also definable in Mi+1 (and < (2χ )+). Thus the language of Mi+1 includes a
bijection between SkM0(Ai) ∩ γ ∗ and χ .

If Player I has not won the game at this stage, after Player I selectsAi+1 we will
be able to find an ordinal β < χ such that β /∈ ran(Fi+1�[Ai+1]<ω). By definition
of h, we know β ′ := h−1(β) is an element of SkM0(Ai) ∩ �α∗(χ). However, β ′ is
not an element of SkMi+1(Ai+1) – since Fi+1 codes the Skolem functions ofMi+1,
the range of Fi+1�[Ai+1]<ω is SkMi+1(Ai+1) ∩ χ . Since SkMi+1(Ai+1) is closed
under h, this contradicts our choice of β. Since SkM0(Ai+1) ⊆ SkMi+1(Ai+1), we
have established the proposition. ��

Note that the preceding proposition finishes the proof of the claim — if play of
the game continues for all (2χ )+ steps, then 〈SkM0(Ai) ∩ �α∗(χ) : i < (2χ )+〉 is
a strictly decreasing family of subsets of SkM0(Ai∗), contradicting (1.6). ��
2. Club–guessing technology

In this section, we prove that if λ = µ+, where µ is singular, then under certain
circumstances we can find a complicated “library” of colorings of smaller cardi-
nals. In the next section, we will use this library of colorings to get a complicated
coloring of λ.

The basics of club–guessing are explained in [4], but we will take a few minutes
to recall some of the definitions.

Let us recall that if S is a stationary subset of λ, then an S–club system is a
sequence C̄ = 〈Cδ : δ ∈ S〉 such that for (limit) δ ∈ S, Cδ is closed unbounded in
δ.

In this section, we will be concerned with the case where λ is the successor of a
singular cardinal, i.e., λ = µ+ where cf(µ) < µ. In this context, if C̄ is an S–club
system, then for δ ∈ S we define an ideal J b[µ]

δ on Cδ by A ∈ J b[µ]
δ if and only if

A ⊆ Cδ , and for some θ < µ and γ < δ,

β ∈ A ∩ nacc(Cδ) ⇒ [
β < γ or cf(β) < θ

]
.

Note that it is a bit easier to understand the definition of J b[µ]
δ by looking at the

contrapositive — a subset A of Cδ is “large”, i.e., not in J b[µ]
δ , if and only if

A ∩ nacc(Cδ) is cofinal in δ, and the cofinalities of members of any end segment
of A ∩ nacc(Cδ) are unbounded below µ.

Claim 2.1. Let λ = µ+, where µ is a singular cardinal of cofinality κ < µ. Let
S ⊆ λ be stationary, and assume that sup{cf(δ) : δ ∈ S} = µ∗ < µ. Let C̄ be an
S–club system, and for each δ ∈ S, let Jδ be the ideal J b[µ]

δ . Let 〈κi : i < κ〉 be a
non–decreasing sequence of cardinals such that

κ∗ =
∑

i<κ

κi ≤ µ, (2.1)

and let γ ∗ < µ.
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Coloring Theorems 601

Assume we are given a λ–club system ē and a sequence of ideals Ī = 〈Iα : α <
λ〉 such that

(1) Iα is an ideal on eα extending J bd
eα

(2) if δ ∈ S, then for each i < κ ,

{α ∈ nacc(Cδ) : Player I wins Gmω
Iα

[eα, κi, γ
∗]} = nacc(Cδ) mod Jδ

(3) for any club E ⊆ λ, for stationarily many δ ∈ S,

{α ∈ nacc(Cδ) : B0[E, eα] /∈ Iα} /∈ Jδ,
where

B0[E, e∗α] = {β ∈ nacc(eα) : E meets the interval (sup(β ∩ eα), β)}.
Then there is a function h : λ → (κ + 1) and a sequence

F̄ = 〈Fδ : δ < λ, δ a limit 〉
such that

�1 Fδ : [eδ]<ω −→ κh(δ)(where κ∗ := κκ)

and

�2 for every club E ⊆ λ, for each i < κ there are stationarily
many δ ∈ S such that the set of β ∈ nacc(Cδ) satisfying the
following

• h(β) ≥ i

• B0[E, eβ ] /∈ Iβ
• for all γ < β, κh(β) ⊆ ran(Fβ�

[
B0[E, eβ ] \ γ ]<ω

)

is not in Jδ .

Now admittedly the previous claim is quite a lot to digest, so we will take a
little time to illuminate the basic situation we have in mind.

Claim 2.2. The assumptions of Claim 2.1 are satisfied if

(1) λ = µ+ where κ = cf(µ) < µ

(2) S ⊆ {δ < λ : cf(δ) = κ}
(3) δ ∈ S → |δ| = µ (i.e., S ⊆ λ \ µ)
(4) C̄ is an S–club system
(5) J̄ = 〈Jδ : δ ∈ S〉 where Jδ = J

b[µ]
Cδ

(6) idp(C̄, J̄ ) is a proper ideal
(7) 〈κi : i < κ〉 is a non–decreasing sequence of cardinals with supremum

κ∗ ≤ µ

(8) γ ∗ < µ, and for each i < κ , Player I wins the game Gmω[θ, κi, γ ∗] for all
large enough regular θ < µ

(9) ē is a λ–club system such that |eβ | < µ

(10) for α < λ, Iα = Jbd
eα
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602 T. Eisworth, S. Shelah

Proof of Claim 2.2. We need only check items (2) and (3) in the statement of Claim
2.1 — everything else is trivially satisfied. Concerning (2), given δ ∈ S and i < κ ,
we need to show

{α ∈ nacc(Cδ) : Player I wins Gmω[eα, κi, γ
∗]} = nacc(Cδ) mod Jδ.

Let A consist of those α ∈ nacc(Cδ) for which Player I does not win the game
Gmω[eα, κi, γ ∗]. By our assumptions, there is a θ < µ such that |eα| < θ for all
α ∈ A, and therefore A is in the ideal J b[µ]

Cδ
= Jδ and we have what we need.

Concerning (3), given E ⊆ λ club, we must find stationarily many δ ∈ S such
that

{α ∈ nacc(Cδ) : B0[E, eα] /∈ Iα} /∈ Jδ.

Let E′ = {ξ ∈ E : otp(E ∩ ξ) = ξand µ divides ξ}. Clearly E′ is a closed
unbounded subset of E, and since idp(C̄, J̄ ) is a proper ideal, the set

S∗ := {δ ∈ S ∩ E′ : E′ ∩ nacc(Cδ) /∈ Jδ}

is stationary.
Fix δ ∈ S∗, and suppose we are given θ < µ and ξ < δ. SinceE′ ∩nacc(Cδ) /∈

Jδ , we can find α ∈ E′ ∩ nacc(Cδ) such that α > max{ξ, µ} and cf(α) > θ . Since
the order–type of E ∩ α is α ≥ µ > |eα|, we know that B0[E, eα] is unbounded in
eα hence a member of Iα . This shows that the set of such α is in J+

δ , as required. ��

Now we return to the proof of Claim 2.1.

Proof of Claim 2.1. Let σ = cf(σ ) be a regular cardinal < µ that is greater than
µ∗ and γ ∗. For each limit β < λ, if there is an i ≤ κ such that Player I wins the
version of Gmω

Iβ
[eβ, κi, σ+] where we allow Player II to pass, then we let h(β) be

the maximal such i — note that i exists by (5) of Claim 1.3 — and let Strβ be a
strategy that witnesses this.

Note that since γ ∗ < σ+ and Jδ = J
b[µ]
δ for δ ∈ S, we have that for δ ∈ S and

i < κ that

{β ∈ nacc(Cδ) : Strβ is defined and i ≤ h(β)} = nacc(Cδ) mod Jδ.

We will make σ+ attempts to build F̄ witnessing the conclusion. In stage ζ <
σ+, we assume that our prior work has furnished us with a decreasing sequence
〈Eξ : ξ < ζ 〉 of clubs in λ, and, for each β < λ where Strβ is defined, an initial

segment 〈Fξβ ,Aξβ : ξ < ζ 〉 of a play of Gmω
Iβ

[eβ, κ∗
h(β), σ

+] in which Player I uses
Strβ . (Note that our convention is that if Player II chooses to pass at a stage, we let

A
ξ
β be undefined.)

For each such β, let Fζβ : [eβ ]<ω → κh(β) be given by Strβ , and for those β for

which Strβ is undefined, we let Fβζ be any such function. Now if 〈Fζβ : β < λ〉 :=
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Coloring Theorems 603

F̄ ζ is as required then we are done. Otherwise, there is a club E′ ⊆ λ and iζ < κ

exemplifying the failure of F̄ ζ , and without loss of generality,

(∀δ ∈ S)[Biζ [E′
ζ , Cδ, Ī , ē, F̄

ζ ]
] ∈ Jδ. (2.2)

Now let Eζ = acc(E′
ζ ∩ ⋂

ξ<ζ Eξ ). For each β where Strβ is defined, we let

Player II respond toFζβ by playing the setB0[Eζ , eβ ] if it is a legal move, otherwise
we let him pass. We then proceed to stage ζ + 1.

Assuming that this construction continues for all σ+ stages, we will arrive at
a contradiction. Let E = ⋂

ζ<σ+ Eζ . By assumption (3) there is a δ(∗) ∈ S for
which

A1 := {β ∈ nacc(Cδ(∗)) : B0[E, eβ ] /∈ Iβ} /∈ Jδ(∗).
By assumption (2), we have

A2 := {β ∈ A1 : Strβ is defined } /∈ Jδ(∗).
For β ∈ A2, look at the play 〈Fζβ ,Aζβ : ζ < σ+〉. Since Player I wins, there is

a ζβ < σ+ such that Player II passed at stage ζ for all ζ ≥ ζβ . Since σ > µ∗ and
Jδ(∗) is µ∗–based, for some ζ ∗ < σ+,

A3 = {β ∈ A1 : Strβ is defined and ζβ ≤ ζ ∗} /∈ Jδ(∗).
Now Eζ ∗ was defined so that for some iζ ∗ , for all δ ∈ S,

Biζ∗ [Eζ ∗ , Cδ, Ī , ē, F̄
ζ ∗

] ∈ Jδ, (2.3)

but (again by assumption (2))

A4 = {β ∈ A1 : Strβ is defined, ζβ ≤ ζ ∗, and iζ ∗ ≤ h(β)} /∈ Jδ(∗).
For β ∈ A4, we know that at stage ζ ∗ of our play of Gmω

Iβ
[eβ, κh(β), σ+] the set

B0[Eζ ∗ , eβ ] was not a legal move. Since our sequence of clubs is decreasing, we
know that B0[Eζ ∗ , eβ ] is a subset of B0[Eξ , eβ ] for all ξ < ζ ∗], so we have

B0[Eζ ∗ , eβ ] ⊆
⋂

ξ<ζ ∗
A
ξ
β.

Since β ∈ A1, we know thatB0[Eζ ∗ , eβ ] /∈ Iβ . Thus the reason forB0[Eζ ∗ , eβ ]
being an illegal move must be that for all γ < β,

κ∗
h(β) ⊆ ran(F ζ

∗
β �[B0[Eζ ∗ , eβ ] \ γ ]<ω).

All of these facts combine to tells us that β ∈ Biζ∗ [Eζ ∗ , Cδ, Ī , ē, F̄ ζ
∗
], and thus

A4 ⊆ Biζ∗ [Eζ ∗ , Cδ, Ī , ē
∗, F̄ ζ

∗
] /∈ Jδ(∗),

contradicting (2.3). ��
The proofs in this section (and the next) can be considerably simplified if we

are willing to restrict ourselves to the case κ∗ < µ, as we can dispense with the
sequence 〈κi : i < κ〉.
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604 T. Eisworth, S. Shelah

3. Building the Coloring

We now come to the main point of this paper; we dedicate this section and the next
to proving the following theorem.

Theorem 1. Assume λ = µ+, where µ is a singular cardinal of uncountable cofi-
nality, say ℵ0 < κ = cf(µ) < µ. Assume 〈κi : i < κ〉 is non–decreasing with
supremum κ∗ ≤ µ, and there is a γ ∗ < µ such that for each i, for every large
enough regular θ < µ, Player I has a winning strategy in the game Gmω[θ, κi, γ ∗].
Then Pr1(λ, λ, κ

∗, κ) holds.

Let 〈Si : i < κ〉 be a sequence of pairwise disjoint stationary subsets of
{δ < λ : cf(δ) = κ}. For i < κ , let C̄i be an Si–club system such that

• λ /∈ idp(C̄i, J̄ i ), where J̄ i = 〈J b[µ]
Ciδ

: δ ∈ Si〉
• for δ ∈ Si , otp(Ciδ) = cf(δ) = κ = cf(µ)

Such ladder systems can be found by Claim 2.6 (and Remark 2.6A (6)) of [2] —
for the second statement to hold, we need that µ has uncountable cofinality.

Claim 3.1. There is a λ–club system ē such that |eβ | ≤ cf(β) + cf(µ), and ē
“swallows” each C̄i , i.e., if δ ∈ Si ∩ (eβ ∪ {β}), then Ciδ ⊆ eβ .

Proof. Let S = ∪i<κSi , and let β < λ be a limit ordinal. Let e0
β be a closed co-

final subset of β of order–type cf(β). We will construct the required ladder eβ in
ω–stages, with enβ denoting the result of the first n stages of our procedure. The
construction is straightforward, but it is worthwhile to note that we need to use the
fact that each member of S has uncountable cofinality.

Given enβ , let us define

Bn = S ∩ (enβ ∪ {β}). (3.1)

Now we let en+1
β be the closure in β of

enβ ∪
⋃

{Cδ : δ ∈ Bn}. (3.2)

Note that |en+1| ≤ cf(µ)+ cf(β) as |Cδ| = cf(µ) = κ for each δ ∈ S. Finally,
we let eβ be the closure of ∪n<ωenβ in β.

Clearly |eβ | ≤ cf(µ) + cf(β). Also, since each element of S has uncountable
cofinality, if δ ∈ S ∩ eβ , then there is an n such that δ ∈ enβ , and therefore

Cδ ⊆ en+1
β ⊆ eβ, (3.3)

as required. ��
For each i < κ , there are hi and F̄ i = 〈F iδ : δ < λ, δ limit 〉 as in the con-

clusion of Claim 2.1 applied to C̄i and ē; note that we satisfy the assumptions of
Claim 2.1 by way of Claim 2.2.
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Let 〈λi : i < κ〉 be a strictly increasing sequence of regular cardinals > κ and
cofinal in µ such that

λ = tcf
(∏

i<κ

λi/J
bd
κ

)
, (3.4)

and let 〈fα : α < λ〉 exemplify this. Finally, let h∗
0 : κ → ω and h∗

1 : κ → κ be
such that

(∀n)(∀i < κ)(∃κj < κ)[h∗
0(j) = n and h∗

1(j) = i]. (3.5)

Before we can define our coloring, we must recall some of the terminology of
[2].

Definition 3.2. Let 0 < α < β < λ, and define

γ (α, β) = min{γ ∈ eβ : γ ≥ α}.
We also define (by induction on )

γ0(α, β) = β,

γ+1(α, β) = γ (α, γ(α, β)) (if defined).

We let k(α, β) be the first  for which γ(α, β) = α. The sequence 〈γi(α, β) : i ≤
k(α, β)〉 will be referred to as the walk from β to α along the ladder system ē.

We now define the coloring c that will witness Pr1(λ, λ, κ
∗, κ). Recall that c

must be a symmetric two–place function from λ to κ∗.
Givenα < β, we let i = i(α, β) be the maximal j < κ such that fβ(j) < fα(j)

(if such an j exists). Next, we walk from β down to α along ē until we reach an
ordinal ν(α, β) such that

fα(i) < fν(α,β)(i),

(again, if such an ordinal exists.) After this, we walk along ē from α toward the
ordinal max(α ∩ eν(α,β)) until we reach an ordinal η(α, β) for which

fν(α,β)(i) < fη(α,β)(i).

The idea now is to look at how the ladders eν(α,β) and eη(α,β) intertwine. Let
us make a temporary definition by calling an ordinal ξ ∈ eν(α,β) relevant if eη(α,β)
meets the interval (sup(ξ ∩ eν(α,β)), ξ).

If it makes sense, we letw(α, β) ⊆ eν(α,β) be the last h∗
0(i(α, β)) relevant ordi-

nals in eν(α,β) (so we need that the relevant ordinals have order–type γ+h∗
0(i(α, β))

for some γ ).
Finally, we define our coloring by

c(α, β) = F
h∗

1(i(α,β))

ν(α,β) (w(α, β)). (3.6)

If the attempt to define c(α, β) breaks down at some point for some specific
α < β, then we set c(α, β) = 0.
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We now prove that this coloring works, so suppose 〈tα : α < λ〉 are pairwise
disjoint subsets of λ such that |tα| = θ1 < κ and j∗ < κ∗, and without loss of
generality α < min tα and θ1 ≥ ω. We need to find δ0 and δ1 such that

α ∈ tδ0 and β ∈ tδ1 ⇒ α < β and c(α, β) = j∗. (3.7)

Let j1 be the least j such that j∗ < κj , and let S, C̄, and F̄ denote Sj1 , C̄j1 ,
and F̄ j1 respectively.

Given δ < λ, we define the envelope of tδ (denoted env(tδ)) by the formula

env(tδ) =
⋃

ζ∈tδ
{γ(δ, ζ ) :  ≤ k(δ, ζ )}. (3.8)

The envelope of tδ is the set of all ordinals obtained by walking down to δ from
some ζ ∈ tδ using the ladder system ē. This makes sense as we have arranged that
δ < min tδ . Note also that | env(tδ)| ≤ |tδ| = θ1.

Next we define functions gmin
δ and gmax

δ in
∏
i<κ λi by

gmin
δ (i) = min{fγ (i) : γ ∈ env(tδ)}, (3.9)

and

gmax
δ (i) = sup{fγ (i)+ 1 : γ ∈ env(tδ)}. (3.10)

Note that gmax
δ is well–defined as we assume that κ < min{λi : i < κ}.

The following claim is quite easy, and the proof is left to the reader.

Claim 3.3.

(1) fδ =J bd
κ
gmin
δ

(2) gmin
δ (i) ≤ gmax

δ (i) for all i < κ

(3) There is a δ′ > δ such that gmax
δ ≤J bd

κ
gmin
δ′ .

Now let χ∗ = (2λ)+, and let 〈Mα : α < λ〉 be a sequence of elementary sub-
models of 〈H(χ∗),∈, <∗

χ∗〉 that is increasing and continuous in α and such that

each Mα ∩ λ is an ordinal, 〈Mβ : β ≤ α〉 ∈ Mα+1, and 〈fα : α < λ〉, g, c, ē, S, C̄,
〈tα : α < λ〉 all belong to M0. Note that µ+ 1 ⊆ M0.

The setE = {α < λ : Mα ∩λ = α} is closed unbounded in λ, and furthermore,

α < δ ∈ E ⇒ sup tα < δ. (3.11)

By the choice of C̄ and F̄ , for some δ ∈ S ∩ E we have the set

A = {β ∈ nacc(Cδ) : (∀γ < β) ran(Fβ�
[
B0[E, eβ ] \ γ ]<ω

) ⊇ κj1} (3.12)

is not in J b[µ]
Cδ

.
Note that A ⊆ acc(E), as B0[E, eβ ] is unbounded in β for β ∈ A. For β ∈ tδ ,

if  < k(δ, β) then eγ(δ,β) ∩ δ is bounded in δ, and since it is closed it has a
well–defined maximum. Since |tδ| < κ = cf(δ), this means the ordinal

γ⊗ := sup{max[eγ(δ,β) ∩ δ] : β ∈ tδ and  < k(δ, β)}
is strictly less than δ.
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For β ∈ tδ , let us define

Aβ := {β ′ ∈ A : (∃ ≤ k(β, δ))[cf(β ′) ≤ |eγ(δ,β)|]}. (3.13)

Since the cardinality of each ladder in ē is less than µ, each setAβ is an element of

J
b[µ]
Cδ

. The ideal J b[µ]
Cδ

is κ–complete, so the fact that |tδ| < κ and k(β, δ) is finite
for each β ∈ tδ together imply that

⋃

β∈tδ
Aβ ∈ J b[µ]

Cδ
. (3.14)

By the definition of A and our choice of δ, this means it is possible to choose
β∗ ∈ A \ (γ⊗ + 1) that is not in any Aβ , i.e.,

β ∈ tδ and  < k(δ, β) �⇒ cf(β∗) > |eγ(δ,β)|. (3.15)

Claim 3.4.

(1) If ε ∈ tδ , and  = k(δ, ε)− 1, then β∗ ∈ nacc(eγ(δ,ε)).
(2) If ε ∈ tδ and γ⊗ < γ ′ ≤ β∗, then

• γ(δ, ε) = γ(γ
′, ε) for  < k(δ, ε), and

• γk(δ,ε)(γ ′, ε) = β∗

Proof. For the first clause, note that δ is an element of eγ(δ,ε) and hence by our
choice of ē, Cδ ⊆ eγ(δ,ε). Thus β∗ ∈ eγ(δ,ε), and since cf(β∗) > |eγ(δ,ε)|, we
know that β∗ cannot be an accumulation point of eγ(δ,ε).

The first part of the second statement follows because of the definition of γ⊗.As
far as the second part of the second statement goes, it is best visualized as follows:

We walk down the ladder system ē from ε to γ ′, we eventually hit a ladder
that contains δ — this happens at stage k(δ, ε) − 1. Since Cδ is a subset of this
ladder, the next step in our walk from ε to γ ′ must be down to β∗ because γ⊗ <

γ ′ < β∗. ��
We can visualize the preceding claim in the following manner: β∗ is chosen so

that for all sufficiently large γ ′ < β∗, all the walks from some element of tδ to γ ′
are funnelled through β∗ — β∗ acts as a bottleneck. This will be key when want to
prove that our coloring works.

Since β∗ ∈ A, we can choose a finite increasing sequence ξ0 < ξ1 < · · · < ξn

of ordinals in acc(E)∩ nacc(eβ∗) \ (γ⊗ + 1) such that Fj1
β∗({ξ0, . . . , ξn}) = j∗, the

color we are aiming for.
For each  ≤ n, we can find ζ ∈ E \ (γ⊗ + 1) such that

sup(eβ∗ ∩ ξ) < ζ < ξ.

Now we let φ(x0, y0, x1, y1, . . . , xn, yn, z0, z1) be the formula (with parame-
ters γ⊗, f̄ , 〈λi : i < κ〉, C̄, ē, 〈tα : α < λ〉, h, h0, j∗) that describes our current
situation with x, y standing for ζ, ξ, and z0, z1 standing for β∗, δ , i.e., φ states

• γ⊗ < x0 < y0 < · · · < xn < yn < z0 < z1 are ordinals < λ

• z1 ∈ S and z0 ∈ nacc(Cz1)
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• γ⊗ = sup{max[eγ(z1,ζ ) ∩ z1] :  < k(z1, ζ ) and ζ ∈ tz1}
• z0 ∈ nacc(eγk(z1,ε)(z1,ε)) for all ε ∈ tz1

• F
j1
z0 ({y0, . . . , yn}) = j∗

Now clearly we have

H(χ) |= φ[ζ0, ξ0, . . . , ζn, ξn, β
∗, δ]. (3.16)

Recall that all the parameters needed in φ are in M0, except possibly for γ⊗, so
the modelMγ⊗+1 contains all the parameters we need. Also, {ζ0, ξ0, . . . , ζn, ξn} ∈
Mβ∗ , β∗ ∈ Mδ \Mβ∗ , and since δ ∈ λ\Mδ , we have (recalling that ∃∗z < λmeans
“for unboundedly many z < λ)

Mδ |= (∃∗z1 < λ)φ(ζ0, ξ0, . . . , ζn, ξn, β
∗, z1). (3.17)

Therefore, this formula is true inH(χ) because of elementarity. Similarly, we have

H(χ) |= (∃∗z0 < λ)(∃∗z1 < λ)φ(ζ0, ξ0, . . . , ζn, ξn, z0, z1).

Now each of the intervals [γ⊗ + 1, ζ0), [ζ0, ξ0), . . . , contains a member of E, so
(by the definition of E) similar considerations give us

H(χ) |= (∃∗x0 < λ) . . . (∃∗yn < λ)(∃∗z0 < λ)(∃∗z1 < λ)φ(x0, y0, . . . , z0, z1).

Now we can choose (in order)

ζ a0 < ζb0 < ξa0 < ζa1 < ξb0 < ζb1 < · · · < ζan < ξbn−1 < ζbn < ξan (3.18)

such that

(∃∗z0 < λ)(∃∗z1 < λ)[φ(ζ a0 , . . . , ξ
a
n−1, ζ

a
n , ξ

a
n , z0, z1)], (3.19)

and

(∃∗yn < λ)(∃∗z0 < λ)(∃∗z1 < λ)[φ(ζ b0 , . . . , ξ
b
n−1, ζ

b
n , yn, z0, z1)], (3.20)

Our goal is to show that for all sufficiently large i < κ , it is possible to choose
objects βa , δa , ξbn , βb, and δb such that

Table 1

(1) ζ bn < βa < δa < min(tδa ) ≤ max(tδa ) < ξbn < βb < δb

(2) φ(ζ a0 , . . . , ξ
a
n , β

a, δa)

(3) φ(ζ b0 , . . . , ξ
b
n , β

b, δb)

(4) for all ε ∈ env(tδa ), gmin
δa �[i, κ) ≤ fε�[i, κ) ≤ gmax

δa �[i, κ)

(5) for all ε ∈ env(tδb ), g
min
δb

�[i, κ) ≤ fε�[i, κ) ≤ gmax
δb

�[i, κ)

(6) gmax
δb
(i) < gmin

δa (i) ≤ gmax
δa (i) < fβb(i) < fβa (i)

(7) gmax
δa �[i + 1, κ) < gmin

δb
�[i + 1, κ)
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Claim 3.5. If for all sufficiently large i < κ it is possible to find objects satisfying
the requirements of Table 1, then we can find δa < δb such that c(εa, εb) = j∗ for
all εa ∈ tδa and εb ∈ tδb .
Proof. Let us choose i∗ < κ such that

• suitable objects (as above) can be found, and
• h∗

1(i
∗) = j1 and h∗

0(i
∗) = n

Choose εa ∈ tδa and εb ∈ tδb ; we verify that c(εa, εb) = j∗.

Subclaim 1. i(εa, εb) = i∗.

Proof. Immediate by (4)–(7) in the table. ��
Subclaim 2. ν(εa, εb) = βb.

Proof. Note that γ⊗ < εa < βb. Clause (3) of the table implies that the assump-
tions of Claim 3.4 hold. Thus by Claim 3.4, for  < k(δb, εb) we have

γ(ε
a, εb) = γ(δ

b, εb),

hence γ(εa, εb) ∈ env(tδb ) and (by (6) of the table and the definitions involved)

fγ(εa,εb)(i
∗) ≤ gmax

δb
(i∗) < gmin

δa (i
∗) ≤ fεa (i

∗). (3.21)

For  = k(δb, εb), Claim 3.4 tells us

γ(ε
a, εb) = βb,

and we have arranged that

fεa (i
∗) ≤ gmax

δa (i∗) < fβb(i
∗). (3.22)

This establishes βb = ν(εa, εb). ��
Subclaim 3. η(εa, εb) = βa .

Proof. Let α = max(eβb ∩ εa). We have arranged that

ζ bn < βa < δa < εa < ξbn

and γ⊗ < max(eβb ∩ δa), hence γ⊗ < α < βa . For  < k(δa, εa), Claim 3.4
implies

γ(α, ε
a) = γ(δ

a, εa) ∈ env(tδa ).

By our choice of i∗, we have

fγ(α,εa)(i
∗) ≤ gmax

δa (i∗) < fβb(i
∗). (3.23)

For  = k(δa, εa), Claim 3.4 implies γ(α, εa) = βa , and we have ensured

fβb(i
∗) < fβa (i

∗). (3.24)

Thus βa is the first ordinal η in the walk from εa to max(eβb ∩ εa) for which
fη(i

∗) > fβb(i
∗), and therefore η(εa, εb) = βa . ��
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Subclaim 4. w(εa, εb) = {ξb0 , . . . ξbn }.
Proof. Our previous subclaims imply that an ordinal ξ ∈ eβb is relevant if and only
if the ladder eβa meets the interval (sup(eβb ∩ ξ), ξ). Since h∗

0(i
∗) = n + 1, we

know that w(εa, εb) consists of the last n+ 1 relevant ordinals in eβb .

For i ≤ n, clearly ξbi ∈ eβb and sup(ξbi ∩ eβb ) ≤ ζ bn . We have made sure that
eβa ∩ (ζ bi , ξbi ) �= ∅ (for example, ξai is an element in this intersection) and so each
ξbi is relevant.

Since βa < ξbn , it is clear that there are no relevant ordinals larger than ξbn .
Given i < n, if ξ ∈ eβb ∩ (ξbi , ξbi+1), then

ξbi ≤ sup(ξ ∩ eβb ) ≤ ξ ≤ ζ bi+1.

Since ζ ai+1 < ξbi < ζbi+1 < ξai+1, it follows that

[sup(ξ ∩ eβb ), ξ) ⊆ [ζ ai+1, ξ
a
i+1),

and so ξ is not relevant. Thus {ξb0 , . . . , ξbn } are the last n+ 1 relevant elements of
eβb , as was required. ��

To finish the proof of Claim 3.5, we note that as h∗
1(i

∗) = j∗, we have

c(εa, εb) = F
j1

βb
({ξb0 , . . . , ξbn }) = j∗. (3.25)

��

4. Finding the required ordinals

The whole of this section will be occupied with showing that for all sufficiently
large i < κ , it is possible to find objects satisfying the requirements of Table 1.

We begin with some notation intended to simplify the presentation.

• φa(z0, z1) abbreviates the formula φ(ζ a0 , . . . , ξ
a
n , z0, z1)

• φb(yn, z0, z1) abbreviates the formula φ(ζ b0 , ζ
n
b , yn, z0, z1)

• For i < κ , ψ(i, z1) abbreviates the formula

(∀ε ∈ env(tz1))[g
min
z1

�[i, κ) ≤ fε�[i, κ) ≤ gmax
z1

�[i, κ)] (4.1)

We have arranged things so that the sentence

(∃∗za0 < λ)(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗zb0 < λ)(∃∗zb1 < λ)[φa(za0, z
a
1) ∧ φb(ybn, zb0, zb1)] (4.2)

holds.
There are far too many alternations of quantifiers in the above formula for most

people to deal with comfortably; the best way to view them is as a single quantifier
that asserts the existence of a tree of 5–tuples with the property that every node of

Sh:535



Coloring Theorems 611

the tree has λ successors, and every branch through the tree gives us five objects
satisfying φa ∧ φb.

Let �(i, za0, . . . , z
b
1) abbreviate the formula

φa(za0, z
a
1) ∧ φb(ybn, z

b
0, z

b
1) ∧ ψ(i, za1) ∧ ψ(i, zb1)

∧
(
gmax
za1

�[i + 1, κ) < gmin
zb1

�[i + 1, κ)
)
.

By pruning the tree so that every branch through it is a strictly increasing 5–tuple,
we get

(∃∗za0 < λ)(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗zb0 < λ)(∃∗zb1 < λ)(∀∗i < κ)[�(i, za0, . . . , z
b
1)]. (4.3)

We now make a rather ad hoc definition of another quantifier in an attempt to
make the arguments that follow a little bit clearer. Given i < κ , let the quantifier
∃∗,izb0 < λmean that not only are there unboundedly many zb0’s below λ satisfying
whatever property, but also that for each α < λi , we can find unboundedly many
suitable zb0’s for which fzb0

(i) is greater than α.

Claim 4.1. If we choose βa < δa < ξbn such that

(∃∗zb0 < λ)(∃∗zb1 < λ)(∀∗i < κ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)], (4.4)

then

(∀∗i < κ)(∃∗,izb0 < λ)(∃∗zb1 < λ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)]. (4.5)

Proof. Suppose that we have βa < δa < ξbn such that (4.4) holds but (4.5) fails.
Then there is an unbounded I ⊆ κ such that for each i ∈ I ,

¬(∃∗,izb0 < λ)(∃∗zb1 < λ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)]. (4.6)

In (4.4), we can move the quantifier “∀∗i < κ ′′ past the quantifiers to its left, i.e.,

(∀∗i < κ)(∃∗zb0 < λ)(∃∗zb1 < λ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)], (4.7)

so without loss of generality, for all i ∈ I ,

(∃∗zb0 < λ)(∃∗zb1 < λ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)]. (4.8)

Since (4.6) holds for all i ∈ I , it must be the case that for each i ∈ I , there is a
value g(i) < λi such that for all sufficiently large β < λ, if

(∃∗zb1 < λ)[�(i, βa, δa, ξbn , β, z
b
1)], (4.9)

then

fβ(i) ≤ g(i). (4.10)
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Since {fα : α < λ} witnesses that the true cofinality of
∏
i<κ λi is λ, we know

(∀∗x < λ)(∀∗i ∈ I )[g(i) < fx(i)]. (4.11)

When we combine this with (4.4), we see that it is possible to choose βb < λ such
that

(∀∗i ∈ I )[g(i) < fβb(i)], (4.12)

and

(∃∗zb1 < λ)(∀∗j < κ)[�(j, βa, δa, ξbn , β
b, zb1)]. (4.13)

(Note that we have quietly used the fact that |I | < λ = cf(λ) to get a βb that is
“large enough” so that (4.9) implies (4.10) for all i ∈ I for this particular βb.) This
last equation implies

(∀∗j < κ)(∃∗zb1 < λ)[�(j, βa, δa, ξbn , β
b, zb1)],

so it is possible to choose i ∈ I large enough so that

g(i) < fβb(i)

and

(∃∗zb1 < λ)[�(i, βa, δa, ξbn , β
b, zb1)].

This is a contradiction, as (4.9) holds for our choice of i and β = βb, yet (4.10)
fails. ��

Notice that an immediate corollary of the preceding claim is

(∃∗za0 < λ)(∃∗za1 < λ)(∃∗ybn < λ)(∀∗i < κ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)]. (4.14)

Claim 4.2. If βa < λ is chosen so that

(∃∗za1 < λ)(∃∗ybn < λ)(∀∗i < κ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)], (4.15)

then

(∀∗i < κ)(∃v < λi)(∃∗za1 < λ)[ψ ′ ∧ ψ ′′]

where

ψ ′ := gmax
za1
(i) < v,

and

ψ ′′ := (∃∗ybn < λ)(∃∗zb0 < λ)
[
v < fzb0

(i) and (∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)]

]
.
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Proof. In (4.15), we can move the quantifier “(∀∗i < κ)” past the other quantifiers
to its left, so

(∀∗i < κ)(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)] (4.16)

holds. The claim will be established if we show that for each i < κ for which

(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗,izb0 < λ)(∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)] (4.17)

holds, it is possible to find v < λi such that

(∃∗za1 < λ)

[

gmax
za1
(i) < v and

(∃∗ybn < λ)(∃∗zb0 < λ)
[
v < fzb0

(i) and (∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)]

]]

.

(4.18)

Despite the lengths of the formulas involved, this is not that hard to accomplish.
Since λi < λ = cf(λ), we can find v < λi such that

(∃∗za1 < λ)
[
gmax
za1
(i) < v and

(∃∗ybn < λ)(∃∗,izb0 < λ)(∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)]

]
,

and now the result follows from of the definition of “∃∗,izb1 < λ”. ��
Thus there are unboundedly many za0 < λ for which there is a function g ∈∏

i<κ λi such that for all sufficiently large i < κ ,

(∃∗za1 < λ)

[

gmax
za1
(i) ≤ g(i) and

(∃∗ybn < λ)(∃∗zb0 < λ)
[
g(i) < fzb0

(i)

and (∃∗zb1 < λ)[�(i, za0, z
a
1, y

b
n, z

b
0, z

b
1)]

]
]

. (4.19)

Now this is logically equivalent to the statement

(∃∗za1 < λ)(∃∗ybn < λ)(∃∗zb0 < λ)
[
gmax
za1
(i) ≤ g(i) < fzb0

(i) and (∃∗zb1 < λ)[�(i, za0, z
a
1, y

b
n, z

b
0, z

b
1)]

]
. (4.20)

Suppose we are given a particular za0 < λ for which a function g as above can
be found, and let us fix i < κ “large enough” so that (4.19) holds. Also fix ordinals
δa < λ and ξbn < λ that serve as suitable za1 and ybn . Just to be clear, this means that
for these choices we have

(∃∗zb0 < λ)
[
gmax
δa (i) ≤ g(i) < fzb0

(i) and (∃∗zb1 < λ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)]

]
.
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Since λi < λ = cf(λ), there must be some value w satisfying

(∃∗zb0 < λ)
[
g(i) < fzb0

(i) < w and (∃∗zb1 < λ)[�(i, βa, δa, ξbn , z
b
0, z

b
1)]

]
.

This implies for our particular βa , g, i, δa , and ξbn that

(∀∗w < λi)(∃∗zb0 < λ)
[
gmax
δa (i) ≤ g(i) < fzb1

(i) < w and

(∃∗zb1 < λ)[�(i, βa, δa, ybn, z
b
0, z

b
1)]

]
. (4.21)

Since λi < λ = cf(λ), the quantifier (∀∗w < λi) can move to the left past the
quantifiers (∃∗za1 < λ)(∃∗ybn < λ). This tells us that for our βa and g,

(∀∗i < κ)(∀∗w < λi)(∃∗za1 < λ)(∃∗ybn < λ)(∃∗zb0 < λ)
[
gmax
za1
(i) ≤ g(i) < fzb0

(i) < w and

(∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)]

]
. (4.22)

When we put all this together, we end up with the statement

(∃∗za0 < λ)(∀∗i < κ)(∃v < λi)(∀∗w < λi)(∃∗za1 < λ)

(∃∗ybn < λ)(∃∗zb0 < λ)
[
gmax
za1
(i) ≤ v < fzb0

(i) < w

and (∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)]

]
. (4.23)

Since both κ and λi are less than λ = cf(λ), we can move some quantifiers around
and achieve

(∀∗i < κ)(∀∗w < λi)(∃∗za0 < λ)(∃v < λi)(∃∗za1 < λ)

(∃∗ybn < λ)(∃∗zb0 < λ)
[
gmax
za1
(i) ≤ v < fzb0

(i) < w

and (∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)]

]
. (4.24)

Thus there is a function h ∈ ∏
i<κ λi such that

(∀∗i < κ)(∃∗za0 < λ)(∃v < λi)(∃∗za1 < λ)

(∃∗ybn < λ)(∃∗zb0 < λ)
[
gmax
za1
(i) ≤ v < fzb0

(i) < h(i)

and (∃∗zb1 < λ)[�(i, βa, za1, y
b
n, z

b
0, z

b
1)]

]
. (4.25)

After all this work, it is finally time to prove that we can select objects βa <
δa < ξbn < βb < δb that satisfy all of our requirements.

Clearly, for every unbounded � ⊆ λ,

(∃i < κ)(∃∗x ∈ �)(h�[i, κ) < fx�[i, κ).

Thus we can choose i∗ < κ such that h∗
1(i

∗) = j1 and h∗
0(i

∗) = n, and

(∃∗za0 < λ)

[

h�[i∗, κ) < f z
a
0 �[i∗, κ) and (∃v < λi)(∃∗za1 < λ)(∃∗ybn < λ)

(∃∗zb0 < λ)
[
gmax
za1
(i∗) ≤ v < fzb0

(i∗) < h(i∗) and

(∃∗zb1 < λ)[�(i∗, za0, . . . , z
b
1)]

]
]

.
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So now we choose βa such that h(i∗) < fβa (i
∗) and for some α < λi∗ ,

(∃∗za1 < λ)(∃∗ybn < λ)(∃∗zb0 < λ)
[
gmax
za1
(i∗) ≤ α < fzb0

(i∗) < h(i∗) and

(∃∗zb1 < λ)[�(i∗, za0, . . . , z
b
1)]

]
.

Now we choose δa , ξbn , βb, and δb such that

• βa < δa < ξbn < βb

• gmax
δa (i∗) ≤ α < fβb(i

∗) < h(i∗) < fβa (i
∗)

• �(i∗, βa, δa, ξbn , βb, δb)

It is straightforward to check that these objects satisfy all the requirements listed
in Table 1, so by Claim 3.5, we are done.

5. Conclusions

In this final section, we will deduce some conclusions in a few concrete cases.

Theorem 2. If µ is a singular cardinal of uncountable cofinality that is not a limit
of regular Jonsson cardinals, then Pr1(µ

+, µ+, µ+, cf(µ)) holds.

Proof. The proof of this theorem occurs in two stages—we first show that
Pr1(µ

+, µ+, µ, cf(µ)) holds, and then we show that this result can be upgraded to
obtain Pr1(µ

+, µ+, µ+, cf(µ).
Let µ be as hypothesized, and let us define λ = µ+ and κ = cf(µ).

Claim 5.1. Pr1(λ, λ, µ, κ) holds.

Proof. Let 〈κi : i < κ〉 be a strictly increasing continuous sequence cofinal in µ.
Let S ⊆ {δ ∈ [µ, λ) : cf(δ) = κ} be stationary. Standard club–guessing results tell
us that there is an S–club system C̄ such that idp(C̄, J̄ ) is a proper ideal, where Jδ
is the ideal J b[µ]

Cδ
for δ ∈ S, and furthermore, satisfying |Cδ| = κ . (Note that this

last requires that κ = cf(µ) is uncountable.)
At this point, we have satisfied all of the assumptions of Claim 2.2 except pos-

sibly for clause (8). It suffices to show that for each i < κ , for all sufficiently
large regular θ < µ, Player I has a winning strategy in the game Gmω[θ, κi, 1].
Since µ is not a limit of regular Jonsson cardinals, it follows that for all sufficiently
large regular θ < µ, Player I has a winning strategy in Gmω[θ, θ, 1]. This implies,
by Lemma 1.3 (1), that for all sufficiently large regular θ , Player I has a winning
strategy in Gmω[θ, κi, 1], and so clause (8) of Claim 2.2 is satisfied. ��

To finish the proof of Theorem 2, it remains to show that we can increase
the number of colors from µ to λ = µ+ — we need Pr1(λ, λ, λ, κ) instead of
Pr1(λ, λ, µ, κ).

Lemma 5.2. There is a coloring c1 : [λ]2 → λ such that whenever we are given

• θ < κ ,
• 〈tα : α < λ〉 a sequence of pairwise disjoint elements of [λ]θ ,

Sh:535



616 T. Eisworth, S. Shelah

• ζα ∈ tα for α < λ, and
• ϒ < λ,

we can find α < β such that tα ⊆ min(tβ) and

(∀ζ ∈ tα)[c1(ζ, ζβ) = ϒ]. (5.1)

Proof. Let c : [λ]2 → µ be a coloring that witnesses Pr1(λ, λ, µ, κ). For each
α < λ, let gα be a one–to–one function from α into µ. We define

c1(α, β) = g−1
β (c(α, β)). (5.2)

Suppose now that we are given objects θ , 〈tα : α < λ〉, 〈ζα : α < λ〉, and ϒ as
in the statement of the lemma. Clearly we may assume that min(tα) > α.

For i < µ, we define Xi := {α ∈ [γ, λ) : gζα (ϒ) = i}. Since λ is a regular
cardinal, it is clear that there is i∗ < µ for which |Xi∗ | = λ. Since c exemplifies
Pr1(λ, λ, µ, κ), for some α < β in Xi∗ we have tα ⊆ min(tβ) and

(∀ζ ∈ tα)[c(ζ, ζβ) = i∗]. (5.3)

By definition, this means

(∀ζ ∈ t)[c1(ζ, ζβ) = g−1(c(α, β)) = g−1(i∗) = ϒ], (5.4)

hence α and β are as required. ��
To continue the proof of Theorem 2, we define a coloring c2 : [λ]2 → λ by

c2(α, β) = c1(α, ν(α, β)), (5.5)

where ν(α, β) is as in the proof of Theorem 1.
It remains to check that c2 witnesses Pr1(λ, λ, λ, κ). Toward this end, suppose

we are given θ < κ , 〈tα : α < λ〉 a sequence of pairwise disjoint members of [λ]θ ,
and ϒ < λ. We need to find δa and δb less than λ such that

εa ∈ tδa ∧ εb ∈ tδb �⇒ c2(ε
a, εb) = ϒ. (5.6)

Lemma 5.3. There is a stationary set of γ1 < λ such that for some γ0 < γ1 and
β ∈ [γ1, λ), if γ0 ≤ α < γ1, then the function ν is constant on tα × tβ .

Proof. Let E be an arbitrary closed unbounded subset of λ, and let W be the set
of ordinals < λ satisfying the properties of γ1. In the proof of Theorem 1, without
loss of generality we can have E ∈ M0. This means that the ordinal β∗ found in
the course of that proof will be in E, so we finish by observing that β∗ ∈ W . ��

An application of Fodor’s Lemma gives us a single ordinal γ0 and a station-
ary W ′ ⊆ W such that for all γ ∈ W ′, there is a βγ ∈ [γ, λ) such that for all
α ∈ [γ0, γ ), ν�(tα × tβ) is constant.

Using properties of the coloring c1, we can find α and γ such that

• γ0 ≤ α < λ

• γ ∈ W ′ \ (sup(tα)+ 1), and
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• ζ ∈ tα �⇒ c1(ζ, γ ) = ϒ .

Now given εa ∈ tα and εb ∈ tβγ , we find

c2(ε
a, εb) = c1(ε

a, γ ) = ϒ, (5.7)

and therefore c2 exemplifies Pr(λ, λ, λ, κ). ��
Theorem 2 strengthens results in [1] as clearly Pr1(µ

+, µ+, µ+, cf(µ)) implies
that µ+ has a Jonsson algebra (i.e., µ+ is not a Jonsson cardinal). The question of
whether the successor of a singular cardinal can be a Jonsson cardinal is a well–
known open question.

We note that many of the results from Section 2 of [1] dealing with the existence
of winning strategies for Player I in Gmω[λ,µ, γ ] can be combined with Theorem
1 to give new results. For example, we have the following result from [1].

Proposition 5.4. If τ ≤ 2κ but (∀θ < κ)[2θ < τ ], then Player I has a winning
strategy in the game Gmω(τ, κ, κ+).

Proof. See Claim 2.3(1) and Claim 2.4(1) of [1]. ��
Armed with this, the following claim is straightforward.

Claim 5.5. Let µ be a singular cardinal of uncountable cofinality. Further assume
that χ is a cardinal such that 2<χ ≤ µ < 2χ . Then Pr1(µ

+, µ+, χ, cf(µ)) holds.

Proof. If 2<χ < µ, then Claims 2.3(1) and 2.4(1) of [1] imply that for every suffi-
ciently large θ < µ, Player I has a winning strategy in the game Gmω(θ, χ, χ+).

If µ = 2<χ , then cf(µ) = cf(χ). Let 〈κi : i < cf(µ)〉 be a strictly increasing
continuous sequence of cardinals cofinal inχ . Given i < cf(µ), we claim that for all
sufficiently large regular τ < µ, Player I has a winning strategy in Gmω(τ, κi, χ).
Once we have established this, Pr1(µ

+, µ+, χ, cf(µ)) follows by Theorem 1.
Given τ = cf(τ ) satisfying 2κi < τ < µ, let η be the least cardinal such

that τ ≤ 2η. Clearly κi < η < χ . By Proposition 5.4, Player I wins the game
Gmω(τ, η, η+). This implies (since η+ < χ and κi < η) that Player I wins the
game Gmω(τ, κi, χ) as required. ��

We can also use Claim 1.4 to prove similar results. For example we have the
following.

Claim 5.6. Let µ be a singular cardinal of uncountable cofinality. Further assume
that χ < µ satisfies 2χ < µ < �(2χ )+(χ). Then Pr1(µ

+, µ+, χ, cf(µ)) holds.

Proof. Again, the main point is that for all sufficiently large regular θ < µ, Player
I has a winning strategy in the game Gmω[θ, χ, (2χ )+]. This follows immediately
from Claim 1.4. Since (2χ )+ < µ, Theorem 1 is applicable. ��

In a sequel to this paper, we will address the situation where λ is the suc-
cessor of a singular cardinal of countable cofinality. Similar results hold, but the
combinatorics involved are trickier.
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