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The depth of ultraproducts of Boolean algebras

Saharon Shelah

Abstract. We show that if µ is a compact cardinal then the depth of ultraproducts of less
than µ many Boolean algebras is at most µ plus the ultraproduct of the depths of those
Boolean algebras.

1. Introduction

Monk has looked systematically at cardinal invariants of Boolean algebras. In
particular, he has looked at the relations between

inv
( ∏

i<κ

Bi/D
)

and
∏
i<κ

inv(Bi)/D,

i.e., the invariant of the ultraproducts of a sequence of Boolean algebras vis the
ultraproducts of the sequence of the invariants of those Boolean algebras for var-
ious cardinal invariants inv of Boolean algebras. That is: is it always true that
inv(

∏
i<κ Bi/D) ≤ ∏

i<κ(inv(Bi/D)? Is it consistently always true? Is it always
true that

∏
i<κ inv(Bi)/D ≤ inv(

∏
i<κ Bi/D)? Is it consistenly always true? See

more on this in Monk [Mo96]. Roslanowski Shelah [RoSh] deals with specific inv
and with more on kinds of cardinal invariants and their relationship with ultra-
products. Monk [Mo90], [Mo96], in his list of open problems raises the question
for the central cardinal invariants. Most of them have been solved by now; see
Magidor and Shelah [MgSh], Peterson [Pe97], Shelah [Sh90], [Sh97], [Sh96a], [Sh00,
§4], [Sh96b], [Sh01], [Sh03], Shelah and Spinas [ShSi].

This paper throws some light on problem 12 of [Mo96, p. 287] and will be con-
tinued in future work.

We thank the referee for many helpful comments.

Definition 1.1. For a Boolean algebra B let
(a) Depth(B) = sup{θ : in B there is an increasing sequence of length θ}
(b) Depth+(B) = sup{θ+ : in B there is an increasing sequence of length θ}.
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Remark 1.2. So Depth+(B) = λ+ ⇒ Depth(B) = λ and if Depth+(B) is a limit
cardinal then Depth+(B) = Depth(B).

2. Above a compact cardinal

The following claim gives severe restrictions on any attempt to build a ZFC
example for Depth(

∏
ε<κ Bε)/D >

∏
ε<κ Depth(Bε)/D. If V is near L, see [Sh02]

for results complimentary to §1.

Claim 2.1.

(1) Assume
(a) κ < µ ≤ λ;
(b) µ is a compact cardinal;
(c) D is an ultrafilter on κ;
(d) λ = cf(λ) such that (∀α < λ)(|α|κ < λ);
(e) Bi (i < κ) is a Boolean algebra with Depth+(Bi) ≤ λ;
(f) B =

∏
i<κ Bi/D.

Then Depth+(B) ≤ λ.
(2) Instead of (∀α < λ)(|α|κ < λ), it suffices that (∀α < λ)(|ακ/D| < λ = cf(λ)).
(3) We can weaken clause (e) (for parts (1) and (2)) to

(g) {i < κ : Bi is a Boolean algebra with Depth+(Bi) ≤ λ} ∈ D.

Proof. (1): Toward a contradiction assume that 〈aα : α < λ〉 is an increasing
sequence in B. Let aα = 〈aα

i : i < κ〉/D, so for α < β,

Aα,β =: {i < κ : Bi |= aα
i < aβ

i } ∈ D.

Let E be a µ-complete uniform ultrafilter on λ.
For each α < λ let Aα be such that the set {β : α < β < λ and Aα,β = Aα} is a

member of E, so an unbounded subset of λ (which exists since λ = cf(λ) ≥ µ > 2κ).
We choose C as follows:

C =: { δ < λ : δ is a limit ordinal and if u ⊆ δ is bounded
of cardinality ≤ κ then δ = sup(Su ∩ δ) }

where
Su =: {β < λ : β > sup(u) and (∀α ∈ u)(Aα,β = Aα)}.

As λ = cf(λ) > 2κ = |D|, for some A∗ ∈ D the set S =: {α < λ : cf(α) >

κ, and Aα = A∗} is a stationary subset of λ.
As we have assumed λ = cf(λ) and (∀α < λ)(|α|κ < λ), clearly C is a club of λ.

Let {δε : ε < λ} ⊆ C such that δε increases continuously with ε and δε+1 ∈ S. For
each ε < λ the family Aε = {Su∩δε+1\δε : u ∈ [δε+1]≤κ} is a downward κ+-directed
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family of non-empty subsets of [δε, δε+1) hence there is a κ+-complete filter Eε on
[δε, δε+1) extending Aε.

For ε < λ and i < κ let Wε,i =: {β : δε ≤ β < δε+1 and i ∈ Aβ,δε+1} and let
Bε =: {i < κ : Wε,i ∈ E+

ε }. As Eε is κ+-complete, clearly

Wε =:
⋂{[δε, δε+1)\Wε,i : i ∈ κ\Bε} ∈ Eε,

hence there is β ∈ Wε. If i ∈ Aβ,δε+1 then {γ : δε ≤ γ < δε+1 and i ∈ Aγ,δε+1} ∈ E+
ε ,

so Aβ,δε+1 is a subset of Bε and belongs to D hence Bε ∈ D. So Bε ∩ A∗ ∈ D is
non-empty.

So for each ε for some iδε+1 ∈ A∗ we have

{β : δε ≤ β < δε+1 and iδε+1 ∈ Aβ,δε+1} ∈ E+
ε .

We can find i∗ ∈ A∗ such that

Y = {ε < λ : ε is an even ordinal and iδε+1 = i∗}
has cardinality λ. Let Z = {δε+1 : ε ∈ Y }, so Z ∈ [λ]λ. Now

(∗)0 ε ∈ Y ⇒ Aδε+1 = A∗
(Because δε+1 ∈ S)

(∗)1 i∗ ∈ A∗ ∈ D

(Trivial: note that if ∀α < λ, |α|2κ

< λ we can have Eε is (2κ)+-complete filter
so we have Bδε+1 instead of iδε so we can weaken “D ultrafilter” to: D ⊆ P(κ)
is upward closed and the intersection of any two is non-empty.)

(∗)2 if α < β are from Z then i∗ ∈ Aα,β

(For let α = δε+1, β = δζ+1 so ε < ζ; let

U1 := {γ : δζ < γ < δζ+1, Aα,γ = Aα(= Aδε+1)}
so

U1 = S{δε+1} ∩ (δζ , δζ+1) ∈ Aζ

U1 ⊆ Eζ

and let
U2 := {γ : δζ ≤ γ < δζ+1, i∗ ∈ Aγ,δζ+1} ∈ E+

ζ ,

as this is how iδζ+1 is defined.)

So for any α < β from Z, since U1 ∈ Eζ and U2 ∈ E+
ζ , clearly there is γ ∈ U1∩U2.

Hence (α = δε+1 < δζ ≤ γ < δζ+1 = β and) for i = i∗ we have Bi |= a
δε+1
i < aγ

i

(because γ ∈ U1) and Bi |= aγ
i < a

δζ+1
i (because γ ∈ U2) so together Bi |= a

δε+1
i <

a
δζ+1
i . But α = δε+1, β = δζ+1, so we have gotten Bi |= aα

i < aβ
i and we are done.

(2): We change the choice of the club C. By the assumption, for each α < λ let
〈fα

γ /D : γ < γα〉 be a list of the members of ακ/D without repetitions, so γα < λ.
Let C be the set of all δ such that:
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(i) δ < λ is a limit ordinal;
(ii) if α < δ then γα < δ;
(iii) if α < δ and γ < γα and Ā = 〈Ai : i < κ〉 ∈ κD and there is ξ ∈ [δ, λ) such

that i < κ ⇒ Afα
γ (i),ξ = Ai, then there is ξ ∈ (α, δ) such that i < κ ⇒ Afα

γ (i),ξ = Ai.
Clearly C is a club of λ. The only additional point is

(∗) if δ1 < δ2 are from C and Aδ2 = A∗, then there is i∗ ∈ A∗ such that: for every
α ∈ S ∩ δ1 there is β ∈ [δ1, δ2) satisfying Aα,β = A∗ ∧ i∗ ∈ Aβ,δ2 .

(Why does (∗) hold? If not, then for every i ∈ A∗ there is αi ∈ S ∩ δ1 satisfying
β ∈ [δ1, δ2) ∧ Aαi,β = A∗ ⇒ i /∈ Aβ,δ2 . Let f ∈ κα be defined by f(i) = αi if
i ∈ A∗, f(i) = 0 otherwise. So for some γ < γδ1 we have f = f δ1

γ mod D, hence
A =: {i ∈ A∗ : f(i) = f δ1

γ (i)} ∈ D. As κ < µ and D is µ-complete there is
ξ1 ∈ (δ2, λ) such that i < κ ⇒ A

f
δ1
γ (i),ξ1

= A
f

δ1
γ (i)

. Hence by the choice of C

there is ξ2 ∈ (δ1, δ2) such that i < κ ⇒ A
f

δ1
γ (i),ξ2

= A
f

δ1
γ (i),ξ1

= A
f

δ1
γ (i)

. But

i ∈ A ⇒ f δ1
γ (i) = f(i) = αi ∈ S ⇒ Aαi,ξ2 = A

f
δ1
γ (i),ξ2

= A
f

δ1
γ (i)

= A∗ so
i ∈ A ⇒ Aαi,ξ2 = A∗. Now Aξ2,δ2 ∈ D, hence there is i∗ ∈ A∗ ∩ Aξ1,δ2 , and for it
we get contradiction.)

Of course, the set of such i∗’s belongs to D.

(3): Obvious. �

Conclusion 2.2. Let µ be a compact cardinal. If κ < µ, D is an ultrafilter on κ,
and Bi is a Boolean algebra for i < κ, then:

(a) if D is a regular ultrafilter then Depth(
∏

i<κ Bi/D) ≤ µ+
∏

i<κ Depth(Bi)/D;
(b) this holds if κ = ℵ0.

Proof. If this fails, let λ = (µ +
∏

i<κ Depth(Bi)/D)+, so λ is a regular cardinal
> µ and (∀α < λ)[|ακ/D| < λ] (see below) and λ ≤ Depth(

∏
i<κ Bi/D), so by 2.1

we get a contradiction. �

Remark 2.3. (1) Actually we prove that if µ is a compact cardinal, κ < µ ≤ λ =
cf(λ) and c : [λ]2 → κ, then we can find an increasing sequence 〈αε : ε < λ〉 of
ordinals < λ and i, j < κ such that for every ε < ζ < λ for some γ satisfying αε <

γ < αζ we have c{αε, γ} = i, c{γ, αζ} = j (the result follows using c : [λ]2 → D).
(2) We use i∗ rather than some B ∈ D in order to help clarify what we need.
(3) Note that if D is a normal ultrafilter on κ > ℵ0 and 〈λi : i < κ〉 is increasing

continuous with limit λ, i < κ ⇒ ∏
j≤i λj < λi+1 then λ =

∏
i<κ λi/D but λκ/D >

λ. This is essentially the only reason for the undesirable extra assumption “D is
regular” in 2.2.

Claim 2.4. (1) In 2.1 instead of “µ ∈ (κ, λ] is a compact cardinal” it suffices to
demand �κ+,2κ,λ where:
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�σ,θ,λ if c : [λ]2 → θ then we can find a stationary S ⊆ λ and γ < θ such that
for every u ∈ [S]<σ the set Su = {β < λ : (∀α ∈ u)[c{α, β} = σ]} is
unbounded in λ.

(2) If µ is supercompact σ < θ = cf(θ) < µ < λ = cf(λ) and Q = adding µ

Cohen subsets of θ, then in V, �σ,µ,λ holds (even �σ,µ1,λ if µ<σ
1 < λ in V).

In 2.4 we cannot get such results for κ > µ, because for µ supercompact Laver
indestructible and regular λ > κ ≥ µ we can force {δ < λ : cf(δ) > µ} to have a
square preserving the supercompactness.

Claim 2.5. Assume λ = cf(λ) > κ+ and κ = cf(κ), and there is a square on
S = {δ < λ : cf(δ) ≥ κ} (see 2.6 below). Then:

(a) there is a sequence 〈Bi : i < κ〉 of Boolean algebras such that:
(α) Depth+(Bi) ≤ λ;
(β) for any uniform ultrafilter D on κ, Depth+(

∏
i<κ Bi/D) > λ;

(b) the proof of [Sh02, 5.1] can be carried over.

Where we have:

Definition 2.6. For λ = cf(λ) > ℵ0, S ⊆ λ = sup(S) we say that S has a square
when we can find S+ and 〈Cα : α ∈ S+〉 such that:

(a) S\S+ is not a stationary subset of λ;
(b) Cα is a closed subset of α;
(c) β ∈ Cα ⇒ β ∈ S ∩ Cβ = Cα ∩ β;
(d) we stipulate Cα = {∅} for α /∈ S+.

Proof of 2.5. As in [Sh02, 5.1], using C̄ = 〈Cα : α ∈ S+〉 from 2.6 instead,
〈acc(Cα) : α < λ+〉. The only change being that in the proof of [Sh02, Fact
5.3] in case 3, we have just cf(α) ≤ κ and we let 〈βζ : ζ < cf(α) be increasing
continuous with limit α. If cf(α) < κ, we can find ε(∗) < κ such that ζ1 < ζ2 <

κ ⇒ βζ1 ∈ Aβζ2 ,ε(∗) and let Aα,ε = ∅ if ε < ε(∗) and Aα,ε = ∪{Aβζ ,ε : ζ < cf(κ)} if
ε ∈ [ε(∗), κ). �
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