Algebra Universalis

The depth of ultraproducts of Boolean algebras

Saharon Shelah

Abstract

We show that if μ is a compact cardinal then the depth of ultraproducts of less than μ many Boolean algebras is at most μ plus the ultraproduct of the depths of those Boolean algebras.

1. Introduction

Monk has looked systematically at cardinal invariants of Boolean algebras. In particular, he has looked at the relations between

$$
\operatorname{inv}\left(\prod_{i<\kappa} \mathbf{B}_{i} / D\right) \text { and } \prod_{i<\kappa} \operatorname{inv}\left(\mathbf{B}_{i}\right) / D
$$

i.e., the invariant of the ultraproducts of a sequence of Boolean algebras vis the ultraproducts of the sequence of the invariants of those Boolean algebras for various cardinal invariants inv of Boolean algebras. That is: is it always true that $\operatorname{inv}\left(\prod_{i<\kappa} \mathbf{B}_{i} / D\right) \leq \prod_{i<\kappa}\left(\operatorname{inv}\left(\mathbf{B}_{i} / D\right)\right.$? Is it consistently always true? Is it always true that $\prod_{i<\kappa} \operatorname{inv}\left(\mathbf{B}_{i}\right) / D \leq \operatorname{inv}\left(\prod_{i<\kappa} \mathbf{B}_{i} / D\right)$? Is it consistenly always true? See more on this in Monk [Mo96]. Roslanowski Shelah [RoSh] deals with specific inv and with more on kinds of cardinal invariants and their relationship with ultraproducts. Monk [Mo90], [Mo96], in his list of open problems raises the question for the central cardinal invariants. Most of them have been solved by now; see Magidor and Shelah [MgSh], Peterson [Pe97], Shelah [Sh90], [Sh97], [Sh96a], [Sh00, §4], [Sh96b], [Sh01], [Sh03], Shelah and Spinas [ShSi].

This paper throws some light on problem 12 of [Mo96, p. 287] and will be continued in future work.

We thank the referee for many helpful comments.
Definition 1.1. For a Boolean algebra \mathbf{B} let
(a) $\operatorname{Depth}(\mathbf{B})=\sup \{\theta$: in \mathbf{B} there is an increasing sequence of length $\theta\}$
(b) $\operatorname{Depth}^{+}(\mathbf{B})=\sup \left\{\theta^{+}:\right.$in \mathbf{B} there is an increasing sequence of length $\left.\theta\right\}$.

[^0]Remark 1.2. So $\operatorname{Depth}^{+}(\mathbf{B})=\lambda^{+} \Rightarrow \operatorname{Depth}(\mathbf{B})=\lambda$ and if $\operatorname{Depth}^{+}(\mathbf{B})$ is a limit cardinal then $\operatorname{Depth}^{+}(\mathbf{B})=\operatorname{Depth}(\mathbf{B})$.

2. Above a compact cardinal

The following claim gives severe restrictions on any attempt to build a ZFC example for $\operatorname{Depth}\left(\prod_{\varepsilon<\kappa} \mathbf{B}_{\varepsilon}\right) / D>\prod_{\varepsilon<\kappa} \operatorname{Depth}\left(\mathbf{B}_{\varepsilon}\right) / D$. If \mathbf{V} is near \mathbf{L}, see [Sh02] for results complimentary to $\S 1$.

Claim 2.1.

(1) Assume
(a) $\kappa<\mu \leq \lambda$;
(b) μ is a compact cardinal;
(c) D is an ultrafilter on κ;
(d) $\lambda=\operatorname{cf}(\lambda)$ such that $(\forall \alpha<\lambda)\left(|\alpha|^{\kappa}<\lambda\right)$;
(e) $\mathbf{B}_{i}(i<\kappa)$ is a Boolean algebra with $\operatorname{Depth}^{+}\left(\mathbf{B}_{i}\right) \leq \lambda$;
(f) $\mathbf{B}=\prod_{i<\kappa} \mathbf{B}_{i} / D$.

Then $\operatorname{Depth}^{+}(\mathbf{B}) \leq \lambda$.
(2) Instead of $(\forall \alpha<\lambda)\left(|\alpha|^{\kappa}<\lambda\right)$, it suffices that $(\forall \alpha<\lambda)\left(\left|\alpha^{\kappa} / D\right|<\lambda=\operatorname{cf}(\lambda)\right)$.
(3) We can weaken clause (e) (for parts (1) and (2)) to
(g) $\left\{i<\kappa: \mathbf{B}_{i}\right.$ is a Boolean algebra with $\left.\operatorname{Depth}^{+}\left(\mathbf{B}_{i}\right) \leq \lambda\right\} \in D$.

Proof. (1): Toward a contradiction assume that $\left\langle a_{\alpha}: \alpha<\lambda\right\rangle$ is an increasing sequence in B. Let $a_{\alpha}=\left\langle a_{i}^{\alpha}: i<\kappa\right\rangle / D$, so for $\alpha<\beta$,

$$
A_{\alpha, \beta}=:\left\{i<\kappa: \mathbf{B}_{i} \models a_{i}^{\alpha}<a_{i}^{\beta}\right\} \in D
$$

Let E be a μ-complete uniform ultrafilter on λ.
For each $\alpha<\lambda$ let A_{α} be such that the set $\left\{\beta: \alpha<\beta<\lambda\right.$ and $\left.A_{\alpha, \beta}=A_{\alpha}\right\}$ is a member of E, so an unbounded subset of λ (which exists since $\lambda=\operatorname{cf}(\lambda) \geq \mu>2^{\kappa}$). We choose C as follows:

$$
\begin{aligned}
& C=:\{\delta<\lambda: \delta \text { is a limit ordinal and if } u \subseteq \delta \text { is bounded } \\
& \text { of cardinality } \left.\leq \kappa \text { then } \delta=\sup \left(S_{u} \cap \delta\right)\right\}
\end{aligned}
$$

where

$$
S_{u}=:\left\{\beta<\lambda: \beta>\sup (u) \text { and }(\forall \alpha \in u)\left(A_{\alpha, \beta}=A_{\alpha}\right)\right\}
$$

As $\lambda=\operatorname{cf}(\lambda)>2^{\kappa}=|D|$, for some $A_{*} \in D$ the set $S=:\{\alpha<\lambda: \operatorname{cf}(\alpha)>$ κ, and $\left.A_{\alpha}=A_{*}\right\}$ is a stationary subset of λ.

As we have assumed $\lambda=\operatorname{cf}(\lambda)$ and $(\forall \alpha<\lambda)\left(|\alpha|^{\kappa}<\lambda\right)$, clearly C is a club of λ. Let $\left\{\delta_{\varepsilon}: \varepsilon<\lambda\right\} \subseteq C$ such that δ_{ε} increases continuously with ε and $\delta_{\varepsilon+1} \in S$. For each $\varepsilon<\lambda$ the family $\mathfrak{A}_{\varepsilon}=\left\{S_{u} \cap \delta_{\varepsilon+1} \backslash \delta_{\varepsilon}: u \in\left[\delta_{\varepsilon+1}\right]^{\leq \kappa}\right\}$ is a downward κ^{+}-directed
family of non-empty subsets of $\left[\delta_{\varepsilon}, \delta_{\varepsilon+1}\right)$ hence there is a κ^{+}-complete filter E_{ε} on [$\delta_{\varepsilon}, \delta_{\varepsilon+1}$) extending $\mathfrak{A}_{\varepsilon}$.

For $\varepsilon<\lambda$ and $i<\kappa$ let $W_{\varepsilon, i}=:\left\{\beta: \delta_{\varepsilon} \leq \beta<\delta_{\varepsilon+1}\right.$ and $\left.i \in A_{\beta, \delta_{\varepsilon+1}}\right\}$ and let $B_{\varepsilon}=:\left\{i<\kappa: W_{\varepsilon, i} \in E_{\varepsilon}^{+}\right\}$. As E_{ε} is κ^{+}-complete, clearly

$$
W_{\varepsilon}=: \bigcap\left\{\left[\delta_{\varepsilon}, \delta_{\varepsilon+1}\right) \backslash W_{\varepsilon, i}: i \in \kappa \backslash B_{\varepsilon}\right\} \in E_{\varepsilon} \text {, }
$$

hence there is $\beta \in W_{\varepsilon}$. If $i \in A_{\beta, \delta_{\varepsilon+1}}$ then $\left\{\gamma: \delta_{\varepsilon} \leq \gamma<\delta_{\varepsilon+1}\right.$ and $\left.i \in A_{\gamma, \delta_{\varepsilon+1}}\right\} \in E_{\varepsilon}^{+}$, so $A_{\beta, \delta_{\varepsilon+1}}$ is a subset of B_{ε} and belongs to D hence $B_{\varepsilon} \in D$. So $B_{\varepsilon} \cap A_{*} \in D$ is non-empty.

So for each ε for some $i_{\delta_{\varepsilon+1}} \in A_{*}$ we have

$$
\left\{\beta: \delta_{\varepsilon} \leq \beta<\delta_{\varepsilon+1} \text { and } i_{\delta_{\varepsilon+1}} \in A_{\beta, \delta_{\varepsilon+1}}\right\} \in E_{\varepsilon}^{+}
$$

We can find $i_{*} \in A_{*}$ such that

$$
Y=\left\{\varepsilon<\lambda: \varepsilon \text { is an even ordinal and } i_{\delta_{\varepsilon+1}}=i_{*}\right\}
$$

has cardinality λ. Let $Z=\left\{\delta_{\varepsilon+1}: \varepsilon \in Y\right\}$, so $Z \in[\lambda]^{\lambda}$. Now
$(*)_{0} \varepsilon \in Y \Rightarrow A_{\delta_{\varepsilon+1}}=A_{*}$
(Because $\delta_{\varepsilon+1} \in S$)
$(*)_{1} \quad i_{*} \in A_{*} \in D$
(Trivial: note that if $\forall \alpha<\lambda,|\alpha|^{2^{\kappa}}<\lambda$ we can have E_{ε} is $\left(2^{\kappa}\right)^{+}$-complete filter so we have $B_{\delta_{\varepsilon+1}}$ instead of $i_{\delta_{\varepsilon}}$ so we can weaken " D ultrafilter" to: $D \subseteq \mathcal{P}(\kappa)$ is upward closed and the intersection of any two is non-empty.)
$(*)_{2}$ if $\alpha<\beta$ are from Z then $i_{*} \in A_{\alpha, \beta}$
(For let $\alpha=\delta_{\varepsilon+1}, \beta=\delta_{\zeta+1}$ so $\varepsilon<\zeta$; let

$$
\mathcal{U}_{1}:=\left\{\gamma: \delta_{\zeta}<\gamma<\delta_{\zeta+1}, A_{\alpha, \gamma}=A_{\alpha}\left(=A_{\delta_{\varepsilon+1}}\right)\right\}
$$

so

$$
\begin{gathered}
\mathcal{U}_{1}=S_{\left\{\delta_{\varepsilon+1}\right\}} \cap\left(\delta_{\zeta}, \delta_{\zeta+1}\right) \in \mathfrak{A}_{\zeta} \\
\mathcal{U}_{1} \subseteq E_{\zeta}
\end{gathered}
$$

and let

$$
\mathcal{U}_{2}:=\left\{\gamma: \delta_{\zeta} \leq \gamma<\delta_{\zeta+1}, i_{*} \in A_{\gamma, \delta_{\zeta+1}}\right\} \in E_{\zeta}^{+}
$$

as this is how $i_{\delta_{\zeta+1}}$ is defined.)
So for any $\alpha<\beta$ from Z, since $\mathcal{U}_{1} \in E_{\zeta}$ and $\mathcal{U}_{2} \in E_{\zeta}^{+}$, clearly there is $\gamma \in \mathcal{U}_{1} \cap \mathcal{U}_{2}$. Hence $\left(\alpha=\delta_{\varepsilon+1}<\delta_{\zeta} \leq \gamma<\delta_{\zeta+1}=\beta\right.$ and) for $i=i_{*}$ we have $\mathbf{B}_{i} \models a_{i}^{\delta_{\varepsilon+1}}<a_{i}^{\gamma}$ (because $\gamma \in \mathcal{U}_{1}$) and $\mathbf{B}_{i} \models a_{i}^{\gamma}<a_{i}^{\delta_{\zeta+1}}$ (because $\gamma \in \mathcal{U}_{2}$) so together $\mathbf{B}_{i} \models a_{i}^{\delta_{\varepsilon+1}}<$ $a_{i}^{\delta_{\zeta+1}}$. But $\alpha=\delta_{\varepsilon+1}, \beta=\delta_{\zeta+1}$, so we have gotten $\mathbf{B}_{i} \models a_{i}^{\alpha}<a_{i}^{\beta}$ and we are done.
(2): We change the choice of the club C. By the assumption, for each $\alpha<\lambda$ let $\left\langle f_{\gamma}^{\alpha} / D: \gamma<\gamma_{\alpha}\right\rangle$ be a list of the members of α^{κ} / D without repetitions, so $\gamma_{\alpha}<\lambda$. Let C be the set of all δ such that:
(i) $\delta<\lambda$ is a limit ordinal;
(ii) if $\alpha<\delta$ then $\gamma_{\alpha}<\delta$;
(iii) if $\alpha<\delta$ and $\gamma<\gamma_{\alpha}$ and $\bar{A}=\left\langle A_{i}: i<\kappa\right\rangle \in{ }^{\kappa} D$ and there is $\xi \in[\delta, \lambda)$ such that $i<\kappa \Rightarrow A_{f_{\gamma}^{\alpha}(i), \xi}=A_{i}$, then there is $\xi \in(\alpha, \delta)$ such that $i<\kappa \Rightarrow A_{f_{\gamma}^{\alpha}(i), \xi}=A_{i}$.

Clearly C is a club of λ. The only additional point is
$(*)$ if $\delta_{1}<\delta_{2}$ are from C and $A_{\delta_{2}}=A_{*}$, then there is $i_{*} \in A_{*}$ such that: for every $\alpha \in S \cap \delta_{1}$ there is $\beta \in\left[\delta_{1}, \delta_{2}\right)$ satisfying $A_{\alpha, \beta}=A_{*} \wedge i_{*} \in A_{\beta, \delta_{2}}$.
(Why does $(*)$ hold? If not, then for every $i \in A_{*}$ there is $\alpha_{i} \in S \cap \delta_{1}$ satisfying $\beta \in\left[\delta_{1}, \delta_{2}\right) \wedge A_{\alpha_{i}, \beta}=A_{*} \Rightarrow i \notin A_{\beta, \delta_{2}}$. Let $f \in{ }^{\kappa} \alpha$ be defined by $f(i)=\alpha_{i}$ if $i \in A_{*}, f(i)=0$ otherwise. So for some $\gamma<\gamma_{\delta_{1}}$ we have $f=f_{\gamma}^{\delta_{1}} \bmod D$, hence $A=:\left\{i \in A_{*}: f(i)=f_{\gamma}^{\delta_{1}}(i)\right\} \in D$. As $\kappa<\mu$ and D is μ-complete there is $\xi_{1} \in\left(\delta_{2}, \lambda\right)$ such that $i<\kappa \Rightarrow A_{f_{\gamma}^{\delta_{1}(i), \xi_{1}}}=A_{f_{\gamma}^{\delta_{1}(i)}}$. Hence by the choice of C there is $\xi_{2} \in\left(\delta_{1}, \delta_{2}\right)$ such that $i<\kappa \Rightarrow A_{f_{\gamma}^{\delta_{1}(i), \xi_{2}}}=A_{f_{\gamma}^{\delta_{1}(i), \xi_{1}}}=A_{f_{\gamma}^{\delta_{1}(i)}}$. But $i \in A \Rightarrow f_{\gamma}^{\delta_{1}}(i)=f(i)=\alpha_{i} \in S \Rightarrow A_{\alpha_{i}, \xi_{2}}=A_{f_{\gamma}^{\delta_{1}(i), \xi_{2}}}=A_{f_{\gamma}^{\delta_{1}(i)}}=A_{*}$ so $i \in A \Rightarrow A_{\alpha_{i}, \xi_{2}}=A_{*}$. Now $A_{\xi_{2}, \delta_{2}} \in D$, hence there is $i_{*} \in A_{*} \cap A_{\xi_{1}, \delta_{2}}$, and for it we get contradiction.)

Of course, the set of such i_{*} 's belongs to D.
(3): Obvious.

Conclusion 2.2. Let μ be a compact cardinal. If $\kappa<\mu, D$ is an ultrafilter on κ, and \mathbf{B}_{i} is a Boolean algebra for $i<\kappa$, then:
(a) if D is a regular ultrafilter then $\operatorname{Depth}\left(\prod_{i<\kappa} \mathbf{B}_{i} / D\right) \leq \mu+\prod_{i<\kappa} \operatorname{Depth}\left(\mathbf{B}_{i}\right) / D$;
(b) this holds if $\kappa=\aleph_{0}$.

Proof. If this fails, let $\lambda=\left(\mu+\prod_{i<\kappa} \operatorname{Depth}\left(\mathbf{B}_{i}\right) / D\right)^{+}$, so λ is a regular cardinal $>\mu$ and $(\forall \alpha<\lambda)\left[\left|\alpha^{\kappa} / D\right|<\lambda\right]$ (see below) and $\lambda \leq \operatorname{Depth}\left(\prod_{i<\kappa} \mathbf{B}_{i} / D\right)$, so by 2.1 we get a contradiction.

Remark 2.3. (1) Actually we prove that if μ is a compact cardinal, $\kappa<\mu \leq \lambda=$ $\operatorname{cf}(\lambda)$ and $\mathbf{c}:[\lambda]^{2} \rightarrow \kappa$, then we can find an increasing sequence $\left\langle\alpha_{\varepsilon}: \varepsilon<\lambda\right\rangle$ of ordinals $<\lambda$ and $i, j<\kappa$ such that for every $\varepsilon<\zeta<\lambda$ for some γ satisfying $\alpha_{\varepsilon}<$ $\gamma<\alpha_{\zeta}$ we have $\mathbf{c}\left\{\alpha_{\varepsilon}, \gamma\right\}=i, \mathbf{c}\left\{\gamma, \alpha_{\zeta}\right\}=j$ (the result follows using $\mathbf{c}:[\lambda]^{2} \rightarrow D$).
(2) We use i_{*} rather than some $B \in D$ in order to help clarify what we need.
(3) Note that if D is a normal ultrafilter on $\kappa>\aleph_{0}$ and $\left\langle\lambda_{i}: i<\kappa\right\rangle$ is increasing continuous with limit $\lambda, i<\kappa \Rightarrow \prod_{j \leq i} \lambda_{j}<\lambda_{i+1}$ then $\lambda=\prod_{i<\kappa} \lambda_{i} / D$ but $\lambda^{\kappa} / D>$ λ. This is essentially the only reason for the undesirable extra assumption " D is regular" in 2.2.

Claim 2.4. (1) In 2.1 instead of " $\mu \in(\kappa, \lambda]$ is a compact cardinal" it suffices to demand $\circledast_{\kappa^{+}, 2^{\kappa}, \lambda}$ where:
$\circledast_{\sigma, \theta, \lambda}$ if $\mathbf{c}:[\lambda]^{2} \rightarrow \theta$ then we can find a stationary $S \subseteq \lambda$ and $\gamma<\theta$ such that for every $u \in[S]^{<\sigma}$ the set $S_{u}=\{\beta<\lambda:(\forall \alpha \in u)[\mathbf{c}\{\alpha, \beta\}=\sigma]\}$ is unbounded in λ.
(2) If μ is supercompact $\sigma<\theta=\operatorname{cf}(\theta)<\mu<\lambda=\operatorname{cf}(\lambda)$ and $\mathbb{Q}=$ adding μ Cohen subsets of θ, then in $\mathbf{V}, \circledast_{\sigma, \mu, \lambda}$ holds (even $\circledast_{\sigma, \mu_{1}, \lambda}$ if $\mu_{1}^{<\sigma}<\lambda$ in \mathbf{V}).

In 2.4 we cannot get such results for $\kappa>\mu$, because for μ supercompact Laver indestructible and regular $\lambda>\kappa \geq \mu$ we can force $\{\delta<\lambda: \operatorname{cf}(\delta)>\mu\}$ to have a square preserving the supercompactness.

Claim 2.5. Assume $\lambda=\operatorname{cf}(\lambda)>\kappa^{+}$and $\kappa=\operatorname{cf}(\kappa)$, and there is a square on $S=\{\delta<\lambda: \operatorname{cf}(\delta) \geq \kappa\}$ (see 2.6 below). Then:
(a) there is a sequence $\left\langle\mathbf{B}_{i}: i<\kappa\right\rangle$ of Boolean algebras such that:
$(\alpha) \operatorname{Depth}^{+}\left(\mathbf{B}_{i}\right) \leq \lambda$;
(β) for any uniform ultrafilter D on κ, $\operatorname{Depth}^{+}\left(\prod_{i<\kappa} \mathbf{B}_{i} / D\right)>\lambda$;
(b) the proof of [Sh02, 5.1] can be carried over.

Where we have:
Definition 2.6. For $\lambda=\operatorname{cf}(\lambda)>\aleph_{0}, S \subseteq \lambda=\sup (S)$ we say that S has a square when we can find S^{+}and $\left\langle C_{\alpha}: \alpha \in S^{+}\right\rangle$such that:
(a) $S \backslash S^{+}$is not a stationary subset of λ;
(b) C_{α} is a closed subset of α;
(c) $\beta \in C_{\alpha} \Rightarrow \beta \in S \cap C_{\beta}=C_{\alpha} \cap \beta$;
(d) we stipulate $C_{\alpha}=\{\emptyset\}$ for $\alpha \notin S^{+}$.

Proof of 2.5. As in [Sh02, 5.1], using $\bar{C}=\left\langle C_{\alpha}: \alpha \in S^{+}\right\rangle$from 2.6 instead, $\left\langle\operatorname{acc}\left(C_{\alpha}\right): \alpha<\lambda^{+}\right\rangle$. The only change being that in the proof of [Sh02, Fact 5.3] in case 3, we have just $\operatorname{cf}(\alpha) \leq \kappa$ and we let $\left\langle\beta_{\zeta}: \zeta<\operatorname{cf}(\alpha)\right.$ be increasing continuous with limit α. If $\operatorname{cf}(\alpha)<\kappa$, we can find $\varepsilon(*)<\kappa$ such that $\zeta_{1}<\zeta_{2}<$ $\kappa \Rightarrow \beta_{\zeta_{1}} \in A_{\beta_{\zeta_{2}}, \varepsilon(*)}$ and let $A_{\alpha, \varepsilon}=\emptyset$ if $\varepsilon<\varepsilon(*)$ and $A_{\alpha, \varepsilon}=\cup\left\{A_{\beta_{\zeta}, \varepsilon}: \zeta<\operatorname{cf}(\kappa)\right\}$ if $\varepsilon \in[\varepsilon(*), \kappa)$.

References

[MgSh] Menachem Magidor and Saharon Shelah, Length of Boolean algebras and ultraproducts, Mathematica Japonica, 48(1998), 301-307. math.LO/9805145.
[Mo90] J. Donald Monk, Cardinal Invariants of Boolean algebras, Lectures in Mathematics, ETH Zurich, Birkhauser Verlag, Basel Boston Berlin, 1990.
[Mo96] J. Donald Monk, Cardinal Invariants of Boolean algebras, Progress in Mathematics 142, Birkhäuser Verlag, Basel-Boston-Berlin, 1996.
[Pe97] Douglas Peterson, Cardinal functions on ultraproducts of Boolean algebras, Journal of Symbolic Logic, 62 (1997), 43-59.
[RoSh] Andrzej Rosłanowski and Saharon Shelah, Cardinal invariants of ultrapoducts of Boolean algebras, Fundamenta Mathematicae, 155 (1998), 101-151.
[Sh90] Saharon Shelah, Products of regular cardinals and cardinal invariants of products of Boolean algebras, Israel Journal of Mathematics, 70 (1990), 129-187.
[Sh96a] Saharon Shelah, On Monk's questions, Fundamenta Mathematicae, 151 (1996), 1-19.
[Sh96b] Saharon Shelah, Special Subsets of ${ }^{\mathrm{cf}}(\mu) \mu$, Boolean algebras and Maharam measure algebras, Topology and its Applications, 99:135-235, 1999. 8th Prague Topological Symposium on General Topology and its Relations to Modern Analysis and Algebra, Part II (1996).
[Sh97] Saharon Shelah, σ-entangled linear orders and narrowness of products of Boolean algebras, Fundamenta Mathematicae, 153 (1997), 199-275. math.LO/9609216.
[Sh00] Saharon Shelah, Applications of PCF theory, Journal of Symbolic Logic, 65 (2000), 1624-1674.
[Sh01] Saharon Shelah, Constructing Boolean algebras for cardinal invariants, Algebra Universalis, 45 (2001), 353-373.
[Sh02] Saharon Shelah, More constructions for Boolean algebras, Archive for Mathematical Logic, 41 (2002), 401-441.
[Sh03] Saharon Shelah, On ultraproducts of Boolean algebras and irr, Archive for Mathematical Logic, 42 (2003), 569-581.
[ShSi] Saharon Shelah and Otmar Spinas, On incomparability and related cardinal functions on ultraproducts of Boolean algebras, Mathematica Japonica, 52 (2000), 345-358.

Saharon Shelah
The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel and
Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

[^0]: Presented by R. W. Quackenbush.
 Received May 18, 2004; accepted in final form December 9, 2004.
 2000 Mathematics Subject Classification: 03E75; 03G05, 06E99.
 Key words and phrases: Boolean algebras, set theory, cardinal invariants, ultraproducts.
 I would like to thank Alice Leonhardt for the beautiful typing. This research was supported by the United States-Israel Binational Science Foundation. Publication 853.

