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[We deal with pseudo true cofinality of [[ [[ i, also with the degener-
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[We get that several measures of "1/ D are essentially equal.|

§(3B) Depth of reduced powers of ordinals, pg.31

[Using the independence property for a sequence of filters we can bound
the relevant depth. This generalizes [Sh:460] or really [Sh:513, §3].]

§(3C) Bounds on the Depth, pg.37

[We start by basic properties dealing with the No-Hole Claim (1.13(1)) and
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(in Theorem 3.24, 3.26).]
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§ 0. INTRODUCTION

In the first section we deal with generalizing the pcf theory in the direction
started in [Sh:938, §5] trying to understand the pseudo true cofinality of small
products of regular cardinals. The difference with earlier works is that here we
assume ACy, for any set % of power < |2 (L (Y))] or, actually working harder, just
< |2(Y)| when analyzing [] o, whereas in [Sh:497] we assumed ACg.p1a,:tev)

tey
and in [Sh:835] we have (in addition to AC g (5 (y))) assumptions like “[sup{a; : t €
Y }Y is well ordered”. In [Sh:938, §1-§4] we assume only AC.,, + DC and consider
N;-complete filters on p but in the characteristic case p is a limit of measurable
cardinals.

Note that generally in this work, though we try occasionally not to use DC, it
will not be a real loss to assume it all the time. More specifically, we prove the
existence of a minimal Nj-complete filter D on Y such that A = ps-tef(lla, <p)
assuming AC g (y) and (of course) DC and oy of large enough cofinality. We then

prove the existence of one generator, that is, of X C Y such that Jg;’comp @] =
JENCOMP (5] + X, see 1.6 and even (in 1.8) the parallel of the existence of a <p,-lub

for an <p-increasing sequence (%, : a < \), generalize the no-hole claim in 1.13,
and give a bound on pp for non-fix points (in 1.11).

In §2 we further investigate true cofinality. In Claim 2.2, assuming AC), and
D an Rj-complete filter on Y, we start from ps-tcf(Ila, <p), dividing by eq(@) =
{(s,t) : s = a;}. We also prove the composition Theorem 2.6: it tells us when
ps-tef([] ps-tef(I] Ai g, <p,). <g) is equal to ps-tef( [T i j. <b)-

i Fi i,7)

We then prove the pcf closure conclusion: giving a( sufficient condition for the op-

eration ps-pcfy,-comp to be idempotent. Lastly, we revisit the generating sequence.

In §(3A) we measure [] g(¢t) modulo a filter D on Y for g € ¥ (Ord\{0}) in
tey
three ways and show they are almost equal in 3.2. The price is that we replace

(true) cofinality by pseudo (true) cofinality, which is inevitable. We try to sort out
the “almost equal” in 3.5 - 3.7.

In §(3B) we prove a relative of [Sh:513, §3]; again dealing with depth (instead of
rank as in [Sh:938]) adding some information even under ZFC. Assuming that the
sequence (D,, : n < w) of filters has the independence property (IND), see Definition
3.12, with D,, a filter on Y, we can bound the depth of ()¢, <p ) by ¢, for every
¢ for many n’s, see 3.13. Of course, we can generalize this to (D; : s € S). This
is incomparable with the results of [Sh:938, §4]. See a continuation of [Sh:835] in
[Sh:1005].

Note that the assumptions like IND(D) are complementary to ones used in
[Sh:835] to get considerable information. Our original hope was to arrive to a di-
chotomy. The first possibility will say that one of the versions of an axiom suggested
in [Sh:835] holds, which means “for some suitable algebra”, there is no independent
w-sequence; in this case [Sh:835] tells us much. The second possibility will be a
case of IND, and then we try to show that there is a rank system in the sense
of [Sh:938]. But presently for this we need too much choice. The dichotomy we
succeed to prove is with small o-Depth in one side, the results of [Sh:835] on the
other side. It would be better to have ps-o-Depth in the first side.

Question 0.1. [DC + ACg(y)]

{intro}

{r15}
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Assume
(a) @€Y Ord
(b) cf(a) > hrtg(Z2(Y) for every t € YV
() At € pcfy,—comp(@) for t € Z, in fact, \y = ps-tcf(lla, <p,), D; is an
Ni-complete filter on Y
(d) X = ps-tefy, —comp({(Ae 1 t € Z)
(e) (a possible help) X; € Dy, (X : t € Y) are pairwise disjoint.

(A)  Now does A € ps-pcfy, comp(@)? (See 2.6.)
(B) Can we say something on D) from [Sh:938, 5.9] improved in 1.37

Question 0.2. How well can we generalize the RGCH, see [Sh:460] and [Sh:829];
the above may be relevant; see [Sh:938] and here in §(3C).

Recall

Notation 0.3. 1) For any set X let hrtg(X) = min{« : o an ordinal such that there
is no function from X onto a}.
2) A <qu B means that either A = () or there is a function from A onto B.

Central in this work is

Definition 0.4. For a quasi order P we say P has pseudo-true-cofinality A or “\
is the pseudo true cofinality of P” when A is a regular cardinal and A is a pseudo
true cofinality of P which means that there is a sequence .% such that:

(a) F =(Fo:a<)

(b) F,CP

(¢) if a1 < ag,p1 € Fy, and pa € F,, then p1 <p po

(d) if g € F then for some o < A and p € %, we have ¢ <p p1
(e) A =sup{a < \:.Z, #0}.

We may consider replacing AC 4 by more refined version, AC 4 p defined below (e.g.
in 1.1, 2.6) but we have not dealt with it systematically.

Definition 0.5. 1) AC4 p means: if (X, : a € A) is a sequence of non-empty
sets then there is a sequence (Y, : a € A) such that Y, C X, is not empty and
Yo Squ B.

2) AC4a,<x,AC4 <p are defined similarly but |Y,| < &, |Y,| < |B| respectively in
the end.

Observation 0.6. 1) We have AC4 iff ACy ;.
2) ACy4 p fails if B = 0.
3) If AC4 p and |A;| <|A| and B <qy By then ACy, 5.
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§ 1. ON PSEUDO TRUE COFINALITY

We continue [Sh:938, §5].
Below we improve [Sh:938, 5.19] by omitting DC from the assumptions but first
we observe

Claim 1.1. Assume ACy.

1) We have 0 > hrtg(Z) when & = (ay :t € Y) and 0 € ps-pcf(Ila) andt € Y =
cf(ay) > hrtg(Z2).

2) We have cf(rkp(@)) > hrtg(Z) when a ={(az :t €Y) andt € Y = cf(ay) >
hrtg(Z).

Remark 1.2. We can weaken the assumption cf(ay) > hrtg(Z) by using the ideal
of small cofinality, cf — idg(@), see [Sh:1005, 1.1=Lc2]. This can be done systemat-
ically in this work.

Proof. 1) If we have AC, for every a < hrtg(Z) then we can use [Sh:938, 5.7(4)]
but we do not assume this. In general let D be a filter on Y such that 6 = ps-
tef(Ila, <p), exists as we are assuming 6 € ps-pcf(Ila). Let .# = (%, : a < )
witness 6 = ps-tcf(Ila, <p), i.e. asin [Sh:938, 5.6(2)] or see 0.4 here; note t € Y =
at > 0, as we are assuming .%,, C Ila for some « < 0; also if I1& is non-empty then
we can assume %, # ) for every o < 6.

Toward contradiction assume 6 < hrtg(Z). As 6 < hrtg(Z), there is a function h
from Z onto 6, so the sequence (F,() : 2z € Z) is well defined. As we are assuming
ACgz, there is a sequence (f. : z € Z) such that f. € %, for z € Z. Now define
g € Y(Ord) by g(s) = U{f.(s) : 2 € Z}; clearly g exists and g < &. But for each
s €Y, the set {f.(s):z € Z} is a subset of a; of cardinality < 6 < hrtg(Z) hence
< cf(as) hence g(s) < as. Together g € TIa is a < p-upper bound of U{.%, : ¢ < 0},
contradiction to the choice of .Z.

2) Otherwise let 6 = cf(rkp(@)) so 0 < hrtg(Z),{a. : € < 0) be increasing with
limit rkp(@) and again let g be a function from Z onto . As ACyz holds, we
can find (f. : z € Z) such that for every z € Z we have rkp(f.) > ay(;) and
f- <p & and without loss of generalityf, € Ila. Let f € Ila be defined by
f(t) = sup{fn)(t) : z € Z} so tkp(f) > sup{a. : z € Z} = rkp(a) > rkp(f),
contradiction. Oy 1

Theorem 1.3. The Canonical Filter Theorem Assume AC g (y.

Assume @ = (o : t € Y) € YOrd and t € Y = cf(ay) > hrtg(2(Y)) and
0 € ps-pefy, —comp(@) hence is a regular cardinal. Then there is D = Dg‘, an Ni-
complete filter on Y such that 0 = ps-tcf(lla/D) and D C D' for any other such
D' € Filg, (D).

Remark 1.4. 1) By [Sh:938, 5.9] there are some such 0 if DC holds.

2) We work more to use just ACg(y) and not more.

3) If k > Wy we can replace “Nj-complete” by “k-complete”.

4) If we waive “0 regular” so just 0, an ordinal, is a pseudo true cofinality of
(Mla,<p) for D € D C Filil(Y), exemplified by .# 7D # ) the proof gives some
0',cf(9") = cf(9) and .F witnessing (Ila, <p,) has pseudo true cofinality ' where
D, =n{D : D € D} for D as below.

Proof. Note that by 1.1

{onpseudo}

{r15}

{r17£}

{r16}

{c17d}
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B 0 > hrtg(L2(Y)).
Let

Hs () D={D: D is an Ry-complete filter on Y such that (IIa/D) has
pseudo true cofinality 0},

(b) D.=n{D:D eDj}.
Now obviously
B (a) D is non-empty
(b) D, is an Ry-complete filter on Y.
For ACY letDs={DeD:(Y\A) ¢ D} and let Z, = {ACY : Dy # 0},
equivalently Z, = {A CY : A # () mod D for some D € D}. As ACg(y) holds
also AC», holds hence we can find (D4 : A € £,) such that Dy € Dy for A € 2,.
Let Do ={Dj : A € P}, clearly
Bs () D.=n{D:DeD,}
(b) D. C D is non-empty.
As AC», holds clearly
(¥)1 we can choose (F#4 : A € 2,) such that F* exemplifies D4 € D as in
[Sh:938, 5.17,(1),(2)], so in particular .#4 is Rp-continuous and without loss
of generality .F2 # 0, 72 C lla for every a < 0.
For each 8 < 0 let
(¥)2 Fy={f=(fa:Ae P.): [ satisfies A€ P, = fa € ﬁé“}

(x)s for f € Fj let sup{fa : A € 2.} be the function f € ¥Ord defined by
fly) =sup{fay): Ac 2.}
(¥)a F = {sup{fa:Ae P.}: [=(fa: Aec P.) belongs to Fj}.

Now
(¥)s (a) (Fj: B <0) is well defined, i.e. exist
(b) 5 Clla.
[Why? Clause (a) holds by the definitions, clause (b) holds as t € Y = cf(ay) >
hrtg(2(Y)).
(¥)¢ F3 # 0 for < 0.
[Why? As for 8 < A, the sequence (ﬁé“ c A e 2,)is well defined (as (F4: A €

P.)is) and A € P, = F5 # 10, so we can use AC g (y) to deduce .75 # (]
Define

(¥)7 (a) for f €Tla and A € 2, let
Ba(f) =min{8 < 9: f < g mod Dy for every g € 3554}
(b) for f e la let B(f) = sup{Ba(f): A€ P.}.

Now

(¥)s (a) for Ae &, and f € Ila, the ordinal B4(f) < 9 is well defined



nodi fi ed: 2014- 05- 19

revi sion: 2014-05-02

(955)

PSEUDO PCF SHI55 7

(b) for f € Ila the sequence (Ba(f): A € P,) is well defined.

[Why? Clause (a) holds because (Z:* : v < 8) is cofinal in (IL, &, <p, ), clause (b)
holds by (%)7(a).]

(¥)g (a) for f € Il& the ordinal S(f) is well defined and < 0
(b) if f < g are from Ha then B(f) < B(g).

[Why? For clause (a), first, 5(f) is well defined and < 9 by (x)s and the definition
of B(f) in (*)7(b). Second, recalling that J is regular > hrtg(Z(Y)) > hrtg(2.)
clearly B(f) < 0. Clause (b) is obvious.]

Now

(¥)10 (a) if A€ P,,v<dand fec.Z then Ba(f) >~
(b) ify<dand fe.Z] then B(f) > .

[Why? Clause (a) holds because § <y A g € yg‘ = g< fmodDyand f=v=
feFANf £ fmod Dy Clause (b) holds because for some (fp : B € 2,) €
I{.77 : B € 2.} we have f = sup{fp : B € P} hence B € . = fp < f
hence in particular f4 < f; now recalling S(fa) > v by clause (a) it follows that
B(f) > ]

(#)11 (a) for £ <O let v¢ =min{B(f): f € ga‘gl}
(b) for & <Olet F2={fe.FL:B(f)=re}
(#)12 (a) <(7£’3552) : € < 0) is well defined, i.e. exists
(b) if £ < O then & < ye < 0.

[Why? 7 is the minimum of a set of ordinals which is non-empty by (*)g and C 9,
by (*)9(a), and all members are > v by (*)10(b).]

(%)13 for & < O we have yg C Ila and 962 £ ().
[Why? By (%)11 as #! # 0 and F#} C Ila.|

(*)14 we try to define 8. < @ by induction on the ordinal ¢ < 9
e=0: =0
e limit: 8. = U{B: : ( < ¢}
e=(¢+1L: /BE:’YBQ
(#)15 (a) if e < O then f. < O is well defined > ¢
(b) if { < e is well defined then 5¢ < fS..

[Why? Clause (a) holds as 9 is a regular cardinal so the case € limit is O.K., the
case € = ¢ + 1 holds by (x)12(b). As for clause (b) we prove this by induction on €;
for ¢ = 0 this is empty, for ¢ a limit ordinal use the induction hypothesis and the
choice of . in (x)14 and for € = £ + 1, clearly by (*)12(b) and the choice of . in
(%)14 we have B¢ < B, and use the induction hypothesis.]

()16 if f € @, then for some g € U{ﬁga 1e < 0} we have f < g mod D,.
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[Why? Recall that S4(f) for A € &, and B(f) are well defined ordinals < 9 and
Ae P, = Ba(f) < B(f). Now let ¢ < 0 be such that 5(f) < B¢, exists as we can
prove by induction on ¢ (using ()15(b)) that 8. > e. As .Z4 is <p ,-increasing for
Ae P, clearly Ae P, Ng € ﬂé“g = f < g mod D4. So by the definition of ﬂég
we have A € e@*/\geﬁég = f<gmod Dy hencegee?é< = f <gmod D,. As
ﬁgg C ﬁég we are done.]

()17 if§<§<8andf€3‘\<2andg€3‘\5thenf<gmodD*.

[Why? As in the proof of (x)16 but now S(f) = ¢.]
Together by (%)13+ (%)16 + (¥)17 the sequence (F5 : e < 9) is as required. [y 3

A central definition here is

Definition 1.5. 1) For @ € YOrd let JEy“P[a] = {X C Y ps-pefy, —comp(@ |
X)C A} Sofor X CY, X ¢ ng)\_comp[d] iff there is an N;-complete filter D on
Y such that X # ) mod D and ps-tcf(Ila, <p) is well defined > X iff there is an
N;-complete filter D on Y such that ps-tcf(Ila, <p) is well defined > X and X € D.
2) Jﬁi\fcomp is Jﬁ;comp and we can use a set a of ordinals instead of a.

Claim 1.6. The Generator Existence Claim

Let & € Y (Ord\{0}).

1) Jzitlfcomp(&) is an Ni-complete ideal on'Y for any cardinal \ except that it may
be Z(Y).

2) [ACm(y)] Assumet € Y = cf(ay) > hrtg(Z(Y)). If A € ps-pcfy, —comp (@) then
for some X CY we have

(A) JNl—Comp[d] — JNl—Comp[d] +X

<At <A
(B) A = ps-tef(Ila, <Jii7comp[&]) where Jii\*comp[@] — Jii\fcomp[a] + (Y\X)

(C) A & ps-pefin, —comp(a | (YAX)).

Remark 1.7. 1) Recall that if AC vy then without loss of generality ACy, holds.
Why? Otherwise by AC vy we have Y is well ordered and ACy hence Y| =n
for some n < w and in this case our claims are obvious, e.g. 1.6(2), 1.8.

2) Note that JX,7°"P[a] is a well defined ideal in 1.6(2)(B) though X is not
uniquely determined.

3) Note that if = ps — tcf(Ila, <p) and X € DT then 6 = ps — tcf(Il(@ X), <(p4x)n2(x)

).

Proof. 1) Clearly J=)'" (@) is a C-downward closed subset of 2(Y). If the
desired conclusion fails, then we can find a sequence (A4, : n < w) of members of

JELT°°™P(a] such that their union A := U{A, : n < w} does not belong to it. As

A¢ Jiycomp [@], by the definition there is an Ny-complete filter D on Y such that
A # ) mod D and ps-tef(Ilar, <p) is well defined, so let it be p = cf() > X and let
(Fo o < X) exemplify it.
As D is Ry-complete and A = U{A4,, : n < w} # ) mod D necessarily for some
n, A, # 0 mod D but then D witness A, ¢ J23 “°"P[a], contradiction.
2) Recall A is a regular cardinal by [Sh:938, 5.8(0)] and A > hrtg(Z(Y)) by 1.1.
Let D = DY be as in [Sh:938, 5.19] when DC holds, and as in 1.3 in general,

i.e. IIa/ D has pseudo true cofinality A and D contains any other such ¥;-complete
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filter on Y. Now if X € D then A = ps-tefy, —comp(@ [ X, <(p4x)n2(x)) hence

X ¢ Jil)\_comp[d], SO

(+)1 X € JE\°™P[a] = X = 0 mod D.
A major point is

(*)2 some X € D belongs to Jii\;comp[f]_

Why (*)27 The proof will take awhile; assume that not, we have AC gy hence
ACp, so we can find ((#X,Dx,\x): X € D) such that:

(a) Ax is a regular cardinal > AT, ie. > A
(b) Dx is an Nj-complete filter on Y such that X € Dx and
Ax = ps-tef(lla, <py )
() FX =(FX :a < \x) exemplifies that Ay = ps-tcf (Ila, <p,)
(d) moreover .ZX is as in [Sh:938, 5.17(2)], that is, it is Np-continuous and
a <Ay = an # 0.

Let

() Dy ={ACY: for some X; € D wehave X e DAX C X; = A€ Dx}.
Clearly

(f) Dj is an Ry-complete filter on Y extending D.

[Why? First, clearly D C Z(Y) and 0 ¢ Dy as X € D = () ¢ Dx. Second, if
A€ Dthen X e DAX C A= A€ Dx by clause (b) hence choosing X; = A the
demand for “A € D" holds so indeed D C Dj. Third, assume A = (A,, : n < w)
and “A,, € D}” for n < w, then for each A,, there is a witness X,, € D, so by ACxy,,
recalling 1.7, there is an w-sequence (X, : n < w) with X,, witnessing A,, € D7.
Then X = N{X,, : n < w} belongs to D and witness that A := N{A,, : n <w} € Dj
because every Dx is Nj-complete. Fourth, if A C B C Y and A € D7, then some
X, witness A € Di,ie. X € DANX C Xy = A € Dx; but then X; witness also
Be Di)

(g9) assume (Z, : a < \) is <p-increasing in Ila, i.e. a« < A = %, C Ila and
a1 < ag A fi € Foy N fo € Fu, = f1 <p fo and F, # 0 for every or
at least unboundedly many a < A then |J %, has a common <p:-upper

a<A
bound.

[Why? For each X € D recall (Ila, <p, ) has true cofinality Ax which is regular
> X hence by [Sh:938, 5.7(1A)] is pseudo AT-directed hence there is a common <p -
upper bounded hx of U{.Z, : a < A\}. As we have AC 5y we can find a sequence
(hx : X € D) with each hx as above. Define h € Ila by h(t) = sup{hx(t) : X €
D}, it belongs to II& as we are assuming t € Y = cf(ay) > hrtg(2(Y)) > hrtg(D).
So h € Tl is a <p,-upper bound of U{%#, : a« < A} for every X € D, hence by
the choice of D7 it is a <p:-upper bound of U{.Z, : a < A} /]

But by the choice of D in the beginning of the proof we have A = ps-tef(Ila, <p)
so there is a sequence (%, : a < \) witnessing it. By clause (f) we have D C D

so clearly (%, : a < A) is also <p;-increasing hence we can apply clause (g) to
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the sequence (ﬁa ca < A) and got a <p;-upper bound f € Ila, contradiction to

the choice of (%, : a < A) recalling 0.4(d) because D C D}, contradiction. So ()2
really holds.
Choose X as in ()2, now

()3 D= dual(JX3 "P[a] + (Y\X)).

[Why? The inclusion D holds by (x); and (), i.e. the choice of X as a member of
D. Now for every Z C X which does not belong to Jil)fcomp[&], by the definition
of Jﬁi\fcomp[&] there is an Ri-complete filter Dz on Y to which Z belongs such that
0 := ps-cf(lla, <p) is well defined and > A\. But § > AT is impossible as we know
that Z C X € Jil)\'fomp [@], so necessarily # = A, hence by the choice of D by using
1.3 we have D C Dy, hence Z # () mod D. Together we are done.]

(¥)a A = ps-tef(Ila, <Jil;wmp), see clause (B) of the conclusion of 1.6(2).

[Why? By ()3, the choice of J5\*™P[a] and as A = ps-tcf(Ila, <p) by the choice
of D]

(*)5 A ¢ ps-pefy, —comp(@ [ (Y\X)).

[Why? Otherwise there is an Nj-complete filter D’ on Y such that Y\X € D’ and
A = ps-tef(Ila, <pr). But this contradicts the choice of D by using 1.3.]

So X is as required in the desired conclusion of 1.6(2): clause (B) by (x)4, clause
(C) by ()5 and clause (A) follows. Note that the notation J~\”“*™P[a] is justified,
as if X’ satisfies the requirements on X then X’ = X mod Jil)fcomp[&]. Oi6

Conclusion 1.8. [AC g(y)] Assume & € ¥ Ord and each oy a limit ordinal of cofi-
nality > hrtg(Z(Y)) and ps — pcfy, _comp(@) is not empty.
DIfteY = cf(ay) > hrtg(Fil?lQl (Y)) then there is a function A such that:

o; the domain of h is Z(Y)

o> Rang(h) includes ps—pefy, _comp(@) and is included in ps—pefy, _ comp (@)U

{0} U {p: = sup(uN ps-petn, —comp(@))}, also Rang(h) includes {cf(oy) :
t € Y}, but see o5

s ACBCY = h(A) <h(B)and h(A) =0 A=10

o4 h(A) = min{): A € JZ\,""P[a]}

o5 if h(A) = A and cf(\) > g then A is regular and A € ps-tefy, —comp (@), €.
for some Ni-complete filter D on Y we have A € D and ps-tef(Ila, <p) = A

o; the set ps-pehy, —comp(@) has cardinality < hrtg(2(Y))

o7 if h(A) = X and cf(\) = Ry then we can find a sequence (4,, : n < w) such
that A = U{A, :n <w} and h(4,) < Aforn <w

o5 JUL P[] = {A C Y : h(A) < A} when cf(\) > R
oy if cf(otp(ps-pety, —comp(@))) > No then ps-pefy, —comp(@) has a last member.
2) Without the extra assumption of part (1), still there is h such that:

e, h is a function with domain Z(Y")
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o, the range of h is ps-pefy, —comp(@)U{0FU{p = 1 = sup(uN ps-pety, —comp(@))
and cf(p) = Vg or just cf(n) < hrtg(ps-pefy, —comp(@)) and Jﬁ}fcomp[&] #
U{I3 ™Al x < i}

;s ACBCY = h(A) <h(B)and h(A) =0 A=10

o4 h(A) = min{\: A € JZ""Pla]}

o; if h(A) = Aand cf(\) > hrtg( ps-pcfy, —comp[@]) then A € ps-pefy, —comp (@),

i.e. there is an Nj-complete filter D on Y such that (Il&, <p) has true
cofinality A

o as above
e, as above

eg as above.

3) The set ¢ := ps — pefy, _comp(a) satisfies ¢ <q, Z(Y). If also AC,, holds for a <
hrtg(Z(Y)) or just AC,g_per then we can find a sequence (X : A € ¢) of

subsets of Y such that for every cardinality u, J SL_Comp [@] is the Nj-complete ideal
on Y generated by {X : A < p and A € ps-pchy, —comp(@)}-

%) —comp (@)

Proof. 1) Let © = ps-pcfn, —comp(@). We define the function A from Z(Y) into
©1 which is defined as the closure of © U {0}, i.e. © U{u : u = sup(u N ©O)}, by
h(X) = Min{\ € ©F : X € JE\ “"P[a]}. Tt is well defined as ps-pcfy, —comp(@)
is a set, that is as p. = hrtg(Tla) is well defined and so J¥~¢™P[a] = 2(Y) (see
[Sh:938, 5.8(2)]), non-empty by an assumption and J5} “Pla] = Z(Y) when
A > sup(ps—pchl_Comp(&)). This function h, its range is included in ©F, but
otp(OT) < otp(O) + 1; also clearly o1 of the conclusion holds. Also if A € © and
X is as in 1.6(2) then hA(X) = X; so h is a function from Z2(Y) into ©F and its
range include © hence || < hrtg(2(Y)) so e first clause holds; the second clause
of e5 holds as trivially h(0)) = 0 and the definition of ©T and the third clause by
teY = h({t}) = cf(ay) holds. Now first by 1.1 we have § € © = 6 > hrtg(Z(Y)),
hence 6 € © = 0 > sup(O N ) so the range of h is as required in 5.

Second, if A € ©F and cf(\) = Xy then clearly A\ € ©T\O and we can find an
increasing sequence (A, : n < w) of members of ps-pcfy,-comp(®) with limit A. For
each n there is X,, € Jﬁl)\;comp[&]\efﬁi\fomp[&] by 1.6(2), but ACy, holds, see 1.7
hence such a sequence (X, : n < w) exists. Easily A := U{X,, :n < w} € 2(Y)
satisfies h(A) = A hence A € Rang(h). Third, if A\ = sup( ps-pcfy, —comp(@)) and
cf(A) > RNg, then |J Jcula] # Z(Y) because Y does not belong to the union while

<A

Jort (@)= 2(Y) so h(Y) =\

Fourth, assume A = h(A), A\ ¢ ps-pcfy, —comp(@) and cf(A) > Ry, we can find
(A\; © i < cf(N)), an increasing sequence with limit A, but by the definition of h
necessarily AN ps-pefy, —comp(@) is an unbounded subset of A so without loss of
generality all are members of ps-pcfy, —comp(Il®r). Now (J; := ii\zcomp[a] D0 <
cf(\)) is a C-increasing sequence of Ni-complete ideals on Y, no choice is needed,
and by our present assumption 8y < cf(A) hence the union J = U{.J; : i < cf(\)}
is an Nj-complete ideal on Y and obviously A ¢ J. So also D1 = dual(J)+ A is an
N;y-complete filter hence by [Sh:938, 5.9] (recalling the extra assumption t € Y =
cf(ay) > hrtg(Fily, (Y)))
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for some Nj-complete filter Dy extending D; we have p = ps-tef(Ila, <p,) is
well defined, so by 1.6(2) we have some Dy N Jﬁi;comp[@] #Obut ) =DynJ; =
DsnN le)\i_comp [@] hence p > \;. Hence pu > \; for every i < cf()\) but X is singular
so u > X and g € ps-pefyy —comp(@). Hence x := min( ps-pefy, —comp(@)\N) is well
defined and J Sk_comp [@] = J trivially y > A, but as y is regular while X is singular
clearly y > \. But as h(A) = A < x we get that A € J21 “°™[a], contradiction to
the definition of h.

So we have proved e, the fifth clause of the conclusion. The other clauses follow
from the properties of h.
2) Similar proof.
3) We define a function g with domain & (Y) by g(A) = min{\ : A € J_,+[a]}.
This function is well defined as if A = hrtg(Ila) then A CY = A € J<,[a]; and
the cardinals are well ordered. Also ¢ C Rang(h) because if A € ¢, then by 1.6(2)
we are done recalling that we are assuming AC 5 (y).

So clearly ¢ <qu Z(Y) so as ¢ is a set of cardinals, clearly otp(c) < hrtg(Z(Y))
hence |¢] < hrtg(2(Y)).

For the second sentence in 1.8(3) by the last sentence it suffices to assume AC,.
For A € clet £, = {X CY : X as in 1.6(2)}, so &, # 0. By AC, there is a

sequence (X : A € ¢) € [[ #x. For X € ¢, let J5 be the Ry-complete ideal on ¥
AEc
generated by {X, : © € cN A}, so by the definitions of &2 we have p < AAp € ¢ =

X, € J<ula) C Janlal, also Joa[@] is Ny-complete hence A € ¢ = J§ C Jo,[a].
If for every A\ equality holds we are done, otherwise there is a minimal counterex-
ample and use 1.6(2). O s

Definition 1.9. Assume cf(u) < hrtg(Y) and p is singular of uncountable cofinality
limit of regulars. We let

(a) ppy () =sup{A: for some @&, D we have
(a) A= ps-tcf(lle, <p),
(b) D is an 8y — complete filter on Y
(¢) a={a;:teY), each a; regular
(b)  ppy (1) = sup{A* : X as above}.
(c)  similarly ppy_comp.y (1), pp:_compy(u) restricting ourselves
to k-complete filters D; similarly for other properties
(d)  we can replace Y by an Nj-complete filter D on Y, this means
we fix D but not & above.

Remark 1.10. 1) of course, if we consider sets Y such that ACy may fail, it is
natural to omit the regularity demands, so @ is just a sequence of ordinals.
2) We may use @ a sequence of cardinals, not necessarily regular; see §3.

Conclusion 1.11. [DC + ACgy)] Assume 0 = hrtg(Z(Y)) < p,p is as in Def-
inition 1.9, puo < p and @ € Y (Reg N ug) A ps — Py, —comp(@) # 0 = ps —
PCfy, —comp(@) € p. If o = [Reg N p\po| < pp and & = [Reg N ppy (1) \pio| then
Kk < hrtg(0 x Y o).

Remark 1.12. In the ZFC parallel the assumption on py < p is not necessary.
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Proof. Obvious by Definition [Sh:938, 5.6] noting Conclusion 1.8 above and 1.13
below. That is, letting = := Reg N ppy-(1)\po so || = k and A = Reg N p\po,
for every & € YA by Definition 1.9 the set ps-pcfy, —comp(@) is a subset of Reg N
ppy (1) \ 10, and by claim 1.8 it is a set of cardinality < hrtg(Z(Y')). By Definition
1.9 and Claim 1.13 below we have E = U{ps — pcfy, _comp(@) : @ € YA}, Clearly
there is a function h with domain hrtg(Z2(Y)) x ¥ o such that e < hrtg(Z2(Y))Aa €
Yo = (h(e,@) is the e-th member of ps-pcfy, —comp(@) if there is one, min(A)
otherwise). So h is a function from hrtg(Z(Y)) x ¥ o onto a set including = which
has cardinality x, so we are done. U111

Claim 1.13. The No Hole Claim[DC]

1) If @ € YOrd and Ay € ps-pefy, —comp(@), for transparency t € Y = o > 0
and hrtg(Z(Y)) < M = cf(A1) < Aa, then for some & € Ila we have A\ =
ps-pefy; —comp (@)

2) In part (1), if in addition ACy then without loss of generality @' € ¥ Reg.

3) If in addition ACg(yy + AC~, then even witnessed by the same filter (on 'Y ).

Proof. 1) Let D be an Ry-complete filter on Y such that Ay = ps-tef(la, <p), let
(Fo a0 < Aa) exemplify this.

First assume hrtg(Filix1 (Y)) < Ay, clearly f € %, = rkp(f) > « for every a <
A2, hence in particular for o = A\; hence there is f € Y Ord such that tkp(f) = A\
and now use [Sh:938, 5.9] but there we change the filter D, (extend it), so is O.K.
for part (1). In general, i.e. without the extra assumption hrtg(Fﬂ%x2 (Y)) < Ay, use
1.14(1),(2) below.

2) Easy, too.
3) Similarly using 1.14(3) below. Uias

Claim 1.14. Assume D € Fil}i(Y), k> Ng, Zo C YOrd non-empty for a < 6 and
F = (Fo : a < 0) is <p-increasing, & a limit ordinal.
1) [DC] There is f* € Ila which satisfies f € W{Fo 1 @ < M} = f <p f* but
there is mno such f** € Illa satisfying f** <p f.
2) [AC.,] For f* as above, let Dy = D z :={Y\A: A= mod D or Ac D*
and there is f** € YOrd such that f** <pya f* and f € UW{ Ty : a < M} =
f <pia [**}. Now Dy is a k-complete filter and O ¢ Dy, Dy extends D and if
cf(6) > hrtg(Z2(Y)) then (Fo : a < 0) witness that f* is a <p,-exact upper bound
of Z hence ([ f*(y),<p,) has pseudo-true-cofinality cf(§).

ey

y
3) DC + AC.,+ ACx v/
If cf(0) > hrtg(P2(Y)) then there is f' € YOrd which is an <p-exact upper
bound of &, i.e. f<p f'= Ba<d)(Fg € F,)[f <gmod D] and f € |J Fo =
a<d
f <o f.

Proof. 1) If not then by DC we can find f = (f, : n < w) such that:

(a) fn€YOrd
(b) fn+1 < fn mod D

(¢) if fe U # and n <w then f < f, mod D.
a<d

So A, ={t €Y : fri1(t) < fu(t)} € D hence N{A,, : n < w} € D, contradiction.

{r22}

{r24}
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2) First, clearly D; C Z2(Y) and by the assumption () ¢ D;. Second, if f** witness
A€ Dy and AC BCY then f** witness B € D;.

Third, we prove D; is closed under intersection of < k members, so assume
¢ <rand A= (A, :e < () is a sequence of members of D;. Let A:=N{A.:¢e <
(},B: = Y\A. fore < (and B, = B.\U{B¢ : £ <¢e} and B = U{B. : ¢ < (}.
Clearly B =Y\A, A CY and (Bl : e < () is a sequence of pairwise disjoint subsets
of Y with union B. But AC¢ holds and ¢ < ( = A. € D; hence we can find
(fr* : e < () such that f** € YOrd and if A. ¢ D then f** witness A. € D;. Let
f** € YOrd be defined by f**(t) = f**(t)if t € B. or e = 0 At € Y\B; easily
BleDtANfe | Fa=f<f=f"* mod(D+ B.)but B=U{B.:e<(}

a<d

and D is k-complete hence f € |J Fo = f < f** mod(D+ B). Soas A=Y\B
a<d
clearly f** witness A = (] Ac € D; so Dj is indeed k-complete.

e<(

Lastly, assume cf(§) > hrtg(#(Y')) and we shall show that f* is an exact upper
bound of .# modulo D;. So assume f** € YOrd and f** < f* mod D; and we
shall prove that there are a < ¢ and f € .%, such that f** < f mod D;.

Let o = {A € Df: thereis f € |J %, such that f** < f mod(D + A)}, yes,

a<d
not D1'

Case 1: For every B € Dy thereis A € o/, A C B.

For every A € o let a4 = min{g: there is f € %3 such that f** < f mod(D +
A)}.
So the sequence (a4 : A € o) is well defined.

Let ax) =sup{aa+1: A€ &}, it is < 0 as cf(d) > hrtg(L(Y)) > hrtg(«).

Choose f € Fy) and let By == {t € Y : f**(t) > f(t)}. Now if A € & (so
A€ Df)and f € |J F, witness this (i.e. f** < f' mod (D + A)); without loss

a<d
of generality f' € Z,, hence f’ < f mod D recalling ay < a(x), then A ¢ By
as otherwise f** < f/ < f < f** mod (D + A). So By contains no A € & hence
necessarily By is = () mod D; by the case assumption; this means that f** < f

mod D;. Sorecalling f € Z,) € |J Fa, we have “f is as required” thus finishing
a<d B
the proof of “f* is an exact upper bound of . mod D”.

Case 2: B € D and there is no A € &7 such that A C B.

For f € U Zalet By = {t € B: f(t) < fu(t)} and for a < § we define
a<d

PBo = {By : [ € F,} and we define a partial function h from Z(Y) into &
by h(A) = sup{a < 0 : A € By} As cf(§) > hrtg(P(Y)) necessarily a(x) =
sup(d N Rang(h)) is < 8. Choose g € Fy(x)+1, hence u := {a : o € [a(*),d] and
B, € #,} is an unbounded subset of 4.

Let A=BNBy,nowif Ac DY thenacu= \ [f< fi mod (D+ A) but
_ fE€EZFa
F is <p-increasing and § = sup(u) hence f € |J Fy = f < fux mod (D + A)
a<d
hence by the definition of Dy, f.. witness that Y\A € Dy, hence A =0 mod D;.

As B € Df and A = BN B, it follows that B\ B, € D{ and by the choice of &7 the
set B\ B, belongs to «7. But B\B, C B by its definition so we get a contradiction
to the case assumption.
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3) By [Sh:938, 5.12] without loss of generality .%# is Ng-continuous. For every
A € DT the assumptions hold even if we replace D by D+ A and so there are Dy, f*
as in part (2), we are allowed to use part (1) as we have DC and part (2) as we
have AC.,. As we are assuming AC gy there is a sequence (D4, fa) : A € DY)
such that:

(x)1 (a) Da is a k-complete filter extending D + A
(b) fa€YOrdisa <p,-exact upper bound of .Z.

Recall |A| <q, |B| is defined as: A is empty or there is a function from B onto A.
Of course, this implies hrtg(A4) < hrtg(B).
Let % = (% :t € Y) be defined by % = {fa(t) : A € DT} U {sup{f(t) :
fe U Fu}}hencet €Y = 0 < |%]| <qu Z(Y) even uniformly so there is
a<d
a sequence (hy : t € Y) such that h; is a function from Z(Y) onto % hence

| II %] <qu Z(Y) xY <qu (Y xY) but ACg(y) holds hence Y can be well
tey

ordered however without loss of generality Y is infinite hence |Y x Y| = Y, so

|t11?/t| <aqu |Z(Y)].
€
Let 9 ={g:g9 € [] % and not for every f € |J #, do we have f < g mod D},

tey a<é
5019 < | T] %] <au |P(¥ x )| = | 2(Y)] henco hrtg(¥) < hrtg(#(Y) < f(5).
tey
Now for every g € ¢ the sequence ({{t €Y : g(t) < f(t)}: fe U Fs}:a<d)
B<a
is a C-increasing sequence of subsets of Z2(Y), but hrtg(Z(Y)) < cf(d) hence the

sequence is eventually constant and let a(g) < ¢ be the minimal « such that
(#)g VAla<p<d={{teY:gt) < ft)}:f€ Uﬂ%} ={{teY:g(t) <
<
fOy:fe U 7}

y<a
But recalling hrtg(¥) < cf(¢), the ordinal a(x) := sup{a(g) : g € ¥} is < 6. Now
choose f* € F ()41 and define g* € [[ % by g*(t) = min(%\ f*(t)), well defined
5%
assup{f(t):t € |J Za} € %. It is easy to check that ¢* is as required. [ 14
a<d

Observation 1.15. 1) Let D be a filter on Y.

If D is r-complete for every « then for every f € ¥Ord and A € D thereis B C A
from DT such that f|B is constant.

fa=(a;:s€Y)and X CY fore < a < k and X = |JX. then ps —

€

Pt comp(@X) = Ups — pef,_comp(@Xe).
€

Remark 1.16. 1) Note that 1.15(1) is not empty; its assumptions hold when Y is
an infinite set such that: for every X C Y, |X| < s V|Y\X|<rkand D={X CY :

IVAX| £ r}.

Proof. Straightforward. Uias

{r25}
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§ 2. COMPOSITION AND GENERATING SEQUENCE FOR PSEUDO PCF

How much choice suffice to show A = ps—tcf( [[ A ;/D) when \; is the
(i.5)eY
pseudo true equality of ( [[ Aij,<p,) for i € Z where Z = {i : (i,j) € Y} and

JEY:
Yi={(,j):i€ Z,j€Y;} and A = ps-tef( [ \i, <g)? This is 2.6, the parallel of

i1€Z
[Sh:g, Ch.IL,1.10,pg.12].

Claim 2.1. If B below holds then for some partition (Y1,Y2) of Y and club E of
A we have

& (a) ifY1 € D" and f,g € U{F, : a > min(E)} then f = g mod(D+Y7)

(b) if Yo € DT then (Z, : a € E) is <p.y,-increasing

where
B (a) A is reqular > hrtg(2(Y)))
(b) Fo CYOrd for a < X is non-empty
(¢) D is an Ry-complete filter on' Y

(d) ifor <ag <A and fo€ F,, for £ =1,2 then fi1 < fo mod D.
Proof. For Z € DT let
(¥)1 (a) Sz={(o,p):a < < X\and for some f € .%, and g € .#3 we have
f<gmod (D+ Z)}

(b) S ={(a,B):a< B <\and for every f € Z, and g € F3 we have
f<gmod (D+ Z)}.

(¥)2 (a) fag <as <az<ayand (az,a3) € Sz then (a1,a4) € Sz
(b)  similarly for S}

(o) fag <as<ag<asand (a1 # a2) A (as # o) and (@2, a3) € Sz
then (a1, a4) € S5

(d) Sz CS}.

[Why? By the definitions.]
Let

(¥)3 J:={Z CY :Z € dual(D) or Z € D and (Vo < \)(3B)((«r, B) € SF).
Next

(¥)4 (a) J is an Ny-complete ideal on Y
(b) if D is k-complete then J is k-complete’
(¢c) J={ZCY:Z¢€ dual(D)or Z € Dt and (Va < A\)(38)
(e, B) € S2)}-

[Why? For clauses (a),(b) check and for clause (c) recall (x)a(c).]
Let

Lot used; note that ACx holds in the non-trivial case as AC g (y) holds, see 1.15
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(x)5 (a) for Z € Jt let a(Z) = min{a < A: for no 8 € (o, A) do we have
(a, B) € Sz}
() a(x)=sup{az:Z e Jt}
(x)¢ (a) for Z e JT we have a(Z) < A
(b)  ax) < A
[Why? Clause (a) by the definition of the ideal .J, and clause (b) as A = cf(\) >

hrtg(2(Y)).]
Let

(x)7 (@) for Z € D%t let fz : A = A+ 1 be defined by fz(a) =
Min{3: (o, 8) € S} or B = A}
(b)  f«: X — Xbe defined by: f.(a) =sup{fz(a): Z € DT NJ}
(¢) E={d:9 alimit ordinal < X such that a < d = f.(a) < d}\a(x).

Hence

(x)s (a) if Z€ DT NJ then fz is indeed a function from A to A
b)
¢) f« is non-decreasing

d) Eisaclub of \.

f+ is indeed a function from A to A

o~ o~ o~ o~

[Why? Clause (a) by the definition of J and of f. and clause (b) as A = cf(\) >
hrtg(Z2(Y)) and clause (c) by (x)2 and clause (d) follows from (b)+(c).]

(¥)g Let ap = min(FE),a; = min(E\(ap + 1)) choose fy € Fo,, f1 € Fa, and
let Vi ={yeY: fo(y) = fi(y)} and Y2 = Y\,

(*)10 (Y1,Y2, E) are as required.
[Why? Think.] Lo

Claim 2.2. We have X\ = ps — tcf(llay, <p,) = ps — tcf(Ila, <p), this means also
that one of them is well defined iff the other is, when

Remark 2.3. We can for the “only if” direction in 2.2 weaken the demand on cf (o)
to cf(ay) > hrtg(t/E).

Proof. The claim means

(%) A =ps — tef(llay, <p,) if and only if A = ps — tef (Tasg, <p, ).

{e2}
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First “only if” direction holds by 2.4.

Second, for the “if direction”, assume that ps — pcf(Ilag, <p,) is well defined
and call it A\;. Let (#1 o @ a < \) witness this, for f € %, let fl0 € YOrd be
defined by f%0(s) = f(s/E) and let Z, = {fl0): f € 71 ,}. It is easy to check that
(Fo + a < \) witness Ay = ps — tef(Ila, <p) recalling t € Y = cf(ay) > hrtg(Y)
by clause (d), so we have proved also the “if” implication. Lo o

By the following claims we do not really lose by using a C Reg instead & € ¥ Ord
as by 2.5 below, without loss of generality a; = cf(a;) (when ACy ) and by 2.2.

Claim 2.4. Assume & € YOrd, D € Fil(Y) and A\ = ps-pcf(Ila, <p) so A is
reqular, and y € Y = oy < A.

If (Fo o < X\) witness A = ps-tef(lla, <p) and y € Y = cf(ay,) > hrtg(Y) and
A > hrtg(Y) then for some e:

(a) e ceq(Y) = {e: e an equivalence relation on Y}

(b) the sequence Fo = (Feo @ a < ) witness ps-tcf((ay,. = y € Y/e),D/e)
where

(¢) ayje = ay,Dje={Ae: Ac D} where Ale = {y/e:y € A} and Fe o =
{fl . f ez}, M Y/e — Ord is defined by fU*(t/e) = sup{f(s) : s €
t/e}; noting hrtg(Y/e) < hrtg(Y)

(d) e={(s1,82) : a5, = s, }.

Proof. Let e = eq(a) = {(y1,v2) : y1 € Y,y2 € Y and oy, = o, }. Foreach f € Il

let the function fI*! € Ta be defined by fI*l(y) = sup{f(2) : z € y/e}. Clearly

f s a function from [ (ay, + 1) and it belongs to Tla as y € Y = cf(ay,) >
yey
hrtg(Y) > hrtg(y/E). Let H : A — A be: H(a) = min{ < A : § > « and there

are f1 € F, and fy € ¥ such that f1[*] < fo mod D}, well defined as # is cofinal
in (TII&, <p). We choose a; < A by induction on i by: o; = U{H(cvj) +1:j < i}.
So ap = 0 and (a; : i < \) is increasing continuous. Let .Z/ = {fI* : f € .Z,, and
there is g € #p(a,) = Fa, .1 such that " < g mod D}.

So

(%)1 Z! C{f € lla: eq(a) refine eq(f)}.
[By the choice of .#/ and of €]
()2 #! is non-empty.
[Why? By the choice of H(a;).]
(¥)3 if i(1) <i(2) < X and hy € F], for £ = 1,2 then hy < hy mod D.

[Why? For £ = 1,2 let gy € FH(aye) be such that hy = fé*] < g¢ mod D, exists
by the definition of ﬁi’(é). But H(a;1y) < ai1y41 < (2) hence g1 < fo mod D so

together hy = fl[*] <qn < fa< fQ[*] = hy mod D hence we are done.]

(¥)a U #/ is cofinal in (Ila, <p).
i<\
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[Easy, t00.]
Lastly, let 54? ={f/e:e € F} where f/e € Y/eQrd, is defined by (f/e)(y/e) =
f(y), clearly well defined.

Claim 2.5. Assume ACy and ay = (af; cy €Y) € YOrd for £ = 1,2. If
yeY = cf(ay) = cf(ay) then X = ps-tef(Ian, <p) iff A = ps — tef(Ilag, <p).
Proof. Straightforward. o 5
Now we come to the heart of the matter

Theorem 2.6. The Composition Theorem [Assume ACyz and k > Vg

We have A = ps-tef( [ Nij,<p) and D is a k-complete filter on'Y when :
(i,5)eYy

(a) E is a k-complete filter on Z

b) (N :i € Z) is a sequence of reqular cardinals

(
() A= ps—tcf(_H iy, <E)
i€z

(d) ¥ =(Y;:ie2)
() D=(D;:ie Z)
(f) D; is a k-complete filter on'Y;
(9) A= (\ij i € Z,j €Y,) is a sequence of reqular cardinals (or just limit
ordinals)
(h) Ai = ps-tef( [T iy, <p,)
JEY;

(1) Y ={(i,j):jeYi andic Z}
(7)) D={ACY: for some B€ E we have i € B = {j: (i,j) € A} € D;}.

Proof.

(x)o D is a k-complete filter on Y.

y? Straightforward (and do not need any choice).
Why? Straightf d dd d hoi
Let (Zio a0 < \iyi € Z) be such that
(#)1 (a) Fi=(Fia:a <)) witness \; = ps — tef( [T N\ij,<p,)
JEY;

(b) Fia#0.

[Why? Exists by clause (h) of the assumption and ACg, for clause (b) recall [Sh:938,
5.6].]
By clause (c) of the assumption let ¢ be such that

(¥)2 (a) 9 =(Fs:p <A) witness A = ps-tcf( [[ Ai, <p)
(b) 9 #0for B <A ~
Now for 8 < A let
(x)s Fg:={f:f€ [l X, and for some g € 95 and h = (h; : i € Z) €
T Foato we b (6.3) € ¥ = £(6.9) = 1)
(%)4 the sequence (F3 : 3 < \) is well defined (so exists).



nodi fi ed: 2014- 05- 19

revi sion: 2014-05-02

(955)

{e5}

20 SAHARON SHELAH

[Why? Obviously.]
(x)5 if B1 < B2, f1 € Fp, and f2 € Fp, then f1 <p fo.
Why? Let g0 € 93, and hy = (h! : i € Z) € Fi ao(i), Witness f; € %, for
Be 7 ,9¢(1) Be
i€z

0=1,2. As 81 < P2 by (x)2 we have B :={i € Z : g1(i) < g2(i)} € E. For each
i € B we know that g1(i) < g2(i) < A and so hj € F; 4., hi € F; 4,(:); hence
recalling the choice of (% o : & < \;), see (*)1, we have A; € D; where for every
i€ Zwelet A; :={j €Y;:hl(j) < h(j)}. As hy,hy exists clearly (A; : i € Z)
exist hence A = {(¢,j) : i € B and j € A;} is a well defined subset of Y and it
belongs to D by the definition of D.

Lastly, (i,7) € A= f1((i,7)) < f2((¢,7)), shown above; so by the definition of
D we are done.]

(x)¢ for every B < A the set #3 is non-empty.
[Why? Recall 95 # () by (x)2(b) and let g € ¥3. As (F 44 1 i € Z) is a
sequence of non-empty sets (recalling (x)2(b)), and we are assuming ACy there is
a sequence (h; :i € Z) € [[ Z 4:)- Let f be the function with domain Y defined

i€z

by f((i,7)) = hi(j); so g, h witness f € F3, so Fs # ) as required.]

(x)7 if f € [I A, then for some S < X and f € F5 we have
(1,)€Y
f« < f mod D.

[Why? We define f = (f : i € Z) as follows: f; is the function with domain Y;
such that

jeYi= fi(j) = f((i9))

Clearly f is well defined and for each 4, f; € [I;ey, Ai.j hence by (x)1(a) for some
a < A and h € %, we have fF < h mod D; and let «; be the first such a so
(o 11 € Z) exists.

By the choice of (45 : 8 < A) there are § < A and g € 93 such that (a; : i €
Z) < gmod E hence A := {i € Z:a; < g(i)} belongs to E. So (F; 4;) i € Z) is a
(well defined) sequence of non-empty sets hence recalling ACy there is a sequence
h=(hi:icZ)e]] Fig(iy- By the property of (#; 4 : a < );) and the choice

i€z
of h; recalling the definition of A, we have i € A = f < h; mod D,, exists as
(h; i € Z) exist.
Lastly, let f € [[ i, be defined by f((i,7)) = hi(j). Easily g, h witness that
(i,5)eY
f € Z5, and by the definition of D, recalling A € E and the choice of h we have
f« < f mod D, so we are done.]

Together we are done proving the theorem. Log

Conclusion 2.7. The pcf closure conclusion Assume ACg ). We have ¢ = ps-
pClefcomp(c) m:

(a) a a set of regular cardinals, non-empty
(b) hrtg(Z(a)) < min(a)
(¢) ¢ = ps-pefy, —comp ().
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Proof. Note that ¢ is non-empty because a C .

Assume A\ € ps-pefy, —comp(€), hence there is E an Nj-complete filter on ¢ such
that A = ps-tcf(Ilc, <g). As we have ACgp(q) by 1.3 (as the D there is unique)
there is a sequence (Dy : 6 € ¢), Dy an RNy-complete filter on a such that § = ps-
tcf(Ila, <p,), also by 1.8 there is a function h from #(a) onto ¢, let Fy = {S C
P(a): {0 € c: {0} C S} € E}. By claim 2.2, the “if” direction with 2(Y)
here standing for Y there, we have A = ps — tcf(II{A(b) : b € Z(a)},<pg,) and E;
is an Wy-complete filter on Z(a).

Now we apply Theorem 2.6 with E1, (D) : b € 32( ), A, (h(b) : b€ P(a)),(0:
0 € a) here standing for E,(D; : i € Z),\, (\; : Z), (i ,] . j €Y;) for every
j € Z (constant here). We get a filter D; on Y = {(b, 0):b e P(a),d € a) such
that A\ = ps — tef(II{0 : (b,0) € Y}, <p,).

Now |Y| = |Z(a)| as a can be well ordered (hence Ry < |a| or a finite and all
is trivial) so applying 2.2 again we get an Nj-complete filter D on a such that A =
ps-tef(Ila, <p), so we are done. Oy 7

Definition 2.8. Let a set a of regular cardinals.
1) We say b = (by : A € ¢) is a generating sequence for a when :
(@) bx € aC ¢ C ps-pefy, —comp(a)
(B) Jex+[a] = J<xla] 4+ by for every A € ¢, hence for every cardinal A we have

J<x[a] is the Ry-complete ideal on a generated by {bg : 0 € pcfy, _comp(a)
and 6 < A}

2) We say .7 is a witness for b = (by : A € ¢ C ps-pcfy, —comp(@)) when:

(Oé) j:<<g‘:,\2>\€t>

(B) Fx = (Fra:a <)) witness A = ps — tef(Ila, <;_, (q])-

3) Above b is closed when by, = an ps-pefy, —comp(b2); if a is not mentioned it
means a = c.

3A) Above b is smooth when 6 € by = by C by.
4) We say above b is full when ¢ = ps — pcfy, _comp(a).

Remark 2.9. 1) Note that 1.8 gives sufficient conditions for the existence of b as in
2.8(1) which is full.
2) Of course, Definition 2.8 is interesting particularly when a = ps-pcfy, —com(a).

Theorem 2.10. Assume AC, and AC5(q). Then ¢ = ps-pcfy, —comp(c) has a full
closed generating sequence for Ri-complete filters (see below) when :

(a) ais a set of reqular cardinals
(b) hrtg(Z(a)) < min(a)
(¢) ¢ = ps-pefy, —comp ().
Proof. Proof of 2.10
(¥)1 ¢ = ps-pefy, —com(€).-
[Why? By 2.7 using AC 5(q).]

(%)2 there is a generating sequence (by : A € ¢) for a.

{e10}

{e11}

{e7}
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[Why? By 1.8(3) using also AC..]

(%)3 let by = ps-pcfy, _com(bx) for A € c.

Now
(¥)s (a) b* = (b} : X € c) is well defined
(b) baCbyCc
(¢) b3 = ps-pefy, —com(b3)
(d) A= max(by)
() A ¢ pef(c\b3).

[Why? First, b* is well defined as b = (by : A € ¢) is well defined. Second,
by C b3 by the choice of b} and b} C ¢ as by C a hence by = ps-pcfy, o (b3) €
ps-pefy, —com(€) = ¢, the last equality by 2.7. Third, by = ps-pcfy, com(b}) by
Conclusion 2.7, it is easy to check that its assumption holds recalling by C a.
Fourth, X € b} as J-[a] witness A € ps — pcfy, o (br) = b} and max(b}) = A by
(%)2 recalling Definition 2.8.

Lastly, note that ps—pcfy, _comp (@) = PS—=DPCfy, —comp(0A)UPS—Dcfy, —comp(a\br)
by 1.15(2) hence pu € ¢\b} = 11 € ps—pcfy, _comp(@\bx); s0if A € ps—pcfy, _comp(c\b3)
by 2.7 it follows that A € pcf(a\b}) which contradict 1.8(3), 1.6(2) so A\ ¢ ps —
PCfy, —comp(€\b}) that is, clause (e) holds.]

We can now choose .# such that

(¥)s (a) F =(Fr: A€
(b) j}:(ﬂ}ﬁa o< )
(¢) F» witness A = ps-tef(Ia, <J:;[a])

(d) ifAea,a<and f € .F, then f(N) = a.

[Why? For each X there is such .% as A = ps-tcf(Ila, <J_,[a]). But we are assuming
AC, and for clause (d) it is easy; in fact it is enough to use AC g,y and h as in
2.7, getting (Fy : b € P(a)), Fp witness h(b) = ps-tcf(Ila, <;_, [a]) and putting
(Fo : b € h~1{\}) together for each X € c.]

(¥)6 (a) for A €cand f € IIby let fN € TIb% be defined by: fN(6) =
min{a < A: for every g € %y o, we have
f1ox < (gIbx) mod J—g[bx]}
(b) for A€cand o < Alet F5 , ={(flo0)N : f € Fral.

(¥)7 (a) fPla> ffor fellby,\ec
(b) (ﬁ’;a : A €, < A) is well defined (hence exist)
(¢) F1. CIIb;.

[Why? Obvious, e.g. for clause (a) note that 0 € a = {0} € (J=g[bA])T.]

(x)g let Jy be the N;-complete ideal on b} generated by {b; Nb} : 0 € cN A}
(4)o Jn © JZ"P[o3].
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[Why? As for 0o, ..., 0, ... € cNA by 1.15(2) we have ps — pcfy, _comp(U{bj, i1 <
w}) = U{ps — pcfy, —comp(bp, ) i n <w}=U{b; :n<w}e Jil)fcomp[c].]

O ifA€cand o < oy < A and fr € Fyq, for £ =1,2 then fIN < 1 mod
N

[Why? Let a, = {6 € by : f1(0) > f2(6)}, hence by the assumption on (Fy o : @ <
A) we have a, € J&1 “UMPlg) hence we can find a sequence (0, : n < n < w) such
that 6, € cN A and a. C by := U{bp, : n < n} hence ¢, := ps — pcfy, _om(as) C

U{by, :n < n} € Jy. So it suffices to prove fl[/\}[(bj\c*) < fQ[/\][(bi\c*), so let
0 € bx\Ubg, , by (x)a(d) we have 6 < A, let o := ]‘2[)‘](6’)7 so by the definition
of f2[/\] (0) we have (Vg € Fp.o)((f2]bx) < (g]bx) mod J=g[b,]). But a. C [Jby,

and n < w = 0 ¢ by = ps — pcfy, _comp(be,) hence by 1.15(2) we have 0 ¢
ps — pefy, Comp(U by, ) hence Ub@ € J&1 ©omP[p,] hence a, € JNy “"Pby]. So

(first inequality by the previous sentence and the choice of a,, second by the earlier
sentence)

(f1162) < (f202) < (91bx) mod JE;7 (o]
hence by the definition of fl[/\],fl[/\] 0)<a= 2[)‘] (0). So we are done.]

®g if A € c and g € 1Ib} then for some o« < A and f € Fy o we have g < f
mod J,\.

[Why? We choose (hg : 6 € b}) such that hy € Fy 4 for each 0 € by; this
is possible as we are assuming AC. and by C c¢. Let h1 € IIby be defined by

hi(k) = sup{h?](ﬁ) 1k € bg and 0 € b3} for k € b%, the result is < x because the
supremum is on < |bg| ordinals and £ > min(b}) > min(c) = min(a) > hrtg(Z(a)).
Hence there are o« < X and hy € %y, such that hy < hy mod J-j[a]. Now
f= h[;‘] € I1b} recalling (*)7(a) is as required, in particular f € .75 ]

©3 the sequence (Fy o : a < \) witness A = ps — tcf(IIb%, <7, ).
[Why? In (x)7(b), (¢) + ®1 + ®2.]

@4 if A € ¢ then Joy = Joy “"P[b3].

[Why? By (%)4, (*)g, ()9 and ®3.]
So

®s5 b* = (b} : A € ¢) is a generating sequence for c.
[Why? By ©u, (*)s recalling that A ¢ ps — pefyy, _comp(€\b3) by (¥)a(e).] Oz.10

Remark 2.11. Clearly b* is full and closed, but what about smoooth? Is this
necessary for generalizing [Sh:460]?

Discussion 2.12. Naturally the definition now of
involved where .% = (%) : A € ps-pcfe_com(a)), .Za
ps-tef(Ila, J=x(a)).

s in 2.8(2) for Ila is more

T a
= (Zra a0 < \) exemplifies

{e30}

{e31}
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Claim 2.13. DC + AC.,.] Assume

(a) a a set of reqular cardinals

(b) K is regular > Vg

(€) ¢ = ps-pef,_comp(@)

d) min(a) is > hrtg(Z(c)) or at least > hrtg(c)

e) F =(Fr\:N€),F\ = (Fra:a<\ witness> X = ps-tef(Ila, <2 "

).

(
(

a

Then

B for every f € Ila for some g € Ilc, if g < g1 € Ilc and h € I{F g0 AE
¢} then (F0 € [(]<F)(f < sup{hy:\€d}).

Proof. Let f € Ila. For each A € ps-pef,_ on(a) let apy = minfa < A: f<yg
mod J=y[a] for every g € F» o}, so clearly each o is well defined hence & = (ay ) :
A € ps-peli_com(a)) exists. So g = (ayn : A € ¢) € Ic is well defined. Assume

g1 € cand g < g1. Let (hy : A € ¢) be any sequence from [] .7, 4 (1), at least one
AEc
exists when AC, holds but this is not needed here. Let ay x = {6 € a: f(0) < hx(0)}

so (afgx : A € ¢) exists and we claim that for some ? € [¢]<" we have a = U{ay ) :
A € 0}, Otherwise let J be the k-complete ideal on a generated by {as : A € ¢}, it
is a k-complete ideal. So by [Sh:938, 5.9=r9], applicable by our assumptions, there
is a k-complete ideal J; on a extending J such that A\, = ps-tef(Ila, <z,) is well
defined. So A\, € ¢ and ay ), € Ji, easy contradiction. Os .13

Claim 2.14. [A_CNO/ We can uniformly define® a No-continuous witness for X =
ps — pcf . comp (I, <p) where:

A= pkaafcomp(Ho_‘a <D)
(e) if a € S then Z, is No-continuous and fy, f € Fa,a = f1 = fo mod D.

Proof.
(%) hrtg(S x S)is <X and < cf(ay) fort €Y.

[Why? As A, cf(ay) are regular cardinals.]
For a,b € S let

(x)1 (a) Eqp={0 <X\ if @ < then for some S € (o,d) and f1 € Fy 0,
fa € Fp g we have f1 < fo mod D}

(b)  define gqp : A = A by gap(a) = min{3 < A: there are f1 € Fy o
and fy € % g such that f1 < fo mod D}

(¥)2 gap is well defined.

230 we are assuming it is well defined, now if AC gy such F exists.
30f course, mere existence is already given by the assumptions.

{e33}
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[Why? As .%, is cofinal in (Il&, <p).]

()3 ga,p is non-decreasing.
[Why? As .%, is <p-increasing.]

Hence

(x)4 Eqp={0 < X:6 alimit ordinal and (Voo < 6)(ga,p(ax) < 9)}.
Also

(%)5 Eqp is a club of A

[Why? By its defintion, E, ; is a closed subset of A and it is unbounded as cf()\) =
A > Ry, because for every a < A letting ap = @, a1 = Gap(an) +1 < A clearly
B:=U{ap:n<wlis<Xand v <d= (In)(y < an) = (In)(gap(y) < nt1)).]
(x)6 let g : A — A be g(o) = sup{gap(c) : a,b € S}
(x)7 g is a (well defined) non-decreasing function from A to A.

[Why? “Non-decreasing trivial”, and it is “into A” as hrtg(S x S) < A recalling
(*)o-]

(x)s E={Eap:a,beSt={<A: (Va<d)(g(a) <)} is aclub of \.
[Why? Like (*)7.]

(%)g let By ={0 € E:cf(d) =N} so By C A =sup(N),otp(Er) = A
(¥)10 for § € E of cofinality Ng let %5 = {sup{fn : n < w}: for some a € S
and & = (ay, @ 1 < w) increasing of cofinality Vg we have (f, : n < w) €

[[Zaa.)}
(x)11 (Fs5: 0 € FE1) is <p-increasing cofinal in (Ila,, <p) in particular .Z5 # (.

[Why? Z5 # 0 as 6 € E,cf(6) = Xy and ACy, |
We can correct (F5 : § € E1) to be Np-continuous easily (and as in [Sh:938,
§5]). Uo.14

Question 2.15. 1) Can we in 2.5 get smoothness?
2) If 2.10 does it suffice to assume AC g (q) (and omit AC,) and we can conclude
that ¢ = ps — pcfy, _comp(¢) has a full closed generating sequence.

We may try to repeat the proof of 2.10, only in the proof of (x)5 we use claim
2.16 below.

Claim 2.16. In 2.10 we can add “b is weakly smooth” which means 6 € by = 0 ¢
ps — pCle—comp(c\b*)'

Proof. Let b = (by : A € ¢) be a full closed generating sequence.
We choose b} by induction on A € ¢ such that

a) Jealo] = 23" [a] + b}

b) ps — pCle—comp(b}\) = bi

¢) max(b}) =\

d) if 6 € b} then b D by mod J_y[a], i.e. bH\b} € J5h " Pla].

{2.14}

{e46}
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Arriving to A let 9y = {6 € by : bJ\b} & Jo5 “"P[a]}, 0% = s — pefy, _comp(dr)-
Now

(*)2 Ps — Pcfy; —comp(@r) S bANA.

[Why? C by is obvious; recalling b} = ps — pcf(bi Na) because b is closed. If “¢ \”
recall 0} = ps — pefy, _comp(@2), now 0y C by hence 0} C ps — pefy, —comp(br) €
AT, So the only problematic case is A € 0} = ps — pefy, comp(@2). But then,
0x € ps—pcfy, —comp(€\bA) by the definition of 9 hence by the composition theorem

we have A € ps — pcfy, _comp(€\bA), contradicting an assumption on b.]
(¥)3 there is a countable ¢y C 9} such that 05 C U{b] : o € ¢y }.

[Why? Should be clear.]
Lastly, let by = U{b} : 0 € ey} U by and check. 0516
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§ 3. MEASURING REDUCED PRODUCTS

{meas}
{onps}
§ 3(A). On ps-Tp(g).
Now we consider some ways to measure the size of "u/D and show that they
essentially are equal; see Discussion 3.9 below.
{r26}
Definition 3.1. Let @ = (o : t € Y) € YOrd be such that t € Y = oy > 0.
1) For D a filter on Y let ps-Tp(@) = sup{hrtg(F) : F is a family of non-empty
subsets of IIa such that for every .7, # %5 from F we have f1 € 71 A fo € Ty =
f1 #p fa}, recalling f1 #p fo means {t € Y : f1(t) # fa(t)} € D.
2) Let ps-Tx—comp(@) = sup{hrtg(F): for some x-complete filter D on Y, F is as
above for D}.
3) If we allow oy = 0 just replace Illa by II*a :={f : f € [[(ay + 1) and {t: f(¢) =
t
at} =0 mod D}.
{r29}
Theorem 3.2. [DC + ACy(y)] Assume that D is a rk-complete filter on Y and
k> Vg and g € Y (Ord \{0}), if g is constantly o we may write a. The following
cardinals are equal or at least \1, Aa, )\3 are Fil}i (D)-almost equal which means:
for 01,0y € {1,2,3} we have Ay, <33 11 (D) Ae, which means if o < \p, then « is
included in the union of S sets each of order type < Mgy :
(@) A = supd[rkp, (9)[* : Dy € Fill(D)}
(b) Ao = sup{\T: there are D1 € FilL(D) and a <p,-increasing sequence
(Fo o < X) such that Fo, C ] g(t) is non-empty}
tey
(¢) A3 =sup{ps — Tp,(g) : Dy € Fil’(D)}.
{r30}

Remark 3.3. 1) Recall that for D a r-complete filter on Y we let Fill(D) = {E: E
is a k-complete filter on Y extending D}.

2) The conclusion gives slightly less than equality of A1, A1, As.

3) See 3.10(6) below, by it Ay = ps-Depth™ ("1, <p) recalling 3.10(5).

4) We may replace k-complete by (< Z)-complete if Ry < |Z].
5) Compare with Definition 3.10.
6) Note that those cardinals are < hrtg(IT*g), see 3.1(3).

PTOOf StageA )\1 Fll(D) )\2,)\3.

Why? Let x < A1, so by clause (a) there is D; € Fil! (D) such that rkp, (g) > x.
Let Xp, = {a < x: some f € [] g(t) satisfies? Dy = dual(J[f, D1]) and o =

tey
rkp, (f)}, for any Dy € Fﬂ}i(Dl). By [Sh:938, 1.11(5)] we have x = J{Xp, : D2 €
Fill(D1)}.
Now

® Ds € FilL(D1) = |otp(Xp,)| < A2, A3; this is enough.

4recall dual(J[f, D1]) = {X CY : X € Dy or tkp, 4 (x\y)(f) > rkp, (f)}.
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Why does this hold? Letting Zp,; = {f € Yu : rkp,(f) = i and J[f, D1] =
dual(Ds)}, by [Sh:938, 1.11(2)] we have: i < jAi € Xp,Aj € Xp,\f € Fp,i g €
Fp,; = f <g mod Dy so by the definitions of Ay, A3 we have otp(Xp,) < Az, 3.

Stage B: Ao S%Ziillg(D) A1, Az, moreover A < A1, As.

Why? Let x < A2 and let Dy and (%, : o < x) exemplify x < 2. Let
Yo = min{rkp, (f) : f € Fa} so easily a < 8 < x = 74 < 78 hence rkp(g) > x.
So x < A1 by the definition of A; and as for y < A3 this holds by Definition 3.1(2) as
a<BANfEFuNg € Fs= f<gmod Dy = f#gmod Dy as x™ = hrtg(x) < As.

Stage C: )\3 S%illi(D) )\1,)\2.

Why? Let x < As. Let (Z, : @ < x) exemplify y < A3. For each a < x
let D, = {dual(J[f,D]) : f € F4} so a non-empty subset of Fil\(Y). Now for
every D1 € D, := U{D, : @ < A} let Xp, = {a < x : D1 € D,} and for
a € Xp, let (p,,o = min{rtkp(f) : f € F#o and D1 = dual(J[f, D])} and let
Fpya ={f € Zo: Dy =J[f,D] and rkp, (f) = (b, .} S0 a non-empty subset of
Fo and clearly ((Cp,,asFDy.a) : @ € Xp,) exists.

Now

(a) o+ (p,,q is a one-to-one function with domain Xp, for D; € D,

(b) x = U{Xp, : D; € D,} noting D, C Fil}(D)

(c) for D e D, if o < B arefrom Xp, and (p,,o < Cpy.8,f € FD1,0,9 € FDy. 8
then f < g mod D;.

[Why? For clause (a), if a« # 8 € X¢\, f € Fpy,a,9 € Fp, g then f # g mod D
hence by [Sh:938, 1.11] we have (p,.o # (p,,3. For clause (b), it follows by the
choices of D, Xp,. Lastly, clause (c) follows by [Sh:938, 1.11(2)].]

Hence (by clause (c))

(d) otp(Xp,)is < Ay and is < tkp, (g) for D; € U{D, : a < x} C FilL(D).

Together clause (d) shows that D € D, = |Xp| < A1, A2 so by clause (b),
A3 S%%%,{(D) A1, A2 hence we are done. Os
Observation 3.4. If D is a filter on Y and & € ¥ (Ord\{0}) then

ps — Tp(a@) = sup{AT: there is a sequence (%, : « < M) such that %, C
Ma, Z, #D0and o # BA f1 € Fo A fo Eygifl %D fg}

Proof. Clearly the new definition gives a cardinal < ps — Tp(@). For the other
inequality assume A < ps — Tp(@) so there is F as there such that A < hrtg(F).
As X\ < hrtg(F) there is a function A from F onto A. For o < A define %), = U{.% :
F € Fand h(F) = a}. So (F] 1 a < \) exists and is as required. Os.4
Concerning Theorem 3.2 we may wonder “when does A1, A2 being S-almost equal
implies they are equal”. We consider a variant this time for sets (or powers, not
just cardinals).

Definition 3.5. 1) We say “the power of 24 is S-almost smaller than the power of
Us", or write | 2| < |%| mod S or |21 | <&™ |%| when: we can find a sequence
(u1,s : s € Sy such that 24 = U{ur s : s € S} and s € S = |% | < |%)|.
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2) We say the power |%4|,|%| are S-almost equal (or |%| = |%| mod S or
|2 | =™ | %) when |24 | <™ |%| <¥™ |%)|.
3) Let |?/1| <% | be deﬁned naturally
4) In parmcular this applies to cardinals.
5) Let |%| <¥™ |%,| means there is a sequence (uj s : s € S) with union %4 such
thatseS:>|02/|<|OZ/2|
) Let |24 | <% |%| means that if |%| < |2 then |% | <¥™ |%|.

Observation 3.6. 1) If |%| < |%)| and S # () then |2 | <¥™ |%|.

2) If )\1 S )\2 and S 7é @ then )\1 S%al )\2.

3) If Ao = A\ and cf(\2) < hrtg(S) then the power of \g is S - almost smaller than
S.

Proof. Tmmediate. Use

Observation 3.7. 1) The cardinals A1, Ao are equal when X\, zglm A2 and cf()\y),
() > hrtg((S)).
2) The cardinals A1, A2 are equal when A; :glm Ao and A1, Ao are limit cardinals
> hrtg(2(9)).
3) If A, <3m A, and @ = hrtg(2(S)) then A, <33 A,

) If )\1 <alm )\2 and Cf()\l) >0 then )\1 < )\2
5) If \y <alm Ao and 0 < A then \; < \J.

Proof. 1) Otherwise, let 0 = hrtg(Z2(S)), without loss of generality Ay < A1 and
by part (3) we have \y <alm A2 and by part (4) we have A; < Ay contradiction.
2) Otherwise letting 0 = hrtg(?(S)) without loss of generality A2 < A; and by
part (3) we have A\ <alm A2 but 0 < A9 is assume and )\+ < A1 as \g is a limit
cardinal so together we get contradiction to part (5).
3) If (us : S € S) witness Ay <™ Xy, let w = {& < A;: for no B < a do we have
(Vs € S)(a € us = B € ug)} so clearly |w| < hrtg(2(S)) = 6 and for o € w let
Vo ={B <A : (Vs € S)(a €us =B € uy)}so (Vg : a € w) witness A; <M )y
hence \; <alm Aa.
4),5) Let 0 < 6 be such that A\; <™ )y and let (u. : € < o) witness \; <™ ),
that is |us| < Ag for e < o and U{u. 1 € < o} = A1.

For part (4), if A2 < A1, then we have € < o0 = |u.| < A1, but ¢f(A;) > o hence
H{U{ue : € < o}| < A1, contradiction.

For part (5) for € < o, let ul = u.\ U {uc : ¢ < e} and so otp(ul) < otp(us) <
luc|™ < AJ so easily [\ | = |U{u€ e<o}=|U{ul:e<o} <o )\+ <A =
AL Os

Similarly

Observation 3.8. 1) If \; <¥™ Xy and 0 = hrtg(2(5)) then A <4 A,.
2) It N\ < alm Ao and cf(A;) > 6 then A\ < Ao.

3) If A\ < alm Ao and 6 < )\Jr then A\ < As.

4) If A <Sal X and 8 = hrtg(2(S)) then A <52 \,.

5) If Ay <sal Ao and & < A, 0 < Ay and cf(Ag) > 0 then Ay < Ao

6) If A\ <Sal A2 and @ < A\J then \; < \J.

Proof. Similar, e.g.
1) Like the proof of 3.7(3). Us.s

{r34}

{r36}

{r37}
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{r38}
Discussion 3.9. 1) We like to measure (Y )/D in some ways and show their

equivalence, as was done in ZFC. Natural candidates are:

(A) ppp(u): say of length of increasing sequence P (not p!, i.e. sets) ordered
by <D

(B) ppy-(p) = sup{pp}, (1) : D an R;-complete filter on Y}

(C) Asin 3.1.

2) We may measure ¥ p by considering all d-complete filters.
3) We may be more lenient in defining “same cardinality”. E.g.

(A) we define when sets have similar powers say by divisions to Z(Z(Y)) sets

we measure (¥ 11)/ & (2 (v)) where ~p is the following equivalence relation
on sets:

~p Y when we can find sequences (X, : b € B), (Y, : b € B)
such that:
(a) X =U{X,:be B}
(b)) Y =U{Y,: b€ B}
(©) [Xo| = V3]
(B) we may demand more: the (X}, : b € B) are pairwise disjoint and the
(Y) : b € B) are pairwise disjoint
(C) we may demand less: e.g.
(©) [Xp| <u Vo] <u | X
and/or
(¢)« (Vb€ B)(3c € B)(|Xp| < |Ye|) and
(Vb € B)(3c € B)(|Ys| < [Xel).

Note that some of the main results of [Sh:835] can be expressed this way.

(D) rk-supy,s(p) = rk-sup {rkp(u) : D is 0-complete filters on Y}
(E) for each non-empty X C Yy let

spL(X) = {(D,J) : D an R;-complete filter on Y,.J = J[f, D], = rkp(f) and f € X}

spy (X) = U{spa(X) : o}

(F) question: If {sp(Xs) : s € S} is constant, can we bound J?
(G) X,Y are called connected when sp(X;),sp(Xz2)) are non-disjoint or equal.

4) We hope to prove, at least sometimes v := T(¥ ) < pp, (1) that is we like to
immitate [Sh:835] without the choice axioms on “u. So there is f = (fo : @ < 0)

witnessing v < Y(*p). We define u = u; = {a: there is no B € “a such that
(Vit € Y)(fa(t) € {f5,(t) : n <w}). You may say that uy is the set of a < ¢ such
that f, is “really novel”.

By DC this is O.K., i.e.

By for every o < 4 there is § € “(ufNa) such that (V¢ € Y)(fa(t)) = {f3,(t) :
n<wh.
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Next for @ € uy we can define Dy ,, the Ri-complete filter on Y generated by

{ﬁeyzmwzquwyﬂ<a}smmmwa¢ﬂeuﬂu%ﬂ:Dmf¢h¢D
fs. Now for each pair D = (D1, Dy) € Filj (i.e. for the R;-complete case) let
Ajp ={a €uj: D, = Dy and J[fs, D1]} = dual(Dz). So v is the union of
< P(P(Y))-sets (as |[Y| = [Y] x |Y], well ordered.

So

()1 7 < hrtg((Vw x “ ()
()2 w is the union of Z(Z(k))-sets each of cardinality < pp;&1 (1)

(I) what about hrtg("u) < ps-ppy, (#)?
We are given (%, :a < K) # Fo 0, %0 Cu,a # 8= Fo N Fz = 0.
Easier: looking modulo a fix filter D.
()2 for D € Filyy,, let Zop={f€ Zu:—(39€ Zu)(g<p f)}.
Maybe we have somewhere a bound on the size of %, p.

{depth}
§ 3(B). Depth of Reduced Power of Ordinals.
Our intention has been to generalize a relative of [Sh:460], but actually we are
closed to [Sh:513, §3]. So as there we use IND but unlike [Sh:938] rather than with
rank we deal with depth.
{k1}

Definition 3.10. 1) Let sucx («) be the first ordinal 8 such that we cannot find
a sequence (%, : x € X) of subsets of 3, each of order type < « such that § =
H{ %, -z € X}.

2) We define suc[;] () by induction on € naturally: if e =0 it is v, if e = (+ 1 it is
sucx (suc[f(] (o)) and if € is a limit ordinal then it is U{suc[f(] (@) : ¢ <e}.

3) For a quasi-order P let the pseudo ordinal depth of P, denoted by ps-o-Depth(P)
be sup{~y: there is a < p-increasing sequence (X, : a < 7) of non-empty subsets of
P}.

4) o-Depth(P) is defined similarly demanding | X, | = 1 for a < 7.

5) Omitting the “ordinal” means ~ is replaced by |v|; similarly in the other variants
including omitting the letter o in ps-o-Depth.

6) Let ps-o-Depth™ (P) = sup{~ + 1: there is an increasing sequence (X, : a < )
of non-empty subsets of P}. Similarly for the other variants, e.g. without o we use
|v|T instead of v + 1 in the supremum.

7) For D afilter on Y and & € ¥ (Ord \{0}) let ps-o-Depth (@) = ps-o-Depth™* (Ila, <p
). Similarly for the other variants and we may allow «; = 0 as in 3.1(3).

8) Let ps-o-depth}, (@) be the cardinality of ps-o-Depth},(a).

Remark 3.11. Note that 1.14 can be phrased using this definition. (xa)
k

Definition 3.12. 0) We say x is a filter w-sequence when x = ((Y,,D,) : n <

w) = (Yxn, Dxn : n < w) is such that D,, is a filter on Y, for each n < w; we may

omit Y, as it is U{Y : Y € D} and may write D if A D,, = D.
n
1) Let IND(x),x has the independence property, mean that for every sequence

F = (Fnn,:m <n < w) from alg(x), see below, there is ¢ € [] Y,, such that
nw

m<n<w=ty ¢ Fpna(tl(m,n]). Let NIND(x) be the negation.
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2) Let alg(x) be the set of sequence (F,.,, : m < n < w) such that F,, :
I1 Ye— dual(D,).

{=m+1

3) We say x is k-complete when each Dy, is a s-complete filter.

Theorem 3.13. Assume IND(x) where x = (Y, Dy,) : n < w) is as in Definition

3.12, D,, is kn-complete, k, > Ni.

1) DC + ACy, for n < w] For every ordinal ¢, for infinitely many n’s ps-o-

Depth()¢, <p,) < .

2) [DC] For every ordinal ¢ for infinitely many n, o-Depth((Y»)¢, <p ) < ¢, equiv-

alently there is no <p, -increasing sequence of length ¢ + 1.

Remark 3.14. 0) Note that the present results are incomparable with [Sh:938, §4]

- the loss is using depth instead of rank and possibly using “pseudo”.

1) [Assume ACy,] If for every n we have rkp, (¢) > sucpju(p,)(¢) then for some

D} € Fily, (Yy) for n < w we have NIND((Y,,, D}) : n < w). (Why? By [Sh:938,

5.9]). But we do not know much on the D}’s.

2) This theorem applies to e.g. ( = R,,Y,, = N,,,D,, = dual(J?E’f). So even in

ZFC, it tells us things not covered by [Sh:513, §3]. So it also tells us that it is easy

by forcing to get, e.g. NIND(((NnH,dual(JSSH)) :m < w)), see 3.19. Note that

Depth and pcf are closely connected but only for sequences of length > hrtg(2(Y))

and see 3.19 below.

3) If we assume IND((Y;,(n), Dy(n) : n < w)) for every increasing n € “w, which is

quite reasonable then in Theorem 3.13 we can strengthen the conclusion, replacing

“for infinitely many n’s” by “for every n < w large enough”.

4) Note that 3.13(2) is complimentary to [Sh:835].

Observation 3.15. 1) If x is a filter w-sequence, x is X;-complete and n, < w and
IND(x[[n4,w) then IND(x).

2) If x is a filter w-sequence and IND(x) and 7 € “w is increasing and y =
(Yen(n)s Dxy(n) : m < w) then y is a filter w-sequence and IND(y).

Proof. 1) Let F = (Fy;m :n < m < w) € alg(x), so (F,m : n € [n.,w) and
m € (n,w)) belongs to alg(x|[n.,w) hence by the assumption “IND(x[[n.,w))”
there is ¢ = (t, : n € [ny,w)) € [] Y, such that ¢, ¢ F), ,,(t](n,m)) when
Nn>n.

ny < n < w. Now by downward induction on n < n,. we choose ¢, € Y, such
that t,, & Fp, m((t1[n + 1,m]) for m € [n + 1,w). This is possible as the countable
union of members of dual(D,,) is not equal to Y,,. We can carry the induction and
(tn, 1 n < w) is as required to verify IND(x).

2) Let F = (F;j :i < j <w) € alg(y). For m < n we define F},

» as the following

function from [[ Yx into dual(Dx ) by
k=m—1

o ifi <jm=n(),n=mn()and §= (s : k€ (mmn]) e ][ Yxi then

k=m+1
Frn(8) = Fij((sy(itn) + k € [L,7 —1)]))
e if there are no such 7, j then F,, ,, is constantly (.

As IND(x) holds there is t € [] Yx,, such that m < n = t,,, ¢ F,, o (t](m,n)). Now

t' = (tya) - k <w) € [[Yxm) = [1Yy,n is necessarily as required. Os.15
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Proof. Proof of Theorem 3.13

We concentrate on proving part (1), part (2) is easier, (i.e. below each .%, . is a
singleton hence so is ¢, ,, _ so there is no need to use ACy, ).

Assume this fails. So for some n, < w for every n € [n.,w) there is a counter-

example. As ACy, holds we can find a sequence (%, : n € [n.,w)) such that:

© for n € [n.,w)
(a) jn:<jn,s :5§<>
(b) Fn. C Yn( is non-empty

(¢) #, is a <p,-increasing sequence of sets, i.e. g1 < g2 < (A f1 €
yn,al /\f2 E y’n,&g : fl <Dn f2-

Now by ACy, we can choose (f,, : n € [n.,w)) such that f,, € %, ¢ for n € [n,,w).

() without loss of generality n, = 0.

[Why? As x[[n.,w) satisfies the assumptions on x by 3.15(2).]

Now
n—1
B form <n <wletY), = Y and for m,n < w let Y,} = U{Y}) -
l=m
kelmmn]}soYl, =0=Y) ifm>nand¥) K ={<>}=Y], if

m=mn;soifne¥y, , and s e Yy, t €Y, wedefine (s)"n €Yy and
1" (t) € Yit1 nt+1 naturally

Hy for m <n let %}ln be the set of functions g such that:
(a) g is a function from Y}, ,, into ¢ + 1

®) O #n€Yp, =gn <
(c) if k € [m,n) and n € Y, then the sequence (g({s)'n) : s € Yi)
belongs to .7, 4(n)
B3 e ={9€9,,:9(() =c}fore <Candm <n<w.

Now the sets ¢, are non-trivial, i.e.
H, if m <n and e < ¢ then %}Ln’e £ ().

[Why? We prove it by induction on n; first if n = m this is trivial because the
unique function g with domain {<>} and value € belongs to ¢, ,, .. Next, if m < n
we choose f € .#,,_1 . hence the sequence <€€T}%n717f(s) : s € Y,_1) is well defined
and by the induction hypothesis each set in the sequence is non-empty. As ACy,, ,
holds there is a sequence (gs : s € Y,,—1) such that s € Y,,_1 = g5 € %7117n_17f(s).
Now define g as the function with domain Y, :

9(() =€

g(v™(s)) = gs(v) for v € Ynl%nf1 and s € Y,,.
It is easy to check that g € 4! indeed so Hj holds.]

m,n,e
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Bs if g,h €9, ,, and g(()) < h(()) then there is an (m,n)-witness Z for (h, g)
which means (just being an (m, n)-witness means we omit clause (d)):

(a) Z CY,,, is closed under initial segments, i.e. if n € ¥;), N Z and
m < k < ¢ <n then n[[¢,n) EYZO,nﬂZ

®) ez

(c) ifne ZNY),,,m<k<nthen {scYy:(s)'ne Z}e Dy

(d) if n € Z then g(n) < h(n).
[Why? By induction on n, similarly to the proof of Hj.]

Be (a) we can find g = (g5, : » < w) such that g, € gol,n,g forn <w
(b) for g as above for n <w,s € Y, let gni1,5 € 9y,, be defined by
g1 (V) = Gus1 (" () for v € Y.

[Why? Clause (a) by Hs as ACy, holds, clause (b) is obvious by the definitions in
o + H3.]
We fix g as in Hg(a) for the rest of the proof.

B7 There is ((Z,s:s € Yy) :n <w) such that Z, s witness (gn,gn+1,s) for
n<w,seY,.

[Why? For a given n < w, s € Y,, we know that g,+1((s)) < ¢ = g»(()) hence Z,, s
as required exists by Hs. By ACy, for each n a sequence (Z,, s : s € Y;,) as required
exists, and by ACy, we are done.]

Bs Z, ={0}U{v(s):se€Y,_1,v € Zy_1,}is a (0,n)-witness.
[Why? By our definitions.]

By there is F such that:
(@) F=(Fpn,:m<n<w)
(0) Fon - Ynlwrl_’nJrl — dual(D,,)
(¢) Fpn(v)is{s €Yy : v (s) ¢ Z,_1} when v € Z,, and is () otherwise.
[Why? As clauses (a),(b),(c) define F.]
B¢ F witness IND(((Y,,, Dy,) : n < w)) fail.

[Why? Clearly F' = (F, ,, : m < n < w) has the right form.

So toward contradiction assume ¢ = (t, : n < w) € [] Y, is such that
n<w

($)1 m <N <w =ty & Fpalt(m,n]).
Now
()2 t][m,n) € Z, for m <n < w.

[Why? For each n, we prove this by downward induction on m. If m = n then
t/[m,n) = () but () € Z, by its definition. If m < n and t[[m + 1,n) € Z, then
tm & Fun—1(t[(m,n]) by (x)1 so t[[m,n) = {t;) (E[m + 1,n)) € Z, holds by
clause Hy(c).]

(#)s gnt1(E1fm, n]) < gn(Elm,n)).
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[Why? Note that Z,,, is a witness for (gn, gn+1.,) by Br. So by Hs (see clause
(d) there) we have n € Z, 1, = gnt1.,(n) < gn(n). But m < n = t|[m,n] €
Zn+1 = t][m,n) € Z,4,, the first implication by (*)2, the second implication by
the definition of Z, 41 in Hs. Hence by Hg(b) and the last sentence, and by the
sentence before last g,41(t[[m,n]) = gni1.e, (E[[m,n)) < gn(t[[m,n)) as required.
So ()3 holds indeed.]

So for each m < w the sequence (g,(t[[m,n) : n € [m,w)) is a decreasing

sequence of ordinals, contradiction. Hence there is no ¢ as above, so indeed Hig
holds. But Hjg contradicts an assumption, so we are done. U313

Remark 3.16. 1) Note that in the proof of 3.13 there was no use of completeness de-
mands, still natural to assume N;-completeness because: if D!, is the Xj-completion
of D,, then IND((D}, : n < w)) is equivalent to IND(D,, : n < w).

2) Recall that by [Sh:513, 2.7], iff pp(R,,) > R, then for every A > X, for infinitely
many n < w we have (Vu < \)(cf(p) =R,y = pp(u) < A).

3) Concerning 3.17 below recall that:

(A) if Y, is a regular cardinal, D, witness Y,, is a measurable cardinal, then
clause (a) of 3.17 holds, but [Sh:938, §4] says more

(B) if p = p~* and PP, is the Levy collapse a measurable cardinal A > u to be
ut with D a normal ultrafilter on ), then IFp, “the filter which D generates
is as required in (b) with g in the role of Z,”, by Jech-Magidor-Mitchel-
Prikry [JMMP80].

So we can force that n < w = Y,, = Ng,.
4) So

(a) if pp(Ry) > Ny, and R, divides ¢, cf(0) < N, and § < Vs then pp(N5) <
N5+

(b) we can replace X, by any singular © < X,

() if, e.g. 0, < A = N5, 0 < g1 and cf(6,) < Vs, for n < w, then, except
for at most one 1, pp(Ry,, ) < V,+.

5) We had thought that maybe: if y is singular and pp(p) > N,+ then some case
of IND follows. Why? Because by [Sh:513, 2.8] this holds if 4 < X+ provided that
p=Rs A|6]% < p, (even getting IND((dual(JY?) : n < w)) for some increasing
sequence (A, : n < w) of regular cardinals < p with limit g if cf(p) = Ng and
C {\T : X\ € F} for any pre-given club F of u if ¢f(u) > Ng). Ifonly = RsA|d| < p
then in [Sh:513] we get a weaker version of IND.

Claim 3.17. [DC] For x = (Y,,, Dy, : n < w) with each D,, being an Ni-complete
filter on Yy, each of the following is a sufficient condition for IND(x), letting Y (<
n—1
n):= [[ Y., and for m < n, let Z, ., = {t : t is a function from ] Y into
m<n {=m+1
Yo} and let Z,, = 1] Zmn
m<n
(a) Dy is a (< Zy)-complete ultrafilter
(b) o D, is a (< Zy,)-complete filter

{k10}

{k15}
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e for each n in the following game Ox ., the non-empty player has a
winning strategy. A play last w-moves. In the k-th move the
empty player chooses Ay € D,, and (XF :t € Z,),
a partition of Ay and the non-empty player chooses t, € Zy,.
In the end the non-empty player wins the play
if N thk_ is non-empty
k<w
(¢) like clause (b) but in the second part the non-empty player instead ty, chooses
Sk € Z, satisfying |Sk| <x |S| and every Dx , is (< S)-complete, S is
infinite
n
(d) if m <n<wthen Dy, is (< [ Yi)-complete®
k=m+1

Proof. Straightforward. E.g.

Clause (b):

Let ( st,, : n < w) be such that st,, is a winning strategy of the non-empty player
in the game Ox 5.

Let F' = (F,,.,:m <n < w) € alg(x) and we should find a member of [[Y,, as

n
required in Definition 3.12(2). We now, by induction on i < w, choose the following
objects satisfying the following condition

m
(x); (a) for k<m and j <i,Gjkm is a function from [ Y7 into Yj
t=k+1
(b)(a)  for m < w, ((Xjm,tjm):j <i)is an initial segment of a play
of the game Ox ,, in which the non-empty player uses the
strategy st,,;

(B)  we have Xj ., = (Xjmi:t € Zm) 50 Xjme C Vo
(V) tim = {jrm:k<m)and t;pm € Z

(0) Xjme= () Xjkmt,, see clause (e) when
k<m
t=(tx: k<m) € Zn, Ntk € Zim
k

(e)a) YjmisY,ifj=0
(ﬂ) Yj,m is ﬁ{XL,m,k,tjwk,m < .7} cYn, lf] S (O,Z)
(d)(a) if j=0<ithen Gjpm is Fim

(B) ifj € (0,i) then G; k., is defined by: for (yxt+1,....um) € [] Yi
I=k+1
we have Gy em ((Urk+1, - Um)) = Gj—1,k,m+1 (Yt 15 - - -, Ym+1))
for any ym+1 € Yjm+1 (so the value does not depend on y,+1!)

() fork <mandte€ Zymlet X pmebe{y € Vo if (Ykt1,.-.,Ym—1) €

m—1
H }/e then Gj,k,m(yk+17 sy Ym—1, y) = (yk+la s 7y’m71)}-
(=k+1

530 the Yj,’s are not well ordered! But, on the one hand, if a < hrtg(Yy,) = Dy is |a|T-
complete then a¥» /D, = a. On the other hand, if D,, is Xj-complete and a¥" /D 2 o then
D projects onto a uniform Yj-complete filter on some pu < « and those projections cover the
ultra-power.
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Clearly (x)p holds emptily.

For i > 1, let j =i —1 clearly (Y., : m < w) is well defined by clause (c), hence
we can define (X g m¢ :t € Z m) by clause (e) and let X ¢ = X pme, 1 k <
m} when t = (t : k < m).

So Xjm = (Xjms : t € Zp) is a legal j-move of the empty player in the game
Ox,m; SO We can use st,, to define t;,,, = (¢j km : k < m) as the j-th move of the
non-empty player.

Lastly, the function G i, is well defined. Having carried the induction, for each
m clearly (X m,t;m):j <w) is a play of the game Ox_,,, in which the non-empty
player uses the strategy st,, hence win in the play, so { X t,,, : j < w} is non-
empty so by ACy, we can choose § = (y,,, : m < w) such that y,, € W X;mt,,,
j<w}.

It is easy to see that g is as required in Definition 3.12(2). Os.17

Conclusion 3.18. [DC] Assume (k, : n) is increasing and k, is measurable as
witnessed by the ultrafilter D,, or just D, is a uniform® Y(Z(k,_1))-complete
ultrafilter on k,,.

Then for every ordinal ¢, for every large enough n we have o—Depthj{,n () <.

Proof. By 3.17 we know that IND((D,, : n < w)) and by 3.13(2) we get the desired
conclusion. Us.1s

Claim 3.19. (ZFC for simplicity).
If (A) then (B) where

a n =2=C n) an n "< Aps41 ana po= n.n<wyan =l
A A f(A d (M) <N A d YA d A +
n 18 the natural A\, -complete -c.c. forcing adding (fn.o:a <
b) P, is th DN l )\f{ forci ddi f i A

of members of M (\,), <gbd -increasing

(¢) P is the product [[P,, with full support

(B) in V¥ we have NIND((dual(JY?) : n < w)) and a cardinal 0 is not collapsed
if ¢ (ut, 1.

Proof. So p € P, ff p is a function from some u € [AT]<* into U{¢(\,)) : ¢ < A},
ordered by P,, = “p < ¢” iff @ € Dom(q) = o € Dom(q) A p(«) C ¢q(«). Now use
3.13. Us.19

§ 3(C). Bounds on the Depth. We continue 3.2. We try to get a bound for
singulars of uncountable cofinality say for the depth, recalling that depth, rank and
ps-Tp are closely related.

Hypothesis 3.20. D an N;-complete filter on a set Y.

Remark 3.21. Some results do not need the Nj-completeness.

6Recall T(A) = min{6: there is no one-to-one function from 6 into A}.

{20}

{k24}

{boun}

{et}
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Claim 3.22. Assume & € ¥ Ord.

1) [DC] (No-hole-Depth) If ¢ + 1 < ps-o-Depth}, (@) then for some B € ¥ Ord, we
have 3 < & mod D and ¢ + 1 = ps-o-Depth™ ().

2) In Definition 3.1 we may allow .%. C Y Ord such that g € F. = g < f mod D.
8) If 3 € YOrd and @ = B mod D then ps-o-Depth® (@) = ps-o-Depth™ (53).

4) If{y €Y : ay = 0} € D" then ps-o-Depth™(a) = 1.

5) Similarly for the other versions of depth from Definition 3.10.

Proof. 1) By DC without loss of generality there is no 8 <p @ such that { +1 <
ps-0-Depth™ (). Without loss of generality & itself fails the desired conclusion
hence ¢ + 1 < ps-o-Depth™(B). By parts (3),(4) without loss of generality s €
Y = as > 0. As ¢ +1 < ps-o-Depth™(a) there is a <p-increasing sequence
(Fe 1 e < ¢+ 1) with Z. a non-empty subset of Ila. Now any 3 € F¢,( +1 <
ps-o-Depth™ () as witnessed by (Z. : € < (), recalling part (2); contradicting the
extra assumption on @ (being <p-minimal such that...).

2) Let Z! = {f18) . f € Z.} where fl?l(s) is f(s) if f(s) < a, and is zero otherwise.
3),4) Obvious.

5) Slmllarly D3,22

Claim 3.23. DC + ACy/ Ifa,3 € YOrd and D is a filter on' Y and s € Y =

|ovs| = [Bs] then ps-Tp(a) = ps — Tp(f).
Proof. Straightforward. Os3.03
Assuming full choice the following is a relative of Galvin-Hajnal theorem.

Theorem 3.24. [DC + ACy ] Assume a(l) < a(2) < AT, ps-o-Depth™()\) <
M) and € = hrtg(Ya(2)/D). Then ps-o-Depth,(AT(2)) < \F(a)+&),

Proof. Let A = {p: A\t < 1 < \e(W+EY and for every p € A let

()1 Fu=F ) ={f:f e {M*:a<a(2)}and p= ps-Depth}(f)}
(*)2 obviously (%, : u € A) is a sequence of pairwise disjoint subsets of ¥ a(2)
closed under equality modulo D.

By the no-hole-depth claim 3.22(1) above we have

(x)3 if g1 < po are from A and fo € %, then for some f; € .%,, we have
f1 < fo mod D

(¥)s &€ >sup{¢ +1: F(A\T(+D) £ () implies the conclusion.
Lastly, as ¢ = hrtg(¥ «(2)/D) we are done. Os.04

Remark 3.25. 0) Compare this with conclusion 1.11.
1) We may like to lower & to ps-Depth}(a(2)), toward this let

(#)1 #, ={f € F, : there is no g € F, such that g < f mod D}.
By DC

()2 if f € F#, then there is g € F, such that g <p f mod D.
2) Still the sequence of those %/, is not < p-increasing.

Instead of counting cardinals we can count regular cardinals.

{c2}
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Theorem 3.26. [DC+ACy ] The number of regular cardinals in the interval
(At ps-depthf (AT*?) is at most hrtg(¥ a(2)/D) when :

(a) a(l) <a(2) <A*

(b) K > N()

(¢) D is a k-complete filter on 'Y

(d) At = ps-Depthp(N).

Proof. Straightforward, using the No-Hole Claim 1.13.

39

Us.26
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§ 4. PRIVATE APPENDIX

{pa}
When ready §3D will be moved to the paper or to a new one.
{rgch}
§ 4(A). RGCH Revisited.
Discussion 4.1. (2013.2.12) More try to continue [Sh:386] with games for D €
04} Fill(Y) giving rank to 2¢ < &, function from ¥ Ord.
h4
Theorem 4.2. Assume DC + AC,.
If p is strong limit (i.e. x < p = 2X < p and mu uncountable) then for every
A > p for some k < p we have: if £ < p,x < X\, D is a k-complete filter on € then
) Depthp(\) < A, that is, depthp(\) = Depth(¢\, <p) < A.
h7

Theorem 4.3. The second composition theorem. Assume ACy; we have A\ <

Depth™ ([ P;, <p) when :
i€z

(a) E is a filter on Z
(b) (P;:i € Z) is a sequence of partial orders
(¢) A <Depth™ (] Ai, Mp)

i<z
(d) >‘u < Dep‘Eth (R)
(e) <p is the following partial orders on P = [[ P, : f <p g = {i € Z :

f(i) <p, g(i)} € E. ez

Proof.
(a) E is a k-complete filter on Z
b) (Y; :i € Z) is a sequence of regular cardinals

(
(¢) XA =ps-tef( [ M, <m)

i€z
(d) Y =(Yi:ie€Z)
() D=(D;:i€ Z)
(f) D; is a k-complete filter on Y;
(9) P=(Pi;:i€ Zj €Y;) is a sequence of regular cardinals (or just limit
ordinals)
(h) Ai = ps-tef( [ Pij,<p,)

JEY:
(1) Y ={(i,j):jeY,and i € Z}
() D={ACY: for some B € E we havei € B= {j:(i,j) € A} € D;}.
(I

Proof.
(¥)o D is a k-complete filter on Y.

[Why? Straightforward (and do not need any choice).]
Let (Zio o < \iyi € Z) be such that

($)1 (a) Fi=(Fia:a <)) witness \; = ps — tcf(P)
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(b) Fia #0.

[Why? Exists by clause (d) of the assumption, for clause (b) recall [Sh:938, 5.6].]
By clause (c) of the assumption let ¢ be such that

(¥)2 (a) 9 =1(Y5:B < \) witness A = ps—tcf(']_[ i, <E)
(b) 95 # 0 for < A ~
Now for f < A let
(x)s Fp:={f:f¢€ HZPi and for some g € 95 we havei € Z = f(i) = .F; 4(:)}
ic
(%)a the sequence (F3 : B < A) is well defined (so exists).
[Why? Obviously.]
(x)5 if B1 < B2, [1 € Fp, and fr € Fp, then f1 <p fo.

[Why? Let g, € 93,, witness f; € Fp, for £ =1,2. As /1 < B2 by (x)2 we have
B:={ie Z:g1(i) < g2(i)} € E. For each i € B we know that ¢1(i) < g2(i) < \;
and as f1(i) € F; g, 1), f2(i) € F; g,(i); hence recalling the choice of (F; o : a < Aj),
see (x)1, we have f1(i) <p, f2(i). As B € F and fi1,f2 € [] P; it follows that

ieZ
fi<p f2-]

x)g for every 8 < A the set .Z3 is non-empty.
B

[Why? Recall 95 # () by ()2(b) and let g € 93. As (F; 4;) : i € Z) is a sequence
of non-empty sets (recalling (x)2(b)), and we are assuming ACy there is a function
g€ [l Ziga) s0 g€ Fp,s0 Fp # ) as required.]

i€z

(x)7 if f. € ] P, then for some 8 < X and f € %3 we have f, < f mod D.
i€z
[Why? For each i € Z let a; = min{a < \;: there is g € F,, such that f.(i) <p, g},
clearly well defined so @ = (a; : i € Z) exists. By the choice of 4 there are 5 < A
and g € 93 such that @ <g g. Recalling .73 # () choose f € %, it is as required.]
Together we are done proving the theorem.

Conclusion 4.4. The third composition theorem: assume ACy and x > .

We have A < Depth™( [[ Pi;,<p) and D is a k-complete filter on Y when ?
(i,5)€Y

Proof. Combine the proof of 2.6 and 4.3. Uag
ADD 39A7 NOT SENT

{h10}
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§ 5. PRIVATE APPENDIX

§(3D)  Concluding Remarks, pg.??

[Comments to [Sh:938].]

Old Proof of 2.2 moved from pgs.18,19:

First for the “only if” direction, assume ps — tcf (Tla, <p) is well defined and call
it A.

Let .7 = (Z, : a < \) witness A = ps-tef(a, <p). For f € U{Z, : a < A}
let fI*l € YOrd be defined by flI*l(s) = sup{f(t) : t € s/E}. Clearly fI* € Tla
ast € Y = cf(ay) > hrtg(Y) by clause (a) of the assumption. Let Fh =
{ft . f e 7.} for a < X so (9‘0[4*] :a < \) exists and Z C Ta. Also
fieFa Nfa€Fo, Ny <aa < A= [1i<p fa= fi<p fo= fl[*] <b fz[*] hence
Oz1<042<>\/\f2€j1[*]/\f2€a@\2[*]éflgpfg. B

Now apply 2.1, getting (Y{,Y3) as there, but by the choice of .# necessarily
Y] = 0 mod D. Hence for some club E of A, (9‘0&*] : a € E) is <p-increasing cofinal
in Ila.

Lastly, for f € U{ﬁo[t*] ca € E} let f1 € 0rd be defined by fI**l(t/E) =
f(t), well defined as f[(t/FE) is constant. Let zl = {fb+l: fe fo[t*]} for o € E.
Easily (5‘&**] : € F) witness the desired conclusions, that is, ps — tcf(Ilag, <p,)
is well defined and equal to A, so we have proved the “only if” implication.

§ 5(A). Concluding Remarks.

Those are comments to [Sh:938].

Definition 5.1. We say (Ila, <p, ) has weak x-true cofinality J, omitting £ means
Kk = N, if there is some witness or (D, f)-witness % which means:

(a) D C{D: D an k-complete filter on Y extending D} is not empty
(b) D, =n{D: D € D}

(¢) F =(Fpao:DeD,a<i)

(d) (Fp,a:a<d) witness (Ila, <p) has pseudo-true-cofinality J.

Definition 5.2. ¢ = wtcf, (Ila, <p,) means (Ila, <p,) has weak x-true cofinality
0 and 0 is minimal (hence a regular cardinal).

Discussion 5.3. 1) Why do not ask 6 to be regular always? We may consider a

sequence of §’s and as in id — cf (@) in [Sh:1005].

2) Can we (ZF + DC + ACg,) prove [Sh:460], using ps — Tp(@)? Use [Sh:460, §1].

3) Can we generalize the proof of [Sh:829, §1] using ps — Tp(f)? We get A is

ps— Tp(I] M),k < p as witnessed by (Z : a < \), but toward contradiction we
<K

have D,, € Fil}{z (Knt1)-

Remark 5.4. For D € Fill(Y), ps—Tp(f) is closely related to sup{ps—Tp, (f). D;
is a filter on some 6 < hrtg(Y) such that Dy <gx D so natural to define ps — Ty.
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Definition 5.5. 1) Assume Dy is a set of filters and let prj(ID;) be

{Dy: for some D; € Dy, i < hrtg(Dom(Ds)) and
h:Dom(D;1) — u we have Dy = h(D1)}.

2) Let ps — Tp(@) = sup{ps — Tp(a) : D € D}.
Claim 5.6. LetDy be a set of Ny -complete filters, Do = pry(Dy). Then the following
cardinals are S-almost equivalent where S = Filix1 (D) = U{Fil?lQl (D1) : D1 € Dy}

(a) ps — Tp, (@)

(b) ps — Tp, (@)

(¢) FILL.
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§ 6. ON RGCH WITH LITTLE CHOICE

If we assume (ZF 4+ DC of course and) Ax4 can we prove a theorem parallel to
the RGCH from [Sh:460]? See [Sh:1005]. We like to prove such a result just that
assuming DC; so if we have enough cases of IND, we use [Sh:955, §(3B)] if not,
assume for every x we have p more or less as in [Sh:938, 3.1], i.e. omitting the
ranks such that (VA)AX?\WMNO all D € Dy are p1-complete. We try to repeat.

So trying to immitate, e.g. [Sh:829] in the main case we have d € Dp,a € ¥ (Da.
Without loss of generality (Vt € Yq)[(as,11) is as required], using the induction
hypothesis.

For s € Yy, using ¢/ : [a]<*P) — [a ]<“(P) which exists by AxY,... we have
({ cyp B <) e cDy,By € Fﬂ,{(11 p)(Dem)> such that every: if d €
Dsi,, s € Ya, f € YIel(a,) then for someset ((y;, 5i) :i < ¢ < 6(i,p)), N V f(s) =

t€Ye 1

Jeyipi(s).

Why? Given (e, f) if there is no such sequence, we can find a filter (i1, p)-
complete filter on Y, such that...

But we need more: given f = (fs : s € Y3), fs € YIela, and we like to consider
all fs simultaneously, say find ((ys,i,8s:) : s € Ys,7 < is) as above.

If we have d € D, = ACy, this can be done. So the status of Ax} change:
given p we say? If (VzAY)),...) fix. If not, then for some A(x) we have i < cf(p) =

ﬂAxgyn(iyp)le (can determine the other cases).

We get

()1 if O < pp then I = [A]<? and D,, = dual(I) then IND((I, D : n)).
Question 6.1. Can we use (([\]*("P) I, .5 )) :n < w)?

Can we avoid using (AC,(py : 4 < cf(p))? Given f = (fo : s € Yq) we can

consider Y, = Yg x Y, and for every sequence x = ((ys, fs) : s € Ya), fs € Y®(a)
let Ax = {(s,t)(Ya x Yo) : fs(t) = fs(t)}.

Now we may look at (R not too large)

D* ={Z CY,: thereis (x, : 7 € P) such that Y\Z C U Ax, }.
reR

So Dp is a &y (i1, p)-complete filter.
Let D7, . be the projection of Dy, to {s} € Ye. Clearly it is the filter defined by
(s, fs)-

Recall [Sh:835, 2.2].

Definition 6.2. We say Axg,m , When some cf exemplifies it which means:
(a) cl:[a]=" — [a] =

(b) u C cl(u)

(¢) ur Cuz = clluy) C cl(usg)

(d) there is no sequence (o, : n < w) € “a such that o, ¢ cl{ax : k > n}.

Definition 6.3. We say x is a filter system (as in [Sh:938, 3.1], add rp a, Rep,,(a,p)(
but no rk

(a) p is singular

Dy)
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(b) each d € D is (or just we can compute from it) a pair (Y, D) = (Y4, Dq) =
(Y[d],Da) = (Yp,a; Dp,a) such that:
(o) hrtg(Ya) < p, on hrtg(—) see Definition ??
(8) Dgq is a filter on Yy

(¢) (o) K, =kp, =k(i,p) is a cardinal < p
(ﬁ) 11 < 19 = Kp, iy < Kp,is
(1) (Yo < w3 < ()0 < rips
(0) ifd € D3, then Dq is kp ;-complete
() p is strong limit
(d) («) X is a function with domain D such that 3(d) C D
(8) ifdeDandeec X(d) then Yo = Yy [natural to add Dgq C De,

this is not demanded but see ?7(2)]
(e) («) jis a function from D onto cf(u)
(8) let Ds; = {deD:j(d) >} and D; = Ds;\Dirs
(1) e€x(d)=je) > jd)
(f) for every o < p for some i < cf(u), if d € D>, then d is (p, < o)-complete
where
(9) p is complete when D>; = {(k, D) : K € [kp,, ), D a kp-complete filter
on K}.

Definition 6.4. Let Axgﬁp means that: there is a function ¢/ satisfying (a)-(c) of
6.2 and:

(d) ifd € D and u € [o] <MD then |cl(u)| < x(d, p).

FILL

Claim 6.5. Assume Axg%gm D a filter on' Y and & € ¥ (a, + 1).
Then ps — o — Depth (@) <g 0 — Depth,(@).
Why?

Proof. Let cf witness Az0_, and assume u € [a]<M%(Y) = cf(u) € [a]<*. Let
k= sup{|cl(u)|* : u € [a, ™8O}, For transparency as 0 ¢ Rang(a), assume
B+« < ps — 0 — Depth, (&), so there is a sequence (Fp : f < B,) witnessing it so
fe yg = f<a.

For each 8 < B, so Fp CIla, f € .F := U{F5 : B < (.}, there is y € Rep,.(D)
which represents f which means:

(x)ry (a) y=(Y,D,Ah)
(b) if BeDand BC Athen cl{f(t):tep}=cl{f(t):te A}
(¢) his afunction with domain Ay such that: h(t) = otp(f(t) Necl{f(s):
seAy})so<p
B if fi, fo € F3 are represented by y then fi[Ay = folAy.
Now

B [Rep,(D)| = [D x V&l
B for y € Rep,.(D) let %, = {5 < f+: there is f € F3 represented by y}
B (% :y € Rep(D, k)) is well defined

{a8}

{d10}
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B 8. =U{% :y € Rep(D, k)

B for y € Rep,.(D) and o € %, let gy g is the unique member of II& such
that: if f € #3 is represented by y then gy glAy = flAy and gy 5(t) =0
for t € Y\ Ay

B (gy.p: 0 € %) is <p-increasing sequence in Ila.
O

Claim 6.6. Assume D, is a k-complete filter on Y,k > Ny and Axgémgﬁ S0 7y
acts as an ordinal and p = x and S = Fili(D*,'y), so vy fizes the order type of
cl({f(s):s€Y}) and D = {dual(J[f,D]) : f € Y Ord}.
The following cardinals are S-almost equal for & € ¥ Ord
(a) 0— Depthg (@)
(b) ps — 0 — Depth(a)
(c) ps — Tp(@)
(d) Usup{rkp(a)+1:D e D}.
Proof. FILL. O

Theorem 6.7. Letp = (D, y,...) be a filter system and (Vo) (Vi < cf(u))(AXgﬁp,Hth).
Assume further AC,; oy for i < cf(p). For d € Dy let obey??
For every o (question: or A?) such that AX&K(p),Nl there is i < cf(up) such

that: if d € Dx; then the following as Rep,, (g p)(Da)-almost equal

(b) 0 —Depthp (a)

()

d) ps — TDd (a)

(€) Tkpy(a).
Remark 6.8. 1) For (b),(c) their being almost equal we already know, see §(3A).
2) Use rkq or rkp,? Presently, rkg.

ps — 0 — Depthp (@)

(a) «
(

Proof. Case 1: oo < p
Obvious.

Case 2: o < ™
Easy.

Case 3: a > ut and for d € D and a € Yl4a do we have o < ps — 0 — Depth(a).
Easy by the definitions.

Case 4: as ab there are d € D and & € Ydla.

Choose (gf : € < a) witness o < 0 — Dep‘uhgd () or more: such that J[g¥, D4]
is constant; Do the dual.

For s € Yy clearly i(s) = min{i < cf(p): for ay,i is as required in the claim}.
Clearly i(s) < cf(p) is well defined by the induction hypothesis

() without loss of generality for some ip, A = {s € Yq :i(s) = ip} € Dq.

[Why? See Definition ??, clause (x)?]
We choose iy € (ig, cf(r))) such that
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(x) FILL.

Now let e € Ds;, and B, < 0 — Depth™(a) and let (fs : B < S.) witness this.
Define (fss : 8 < By, s € Yq) with fg s the function from Ye into «. defined by

f8.5(t) = gg50)(s)-
let (€55 1 B < Bs, s € Yq) be defined by

* {ps = rkn,(f5s)-
Now
(*) fﬂ,s < Q.
Lastly, let ({5 : 8 < ) be defined by
o {3 = rkd(gg) where gg = (5575 HERS Yd).
Asrkg(@ =« and (€p,s : s € Yq) <p, @ we have
(%) & < a (or & < ).
Now for each £ < « let
(%) ug ={B < B : &3 =&}
It suffices (check formulation) to prove
B |uge| < hrtg(Fily, (Da) x Fily, (De)).
Why? For every § < . let x = (J(§s,5 = 5 € Ya), Da),x} = (J[(g}, .py(s) 1 t €

De), De] : s € Yd>,x% = J[fg,De,x% = (J[g;ﬁ’t,Dd] it eYe)]
Now

e if 81 < 1 < B, and (¢p,,%5,) = (£5,,X5,) then & =&.
[The delicate point: how much should i; or comp(e) be above d? or too similar to
[Sh:938, §2].]

* * *

Let J = J[<§5511 HERS d>,Dd], Js = J[<gfg[,2(t)(5) 1t e Dd>]

First, note that as {3, = g,, clearly A = {s € Yq : &3, , = &p,,s} = Yq mod J.
Also for every s € A we have By :={t € Yo : g5, (1) = 9f,..(1)(5)} = Yo mod J.

Is i; large enough?

* * *

A511ﬁ2 = {t eYe: fﬁl(t) < fﬁ2(t)} =Y. mod De
forteYy: A%hﬂz ={seV¥Yy: gfﬁl(t)(s) < gfgz(t)(s)}.

So

A511g2 = Ye mod De
A%I,BQ =Y. mod Dgq for t € Agth.

As hrtg(Dq) < comp(De) by the choice of iz and “e € D;,”, for some A, € Dg
we have
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e B, = {t € Yo: A} 5 = A} # 0 mod J where J = J[fs,,De] =
‘][fﬁzaDe]'

Hence

o for every s € A,,t € B, we have gs, (1)(5) < g, (1)(5)}-
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§ 7. PRIVATE APPENDIX
Bounbs

Saharon: check with [Sh:F1039]
Moved from pg.2:

84  Bounds

§(4B)

Minimality for ps-0-Depth

[We define “f is (Y, D, v)-ps-0-Depth(*)-minimal and variants (clarify which
we deal with). Note existence and how it commutes wit (D + A, : i < 9) —
(D+ U Ai).

i<
Depth is regular and obtained

[A main claim is that: f € YOrd, (Y, D, \T)-minimal then {y : f(y) is
regular} € DT (see 7.8), existence 7.10.]

Weakly inaccessible (to [Sh:F1039])

[We like to show that if g < cf(p) < p and g is not the accumulation point
of the class of inaccessible cardinals then there is no (weakly) inaccessible
cardinals € (u,ppgl_com(u)). This will be the main result of this section.
In [Sh:F1039] we shall get a similar theorem with somewhat different as-
sumptions.|

§5  Try to immitate [Sh:460], pg. 28 [to [Sh:F1039]7 till the end?], pg.29

[Check carefully.]

66 Absoluteness for non-well founded ultra-powers, pg.36

87  More pcf with little choice, a try, pg.39

§(7A)

Semi-filter

[Is it helpful to use semi-filters in [Sh:938, §3,84]7]

Games and Rank, pg.40

[This is an alternative to the present [Sh:F1039] using games and forcing.]

Various

[In 11.1, 11.2 we show that investigating ps-tcf it is enough to consider Y a
cardinal. In 11.3 we note ACy4g(v)=hrtg(v) Successor. In 7?7 we (7 check).
In 11.6 we show Ro < £ = cf(p) < p = rkypa(p) > p*. In 11.5 we use
pigeon L hull for J[f, D], nec?|

68  More, pg.42-44
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§ 7(A). Replacing rankp by Depthp - [FILL].

In ZFC we know that, e.g. for p singular strong limit of uncountably cofinality,
if A € (u,2"] is weakly inaccessible then weakly inaccessible are unbounded below
. We like to prove such results with little choice, for this we look at the minimal
case.

Definition 7.1. 1) We say f € Y Ord is (Y, D, )-ps-o-Deptht-minimal when (may
omit Y, D in this section), 7 < ps-o-depth},(f) but for no g € *Ord satisfying g < f
mod D do we have v < ps-depthp(f).

2) Similarly for other variants.

Claim 7.2. 1) If v < ps-o-Depth},(f) where f € Y Ord then ps-o-Depth™-minimal
g € YOrd is such that g < f mod D.
2) Similarly for other variants.

Claim 7.3. If f = g+ 1 € YOrd then ps-o-Depthf(f) = U{a +2 : a <
ps-o-Depth,(g)}.

Claim 7.4. 1) If f is (Y, D, \)-ps-depth-minimal and X\ is a limit ordinal then
{y €Y : f(y) limit} € D*.

2) If vy =04 1,0 a limit ordinal and f is (Y, D,~)-ps-minimal, then {y € Y : f(y)
a limit ordinal} # () mod D.

Proof. Fill more? O

Definition 7.5. Let f € ¥ Ord.

1) Let Jps-o-depth[f, D] ={ACY : A=0mod D or A € DT but ps-o-Depthp(f) <
ps-o-depth 4 (f).

2) Similarly for other variants, but we write ps-o-depth(+).

Claim 7.6. 1)y < ps-o-Depthp, 4, (f) for £ = 1,2 then v < ps-depthp, 4, ,4,(f)-
2) [ACp] If D is (< 0)-complete and v < ps-Depthp, 4,(f) for i < 0 and A =
U{A; : i < o} then vy < ps-o-Depthp, 4(f).

3) [AC.,] If D is k-complete and f is ps-Depth-minimal then Jps.o-deptn[f, D] is
k-complete ideal disjoint to D.

Proof. FILL O

§ 7(B). Depth is regular and obtained.
Recall

Definition 7.7. We call A inaccessible when A is regular uncountable limit cardi-
nal.

Claim 7.8. [ACy] Assume X is regular and f € Y Ord is (Y, D, A\*)-ps-o-depth-
minimal. Then {y € Y : f(y) is reqular} # ) mod D.

Remark 7.9. The assumption is equivalent to (Y, D, XA + 1)-ps-o-Depth™-minimal.
Proof. Assume that not, so without loss of generality

(¥)1 f(y) is not regular for y € Y’
(¥)2 f(y)is >0fory €Y.
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(¥)3 (a) Y1 ={y: f(y) successor ordinal}
(b)) Yo={yeY :cl(f(y)) < fy)}.
Clearly

(¥)4 (Y1,Y2) is a partition of Y.
By 7.6(1) without loss of generality
(%) £(x) € {1,2}, Yy € D, so without loss of generality Yy, =Y.

Case 1: l(x) =1
We get a contradiction by 7.3 to the minimality.

Case 2: ((x) =2

By ACy we can find (C, : y € Y)) such that Cy is an unbounded subset of f(y)
of order-type cf(f(y)). Let B3 = (B, : y € Y) with 8, = otp(C,), let F: IIf — TI3
be defined by (F(f))(y) = otp(Cy, N f(y)) and let H : 115 — I1f be H(g)(y) = the
h(y)-th member of C}).

Let h = (hy : y € Y), hy is the function with domain otp(C,) such that h,(e) =
ase< otp(Cy) Na e Cy Ae = otp(Cy Na).

Clearly (B, : y € Y) < f mod D hence v(*) := dp-o-Depthp({otp(Cy) : y €
Y)) < A. Define Z, C[[ By as {F(g) : f € Fu}

y

(¥)s F' = (F! :a <)) is as in 2.1 below.

[Why? As g1 < g2 mod D = F(g1) < F(g2) mod D.]
So let (Y1,Ys, E) be as in 2.1, hence

()6 if Y1 € DY then for some g € IIf we have AT < ps-Depth},.y, (9).
[Why? Choose g1 € Fin(p) then
(a) F(g1) < 8 mod D.

So letting go = H(F(g1)) € IIf we have go < f mod D and even g2 + 1 < f mod
D

Also (Z! : a € F) witness A < ps-Depth} (g2 + 1) where Z/ = {g*l : g € Z,}
where gl*l(y) is g(y) if g(y) < g2(y) and is zero otherwise.]

(%) if Y2 € Dt then X < ps-Depthpy, (8).

[Why? (Z! : a € E) witness it, or pedantically for o« < X let y(«) be the a-th
member of F and .#} = 354(&) and (72 :a < \) witness.]

[e3

Together by 7.6 we are done (check ps/ps-o). Ors

Claim 7.10. DC +ACy] If cf(\) = A > hrtg(Z(Y)) and AT < ps-Depth},(f)
and A is regular > hrtg(22(Y)) then there is f; such that

(a) fi € "Reg

(b) f1 < fmod D

(¢) fiis (Y, D,\T) — ps-DepthT-minimal.

{c53}
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Remark 7.11. Use just 7.8 and the existence of minimality.
So we can replace “regular” by any property which satisfies a parallel statement.

Proof. We try to choose (fn,Yn, tm) by induction on n such that

B (a) fn,€YOrd
b) fo=1f
c) n=m+1=f, < fn

(

(

(d) Yo={yeY: fu(y) is regular}\ U{Y,, : m < n} and ¢,, = 1}

(€) in=1iffe, #2iff Y, € DT and f, is (Y, D, \*) —ps-Depth " -minimal

(f) ifm<nand i, =1then f,|Y,, = fin|Ym

(9) ifn=m+1,Y, € DT and ¢, = 2 then f, < fm, mod (D +Y,,)

(h) ifn=m+1,Z, =Y\Y,\U{Yy:k <nand i =1} € DT then
fn < fm mod (D + Z,,).

Each step is O.K. (for (h) by 7.6) and so by DC we can carry the inductive choice.
In this case a D is Wj-complete, let Z € D be the set of y’s such that all the
relevant inequalities mentioned hold. As (f,(y) : n < w) is not decreasing, for some
m,y € Yo A = 1,50 Z' := U{Y,, :m < W, 1y = 1} € D and let g € YOrd be
91Ym = flYm if tmy = 1, g(y) = Ry otherwise.

Easily g is as required by 7.6. Check. U710

Conclusion 7.12. In 7.8 we can weaken the assumption - FILL.

Remark 7.13. The point is that we do not have to change the filter, hence the
demand on “\ large enough is weaker”.

§(3D)  Weakly inaccessible (to [Sh:F1039]7)

Claim 7.14. /DC—I—ACg(y) (?)]
Assume f € YOrd is (Y, D, \T)-ps-Depth™-minimal. If \ is weakly inaccessible
then {t : f(t) is weakly inaccessible} € DT .

Proof. Let

(¥)1 (@) Yo={t:f(t)=0}
(b) Y1 ={t: f(t) a successor ordinal}
(¢) Yo ={t: f(t) alimit ordinal of cofinality < f(¢)}
(d) Ys={t: f(t) is regular cardinal which is a successor
(e) Yy={t: f(t)is weakly inaccessible}.

Obviously
()2 (Y : ¢ <4)is a partition of Y.
By 7.6 without loss of generality

(*)3 (a) £(x) <4and Yy.) €D
(b)  moreover Yy, =Y.

{c55}
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The cases £(*) < 3 are easily discarded.

Also if ¢(x) = 4 then the desired conclusion holds, so we can assume £(x) = 3
and eventually will get a contradiction.

Choose f, such that

(¥) f. € YCard such that (f.(g))" = f(y) fory € Y.

By the assumption on f we can find

(x) F =(ZFs:a <) is <p-increasing, %, C IIf is non-empty.
FILL. Oy 14

Discussion 7.15. By ACy and 3.1(?) we can get A < ps-Depthp(f«). But does
this suffice? Or can we do the regular for ps-Depth-minimal?

§(3E)  Higher rank (to [Sh:F1039]7)
1) We like to repeat [Sh:g, V,VI],but there are some different points; fix k = cf(k) >
No, e.g. Nl.

First, suppose that we have AC g (), k large enough and () we have choice

and we know that 1k%(f,E) < oo for f € "y, does this imply the same for f €
®Ord? The remedy we take here is DC,.+. It is enough to use rkg4(f, E), so the
“antagonist” can chose any “legal filter”.
2) Fix E = E*. Now if A is regular (or less?) we can find rk%(fo, E) = rki(fo,E) =
A or just rk‘%Eo(f, E) > A. So for every a < \,E, := {FE : E > E, and for some
9 <si(E.) fo we have rk},(g,E) = k% (g, E) = a}. Hence for some E; > Ej, the
set % :={a: E; € E,} is unbounded in A (and has order type ). For a € % let
Fo={f<fo: rkji;l (9,E) = 1k}, (9,E) = a}. So (Fu : @ € %) is <,-increasing
and let f1 < fo be a <g)(g,)-lub.

Hence (forgetting fo) we have rk‘}fl( f1,E) = 1k°. Suppose we force by P =
{(E.) : D € E} getting G, D[G] what is 0(wf1/D); [Maybe better: what is
hetg(ILf/D) for f' € (I1f)V7)

Clearly > \*. Toward contradiction assume Ay = Ay = cf(\) or just Ay >
Sucyi(ny (A1), A1 > A\ B IFp “hrtg(I1f1/D) > Ay say [ witness this. Hence for
a < Ag the following set is non-empty

D2,a,ﬁ = {D : (El)D1 IHP’ “(39 € (7Tf1)V>(E(g)) = «a and rk4(ngk71) = rk%(ng) = ﬂ}

So for some Ey = (E1)[p,], the set % = {a < A1 : (3B)D2 € Dy o p} has order
type A1.

Let B, = min{B : Dy € Doy g} for a € us. Let F2 = {g € (mf1)V : Dy IFp
E(g) =, rkgj(gaE) = Boz}-

Again (Z2: a € U) is increasing.
3) Similarly with rk/*(fo) = A forcing with (D, D).
4) Now go back to [Sh:460]. The above is just going back to [Sh:386], [Sh:333], an
avenue | had tried and failed, but why?
5) Instead of DC,.+ we may consider a definition of a filter on [\]? with > Js(x)* or
so; we do not use real sets just definitions of the sets used. Now to prove in the game
Ox(A) the protagonist wins, we use y such that A C )\ |A| = K[| = x — (A)5¥.
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§ 8. A TRY ON IMMITATING [Sh:460]
Question 8.1. (to [Sh:F1039]7?)

Theorem 8.2. For every A there is n < w such that for no set a C AN Reg\uy, of
cardinality < p and p,-complete ideal I on a do we have ps-tcf(Ila, <) is a well
defined (regular) cardinal > X\, when :

Proof. We prove this by induction on A; there is such n let n(\) be the minimal
such .

Case 1: A< p

Easy: even for n = 0, as if k = cf(k) > pand a C Reg N A so trivially |a] < p
and I is Ny-complete ideal and (P, : a < \.) is witness to A, = ps-tef(Ila, <p)
then A, < hrtg(Z(Z(sup(a))) (can use less)?.

Case 2: A=y
Let n = 1 and use the Nj-completeness to get that without loss of generality a
is bounded in A and use the proof of Case 1.

Case 3: cf(A) > Ng, A >

We let (Ac : € < cf(X\)) be an increasing sequence of cardinals < A with limit A
so £ — n(\:) is a function from cf(A) to w hence for some ny we have A = sup{\. :
1’1()\8) = nl}.

Let ny be such that cf(\) < p = cf(\) < p,. Now max{ny,na} can serve.

Case 4: A\; = A\f or sup(AN Reg) < A.
Easy.

Case 5: cf(\) = Ng and A > p and A = sup(A N Reg).
Toward contradiction assume this fails. We first choose a;, D1 such that
(¥)1 (a) a1 € Reg N of cardinality < p

(b) D as Nj-complete filter on a;
such that

(¢) A\ = ps-tef(Ilag, <p,) is well defined and > X hence > .
Without loss of generality

()2 (a) arNptt =0and sup(a;) < A and ng = n(*) > max{n(d) : 0 € a;} <
w
b) sup(gai) < Ao < A

(
(¢) (a1) < piny < pe
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[Why? Note that n(0) is well defined for 6 € a; by the induction hypothesis. As
Dy is Rj-complete, for some ny < w the set af = {0 € a; : n(#) < n} € Df. By
xxx we can replace Dy by Dy + a) and even replace ay, Dy by a}, D}, also without
loss of generality no > ny and without loss of generality ns > n; and without loss
of generality some min(Reg\p) < min(ay).

Also, alternatively, n(sup(a;)) < no. Let ng > nj,ng be such that p,, >
hrtg(Fil*(a;)).]

By the assumption toward contradiction, there is a pair (a2, D2) such that

[ (a) a2 € Reg NA\AS
(0) oz <p

(¢) Dyisa M:(*)—complete filter on a
(d)  ps-tef(Tlag, <p,) is well defined > A hence > A.

As hrtg(Fil*(a1)) < pin, and min(a;) > min(Reg\p) by 1.13, the no-hole claim, we
know

[ly for every k € as there is a sequence A\ = (Ak,0 1 0 € ay) such that
(a) Aso € Reg NO\u

(b) k= ps-tcf(Il\,, <p,).
As we assume AC,, recalling |as| < p

s (a) there is a sequence (), : k € ag) as above
(b) d3={azp:0€a—1) whereazp={\eg:k€az} € [Reg NO=°
() let A = (\sp: K € ag).
By the choice of ng, etc. and Theorem xxx using clauses (x),(y) of the assumption

Cly for each @ € a; there is a set 7y C {b C az g : sup(ps-pcfy, _com(b) < A} of
cardinality < p,,, with union as

(5 here is (% : 0 € a1) as above.
[Why? By AC,, because AC,,, ]
[Je there is A € D5 such that (V0 € a;)(3B € .%y)(A C B).

[Why? 7 := U{H% : 0 € a1} is a set of cardinality < p,, as we have |Py| < uo
and AC,, holds and |a1| < gy, and ny < ne. Define an equivalence relation e on
as : kieks iff (VA € ) (k1 € A& ko € A). So the function kK — {A € . : k € A}
witness that |ag/e| < hrtg(22(5)) < hrtg(2 (jin,)). But Dy is y} -complete and
tng > 0(P(ln,)), so we are done.]

(7 (a) without loss of generality A€ %) A0 € a; = A € {as,0}.
[Why? By xxx.]

Cls 6 > sup(ps-pefy, —com(a3,0)) for 6 € ay.
[Why? By [J; and the assumption on .%j.]

Clg let D3 be the following filter on Y = as X a;
Dy x Dy ::{Agagxal:{F&Eﬂg:{eeﬂlZ(H,G)GA}EDl}GDQ}
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Hio (a) ps-:ccf(Hj\, <ps) = A := ps-tef(Ilag, <p,) > A where
A= (App: (K,0)€Y)
() let (O, : o < \.) witness it
E|11 D, = {A Cas X Cll} 77
We shall try to prove that (II\, <p,) has a small cofinality. Let ¢ = {cs : 0 € a)

be ¢g = pefy, _com(a3,0) 50 [cg| < Fon(2)-
For every f € II{cy : @ € as} or 0 = (0p : 0 € a1) € [] [co]=N° let Dy = {A C
fcay
Y: {9 €ap: {,‘i : (F&,(g) (S A} = a9 mod J:a[j\e]/g]f(g)[j\e]} c Dl}
B (a) Dy is an Nj-complete filter on Y
(b) A= sup(ps-pefy, _com(IIA, <p,)) define!, by the minimality of ay
see (x)1(d)
@2 (a) let ¢ = AN ps-pefy, _com(IIN)
(b) let (Fya:a <AEc) besuch that T = (Fra: a < \) witness
A= ps-tef(mA, < _ x))-
Us.2

Discussion 8.3. We try to continue below but §5 seems to solve it another way.
Discussion 8.4. We try to analyze the remaining cases. If we add |22 (u,)| < p
for n < w by forcing without loss of generality

e otp(ag) = ¢ = cf(0e)

e D)= dual(J</\+ [aé])

o let £ ={bs x by :by Caylbg| < for £ =1,2}.
So let

e cca; = ¢ = ps-pcfy, on({Aeo ik €az}) CN

o 7 =1l¢c,

e ac.F =0, = pspcfy _com(a, <Jgd) define naturally

1

0=U{05:a € F}
<AX X S ps_pCfé)lfcom(A»'

So

o x €= (V25K € az) (Vo ay)[(k,0) & Ayl
By forcing without loss of generality

o |c,| = Ds.

Question 8.5. Assume a is the disjoint union of {a. : € < 9),a C Reg\u, |a| < p.

Do we have ps-pefi, —com (@) = U{ps-pefy, —eom( U d2),02 C (p5-DCfy, —com(a:))
e<d
countable?

This is a consequence of the existence of smooth closed generating sequences;
but does it exist here?

Question 8.6. Does it help to collapse 2% and so find as an ultrafilter E, on a;
such that V% /E, has standard N, etc.?
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§ 9. ABSOLUTENESS FOR NON-WELL FOUNDED ULTRA-POWERS
Question 9.1. (to [Sh:F1039])

This may be used in §5 to immitate [Sh:460]. Here we try to avoid using the
“smooth closed generating sequences”.

Check: What does this give directly?
{m0}

Hypothesis 9.2.

(a) AC, (4, ks = K(*) > Vo

(b) D.s is a uniform N;-complete ultrafilter on k. = k(x)

(c) P a forcing notion, D a P-name of an ultrafilter on Z(k)V extending

D...,G C P generic over V, in V[G]; D[D] = D,
(d) W = W* ) /D, so in general not well founded, computed in V[G]
(e) j =Jjc is the canonical embedding of V into W.

Remark 9.3. 1) We may demand () well ordered and AC 5,y holds.
2) Natural to choose P = ({D : D and X;-complete filter on x extending D..}, >).

{m1}

n2)
Claim 9.4. If H; + Hy then & when
B (a) o kK1 <ko<kg
o rip = |(k2)¥)/Dy) can we use less? AC.,

e 'V satisfies enough for Theorem gzax with (ka,k3) here standing
for (k,|Y|) there

(b) D1 is an Ny-complete ultrafilter on k1

(C) W is V'ﬁ/Dl, i.e. (VJ E)%ll

(d) j is the canonical elementary embedding of V into W

(e) W = “ais a set of reqular cardinals > j(11) of cardinality < j(ks)”
(f) W= “(Ag:0 € c) where ¢ = ps-pcf,, o (a)) is a generating force ¢

(not just (a) as in grzz”)

(9 Y={0: WE“ea}

(h)  for 0 €Y let Iy be {a: W |= o < 0} linearly ordered by <% so
(Ig: 0 €Y) exists in v

(i) A= (Ng:0€Y) where \g = cf(Ip)
(j) J={{0cY : WEOcb}: W E “bCa have cardinality < j(r2)}
(k) Jt={ZcCY:(Fu)(ZCuel)}
) Jois{{ - WElcu}: Wk “ue J_g["}
(m) J ={W: ()W CueJy}
@ (a) Y is of cardinality (rk3)"") /Dy a cardinal
(b) if Z € J then |Z| < (ko)®1) /Dy (is this well ordered?) no real harm

assuming yes; similarly Y
(¢)  the following are equivalent
o 7/ CW has cardinality < ko
o for someu e W, W | “lu| <j(ke)” and Z C{a: W E “ac€u’}
(d) J* is an ideal of subsets of Y, in fact in [Y]SF2
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(e) Ao =ps-tcf(IIN, J;") for 6 € Y
(f) Jf={A:AC U A, :b€[Y]="2 and (Vo € b)(c <w 0)}

oeb

(9) ps—pcfﬁ;_com({)\g c0ect)={Np:0¢cc}.

Remark 9.5. 1) Applying this in §4 we let a, ko, 3 stand for ({Ax 9 : Kk € ag}: 0 €
a1)/D, [(piny)* /D], j1%V there.
2) Well the problem may come from undefinable Dedekind cuts in (Y, <w [Y).
However a; = (0; : i < Ky1),a2 = (0. : € < Ka) let Dy be a k3 -complete filter on
as such that A\, = ps-tef(Ilag, <p,) is too large. So we use X' = (\.; : € < Ka) €
Reg N (0;),W |= “a,ie. Y = (0, :¢ € j(k1)),j(D2) is a j(rk3 )-complete filter on
J(K2).

We may wonder: what filter does j(Dz) induce on (\./Dy = (A :i < k1)/Da :
£ < k1) (from the outside)?

Exactly Dy by the completeness.

Proof. Clause (a): Straight
Clause (b): Follows from clause (c).

Clause (c): If Z C W and |Z| < k2 (in V) this member of Z has the form f/D;
with f € "V, so by AC,, we can find a sequence (f; : i < i(x) < kp) such that
Z ={fi/D1:i<i(x)}. Fore < rylet Z. ={fi(e) i <i(x)}so(Z.:e< k)€
"1V hence Z* = (7. :e < k1)/D2 € W.

As V | “|Z.| < ky” for € < kg by the relevant version of Los theorem (quote
use ACy,!) we have W |= ¢|Z*| < j(k2)” and obviously i < i(x) = f; € [] Z: =

e<K1

W = “fi/D1 € Z*”. So we have proved one direction. The other is even easier. [
Observation 9.6. [AC, )]

Los theorem holds and so j is an elementary embedding.

Claim 9.7. If0 = 6"/D, (in'V ) then for every w C W the following are equivalent

e {a:WEkacw} <0
o for some w € W we have W = “lw| < j(0)” and u C {a: W = “a € w"}.

Proof. See above. O

Claim 9.8. If I is a linear order of cofinality 0 >  then {j(s): s € I} is a cofinal
subset of IV = I[W] the linear order with set of elements {a: W |= “a € I"} and
IW ': “q < b’ ZﬁW ': 44([ ': a < b)w'

Claim 9.9. (Aiso 3.10!) 1) If W = “I s the linear order (a,<) € Reg\j(n)” then
in V[G], tcf(IW) € RegV.

2) Moreover if I = f/D., [ : ke — (the class of reqular cardinals) then for some
p € G and A € Reg\p we have \ = ps-tcf(ILf, <p,).

Claim 9.10. If 0 is a regular cardinal > |P|+k and 4 = (uq : o < 0) is a sequence
of non-empty subsets of OrdW and a € ua ANb€ugAa < 3= W Ea<bthen @
has an lub, i.e. there is a, such that

e a, € OrdW
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e a<fONacu,=WkEka<a

e if a, satisfies o1 + o5 then W |= “a, < al”.
Proof. By xxx.
Claim 9.11. (Like 9.5(2).)

Claim 9.12. A sufficient condition for W |= “0 € (f/D) N (Reg\“j(n)” = Ao < X
is: P = (D],,2) and (f, D.x) or niceness (check!).

{m17}
{m19}
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§ 10. MORE PCF WITH LITTLE CHOICE: A TRY

Question 10.1. (To [Sh:F1039)])

§(7A) Introductory Remark

Discussion 10.2. We observe [Sh:938, §3,64] works if we demand just that Dg
a semi-filter. Then we replace measurable by the chosen win in a cut and choose
game. Third, ?

Lastly, let the chosen choose few instead?

Definition 10.3. We say D is a semi-filter on " when:
(a) DS 2(Y)
(b) f ACBCY and A€ D then Be€ D
(¢) ¢ Dand Y € D.

Claim 10.4. If in [Sh:938, Def.3.1(b)(3)] we weaken the demand “Dgq is a filter on
Ya” to “Dgq is a semi-filter on Yq” still all the claims (and definitions) in [Sh:938,
§3,84] works.

§(7B)  Games and Rank

Definition 10.5. We say x is appropriate when :

(a) x = (K, 0,0, D1, D3) = (x, 0, 0x, Dx.1, Dx 2)
(b) k> 0> o are cardinals
(¢) Dx1 C Dy are filters on &.

Definition 10.6. 1) We say x is large when the chooser has a winning strategy in
the game Ox defined below.

2) The game Ox between the player cutter and chooser last w moves in the n-th
move a set A,y1 € D;Q is chosen, letting Ag = k. In the n-th move the cutter

chooses ¢, < 0 and f, : A, — o, and the chooser chooses w, € [¢,]<(!*?) and let
Api1={a € A, : fula) € wy}.
In the end the chooser wins iff "{A, : n <w} € DI .

For the rest of this section

Hypothesis 10.7. We assume x is large and st is a winning strategy for the
chooser and oy = 1.

Definition 10.8. 1) P = pos(x,st) is the set of finite initial segments of a play of
the game O during which the chooser uses the strategy G; we denote such initial
segments by s and A, is A,, for the maximal n < w such that it is well defined.

2) For s,t € P let s <t iff sis an initial segment of .

3) Let Pss ={t€ P:s<t}.

Definition 10.9. 1) For s € P let Dy = Dy st,s = {A C kx: for no t do we have
s<tANANA; =0 mod Dx2}.

2) We define rks(f) € Ord U{oo} by defining when rk,(f) = o for s € P, f € "Ord
and o € Ord (and let rks(f) =* o when below ¢t = s is 0.K.)
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B rks(f) = B iff < a # —(rks(f) = B) for some t € P>, for every g € “Ord
satisfying g <p, ,+4, f we can find § < a such that rk.(g) = 3.

Claim 10.10. 1) For s € P and f € "Ord, exactly one o € Ord U {oo} we have
rks(f) = a.

2) Assume f,g € *Ord and s € P. If f = g mod(Dx . + As) then rks(f) = rki(g)
and if f < g mod(Dx,2 + As) then rke(f) < rki(g).

3) [DC] For s € P and f € "Ord we have rky(f) € Ord.

Proof. Easy.

Claim 10.11. If ( = rks(f) and h : As — 0 then for some e < 0 and t € P>, we
have 1k¢(f) = ¢ and h|A; is constant.

Proof. Without loss of generality rk,(f) =* ¢.
Not sure, try definition by forcing when ... 7 O

{g17}



nodi fi ed: 2014- 05- 19

revi sion: 2014-05-02

(955)

62 SAHARON SHELAH

§ 11. VARIOUS

§(7C)
{c3.2}
Definition 11.1. Assume D is a filter on Y.

1) Let oq(Y) = oq(Y,D) = {f: f a function from Y onto some ordinal}.

2) For f € oq(Y) let ey = {(y1,y2) 1 y1 € Y,y2 € Y and f(y1) = f(y2)}-

3) Let oeq(Y) ={ey: f € oq(Y,d)}.

4) For h € oq(Y, D) let D/h be {x C Rang(h): h~*(X) € D}, a filter on Rang(f)
which necessarily is an ordinal < hrtg(Y").

5) For f € YOrd let g; be the following function:

(a) Dom(gy) = otp(Rang(f))

(b) gr(i) = aiff Gy)(y €Y A f(y) =aAi= otp(f(y) N Rang(f)).
6) For f € YOrd let h; be the following function:

(a) Dom(hy) =Y

(b) hy(y) = otp(f(y) N Rang(f)) € oq(Y,d).

7) Assume D € FilL(Y) and f = (f. : @ < a(¥)) is a <p-increasing sequence of
members of ¥ Ord

(a) welet &= (us),:he oq(Y,D) where us , = {a < afx): hy, =h}

(b) fo[h] = (gf, : @ € uyy,) is <p-increasing.
{c3.5}
Claim 11.2. Assume D € Fil..

1) Assume f = (fo : a < 4) is a <p-increasing sequence of members of ¥ Ord

(a) (ugy :h€oq(Y,D)) is a partition of Y
b) cf(d) > hrtg(oq(Y, D)) then for some h € oq(Y,D) the set ur,;, is an
( ) gloqlr, qls, fh
unbounded subset of §
c) for h € oq(Y) the sequence (gs, : @ € uz ) is a <p/p-increasing sequence
fa fih /
of members of P Ord
(d) in (b); if 6 =[] then for some h € oq(Y') the set uf, has order-type d.

2) For a € YOrd for every reqular A > hrtg(Y') we have

(a) Ae pS'thﬁ—com (d) ﬁ A€ pS'thﬁ—com (907)

(b) A € dp-tef,_com (@) iff A € dp-tef,,_com(9a) recalling dp-tctcom (@) = {A:
for some D € FilL(Y),\ = tcf(Ila, D), equivalently there is a cofinal se-
quence of members of Tla}.

{c3.7}
Observation 11.3. If ACy,,(y) then hrtg(Y') is a successor cardinal.

Proof. Toward contradiction assume hrtg(Y) is a limit cardinal say Ng).

For a < hrtg(Y) let %! = {g : g a function from Y onto a}, by the definition of
hrtg(Y) it is non-empty, hence by AC,, the set .Z2 = {f : f a one-to-one function
from o into Y} is non-empty. As (F2 : o < hrtg(Y)) exists and ACy(yy holds,
there is a sequence (f, : @ < hrtg(Y)) with f, € .Z#2. Define the function pr with
domain {(a, () : @ < hrtg. < 0(Y)} by pr(a, () = > Ne+a, now pr(a, () < Repq <

e<(
hrtg(Y) so pr is one-to-one into hrtg(Y'), also the range of pr is an initial segment
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of Ord, and |Rang(pr| = Dom(pr) as it is one-to-one and obviously [Dom(pr)| > 0;
together pr is onto hrtg(Y’). We define (y, : v < hrtg(Y)) by ypra,c) = fe(@)
for @ < Ne < hrtg(Y); let u = {y < hrtg(Y) : (V8 < ¥)(yy # ys)}, so easily
¢ < 0(%) = Neg1 = [un [N, Reqq)], hence |u| = hrtg(Y), hence (y, : v € hrtg(Y))
exemplify Y(Y) > hrtg(Y"), contradiction. O3

Claim 11.4. Assume [?]

(a) (Zp : D € ps-tct-fil(a)) is as in ?
(b) D= (D;:i<i(x) < k) € "> ps-teffil, (@)
(¢) for D as above and B € [T tef(Mler, <p,) let Fp g = {sup{fs, :i < lg(B)} :

fe Il Zp.pt wherez f =sup{fs, :i < Lg(B)} which means s € Y =
i<lg(B) -
f(s) = sup{fp, (1) -1 < Lg(B)}
(d) {Fp5:D €™ (ps-tcf-fil, (D)) and €[] tef(Ila, <p,)} is cofinal
i<lg(B)

(e) ps-cf®(Ila) = sup(ps-pcf, (I@)) where we define ps-cf*(lla) < S when ...
2

Claim 11.5. Assume

(@) DEFIL(Y), k>R and ay > 1 fory €Y
(¢) tkp(a) = ¢ =|(|
(d) cf(¢) > hrtg(FilL(Y)).

1) For some J € {J[f,D] : f € YOrd} we have ¢ = otp({~: there is B € la such
that tkp(B) = v and J[3, D] = J}).

2) ¢ In (1) if dual(I) € Dy € Fil, (Y )ﬂﬂ rkp, (@) = ¢ and ?

3) # Moreover in (1) if B € lla, rkp(B) = v, J|3, D] = J then tkp,(B) C ??

Proof. 1) For ¢ < ¢ let .#. = {B € Tla: rkD( B) = e} 50 .F = (F. : e < () exists
and ¢ < ( = F. # 0 by xxxx and U{%. : ¢ < ¢} = Tla.

Let Z.p = {f € Z. : J|3, D] = dual(E)} for E € Fill(f)) extending D
and let up = {e < ¢ : Fp # 0}, so F. = UU{Fp : E € FilL(D)} and
¢ =U{ug : D C E € Fil)(Y)}. As cf(¢) > hrtg(Fil}(Y)) necessarily for some
E,|lug| = ¢ but ugp C ¢ = || hence otp(ug) = ¢, so dual(E) is as required.

2) By (3). 7

3) ? So J is from (1) and toward contradiction assume dual(J) € D; € Fil'(Y)
and a; € Ila, but rkp, (1) > ¢; without loss of generality y € Y = a1, > 0 and
rkp, (@1) = (1. Now we choose yg,y;E,Eg as in the proof of part (1) starting
with ag, (. [

Claim 11.6. [DC] 1) If Rg < k = cf(p) < p then tk jpa(p) > pt.

Proof. 1) Clearly JP¢ is a uniform s-complete filter on . Let (u; : i < &) be
increasing continuous with limit ju, x < jg. For each oo < p™ let
Fo ={f: f a one-to-tone function from some subset of x onto a}

4. = {g¢ : g for some f € Z,} where for f € Z, for some a < ut we let g5 be
defined by

{c3.12y}

{c13yajan}

{c14y}
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x)o Dom(gy) = k and for every i < k,g(i) = otp({g(e) : € < i N Dom(f)})}

ES

*

(%)

(x)1 Fo #0fora<put
()2 Do # 0 for o < p™
(%)3 Y C Hﬂjgﬁﬂ-

1<K

[Why? As the set {f(¢) : € € uy N Dom(f)} has cardinal < p;, so have order type

<u

(¥)4 if a1 < ag and g3 € %, then for some g; € ¥, we have g; < go mod JP4.

[Why? Let g2 = gy, so f1 € B2 = Rang(f2) so let 81 = f(e1) and i1 be a
min{i < k: p; >¢;}. Let Z = {e € Dom(fs) : fa(e) < f1} and f1 = fo|% and let
g1 = gy,, so clearly g1 € ¥,,. Now if i € i1, k0 then {fi(¢) : € € p1 N Dom(gy,)} C

By N {fa(e)

ce € p; N Dom(fz)} and 81 € {g2(¢) : € € ps N Dom(f2)}, so clearly

95 (Z) <3f. (l)
So g1 < g2 mod J,E’d is as required.]
For o, € [, p™T) and we shall prove that rkp(g) > . for some g € *u, this

suffices.

As () there is @ such that

(*) (a)

= {(w; 11 <)

(b) i <x=|wi|=p
(¢) aw=U{w;:i<x}
As cf(u*) = x we can choose @ such that
(%) (a) a={aj:j<Xx)
(b) @ is increasing, a; > x, Kk
(c) @ is with limit pu™.
Now y € Y let
(%) wy =Hw; i €y}
(x) foryeY
(@) |wg| < p
(b) 7?7
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§ 12. PRIVATE APPENDIX

We can add to [Sh:938, 2.6,2.7]

Claim 12.1. The filter Dy 4-commutes with the filter Dy (see [Sh:938, 3.1]) when : s
(a) Dy € Filee(Yz) for £ =1,2
(b) Dy is o-complete
(¢) if Jy € {J[f,D1] : f € Y1Ord} or just Jy is a o-complete ideal evtending
dual(Dy) then A CYy but dual(Jy) € {D1+A: A € D}; this follows from
clause (b) + DCy VAC g v,y when Dy is o-c.c., i.e. there is no sequence
(A; :i < o) of a pairwise disjoint sets from D7
(d) DCy and ACy,, ACy,
(e) (o) Dy is P(Ya)-complete or just
(B) if(Bs:s€ A €eMJIS) and Ae Jf, o € {J[f,Df]: f} for
{=1,2 then for some B, € J2+ and we have A, C A, A, € J;
we have s € A, = By O Bs.
Proof. Stage A:
Let A€ Dy and B = (Bs : s € A) € 4(Dy) and J' = (J} : t € Ya) where
Jt e {JIf,D1) : f € ¥20rd} and Jo € {J[f,D2) : f € 20rd}, i.e. as in the
assumption of By of Definition [Sh:938; 2.1]. We should find A,, B, as there.
Stage B:
For each t € I there is A; € D} such that J}! = dual(D; + A;), hence as ACy,
holds such that (A; : t € Y3) exist. Why? By clauses (b),(c) of the assumption.
Stage C:
Choice of B, A.. Apply clause (d) of the assumption applied to (Ja, (A; : ¢ €
I)). Uisas (x19)
Remark 12.2. 1) We can weaken “Dj is o-complete, o-c.c.” to “Ds is o-complete,
oT-c.c.” when we have some normality conditions.
2) We can replace this by “any J[f, D] is of the form D; + A for some A € D{”.
We can add in [Sh:938, §4]
{k23}

Conclusion 12.3. [AC., and p a limit singular cardinality]

Assume p = sup{x < p: for some \ € [k, ) on X there is a k-complete k-c.c.
filter D on A}. Then for every ordinal ¢ for some k. < pu, for every A € [k, 1) and
k-complete k-c.c. filter D on A we have rkp(¢) = ¢.

Proof. By 13.15 and [Sh:938, 4.1]. U3

We define f : Y7 — Z(Yz2) by f(s) = {t € Yo : s € A}; as Dy is (P(Y2))-
complete filters on Y7 necessarily also Jo is a (£ (Y2))-complete ideal on Y; hence
there is

e Y, C Y such that A* := {y € A; : f(y) = Y5} belongs to J, .
Choose s, € A* so Yy = f(s) ={t e Yo :5 € A}
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§ 13. PRIVATE APPENDIX

Remark 13.1. pcf inventory (August 2009)

1) See [Sh:F663] lecture - [Sh:430, §6] is locality proved for pcfycom(—),0 > |al.
2) See Rinot question [Sh:F893].

) See the notes for Larson [Sh:F814] - on HOD.

) Continue [?], see [Sh:F878].

) Failed try to continue [Sh:460, §5B], [Sh:F563].

) [Sh:F355] - on consistency - answer Gitik?

) [Sh:F354] A = sup(A N pcf(a)) is weakly inaccessible.

) Densities of basic product [Sh:F132], covered by paper with Moti?
9) [Sh:F50] to Shimoni.

10) Hopes rank for precipiousness?

11) Sort out? Y, is well ordered, need INDy, (D)?

3
4
5
6
7
8

12) (09.10.19) A related question: let x = ((Yy,, Dy, hy) 1 0 < w) is here hy, 1 Y,, —

Y and D a filter on Y and we try to prove

(¥) forevery f € Y Ord, for every large enough n we have rkp, (foh,) C rkp(f)

or similarly for Depth.

13) (09.10.26, old thought) As we pass from cofinality to pseudo-cofinality, iterate

this notion and then have strong dichotomies.
14) (09.11.15) Think of a problem where:

(a) Depth(¥(R,,), Zx, ) large given an answer.
15) Tasks (2010.1.08)

(a) if Y = x, then we can replace AC 5y by DC,+
(b) replace Y by all u < (Y, just split to some ?

(¢) Definition dp-pcf,(Y) = {x : X regular and there is a filter D such that
A = dp-tef(ma, <p)} where: dp-tef(m@, <p) means there is an increasing

cofinal of this length

(d) nice results but no existence

(e) given &, how much choice needed to find D with dual(D) = ([Z]<"+ (Y \Z)

for some Z7

for a A-sequence of length \, < p,-increasing in ¥ Ord, is there < p,-lub for
1 2

some Dy D D17
(g) smooth closed generating sequence: by DC\y?
(h) generalize [Sh:460]
(i) get bound or Depth N,
(j) try for a dichotomy: with IND

Discussion 13.2. (2010.3.08) Why the question 13.4(1) help? similarly 13.4(2).
So assume

(a) f. €’(Reg M)
(b) D a non-principal ultrafilter on 6

(¢) ef(I] f.(1)/D) = AT
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(d) no f/D < f./D satisfies (c), or do we use less?

(€) 0 < k, (i1, \)k%, probably assuming 2/ < x maybe it is much less interesting
though we may get more than in [Sh:460], then D is in VF |P| = 2¢

(f) Aj € Reg Npu2\p1(j < k)
(g) AT = tcf(H M, <E)

(h) for each i < 0, f.(i) is inaccessible for any k-complete filter/ideal on .

Without loss of generality A Ro < f.(4).

We can find g; € 7(f.(i) N Reg) for j < x such that \;,cf(mg;,<p,). Let
a; ={g;j(0): j < k\K*,V=V?/Dj:V>Va=(a:i<k),o =a/D,so
V = “(g9;/D) € &7 A (o has cardinality < j(k)) N (&7 a set of regulars > j(k))”.

So in V we have the basic pcf results (b,/pla/D : g/D € <), a/DR/D o €
g/D) as in xxx.

Note

B V = “there is a division of k to < & sets (u;. : € < 1), max pcf{g; (i) :
JEuiet < fuld)”
B in V,. is listed by (\' : e € k?/D)
M in V and x%/D € V is linear order with {j(j) : j < x} unbounded in it
B if ViEg/D= tcf(]] 9o/D,<e) then this is essentially true letting E be
gel

the filter on {a : V Ea € I}, Ay = cf(7ga,<p), A = cl(mg,<p) we have
A= tcf(I] Ao, <g) when the A\, > 2.

Discussion 13.3. (2010.3.8) We return to the trying to improve [Sh:460].

Question 13.4. Concerning [Sh:460], so say for pu > cf(u)(= Ng)? A is the first
counterexample > 2# so cf(A\) = cf(u). Let 6 < k, D an ultrafilter on 0 such that
for some fy € YN, cf(T] fo(i),<p) = AT.

i€l

1) Can we have “fy/D is the first f/D such that cf([] f(i);<p) = AT?
2) Or at least can we find a such that

(a) ﬁz(ai:i<9)

(b) @ € [Reg N A]=2’

(c) fema;= cf(J[ f(i),<p) = AT and

(d) g€ AN cf(rg,<p)=0= \ (f/D<g/D).

fema;

3) Maybe A is the first such that:

()1 for arbitrarily large @ < u (regular 6 < p) there is a € [Reg N A= bounded
in \,\ € pcf(a),b € [a]<Y = X\ ¢ pef(b).

In the case clause (d) holds

Claim 13.5. (2010.3.08) We assume an axiom from [Sh:835] and prove RGCH in
the depth version for p > cf(pn) = Vo strong limit and AC,,,k < pp = (P (r)) < .

{q2}

{g23}
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Alternative: (2010.3.08)

1) Assume DC., (and so P(k) < p for k < p. Use the RGCH version with nice

representation of pcf(a), for the pseudo cofinality version.

2) Is ps-pcf(ps-pef(a)) = ps-pef(a)? So we have \; = ps-tefy ([T Aij, Mp,), A =
j

ps-pcfy, (TAi, <p). Yes (but as anyhow we use pcfy, —comp, iterating w x w we are
done).

Moved 2010.1.08 from 16.8, p.7:

2) [AC»vy] If D is k-complete but not (< oo)-complete then AC,.

2) So without loss of generality D is k-complete not x™-complete hence there is a
sequence A = (A, : a < k) of members of D with N{A, : a < k} ¢ D and without
loss of generality A is with no repetition. This implies k < 8(Z(Y)), but we have
AC »(y) hence we have AC,; as promised.

* * *

Moved from pg.8:

For Nj-complete ultrafilter we get more

Claim 13.6. [true??] Let D be an Ri-complete ultrafilter on Y. Then for any
f €Y (0rd\{0}) we have rkp(f) = ps-o-Depth( [ f(t),<p) and the supremum on
tey

the left is obtained.
Proof. Obvious. 36

Question 13.7. 1) Can we prove parallel of the ZFC results?
2) (09.7.19) Is this not 6(Ila/D)?

Moved from Anotated Content:
§(2A)  Getting quasi-rank systems with AC.,, pg.7 (090909)7

[We start with pre-rank-system p and define rank trying to get a strict rank
system using IND we get that the ranks are < co. Has to be read together
with [Sh:938]. While this has to be checked we still use AC.,, it =3 K.

A new suggestion in 6.2, {6.3d, £6.9(5) has not been elaborated on.]

§3  Connection to IND, pg.13

84 Appendix, pg.19
[We repeat [Sh:938, §5].]
NOTE: pg.91 - can’t read the top of this page

Discussion 13.8. Whereas our orignal intention was to use IND(x), we actualy
use only IND’(x), which is much better.

Definition 13.9. 1) IND'(((Y;,, D)) : n < w)) means that if no F = (F,, : n < w)
is a witness against it which means:

(a) F, is a two-place function from I,,41 U {x} into dual(D,,)
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(b) there are no &, = (tn¢ : £ < n) € I, for n < w, stipulating t,, = = we
have m < n = tnﬁmtnflym ¢ Fm(tn,erlathrl,m)-

2) Let IND"”({(Y,, Dy,) : n < w)) means that there is no (F}, ,, : m,n < w) a witness
against it which means:

(a) Fup is a two-place function from I,, U {} into dual(D,,)
(0) Uneer € {(e1,& €1 < @iy < (} coming from (F,, o, Fne).

{k14}
Question 13.10. 1) If we try to prove 3.13 with choosing < > (I/n)?
2) Try (, = oDepth(“(, <) is > (. Really for every ¢ € [ &, we have F¢ for
n<w
the Y’s witnessing failure of IND(x) can we combine to get a contradiction? We
have the Z’s colouring by large subsets of Y{ , with sub-additivity.
{k16}
Claim 13.11. [ZFC] 1) If Y,, =\, D, = {u CY : Y\u < 5} and Y — (w)? then
IND' ({(Yn,Dy) i n < w).
2) If Y, = k2, Y — D,,-co-countable.
Discussion 13.12. We may wonder on relatives on 3.13. First, if instead ps-Depth
we use Depth it seems that A ACj, is not necessary. Second, we may try to use
ranks instead of depth.
* * *
Does looking at the proof of 3.13 give more? fk1s)
- - k18
Definition 13.13. 1) We say f is an (x, {)-system or (A,x,() is a system when
(a) x={(Yn, Dy : n <w), D, afilter on Y,
(b) ¢ an ordinal
(©) f={fne:n<w,e<()
(d) fn.e € In¢ (with full choice without a more complicated
(e) e<é¢<Candn <wthen fr. <p, fne-
2) we say the pair (, &) solve the system (4,x,¢) when
(a) te [ Ya
n<w
(b) €= (&, :n <w) where &, = (enr: L <n),ene <.
Remark 13.14. With little choice for n < w,e < §{ < e we have (up ¢t :t € I,).
If Dyy1 is Af-complete then ?
{k17}

Theorem 13.15. [ACy, forn < w.]
Assume Dy, is an Ri-complete on Y, for n < w and IND((D,, : n < w) then for
every ¢, for some n we have tkp, (¢) = (.

Definition 13.16. ACy s where for every (A, : y € Y) there is (B, : y € Y) such
that Ay # 0 = B, # 0, |B,| <. |Z].
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Question 13.17. Interesting? Natural for a sequence (< Z)-complete filter, as in
wecanuse ( (| :y€Y).

a/€By
Proof. We choose g,,, Z, as in the proof of 3.13 using the definition. O

Remark 13.18. 1) In (5B), 7?(2) silly? We can find disjoint Y7Ys with id(Y;) =
id(Y2).
2) Definition ?7(2) line 2: [+ J.

Discussion 13.19. Seemingly [Sh:835] connect well to [Sh:F955].
So ssume (\; : i < k) is increasing with limit g and that is we should deal with
a game, where..?
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§ 14. PRIVATE APPENDIX
UsING PURE X: Jury 2009

Definition 14.1. We say s is a frame when s consists of the following objects
satisfying the following conditions:

(a) (ki1 < cf(u)) is increasing with limit p

(b) set D

(¢) Dgq afilter on Iq = I[d] for d € D

(d) ford eD
(@) E(d) C {(e,h) : e € D and h a function from I, onto I such taht

={h"(A): A€ D¢}
(B) E (d ) Y(d), a set of so called pure extensions
(v) Zap(d) € 2(d), a set of so called a-pure extensions such that (e, h) €
Sap(d) :Ie_ld/\h— idy,
(6) d € $pu(d) N Sap(d)
(e) transitivity of 37 3,7 3,,7?

(e) jis a function from D to cf(u) and Dy is kj(qy-complete and ¢ € £ par(d) =
|Se| < Ka)(?)

(k) par(d) and for p € part(d), X, = (X, s : s € Sp) is a sequence of pairwise
disjoint subsets of Iq with union € Dq and (e, s : s € S) is such that
eps €D, Ie,, =1a,De,, =Da+ X,s50€,,=d+ X,

(l) (a) ifd; € Epr(do) and dy € Eap(do) then d; +d, ds =d; +30 d,

is a well defined member of Dg and dz € X, (d2) N Xap(di)
(8) above
(v) aboveif e € ¥(dy) NX1(dz) then e € X(d).

Question 14.2. Maybe cf(x) replaced by a linear order (which can have a pseudo
cofinality)?

We now give examples

Definition/Claim 14.3. 1) Assume & = (k,, : n < w),J = (J, : n < w), when
Jn 18 a kp-complete ideal on I,,, and K, < Kp41 (or just k, < Kp+1)? We define
s = s; 7 and prove that s is a pre-system as follows (so u = us, etc.)

a = Yk, and k is given

(a) p g

(b) Disthestofd:d = (n,A) = (na, Aa) and for some m =mgq <n =nq <w
we have o
() Fa={F : F = {(Fnyn :ma <mi <ng <nqg) = (Fd g <

mi,m1 C

mp <np < nd> and thl : H 177(5) - Jﬁ(ml)

l=my+1
(ﬂ) n= <TL,TL*1,...,TTL>

(v) Ia = ﬁ Iy

{=m
(6) Dg = {X C I4: there are X, € J; for some F € F; for £ € [m,n]
such that ANX D {p € I : p(m1) ¢ Fynyny(pl[m1,n1]) whenever
ma <my <ny <naj}

{m6}

{m8}
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(¢) 0 ¢ Dq and nec Dq is fm,-complete

(¢) ford eD
(a) let X(0) be the set of pairs (e, h) such that e € D, me = ma < ng <
Ne, Foy oy = Fn‘ihm when ng < my < ny < ng and h is h(p) =
pllma, ndl

(B) Ype(d) = {(d,h) € X(d) : Fy,, ,,, is constantly () when ng < n; (and
ma < my < ny < ne)
(v) ap(d) ={(e,h) € £(d) : h = id;, S0 ne = na

(d) for 9 € Dg and A € D} let e = d+ A € D be defined naturally, it is
(77d, AgnN Av F)

(e) part () is the set of p = ((Xp,s,€p5) : s € S) such that: for some so called
witness G = langleGuyy n, : ma < m1 < ny < nd), Gmyony - Iy 41,0y —
Km, with bounded range letting S = {{m,n, : Ma < M1 < n1 < ng)
Qmyng < Fmy ) and Az = {p € Ia : Gy oy (plIm1 + 1,n1]) = g ong
for my < ny from [mq,nq] we have S, = {a € A" : ) € Dg + Az} and
éfipﬁ =d+ A4;

(question): should we allow |Rang(Gn,, n, )| be large, etc.?

(f) part(d) = {p € par(d): [Sp| < Fmy}

(question: should we have par(d) C {(e,d,p) : (e,h) € 3(d) and as
above}?

Discussion 14.4. (09.8.17) 1) Discuss (here?) to achieve our hope (dichotomy
using [Sh:835]). We would like for every n € Dy = dec<,,(O) to define what are
n-objects which are a replacement for (I))ora. Maybe we should repalce dec<,(f)
by closing O by ordered pairing,but first ignore this.

A natural try define when = € obj(n) by induction on £g(n).

If £g(n) = 0 then z is just an ordinal.

If £g(n) = n + 1 then x consists of a non-empty set .Z € In®)Ord, a set

Ae DTJ?F(B),AB ={teA: f(t)>0} (or (A : fe F) A, € D:{(e)?) and a fucntion
which gives for every f € .# and t € Ay and object x5 € obj((n(1+¥): ¢ < n)).
We have to: (A) define rank, (B) using DC criterion for the rank being an ordinal,
(C) reprove [Sh:938] main Theorem.
2) (09.8.26) The example in [Sh:938, §0] can be pushed up: use A 4+ X, ordinal
addition, (A,rks(N\) = A for all relevant J’s. Hence it seems there is no hope for
u = R, but there may be for p = J,. At least combine p = 3,,0(Z(\,)) <
Hnt1, b= Yy, Ap and IND((A\, : n < w)) or try the proof of [Sh:460, §1].

nw

{m10} _
Claim/Definition 14.5. Like 14.3 but J = (J, : n € O), FILL. Now 74 is a
decreasing sequence of length ngq + 1, so Dq is fiy,(ng)-complete and e € X(d)
) implies 7e(ne) = nNa(na), Rang(na) C rang(ne).
m
Convention 14.6. We naturally let s = (Rs, us, Ds, par(—, —), ¢par(—, —)) and
{ml?} Is,d7DS,d;Ss,p;Xs,p,S7DS,p,2-

Definition 14.7. Given a frame s let tru(s) be the set of objects t consisting of:

(a) F; a set of finite sequences closed under initial segments
(b) d¢,eDforteT
(c) he =(hS,:pdoc F)
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(d) for non-A-maxiam p € %%, (df’p, h:fp) € Ype(dg,,) and p, € par(d:fp) sat-
isfied suc g (p) = {p"(s) : S € Sp,} and d¢ p <s> = €q,, and hy rho <s> =
he for p<o € F,lg(p) = m,lg(0) = n then h,, : la,, — la,, is

he, h ..ohg p, where hg ., 1= hi and p; = ollfor =m,...,n—1

pmy1©- t,p¢

(e) if p<o € F we have: h, , maps Aq, into Aq,
question: put this in Definition 14.17

Definition 14.8. Given a candidate s we try to define a rank; (we may omit the
subscript s as its value is fixed).

If d € Dg and f € 190rd we define rki (f) = rkij(f,s) € Ord U {oc}; or we
may replace “tr” by 1 or omit it; by defining by induction on the ordinal ¢ when
rki (f) 2 ¢: it holds iff for every ¢; < A there is a pair (t, ) such that

P < f o ht,<>,p mOd Ddt,p
(f) rkgtyp(gp) > (1.

The choice in 7?7 though more transparent than the following relative, need more
use of choice.

Definition 14.9. Like 15.9 - FILL - rk3(f), but maybe rk! is enough.
Check.

Claim 14.10. Let s be a candidate and k =0, 1.

1) The rank k5 (f) for f € 119 0Ord is well defined (€ Ord U {co}).

2) If (d2, h) € £p,(d1) and f1 € 141 0rd then k5 (f) = Ty, (f o h).

3) If d € Ds and f € "4 0rd and p € par(d) then rka(f) = min{rke, ,(f) : s €
Sp}.

Proof. 1) Easy.

2) Use + on D - FILL.

3) By induction - FILL. O

Claim 14.11. For a free? s the following condition (a),(b) are equivalent: and if
s = s j from 14.3 we can add (c), and if s = s; 7 is from 14.5 we can add clause

(c)F:
(a) tka(f) = oo for some d € Dg and f € "4 Ord
(b) there t € tree(s) and % C T such that (Vp € limy,(%))(3°n)[pln € ¥)

and f, € NdeplOrd for n € & such that for any p < o from % we have
fo < fpoh}, mod Dq,,

(¢) mIND(R, J) when...?
Definition 14.12. For (%, J) as in 14.3 or 14.5 let IND(&, J) mean that:

Case 1: Definition 14.3 for every Finn @ Ijmy1,n) — Jm for m < n < w there is

n € [] Ir such that m < n <w = n(l) ¢ Fpn(nli[m+1,7]).
£<n

{m16}

{m18}

{m21}

{m25}

{m26}
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Case 2: Definition 14.5 B
[copied] 1) Above ﬁ} is not well O-founded iff: there are &, f such that

@z F (a) &= (g :1<w) is increasing

b)) f=(fijri<j<w)

(¢) fij is a function from Liccin,eiyn) into Je,

(d) foreverya € ]<_[ ke, forsome i < jwehave o € f(aun,, Qn; 1y ooy y).
Proof. FILL O

We quote [Sh:938]

Definition 14.13. Main Definition: We say that p = (D, 1k, X, j, 1) = (Dp, rkp, Xp. jp, itp)
is a weak (rank) 1-system when:

(a) p is singular

(b) each d € D is (or just we can compute from it) a pair (I, D) = (Iq, Dq) =
(I[d], Dd) = (Ipﬁd, Dpﬁd) such that:
(o) 0(Ia) < p, on O(—) see 7?7
(8) Dgq is a filter on I4

(¢) for each d € D, a definition of a function rkq(—) with domain /[9Ord and
range C Ord, that is rkp a(—) or rk§(—)

(d) («) X is a function with domain D such that %(d) C D
(8) ifdeDandee X(d) then I, = Iq [natural to add Dgq C D,

this is not demanded but see ?77(2)]

(e) (a) jis a function from D onto cf(u)

(ﬁ) let Dzi = {d eh J(d) > Z} and D; = Dzi\Di—i-l

(1) e€x(d)=je) > jd)

(f) for every o < p for some i < cf(u), if d € D>, then d is (p, < o)-complete
where:

(*) we say that d is (p, < X)-complete (or (< X)-complete for p) when: if
f€d0rd and ¢ = rka(f) and (A, : j € X) a partition” of I4, then
for some e € 3(d) and j < o we have A; € De and ¢ = 1ke(f); so
this is not the same as “Dq is (< X )-complete”; we define (p, | X|1)-
complete, i.e. (p,< |X|T)-complete similarly

(g) no hole®: if rkq(f) > ¢ then for some pair (e,g) we have: e € ¥(d) and
9 <ple] [ and rke(g) = ¢

(h) if f =g+ 1 mod Dgq then rkq(f) = rka(g) +1

(1) if f < g mod Dq then rkq(f) < rka(g).

Definition 14.14. We say p is a quasi rank (-system when p = (D, rk, 3, j, ) =
(Dp, tkp, Xp, jp, pip) satisfies Definition m4.3 of §3 of [Sh:938] if + = 1, Definition
m4.4 of §3 of [Sh:938] if ¢« = 2 except that the rank may be oo; we write rkq(f,d)
ford € Dp and f € Hd]Opd.

Tas long as o is a well ordered set it does not matter whether we use a partition or just a

covering, i.e. U{A; :j €0} =1Ig
8we may use another function X here, as in natural examples here we use $(d) = {d} and not

so in clause (f)
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Definition/Claim 14.15. For a frame s let p be the following quasi rank system:

e 11,ID, 3 j are as in Definition 14.1
e 1kq(f) is as in Definition ?

Claim 14.16. 1) If (i, J) is as in Definition 14.8 or 14.5 and IND(&, J) holds, see
Definition 14.12 then ps,.5) s a rak system.
2) Moreover it is a strict one.

Saharon copied. 1) As in the proof of e5.g of §4 of [Sh:938, §4,e5.g] or better see
the proof of 15.17 except that we use 15.9 instead of 15.8 which simplify clause (f),
but is cumbersome in other places.

2) We check Definition m4.3 of §3 of [Sh:938, §3,m4.3].

Clause (a): u is singular.
As = Zn Kpn and kK, < Kp41 this is obvious.

Clause (b): Let d € D,n = na,J = J, now clause (a) says 0(I,) = 0(|1,]) =
Kn(0)» Fn(0)+1 < p so as for clause (3), “Dy, is a filter on I,,”, it holds by the choice
of p.

Clause (c): rk5(f) = rka(f,p) is an ordinal as defined in 15.9.

Clause (d):
Clearly X(d) is of the right form.

Clause (e):
On j - see 15.13(2)(c).

Clause (f):
We prove by induction on the ordinal { that:

(x) if d € D and j(d) > e and A = U{A, : @ < K.} € Dg and f € 140rd and
A, € DY = tkata,(f) > a then tka(f) > a.

Now Definition 15.9 is tailored made for this.

Older version using 15.8 recheck:

For o = 0 and « a limit ordinal this is obvious. For « = f+ 1 let ¥ = {a <
ke : Aq € DY} and for o € % let n, = min{n: there is (e, h) € X(d + A,) such
that rke(f o h) > f and 7e(0) = n}. Clearly n, is well defined for o € Y, and let
w:={n:U{As: @ € # and n, = n} € D]} and also the rest should be clear.

Clause (g): (no-hole)
By the Definition 15.8 or 15.8 of rk. Saharon 09.5.31 recheck.

Clause (h): rka(f +1) = rka(f) + 1.
We prove by induction on the ordinal « that:

(*) for everyd € D and f € 19Ord we have rkq(f) > a < rka(f+1) > a+1.

Clause (i): Obvious. O

{m34}
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Question 14.17. (09.7.19) Assume little choice and p. = min{p : IND(p)}. So
up to p we can apply [Sh:835]. Now above it seemed that if &« < p = AC, and
w is a limit cardinal, we can find bound above to rkq hence to rk;(—) for J quite
complete ideal.

1) Assume cf(u.) = o, we try to apply the above replacing AC.,,, by DC +(Va <
) (FIND(p)). So the problem is, on the one hand, about [Sh:938, §3] with weaker
form of choice (as in [Sh:835]) and on the other hand the right use of IND(..) here.
2) What above p is a successor?

3) Even with choice, the bound on rank does not give a bound on pp or tef(u", <p)
well above 0(Z(ky,)) it gives with choice/without much choice - as can be done in

§1.

Claim 14.18. 1) If (fo : @ < 0) is <p-increasing in (II, &, <p) then rkp(a) > 4.
2) If (fo : o < p) are #p-distinct in (e, <p) and p > (P (Lg(a)) then we can
use [Sh:E38] which continues [Sh:497].

3) As in (1) devise pu to < P(k,) on each for some Do D D the sequence is
mcereasing.

Theorem 14.19. 1) If IND({k,, : n < w) then [?] - FILL.
2) For N, - [FILL],

The following information is not presently

Claim 14.20. 1) Assume (i, J) is as in 14.3 and n < w = | P(1,)| < kns1. Then
for s = s; j, for every d € Ds we can find Ay € JZ‘ for £ € Rang(na) such that
n(d)

I Ace€ Dj and Dgq + Ay = De for some e such that 1o = Iq, Ae =[] As.
lemg L
2) Moreover, for every p € par(d) there is a refinement q such that each e, s(s €
Sq) is of the form in (1).
3) In part (1) if Jo = J}* where Ay = cf(An) infkin, knt1) then in fact Dg + 1A,
is isomorphic to De where ne = na, Ag = Iq = Ie.

Proof. FILL. O

§ 15. CONNECTION TO IND

§(2A)  Getting quasi-rank system with AC,

Remark 15.1. 1) Below we can concentrate on the case £g(J) = w, (K, : 1 < w)
increasing, even 2" < k411 and Kk, = cf(kp).
2) We like to use less choice say only DC not AC.,, t = > ky,. This is not achieved

for q}, qz}, so it seems. So we may like to change [Sh:938, §3]. Consider k = 2,4 in
15.13(2) to use.

3) (09.7.18) We may hope that if J,, = [£,]=7 we need only, e.g. DC 4+ ACg(,).
But then we do not look at J,,11 + A, |A| = Kny1. So maybe have (J}, J2 :n < w),
see 15.14 or maybe have J,, ,, an ideal on Ky, Jy . = [k 55", see 15.19.

4) (09.7.18) Try IND,(p) or so (7(A)| = k,|2| = p, no w-end-independent se-
quence or IND(u;, I; : i < k) looking for i, < iny1 < ldotScu, € fim,am ¢
F(ant1y.- - am) € I, . Can we connect by Fodor?
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5) (09.7.18) To define the ranks for p we better revise the pre-rank-system as follows.
For every d we have ¥,,(d) = Xb(d), the pure successors and ,,(d) = ¥3P(d)
the apure ones and we have interpolation. In the conclusion we try.

In clause (f), p-completeness, we shall try to get e € X,,(d).

In clause (i), also if (e,h) € ¥,(d), f € 140rd,g = f oh € =Ord then rkq(f) =
rke(g)-

In the definition of rky, ??, (e, h) € X,,(d), we may instead of rky (—, —) ask
for a tree of pure extensions, but well founded tree.
5A) The natural case is J = (J, :n < w),D={n:nis (n,n—1,...,m)}, X, (d)
is as there but e = ¢"na but on I,y) we use the original J. This fine to see that
it fits. If O or k larger, we allow “side extension of 1” but min Rang(n) remains.
6) (09.7.18) But later we have preservation of ranks when we use isomorphic p or p
restricted to “d and above”. So if J,, = JP9, k,, regular, JP9, J°9 4 A are the same.
6A) Maybe legal partitions of [] 1, ¢ is when I, is divided to < fiy ).

¢

Definition 15.2. 1) Let J be called a candidate or d-candidate when:
(a) J={(J.:e<d),d alimit ordinal
(b) J. is an ideal on k.
(¢) 6 < Ko and k. is non-decreasing.

2) We say that .J is a generalized candidate when for some O:

(a) O is a linear order with no last element
(b) J=(J.:e€0)
(¢) Je is a Ry-complete ideal on I. := Dom(J.) = U{u:u € J.}.

In some sense the simplest example is

Example 15.3. Let (K, : n < w) be an increasing sequence of ordinals, J,, :=
[”n]SNO-

Discussion 15.4. (08.6.27) 1) We shall try to define a rank (from a p.r.s. or
p.r.s.*) such that clause (j) of m4.6 of §3 of [Sh:938] follows. It seems that a
necessary condition for the rank to be < oo we need IND(p).

2) Naturally we can define p from J and a reasonable condition is IND(J) at least

when lg(J) = w.
3) We can below use generalized candidates.

Definition 15.5. 1) We say p = (D, %,j) be a t-p.r.s. (pre-rank-c-system with
v =1,2; if : = 2 we may omit it) when in Definition m4.3 or m4.4 of §3 of [Sh:938,
§3,m4.4] it satisfies clauses (a),(b),(d),(e) and we add in (d):

(*) Y is transitive: if (hl, dl) S E(do) and (hQ, dg) S E(dl) then (hQOhl, dz) €
¥(do)

[check where used].
2) We say p is a quasi rank ¢-system when p = (D, 1k, 2, j, 1) = (Dp, 1kp, Xp, Jp, tp)
satisfies Definition m4.3 of §3 of [Sh:938] if « = 1, Definition m4.4 of §3 of [Sh:938]
if © = 2 except that the rank may be oo; we write rkq(f,d) for d € Dp and
f e 1dord.

{f6.3}

{f6.3d}

{f6.4}

{£6.5}
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{f6.8d}
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{f6.10}
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2A) Alternatively: rkp, is defined as in 15.8 below [or 15.9].

Convention 15.6. 1) p is a 2-p.r.s.
2) We usually omit the p when clear from the context, similarly for rkq(f, p) defined
below.

Remark 15.7. 1) We shall try to define rk. We shall try to prove mainly (f) [the
version with (e, h) € 2(d)].

Definition 15.8. For p a p.r.s., d € D and f € '4Ord we define rkq(f,p) =
rk$(f, p) by defining when rkq(f, p) > o for an ordinal o by induction on « for all
pairs (d, f); so rk§(f, p) = o when it is > « but not > o+ 1, and is co otherwise;
by monotonicity well defined.

a = 0: always.

a limit: when rkY(f,p) > 3 for every 8 < a.

o = B+ 1: when for some (h,e) € ¥,(d) and g € /¢JOrd we have g <p_ f o h and
rki(g,p) > 6.
Definition 15.9. [Saharon 09.06.01: check that this definition satisfies additivity
and tk(f + 1) = rk(f) + 1.

We define rk}(f, p) and dp} ((f,p) from Ord U{cc} for d € Dy, f € 7140rd by
defining by induction on the ordinal (:

(a) when rk}(f,p) > ¢ and
(b) when dpj ((f,p) > & for any ordinal £.
Arriving to ¢ we let:

o 1k} (f,p) > ¢ iff for every ¢(; < ¢ and £ < oo there is (h,e) € ¥(d) such
that rkg(f o h,p) > (1 and dp{ o (foh,p) > ¢

e we define by induction on & < oo when dpy (f, p) > &; it holds if rk§(f, p) >
¢ and for every §; < £ and partition (A, : € < e.) of Iq with . < k;(q) parts,
there is (h,e) € X(d) such that rk{(f o h,p) > ¢ and dp (f o h,p) > &
and I, = Iq (Saharon 09.06.01: or use X;.)

Remark 15.10. 1) In a variant we demand: and I = Iq A h = idl[d].
2) By 15.9 we may derive a quasi rank system from a p.r.s., but we deal with the
special case which seems most interesting.

Claim 15.11. 1) The rank in Definition 15.8, 15.9 are well defined.
2) 1k§(f,p) < tkq(f,p)-

Discussion 15.12. (09.06.01) 1) We would like to use ACy for constant % or at
most % depend on 0. By the amount of completeness we need (approaching p), if
we use rk§(—,f}) is it O.K.? Does it?

Definition 15.13. 1) For £ = 1,2 and p a p.r.s. we say p is well {-founded when
k4 (f,p) < oo for every d € D and f € /[dOrd.

2) Similarly for p a quasi rank system (so now rkq(f, p) is not as defined in Defi-
nition 15.9, but is from Definition 15.5(2)).

Definition 15.14. For a candidate J = (J. : € € §), J. an ideal on x. we define
p = py as follows:
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(a) Dp is the set of d = (I, D) = (14, Dq) such that for some n = nq we have:
7 a non-empty decreasing sequence of ordinals < §
I= 11 #ne
£<tg(n)
D,, + Aq for some (R, n)-large subset of I,, which means

C I, is (k,n)-large when A = [] Y; for some Y; € [k, )@ for
l<n
¢ < n and

(¢) let ug = Rang(na), Du, = Dy
(¢) D={Y C [] Ky : thereis a sequence (Y : £ < Lg(n))
l<n

such that Y, =Y, Yy = {<>} and £ < lg(n) = Y, C ] kpm)
m<{
and £ < Llg(n) Npe Y= {a <ty :p (o) & Y1} € Tyt
(b) ¥(d) = {(h,e): for some o we have ne = 0"'ng € D and h : I, — I, is

defined by h(p) = (p(Lg(0) + £) : £ < £g(n)) and h induces a mapping from
De into Da}

(¢) j(n) = n(lg(n) —1)
(d) p=U{k::e <d}.

B {£6.11}
Definition 15.15. 1) Similarly to 15.14 for a generalized candidate J = (J. : ¢ €
0).
2) For a candidate J = (J,, : n < w) we define p% = (D, rk, ¥, j, 1) as in 15.14 but:
(a)) D= {d:d as in clause (a) of Definition 15.14 but nq = (n,n —1,...,m)
where m < n}
(e)’ rk is as defined in Definition 15.8.
3) We define pf}—” as in part (1) or by ?? but replace clause (a)(d) of ?? or part
(1) by:
(0)" Dy = {Y C [ by for some Yy € J; for £ < n we have [] k,)\{p €
{<n £<n
eH Koy + (3 <n)[p(l) € Yil}.
<n
4) For £ = 0,1 let q?e be the g% expanded by rk4(f, pf}) If / =1 we may omit it. . }
_ £6.12
Claim 15.16. 1) Above 17} is not well 0-founded iff: there are €, f such that
®z 7 (@) &= (g1 <w) is increasing
0) f=(fijri<j<w)
(¢) fij is a function from I<€].7€j717m75i+1> into Je,
(d)  foreverya € [] ke, for somei < j we have oi; € f(oun;, 0y yy-voyQnyyy)-

i<w
2) Similarly for p?, (i.e. 6 =w we can above demand g; = i, so it is equivalent to
SIND(J, : n < w).
Proof. 1) As in [Sh:513].
2) Easy as we can add to a function dummy variables. i5.16

Task: 1) Prove p% satisfies clause (f) for rk = rk}, defined as in 15.8.
2) Check the rk(f 4+ 1) = rk(f) + 1, but see below.
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Claim 15.17. 1) If J = (J. : ¢ € O) is a generalized candidate and k = 1,3 then
p]} is a p.r.s. provided that “J. is 0(O)-complete”(?)

2) If J = (J, :n < w) is a candidate and k = 2,4 then p]} is a p.T.5.

3) In part (1), q’} s a quasi rank system.

4) Assume J = (J, :n < w), J, an ideal on kn, Kk < Kni1, b = Sk, Then q’} 18
a quasi rank system.

Proof. 1) As in the proof of e5.g of §4 of [Sh:938, §4,e5.g] or better see the proof
of 15.17(?) except that we use 15.9 instead of 15.8 which simplify clause (f), but is
cumbersome in other places.

2) We check Definition m4.3 of §3 of [Sh:938, §3,m4.3].

Clause (a): p is singular.
As p=73", Ky and Ky, < Ky this is obvious.

Clause (b): Let d € D,n = nq,J = J, now clause () says 0(I,) = 0(|1,)|) =
Kn(0), Fin(0)+1 < p S0 as for clause (B), “Dp is a filter on I,,”, it holds by the choice
of p.

Clause (c): k§(f) = rka(f,p) is an ordinal as defined in 15.9.

Clause (d):
Clearly X(d) is of the right form.

Clause (e):
On j - see 15.13(2)(c).

Clause (f):
We prove by induction on the ordinal { that:

(x) if d e D and j(d) > e and A = U{A, : @ < K.} € Dg and f € 1140rd and
Aa S D:i_ = I'derAa (f) Z (0% then I‘kd(f) Z .

Now Definition 15.9 is tailored made for this.

Older version using 15.8 recheck:

For @ = 0 and « a limit ordinal this is obvious. For « = S+ 1 let ¥ = {a <
ke Ao € DY} and for a € % let n, = min{n: there is (e, h) € X(d + A,) such
that tke(f o h) > f and 7¢(0) = n}. Clearly n, is well defined for @ € Y, and let
w:={n:U{As :a € % and n, =n} € DJ} and also the rest should be clear.

Clause (g): (no-hole)
By the Definition 15.8 or 15.8 of rk. Saharon 09.5.31 recheck.

Clause (h): rka(f +1) = rka(f) + 1.

We prove by induction on the ordinal « that:

(*) for everyd € D and f € 14Ord we have rkq(f) > a < rka(f+1) > a+1.

Clause (i): Obvious. Uisa7

{£6.17}
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Claim 15.18. Assume J = (J,, : n < w) is a candidate and IND(J).
Then p?,— 18 a strict rank system.

Proof. By 15.17 and the definition, it is a weak rank system. So we should prove
the “strict”, i.e. clause (j) of Definition m4.6 of §3 of [Sh:938] which we do by m4.16
of §3 of [Sh:938]. We use X1(d) = X(d).

On (*)22
Given d we choose j < w such that j > 1q(0) and assume e € D>. O

§(2B)  Revisiting

The simplest case below is: x consist I, = kp, kn < Knt1, J1n = [kn] <Y, Jon =
[r] <%, ind(u, 0), # = Xky, ¢ minimal (or g = 00) indy :€ Ord, U {oo}.

For p there are algebras on « with no independent w-sequence hence [Sh:835]
and see §5 apply. But if using x we have a rank 2-system for which Theorem m4.13
of §3 of [?] apply (check!)

We may consider the pseudo version (using comp.,(J). We have to sort out the
amount of choice needed -seemingly.

{2}
Definition 15.19. We say that x is a w-candidate when it consists of
(a) set I, for n < w (k a cardinal and 0(< k) = &
(b) ideal J, x on I, for k <w,n < w
(C) Jn,k g Jn,kJrl
d) Knp.
(d) (s}

Definition 15.20. For a 2-candidate x we define by induction on i < w what is
an x-object ¢ = d of depth ¢, such that

(%), for some nq < mq < w,¢ is an C-increasing sequence (J,  : k < w) of ideals
on Iy ng = I{I; : k € [m,n)}.

The case i = 0:
ng = ma + 1 and let hq be the one-to-one function from I,
JL,k S iLL(Im“k + Ak) where Ay € J,;rld and Ay D Ak+1 for k < w.

onto I, n, and

The case i + 1:
For some k,¢(1),¢(2) we have

(a) K
(b)
(C) md(l) = mb,nd(l) =k
(d) ma

)
(f)

(md, na)

~

S
() is an ig-pair for some i, < i for £ =1,2

ma) = k,naq) =k

(e) macz) = k;nap) =

f) there are (A; j, A : k < w) such that

(@) Ak € Jue) k41

(B) B € Jay iff B C Iny,ng and for some By € I,(1), we have n € Ag ), C
I ={vel, :mUreB}e?

nda(2),Md(2) d(2)-1d(2)



nodi fi ed: 2014- 05- 19

revi sion: 2014-05-02

(955)

{7}

{x9}

{11}

{13}

{r1}
{r2}

82 SAHARON SHELAH

Remark 15.21. 1) Definition 15.207 seemingly does not behave transitively.
2) We may allow ng = mgq.

Definition 15.22. For x an w-candidate, we define a p.c.s. p = pY as follows:

(a) Dp ={d:d is an x-object}

(b) X(d,) = {d: for some dy the triple (d,d,;,,d;,) is as in Definition 15.20
() §(d) is ma

(d) p=U{kp :n <w}.

Claim 15.23. If x is an w-candidate then p is a quasi rank sytem.
Proof. FILL. O

Definition 15.24. 1) For an w-candidate x we say it is well founded when the
p.r.s. pY is well founded, e.g. px is a weak rank system.
2) For a well founded.

Claim 15.25. If x is a well founded w-candidate then px is a strict rank system.

Proof. Stage A: We have to check clause (1) from Definition m4.6 of §3 of [Sh:938].
So assume d, (,&, f are as in H there. Choose j < w such that ;7 > ng and
toward contradiction assume e, g are as in @ there.

Stage B: We find (e, g1) satisfying @ of clause (j) of m4.6 of §3 of [Sh:938] and
Me, = Na; note if we define as in [?](2) rather than as in 15.13(3), we would not

need this step, but then we may have to reconsider the proof of (f) of Definition
m4.3 of §3 of [Sh:938].

Stage C: We use ACj[e) we continue as in 15.18 and in §4. But see footnote to e3
in @ in clause (j) of m4.6 of §3 of [?]. Uis.25

§ 16. APPENDIX: PSUEDO TRUE COFINALITY

We repeat here [Sh:938, §5].
Pseudo PCF

We try to develop pcf theory with little choice. We deal only with X;-complete
filters, and replace cofinality and other basic notions by pseudo ones, see below.
This is quite reasonable as with choice there is no difference.

This section main result are 7?7, existence of filters with pseudo-true-cofinality;
16.19, giving a parallel of J[«a]; and 1.6, on generators of J[<ai+.

In the main case we may (in addition to ZF) assume DC + AC g (5 (y)); this will
be continued in [Sh:938].

Hypothesis 16.1. ZF

Definition 16.2. 1) We say that a partial order P is (< x)-directed when every
subset A of P of power < xk has a common upper bound.

1A) Similarly P is (< S)-directed.

2) We say that a partial order P is pseudo (< x)-directed when it is (< k)-directed
and moreover every subset U{ P, : & < §} has a common upper bound when:

(a) if § < k is a limit ordinal
(b) P = (P, :a<J) is a sequence of non-empty subsets of P
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(¢) if a1 < g, p1 € P,, and pa € P,, then p1 <p po.

2A) For a partial order S we say that the partial order P is pseudo (< .S)-directed
when U{P; : s € S} has a common upper bound whenever

(a) (Ps:s € S)is asequence

(b) PsC P

(c) ifs<gtand f € P;,g€ P, then f <, g
)

if s € S then P; has a common upper bound (so if S has no minimal
member this is redundant).

(d

Definition 16.3. We say that a partial (or quasi) order P has pseudo true cofinality
d when: § is a limit ordinal and there is a sequence (P, : @ < 0) such that

(a) P, € P and ¢ =sup{a < 0 : P, non-empty}
(b) if 1 < g < 8, p1 € Pa,y,p2 € Pa, then p1 <p po
(¢) if p € P then for some o < ¢ and ¢ € P, we have p <p q.

Remark 16.4. 0) See 16.2(2) and 16.8(1).

1) We could replace § by a partial order Q.

2) The most interesting case is in Definition 16.6.

3) We may in Definition 16.3 demand ¢ is a regular cardinal.

4) Usually in clause (a) without loss of generality A P, # 0, as without loss of

generality 0 = cf(0) using P}, = Pj(,) where f(a) = the a-th member of {3 < ¢ :
Pz # 0}. Why do we allow P, = (07 as it is more natural in 16.17(1), but can
usually ignore it.

Example 16.5. Suppose we have a limit ordinal 6 and a sequence (A, : @ < §)
of sets with [[ A = 0; moreover u C § = sup(u) = [|[ Ao = 0. Define a partial
a<d acu

order P by:

(a) its set of elements is {(o,a) : a € A, and «a < §}

(b) the order is (a1,a1) <p (ag,a2) iff oy < as (and ay € A,, for £ =1,2).
It seems very reasonable to say that P has true cofinality but there is no increasing
cofinal sequence.

Definition 16.6. 1) For a set Y and sequence @ = (o : t € Y) of ordinals and
cardinal k we define

ps-tef-fil (&) = {D: D a k-complete filter on Y such that (Ila/ D)
has a pseudo true cofinality };

see below.
2) We say that Ila/D or (Ila, D) or (Il&, <p) has pseudo true cofinality v when D
is a filter on Y = Dom(@) and ~ is a limit ordinal and the partial order (Ila, <p)
essentially does?, i.e., there is a sequence .% = (Fs: B <) satistying:

950 necessarily {s € Y : a5 > 0} belongs to D but is not necessarily empty; if it is non-empty

then Il = ), so pedantically this is wrong, but we shall ignore this or assume A o+ 7# 0 when not
t

said otherwise.

{r3}

{ra}

{r5}

{r6}
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a) FsC{fe¥YOrd: f <pa}

F3#0

it 81 < B2, f1 € Fp, and fo € Fp, then fi < fo mod D

d) if f € YOrdand f < @mod D then for some 3 < v we have g € F5 =

f < gmod D (by clause (c) this is equivalent to: for some § <
and some g € .F3 we have f < g mod D).

3) ps-pefy (@) = ps-pef, comp(@) := {7: there is a r-complete filter D on Y such
that I/ D has pseudo true cofinality v and ~ is minimal for D}.

4) pefil, (@) = {D : D a r-complete filter on Y such that IIa/D has true cofi-
nality v}.

5) In part (2) if v is minimal we call it ps-tcf(Ila, D) or simply ps-tef(Ila, <p);
note that it is a well defined (regular cardinal).

Claim 16.7. 1) If A = ps-tcf(lla, <p), then (Ila, <p) is pseudo (< \)-directed.
1A) If 0(S) < A = ps-teflla, <p) then (Ila,<p) is pseudo (< S)-directed.

2) Similarly for any quasi order.

3) Assume AC, for a < X. If cflay) > N = cf(N) for t € Y then (Ila,<p) is
A-directed.

4) Assume ACyx . If cf(as) > A for s €Y then (Ila, <p) is pseudo AT -directed.

Proof. As in 16.8(1) below. Uie.7

Claim 16.8. Leta = (as:s€Y) and D is a filter on Y.

0) If la/D has pseudo true cofinality then ps-tcf(Ila, <p) is a regular cardinal;
similarly for any partial order.

1) If lla/D has pseudo true cofinality v1 and true cofinality o then cf(y1) =
cf(y2) = ps-tef(llay, <p), similarly for any partial order.

2) ps-pct. (@) is a set of regular cardinals so if Tla/D has pseudo true cofinality
then ps-tef(Ila, <p) is v where v = cf(y) and lla/D has pseudo cofinality .

3) Always ps-pct (@) has cardinality < 0({D : D a k-complete filter on Y'}).
4)IfB={(Bs :s€Y)cYOrd and {s : Bs = as} € D then ps-tcf(Ila/D) =
ps-tcf(II3/ D) so one is well defined iff the other is.

Proof. 0) By the definitions.
1) Let <<Z§ : B < ¢) exemplify “Ila/D has pseudo true cofinality ~,” for £ = 1, 2.
Now
(x) if £ € {1,2} and B; < 7 then for some B3_; < y3_, we have g1 € fge ANga €
yg;él = g1 <D g2.

[Why? Choose ¢° € ﬂélﬂ, choose B3_y < 7v3_1 and gs_¢ € ﬂg;i such that
g" < ¢ mod D]

Hence

(%) h1:791 — 72 is well defined when
hl(ﬂl) = Mln{ﬂg < Y2 (Vgl S ﬂél)(Vgg S ﬂgz)(gl < g2 mod D)}

Clearly h is non-decreasing and it is not eventually constant (as U{.73 : 8 < 71} is
cofinal in TI&/D) and has range unbounded in -, (similarly).
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The rest should be clear.
2) Follows.
3),4) Easy. Uie.s

Concerning [Sh:835]
Claim 16.9. The Existence of true cofinality filter [k > Yo+ DC + AC. ] If

(a) D is a k-complete filter on'Y
(b) @ €YOrd
(¢) 6 :=rkp(a) satisfies cf(5) > O(FilL(Y)), see below.

Then for some D' we have

(o) D' is a k-complete filter on'Y

(8) D'2D

(v) HOa/D" has pseudo true cofinality, in fact, ps-tef(Ila, <p) = cf(rk,(@)).
Recall from [Sh:835]

Definition 16.10. 0) Fill (Y) = {D : D a k-complete filter on Y} and if D €
Fil}(Y) then Fil' (D) = {D’ € Fil'(Y): D C D'}.

1) Fil2(Y) = {(D1, D2) : D1 C Dy are k-complete filters on Y'}.

2) J[f, D] where D is a filter on Y and f € YOrdis {A CY : A =0 mod D or
tkpia(f) > rkp(f)}-

Remark 16.11. 1) On the Definition of pseudo (< &, 1+ )-complete D see [Sh:938,
1.13=0z.51]; we may consider changing the definition of Fil (V) to D is Ny-complete
and pseudo(< k, 1 + 7))-complete filter on Y.

2) Related to [Sh:835].

Proof. Proof of the Claim of ?7?

Recall {y € Y : ay = 0} = 0 mod D as rkp({epy : y € Y)) = > 0 but
fi,fa € Y Ord A (f1 = fo mod D) = 1kp(f1) = rkp(f2) hence without loss of
generality y € Y = ay,, > 0.

Let D= {D’": D’ is a filter on Y extending D which is x-complete}. So (D) <
O(Fily, (Y)) < cf(9). For any v < tkp(a) and D' € D let

(¥)2 (a) ZFyp ={fe€la:rkp(f) =+~ and D’ is dual(J[f, D])}
b) Fp =U{F, p v < rtkp(a)}

C) E@yD/ = {’}/ < I‘kD(@) : Jg‘\%[)/ 7£ @}

d) Jg‘\»y = U{j'y,D” : D" ¢ D}

Now
(¥)3 if v < rkp(@) then Z, # 0.

[Why? By [Sh:938, 1.8(2)=20.23(2)] there is g € ¥ Ord such that g < f mod D and
rkp(g) = v and without loss of generality g € IIa. Now let D’ = dual(J[g, D)),
so (D,D') € Fill(Y),D’ € D and g € %, pr, see [Sh:938, 1.7(2)=20.23(2)], Claim
[Sh:835, 0.10(2)], here we use AC..]

(%)4 {sup(Ea,p/) : D' € Dand Z5 p- is bounded in rkp (@)} is a subset of rkp/ ()
which has cardinality < §(D) < (Fil’(Y)) < cf(9).

{r9.yajan}

{r9a}

{rov}
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[Why? The function D’ — sup(Eg,ps) witness this.]

(%)5 the set in ()4 is bounded below rkp (&) so let y(x) < rkp(@) be its supre-
mum.

[Why? By (+),]
(x)¢ there is D" € D such that 25 pr is unbounded in (Ila, <p/).

[Why? Choose v < rkp(a) such that: v > (). By ()3 there for some f € .7,
and D’ € D we have f € .7, (,) p so by the choice of y(x) the set 25 p/ cannot be
bounded in rkp(@).]

(*)7 if v1 < Y2 are from Ea,D’ and f1 c y%,[)/, f2 S y,yQ,D/ then fl <p fg.

[Why? By [Sh:938, 1.7=20.23], [Sh:835, 0.10(2)].]

Together we are done: by (*)g there is D’ € D such that E5 p/ is unbounded
in tkp(a). Let F = (#,p : v € Ea.p/) witness that (Ila, <ps) has pseudo
true cofinality, and so ps-tcf(Ila, <p) = cf(otp(Es,p’)) = cf(rtkp(@)), so we are
done. D??

So we have

Definition/Claim 16.12. 1) We say that 6 = ps-tcfy (@), where 4§ is a limit ordinal
when, for some set Y:

)
) D= (D1,D>)
)
)

mod Dy, we have rkp, (f) = v and Dy = dual(J[f, D1]}.
2) If Dy is Ny-complete filter on Y,a = (a; : t € Y) and cf(ay) > O(Fily, (V)

for t € Y then for some Ni-complete filter Dy on Y extending D; we have ps-
tef(p,,p,) (@) is well defined.

3) Moreover in part (2) there is a definition giving for any (Y, D1, Do, @) as there,
a sequence (% : v < J) exemplifying the value of ps-tcfp (@).

Proof. Let 6 := tkp, (f), so by Claim 16.16 below cf(5) > 0(Fily, (Y)) hence has
Claim ?? above and its proof the conclusion holds: the proof is needed for “6 =
sup(Ep ,)”, noting observation 16.13 below. 1612

Observation 16.13. 1) [DC] or just [ACy,].
Assume D is an Nj-complete filter on Y and f,f, € YOrd for n < w and

f(&) =sup{fn(t) : n <w}. Then rkp(f) =sup{rkp(fn) :n < w}.
Remark 16.14. Similarly for other amounts of completeness, see 16.18.

Proof. As tkp(f) = min{rkpia,(f) :n <w}lif U{4, :n<w} e D, A, € DT by
[Sh:71] or see [Sh:835, 1.9=20.25]. Oi6.13

Remark 16.15. Also in [Sh:835, 1.9(2)=20.25(2)] can use AC; only, i.e. omit the
assumption DC, a marginal point here.

Claim 16.16. [AC.y] The ordinal 6 has cofinality > 0 when :
® (a) 0=rkp(@)
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(b) a={a,:yeY)e¥YOrd
(¢) D is an Xy-complete filter on' Y
(d) yeY = cfay) > 0.

Proof. Note that y € Y = «, > 0. Toward contradiction assume cf(d) < 6 so ¢
has a cofinal subset C' of cardinality < 6. For each 8 < ¢ for some f € Y Ord we
have rkp(f) = § and f <p & and without loss of generality f € [] a,. By AC

yey
there is a sequence (fs : 8 € C) such that fg € [[ ay, f <p @ and rkp(fg) = 5.
yey
Define g € [] ay by g(y) = U{fs(y) : B € C and fs(y) < au}. By clause (d) we
yey

have [y € Y = ¢(y) < o], so g <p @, hence rkp(g) < rkp(c) but by the choice
of g we have 8 € C = fz <p g hence 8 € C = 8 = rkp(fs) < rkp(g) hence
d =sup(C) < rkp(g), contradiction. he.16

Observation 16.17. 1) Assume (&, D) satisfies

(a) D afilter on Y and @ = (a; : t € Y) and each oy is a limit ordinal
(b) F = (F5 : B < 0) exemplify 9 = ps-tef(lla, <p) so we demand just
J=sup{f <0:Fs#0}

() F4p=A{f € Il au: for some g € F3 we have f = g mod Dj}.
tey

Then: (F5 : B < 9) exemplify 9 = ps-tef(Ila, <p) that is
() ,@L%J F is cofinal in (Ila, <p)
Y
(B) for every 1 < B2 < 0 and f1 € 5 and f, € Fj, we have fi < fo.

2) Similarly, if D,.7 satisfies clauses (a),(b) above and D is N;-complete and 9 =
cf(d) > Ro then we can “correct” .7 to make it Ro-continuous that is (Z4 : 5 < 9)
defined in (¢)1 + (¢)2 below satisfies () + (8) above and () below and so is Rg-
continuous, (see below) where

(c)1 if B < 0 and cf(B) # Ny then Fj = 7
(c)2 if B < 0 and cf(B) = No then F§ = {sup(f, : n < w): for some increasing
sequence (3, : n < w) with limit 5 we have n < w = f,, € fén}, see below

(v) if B <0 and cf(8) = Ng and fi, f2 € F4 then fi = f> mod D.

3) This applies to an increasing sequence (F5 : < ), %3 C YOrd,d a limit
ordinal.

Proof. Straightforward. Uiear

Definition 16.18. 0) If £, € YOrd for n < w, then sup(f, : n < w) is defined as
the function f with domain Y such that f(t) = U{fn(¢) : n < w}.
1) We say . = (%5 : B < \) exemplifying A = ps-tcf(Ila, <p) is weakly No-
continuous when:

if 8 <0, cf(B) =N and f € F5 then for some sequence (B, fr) : 1 < w) we
have 8 = U{fB, : n < w}, Bn < Pnt1 < B, fn € Fa, and [ =sup(fn : n < w); so if
D is Ny-complete then {f/D : f € Z3} is a singleton.
2) We say it is Rg-continuous if we can replace the last “then” by “iff”.

{r12}

{r13}
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{r14}
Theorem 16.19. The Canonical Filter Theorem Assume DC and AC z(y).

Assume & = (o 1t € Y) € YOrd and t € Y = cf(ay) > 0(2(Y)) and
0 € ps-pcfy, comp(@) hence is a regular cardinal. Then there is D = D, an N;-
complete filter on Y such that 0 = ps-tef(Ila/D) and D C D’ for any other such
D' € Fily, (D).

Remark 16.20. 1) By 7?7 there are some such 0.
2) We work to use just AC gy and not more.

Proof. Let

B () D={D: D is an 8y-complete filters on Y such that (Ila/D) has
pseudo true cofinality 0},

(b) D.=n{D:D eD}.
Now obviously

(¢) D, is an Nj-complete filter on Y.

For ACYletDy={DeD:A¢ D}andlet Z. ={ACY : Dy # 0}.
As ACpyy we can find (D : A € &) such that Dy € Dy for A € Z,. Let
D.={Ds:Ae P} clearly

B D.=n{D:D € D,} and D, C D is non-empty.
As AC», holds clearly

(*)o we can choose (#4 : A € 2,) such that Z, exemplifies Dy € D as in
16.17(1),(2), so in particular is Np-continuous.

For each 8 < 0 let 7 = ﬂ{ﬁ[;‘ :Ae P}, now
[Why? As by 16.17(1)(c) we have ﬁé“ C II& for each A € 2, ]

(¥)2 if 1 < B2 < 8, f1 € F3, and fo € F5, then fi < fo mod D,

[Why? As A€ Z. = f1 <p, [z by the choice of (Z; : 8 < 0), hence the set
{teY : fi(t) < fa(t)} belongs to D4 for every A € P, hence by Hs it belongs to
D, which means that fi <p, f2 as required.]

() if f € la then for some 3y < 0 we have f' € U{.7; : B € [B,0)} = f < [’
mod D,.

[Why? For each A € 2, there are 3, ¢ such that 8 < 9,9 € yg‘ and f < g
mod D hence 5/ € [+ 1,0) A f € ﬂ[ﬁ = f < g < f/ mod Dy. Let 84
be the minimal such ordinal 84 < §. As cf(d) > 0(Z2(Y)) > 0(Z.), clearly
Bi=sup{fa+1l: A€ P.}is<d. SoAe P.NgeU{F;:8€(B:d)=f<py.
By Hs the ordinal . is as required on «y.]

Moreover

(%)a there is a function f — By in (x)s.
[Why? As we can (and will) choose 8 as minimal § such that ...]

()5 for every . < O there is § € (B, 0) such that .7} # 0.
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[Why? We choose by induction on n, a sequence Bn = (Bua:Ac P,) and a
sequence fp, = (fn,a: A€ P,) and a function f,, such that

() B <dand m < n= L, < By
(8) Bo = B« and for n > 0 we let 3, = sup{Bm,a:m<n,Ae P}
(7) Bn,a € (Bn,d) is minimal such that there is f, 4 € yf;‘n,f; satisfying n =
m+1= f,< fﬁn,A mod D 4
(0) (fn,a:Ae P,)is asequence such that each f,, 4 are as in clause ()
(e) fn €1la is defined by fp,(t) = sup{fm,a(t) +1: A€ P, and m < n}.
[Why can we carry the induction? Arriving to n first, f, is well defined € Il
by clause (g) as cf(ay) > 0(F,) for t € Y. Second by clause (), (Bn,4 : A € P,) is

well defined. Third by clause (§) we can choose (fm,a: A€ P,) as ACx,.
Lastly, the inductive construction is possibly by DC.]

Let 8* = U{fB, :n <w} and f =sup(f, : n < w). Easily f € ﬂ{ﬂéﬁ cAe P}
as each (F4' : § < 9) is Ro-continuous.]

(¥)¢ if f € Tla then for some 8 < v and f" € .Z; we have f < f’ mod D*.
[Why? By (%)s + ()4.]

So we are done. Oi6.19

Definition 16.21. For @ € YOrd let Jﬁi\‘comp(@) ={X CY: ps-pcly,-com(@ |

X) C A} and JEYCOP js JR2EOMP,

Remark 16.22. In 1.3, see Definition 16.6(3).
On this and more see [Sh:F955].

{r16.yajan}

{r17}
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§ 17. APPENDIX: DEFINITION OF RANK-SYSTEM

Moved from pg.3:
We define a function H from Il into II{Ax : X € D} by:

(a) (H(f))(X)= Min{8 < Ax: if f' € 7 then f < f' mod Dx}.
We let

(B) D be the following filter on the set Y := D:
ZeDif ZCDand 3X € D)[Z2{X'€D: X' C X}].

Now

(y) D is an Nj-complete filter on Y
(6) if f1, fo € la and f; < f, mod DF then H(f;) < H(f2) mod D

(e) (T Aey<p) is pseudo (< AT)-directed.
tey

[Why? By claim 16.7, i.e. 16.7 of §5 of [Sh:938].]
Because by an assumption

() if f1, fo € Fu and a < & then H(f1) = H(f2) mod D.

Why? f1 = fo mod D hence by ? we have f; = fo mod Dj hence by (yyy),
H(f1) = H(f2) mod D. FILL
Now by () + (zzz) we are done proving (h).]

(i) D C D;.

[Why? Because if A € D then X; := A witness A € D;as X € DAX C X; =
XeDANXCA=XeDxNXCACY = Ae Dx]
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