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2 SAHARON SHELAH

Anotated Content

§0 Introduction, pg.3

§1 On pseudo true cofinality, pg.5

[We continue [Sh:938, §5] to try to generalize the pcf theory for ℵ1-complete
filters D on Y assuming only DC + ACP(Y ). So this is similar to [Sh:b,
ChXII]. We suggest to replace cofinality by pseudo cofinality. In particular
we get the existence of a sequence of generators, get a bound to Reg ∩
pp(µ)\µ0, the size of Reg ∩µ\µ0 using a no-hole claim and existence of lub
(unlike [Sh:835]).

§2 Composition and generating sequences for pseudo pcf, pg.16

[We deal with pseudo true cofinality of
∏

i∈Z

∏

j∈Yi

λi,j , also with the degener-

ated case in which each 〈λi,j : j ∈ Yi〉 is constant. We then use it to clarify
the state of generating sequences; see 2.1, 2.2, 2.4, 2.6, 2.12, 2.13.]

§3 Measuring Reduced products, pg.27

§(3A) On ps-TD(g), pg.27

[We get that several measures of κµ/D are essentially equal.]

§(3B) Depth of reduced powers of ordinals, pg.31

[Using the independence property for a sequence of filters we can bound
the relevant depth. This generalizes [Sh:460] or really [Sh:513, §3].]

§(3C) Bounds on the Depth, pg.37

[We start by basic properties dealing with the No-Hole Claim (1.13(1)) and
dependence on 〈|αs| : s ∈ Y 〉/D only (3.23). We give a bound for λ+α(1)/D
(in Theorem 3.24, 3.26).]
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PSEUDO PCF SH955 3

§ 0. Introduction
{intro}

In the first section we deal with generalizing the pcf theory in the direction
started in [Sh:938, §5] trying to understand the pseudo true cofinality of small
products of regular cardinals. The difference with earlier works is that here we
assume ACU for any set U of power ≤ |P(P(Y ))| or, actually working harder, just
≤ |P(Y )| when analyzing

∏

t∈Y

αt, whereas in [Sh:497] we assumed ACsup{αt:t∈Y }

and in [Sh:835] we have (in addition to ACP(P(Y ))) assumptions like “[sup{αt : t ∈

Y }]ℵ0 is well ordered”. In [Sh:938, §1-§4] we assume only AC<µ +DC and consider
ℵ1-complete filters on µ but in the characteristic case µ is a limit of measurable
cardinals.

Note that generally in this work, though we try occasionally not to use DC, it
will not be a real loss to assume it all the time. More specifically, we prove the
existence of a minimal ℵ1-complete filter D on Y such that λ = ps-tcf(Πᾱ, <D)
assuming ACP(Y ) and (of course) DC and αt of large enough cofinality. We then

prove the existence of one generator, that is, of X ⊆ Y such that Jℵ1-comp
≤λ [ᾱ] =

Jℵ1-comp
<λ [ᾱ] +X , see 1.6 and even (in 1.8) the parallel of the existence of a <D1-lub

for an <D-increasing sequence 〈Fα : α < λ〉, generalize the no-hole claim in 1.13,
and give a bound on pp for non-fix points (in 1.11).

In §2 we further investigate true cofinality. In Claim 2.2, assuming ACλ and
D an ℵ1-complete filter on Y , we start from ps-tcf(Πᾱ, <D), dividing by eq(ᾱ) =
{(s, t) : αs = αt}. We also prove the composition Theorem 2.6: it tells us when
ps-tcf(

∏

i

ps-tcf(
∏

j

λi,j , <Di
), <E) is equal to ps-tcf(

∏

(i,j)

λi,j , <D).

We then prove the pcf closure conclusion: giving a sufficient condition for the op-
eration ps-pcfℵ1-comp to be idempotent. Lastly, we revisit the generating sequence.

In §(3A) we measure
∏

t∈Y

g(t) modulo a filter D on Y for g ∈ Y (Ord\{0}) in

three ways and show they are almost equal in 3.2. The price is that we replace
(true) cofinality by pseudo (true) cofinality, which is inevitable. We try to sort out
the “almost equal” in 3.5 - 3.7.

In §(3B) we prove a relative of [Sh:513, §3]; again dealing with depth (instead of
rank as in [Sh:938]) adding some information even under ZFC. Assuming that the
sequence 〈Dn : n < ω〉 of filters has the independence property (IND), see Definition
3.12, with Dn a filter on Yn we can bound the depth of ((Yn)ζ,<Dn

) by ζ, for every
ζ for many n’s, see 3.13. Of course, we can generalize this to 〈Ds : s ∈ S〉. This
is incomparable with the results of [Sh:938, §4]. See a continuation of [Sh:835] in
[Sh:1005].

Note that the assumptions like IND(D̄) are complementary to ones used in
[Sh:835] to get considerable information. Our original hope was to arrive to a di-
chotomy. The first possibility will say that one of the versions of an axiom suggested
in [Sh:835] holds, which means “for some suitable algebra”, there is no independent
ω-sequence; in this case [Sh:835] tells us much. The second possibility will be a
case of IND, and then we try to show that there is a rank system in the sense
of [Sh:938]. But presently for this we need too much choice. The dichotomy we
succeed to prove is with small o-Depth in one side, the results of [Sh:835] on the
other side. It would be better to have ps-o-Depth in the first side.

{r15}
Question 0.1. [DC + ACP(Y )]



(
9
5
5
)
 
 
r
e
v
i
s
i
o
n
:
2
0
1
4
-
0
5
-
0
2
 
 
 
 
 
 
 

m
o
d
i
f
i
e
d
:
2
0
1
4
-
0
5
-
1
9
 
 

4 SAHARON SHELAH

Assume

(a) ᾱ ∈ Y Ord

(b) cf(αt) ≥ hrtg(P(Y ) for every t ∈ Y

(c) λt ∈ pcfℵ1−comp(ᾱ) for t ∈ Z, in fact, λt = ps-tcf(Πᾱ, <Dt
), Dt is an

ℵ1-complete filter on Y

(d) λ = ps-tcfℵ1−comp(〈λt : t ∈ Z〉

(e) (a possible help) Xt ∈ Dt, 〈Xt : t ∈ Y 〉 are pairwise disjoint.

(A) Now does λ ∈ ps-pcfℵ1-comp(ᾱ)? (See 2.6.)

(B) Can we say something on Dλ from [Sh:938, 5.9] improved in 1.3?
{r15f}

Question 0.2. How well can we generalize the RGCH, see [Sh:460] and [Sh:829];
the above may be relevant; see [Sh:938] and here in §(3C).

Recall
{z12}

Notation 0.3. 1) For any set X let hrtg(X) = min{α : α an ordinal such that there
is no function from X onto α}.
2) A ≤qu B means that either A = ∅ or there is a function from A onto B.

Central in this work is
{z15}

Definition 0.4. For a quasi order P we say P has pseudo-true-cofinality λ or “λ
is the pseudo true cofinality of P” when λ is a regular cardinal and λ is a pseudo
true cofinality of P which means that there is a sequence F̄ such that:

(a) F = 〈Fα : α < λ〉

(b) Fα ⊆ P

(c) if α1 < α2, p1 ∈ Fα1 and p2 ∈ Fα2 then p1 ≤P p2

(d) if q ∈ F then for some α < λ and p ∈ Fα we have q <P p1

(e) λ = sup{α < λ : Fα 6= ∅}.

We may consider replacing ACA by more refined version, ACA,B defined below (e.g.
in 1.1, 2.6) but we have not dealt with it systematically.

{z17}
Definition 0.5. 1) ACA,B means: if 〈Xa : a ∈ A〉 is a sequence of non-empty
sets then there is a sequence 〈Ya : a ∈ A〉 such that Ya ⊆ Xa is not empty and
Ya ≤qu B.
2) ACA,<κ,ACA,≤B are defined similarly but |Ya| < κ, |Ya| ≤ |B| respectively in
the end.

{z20}

Observation 0.6. 1) We have ACA iff ACA,1.
2) ACA,B fails if B = ∅.
3) If ACA,B and |A1| ≤ |A| and B ≤qu B1 then ACA1,B1 .
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PSEUDO PCF SH955 5

§ 1. On pseudo true cofinality
{onpseudo}

We continue [Sh:938, §5].
Below we improve [Sh:938, 5.19] by omitting DC from the assumptions but first

we observe
{r15}

Claim 1.1. Assume ACZ .
1) We have θ ≥ hrtg(Z) when ᾱ = 〈αt : t ∈ Y 〉 and θ ∈ ps-pcf(Πᾱ) and t ∈ Y ⇒
cf(αt) ≥ hrtg(Z).
2) We have cf(rkD(ᾱ)) ≥ hrtg(Z) when ᾱ = 〈αt : t ∈ Y 〉 and t ∈ Y ⇒ cf(αt) ≥
hrtg(Z).

{r17f}
Remark 1.2. We can weaken the assumption cf(αt) ≥ hrtg(Z) by using the ideal
of small cofinality, cf − idθ(ᾱ), see [Sh:1005, 1.1=Lc2]. This can be done systemat-
ically in this work.

Proof. 1) If we have ACα for every α < hrtg(Z) then we can use [Sh:938, 5.7(4)]
but we do not assume this. In general let D be a filter on Y such that θ = ps-
tcf(Πᾱ, <D), exists as we are assuming θ ∈ ps-pcf(Πᾱ). Let F̄ = 〈Fα : α < θ〉
witness θ = ps-tcf(Πᾱ, <D), i.e. as in [Sh:938, 5.6(2)] or see 0.4 here; note t ∈ Y ⇒
αt > 0, as we are assuming Fα ⊆ Πᾱ for some α < θ; also if Πᾱ is non-empty then
we can assume Fα 6= ∅ for every α < θ.

Toward contradiction assume θ < hrtg(Z). As θ < hrtg(Z), there is a function h
from Z onto θ, so the sequence 〈Fh(z) : z ∈ Z〉 is well defined. As we are assuming
ACZ , there is a sequence 〈fz : z ∈ Z〉 such that fz ∈ Fh(z) for z ∈ Z. Now define

g ∈ Y (Ord) by g(s) = ∪{fz(s) : z ∈ Z}; clearly g exists and g ≤ ᾱ. But for each
s ∈ Y , the set {fz(s) : z ∈ Z} is a subset of αs of cardinality ≤ θ < hrtg(Z) hence
< cf(αs) hence g(s) < αs. Together g ∈ Πᾱ is a <D-upper bound of ∪{Fε : ε < θ},
contradiction to the choice of F̄ .
2) Otherwise let θ = cf(rkD(ᾱ)) so θ < hrtg(Z), 〈αε : ε < θ〉 be increasing with
limit rkD(ᾱ) and again let g be a function from Z onto θ. As ACZ holds, we
can find 〈fz : z ∈ Z〉 such that for every z ∈ Z we have rkD(fz) ≥ αh(z) and
fz <D ᾱ and without loss of generalityfz ∈ Πᾱ. Let f ∈ Πᾱ be defined by
f(t) = sup{fh(z)(t) : z ∈ Z} so rkD(f) ≥ sup{αz : z ∈ Z} = rkD(ᾱ) > rkD(f),
contradiction. �1.1

{r16}
Theorem 1.3. The Canonical Filter Theorem Assume ACP(Y ).

Assume ᾱ = 〈αt : t ∈ Y 〉 ∈ Y Ord and t ∈ Y ⇒ cf(αt) ≥ hrtg(P(Y )) and
∂ ∈ ps-pcfℵ1−comp(ᾱ) hence is a regular cardinal. Then there is D = Dᾱ

∂ , an ℵ1-
complete filter on Y such that ∂ = ps-tcf(Πᾱ/D) and D ⊆ D′ for any other such
D′ ∈ Fil1ℵ1

(D).
{c17d}

Remark 1.4. 1) By [Sh:938, 5.9] there are some such ∂ if DC holds.
2) We work more to use just ACP(Y ) and not more.
3) If κ > ℵ0 we can replace “ℵ1-complete” by “κ-complete”.
4) If we waive “∂ regular” so just ∂, an ordinal, is a pseudo true cofinality of

(Πᾱ, <D) for D ∈ D ⊆ Fil1ℵ1
(Y ), exemplified by F̄D,D 6= ∅ the proof gives some

∂′, cf(∂′) = cf(∂) and F̄ witnessing (Πᾱ, <D∗
) has pseudo true cofinality ∂′ where

D∗ = ∩{D : D ∈ D} for D as below.

Proof. Note that by 1.1
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6 SAHARON SHELAH

⊞1 ∂ ≥ hrtg(P(Y )).

Let

⊞2 (a) D = {D : D is an ℵ1-complete filter on Y such that (Πᾱ/D) has
pseudo true cofinality ∂},

(b) D∗ = ∩{D : D ∈ D}.

Now obviously

⊞3 (a) D is non-empty

(b) D∗ is an ℵ1-complete filter on Y .

For A ⊆ Y let DA = {D ∈ D : (Y \A) /∈ D} and let P∗ = {A ⊆ Y : DA 6= ∅},
equivalently P∗ = {A ⊆ Y : A 6= ∅ mod D for some D ∈ D}. As ACP(Y ) holds
also ACP∗

holds hence we can find 〈DA : A ∈ P∗〉 such that DA ∈ DA for A ∈ P∗.
Let D∗ = {DA : A ∈ P∗}, clearly

⊞4 (a) D∗ = ∩{D : D ∈ D∗}

(b) D∗ ⊆ D is non-empty.

As ACP∗
holds clearly

(∗)1 we can choose 〈F̄A : A ∈ P∗〉 such that F̄A exemplifies DA ∈ D as in
[Sh:938, 5.17,(1),(2)], so in particular F̄A is ℵ0-continuous and without loss
of generality FA

α 6= ∅,FA
α ⊆ Πᾱ for every α < ∂.

For each β < ∂ let

(∗)2 F1
β = {f̄ = 〈fA : A ∈ P∗〉 : f̄ satisfies A ∈ P∗ ⇒ fA ∈ FA

β }

(∗)3 for f̄ ∈ F1
β let sup{fA : A ∈ P∗} be the function f ∈ Y Ord defined by

f(y) = sup{fA(y) : A ∈ P∗}

(∗)4 F 1
β = {sup{fA : A ∈ P∗} : f̄ = 〈fA : A ∈ P∗〉 belongs to F1

β}.

Now

(∗)5 (a) 〈F 1
β : β < ∂〉 is well defined, i.e. exist

(b) F 1
β ⊆ Πᾱ.

[Why? Clause (a) holds by the definitions, clause (b) holds as t ∈ Y ⇒ cf(αt) ≥
hrtg(P(Y )).]

(∗)6 F 1
β 6= ∅ for β < ∂.

[Why? As for β < λ, the sequence 〈F̄A
β : A ∈ P∗〉 is well defined (as 〈F̄A : A ∈

P∗〉 is) and A ∈ P∗ ⇒ FA
β 6= ∅, so we can use ACP(Y ) to deduce F 1

β 6= ∅.]
Define

(∗)7 (a) for f ∈ Πᾱ and A ∈ P∗ let
βA(f) = min{β < ∂ : f < g mod DA for every g ∈ FA

β }

(b) for f ∈ Πᾱ let β(f) = sup{βA(f) : A ∈ P∗}.

Now

(∗)8 (a) for A ∈ P∗ and f ∈ Πᾱ, the ordinal βA(f) < ∂ is well defined
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PSEUDO PCF SH955 7

(b) for f ∈ Πᾱ the sequence 〈βA(f) : A ∈ P∗〉 is well defined.

[Why? Clause (a) holds because 〈FA
γ : γ < ∂〉 is cofinal in (Π, ᾱ, <DA

), clause (b)
holds by (∗)7(a).]

(∗)9 (a) for f ∈ Πᾱ the ordinal β(f) is well defined and < ∂

(b) if f ≤ g are from Πᾱ then β(f) ≤ β(g).

[Why? For clause (a), first, β(f) is well defined and ≤ ∂ by (∗)8 and the definition
of β(f) in (∗)7(b). Second, recalling that ∂ is regular ≥ hrtg(P(Y )) ≥ hrtg(P∗)
clearly β(f) < ∂. Clause (b) is obvious.]

Now

(∗)10 (a) if A ∈ P∗, γ < ∂ and f ∈ FA
γ then βA(f) > γ

(b) if γ < ∂ and f ∈ F 1
γ then β(f) > γ.

[Why? Clause (a) holds because β < γ ∧ g ∈ FA
β ⇒ g < f mod DA and β = γ ⇒

f ∈ FA
γ ∧ f � f mod DA. Clause (b) holds because for some 〈fB : B ∈ P∗〉 ∈

Π{FB
γ : B ∈ P∗} we have f = sup{fB : B ∈ P∗} hence B ∈ P∗ ⇒ fB ≤ f

hence in particular fA ≤ f ; now recalling β(fA) > γ by clause (a) it follows that
β(f) > γ.]

(∗)11 (a) for ξ < ∂ let γξ = min{β(f) : f ∈ F 1
ξ }

(b) for ξ < ∂ let F 2
ξ = {f ∈ F 1

ξ : β(f) = γξ}

(∗)12 (a) 〈(γξ,F 2
ξ ) : ξ < ∂〉 is well defined, i.e. exists

(b) if ξ < ∂ then ξ < γξ < ∂.

[Why? γξ is the minimum of a set of ordinals which is non-empty by (∗)6 and ⊆ ∂,
by (∗)9(a), and all members are > γ by (∗)10(b).]

(∗)13 for ξ < ∂ we have F 2
ξ ⊆ Πᾱ and F 2

ξ 6= ∅.

[Why? By (∗)11 as F 1
ξ 6= ∅ and F 1

ξ ⊆ Πᾱ.]

(∗)14 we try to define βε < ∂ by induction on the ordinal ε < ∂
ε = 0: βε = 0
ε limit: βε = ∪{βζ : ζ < ε}
ε = ζ + 1: βε = γβζ

(∗)15 (a) if ε < ∂ then βε < ∂ is well defined ≥ ε

(b) if ζ < ε is well defined then βζ < βε.

[Why? Clause (a) holds as ∂ is a regular cardinal so the case ε limit is O.K., the
case ε = ζ + 1 holds by (∗)12(b). As for clause (b) we prove this by induction on ε;
for ε = 0 this is empty, for ε a limit ordinal use the induction hypothesis and the
choice of βε in (∗)14 and for ε = ξ + 1, clearly by (∗)12(b) and the choice of γε in
(∗)14 we have βξ < βε and use the induction hypothesis.]

(∗)16 if f ∈ Πᾱ, then for some g ∈ ∪{F 2
βε

: ε < ∂} we have f < g mod D∗.
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8 SAHARON SHELAH

[Why? Recall that βA(f) for A ∈ P∗ and β(f) are well defined ordinals < ∂ and
A ∈ P∗ ⇒ βA(f) ≤ β(f). Now let ζ < ∂ be such that β(f) < βζ , exists as we can
prove by induction on ε (using (∗)15(b)) that βε ≥ ε. As F̄A is <DA

-increasing for
A ∈ P∗ clearly A ∈ P∗ ∧ g ∈ FA

βζ
⇒ f < g mod DA. So by the definition of F 1

βζ

we have A ∈ P∗ ∧ g ∈ F 1
βζ

⇒ f < g mod DA hence g ∈ F 1
βζ

⇒ f < g mod D∗. As

F 2
βζ

⊆ F 1
βζ

we are done.]

(∗)17 if ζ < ξ < ∂ and f ∈ F 2
ζ and g ∈ Fξ then f < g mod D∗.

[Why? As in the proof of (∗)16 but now β(f) = γζ .]
Together by (∗)13 +(∗)16+(∗)17 the sequence 〈F 2

βε
: ε < ∂〉 is as required. �1.3

A central definition here is
{r17g}

Definition 1.5. 1) For ᾱ ∈ Y Ord let Jℵ1-comp
<λ [ᾱ] = {X ⊆ Y : ps-pcfℵ1−comp(ᾱ ↾

X) ⊆ λ}. So for X ⊆ Y,X /∈ Jℵ1−comp
<λ [ᾱ] iff there is an ℵ1-complete filter D on

Y such that X 6= ∅ mod D and ps-tcf(Πᾱ, <D) is well defined ≥ λ iff there is an
ℵ1-complete filter D on Y such that ps-tcf(Πᾱ, <D) is well defined ≥ λ and X ∈ D.

2) Jℵ1−comp
≤λ is Jℵ1−comp

<λ+ and we can use a set a of ordinals instead of ᾱ.
{r18}

Claim 1.6. The Generator Existence Claim
Let ᾱ ∈ Y (Ord\{0}).

1) J<ℵ1−comp
<λ (ᾱ) is an ℵ1-complete ideal on Y for any cardinal λ except that it may

be P(Y ).
2) [ACP(Y )] Assume t ∈ Y ⇒ cf(αt) ≥ hrtg(P(Y )). If λ ∈ ps-pcfℵ1−comp(ᾱ) then
for some X ⊆ Y we have

(A) Jℵ1−comp
<λ+ [ᾱ] = Jℵ1−comp

<λ [ᾱ] + X

(B) λ = ps-tcf(Πᾱ, <
J

ℵ1−comp

=λ
[ᾱ]

) where Jℵ1−comp
=λ [ᾱ] := Jℵ1−comp

<λ [ᾱ] + (Y \X)

(C) λ /∈ ps-pcfℵ1−comp(ᾱ ↾ (Y \X)).
{r18d}

Remark 1.7. 1) Recall that if ACP(Y ) then without loss of generality ACℵ0 holds.
Why? Otherwise by ACP(Y ) we have Y is well ordered and ACY hence |Y | = n
for some n < ω and in this case our claims are obvious, e.g. 1.6(2), 1.8.

2) Note that Jℵ1−comp
=λ [ᾱ] is a well defined ideal in 1.6(2)(B) though X is not

uniquely determined.
3) Note that if θ = ps − tcf(Πᾱ, <D) and X ∈ D+ then θ = ps − tcf(Π(ᾱ↾X), <(D+X)∩P(X)

).

Proof. 1) Clearly J<ℵ1-comp
<λ (ᾱ) is a ⊆-downward closed subset of P(Y ). If the

desired conclusion fails, then we can find a sequence 〈An : n < ω〉 of members of

Jℵ1−comp
<λ [ᾱ] such that their union A := ∪{An : n < ω} does not belong to it. As

A /∈ Jℵ1−comp
<λ [ᾱ], by the definition there is an ℵ1-complete filter D on Y such that

A 6= ∅ mod D and ps-tcf(Πᾱ, <D) is well defined, so let it be µ = cf(µ) ≥ λ and let
〈Fα : α < λ〉 exemplify it.

As D is ℵ1-complete and A = ∪{An : n < ω} 6= ∅ mod D necessarily for some

n,An 6= ∅ mod D but then D witness An /∈ Jℵ1−comp
<λ [ᾱ], contradiction.

2) Recall λ is a regular cardinal by [Sh:938, 5.8(0)] and λ ≥ hrtg(P(Y )) by 1.1.
Let D = Dᾱ

λ be as in [Sh:938, 5.19] when DC holds, and as in 1.3 in general,
i.e. Πᾱ/D has pseudo true cofinality λ and D contains any other such ℵ1-complete
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PSEUDO PCF SH955 9

filter on Y . Now if X ∈ D+ then λ = ps-tcfℵ1−comp(ᾱ ↾ X,<(D+X)∩P(X)) hence

X /∈ Jℵ1−comp
<λ [ᾱ], so

(∗)1 X ∈ Jℵ1−comp
<λ [ᾱ] ⇒ X = ∅ mod D.

A major point is

(∗)2 some X ∈ D belongs to Jℵ1−comp
<λ+ [ᾱ].

Why (∗)2? The proof will take awhile; assume that not, we have ACP(Y ) hence

ACD, so we can find 〈(F̄X , DX , λX) : X ∈ D〉 such that:

(a) λX is a regular cardinal ≥ λ+, i.e. > λ

(b) DX is an ℵ1-complete filter on Y such that X ∈ DX and
λX = ps-tcf(Πᾱ, <DX

)

(c) F̄X = 〈FX
α : α < λX〉 exemplifies that λX = ps-tcf (Πᾱ, <DX

)

(d) moreover F̄X is as in [Sh:938, 5.17(2)], that is, it is ℵ0-continuous and
α < λX ⇒ FX

α 6= ∅.

Let

(e) D∗
1 = {A ⊆ Y : for some X1 ∈ D we have X ∈ D ∧X ⊆ X1 ⇒ A ∈ DX}.

Clearly

(f) D∗
1 is an ℵ1-complete filter on Y extending D.

[Why? First, clearly D∗
1 ⊆ P(Y ) and ∅ /∈ D∗

1 as X ∈ D ⇒ ∅ /∈ DX . Second, if
A ∈ D then X ∈ D ∧X ⊆ A ⇒ A ∈ DX by clause (b) hence choosing X1 = A the
demand for “A ∈ D∗

1” holds so indeed D ⊆ D∗
1 . Third, assume Ā = 〈An : n < ω〉

and “An ∈ D∗
1” for n < ω, then for each An there is a witness Xn ∈ D, so by ACℵ0 ,

recalling 1.7, there is an ω-sequence 〈Xn : n < ω〉 with Xn witnessing An ∈ D∗
1 .

Then X = ∩{Xn : n < ω} belongs to D and witness that A := ∩{An : n < ω} ∈ D∗
1

because every DX is ℵ1-complete. Fourth, if A ⊆ B ⊆ Y and A ∈ D∗
1 , then some

X1 witness A ∈ D∗
1 , i.e. X ∈ D ∧ X ⊆ X1 ⇒ A ∈ DX ; but then X1 witness also

B ∈ D∗
1 .]

(g) assume 〈Fα : α < λ〉 is <D-increasing in Πᾱ, i.e. α < λ ⇒ Fα ⊆ Πᾱ and
α1 < α2 ∧ f1 ∈ Fα1 ∧ f2 ∈ Fα2 ⇒ f1 <D f2 and Fα 6= ∅ for every or
at least unboundedly many α < λ then

⋃

α<λ

Fα has a common <D∗

1
-upper

bound.

[Why? For each X ∈ D recall (Πᾱ, <DX
) has true cofinality λX which is regular

> λ hence by [Sh:938, 5.7(1A)] is pseudo λ+-directed hence there is a common <DX
-

upper bounded hX of ∪{Fα : α < λ}. As we have ACP(Y ) we can find a sequence
〈hX : X ∈ D〉 with each hX as above. Define h ∈ Πᾱ by h(t) = sup{hX(t) : X ∈
D}, it belongs to Πᾱ as we are assuming t ∈ Y ⇒ cf(αt) ≥ hrtg(P(Y )) ≥ hrtg(D).
So h ∈ Πᾱ is a <DX

-upper bound of ∪{Fα : α < λ} for every X ∈ D, hence by
the choice of D∗

1 it is a <D∗

1
-upper bound of ∪{Fα : α < λ}.]

But by the choice of D in the beginning of the proof we have λ = ps-tcf(Πᾱ, <D)

so there is a sequence 〈F̂α : α < λ〉 witnessing it. By clause (f) we have D ⊆ D∗
1

so clearly 〈F̂α : α < λ〉 is also <D∗

1
-increasing hence we can apply clause (g) to
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10 SAHARON SHELAH

the sequence 〈F̂α : α < λ〉 and got a <D∗

1
-upper bound f ∈ Πᾱ, contradiction to

the choice of 〈F̂α : α < λ〉 recalling 0.4(d) because D ⊆ D∗
1 , contradiction. So (∗)2

really holds.
Choose X as in (∗)2, now

(∗)3 D = dual(Jℵ1−comp
<λ [ᾱ] + (Y \X)).

[Why? The inclusion ⊇ holds by (∗)1 and (∗)2, i.e. the choice of X as a member of

D. Now for every Z ⊆ X which does not belong to Jℵ1−comp
<λ [ᾱ], by the definition

of Jℵ1−comp
<λ [ᾱ] there is an ℵ1-complete filter DZ on Y to which Z belongs such that

θ := ps-cf(Πᾱ, <D) is well defined and ≥ λ. But θ ≥ λ+ is impossible as we know

that Z ⊆ X ∈ Jℵ1-comp
<λ+ [ᾱ], so necessarily θ = λ, hence by the choice of D by using

1.3 we have D ⊆ DZ , hence Z 6= ∅ mod D. Together we are done.]

(∗)4 λ = ps-tcf(Πᾱ, <
J

ℵ1−comp

=λ

), see clause (B) of the conclusion of 1.6(2).

[Why? By (∗)3, the choice of Jℵ1−comp
=λ [ᾱ] and as λ = ps-tcf(Πᾱ, <D) by the choice

of D.]

(∗)5 λ /∈ ps-pcfℵ1−comp(ᾱ ↾ (Y \X)).

[Why? Otherwise there is an ℵ1-complete filter D′ on Y such that Y \X ∈ D′ and
λ = ps-tcf(Πᾱ, <D′). But this contradicts the choice of D by using 1.3.]

So X is as required in the desired conclusion of 1.6(2): clause (B) by (∗)4, clause

(C) by (∗)5 and clause (A) follows. Note that the notation Jℵ1−comp
=λ [ᾱ] is justified,

as if X ′ satisfies the requirements on X then X ′ = X mod Jℵ1−comp
<λ [ᾱ]. �1.6

{r19}
Conclusion 1.8. [ACP(Y )] Assume ᾱ ∈ Y Ord and each αt a limit ordinal of cofi-
nality ≥ hrtg(P(Y )) and ps − pcfℵ1−comp(ᾱ) is not empty.

1) If t ∈ Y ⇒ cf(αt) ≥ hrtg(Fil1ℵ1
(Y )) then there is a function h such that:

•1 the domain of h is P(Y )

•2 Rang(h) includes ps−pcfℵ1−comp(ᾱ) and is included in ps−pcfℵ1−comp(ᾱ)∪
{0} ∪ {µ : µ = sup(µ∩ ps-pcfℵ1−comp(ᾱ))}, also Rang(h) includes {cf(αt) :
t ∈ Y }, but see •5

•3 A ⊆ B ⊆ Y ⇒ h(A) ≤ h(B) and h(A) = 0 ⇔ A = ∅

•4 h(A) = min{λ : A ∈ Jℵ1−comp
≤λ [ᾱ]}

•5 if h(A) = λ and cf(λ) > ℵ0 then λ is regular and λ ∈ ps-tcfℵ1−comp(ᾱ), i.e.
for some ℵ1-complete filter D on Y we have A ∈ D and ps-tcf(Πᾱ, <D) = λ

•6 the set ps-pcfℵ1−comp(ᾱ) has cardinality < hrtg(P(Y ))

•7 if h(A) = λ and cf(λ) = ℵ0 then we can find a sequence 〈An : n < ω〉 such
that A = ∪{An : n < ω} and h(An) < λ for n < ω

•8 Jℵ1−comp
<λ [ᾱ] = {A ⊆ Y : h(A) < λ} when cf(λ) > ℵ0

•9 if cf(otp(ps-pcfℵ1−comp(ᾱ))) > ℵ0 then ps-pcfℵ1−comp(ᾱ) has a last member.

2) Without the extra assumption of part (1), still there is h such that:

•1 h is a function with domain P(Y )
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PSEUDO PCF SH955 11

•2 the range of h is ps-pcfℵ1−comp(ᾱ)∪{0}∪{µ : µ = sup(µ∩ ps-pcfℵ1−comp(ᾱ))

and cf(µ) = ℵ0 or just cf(µ) < hrtg(ps-pcfℵ1−comp(ᾱ)) and Jℵ1−comp
<µ [ᾱ] 6=

∪{Jℵ1−comp
<χ [ᾱ] : χ < µ}}

•3 A ⊆ B ⊆ Y ⇒ h(A) ≤ h(B) and h(A) = 0 ⇔ A = ∅

•4 h(A) = min{λ : A ∈ Jℵ1−comp
≤λ [ᾱ]}

•5 if h(A) = λ and cf(λ) ≥ hrtg( ps-pcfℵ1−comp[ᾱ]) then λ ∈ ps-pcfℵ1−comp(ᾱ),
i.e. there is an ℵ1-complete filter D on Y such that (Πᾱ, <D) has true
cofinality λ

•6 as above

•7 as above

•8 as above.

3) The set c := ps− pcfℵ1−comp(a) satisfies c ≤qu P(Y ). If also ACα holds for α <
hrtg(P(Y )) or just ACps−pcf

ℵ1−comp(ᾱ)
then we can find a sequence 〈Xλ : λ ∈ c〉 of

subsets of Y such that for every cardinality µ, Jℵ1−comp
<µ [ᾱ] is the ℵ1-complete ideal

on Y generated by {Xλ : λ < µ and λ ∈ ps-pcfℵ1−comp(ᾱ)}.

Proof. 1) Let Θ = ps-pcfℵ1−comp(ᾱ). We define the function h from P(Y ) into
Θ+ which is defined as the closure of Θ ∪ {0}, i.e. Θ ∪ {µ : µ = sup(µ ∩ Θ)}, by

h(X) = Min{λ ∈ Θ+ : X ∈ Jℵ1−comp
≤λ [ᾱ]}. It is well defined as ps-pcfℵ1−comp(ᾱ)

is a set, that is as µ∗ = hrtg(Πᾱ) is well defined and so Jℵ1−comp[ᾱ] = P(Y ) (see

[Sh:938, 5.8(2)]), non-empty by an assumption and Jℵ1−comp
≤λ [ᾱ] = P(Y ) when

λ ≥ sup(ps-pcfℵ1−comp(ᾱ)). This function h, its range is included in Θ+, but

otp(Θ+) ≤ otp(Θ) + 1; also clearly •1 of the conclusion holds. Also if λ ∈ Θ and
X is as in 1.6(2) then h(X) = λ; so h is a function from P(Y ) into Θ+ and its
range include Θ hence |Θ| < hrtg(P(Y )) so •2 first clause holds; the second clause
of •2 holds as trivially h(∅) = 0 and the definition of Θ+ and the third clause by
t ∈ Y ⇒ h({t}) = cf(αt) holds. Now first by 1.1 we have θ ∈ Θ ⇒ θ ≥ hrtg(P(Y )),
hence θ ∈ Θ ⇒ θ > sup(Θ ∩ θ) so the range of h is as required in •2.

Second, if λ ∈ Θ+ and cf(λ) = ℵ0 then clearly λ ∈ Θ+\Θ and we can find an
increasing sequence 〈λn : n < ω〉 of members of ps-pcfℵ1-comp(ᾱ) with limit λ. For

each n there is Xn ∈ Jℵ1−comp
≤λn

[ᾱ]\Jℵ1-comp
<λn

[ᾱ] by 1.6(2), but ACℵ0 holds, see 1.7

hence such a sequence 〈Xn : n < ω〉 exists. Easily A := ∪{Xn : n < ω} ∈ P(Y )
satisfies h(A) = λ hence λ ∈ Rang(h). Third, if λ = sup( ps-pcfℵ1−comp(ᾱ)) and
cf(λ) > ℵ0, then

⋃

µ<λ

J<µ[ᾱ] 6= P(Y ) because Y does not belong to the union while

J<λ+(ᾱ) = P(Y ) so h(Y ) = λ.
Fourth, assume λ = h(A), λ /∈ ps-pcfℵ1−comp(ᾱ) and cf(λ) > ℵ0, we can find

〈λi : i < cf(λ)〉, an increasing sequence with limit λ, but by the definition of h
necessarily λ∩ ps-pcfℵ1−comp(ᾱ) is an unbounded subset of λ so without loss of

generality all are members of ps-pcfℵ1−comp(Πᾱ). Now 〈Ji := Jℵ1−comp
<λi

[ᾱ] : i <

cf(λ)〉 is a ⊆-increasing sequence of ℵ1-complete ideals on Y , no choice is needed,
and by our present assumption ℵ0 < cf(λ) hence the union J = ∪{Ji : i < cf(λ)}
is an ℵ1-complete ideal on Y and obviously A /∈ J . So also D1 = dual(J) +A is an
ℵ1-complete filter hence by [Sh:938, 5.9] (recalling the extra assumption t ∈ Y ⇒
cf(αt) ≥ hrtg(Fil1ℵ1

(Y )))
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12 SAHARON SHELAH

for some ℵ1-complete filter D2 extending D1 we have µ = ps-tcf(Πα,<D2) is

well defined, so by 1.6(2) we have some D2 ∩ Jℵ1−comp
≤µ [ᾱ] 6= ∅ but ∅ = D2 ∩ Ji =

D2 ∩ Jℵ1−comp
<λi

[ᾱ] hence µ ≥ λi. Hence µ ≥ λi for every i < cf(λ) but λ is singular

so µ > λ and µ ∈ ps-pcfℵ1−comp(ᾱ). Hence χ := min( ps-pcfℵ1−comp(ᾱ)\λ) is well

defined and Jℵ1−comp
<χ [ᾱ] = J trivially χ ≥ λ, but as χ is regular while λ is singular

clearly χ > λ. But as h(A) = λ < χ we get that A ∈ Jℵ1−comp
<χ [ᾱ], contradiction to

the definition of h.
So we have proved •5, the fifth clause of the conclusion. The other clauses follow

from the properties of h.
2) Similar proof.
3) We define a function g with domain P(Y ) by g(A) = min{λ : A ∈ J<λ+ [ᾱ]}.
This function is well defined as if λ = hrtg(Πᾱ) then A ⊆ Y ⇒ A ∈ J≤λ[ᾱ]; and
the cardinals are well ordered. Also c ⊆ Rang(h) because if λ ∈ c, then by 1.6(2)
we are done recalling that we are assuming ACP(Y ).

So clearly c ≤qu P(Y ) so as c is a set of cardinals, clearly otp(c) < hrtg(P(Y ))
hence |c| < hrtg(P(Y )).

For the second sentence in 1.8(3) by the last sentence it suffices to assume ACc.
For λ ∈ c let Pλ = {X ⊆ Y : X as in 1.6(2)}, so Pλ 6= ∅. By ACc there is a
sequence 〈Xλ : λ ∈ c〉 ∈

∏

λ∈c

Pλ. For λ ∈ c, let J∗
λ be the ℵ1-complete ideal on Y

generated by {Xµ : µ ∈ c∩λ}, so by the definitions of Pλ we have µ < λ∧µ ∈ c ⇒
Xµ ∈ J≤µ[ᾱ] ⊆ J<λ[ᾱ], also J<λ[ᾱ] is ℵ1-complete hence λ ∈ c ⇒ J∗

λ ⊆ J<λ[ᾱ].
If for every λ equality holds we are done, otherwise there is a minimal counterex-

ample and use 1.6(2). �1.8

{r20}
Definition 1.9. Assume cf(µ) < hrtg(Y ) and µ is singular of uncountable cofinality
limit of regulars. We let

(a) pp∗
Y (µ) = sup{λ : for some ᾱ,D we have

(a) λ = ps-tcf(Πᾱ, <D),
(b) D is an ℵ1 − complete filter on Y
(c) ᾱ = 〈αt : t ∈ Y 〉, each αt regular
(d) µ = limDᾱ}

(b) pp+
Y (µ) = sup{λ+ : λ as above}.

(c) similarly pp∗
κ−comp,Y (µ), pp+

κ−comp,Y (µ) restricting ourselves
to κ-complete filters D; similarly for other properties

(d) we can replace Y by an ℵ1-complete filter D on Y , this means
we fix D but not ᾱ above.

{r20d}

Remark 1.10. 1) of course, if we consider sets Y such that ACY may fail, it is
natural to omit the regularity demands, so ᾱ is just a sequence of ordinals.
2) We may use ᾱ a sequence of cardinals, not necessarily regular; see §3.

{r21}
Conclusion 1.11. [DC + ACP(Y )] Assume θ = hrtg(P(Y )) < µ, µ is as in Def-

inition 1.9, µ0 < µ and ᾱ ∈ Y (Reg ∩ µ+
0 ) ∧ ps − pcfℵ1−comp(ᾱ) 6= ∅ ⇒ ps −

pcfℵ1−comp(ᾱ) ⊆ µ. If σ = |Reg ∩ µ\µ0| < µ and κ = |Reg ∩ pp+
Y (µ)\µ0| then

κ < hrtg(θ × Y σ).

Remark 1.12. In the ZFC parallel the assumption on µ0 < µ is not necessary.
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Proof. Obvious by Definition [Sh:938, 5.6] noting Conclusion 1.8 above and 1.13
below. That is, letting Ξ := Reg ∩ pp+

Y (µ)\µ0 so |Ξ| = κ and Λ = Reg ∩ µ\µ0,
for every ᾱ ∈ Y Λ by Definition 1.9 the set ps-pcfℵ1−comp(ᾱ) is a subset of Reg ∩
pp+

Y (µ)\µ0, and by claim 1.8 it is a set of cardinality < hrtg(P(Y )). By Definition
1.9 and Claim 1.13 below we have Ξ = ∪{ps − pcfℵ1−comp(ᾱ) : ᾱ ∈ Y Λ}. Clearly

there is a function h with domain hrtg(P(Y ))×Y σ such that ε < hrtg(P(Y ))∧ᾱ ∈
Y σ ⇒ (h(ε, ᾱ) is the ε-th member of ps-pcfℵ1−comp(ᾱ) if there is one, min(Λ)
otherwise). So h is a function from hrtg(P(Y ))× Y σ onto a set including Ξ which
has cardinality κ, so we are done. �1.11

{r22}
Claim 1.13. The No Hole Claim[DC]
1) If ᾱ ∈ Y Ord and λ2 ∈ ps-pcfℵ1−comp(ᾱ), for transparency t ∈ Y ⇒ αt > 0
and hrtg(P(Y )) ≤ λ1 = cf(λ1) < λ2, then for some ᾱ′ ∈ Πᾱ we have λ1 =
ps-pcfℵ1−comp(ᾱ′).
2) In part (1), if in addition ACY then without loss of generality ᾱ′ ∈ Y Reg.
3) If in addition ACP(Y ) + AC<κ then even witnessed by the same filter (on Y ).

Proof. 1) Let D be an ℵ1-complete filter on Y such that λ2 = ps-tcf(Πᾱ, <D), let
〈Fα : α < λ2〉 exemplify this.

First assume hrtg(Fil1ℵ1
(Y )) ≤ λ1, clearly f ∈ Fα ⇒ rkD(f) ≥ α for every α <

λ2, hence in particular for α = λ1 hence there is f ∈ Y Ord such that rkD(f) = λ1

and now use [Sh:938, 5.9] but there we change the filter D, (extend it), so is O.K.

for part (1). In general, i.e. without the extra assumption hrtg(Fil1ℵ2
(Y )) ≤ λ1, use

1.14(1),(2) below.
2) Easy, too.
3) Similarly using 1.14(3) below. �1.13

{r24}
Claim 1.14. Assume D ∈ Fil1κ(Y ), κ > ℵ0,Fα ⊆ Y Ord non-empty for α < δ and
F̄ = 〈Fα : α < δ〉 is <D-increasing, δ a limit ordinal.
1) [DC] There is f∗ ∈ Πᾱ which satisfies f ∈ ∪{Fα : α < λ1} ⇒ f <D f∗ but
there is no such f∗∗ ∈ Πᾱ satisfying f∗∗ <D f .
2) [AC<κ] For f∗ as above, let D1 = Df∗,F̄ := {Y \A : A = ∅ mod D or A ∈ D+

and there is f∗∗ ∈ Y Ord such that f∗∗ <D+A f∗ and f ∈ ∪{Fα : α < λ1} ⇒
f <D+A f∗∗}. Now D1 is a κ-complete filter and ∅ /∈ D1, D1 extends D and if
cf(δ) ≥ hrtg(P(Y )) then 〈Fα : α < δ〉 witness that f∗ is a <D1-exact upper bound
of F̄ hence (

∏

y∈Y

f∗(y), <D1) has pseudo-true-cofinality cf(δ).

3) [DC + AC<κ+ ACP(Y )]

If cf(δ) ≥ hrtg(P(Y )) then there is f ′ ∈ Y Ord which is an <D-exact upper
bound of F̄ , i.e. f <D f ′ ⇒ (∃α < δ)(∃g ∈ Fα)[f < g mod D] and f ∈

⋃

α<δ

Fα ⇒

f <D f ′.

Proof. 1) If not then by DC we can find f̄ = 〈fn : n < ω〉 such that:

(a) fn ∈ Y Ord

(b) fn+1 < fn mod D

(c) if f ∈
⋃

α<δ

Fα and n < ω then f < fn mod D.

So An = {t ∈ Y : fn+1(t) < fn(t)} ∈ D hence ∩{An : n < ω} ∈ D, contradiction.
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14 SAHARON SHELAH

2) First, clearly D1 ⊆ P(Y ) and by the assumption ∅ /∈ D1. Second, if f∗∗ witness
A ∈ D1 and A ⊆ B ⊆ Y then f∗∗ witness B ∈ D1.

Third, we prove D1 is closed under intersection of < κ members, so assume
ζ < κ and Ā = 〈Aε : ε < ζ〉 is a sequence of members of D1. Let A := ∩{Aε : ε <
ζ}, Bε = Y \Aε for ε < ζ and B′

ε = Bε\ ∪ {Bξ : ξ < ε} and B = ∪{Bε : ε < ζ}.
Clearly B = Y \A,A ⊆ Y and 〈B′

ε : ε < ζ〉 is a sequence of pairwise disjoint subsets
of Y with union B. But ACζ holds and ε < ζ ⇒ Aε ∈ D1 hence we can find
〈f∗∗

ε : ε < ζ〉 such that f∗∗
ε ∈ Y Ord and if Aε /∈ D then f∗∗

ε witness Aε ∈ D1. Let
f∗∗ ∈ Y Ord be defined by f∗∗(t) = f∗∗

ε (t) if t ∈ B′
ε or ε = 0 ∧ t ∈ Y \B; easily

B′
ε ∈ D+ ∧ f ∈

⋃

α<δ

Fα ⇒ f < f∗∗
ε = f∗∗ mod (D + B′

ε) but B = ∪{B′
ε : ε < ζ}

and D is κ-complete hence f ∈
⋃

α<δ

Fα ⇒ f < f∗∗ mod(D + B). So as A = Y \B

clearly f∗∗ witness A =
⋂

ε<ζ

Aε ∈ D1 so D1 is indeed κ-complete.

Lastly, assume cf(δ) ≥ hrtg(P(Y )) and we shall show that f∗ is an exact upper
bound of F̄ modulo D1. So assume f∗∗ ∈ Y Ord and f∗∗ < f∗ mod D1 and we
shall prove that there are α < δ and f ∈ Fα such that f∗∗ ≤ f mod D1.

Let A = {A ∈ D+
1 : there is f ∈

⋃

α<δ

Fα such that f∗∗ ≤ f mod(D + A)}, yes,

not D1!

Case 1: For every B ∈ D+
1 there is A ∈ A , A ⊆ B.

For every A ∈ A let αA = min{β: there is f ∈ Fβ such that f∗∗ ≤ f mod(D +
A)}.

So the sequence 〈αA : A ∈ A 〉 is well defined.
Let α(∗) = sup{αA + 1 : A ∈ A }, it is < δ as cf(δ) ≥ hrtg(P(Y )) ≥ hrtg(A ).
Choose f ∈ Fα(∗) and let Bf := {t ∈ Y : f∗∗(t) > f(t)}. Now if A ∈ A (so

A ∈ D+
2 ) and f ′ ∈

⋃

α<δ

Fα witness this (i.e. f∗∗ ≤ f ′ mod (D + A)); without loss

of generality f ′ ∈ FαA
hence f ′ < f mod D recalling αA < α(∗), then A * Bf

as otherwise f∗∗ ≤ f ′ < f < f∗∗ mod (D + A). So Bf contains no A ∈ A hence
necessarily Bf is = ∅ mod D1 by the case assumption; this means that f∗∗ ≤ f
mod D1. So recalling f ∈ Fα(∗) ⊆

⋃

α<δ

Fα, we have “f is as required” thus finishing

the proof of “f∗ is an exact upper bound of F̄ mod D”.

Case 2: B ∈ D+
1 and there is no A ∈ A such that A ⊆ B.

For f ∈
⋃

α<δ

Fα let Bf = {t ∈ B : f(t) < f∗∗(t)} and for α < δ we define

Bα = {Bf : f ∈ Fα} and we define a partial function h from P(Y ) into δ
by h(A) = sup{α < δ : A ∈ Bα}. As cf(δ) ≥ hrtg(P(Y )) necessarily α(∗) =
sup(δ ∩ Rang(h)) is < δ. Choose g ∈ Fα(∗)+1, hence u := {α : α ∈ [α(∗), δ] and
Bg ∈ Bα} is an unbounded subset of δ.

Let A = B ∩Bg, now if A ∈ D+ then α ∈ u ⇒
∨

f∈Fα

f < f∗∗ mod (D + A) but

F̄ is <D-increasing and δ = sup(u) hence f ∈
⋃

α<δ

Fα ⇒ f < f∗∗ mod (D + A)

hence by the definition of D1, f∗∗ witness that Y \A ∈ D1, hence A = ∅ mod D1.
As B ∈ D+

1 and A = B∩Bg it follows that B\Bg ∈ D+
1 and by the choice of A the

set B\Bg belongs to A . But B\Bg ⊆ B by its definition so we get a contradiction
to the case assumption.
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3) By [Sh:938, 5.12] without loss of generality F̄ is ℵ0-continuous. For every
A ∈ D+ the assumptions hold even if we replace D by D+A and so there are D1, f

∗

as in part (2), we are allowed to use part (1) as we have DC and part (2) as we
have AC<κ. As we are assuming ACP(Y ) there is a sequence 〈(DA, fA) : A ∈ D+〉
such that:

(∗)1 (a) DA is a κ-complete filter extending D + A

(b) fA ∈ Y Ord is a <DA
-exact upper bound of F̄ .

Recall |A| ≤qu |B| is defined as: A is empty or there is a function from B onto A.
Of course, this implies hrtg(A) ≤ hrtg(B).

Let Ū = 〈Ut : t ∈ Y 〉 be defined by Ut = {fA(t) : A ∈ D+} ∪ {sup{f(t) :
f ∈

⋃

α<δ

Fα}} hence t ∈ Y ⇒ 0 < |Ut| ≤qu P(Y ) even uniformly so there is

a sequence 〈ht : t ∈ Y 〉 such that ht is a function from P(Y ) onto Ut hence
|
∏

t∈Y

Ut| ≤qu P(Y ) × Y ≤qu P(Y × Y ) but ACP(Y ) holds hence Y can be well

ordered however without loss of generality Y is infinite hence |Y × Y | = Y , so
|
∏

t∈Y

Ut| ≤qu |P(Y )|.

Let G = {g : g ∈
∏

t∈Y

Ut and not for every f ∈
⋃

α<δ

Fα do we have f < g mod D},

so |G | ≤ |
∏

t∈Y

Ut| ≤qu |P(Y ×Y )| = |P(Y )| hence hrtg(G ) ≤ hrtg(P(Y )) ≤ cf(δ).

Now for every g ∈ G the sequence 〈{{t ∈ Y : g(t) ≤ f(t)} : f ∈
⋃

β<α

Fβ} : α < δ〉

is a ⊆-increasing sequence of subsets of P(Y ), but hrtg(P(Y )) ≤ cf(δ) hence the
sequence is eventually constant and let α(g) < δ be the minimal α such that

(∗)g (∀β)[α ≤ β < δ ⇒ {{t ∈ Y : g(t) ≤ f(t)} : f ∈
⋃

γ<β

Fγ} = {{t ∈ Y : g(t) ≤

f(t)} : f ∈
⋃

γ<α
Fγ}].

But recalling hrtg(G ) ≤ cf(δ), the ordinal α(∗) := sup{α(g) : g ∈ G } is < δ. Now
choose f∗ ∈ Fα(∗)+1 and define g∗ ∈

∏

t∈Y

Ut by g∗(t) = min(Ut\f∗(t)), well defined

as sup{f(t) : t ∈
⋃

α<δ

Fα} ∈ Ut. It is easy to check that g∗ is as required. �1.14

{r25}
Observation 1.15. 1) Let D be a filter on Y .
If D is κ-complete for every κ then for every f ∈ Y Ord and A ∈ D+ there is B ⊆ A
from D+ such that f↾B is constant.
2) If ᾱ = 〈αs : s ∈ Y 〉 and Xε ⊆ Y for ε < α < κ and X =

⋃

ε
Xε then ps −

pcfκ−comp(ᾱ↾X) =
⋃

ε
ps − pcfκ−comp(ᾱ↾Xε).

Remark 1.16. 1) Note that 1.15(1) is not empty; its assumptions hold when Y is
an infinite set such that: for every X ⊆ Y, |X | < κ∨ |Y \X | < κ and D = {X ⊆ Y :
|Y \X | � κ}.

Proof. Straightforward. �1.15
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16 SAHARON SHELAH

§ 2. Composition and generating sequence for pseudo pcf
{comp}

How much choice suffice to show λ = ps − tcf(
∏

(i,j)∈Y

λi,j/D) when λi is the

pseudo true equality of (
∏

j∈Yi

λi,j , <Di
) for i ∈ Z where Z = {i : (i, j) ∈ Y } and

Yi = {(i, j) : i ∈ Z, j ∈ Yi} and λ = ps-tcf(
∏

i∈Z

λi, <E)? This is 2.6, the parallel of

[Sh:g, Ch.II,1.10,pg.12].
{e1}

Claim 2.1. If ⊞ below holds then for some partition (Y1, Y2) of Y and club E of
λ we have

⊕ (a) if Y1 ∈ D+ and f, g ∈ ∪{Fα : α ≥ min(E)} then f = g mod(D+Y1)

(b) if Y2 ∈ D+ then 〈Fα : α ∈ E〉 is <D+Y2-increasing

where

⊞ (a) λ is regular ≥ hrtg(P(Y )))

(b) Fα ⊆ Y Ord for α < λ is non-empty

(c) D is an ℵ1-complete filter on Y

(d) if α1 < α2 < λ and fℓ ∈ Fαℓ
for ℓ = 1, 2 then f1 ≤ f2 mod D.

Proof. For Z ∈ D+ let

(∗)1 (a) SZ = {(α, β) : α ≤ β < λ and for some f ∈ Fα and g ∈ Fβ we have
f < g mod (D + Z)}

(b) S+
Z = {(α, β) : α ≤ β < λ and for every f ∈ Fα and g ∈ Fβ we have
f < g mod (D + Z)}.

Note

(∗)2 (a) if α1 ≤ α2 ≤ α3 ≤ α4 and (α2, α3) ∈ SZ then (α1, α4) ∈ SZ

(b) similarly for S+
Z

(c) if α1 ≤ α2 ≤ α3 ≤ α4 and (α1 6= α2) ∧ (α3 6= α4) and (α2, α3) ∈ SZ

then (α1, α4) ∈ S+
Z

(d) SZ ⊆ S+
Z .

[Why? By the definitions.]
Let

(∗)3 J := {Z ⊆ Y : Z ∈ dual(D) or Z ∈ D+ and (∀α < λ)(∃β)((α, β) ∈ S+
Z ).

Next

(∗)4 (a) J is an ℵ1-complete ideal on Y

(b) if D is κ-complete then J is κ-complete1

(c) J = {Z ⊆ Y : Z ∈ dual(D) or Z ∈ D+ and (∀α < λ)(∃β)
((α, β) ∈ SZ)}.

[Why? For clauses (a),(b) check and for clause (c) recall (∗)2(c).]
Let

1not used; note that ACκ holds in the non-trivial case as ACP(Y ) holds, see 1.15
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PSEUDO PCF SH955 17

(∗)5 (a) for Z ∈ J+ let α(Z) = min{α < λ: for no β ∈ (α, λ) do we have
(α, β) ∈ SZ}

(b) α(∗) = sup{αZ : Z ∈ J+}

(∗)6 (a) for Z ∈ J+ we have α(Z) < λ

(b) α(∗) < λ.

[Why? Clause (a) by the definition of the ideal J , and clause (b) as λ = cf(λ) ≥
hrtg(P(Y )).]

Let

(∗)7 (a) for Z ∈ D+ let fZ : λ → λ + 1 be defined by fZ(α) =
Min{β : (α, β) ∈ S+

Z or β = λ}

(b) f∗ : λ → λ be defined by: f∗(α) = sup{fZ(α) : Z ∈ D+ ∩ J}

(c) E = {δ : δ a limit ordinal < λ such that α < δ ⇒ f∗(α) < δ}\α(∗).

Hence

(∗)8 (a) if Z ∈ D+ ∩ J then fZ is indeed a function from λ to λ

(b) f∗ is indeed a function from λ to λ

(c) f∗ is non-decreasing

(d) E is a club of λ.

[Why? Clause (a) by the definition of J and of f∗ and clause (b) as λ = cf(λ) ≥
hrtg(P(Y )) and clause (c) by (∗)2 and clause (d) follows from (b)+(c).]

(∗)9 Let α0 = min(E), α1 = min(E\(α0 + 1)) choose f0 ∈ Fα0 , f1 ∈ Fα1 and
let Y1 = {y ∈ Y : f0(y) = f1(y)} and Y2 = Y \Y1

(∗)10 (Y1, Y2, E) are as required.

[Why? Think.] �2.1

{e2}
Claim 2.2. We have λ = ps − tcf(Πᾱ1, <D1) = ps − tcf(Πᾱ, <D), this means also
that one of them is well defined iff the other is, when

(a) ᾱ ∈ Y Ord and t ∈ Y ⇒ cf(αt) ≥ hrtg(Y )

(b) E is the equivalence relation on Y such that sEt ⇔ αs = αt

(c) D is a filter on X

(d) Y1 = Y/E

(e) D1 = {Z ⊆ Y/E : ∪{X : X ∈ Z} ∈ D}, so a filter on Y1

(f) ᾱ1 = 〈α1,y1 : y1 ∈ Y1〉 where y1 = y/E ⇒ α1,y1 = αy.

Remark 2.3. We can for the “only if” direction in 2.2 weaken the demand on cf(αt)
to cf(αt) ≥ hrtg(t/E).

Proof. The claim means

(∗) λ = ps − tcf(Πᾱ1, <D1) if and only if λ = ps − tcf(Πᾱ2, <D2).
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18 SAHARON SHELAH

First “only if” direction holds by 2.4.
Second, for the “if direction”, assume that ps − pcf(Πᾱ1, <D1) is well defined

and call it λ1. Let 〈F1,α : α < λ〉 witness this, for f ∈ F1,α let f [0] ∈ Y Ord be

defined by f [0](s) = f(s/E) and let Fα = {f [0] : f ∈ F1,α}. It is easy to check that
〈Fα : α < λ〉 witness λ1 = ps − tcf(Πᾱ, <D) recalling t ∈ Y ⇒ cf(αt) ≥ hrtg(Y )
by clause (d), so we have proved also the “if” implication. �2.2

By the following claims we do not really lose by using a ⊆ Reg instead ᾱ ∈ Y Ord
as by 2.5 below, without loss of generality αt = cf(αt) (when ACY ) and by 2.2.

{e23}
Claim 2.4. Assume ᾱ ∈ Y Ord, D ∈ Fil(Y ) and λ = ps-pcf(Πᾱ, <D) so λ is
regular, and y ∈ Y ⇒ αy < λ.

If 〈Fα : α < λ〉 witness λ = ps-tcf(Πᾱ, <D) and y ∈ Y ⇒ cf(αy) ≥ hrtg(Y ) and
λ ≥ hrtg(Y ) then for some e:

(a) e ∈ eq(Y ) = {e : e an equivalence relation on Y }

(b) the sequence Fe = 〈Fe,α : α < λ〉 witness ps-tcf(〈αy/e : y ∈ Y/e〉, D/e〉
where

(c) αy/e = αy, D/e = {A/e : A ∈ D} where A/e = {y/e : y ∈ A} and Fe,α =

{f [∗] : f ∈ Fα}, f [∗] : Y/e → Ord is defined by f [∗](t/e) = sup{f(s) : s ∈
t/e}; noting hrtg(Y/e) ≤ hrtg(Y )

(d) e = {(s1, s2) : αs1 = αs2}.

Proof. Let e = eq(ᾱ) = {(y1, y2) : y1 ∈ Y, y2 ∈ Y and αy1 = αy2}. For each f ∈ Πᾱ

let the function f [∗] ∈ Πᾱ be defined by f [∗](y) = sup{f(z) : z ∈ y/e}. Clearly
f [∗] is a function from

∏

y∈Y

(αy + 1) and it belongs to Πᾱ as y ∈ Y ⇒ cf(αy) ≥

hrtg(Y ) ≥ hrtg(y/E). Let H : λ → λ be: H(α) = min{β < λ : β > α and there

are f1 ∈ Fα and f2 ∈ Fβ such that f
[∗]
1 < f2 mod D}, well defined as F is cofinal

in (Πᾱ, <D). We choose αi < λ by induction on i by: αi = ∪{H(αj) + 1 : j < i}.

So α0 = 0 and 〈αi : i < λ〉 is increasing continuous. Let F ′
i = {f [∗] : f ∈ Fαi

and
there is g ∈ FH(αi) = Fαi+1−1 such that f [∗] < g mod D}.

So

(∗)1 F ′
i ⊆ {f ∈ Πᾱ : eq(ᾱ) refine eq(f)}.

[By the choice of F ′
i and of e]

(∗)2 F ′
i is non-empty.

[Why? By the choice of H(αi).]

(∗)3 if i(1) < i(2) < λ and hℓ ∈ F ′
iℓ

for ℓ = 1, 2 then h1 < h2 mod D.

[Why? For ℓ = 1, 2 let gℓ ∈ FH(αi(ℓ)) be such that hℓ = f
[∗]
ℓ < gℓ mod D, exists

by the definition of F ′
i(ℓ). But H(αi(1)) < αi(1)+1 ≤ αi(2) hence g1 ≤ f2 mod D so

together h1 = f
[∗]
1 < g1 ≤ f2 ≤ f

[∗]
2 = h2 mod D hence we are done.]

(∗)4
⋃

i<λ

F ′
i is cofinal in (Πᾱ, <D).
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[Easy, too.]
Lastly, let F

+
i = {f/e : e ∈ F ′

i} where f/e ∈ Y/eOrd, is defined by (f/e)(y/e) =
f(y), clearly well defined. �2.4

{e29}
Claim 2.5. Assume ACY and ᾱℓ = 〈αℓ

y : y ∈ Y 〉 ∈ Y Ord for ℓ = 1, 2. If

y ∈ Y ⇒ cf(α1
y) = cf(α2

y) then λ = ps-tcf(Πᾱ1, <D) iff λ = ps − tcf(Πᾱ2, <D).

Proof. Straightforward. �2.5

Now we come to the heart of the matter
{e3}

Theorem 2.6. The Composition Theorem [Assume ACZ and κ ≥ ℵ0]
We have λ = ps-tcf(

∏

(i,j)∈Y

λi,j , <D) and D is a κ-complete filter on Y when :

(a) E is a κ-complete filter on Z

(b) 〈λi : i ∈ Z〉 is a sequence of regular cardinals

(c) λ = ps-tcf(
∏

i∈Z

λi, <E)

(d) Ȳ = 〈Yi : i ∈ Z〉

(e) D̄ = 〈Di : i ∈ Z〉

(f) Di is a κ-complete filter on Yi

(g) λ̄ = 〈λi,j : i ∈ Z, j ∈ Yi〉 is a sequence of regular cardinals (or just limit
ordinals)

(h) λi = ps-tcf(
∏

j∈Yi

λi,j , <Di
)

(i) Y = {(i, j) : j ∈ Yi and i ∈ Z}

(j) D = {A ⊆ Y : for some B ∈ E we have i ∈ B ⇒ {j : (i, j) ∈ A} ∈ Di}.

Proof.

(∗)0 D is a κ-complete filter on Y .

[Why? Straightforward (and do not need any choice).]
Let 〈Fi,α : α < λi, i ∈ Z〉 be such that

(∗)1 (a) F̄i = 〈Fi,α : α < λi〉 witness λi = ps − tcf(
∏

j∈Yi

λi,j , <Di
)

(b) Fi,α 6= ∅.

[Why? Exists by clause (h) of the assumption and ACZ , for clause (b) recall [Sh:938,
5.6].]

By clause (c) of the assumption let Ḡ be such that

(∗)2 (a) Ḡ = 〈Gβ : β < λ〉 witness λ = ps-tcf(
∏

i∈Z

λi, <E)

(b) Gβ 6= ∅ for β < λ.

Now for β < λ let

(∗)3 Fβ := {f : f ∈
∏

(i,j)∈Y

λi,j and for some g ∈ Gβ and h̄ = 〈hi : i ∈ Z〉 ∈

∏

i∈Z

Fi,g(i) we have (i, j) ∈ Y ⇒ f((i, j)) = hi(j)}

(∗)4 the sequence 〈Fβ : β < λ〉 is well defined (so exists).
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20 SAHARON SHELAH

[Why? Obviously.]

(∗)5 if β1 < β2, f1 ∈ Fβ1 and f2 ∈ Fβ2 then f1 <D f2.

[Why? Let gℓ ∈ Gβℓ
and h̄ℓ = 〈hℓ

i : i ∈ Z〉 ∈
∏

i∈Z

Fi,gℓ(i), witness fℓ ∈ Fβℓ
for

ℓ = 1, 2. As β1 < β2 by (∗)2 we have B := {i ∈ Z : g1(i) < g2(i)} ∈ E. For each
i ∈ B we know that g1(i) < g2(i) < λi and so h1

i ∈ Fi,gi(i), h
2
i ∈ Fi,g2(i); hence

recalling the choice of 〈Fi,α : α < λi〉, see (∗)1, we have Ai ∈ Di where for every
i ∈ Z we let Ai := {j ∈ Yi : h1

i (j) < h2
i (j)}. As h̄1, h̄2 exists clearly 〈Ai : i ∈ Z〉

exist hence A = {(i, j) : i ∈ B and j ∈ Ai} is a well defined subset of Y and it
belongs to D by the definition of D.

Lastly, (i, j) ∈ A ⇒ f1((i, j)) < f2((i, j)), shown above; so by the definition of
D we are done.]

(∗)6 for every β < λ the set Fβ is non-empty.

[Why? Recall Gβ 6= ∅ by (∗)2(b) and let g ∈ Gβ. As 〈Fi,g(i) : i ∈ Z〉 is a
sequence of non-empty sets (recalling (∗)2(b)), and we are assuming ACZ there is
a sequence 〈hi : i ∈ Z〉 ∈

∏

i∈Z

Fi,g(i). Let f be the function with domain Y defined

by f((i, j)) = hi(j); so g, h̄ witness f ∈ Fβ , so Fβ 6= ∅ as required.]

(∗)7 if f∗ ∈
∏

(i,j)∈Y

λi,j then for some β < λ and f ∈ Fβ we have

f∗ < f mod D.

[Why? We define f̄ = 〈f∗
i : i ∈ Z〉 as follows: f∗

i is the function with domain Yi

such that

j ∈ Yi ⇒ f∗
i (j) = f((i, j)).

Clearly f̄ is well defined and for each i, f∗
i ∈

∏

j∈Yi
λi,j hence by (∗)1(a) for some

α < λi and h ∈ Fi,α we have f∗
i < h mod Di and let αi be the first such α so

〈αi : i ∈ Z〉 exists.
By the choice of 〈Gβ : β < λ〉 there are β < λ and g ∈ Gβ such that 〈αi : i ∈

Z〉 < g mod E hence A := {i ∈ Z : αi < g(i)} belongs to E. So 〈Fi,g(i) : i ∈ Z〉 is a
(well defined) sequence of non-empty sets hence recalling ACZ there is a sequence
h̄ = 〈hi : i ∈ Z〉 ∈

∏

i∈Z

Fi,g(i). By the property of 〈Fi,α : α < λi〉 and the choice

of hi recalling the definition of A, we have i ∈ A ⇒ f∗
i < hi mod Di, exists as

〈hi : i ∈ Z〉 exist.
Lastly, let f ∈

∏

(i,j)∈Y

λi,j be defined by f((i, j)) = hi(j). Easily g, h̄ witness that

f ∈ Fβ , and by the definition of D, recalling A ∈ E and the choice of h̄ we have
f∗ < f mod D, so we are done.]

Together we are done proving the theorem. �2.6
{e5}

Conclusion 2.7. The pcf closure conclusion Assume ACP(a). We have c = ps-
pcfℵ1−comp(c) when :

(a) a a set of regular cardinals, non-empty

(b) hrtg(P(a)) ≤ min(a)

(c) c = ps-pcfℵ1−comp(a).
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Proof. Note that c is non-empty because a ⊆ c.
Assume λ ∈ ps-pcfℵ1−comp(c), hence there is E an ℵ1-complete filter on c such

that λ = ps-tcf(Πc, <E). As we have ACP(a) by 1.3 (as the D there is unique)
there is a sequence 〈Dθ : θ ∈ c〉, Dθ an ℵ1-complete filter on a such that θ = ps-
tcf(Πa, <Dθ

), also by 1.8 there is a function h from P(a) onto c, let E1 = {S ⊆
P(a) : {θ ∈ c : h−1{θ} ⊆ S} ∈ E}. By claim 2.2, the “if” direction with P(Y )
here standing for Y there, we have λ = ps − tcf(Π{h(b) : b ∈ P(a)}, <E1) and E1

is an ℵ1-complete filter on P(a).
Now we apply Theorem 2.6 with E1, 〈Dh(b) : b ∈ P(a)〉, λ, 〈h(b) : b ∈ P(a)〉, 〈θ :

θ ∈ a〉 here standing for E, 〈Di : i ∈ Z〉, λ, 〈λi : i ∈ Z〉, 〈λi,j : j ∈ Yi〉 for every
j ∈ Z (constant here). We get a filter D1 on Y = {(b, θ) : b ∈ P(a), θ ∈ a〉 such
that λ = ps − tcf(Π{θ : (b, θ) ∈ Y }, <D1).

Now |Y | = |P(a)| as a can be well ordered (hence ℵ0 ≤ |a| or a finite and all
is trivial) so applying 2.2 again we get an ℵ1-complete filter D on a such that λ =
ps-tcf(Πa, <D), so we are done. �2.7

{e10}
Definition 2.8. Let a set a of regular cardinals.
1) We say b̄ = 〈bλ : λ ∈ c〉 is a generating sequence for a when :

(α) bλ ⊆ a ⊆ c ⊆ ps-pcfℵ1−comp(a)

(β) J<λ+ [a] = J<λ[a] + bλ for every λ ∈ c, hence for every cardinal λ we have
J<λ[a] is the ℵ1-complete ideal on a generated by {bθ : θ ∈ pcfℵ1−comp(a)
and θ < λ}.

2) We say F̄ is a witness for b̄ = 〈bλ : λ ∈ c ⊆ ps-pcfℵ1−comp(a)〉 when:

(α) F̄ = 〈F̄λ : λ ∈ c〉

(β) F̄λ = 〈Fλ,α : α < λ〉 witness λ = ps − tcf(Πa, <J=λ[a]).

3) Above b̄ is closed when bλ = a∩ ps-pcfℵ1−comp(bλ); if a is not mentioned it
means a = c.
3A) Above b̄ is smooth when θ ∈ bλ ⇒ bθ ⊆ bλ.
4) We say above b̄ is full when c = ps − pcfℵ1−comp(a).

{e11}
Remark 2.9. 1) Note that 1.8 gives sufficient conditions for the existence of b̄ as in
2.8(1) which is full.
2) Of course, Definition 2.8 is interesting particularly when a = ps-pcfℵ1−com(a).

{e7}
Theorem 2.10. Assume ACc and ACP(a). Then c = ps-pcfℵ1−comp(c) has a full
closed generating sequence for ℵ1-complete filters (see below) when :

(a) a is a set of regular cardinals

(b) hrtg(P(a)) < min(a)

(c) c = ps-pcfℵ1−comp(a).

Proof. Proof of 2.10

(∗)1 c = ps-pcfℵ1−com(c).

[Why? By 2.7 using ACP(a).]

(∗)2 there is a generating sequence 〈bλ : λ ∈ c〉 for a.
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22 SAHARON SHELAH

[Why? By 1.8(3) using also ACc.]

(∗)3 let b∗λ = ps-pcfℵ1−com(bλ) for λ ∈ c.

Now

(∗)4 (a) b̄∗ = 〈b∗λ : λ ∈ c〉 is well defined

(b) bλ ⊆ b∗λ ⊆ c

(c) b∗λ = ps-pcfℵ1−com(b∗λ)

(d) λ = max(b∗λ)

(e) λ /∈ pcf(c\b∗λ).

[Why? First, b̄∗ is well defined as b̄ = 〈bλ : λ ∈ c〉 is well defined. Second,
bλ ⊆ b∗λ by the choice of b∗λ and b∗λ ⊆ c as bλ ⊆ a hence b∗λ = ps-pcfℵ1−com(b∗λ) ⊆
ps-pcfℵ1−com(c) = c, the last equality by 2.7. Third, b∗λ = ps-pcfℵ1−com(b∗λ) by

Conclusion 2.7, it is easy to check that its assumption holds recalling bλ ⊆ a.
Fourth, λ ∈ b∗λ as J=λ[a] witness λ ∈ ps−pcfℵ1−com(bλ) = b∗λ and max(b∗λ) = λ by
(∗)2 recalling Definition 2.8.

Lastly, note that ps−pcfℵ1−comp(a) = ps−pcfℵ1−comp(bλ)∪ps−pcfℵ1−comp(a\bλ)
by 1.15(2) hence µ ∈ c\b∗λ ⇒ µ ∈ ps−pcfℵ1−comp(a\bλ); so if λ ∈ ps−pcfℵ1−comp(c\b∗λ)
by 2.7 it follows that λ ∈ pcf(a\b∗λ) which contradict 1.8(3), 1.6(2) so λ /∈ ps −
pcfℵ1−comp(c\b∗λ) that is, clause (e) holds.]

We can now choose F̄ such that

(∗)5 (a) F̄ = 〈F̄λ : λ ∈ c〉

(b) F̄λ = 〈Fλ,α : α < λ〉

(c) F̄λ witness λ = ps-tcf(Πa, <J=λ[a])

(d) if λ ∈ a, α < λ and f ∈ Fλ,α then f(λ) = α.

[Why? For each λ there is such F̄ as λ = ps-tcf(Πa, <J=λ[a]). But we are assuming
ACc and for clause (d) it is easy; in fact it is enough to use ACP(a) and h as in

2.7, getting 〈F̄b : b ∈ P(a)〉, F̄b witness h(b) = ps-tcf(Πa, <J=λ
[a]) and putting

〈F̄b : b ∈ h−1{λ}〉 together for each λ ∈ c.]

(∗)6 (a) for λ ∈ c and f ∈ Πbλ let f [λ] ∈ Πb∗λ be defined by: f [λ](θ) =
min{α < λ: for every g ∈ Fθ,α we have

f↾bλ ≤ (g↾bλ) mod J=θ[bλ]}

(b) for λ ∈ c and α < λ let F ∗
λ,α = {(f↾bλ)[λ] : f ∈ Fλ,α}.

Now

(∗)7 (a) f [λ]↾a ≥ f for f ∈ Πbλ, λ ∈ c

(b) 〈F ∗
λ,α : λ ∈ c, α < λ〉 is well defined (hence exist)

(c) F ∗
λ,α ⊆ Πb∗λ.

[Why? Obvious, e.g. for clause (a) note that θ ∈ a ⇒ {θ} ∈ (J=θ[bλ])+.]

(∗)8 let Jλ be the ℵ1-complete ideal on b∗λ generated by {b∗θ ∩ b∗λ : θ ∈ c ∩ λ}

(∗)9 Jλ ⊆ Jℵ1−comp
<λ [b∗λ].
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[Why? As for θ0, . . . , θn . . . ∈ c∩λ by 1.15(2) we have ps− pcfℵ1−comp(∪{b∗θn : n <

ω}) = ∪{ps − pcfℵ1−comp(b∗θn) : n < ω} = ∪{b∗θn : n < ω} ∈ Jℵ1−comp
<λ [c].]

⊙1 if λ ∈ c and α1 < α2 < λ and fℓ ∈ Fλ,αℓ
for ℓ = 1, 2 then f

[λ]
1 ≤ f

[λ]
2 mod

Jλ.

[Why? Let a∗ = {θ ∈ bλ : f1(θ) ≥ f2(θ)}, hence by the assumption on 〈Fλ,α : α <

λ〉 we have a∗ ∈ Jℵ1−comp
<λ [a], hence we can find a sequence 〈θn : n < n ≤ ω〉 such

that θn ∈ c ∩ λ and a∗ ⊆ b∗ := ∪{bθn : n < n} hence c∗ := ps − pcfℵ1−com(a∗) ⊆

∪{b∗θn : n < n} ∈ Jλ. So it suffices to prove f
[λ]
1 ↾(b∗λ\c∗) ≤ f

[λ]
2 ↾(b∗λ\c∗), so let

θ ∈ b∗λ\
⋃

n
b∗θn

, by (∗)4(d) we have θ ≤ λ, let α := f
[λ]
2 (θ), so by the definition

of f
[λ]
2 (θ) we have (∀g ∈ Fθ,α)((f2↾bλ) ≤ (g↾bλ) mod J=θ[bλ]). But a∗ ⊆

⋃

n
bθn

and n < ω ⇒ θ /∈ b∗θn
= ps − pcfℵ1−comp(bθn) hence by 1.15(2) we have θ /∈

ps − pcfℵ1−comp(
⋃

n
bθn) hence

⋃

n
bθn ∈ Jℵ1−comp

<θ [bλ] hence a∗ ∈ Jℵ1−comp
=θ [bλ]. So

(first inequality by the previous sentence and the choice of a∗, second by the earlier
sentence)

(f1↾bλ) ≤ (f2↾bλ) ≤ (g↾bλ) mod Jℵ1−comp
=θ [bλ]

hence by the definition of f
[λ]
1 , f

[λ]
1 (θ) ≤ α = f

[λ]
2 (θ). So we are done.]

⊙2 if λ ∈ c and g ∈ Πb∗λ then for some α < λ and f ∈ Fλ,α we have g < f
mod Jλ.

[Why? We choose 〈hθ : θ ∈ b∗λ〉 such that hθ ∈ Fθ,g(θ) for each θ ∈ b∗λ; this
is possible as we are assuming ACc and b∗λ ⊆ c. Let h1 ∈ Πb∗λ be defined by

h1(κ) = sup{h
[λ]
θ (κ) : κ ∈ bθ and θ ∈ b∗λ} for κ ∈ b∗λ, the result is < κ because the

supremum is on ≤ |bθ| ordinals and κ ≥ min(b∗λ) ≥ min(c) = min(a) ≥ hrtg(P(a)).
Hence there are α < λ and h2 ∈ Fλ,α such that h1 ≤ h2 mod J=λ[a]. Now

f := h
[λ]
2 ∈ Πb∗λ recalling (∗)7(a) is as required, in particular f ∈ F ∗

λ,α.]

⊙3 the sequence 〈Fλ,α : α < λ〉 witness λ = ps − tcf(Πb∗λ, <Jλ
).

[Why? In (∗)7(b), (c) + ⊙1 + ⊙2.]

⊙4 if λ ∈ c then J<λ = Jℵ1−comp
<λ [b∗λ].

[Why? By (∗)4, (∗)8, (∗)9 and ⊙3.]
So

⊙5 b̄∗ = 〈b∗λ : λ ∈ c〉 is a generating sequence for c.

[Why? By ⊙4, (∗)8 recalling that λ /∈ ps − pcfℵ1−comp(c\b∗λ) by (∗)4(e).] �2.10

{e30}
Remark 2.11. Clearly b̄∗ is full and closed, but what about smoooth? Is this
necessary for generalizing [Sh:460]?

{e31}
Discussion 2.12. Naturally the definition now of F̄ as in 2.8(2) for Πa is more
involved where F̄ = 〈F̄λ : λ ∈ ps-pcfκ−com(a)〉, F̄λ = 〈Fλ,α : α < λ〉 exemplifies
ps-tcf(Πa, J=λ(a)).
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24 SAHARON SHELAH

{e33}
Claim 2.13. [DC + AC<κ] Assume

(a) a a set of regular cardinals

(b) κ is regular > ℵ0

(c) c = ps-pcfκ−comp(a)

(d) min(a) is ≥ hrtg(P(c)) or at least ≥ hrtg(c)

(e) F̄ = 〈F̄λ : λ ∈ c〉, F̄λ = 〈Fλ,α : α < λ〉 witness2 λ = ps-tcf(Πa, <Jκ−comp

=λ

[a]).

Then

⊞ for every f ∈ Πa for some g ∈ Πc, if g ≤ g1 ∈ Πc and h̄ ∈ Π{Fλ,g1(λ) : λ ∈
c} then (∃d ∈ [c]<κ)(f < sup{hλ : λ ∈ d}).

Proof. Let f ∈ Πa. For each λ ∈ ps-pcfκ−com(a) let αf,λ = min{α < λ : f < g
mod J=λ[a] for every g ∈ Fλ,α}, so clearly each αf is well defined hence ᾱ = 〈αf,λ :
λ ∈ ps-pcfκ−com(a)〉 exists. So g = 〈αf,λ : λ ∈ c〉 ∈ Πc is well defined. Assume
g1 ∈ Πc and g ≤ g1. Let 〈hλ : λ ∈ c〉 be any sequence from

∏

λ∈c

Fλ,g1(λ), at least one

exists when ACc holds but this is not needed here. Let af,λ = {θ ∈ a : f(θ) < hλ(θ)}
so 〈af,λ : λ ∈ c〉 exists and we claim that for some d ∈ [c]<κ we have a = ∪{af,λ :
λ ∈ d}. Otherwise let J be the κ-complete ideal on a generated by {af,λ : λ ∈ c}, it
is a κ-complete ideal. So by [Sh:938, 5.9=r9], applicable by our assumptions, there
is a κ-complete ideal J1 on a extending J such that λ∗ = ps-tcf(Πa, <J1) is well
defined. So λ∗ ∈ c and af,λ∗

∈ J1, easy contradiction. �2.13
{e40}

Claim 2.14. [ACℵ0 ] We can uniformly define3 a ℵ0-continuous witness for λ =
ps − pcfκ−comp(Π̄ᾱ, <D) where:

(a) ᾱ ∈ Y Ord

(b) each αt is a limit ordinal with cf(αt) ≥ hrtg(S)

(c) λ is regular ≥ hrtg(S)

(d) F̄ = 〈F̄a : a ∈ S〉 satisfies: each F̄a is a witness for
λ = pcfκ−comp(Πᾱ, <D)

(e) if a ∈ S then F̄a is ℵ0-continuous and f1, f2 ∈ Fa,α ⇒ f1 = f2 mod D.

Proof.

(∗)0 hrtg(S × S) is ≤ λ and ≤ cf(αt) for t ∈ Y .

[Why? As λ, cf(αt) are regular cardinals.]
For a, b ∈ S let

(∗)1 (a) Ea,b = {δ < λ: if α < δ then for some β ∈ (α, δ) and f1 ∈ Fa,α,
f2 ∈ Fb,β we have f1 < f2 mod D}

(b) define ga,b : λ → λ by ga,b(α) = min{β < λ: there are f1 ∈ Fa,α

and f2 ∈ Fb,β such that f1 < f2 mod D}

(∗)2 ga,b is well defined.

2So we are assuming it is well defined, now if ACP(Y ) such F̄ exists.
3Of course, mere existence is already given by the assumptions.
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[Why? As F̄b is cofinal in (Πᾱ, <D).]

(∗)3 ga,b is non-decreasing.

[Why? As F̄a is <D-increasing.]
Hence

(∗)4 Ea,b = {δ < λ : δ a limit ordinal and (∀α < δ)(ga,b(α) < δ)}.

Also

(∗)5 Ea,b is a club of λ.

[Why? By its defintion, Ea,b is a closed subset of λ and it is unbounded as cf(λ) =
λ > ℵ0, because for every α < λ letting α0 = α, αn+1 = ga,b(αn) + 1 < λ clearly
β := ∪{αn : n < ω} is < λ and γ < δ ⇒ (∃n)(γ < αn) ⇒ (∃n)(ga,b(γ) < αn+1)).]

(∗)6 let g : λ → λ be g(α) = sup{ga,b(α) : a, b ∈ S}

(∗)7 g is a (well defined) non-decreasing function from λ to λ.

[Why? “Non-decreasing trivial”, and it is “into λ” as hrtg(S × S) ≤ λ recalling
(∗)0.]

(∗)8 E = ∩{Ea,b : a, b ∈ S} = {δ < λ : (∀α < δ)(g(α) < δ)} is a club of λ.

[Why? Like (∗)7.]

(∗)9 let E1 = {δ ∈ E : cf(δ) = ℵ0} so E1 ⊆ λ = sup(λ), otp(E1) = λ

(∗)10 for δ ∈ E of cofinality ℵ0 let Fδ = {sup{fn : n < ω}: for some a ∈ S
and ᾱ = 〈αn : n < ω〉 increasing of cofinality ℵ0 we have 〈fn : n < ω〉 ∈
∏

n
Fa,αn

〉}

(∗)11 〈Fδ : δ ∈ E1〉 is <D-increasing cofinal in (Πᾱ, <D) in particular Fδ 6= ∅.

[Why? Fδ 6= ∅ as δ ∈ E, cf(δ) = ℵ0 and ACℵ0 .]
We can correct 〈Fδ : δ ∈ E1〉 to be ℵ0-continuous easily (and as in [Sh:938,

§5]). �2.14
{2.14}

Question 2.15. 1) Can we in 2.5 get smoothness?
2) If 2.10 does it suffice to assume ACP(a) (and omit ACa) and we can conclude
that c = ps − pcfℵ1−comp(c) has a full closed generating sequence.

We may try to repeat the proof of 2.10, only in the proof of (∗)5 we use claim
2.16 below.

{e46}

Claim 2.16. In 2.10 we can add “b̄ is weakly smooth” which means θ ∈ bλ ⇒ θ /∈
ps − pcfℵ1−comp(c\b∗).

Proof. Let b̄ = 〈bλ : λ ∈ c〉 be a full closed generating sequence.
We choose b1λ by induction on λ ∈ c such that

(∗)1 (a) J≤λ[a] = Jℵ1−comp
≤λ [a] + b1λ

(b) ps − pcfℵ1−comp(b1λ) = b1λ

(c) max(b1λ) = λ

(d) if θ ∈ b
1
λ then b

1
λ ⊇ bθ mod J=λ[a], i.e. b

1
θ\b

1
λ ∈ Jℵ1−comp

<θ [a].
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26 SAHARON SHELAH

Arriving to λ let dλ = {θ ∈ bλ : b1θ\b
1
λ /∈ Jℵ1−comp

<θ [a]}, d1λ = ps − pcfℵ1−comp(dλ).
Now

(∗)2 ps − pcfℵ1−comp(dλ) ⊆ bλ ∩ λ.

[Why? ⊆ bλ is obvious; recalling b1λ = ps − pcf(b1λ∩a) because b̄ is closed. If “* λ”
recall d1λ = ps − pcfℵ1−comp(dλ), now dλ ⊆ bλ hence d

1
λ ⊆ ps − pcfℵ1−comp(bλ) ⊆

λ+. So the only problematic case is λ ∈ d
1
λ = ps − pcfℵ1−comp(dλ). But then,

dλ ⊆ ps−pcfℵ1−comp(c\bλ) by the definition of dλ hence by the composition theorem

we have λ ∈ ps − pcfℵ1−comp(c\bλ), contradicting an assumption on b̄.]

(∗)3 there is a countable eλ ⊆ d
1
λ such that d

1
λ ⊆ ∪{b1σ : σ ∈ eλ}.

[Why? Should be clear.]
Lastly, let b1λ = ∪{b1θ : θ ∈ eλ} ∪ bλ and check. �2.16
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§ 3. Measuring reduced products
{meas}

{onps}
§ 3(A). On ps-TD(g).

Now we consider some ways to measure the size of κµ/D and show that they
essentially are equal; see Discussion 3.9 below.

{r26}
Definition 3.1. Let ᾱ = 〈αt : t ∈ Y 〉 ∈ Y Ord be such that t ∈ Y ⇒ αt > 0.
1) For D a filter on Y let ps-TD(ᾱ) = sup{hrtg(F) : F is a family of non-empty
subsets of Πᾱ such that for every F1 6= F2 from F we have f1 ∈ F1 ∧ f2 ∈ F2 ⇒
f1 6=D f2}, recalling f1 6=D f2 means {t ∈ Y : f1(t) 6= f2(t)} ∈ D.
2) Let ps-Tκ−comp(ᾱ) = sup{hrtg(F): for some κ-complete filter D on Y , F is as
above for D}.
3) If we allow αt = 0 just replace Πᾱ by Π∗ᾱ := {f : f ∈

∏

t
(αt + 1) and {t : f(t) =

αt} = ∅ mod D}.
{r29}

Theorem 3.2. [DC + ACP(Y )] Assume that D is a κ-complete filter on Y and

κ > ℵ0 and g ∈ Y (Ord \{0}), if g is constantly α we may write α. The following
cardinals are equal or at least λ1, λ2, λ3 are Fil1κ(D)-almost equal which means:

for ℓ1, ℓ2 ∈ {1, 2, 3} we have λℓ1 ≤sal
Fil1κ(D)

λℓ2 which means if α < λℓ1 then α is

included in the union of S sets each of order type < λℓ2 :

(a) λ1 = sup{|rkD1(g)|+ : D1 ∈ Fil1κ(D)}

(b) λ2 = sup{λ+: there are D1 ∈ Fil1κ(D) and a <D1-increasing sequence
〈Fα : α < λ〉 such that Fα ⊆

∏

t∈Y

g(t) is non-empty}

(c) λ3 = sup{ps −TD1(g) : D1 ∈ Fil1κ(D)}.
{r30}

Remark 3.3. 1) Recall that for D a κ-complete filter on Y we let Fil1κ(D) = {E : E
is a κ-complete filter on Y extending D}.
2) The conclusion gives slightly less than equality of λ1, λ1, λ3.
3) See 3.10(6) below, by it λ2 = ps-Depth+(κµ,<D) recalling 3.10(5).
4) We may replace κ-complete by (≤ Z)-complete if ℵ0 ≤ |Z|.
5) Compare with Definition 3.10.
6) Note that those cardinals are ≤ hrtg(Π∗g), see 3.1(3).

Proof. Stage A: λ1 ≤sal
Fil1κ(D)

λ2, λ3.

Why? Let χ < λ1, so by clause (a) there is D1 ∈ Fil1κ(D) such that rkD1(g) ≥ χ.
Let XD2 = {α < χ: some f ∈

∏

t∈Y

g(t) satisfies4 D2 = dual(J [f,D1]) and α =

rkD1(f)}, for any D2 ∈ Fil1κ(D1). By [Sh:938, 1.11(5)] we have χ =
⋃

{XD2 : D2 ∈
Fil1κ(D1)}.

Now

⊙ D2 ∈ Fil1κ(D1) ⇒ |otp(XD2)| < λ2, λ3; this is enough.

4recall dual(J [f,D1]) = {X ⊆ Y : X ∈ D1 or rkD1+(X\Y )(f) > rkD1
(f)}.
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28 SAHARON SHELAH

Why does this hold? Letting FD2,i = {f ∈ Y µ : rkD1(f) = i and J [f,D1] =
dual(D2)}, by [Sh:938, 1.11(2)] we have: i < j∧i ∈ XD2∧j ∈ XD2∧f ∈ FD2,i∧g ∈
FD2,j ⇒ f < g mod D2 so by the definitions of λ2, λ3 we have otp(XD2) < λ2, λ3.

Stage B: λ2 ≤sal
Fil1κ(D) λ1, λ3, moreover λ2 ≤ λ1, λ3.

Why? Let χ < λ2 and let D1 and 〈Fα : α < χ〉 exemplify χ < λ2. Let
γα = min{rkD1(f) : f ∈ Fα} so easily α < β < χ ⇒ γα < γβ hence rkD(g) ≥ χ.
So χ < λ1 by the definition of λ1 and as for χ < λ3 this holds by Definition 3.1(2) as
α < β∧f ∈ Fα∧g ∈ Fβ ⇒ f < g mod D1 ⇒ f 6= g mod D1 as χ+ = hrtg(χ) ≤ λ3.

Stage C: λ3 ≤sal
Fil1κ(D) λ1, λ2.

Why? Let χ < λ3. Let 〈Fα : α < χ〉 exemplify χ < λ3. For each α < χ
let Dα = {dual(J [f,D]) : f ∈ Fα} so a non-empty subset of Fil1κ(Y ). Now for
every D1 ∈ D∗ := ∪{Dα : α < λ} let XD1 = {α < χ : D1 ∈ Dα} and for
α ∈ XD1 let ζD1,α = min{rkD(f) : f ∈ Fα and D1 = dual(J [f,D])} and let
FD1,α = {f ∈ Fα : D1 = J [f,D] and rkD1(f) = ζD1,α} so a non-empty subset of
Fα and clearly 〈(ζD1,α,FD1,α) : α ∈ XD1〉 exists.

Now

(a) α 7→ ζD1,α is a one-to-one function with domain XD1 for D1 ∈ D∗

(b) χ = ∪{XD1 : D1 ∈ D∗} noting D∗ ⊆ Fil1κ(D)

(c) for D ∈ D∗ if α < β are from XD1 and ζD1,α < ζD1,β , f ∈ FD1,α, g ∈ FD2,β

then f < g mod D1.

[Why? For clause (a), if α 6= β ∈ Xζ1 , f ∈ FD1,α, g ∈ FD1,β then f 6= g mod D
hence by [Sh:938, 1.11] we have ζD1,α 6= ζD1,β. For clause (b), it follows by the
choices of Dα, XD1 . Lastly, clause (c) follows by [Sh:938, 1.11(2)].]

Hence (by clause (c))

(d) otp(XD1) is < λ2 and is ≤ rkD1(g) for D1 ∈ ∪{Dα : α < χ} ⊆ Fil1κ(D).

Together clause (d) shows that D ∈ D∗ ⇒ |XD| < λ1, λ2 so by clause (b),
λ3 ≤sal

Fil1
∗
(D) λ1, λ2 hence we are done. �3.2

{r31f}
Observation 3.4. If D is a filter on Y and ᾱ ∈ Y (Ord\{0}) then

ps − TD(ᾱ) = sup{λ+: there is a sequence 〈Fα : α < λ〉 such that Fα ⊆
Πᾱ,Fα 6= ∅ and α 6= β ∧ f1 ∈ Fα ∧ f2 ∈ Fβ ⇒ f1 6=D f2}.

Proof. Clearly the new definition gives a cardinal ≤ ps − TD(ᾱ). For the other
inequality assume λ < ps − TD(ᾱ) so there is F as there such that λ < hrtg(F).
As λ < hrtg(F) there is a function h from F onto λ. For α < λ define F ′

α = ∪{F :
F ∈ F and h(F ) = α}. So 〈F ′

α : α < λ〉 exists and is as required. �3.4

Concerning Theorem 3.2 we may wonder “when does λ1, λ2 being S-almost equal
implies they are equal”. We consider a variant this time for sets (or powers, not
just cardinals).

{r32}
Definition 3.5. 1) We say “the power of U1 is S-almost smaller than the power of
U2”, or write |U1| ≤ |U2| mod S or |U1| ≤alm

S |U2| when : we can find a sequence
〈u1,s : s ∈ S〉 such that U1 = ∪{u1,s : s ∈ S} and s ∈ S ⇒ |U1,s| ≤ |U2|.
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2) We say the power |U1|, |U2| are S-almost equal (or |U1| = |U2| mod S or
|U1| =alm

S |U2|) when |U1| ≤alm
S |U2| ≤alm

S |U2|.
3) Let |U1| ≤alm

<S |U2| be defined naturally.
4) In particular this applies to cardinals.
5) Let |U1| <alm

S |U2| means there is a sequence 〈u1,s : s ∈ S〉 with union U1 such
that s ∈ S ⇒ |Us| < |U2|.
6) Let |U1| ≤sal

S |U2| means that if |U | < |U1| then |U | <alm
S |U2|.

{r34}
Observation 3.6. 1) If |U1| ≤ |U2| and S 6= ∅ then |U1| ≤alm

S |U2|.
2) If λ1 ≤ λ2 and S 6= ∅ then λ1 ≤sal

S λ2.
3) If λ2 = λ+

1 and cf(λ2) < hrtg(S) then the power of λ2 is S - almost smaller than
S.

Proof. Immediate. �3.6
{r36}

Observation 3.7. 1) The cardinals λ1, λ2 are equal when λ1 =alm
S λ2 and cf(λ1),

cf(λ2) ≥ hrtg(P(S)).
2) The cardinals λ1, λ2 are equal when λ1 =alm

S λ2 and λ1, λ2 are limit cardinals
> hrtg(P(S)).
3) If λ1 ≤alm

S λ2 and ∂ = hrtg(P(S)) then λ1 ≤alm
<∂ λ2.

4) If λ1 ≤alm
<θ λ2 and cf(λ1) ≥ θ then λ1 ≤ λ2.

5) If λ1 ≤alm
<θ λ2 and θ ≤ λ+

2 then λ1 ≤ λ+
2 .

Proof. 1) Otherwise, let ∂ = hrtg(P(S)), without loss of generality λ2 < λ1 and
by part (3) we have λ1 ≤alm

<∂ λ2 and by part (4) we have λ1 ≤ λ2 contradiction.
2) Otherwise letting ∂ = hrtg(P(S)) without loss of generality λ2 < λ1 and by
part (3) we have λ1 ≤alm

<∂ λ2 but ∂ < λ2 is assume and λ+
2 < λ1 as λ2 is a limit

cardinal so together we get contradiction to part (5).
3) If 〈us : S ∈ S〉 witness λ1 ≤alm

S λ2, let w = {α < λ1: for no β < α do we have
(∀s ∈ S)(α ∈ us ≡ β ∈ us)} so clearly |w| < hrtg(P(S)) = θ and for α ∈ w let
vα = {β < λ1 : (∀s ∈ S)(α ∈ us ≡ β ∈ us)} so 〈vα : α ∈ w〉 witness λ1 ≤alm

w λ2

hence λ1 ≤alm
<θ λ2.

4),5) Let σ < θ be such that λ1 ≤alm
σ λ2 and let 〈uε : ε < σ〉 witness λ1 ≤alm

σ λ2,
that is |uε| ≤ λ2 for ε < σ and ∪{uε : ε < σ} = λ1.

For part (4), if λ2 < λ1, then we have ε < σ ⇒ |uε| < λ1, but cf(λ1) > σ hence
|{∪{uε : ε < σ}| < λ1, contradiction.

For part (5) for ε < σ, let u′
ε = uε\ ∪ {uζ : ζ < ε} and so otp(u′

ε) ≤ otp(uε) <

|uε|
+ ≤ λ+

2 so easily |λ1| = | ∪{uε : ε < σ}| = | ∪{u′
ε : ε < σ}| ≤ σ ·λ+

2 ≤ λ+
2 ·λ+

2 =
λ+
2 . �3.7

Similarly
{r37}

Observation 3.8. 1) If λ1 <alm
S λ2 and ∂ = hrtg(P(S)) then λ1 <alm

<∂ λ2.

2) If λ1 <alm
<θ λ2 and cf(λ1) ≥ θ then λ1 < λ2.

3) If λ1 <alm
<θ λ2 and θ ≤ λ+

2 then λ1 ≤ λ2.

4) If λ1 ≤sal
S λ2 and ∂ = hrtg(P(S)) then λ1 <sal

<∂ λ2.

5) If λ1 ≤sal
<θ λ2 and ∂ ≤ λ+

2 , θ < λ2 and cf(λ2) ≥ θ then λ1 ≤ λ2.

6) If λ1 ≤sal
<θ λ2 and θ ≤ λ+

2 then λ1 ≤ λ+
2 .

Proof. Similar, e.g.
1) Like the proof of 3.7(3). �3.8
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{r38}
Discussion 3.9. 1) We like to measure (Y µ)/D in some ways and show their
equivalence, as was done in ZFC. Natural candidates are:

(A) ppD(µ): say of length of increasing sequence P̄ (not p̄!, i.e. sets) ordered
by <D

(B) pp+
Y (µ) = sup{pp+

D(µ) : D an ℵ1-complete filter on Y }

(C) As in 3.1.

2) We may measure Y µ by considering all ∂-complete filters.
3) We may be more lenient in defining “same cardinality”. E.g.

(A) we define when sets have similar powers say by divisions to P(P(Y )) sets
we measure (Y µ)/ ≈P(P(Y )) where ≈B is the following equivalence relation
on sets:

X ≈B Y when we can find sequences 〈Xb : b ∈ B〉, 〈Yb : b ∈ B〉
such that:

(a) X = ∪{Xb : b ∈ B}

(b) Y = ∪{Yb : b ∈ B}

(c) |Xb| = |Yb|
(B) we may demand more: the 〈Xb : b ∈ B〉 are pairwise disjoint and the

〈Yb : b ∈ B〉 are pairwise disjoint

(C) we may demand less: e.g.

(c)′ |Xb| ≤∗ |Yb| ≤∗ |Xb|
and/or

(c)∗ (∀b ∈ B)(∃c ∈ B)(|Xb| ≤ |Yc|) and
(∀b ∈ B)(∃c ∈ B)(|Yb| ≤ |Xc|).

Note that some of the main results of [Sh:835] can be expressed this way.

(D) rk-supY,∂(µ) = rk-sup {rkD(µ) : D is ∂-complete filters on Y }

(E) for each non-empty X ⊆ Y µ let

sp1
α(X) = {(D, J) : D an ℵ1-complete filter on Y, J = J [f,D], α = rkD(f) and f ∈ X}

sp1(X) = ∪{sp1
α(X) : α}

(F ) question: If {sp(Xs) : s ∈ S} is constant, can we bound J?

(G) X,Y are called connected when sp(X1), sp(X2)) are non-disjoint or equal.

4) We hope to prove, at least sometimes γ := Υ(Y µ) ≤ ppκ(µ) that is we like to
immitate [Sh:835] without the choice axioms on ωµ. So there is f̄ = 〈fα : α < δ〉

witnessing γ < Υ(Y µ). We define u = uf̄ = {α: there is no β̄ ∈ ωα such that
(∀it ∈ Y )(fα(t) ∈ {fβn

(t) : n < ω}). You may say that uf̄ is the set of α < δ such
that fα is “really novel”.

By DC this is O.K., i.e.

⊞1 for every α < δ there is β̄ ∈ ω(uf̄ ∩α) such that (∀t ∈ Y )(fα(t)) = {fβn
(t) :

n < ω}.
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Next for α ∈ uf̄ we can define Df̄ ,α, the ℵ1-complete filter on Y generated by
{

{t ∈ Y : fβ(t) = fα(t)} : β < α
}

. So clearly α 6= β ∈ uf̄ ∧Df̄ ,α = Df̄ ,β ⇒ fα 6=D

fβ. Now for each pair D̄ = (D1, D2) ∈ Fil4Y (i.e. for the ℵ1-complete case) let
Λf̄ ,D̄ = {α ∈ uf̄ : Df̄ ,α = D1 and J [fα, D1]} = dual(D2). So γ is the union of
≤ P(P(Y ))-sets (as |Y | = |Y | × |Y |, well ordered.

So

(∗)1 γ ≤ hrtg((Y ω × ω(µ))

(∗)2 u is the union of P(P(κ))-sets each of cardinality < pp+
Y,ℵ1

(µ)

(I) what about hrtg(κµ) < ps-ppY,ℵ1
(µ)?

We are given 〈Fα : α < κ〉 6= Fα 6= ∅,Fα ⊆ µ, α 6= β ⇒ Fα ∩ Fβ = ∅.
Easier: looking modulo a fix filter D.

(∗)2 for D ∈ FilY,ℵ1 , let Fα,D = {f ∈ Fα : ¬(∃g ∈ Fα)(g <D f)}.

Maybe we have somewhere a bound on the size of Fα,D.

{depth}
§ 3(B). Depth of Reduced Power of Ordinals.

Our intention has been to generalize a relative of [Sh:460], but actually we are
closed to [Sh:513, §3]. So as there we use IND but unlike [Sh:938] rather than with
rank we deal with depth.

{k1}
Definition 3.10. 1) Let sucX(α) be the first ordinal β such that we cannot find
a sequence 〈Ux : x ∈ X〉 of subsets of β, each of order type < α such that β =
∪{Ux : x ∈ X}.

2) We define suc
[ε]
X (α) by induction on ε naturally: if ε = 0 it is α, if ε = ζ + 1 it is

sucX(suc
[ζ]
X (α)) and if ε is a limit ordinal then it is ∪{suc

[ζ]
X (α) : ζ < ε}.

3) For a quasi-order P let the pseudo ordinal depth of P , denoted by ps-o-Depth(P )
be sup{γ: there is a <P -increasing sequence 〈Xα : α < γ〉 of non-empty subsets of
P}.
4) o-Depth(P ) is defined similarly demanding |Xα| = 1 for α < γ.
5) Omitting the “ordinal” means γ is replaced by |γ|; similarly in the other variants
including omitting the letter o in ps-o-Depth.
6) Let ps-o-Depth+(P ) = sup{γ + 1: there is an increasing sequence 〈Xα : α < γ〉
of non-empty subsets of P}. Similarly for the other variants, e.g. without o we use
|γ|+ instead of γ + 1 in the supremum.
7) For D a filter on Y and ᾱ ∈ Y (Ord \{0}) let ps-o-Depth+

D(ᾱ) = ps-o-Depth+(Πᾱ, <D

). Similarly for the other variants and we may allow αt = 0 as in 3.1(3).
8) Let ps-o-depth+

D(ᾱ) be the cardinality of ps-o-Depth+
D(ᾱ).

Remark 3.11. Note that 1.14 can be phrased using this definition.
{k4}

Definition 3.12. 0) We say x is a filter ω-sequence when x = 〈(Yn, Dn) : n <
ω〉 = 〈Yx,n, Dx,n : n < ω〉 is such that Dn is a filter on Yn for each n < ω; we may
omit Yn as it is ∪{Y : Y ∈ D} and may write D if

∧

n
Dn = D.

1) Let IND(x),x has the independence property, mean that for every sequence
F̄ = 〈Fm,n : m < n < ω〉 from alg(x), see below, there is t̄ ∈

∏

n<ω
Yn such that

m < n < ω ⇒ tm /∈ Fm,n(t̄↾(m,n]). Let NIND(x) be the negation.
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32 SAHARON SHELAH

2) Let alg(x) be the set of sequence 〈Fn,m : m < n < ω〉 such that Fm,n :
n
∏

ℓ=m+1

Yℓ → dual(Dn).

3) We say x is κ-complete when each Dx,n is a κ-complete filter.
{k6}

Theorem 3.13. Assume IND(x) where x = 〈(Yn, Dn) : n < ω〉 is as in Definition
3.12, Dn is κn-complete, κn ≥ ℵ1.
1) [DC + ACYn

for n < ω] For every ordinal ζ, for infinitely many n’s ps-o-
Depth((Yn)ζ,<Dn

) ≤ ζ.
2) [DC] For every ordinal ζ for infinitely many n, o-Depth((Yn)ζ,<Dn

) ≤ ζ, equiv-
alently there is no <Dn

-increasing sequence of length ζ + 1.
{k7}

Remark 3.14. 0) Note that the present results are incomparable with [Sh:938, §4]
- the loss is using depth instead of rank and possibly using “pseudo”.
1) [Assume ACℵ0 ] If for every n we have rkDn

(ζ) > sucFil1κ(Dn)(ζ) then for some

D1
n ∈ Fil1ℵ1

(Yn) for n < ω we have NIND(〈Yn, D
1
n) : n < ω〉. (Why? By [Sh:938,

5.9]). But we do not know much on the D1
n’s.

2) This theorem applies to e.g. ζ = ℵω, Yn = ℵn, Dn = dual(Jbd
ℵn

). So even in
ZFC, it tells us things not covered by [Sh:513, §3]. So it also tells us that it is easy
by forcing to get, e.g. NIND(〈(ℵn+1, dual(Jbd

ℵn+1
)) : n < ω〉), see 3.19. Note that

Depth and pcf are closely connected but only for sequences of length ≥ hrtg(P(Y ))
and see 3.19 below.
3) If we assume IND(〈Yη(n), Dη(n) : n < ω〉) for every increasing η ∈ ωω, which is
quite reasonable then in Theorem 3.13 we can strengthen the conclusion, replacing
“for infinitely many n’s” by “for every n < ω large enough”.
4) Note that 3.13(2) is complimentary to [Sh:835].

{k8}
Observation 3.15. 1) If x is a filter ω-sequence, x is ℵ1-complete and n∗ < ω and
IND(x↾[n∗, ω) then IND(x).
2) If x is a filter ω-sequence and IND(x) and η ∈ ωω is increasing and y =
〈Yx,η(n), Dx,η(n) : n < ω〉 then y is a filter ω-sequence and IND(y).

Proof. 1) Let F̄ = 〈Fn,m : n < m < ω〉 ∈ alg(x), so 〈Fn,m : n ∈ [n∗, ω) and
m ∈ (n, ω)〉 belongs to alg(x↾[n∗, ω) hence by the assumption “IND(x↾[n∗, ω))”
there is t̄ = 〈tn : n ∈ [n∗, ω)〉 ∈

∏

n≥n∗

Yn such that tn /∈ Fn,m(t̄↾(n,m)) when

n∗ ≤ n < ω. Now by downward induction on n < n∗ we choose tn ∈ Yn such
that tn /∈ Fn,m(〈t̄↾[n + 1,m]) for m ∈ [n + 1, ω). This is possible as the countable
union of members of dual(Dn) is not equal to Yn. We can carry the induction and
〈tn : n < ω〉 is as required to verify IND(x).
2) Let F̄ = 〈Fi,j : i < j < ω〉 ∈ alg(y). For m < n we define F ′

m,n as the following

function from
n
∏

k=m−1

Yx,k into dual(Dx,m) by

• if i < j,m = η(i), n = η(j) and s̄ = 〈sk : k ∈ (m,n]〉 ∈
n
∏

k=m+1

Yx,k then

F ′
m,n(s̄) = Fi,j(〈sη(i+k) : k ∈ [1, j − i)]〉)

• if there are no such i, j then Fm,n is constantly ∅.

As IND(x) holds there is t̄ ∈
∏

n
Yx,k such that m < n ⇒ tm /∈ Fm,n(t̄↾(m,n)). Now

t̄′ = 〈tη(k) : k < ω〉 ∈
∏

n
Yx,η(n) =

∏

n
Yy,n is necessarily as required. �3.15
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Proof. Proof of Theorem 3.13
We concentrate on proving part (1), part (2) is easier, (i.e. below each Fn,ε is a

singleton hence so is G 1
m,n,ε so there is no need to use ACYn

).
Assume this fails. So for some n∗ < ω for every n ∈ [n∗, ω) there is a counter-

example. As ACℵ0 holds we can find a sequence 〈F̄n : n ∈ [n∗, ω)〉 such that:

⊙ for n ∈ [n∗, ω)
(a) F̄n = 〈Fn,ε : ε ≤ ζ〉

(b) Fn,ε ⊆ Ynζ is non-empty

(c) F̄n is a <Dn
-increasing sequence of sets, i.e. ε1 < ε2 ≤ ζ ∧ f1 ∈

Fn,ε1 ∧ f2 ∈ Fn,ε2 ⇒ f1 <Dn
f2.

Now by ACℵ0 we can choose 〈fn : n ∈ [n∗, ω)〉 such that fn ∈ Fn,ζ for n ∈ [n∗, ω).

(∗) without loss of generality n∗ = 0.

[Why? As x↾[n∗, ω) satisfies the assumptions on x by 3.15(2).]
Now

⊞1 for m ≤ n < ω let Y 0
m,n =

n−1
∏

ℓ=m

Yℓ and for m,n < ω let Y 1
m,n := ∪{Y 0

k,n :

k ∈ [m,n]} so Y 0
m,n = ∅ = Y 1

m,n if m > n and Y 0
m,n = {<>} = Y 1

m,n if

m = n; so if η ∈ Y 0
m+1,n and s ∈ Ym, t ∈ Yn+1 we define 〈s〉ˆη ∈ Y 0

m,n and
ηˆ〈t〉 ∈ Ym+1,n+1 naturally

⊞2 for m ≤ n let G 1
m,n be the set of functions g such that:

(a) g is a function from Y 1
m,n into ζ + 1

(b) 〈〉 6= η ∈ Y 1
m,n ⇒ g(η) < ζ

(c) if k ∈ [m,n) and η ∈ Y 0
k+1,n then the sequence 〈g(〈s〉ˆη) : s ∈ Yk〉

belongs to Fk,g(η)

⊞3 G 1
m,n,ε := {g ∈ G 1

m,n : g(〈〉) = ε} for ε ≤ ζ and m ≤ n < ω.

Now the sets G 1
m,n are non-trivial, i.e.

⊞4 if m ≤ n and ε ≤ ζ then G 1
m,n,ε 6= ∅.

[Why? We prove it by induction on n; first if n = m this is trivial because the
unique function g with domain {<>} and value ε belongs to G 1

m,n,ε. Next, if m < n

we choose f ∈ Fn−1,ε hence the sequence 〈G 1
m,n−1,f(s) : s ∈ Yn−1〉 is well defined

and by the induction hypothesis each set in the sequence is non-empty. As ACYn−1

holds there is a sequence 〈gs : s ∈ Yn−1〉 such that s ∈ Yn−1 ⇒ gs ∈ G 1
m,n−1,f(s).

Now define g as the function with domain Y 1
m,n:

g(〈〉) = ε

g(νˆ〈s〉) = gs(ν) for ν ∈ Y 1
m,n−1 and s ∈ Yn.

It is easy to check that g ∈ G 1
m,n,ε indeed so ⊞4 holds.]
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⊞5 if g, h ∈ G 1
m,n and g(〈〉) < h(〈〉) then there is an (m,n)-witness Z for (h, g)

which means (just being an (m,n)-witness means we omit clause (d)):

(a) Z ⊆ Y 1
m,n is closed under initial segments, i.e. if η ∈ Y 0

k,n ∩ Z and

m ≤ k < ℓ ≤ n then η↾[ℓ, n) ∈ Y 0
ℓ,n ∩ Z

(b) 〈〉 ∈ Z

(c) if η ∈ Z ∩ Y 0
k+1,n,m ≤ k < n then {s ∈ Yk : 〈s〉ˆη ∈ Z} ∈ Dk

(d) if η ∈ Z then g(η) < h(η).

[Why? By induction on n, similarly to the proof of ⊞4.]

⊞6 (a) we can find ḡ = 〈gn : n < ω〉 such that gn ∈ G 1
0,n,ζ for n < ω

(b) for ḡ as above for n < ω, s ∈ Yn let gn+1,s ∈ G 1
0,n be defined by

gn+1,s(ν) = gn+1(νˆ〈s〉) for ν ∈ Y0,n.

[Why? Clause (a) by ⊞4 as ACℵ0 holds, clause (b) is obvious by the definitions in
⊞2 + ⊞3.]

We fix ḡ as in ⊞6(a) for the rest of the proof.

⊞7 There is 〈〈Zn,s : s ∈ Yn〉 : n < ω〉 such that Zn,s witness (gn, gn+1,s) for
n < ω, s ∈ Yn.

[Why? For a given n < ω, s ∈ Yn we know that gn+1(〈s〉) < ζ = gn(〈〉) hence Zn,s

as required exists by ⊞5. By ACYn
for each n a sequence 〈Zn,s : s ∈ Yn〉 as required

exists, and by ACℵ0 we are done.]

⊞8 Zn := {〈〉} ∪ {νˆ〈s〉 : s ∈ Yn−1, ν ∈ Zn−1,s} is a (0, n)-witness.

[Why? By our definitions.]

⊞9 there is F̄ such that:
(a) F̄ = 〈Fm,n : m < n < ω〉

(b) Fm,n : Y 1
m+1,n+1 → dual(Dm)

(c) Fm,n(ν) is {s ∈ Ym : νˆ〈s〉 /∈ Zn−1} when ν ∈ Zn and is ∅ otherwise.

[Why? As clauses (a),(b),(c) define F̄ .]

⊞10 F̄ witness IND(〈(Yn, Dn) : n < ω〉) fail.

[Why? Clearly F̄ = 〈Fm,n : m < n < ω〉 has the right form.
So toward contradiction assume t̄ = 〈tn : n < ω〉 ∈

∏

n<ω
Yn is such that

(∗)1 m < n < ω ⇒ tm /∈ Fm,n(t̄↾(m,n]).

Now

(∗)2 t̄↾[m,n) ∈ Zn for m ≤ n < ω.

[Why? For each n, we prove this by downward induction on m. If m = n then
t̄↾[m,n) = 〈〉 but 〈〉 ∈ Zn by its definition. If m < n and t̄↾[m + 1, n) ∈ Zn then
tm /∈ Fm,n−1(t̄↾(m,n]) by (∗)1 so t̄↾[m,n) = 〈tm〉ˆ(t̄↾[m + 1, n)) ∈ Zn holds by
clause ⊞9(c).]

(∗)3 gn+1(t̄↾[m,n]) < gn(t̄↾[m,n)).
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[Why? Note that Zn,tn is a witness for (gn, gn+1,tn) by ⊞7. So by ⊞5 (see clause
(d) there) we have η ∈ Zn,tn ⇒ gn+1,tn(η) < gn(η). But m < n ⇒ t̄↾[m,n] ∈
Zn+1 ⇒ t̄↾[m,n) ∈ Zn,tn , the first implication by (∗)2, the second implication by
the definition of Zn+1 in ⊞8. Hence by ⊞6(b) and the last sentence, and by the
sentence before last gn+1(t̄↾[m,n]) = gn+1,tn(t̄↾[m,n)) < gn(t̄↾[m,n)) as required.
So (∗)3 holds indeed.]

So for each m < ω the sequence 〈gn(t̄↾[m,n) : n ∈ [m,ω)〉 is a decreasing
sequence of ordinals, contradiction. Hence there is no t̄ as above, so indeed ⊞10

holds. But ⊞10 contradicts an assumption, so we are done. �3.13

{k10}
Remark 3.16. 1) Note that in the proof of 3.13 there was no use of completeness de-
mands, still natural to assume ℵ1-completeness because: if D′

n is the ℵ1-completion
of Dn then IND(〈D′

n : n < ω〉) is equivalent to IND(Dn : n < ω).
2) Recall that by [Sh:513, 2.7], iff pp(ℵω) > ℵω1 then for every λ > ℵω for infinitely
many n < ω we have (∀µ < λ)(cf(µ) = ℵn ⇒ pp(µ) ≤ λ).
3) Concerning 3.17 below recall that:

(A) if Yn is a regular cardinal, Dn witness Yn is a measurable cardinal, then
clause (a) of 3.17 holds, but [Sh:938, §4] says more

(B) if µ = µ<µ and Pµ is the Levy collapse a measurable cardinal λ > µ to be
µ+ with D a normal ultrafilter on λ, then 
Pµ

“the filter which D generates
is as required in (b) with µ in the role of Zn”, by Jech-Magidor-Mitchel-
Prikry [JMMP80].

So we can force that n < ω ⇒ Yn = ℵ2n.
4) So

(a) if pp(ℵω) > ℵω1 and ℵω divides δ, cf(δ) < ℵω and δ < ℵδ then pp(ℵδ) <
ℵ|δ|+

(b) we can replace ℵω by any singular µ < ℵµ

(c) if, e.g. δn < λn = ℵδn , δn < δn+1 and cf(δn) < ℵδ0 for n < ω, then , except
for at most one n, pp(ℵλn

) < ℵλ+
n

.

5) We had thought that maybe: if µ is singular and pp(µ) ≥ ℵµ+ then some case
of IND follows. Why? Because by [Sh:513, 2.8] this holds if µ < ℵµ+ provided that

µ = ℵδ ∧ |δ|ℵ0 < µ, (even getting IND(〈dual(Jbd
λn

) : n < ω〉) for some increasing
sequence 〈λn : n < ω〉 of regular cardinals < µ with limit µ if cf(µ) = ℵ0 and
⊆ {λ+ : λ ∈ E} for any pre-given club E of µ if cf(µ) > ℵ0). If only µ = ℵδ∧|δ| < µ
then in [Sh:513] we get a weaker version of IND.

{k15}
Claim 3.17. [DC] For x = 〈Yn, Dn : n < ω〉 with each Dn being an ℵ1-complete
filter on Yn, each of the following is a sufficient condition for IND(x), letting Y (<

n) :=
∏

m<n
Ym and for m < n, let Zm,n = {t : t is a function from

n−1
∏

ℓ=m+1

Yℓ into

Ym} and let Zn =
∏

m<n
Zm,n

(a) Dn is a (≤ Zn)-complete ultrafilter

(b) • Dn is a (≤ Zn)-complete filter
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• for each n in the following game ax,n the non-empty player has a
winning strategy. A play last ω-moves. In the k-th move the
empty player chooses Ak ∈ Dn and 〈Xk

t : t ∈ Zn〉,
a partition of Ak and the non-empty player chooses tk ∈ Zn.
In the end the non-empty player wins the play
if

⋂

k<ω

Xk
tk

is non-empty

(c) like clause (b) but in the second part the non-empty player instead tk chooses
Sk ⊆ Zn satisfying |Sk| ≤X |S| and every Dx,n is (≤ S)-complete, S is
infinite

(d) if m < n < ω then Dm is (≤
n
∏

k=m+1

Yk)-complete5

Proof. Straightforward. E.g.

Clause (b):

Let 〈 stn : n < ω〉 be such that stn is a winning strategy of the non-empty player
in the game ax,n.

Let F̄ = 〈Fm,n : m < n < ω〉 ∈ alg(x) and we should find a member of
∏

n
Yn as

required in Definition 3.12(2). We now, by induction on i < ω, choose the following
objects satisfying the following condition

(∗)i (a) for k < m and j < i,Gj,k,m is a function from
m
∏

ℓ=k+1

Yℓ into Yk

(b)(α) for m < ω, 〈(X̄j,m, tj,m) : j < i〉 is an initial segment of a play
of the game ax,m in which the non-empty player uses the
strategy stm;

(β) we have X̄j,m = 〈Xj,m,t : t ∈ Zm〉 so Xj,m,t ⊆ Ym

(γ) tj,m = 〈tj,k,m : k < m〉 and tj,k,m ∈ Zk

(δ) Xj,m,t =
⋂

k<m

Xj,k,m,tk , see clause (e) when

t = 〈tk : k < m〉 ∈ Zm,
∧

k

tk ∈ Zk,m

(c)(α) Yj,m is Ym if j = 0

(β) Yj,m is ∩{Xι,m,k,tj,k,m
: ι < j} ⊆ Ym if j ∈ (0, i)

(d)(α) if j = 0 < i then Gj,k,m is Fk,m

(β) if j ∈ (0, i) then Gj,k,m is defined by: for 〈yk+1, . . . , ym〉 ∈
m
∏

ℓ=k+1

Yℓ

we have Gj,k,m(〈yk+1, . . . , ym〉) = Gj−1,k,m+1(〈yk+1, . . . , ym+1〉)
for any ym+1 ∈ Yj,m+1 (so the value does not depend on ym+1!)

(e) for k < m and t ∈ Zk,m let Xj,k,m,t be {y ∈ Ym: if 〈yk+1, . . . , ym−1〉 ∈
m−1
∏

ℓ=k+1

Yℓ then Gj,k,m(yk+1, . . . , ym−1, y) = (yk+1, . . . , ym−1)}.

5So the Yk’s are not well ordered! But, on the one hand, if α < hrtg(Yn) ⇒ Dn is |α|+-
complete then αYn/Dn

∼= α. On the other hand, if Dn is ℵ1-complete and αYn/D ∼= α then
D projects onto a uniform ℵ1-complete filter on some µ ≤ α and those projections cover the
ultra-power.
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Clearly (∗)0 holds emptily.
For i ≥ 1, let j = i− 1 clearly 〈Yj,m : m < ω〉 is well defined by clause (c), hence

we can define 〈Xj,k,m,t : t ∈ Zk,m〉 by clause (e) and let Xj,m,t = ∩{Xj,k,m,tk : k <
m} when t = 〈tk : k < m〉.

So X̄j,m = 〈Xj,m,t : t ∈ Zm〉 is a legal j-move of the empty player in the game
ax,m, so we can use stm to define tj,m = 〈tj,k,m : k < m〉 as the j-th move of the
non-empty player.

Lastly, the function Gj,k,m is well defined. Having carried the induction, for each
m clearly 〈(X̄j,m, tj,m) : j < ω〉 is a play of the game ax,m in which the non-empty
player uses the strategy stm hence win in the play, so ∩{Xj,m,tj,m : j < ω} is non-
empty so by ACℵ0 we can choose ȳ = 〈ym : m < ω〉 such that ym ∈ ∩{Xj,m,tj,m :
j < ω}.

It is easy to see that ȳ is as required in Definition 3.12(2). �3.17

{k20}
Conclusion 3.18. [DC] Assume 〈κn : n〉 is increasing and κn is measurable as
witnessed by the ultrafilter Dn or just Dn is a uniform6 Υ(P(κn−1))-complete
ultrafilter on κn.

Then for every ordinal ζ, for every large enough n we have o-Depth+
Dn

(ζ) ≤ ζ.

Proof. By 3.17 we know that IND(〈Dn : n < ω〉) and by 3.13(2) we get the desired
conclusion. �3.18

{k24}
Claim 3.19. (ZFC for simplicity).

If (A) then (B) where

(A) (a) λn = cf(λn) and (λn)<λn < λn+1 and µ = Σ{λn : n < ω} and λ = µ+

(b) Pn is the natural λn-complete λ+
n -c.c. forcing adding 〈f

˜
n,α : α < λ〉

of members of λn(λn), <Jbd
λn
-increasing

(c) P is the product
∏

n
Pn with full support

(B) in VP we have NIND(〈dual(Jbd
λn

) : n < ω〉) and a cardinal θ is not collapsed

if θ /∈ (µ+, µℵ0 ].

Proof. So p ∈ Pn ff p is a function from some u ∈ [λ+]<λn into ∪{ζ(λn) : ζ < λn},
ordered by Pn |= “p ≤ q” iff α ∈ Dom(q) ⇒ α ∈ Dom(q) ∧ p(α) ⊆ q(α). Now use
3.13. �3.19

{boun}

§ 3(C). Bounds on the Depth. We continue 3.2. We try to get a bound for
singulars of uncountable cofinality say for the depth, recalling that depth, rank and
ps-TD are closely related.

{c1}
Hypothesis 3.20. D an ℵ1-complete filter on a set Y .

Remark 3.21. Some results do not need the ℵ1-completeness.

6Recall Υ(A) = min{θ: there is no one-to-one function from θ into A}.
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{c2}
Claim 3.22. Assume ᾱ ∈ Y Ord.
1) [DC] (No-hole-Depth) If ζ + 1 ≤ ps-o-Depth+

D(ᾱ) then for some β̄ ∈ Y Ord, we

have β̄ ≤ ᾱ mod D and ζ + 1 = ps-o-Depth+(β̄).
2) In Definition 3.1 we may allow Fε ⊆ Y Ord such that g ∈ Fε ⇒ g < f mod D.
3) If β̄ ∈ Y Ord and ᾱ = β̄ mod D then ps-o-Depth+(ᾱ) = ps-o-Depth+(β̄).
4) If {y ∈ Y : αy = 0} ∈ D+ then ps-o-Depth+(ᾱ) = 1.
5) Similarly for the other versions of depth from Definition 3.10.

Proof. 1) By DC without loss of generality there is no β̄ <D ᾱ such that ζ + 1 ≤
ps-o-Depth+(β̄). Without loss of generality ᾱ itself fails the desired conclusion

hence ζ + 1 < ps-o-Depth+(β). By parts (3),(4) without loss of generality s ∈
Y ⇒ αs > 0. As ζ + 1 < ps-o-Depth+(ᾱ) there is a <D-increasing sequence
〈Fε : ε < ζ + 1〉 with Fε a non-empty subset of Πᾱ. Now any β̄ ∈ Fζ , ζ + 1 ≤
ps-o-Depth+(β̄) as witnessed by 〈Fε : ε < ζ〉, recalling part (2); contradicting the

extra assumption on ᾱ (being <D-minimal such that...).
2) Let F ′

ε = {f [ᾱ] : f ∈ Fε} where f [ᾱ](s) is f(s) if f(s) < αs and is zero otherwise.
3),4) Obvious.
5) Similarly. �3.22

{c4}
Claim 3.23. [DC + ACY ] If ᾱ, β̄ ∈ Y Ord and D is a filter on Y and s ∈ Y ⇒
|αs| = |βs| then ps-TD(ᾱ) = ps −TD(β̄).

Proof. Straightforward. �3.23

Assuming full choice the following is a relative of Galvin-Hajnal theorem.
{c7}

Theorem 3.24. [DC + ACY ] Assume α(1) < α(2) < λ+, ps-o-Depth+(λ) ≤
λ+α(1) and ξ = hrtg(Y α(2)/D). Then ps-o-Depth+

D(λ+α(2)) < λ+(α(1)+ξ).

Proof. Let Λ = {µ : λ+α(1) < µ ≤ λα(1)+ξ} and for every µ ∈ Λ let

(∗)1 Fµ = F (µ) = {f : f ∈ Y {λ+α : α < α(2)} and µ = ps-Depth+
D(f)}

(∗)2 obviously 〈Fµ : µ ∈ Λ〉 is a sequence of pairwise disjoint subsets of Y α(2)
closed under equality modulo D.

By the no-hole-depth claim 3.22(1) above we have

(∗)3 if µ1 < µ2 are from Λ and f2 ∈ Fµ2 then for some f1 ∈ Fµ1 we have
f1 < f2 mod D

(∗)4 ξ > sup{ζ + 1 : F (λ+(α+ζ)) 6= ∅} implies the conclusion.

Lastly, as ξ = hrtg(Y α(2)/D) we are done. �3.24

Remark 3.25. 0) Compare this with conclusion 1.11.
1) We may like to lower ξ to ps-Depth+

D(α(2)), toward this let

(∗)1 F ′
µ = {f ∈ Fµ : there is no g ∈ Fµ such that g < f mod D}.

By DC

(∗)2 if f ∈ Fµ then there is g ∈ F ′
µ such that g ≤D f mod D.

2) Still the sequence of those F ′
µ is not <D-increasing.

Instead of counting cardinals we can count regular cardinals.
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{c13}
Theorem 3.26. [DC+ACY ] The number of regular cardinals in the interval
(λ+α(1), ps-depth+

D(λ+α(2)) is at most hrtg(Y α(2)/D) when :

(a) α(1) < α(2) < λ+

(b) κ > ℵ0

(c) D is a κ-complete filter on Y

(d) λ+α(1) = ps-DepthD(λ).

Proof. Straightforward, using the No-Hole Claim 1.13. �3.26
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§ 4. Private Appendix
{pa}

When ready §3D will be moved to the paper or to a new one.

{rgch}
§ 4(A). RGCH Revisited.

Discussion 4.1. (2013.2.12) More try to continue [Sh:386] with games for D ∈
Fil1κ(Y ) giving rank to 2θ < κ, function from Y Ord.

{h4}
Theorem 4.2. Assume DC + AC<µ.

If µ is strong limit (i.e. χ < µ ⇒ 2χ < µ and mu uncountable) then for every
λ ≥ µ for some κ < µ we have: if ξ < µ, χ < λ,D is a κ-complete filter on ξ then
DepthD(λ) ≤ λ, that is, depthD(λ) = Depth(ξλ,<D) ≤ λ.

{h7}
Theorem 4.3. The second composition theorem. Assume ACZ we have λ <
Depth+(

∏

i∈Z

Pi, <D) when :

(a) E is a filter on Z

(b) 〈Pi : i ∈ Z〉 is a sequence of partial orders

(c) λ < Depth−(
∏

i<Z

λi,MD)

(d) λu < Depth+(Pi)

(e) <D is the following partial orders on P =
∏

i∈Z

Pi : f <D g ⇔ {i ∈ Z :

f(i) <Pi
g(i)} ∈ E.

Proof.

(a) E is a κ-complete filter on Z

(b) 〈Yi : i ∈ Z〉 is a sequence of regular cardinals

(c) λ = ps-tcf(
∏

i∈Z

λi, <E)

(d) Ȳ = 〈Yi : i ∈ Z〉

(e) D̄ = 〈Di : i ∈ Z〉

(f) Di is a κ-complete filter on Yi

(g) P̄ = 〈Pi,j : i ∈ Z, j ∈ Yi〉 is a sequence of regular cardinals (or just limit
ordinals)

(h) λi = ps-tcf(
∏

j∈Yi

Pi,j , <Di
)

(i) Y = {(i, j) : j ∈ Yi and i ∈ Z}

(j) D = {A ⊆ Y : for some B ∈ E we have i ∈ B ⇒ {j : (i, j) ∈ A} ∈ Di}.

�

Proof.

(∗)0 D is a κ-complete filter on Y .

[Why? Straightforward (and do not need any choice).]
Let 〈Fi,α : α < λi, i ∈ Z〉 be such that

(∗)1 (a) F̄i = 〈Fi,α : α < λi〉 witness λi = ps − tcf(Pi)
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(b) Fi,α 6= ∅.

[Why? Exists by clause (d) of the assumption, for clause (b) recall [Sh:938, 5.6].]
By clause (c) of the assumption let Ḡ be such that

(∗)2 (a) Ḡ = 〈Gβ : β < λ〉 witness λ = ps-tcf(
∏

i∈Z

λi, <E)

(b) Gβ 6= ∅ for β < λ.

Now for β < λ let

(∗)3 Fβ := {f : f ∈
∏

i∈Z

Pi and for some g ∈ Gβ we have i ∈ Z ⇒ f(i) = Fi,g(i)}

(∗)4 the sequence 〈Fβ : β < λ〉 is well defined (so exists).

[Why? Obviously.]

(∗)5 if β1 < β2, f1 ∈ Fβ1 and f2 ∈ Fβ2 then f1 <D f2.

[Why? Let gℓ ∈ Gβℓ
, witness fℓ ∈ Fβℓ

for ℓ = 1, 2. As β1 < β2 by (∗)2 we have
B := {i ∈ Z : g1(i) < g2(i)} ∈ E. For each i ∈ B we know that g1(i) < g2(i) < λi

and as f1(i) ∈ Fi,gi(i), f2(i) ∈ Fi,g2(i); hence recalling the choice of 〈Fi,α : α < λi〉,
see (∗)1, we have f1(i) <Pi

f2(i). As B ∈ E and f1, f2 ∈
∏

i∈Z

Pi it follows that

f1 <D f2.]

(∗)6 for every β < λ the set Fβ is non-empty.

[Why? Recall Gβ 6= ∅ by (∗)2(b) and let g ∈ Gβ. As 〈Fi,g(i) : i ∈ Z〉 is a sequence
of non-empty sets (recalling (∗)2(b)), and we are assuming ACZ there is a function
g ∈

∏

i∈Z

Fi,g(i) so g ∈ Fβ , so Fβ 6= ∅ as required.]

(∗)7 if f∗ ∈
∏

i∈Z

Pi then for some β < λ and f ∈ Fβ we have f∗ < f mod D.

[Why? For each i ∈ Z let αi = min{α < λi: there is g ∈ Fα such that f∗(i) <Pi
g},

clearly well defined so ᾱ = 〈αi : i ∈ Z〉 exists. By the choice of Ḡ there are β < λ
and g ∈ Gβ such that ᾱ <E g. Recalling Fβ 6= ∅ choose f ∈ Fγ , it is as required.]

Together we are done proving the theorem. �
{h10}

Conclusion 4.4. The third composition theorem: assume ACZ and κ ≥ λ.
We have λ < Depth+(

∏

(i,j)∈Y

Pi,j , <D) and D is a κ-complete filter on Y when ?

Proof. Combine the proof of 2.6 and 4.3. �4.4

ADD 39A? NOT SENT
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§ 5. Private Appendix

§(3D) Concluding Remarks, pg.??

[Comments to [Sh:938].]

Old Proof of 2.2 moved from pgs.18,19:
First for the “only if” direction, assume ps− tcf(Πᾱ, <D) is well defined and call

it λ.
Let F̄ = 〈Fα : α < λ〉 witness λ = ps-tcf(ᾱ, <D). For f ∈ ∪{Fα : α < λ}

let f [∗] ∈ Y Ord be defined by f [∗](s) = sup{f(t) : t ∈ s/E}. Clearly f [∗] ∈ Πᾱ

as t ∈ Y ⇒ cf(αt) ≥ hrtg(Y ) by clause (a) of the assumption. Let F
[∗]
α =

{f [∗] : f ∈ Fα} for α < λ so 〈F
[∗]
α : α < λ〉 exists and F

[∗]
α ⊆ Πᾱ. Also

f1 ∈ Fα1 ∧ f2 ∈ Fα2 ∧ α1 < α2 < λ ⇒ f1 <D f2 ⇒ f1 ≤D f2 ⇒ f
[∗]
1 ≤D f

[∗]
2 hence

α1 < α2 < λ ∧ f2 ∈ F
[∗]
1 ∧ f2 ∈ F

[∗]
2 ⇒ f1 ≤D f2.

Now apply 2.1, getting (Y ′
1 , Y

′
2) as there, but by the choice of F̄ necessarily

Y ′
1 = ∅ mod D. Hence for some club E of λ, 〈F

[∗]
α : α ∈ E〉 is <D-increasing cofinal

in Πᾱ.
Lastly, for f ∈ ∪{F

[∗]
α : α ∈ E} let f [∗∗] ∈ (Y1)Ord be defined by f [∗∗](t/E) =

f(t), well defined as f↾(t/E) is constant. Let F
[∗∗]
α := {f [∗∗] : f ∈ F

[∗]
α } for α ∈ E.

Easily 〈F
[∗∗]
α : α ∈ E〉 witness the desired conclusions, that is, ps − tcf(Πᾱ1, <D1)

is well defined and equal to λ, so we have proved the “only if” implication.

§ 5(A). Concluding Remarks.

Those are comments to [Sh:938].

Definition 5.1. We say (Πᾱ, <D∗
) has weak κ-true cofinality δ, omitting κ means

κ = ℵ0, if there is some witness or (D, f̄)-witness F̄ which means:

(a) D ⊆ {D : D an κ-complete filter on Y extending D} is not empty

(b) D∗ = ∩{D : D ∈ D}

(c) F̄ = 〈FD,α : D ∈ D, α < δ〉

(d) 〈FD,α : α < δ〉 witness (Πᾱ, <D) has pseudo-true-cofinality δ.

Definition 5.2. δ = wtcfκ(Πᾱ, <D∗
) means (Πᾱ, <D∗

) has weak κ-true cofinality
δ and δ is minimal (hence a regular cardinal).

Discussion 5.3. 1) Why do not ask δ to be regular always? We may consider a
sequence of δ’s and as in id − cfκ(ᾱ) in [Sh:1005].
2) Can we (ZF + DC + ACiω

) prove [Sh:460], using ps −TD(ᾱ)? Use [Sh:460, §1].
3) Can we generalize the proof of [Sh:829, §1] using ps − TD(f)? We get λ is
ps−TD(

∏

i<κ

λi), κ < µ as witnessed by 〈F+
α : α < λ〉, but toward contradiction we

have Dn ∈ Fil1
κ+
n

(κn+1).

Remark 5.4. For D ∈ Fil1κ(Y ), ps−TD(f) is closely related to sup{ps−TD1(f). D1

is a filter on some θ < hrtg(Y ) such that D2 ≤RK D so natural to define ps −TD.
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Definition 5.5. 1) Assume D1 is a set of filters and let prj(D1) be

{D2 : for some D1 ∈ D2, µ < hrtg(Dom(D2)) and
h : Dom(D1) → µ we have D2 = h(D1)}.

2) Let ps −TD(ᾱ) = sup{ps −TD(ᾱ) : D ∈ D}.

Claim 5.6. Let D1 be a set of ℵ1-complete filters, D2 = pry(D1). Then the following
cardinals are S-almost equivalent where S = Fil1ℵ1

(D1) = ∪{Fil1ℵ1
(D1) : D1 ∈ D1}:

(a) ps −TD1(ᾱ)

(b) ps −TD1(ᾱ)

(c) FILL.
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§ 6. On RGCH with little choice

If we assume (ZF + DC of course and) Ax4 can we prove a theorem parallel to
the RGCH from [Sh:460]? See [Sh:1005]. We like to prove such a result just that
assuming DC; so if we have enough cases of IND, we use [Sh:955, §(3B)] if not,
assume for every κ we have p more or less as in [Sh:938, 3.1], i.e. omitting the

ranks such that (∀λ)Axθ
λ,µ0,ℵ0

all D ∈ Dp are µ1-complete. We try to repeat.

So trying to immitate, e.g. [Sh:829] in the main case we have d ∈ Dp, ᾱ ∈ Y (d)α.
Without loss of generality (∀t ∈ Yd)[(αt, i1) is as required], using the induction
hypothesis.

For s ∈ Yd, using cℓ : [α]<µ(P) → [α]<µ(P) which exists by Ax0
λ, . . . we have

〈

〈f t
e,y,β : β < αt〉 : e ∈ D≥i1 , β,y ∈ Fil4κ(i1,p)(Dex)

〉

such that every: if d ∈

D≥i1 , s ∈ Yd, f ∈ Y [e](αs) then for some set 〈(yi, βi) : i < ζp < κ(i,p)〉,
∧

t∈Ye

∨

i

f(s) =

fe,yi,βi
(s).

Why? Given (e, f) if there is no such sequence, we can find a filter κ(i1,p)-
complete filter on Ye such that...

But we need more: given f̄ = 〈fs : s ∈ Ys〉, fs ∈ Y [e]αs and we like to consider
all fs simultaneously, say find 〈(ys,i, βs,i) : s ∈ Ys, i < is〉 as above.

If we have d ∈ Dp ⇒ ACYd
this can be done. So the status of Ax0

λ change:
given p we say? If (∀xA0

y , . . .) fix. If not, then for some λ(∗) we have i < cf(µ) ⇒

¬Ax0
λ,κ(i,p),ℵ1

(can determine the other cases).
We get

(∗)1 if ∂ < µp then I = [λ]<∂ and Dn = dual(I) then IND(〈I,D : n〉).
{d2}

Question 6.1. Can we use 〈([λ]κ(i,p), Iλ,κ(i,p)) : n < ω〉?

Can we avoid using 〈ACκ(i,p) : i < cf(µ)〉? Given f̄ = 〈fα : s ∈ Yd〉 we can

consider Y∗ = Yd × Ye and for every sequence x = 〈(ys, fs) : s ∈ Yd〉, fs ∈ Y [e](αs)
let Ax = {(s, t)(Yd × Ye) : fs(t) = fs(t)}.

Now we may look at (R not too large)

D∗ = {Z ⊆ Y∗ : there is 〈xr : r ∈ P 〉 such that Y \Z ⊆
⋃

r∈R

Axr
}.

So DR is a κp(i1,p)-complete filter.
Let D∗

R,s be the projection of D∗
R to {s} ∈ Ye. Clearly it is the filter defined by

(αs, fs).

Recall [Sh:835, 2.2].
{d4}

Definition 6.2. We say Ax0
α,κ,µ when some cℓ exemplifies it which means:

(a) cℓ : [α]<κ → [α]<µ

(b) u ⊆ cℓ(u)

(c) u1 ⊆ u2 ⇒ cℓ(u1) ⊆ cℓ(u2)

(d) there is no sequence 〈αn : n < ω〉 ∈ ωα such that αn /∈ cℓ{αk : k > n}.
{d6}

Definition 6.3. We say x is a filter system (as in [Sh:938, 3.1], add κp,d,Repκ(d,p)(Dp)
but no rk

(a) µ is singular
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(b) each d ∈ D is (or just we can compute from it) a pair (Y,D) = (Yd, Dd) =
(Y [d], Dd) = (Yp,d, Dp,d) such that:

(α) hrtg(Yd) < µ, on hrtg(−) see Definition ??

(β) Dd is a filter on Yd

(c) (α) κι = κp,ι = κ(i,p) is a cardinal < µ

(β) i1 < i2 ⇒ κp,i1 < κp,i2

(γ) (∀σ < µ)[∃i < cf(µ))(σ < κp,i

(δ) if d ∈ D≥i then Dd is κp,i-complete

(ε) µ is strong limit

(d) (α) Σ is a function with domain D such that Σ(d) ⊆ D

(β) if d ∈ D and e ∈ Σ(d) then Ye = Yd [natural to add Dd ⊆ De,
this is not demanded but see ??(2)]

(e) (α) j is a function from D onto cf(µ)

(β) let D≥i = {d ∈ D : j(d) ≥ i} and Di = D≥i\Di+1

(γ) e ∈ Σ(d) ⇒ j(e) ≥ j(d)

(f) for every σ < µ for some i < cf(µ), if d ∈ D≥i, then d is (p,≤ σ)-complete
where

(g) p is complete when D≥i = {(κ,D) : κ ∈ [κp,i, µ), D a κp,i-complete filter
on κ}.

{d8}
Definition 6.4. Let Ax0

α,p means that: there is a function cℓ satisfying (a)-(c) of
6.2 and:

(d) if d ∈ D and u ∈ [α]<hrtg(Y [d]) then |cℓ(u)| < κ(d,p).

FILL
{d10}

Claim 6.5. Assume Ax0
α,µ,≤κ, D a filter on Y and ᾱ ∈ Y (α∗ + 1).

Then ps − o − DepthD(ᾱ) ≤S o − DepthD(ᾱ).
Why?

Proof. Let cℓ witness Ax0
α∗

, and assume u ∈ [α]<hrtg(Y ) ⇒ cℓ(u) ∈ [α]<µ. Let

κ = sup{|cℓ(u)|+ : u ∈ [α∗]<hrtg(Y )}. For transparency as 0 /∈ Rang(ᾱ), assume
β∗ < ps − o − DepthD(ᾱ), so there is a sequence 〈Fβ : β < β∗〉 witnessing it so
f ∈ Fβ ⇒ f < ᾱ.

For each β < β∗ so Fβ ⊆ Πᾱ, f ∈ F := ∪{Fβ : β < β∗}, there is y ∈ Repκ(D)
which represents f which means:

(∗)f,y (a) y ≡ (Y,D,A, h)

(b) if B ∈ D and B ⊆ A then cℓ{f(t) : t ∈ β} = cℓ{f(t) : t ∈ A}

(c) h is a function with domain Ay such that: h(t) = otp(f(t) ∩ cℓ{f(s):
s ∈ Ay}) so < µ

⊞ if f1, f2 ∈ Fβ are represented by y then f1↾Ay = f2↾Ay.

Now

⊞ |Repκ(D)| = |D × Y κ|

⊞ for y ∈ Repκ(D) let Uy = {β < β∗: there is f ∈ Fβ represented by y}

⊞ 〈Uy : y ∈ Rep(D,κ)〉 is well defined
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46 SAHARON SHELAH

⊞ β∗ = ∪{Uy : y ∈ Rep(D,κ)

⊞ for y ∈ Repκ(D) and α ∈ Uy let gy,β is the unique member of Πᾱ such
that: if f ∈ Fβ is represented by y then gy,β↾Ay = f↾Ay and gy,β(t) = 0
for t ∈ Y \Ay

⊞ 〈gy,β : β ∈ Uy〉 is <D-increasing sequence in Πᾱ.

�
{d12}

Claim 6.6. Assume D∗ is a κ-complete filter on Y, κ ≥ ℵ1 and Ax0
λ,≤γ,≤κ so γ

acts as an ordinal and µ = χ and S = Fil4κ(D∗, γ), so γ fixes the order type of
cℓ({f(s) : s ∈ Y }) and D = {dual(J [f,D]) : f ∈ Y Ord}.

The following cardinals are S-almost equal for ᾱ ∈ Y Ord

(a) 0 − Depth+
D

(ᾱ)

(b) ps − 0 − Depth(ᾱ)

(c) ps −TD(ᾱ)

(d) ∪ sup{rkD(ᾱ) + 1 : D ∈ D}.

Proof. FILL. �
{d14}

Theorem 6.7. Let p = (D, µ, . . .) be a filter system and (∀α)(∀∞, i < cf(µ))(Ax0
α,κp,i+1,ℵ1

).

Assume further ACκ(i,p) for i < cf(µ). For d ∈ Dp let obey??

For every α (question: or λ?) such that Ax0
α,κ(p),ℵ1

there is i < cf(µp) such

that: if d ∈ D≥i then the following as Repκ(d̄,p)(Dd)-almost equal

(a) α

(b) o− DepthDd
(α)

(c) ps − o− DepthDd
(ᾱ)

(d) ps −TDd
(α)

(e) rkDd
(α).

Remark 6.8. 1) For (b),(c) their being almost equal we already know, see §(3A).
2) Use rkd or rkDd

? Presently, rkd.

Proof. Case 1: α < µ
Obvious.

Case 2: α < µ+

Easy.

Case 3: α ≥ µ+ and for d ∈ D and ᾱ ∈ Y [d]α do we have α < ps − 0 − Depth(ᾱ).
Easy by the definitions.

Case 4: as ab there are d ∈ D and ᾱ ∈ Y [d]α.
Choose 〈g∗ε : ε < α〉 witness α < o − Depth+

Dd
(α) or more: such that J [g∗ε , Dd]

is constant; D2 the dual.
For s ∈ Yd clearly i(s) = min{i < cf(µ): for αt, i is as required in the claim}.

Clearly i(s) < cf(µ) is well defined by the induction hypothesis

(∗) without loss of generality for some i0, A = {s ∈ Yd : i(s) = i0} ∈ Dd.

[Why? See Definition ??, clause (∗)?]
We choose i1 ∈ (i0, cf(µ))) such that
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(∗) FILL.

Now let e ∈ D≥i1 and β∗ < 0 − Depth+(α) and let 〈fβ : β < β∗〉 witness this.
Define 〈fβ,s : β < β∗, s ∈ Yd〉 with fβ,s the function from Ye into α∗ defined by
fβ,s(t) = gfβ(t)(s).

let 〈ξβ,s : β < β∗, s ∈ Yd〉 be defined by

• ξβ,s = rkDe
(fβ,s).

Now

(∗) ξβ,s < αs.

Lastly, let 〈ξβ : β < β∗〉 be defined by

• ξβ = rkd(ξ̄β) where ξ̄β = (ξβ,s : s ∈ Yd).

As rkd(ᾱ = α and 〈ξβ,s : s ∈ Yd〉 <Dd
ᾱ we have

(∗) ξβ ≤ α (or ξβ < α).

Now for each ξ ≤ α let

(∗) uξ = {β < β∗ : ξβ = ξ}.

It suffices (check formulation) to prove

⊞ |uξ| < hrtg(Fil1ℵ1
(Dd) × Fil1ℵ1

(De)).

Why? For every β < β∗ let x1
β = (J〈ξ̄β,s : s ∈ Yd〉, Dd),x2

β = 〈J [〈g∗fβ,s(t)
(s) : t ∈

De〉, De] : s ∈ Yd〉,x3
β = J [fβ , De,x

4
β = 〈J [g∗fβ,t

, Dd] : t ∈ Ye〉.]
Now

• if β1 < β1 < β∗ and (ξβ1 ,x
ℓ
β1

) = (ξβ2 ,x
ℓ
β2

) then ξ1 = ξ.

[The delicate point: how much should i1 or comp(e) be above d? or too similar to
[Sh:938, §2].]

∗ ∗ ∗

Let J = J [〈ξβℓ,1 : s ∈ d〉, Dd], Js = J [〈gfβℓ,2
(t)(s) : t ∈ Dd〉].

First, note that as ξβ1 = ξβ2 , clearly A = {s ∈ Yd : ξβ1,s = ξβ2,s} = Yd mod J .
Also for every s ∈ A we have Bs := {t ∈ Ye : gfβ1,s(t) := gfβ,s(t)(s)} = Ye mod J .

Is i1 large enough?

∗ ∗ ∗

• Aβ1,β2 = {t ∈ Ye : fβ1(t) < fβ2(t)} = Ye mod De

• for t ∈ Yd : At
β1,β2

= {s ∈ Yd : gfβ1
(t)(s) < gfβ2

(t)(s)}.

So

• Aβ1,β2 = Ye mod De

• At
β1,β2

= Ye mod Dd for t ∈ Aβ1,β2 .

As hrtg(Dd) < comp(De) by the choice of i2 and “e ∈ D≥i1”, for some A∗ ∈ Dd

we have
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48 SAHARON SHELAH

• B∗ = {t ∈ Ye : At
β1,β2

= A∗} 6= ∅ mod J where J = J [fβ1 , De] =

J [fβ2 , De].

Hence

• for every s ∈ A∗, t ∈ B∗ we have gfβ1
(t)(s) < gfβ2

(t)(s)}.

�

∗ ∗ ∗
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§ 7. Private Appendix

Bounds

Saharon: check with [Sh:F1039]
Moved from pg.2:
§4 Bounds

§(4B) Minimality for ps-0-Depth

[We define “f is (Y,D, γ)-ps-0-Depth(+)-minimal and variants (clarify which
we deal with). Note existence and how it commutes wit 〈D+Ai : i < ∂〉 7→
〈D +

⋃

i<∂

Ai〉.

§(4C) Depth is regular and obtained

[A main claim is that: f ∈ Y Ord, (Y,D, λ+)-minimal then {y : f(y) is
regular} ∈ D+ (see 7.8), existence 7.10.]

§(4D) Weakly inaccessible (to [Sh:F1039])

[We like to show that if ℵ0 < cf(µ) < µ and µ is not the accumulation point
of the class of inaccessible cardinals then there is no (weakly) inaccessible
cardinals ∈ (µ, pp+

ℵ1-com
(µ)). This will be the main result of this section.

In [Sh:F1039] we shall get a similar theorem with somewhat different as-
sumptions.]

§5 Try to immitate [Sh:460], pg. 28 [to [Sh:F1039]? till the end?], pg.29

[Check carefully.]

§6 Absoluteness for non-well founded ultra-powers, pg.36

§7 More pcf with little choice, a try, pg.39

§(7A) Semi-filter

[Is it helpful to use semi-filters in [Sh:938, §3,§4]?]

§(7B) Games and Rank, pg.40

[This is an alternative to the present [Sh:F1039] using games and forcing.]

§(7C) Various

[In 11.1, 11.2 we show that investigating ps-tcf it is enough to consider Y a
cardinal. In 11.3 we note AChrtg(Y )⇒hrtg(Y ) successor. In ?? we (? check).

In 11.6 we show ℵ0 < κ = cf(µ) < µ ⇒ rkJbd
κ

(µ) > µ+. In 11.5 we use

pigeon ⊥ hull for J [f,D], nec?]

§8 More, pg.42-44
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50 SAHARON SHELAH

§ 7(A). Replacing rankD by DepthD - [FILL].

In ZFC we know that, e.g. for µ singular strong limit of uncountably cofinality,
if λ ∈ (µ, 2µ] is weakly inaccessible then weakly inaccessible are unbounded below
µ. We like to prove such results with little choice, for this we look at the minimal
case.

{c23}

Definition 7.1. 1) We say f ∈ Y Ord is (Y,D, γ)-ps-o-Depth+-minimal when (may
omit Y,D in this section), γ ≤ ps-o-depth+

D(f) but for no g ∈ λOrd satisfying g < f
mod D do we have γ ≤ ps-depthD(f).
2) Similarly for other variants.

{c25}
Claim 7.2. 1) If γ ≤ ps-o-Depth+

D(f) where f ∈ Y Ord then ps-o-Depth+-minimal
g ∈ Y Ord is such that g ≤ f mod D.
2) Similarly for other variants.

{c26}
Claim 7.3. If f = g + 1 ∈ Y Ord then ps-o-Depth+

D(f) = ∪{α + 2 : α <

ps-o-Depth+
D(g)}.

{c27}
Claim 7.4. 1) If f is (Y,D, λ)-ps-depth-minimal and λ is a limit ordinal then
{y ∈ Y : f(y) limit} ∈ D+.
2) If γ = δ + 1, δ a limit ordinal and f is (Y,D, γ)-ps-minimal, then {y ∈ Y : f(y)
a limit ordinal} 6= ∅ mod D.

Proof. Fill more? �
{c29}

Definition 7.5. Let f ∈ Y Ord.
1) Let Jps-o-depth[f,D] = {A ⊆ Y : A = ∅ mod D or A ∈ D+ but ps-o-DepthD(f) <
ps-o-depthD+A(f).

2) Similarly for other variants, but we write ps-o-depth(+).
{c31}

Claim 7.6. 1) γ ≤ ps-o-DepthD+Aℓ
(f) for ℓ = 1, 2 then γ ≤ ps-depthD+A1∪A2

(f).
2) [AC∂ ] If D is (≤ ∂)-complete and γ ≤ ps-DepthD+Ai

(f) for i < ∂ and A =
∪{Ai : i < σ} then γ ≤ ps-o-DepthD+A(f).
3) [AC<κ] If D is κ-complete and f is ps-Depth-minimal then Jps-o-depth[f,D] is
κ-complete ideal disjoint to D.

Proof. FILL �

§ 7(B). Depth is regular and obtained.

Recall
{c35}

Definition 7.7. We call λ inaccessible when λ is regular uncountable limit cardi-
nal.

{c37}

Claim 7.8. [ACY ] Assume λ is regular and f ∈ Y Ord is (Y,D, λ+)-ps-o-depth-
minimal. Then {y ∈ Y : f(y) is regular} 6= ∅ mod D.

Remark 7.9. The assumption is equivalent to (Y,D, λ + 1)-ps-o-Depth+-minimal.

Proof. Assume that not, so without loss of generality

(∗)1 f(y) is not regular for y ∈ Y

(∗)2 f(y) is > 0 for y ∈ Y .
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Let

(∗)3 (a) Y1 = {y : f(y) successor ordinal}

(b) Y2 = {y ∈ Y : cf(f(y)) < f(y)}.

Clearly

(∗)4 〈Y1, Y2〉 is a partition of Y .

By 7.6(1) without loss of generality

(∗) ℓ(∗) ∈ {1, 2}, Yℓ(∗) ∈ D, so without loss of generality Yℓ(∗) = Y .

Case 1: ℓ(∗) = 1
We get a contradiction by 7.3 to the minimality.

Case 2: ℓ(∗) = 2
By ACY we can find 〈Cy : y ∈ Y 〉 such that Cy is an unbounded subset of f(y)

of order-type cf(f(y)). Let β̄ = 〈βy : y ∈ Y 〉 with βy = otp(Cy), let F : Πf → Πβ̄
be defined by (F(f))(y) = otp(Cy ∩ f(y)) and let H : Πβ̄ → Πf be H(g)(y) = the
h(y)-th member of Cy).

Let h̄ = 〈hy : y ∈ Y 〉, hy is the function with domain otp(Cy) such that hy(ε) =
α ⇔ ε < otp(Cy) ∧ α ∈ Cy ∧ ε = otp(Cy ∩ α).

Clearly 〈βy : y ∈ Y 〉 < f mod D hence γ(∗) := dp-o-DepthD(〈otp(Cy) : y ∈
Y 〉) < λ. Define F ′

α ⊆
∏

y
βy as {F(g) : f ∈ Fα}

(∗)5 F̄ ′ := 〈F ′
α : α < λ〉 is as in 2.1 below.

[Why? As g1 ≤ g2 mod D ⇒ F(g1) ≤ F(g2) mod D.]
So let 〈Y1, Y2, E〉 be as in 2.1, hence

(∗)6 if Y1 ∈ D+ then for some g ∈ Πf we have λ+ < ps-Depth+
D+Y1

(g).

[Why? Choose g1 ∈ Fmin(E) then

(a) F(g1) < β̄ mod D.

So letting g2 = H(F(g1)) ∈ Πf we have g2 < f mod D and even g2 + 1 < f mod
D.

Also 〈F ′′
α : α ∈ E〉 witness λ < ps-Depth+

D(g2 + 1) where F ′′
α = {g[∗] : g ∈ Fα}

where g[∗](y) is g(y) if g(y) ≤ g2(y) and is zero otherwise.]

(∗) if Y2 ∈ D+ then λ < ps-DepthD+Y2
(β̄).

[Why? 〈F ′
α : α ∈ E〉 witness it, or pedantically for α < λ let γ(α) be the α-th

member of E and F ∗
α := F ′

γ(α) and 〈F ∗
α : α < λ〉 witness.]

Together by 7.6 we are done (check ps/ps-o). �7.8
{c53}

Claim 7.10. [DC +ACY ] If cf(λ) = λ > hrtg(P(Y )) and λ+ < ps-Depth+
D(f)

and λ is regular ≥ hrtg(P(Y )) then there is f1 such that

(a) f1 ∈ Y Reg

(b) f1 ≤ f mod D

(c) f1 is (Y,D, λ+) − ps-Depth+-minimal.
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{c55}
Remark 7.11. Use just 7.8 and the existence of minimality.

So we can replace “regular” by any property which satisfies a parallel statement.

Proof. We try to choose (fn, yn, ιm) by induction on n such that

⊞ (a) fn ∈ Y Ord

(b) f0 = f

(c) n = m + 1 ⇒ fn ≤ fm

(d) Yn = {y ∈ Y : fn(y) is regular}\ ∪ {Ym : m < n} and ιm = 1}

(e) in = 1 iff ιn 6= 2 iff Yn ∈ D+ and fn is (Y,D, λ+)−ps-Depth+-minimal

(f) if m < n and ιm = 1 then fn↾Ym = fm↾Ym

(g) if n = m + 1, Ym ∈ D+ and ιm = 2 then fn < fm mod (D + Ym)

(h) if n = m + 1, Zm = Y \Ym\ ∪ {Yk : k < n and ιk = 1} ∈ D+ then
fn < fm mod (D + Zm).

Each step is O.K. (for (h) by 7.6) and so by DC we can carry the inductive choice.
In this case a D is ℵ1-complete, let Z ∈ D be the set of y’s such that all the
relevant inequalities mentioned hold. As 〈fn(y) : n < ω〉 is not decreasing, for some
m, y ∈ Ym ∧ ιm = 1, so Z ′ := ∪{Ym : m < ω, ιm = 1} ∈ D and let g ∈ Y Ord be
g↾ym = fm↾ym if ιm = 1, g(y) = ℵ1 otherwise.

Easily g is as required by 7.6. Check. �7.10
{c55}

Conclusion 7.12. In 7.8 we can weaken the assumption - FILL.
{c56}

Remark 7.13. The point is that we do not have to change the filter, hence the
demand on “λ large enough is weaker”.

§(3D) Weakly inaccessible (to [Sh:F1039]?)
{c61}

Claim 7.14. [DC+ACP(Y )(?)]

Assume f ∈ Y Ord is (Y,D, λ+)-ps-Depth+-minimal. If λ is weakly inaccessible
then {t : f(t) is weakly inaccessible} ∈ D+.

Proof. Let

(∗)1 (a) Y0 = {t : f(t) = 0}

(b) Y1 = {t : f(t) a successor ordinal}

(c) Y2 = {t : f(t) a limit ordinal of cofinality < f(t)}

(d) Y3 = {t : f(t) is regular cardinal which is a successor

(e) Y4 = {t : f(t) is weakly inaccessible}.

Obviously

(∗)2 〈Yℓ : ℓ ≤ 4〉 is a partition of Y .

By 7.6 without loss of generality

(∗)3 (a) ℓ(∗) ≤ 4 and Yℓ(∗) ∈ D

(b) moreover Yℓ(∗) = Y .
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The cases ℓ(∗) < 3 are easily discarded.
Also if ℓ(∗) = 4 then the desired conclusion holds, so we can assume ℓ(∗) = 3

and eventually will get a contradiction.
Choose f∗ such that

(∗) f∗ ∈ Y Card such that (f∗(g))+ = f(y) for y ∈ Y .

By the assumption on f we can find

(∗) F̄ = 〈Fα : α < λ〉 is <D-increasing, Fα ⊆ Πf is non-empty.

FILL. �7.14

Discussion 7.15. By ACY and 3.1(?) we can get λ ≤ ps-DepthD(f∗). But does
this suffice? Or can we do the regular for ps-Depth-minimal?

§(3E) Higher rank (to [Sh:F1039]?)
1) We like to repeat [Sh:g, V,VI],but there are some different points; fix κ = cf(κ) >
ℵ0, e.g. ℵ1.

First, suppose that we have ACPk(κ), k large enough and H (χ) we have choice

and we know that rkℓ
E(f,E) < ∞ for f ∈ κχ, does this imply the same for f ∈

κOrd? The remedy we take here is DCκ+ . It is enough to use rk
5/4
E (f,E), so the

“antagonist” can chose any “legal filter”.
2) Fix E = Ek. Now if λ is regular (or less?) we can find rk4

E(f0,E) = rk5
E(f0,E) =

λ or just rk4
E0

(f,E) ≥ λ. So for every α < λ,Eα := {E : E ≥ E∗ and for some

g <fil(E∗) f0 we have rk4
E(g,E) = rk5

E(g, E) = α}. Hence for some E1 ≥ E0, the
set U := {α : E1 ∈ Eα} is unbounded in λ (and has order type λ). For α ∈ U let

Fα = {f ≤ f0 : rk4
E1

(g,E) = rk5
E1

(g,E) = α}. So 〈Fα : α ∈ U 〉 is <u-increasing
and let f1 ≤ f0 be a <fil(E1)-lub.

Hence (forgetting f0) we have rk4
E1

(f1,E) = rk5. Suppose we force by P =
{(E∗) : D ∈ E} getting G, D

˜
[G] what is θ(πf1/D

˜
)¿ [Maybe better: what is

hrtg(Πf ′/D) for f ′ ∈ (Πf1)V?]
Clearly > λ∗. Toward contradiction assume λ1 = λ2 = cf(λ) or just λ2 ≥

Sucpl(κ)(λ1), λ1 > λ,E 
P “hrtg(Πf1/D
˜

) > λ1 say F
˜

witness this. Hence for
α < λ2 the following set is non-empty

D2,α,β = {D : (E1)D1 
P “(∃g ∈ (πf1)V)(F
˜

(g)) = α and rk4(g,Ek−1) = rk5
D(g,E) = β}.

So for some E2 = (E1)[D2], the set U2 = {α < λ1 : (∃β)D2 ∈ D2,α,β} has order
type λ1.

Let βα = min{β : D2 ∈ D2,α,β} for α ∈ u2. Let F 2
α = {g ∈ (πf1)V : D2 
P

F
˜

(g) = α, rk
4/5
D2

(g,E) = βα}.

Again 〈F 2
α : α ∈ U2〉 is increasing.

3) Similarly with rk
2/3
D (f0) = λ forcing with (D+,⊇).

4) Now go back to [Sh:460]. The above is just going back to [Sh:386], [Sh:333], an
avenue I had tried and failed, but why?
5) Instead of DCκ+ we may consider a definition of a filter on [λ]θ with θ ≥ i2(κ)+ or
so; we do not use real sets just definitions of the sets used. Now to prove in the game
aκ(λ) the protagonist wins, we use χ such that A ⊆ λ, |A| ⇒ K[A ] |= χ → (λ)<ω

κ .
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§ 8. A try on immitating [Sh:460]

Question 8.1. (to [Sh:F1039]?)
{f2}

Theorem 8.2. For every λ there is n ≤ ω such that for no set a ⊆ λ ∩ Reg\µn of
cardinality < µ and µn-complete ideal I on a do we have ps-tcf(Πa, <I) is a well
defined (regular) cardinal ≥ λ, when :

(a) 〈µn : n < ω〉 is increasing with limit µ

(b) ACµn

(c) ACP(µn)

(d) DC?

(e) hrtg(P(µn)) < µn+1 moreover hrtg(Fil4(µn)) < µn+1.

Proof. We prove this by induction on λ; there is such n let n(λ) be the minimal
such λ.

Case 1: λ < µ
Easy: even for n = 0, as if κ = cf(κ) > µ and a ⊆ Reg ∩ λ so trivially |a| < µ

and I is ℵ1-complete ideal and 〈Pα : α < λ∗〉 is witness to λ∗ = ps-tcf(Πa, <I)
then λ∗ < hrtg(P(P(sup(a))) (can use less)?.

Case 2: λ = µ
Let n = 1 and use the ℵ1-completeness to get that without loss of generality a

is bounded in λ and use the proof of Case 1.

Case 3: cf(λ) > ℵ0, λ > µ
We let 〈λε : ε < cf(λ)〉 be an increasing sequence of cardinals < λ with limit λ

so ε 7→ n(λε) is a function from cf(λ) to ω hence for some n1 we have λ = sup{λε :
n(λε) = n1}.

Let n2 be such that cf(λ) < µ ⇒ cf(λ) < µn. Now max{n1, n2} can serve.

Case 4: λ1 = λ+
∗ or sup(λ ∩ Reg) < λ.

Easy.

Case 5: cf(λ) = ℵ0 and λ > µ and λ = sup(λ ∩ Reg).
Toward contradiction assume this fails. We first choose a1, D1 such that

(∗)1 (a) a1 ⊆ Reg ∩ λ of cardinality < µ

(b) D1 as ℵ1-complete filter on a1

such that

(c) λ1 = ps-tcf(Πa1, <D1) is well defined and ≥ λ hence > λ.

Without loss of generality

(∗)2 (a) a1 ∩µ++ = ∅ and sup(a1) < λ and n3 = n(∗) ≥ max{n(θ) : θ ∈ a1} <
ω

(b) sup(ga1) < λ0 < λ

(c) (a1) < µn3 < µ.
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[Why? Note that n(θ) is well defined for θ ∈ a1 by the induction hypothesis. As
D1 is ℵ1-complete, for some n2 < ω the set a′1 = {θ ∈ a1 : n(θ) ≤ n} ∈ D+

1 . By
xxx we can replace D1 by D1 + a′1 and even replace a1, D1 by a′1, D

′
1, also without

loss of generality n2 ≥ n1 and without loss of generality n2 ≥ n1 and without loss
of generality some min(Reg\µ) < min(a1).

Also, alternatively, n(sup(a1)) ≤ n2. Let n3 ≥ n1, n2 be such that µn3 >

hrtg(Fil4(a1)).]
By the assumption toward contradiction, there is a pair (a2, D2) such that

⊡1 (a) a2 ⊆ Reg ∩ λ\λ+
θ

(b) |a2| < µ

(c) D2 is a µ+
n(∗)-complete filter on a

(d) ps-tcf(Πa2, <D2) is well defined ≥ λ hence > λ.

As hrtg(Fil4(a1)) < µn3 and min(a1) > min(Reg\µ) by 1.13, the no-hole claim, we
know

⊡2 for every κ ∈ a2 there is a sequence λ̄κ = 〈λκ,θ : θ ∈ a1〉 such that
(a) λκ,θ ∈ Reg ∩ θ\µ

(b) κ = ps-tcf(Πλ̄κ, <D1).

As we assume ACa2 recalling |a2| < µ

⊡3 (a) there is a sequence 〈λ̄κ : κ ∈ a2〉 as above

(b) ā3 = 〈a3,θ : θ ∈ a− 1〉 where a3,θ = {λκ,θ : κ ∈ a2} ∈ [Reg ∩ θ]≤a2|

(c) let λ̄θ = 〈λκ,θ : κ ∈ a2〉.

By the choice of n2, etc. and Theorem xxx using clauses (x),(y) of the assumption

⊡4 for each θ ∈ a1 there is a set Sθ ⊆ {b ⊆ a3,θ : sup(ps-pcfℵ1−com(b) ≤ λ} of
cardinality < µn3 with union a2

⊡5 here is 〈Sθ : θ ∈ a1〉 as above.

[Why? By ACa1 because ACµn1
.]

⊡6 there is A ∈ D+
2 such that (∀θ ∈ a1)(∃B ∈ Fθ)(A ⊆ B).

[Why? S := ∪{Sθ : θ ∈ a1} is a set of cardinality ≤ µn2 as we have |Pθ| ≤ µ2

and ACa1 holds and |a1| ≤ µn1 and n1 < n2. Define an equivalence relation e on
a3 : κ1eκ2 iff (∀A ∈ S )(κ1 ∈ A ⇔ κ2 ∈ A). So the function κ 7→ {A ∈ S : κ ∈ A}
witness that |a2/e| < hrtg(P(S )) ≤ hrtg(P(µn2)). But D2 is µ+

n3
-complete and

µn3 > θ(P(µn2)), so we are done.]

⊡7 (a) without loss of generality A ∈ Sθ ∧ θ ∈ a1 ⇒ A ∈ {a2, ∅}.

[Why? By xxx.]

⊡8 θ ≥ sup(ps-pcfℵ1−com(a3,θ)) for θ ∈ a1.

[Why? By ⊡7 and the assumption on Sθ.]

⊡9 let D3 be the following filter on Y = a2 × a1

D2 ×D1 := {A ⊆ a2 × a1 : {κ ∈ a2 : {θ ∈ a1 : (κ, θ) ∈ A} ∈ D1} ∈ D2}
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⊡10 (a) ps-tcf(Πλ̄, <D3) = λ∗ := ps-tcf(Πa2, <D2) > λ where
λ̄ := 〈λκ,θ : (κ, θ) ∈ Y 〉

(b) let 〈θα : α < λ∗〉 witness it

⊡11 D∗ = {A ⊆ a2 × a1} ??

We shall try to prove that (Πλ̄, <D∗
) has a small cofinality. Let c̄ = 〈cθ : θ ∈ a1〉

be cθ = pcfℵ1−com(a3,θ) so |cθ| < µn(2).

For every f ∈ Π{cθ : θ ∈ a2} or d̄ = 〈dθ : θ ∈ a1〉 ∈
∏

θ∈a1

[cθ]≤ℵ0 let Dd̄ = {A ⊆

Y : {θ ∈ a1 : {κ : (κ, θ) ∈ A} = a2 mod J=∂ [λ̄θ]/Jf(θ)[λ̄
θ]} ∈ D1}

⊞1 (a) Df is an ℵ1-complete filter on Y

(b) λ ≥ sup(ps-pcfℵ1−com(Πλ̄, <Df
)) define!, by the minimality of a1

see (∗)1(d)

⊙2 (a) let c = λ ∩ ps-pcfℵ1−com(Πλ̄)

(b) let 〈Fλ,α : α < λ ∈ c〉 be such that F̄λ = 〈Fλ,α : α < λ〉 witness
λ = ps-tcf(πλ̄,<J=λ[λ̄]).

�8.2

Discussion 8.3. We try to continue below but §5 seems to solve it another way.

Discussion 8.4. We try to analyze the remaining cases. If we add |P(µn)| < µ
for n < ω by forcing without loss of generality

• otp(aℓ) = ∂ℓ = cf(∂ℓ)

• Dℓ = dual(J<λ+ [aℓ])

• let E = {b2 × b1 : bℓ ⊆ aℓ, |b∂| < ∂ℓ for ℓ = 1, 2}.

So let

• σ ∈ a1 ⇒ cσ := ps-pcf∂2−com({λκ,σ : κ ∈ a2}) ⊆ N

• F = Πcσ

• ᾱ ∈ F ⇒ dα = ps-pcf∂1−com(ᾱ, <Jbd
∂1

) define naturally

• d = ∪{dᾱ : ᾱ ∈ F}

• 〈Aχ : χ ∈ ps-pcf∂1−com(λ̄)〉.

So

• χ ∈ d ⇒ (∀∂2κ ∈ a2)(∀∂1a1)[(κ, σ) /∈ Aχ].

By forcing without loss of generality

• |cσ| = ∂2.

Question 8.5. Assume a is the disjoint union of 〈aε : ε < ∂〉, a ⊆ Reg\µ, |a| < µ.
Do we have ps-pcfℵ1−com(a) = ∪{ps-pcfℵ1−com(

⋃

ε<∂

dε), dε ⊆ (ps-pcfℵ1−com(aε))

countable?
This is a consequence of the existence of smooth closed generating sequences;

but does it exist here?

Question 8.6. Does it help to collapse 2|a1| and so find as an ultrafilter E∗ on a1

such that Va1/E∗ has standard N, etc.?
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§ 9. Absoluteness for non-well founded ultra-powers

Question 9.1. (to [Sh:F1039])

This may be used in §5 to immitate [Sh:460]. Here we try to avoid using the
“smooth closed generating sequences”.

Check: What does this give directly?
{m0}

Hypothesis 9.2.

(a) ACκ(∗), κ∗ = κ(∗) > ℵ0

(b) D∗∗ is a uniform ℵ1-complete ultrafilter on κ∗ = κ(∗)

(c) P a forcing notion, D
˜

a P-name of an ultrafilter on P(κ)V extending
D∗∗,G ⊆ P generic over V, in V[G];D

˜
[D] = D∗

(d) W = Wκ(∗)/D∗, so in general not well founded, computed in V[G]

(e) j = jG is the canonical embedding of V into W.
{m1}

Remark 9.3. 1) We may demand P(P) well ordered and ACP(P∗) holds.
2) Natural to choose P = ({D : D and ℵ1-complete filter on κ extending D∗∗},≥).

{m2}
Claim 9.4. If ⊞1 + ⊞2 then ⊕ when

⊞1 (a) • κ1 < κ2 < κ3

• κ2 = |(κ2)(κ1)/D2) can we use less? AC<µ

• V satisfies enough for Theorem gxxx with (κ2, κ3) here standing
for (κ, |Y |) there

(b) D1 is an ℵ1-complete ultrafilter on κ1

(c) W is Vκ1/D1, i.e. (Vj ∈)κ1

D1

(d) j is the canonical elementary embedding of V into W

(e) W |= “a is a set of regular cardinals > j(µ) of cardinality ≤ j(κ3)”

(f) W |= “〈Aθ : θ ∈ c〉 where c = ps-pcfκ2−com(a)〉 is a generating force c

(not just (a) as in gxxx”)

(g) Y = {θ : W |= “θ ∈ a”}

(h) for θ ∈ Y let Iθ be {α : W |= α < θ} linearly ordered by <W so
〈Iθ : θ ∈ Y 〉 exists in v

(i) λ̄ = 〈λθ : θ ∈ Y 〉 where λθ = cf(I0)

(j) J = {{θ ∈ Y : W |= θ ∈ b} : W |= “b ⊆ a have cardinality < j(κ2)}

(k) J+ = {Z ⊂ Y : (∃u)(Z ⊆ u ∈ J)}

(l) Jθ is {{θ : W |= θ ∈ u} : W |= “u ∈ J=θ[c]”}

(m) J+
θ := {W : (∃u)(W ⊆ u ∈ Jθ)}

⊕ (a) Y is of cardinality (κ3)(κ1)/D2 a cardinal

(b) if Z ∈ J then |Z| ≤ (κ2)(κ1)/D1 (is this well ordered?) no real harm
assuming yes; similarly Y

(c) the following are equivalent
• Z ⊆ W has cardinality ≤ κ2

• for some u ∈ W,W |= “|u| ≤ j(κ2)” and Z ⊆ {a : W |= “a ∈ u”}
(d) J+ is an ideal of subsets of Y , in fact in [Y ]≤κ2
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(e) λθ = ps-tcf(Πλ̄, J+
θ ) for θ ∈ Y

(f) J+
θ = {A : A ⊆

⋃

σ∈b

Aσ : b ∈ [Y ]≤κ2 and (∀σ ∈ b)(σ <W θ)}

(g) ps-pcfκ+
2 −com({λθ : θ ∈ c}) = {λθ : θ ∈ c}.

{k2d}
Remark 9.5. 1) Applying this in §4 we let a, κ2, κ3 stand for 〈{λκ,θ : κ ∈ a2} : θ ∈
a1〉/D, |(µn2)a1/D|, j(|a2|) there.
2) Well the problem may come from undefinable Dedekind cuts in (Y,<W ↾Y ).
However a1 = 〈θi : i < κ1〉, a2 = 〈θε : ε < κ2〉 let D2 be a κ+

2 -complete filter on
a2 such that λ∗ = ps-tcf(Πa2, <D2) is too large. So we use λ̄i = 〈λε,i : ε < κ2〉 ∈
Reg ∩ (θi),W |= “a, i.e. Y = 〈θι : ι ∈ j(κ1)〉, j(D2) is a j(κ+

2 )-complete filter on
j(κ2).

We may wonder: what filter does j(D2) induce on 〈λ̄ε/D1 = 〈λε,i : i < κ1〉/D2 :
ε < κ1〉 (from the outside)?

Exactly D2 by the completeness.

Proof. Clause (a): Straight

Clause (b): Follows from clause (c).

Clause (c): If Z ⊆ W and |Z| ≤ κ2 (in V) this member of Z has the form f/D1

with f ∈ (κ1)V , so by ACκ2 we can find a sequence 〈fi : i < i(∗) ≤ κ2〉 such that
Z = {fi/D1 : i < i(∗)}. For ε < κ1 let Zε = {fi(ε) : i < i(∗)} so 〈Zε : ε < κ1〉 ∈
κ1V hence Z∗ = 〈Zε : ε < κ1〉/D2 ∈ W.

As V |= “|Zε| ≤ κ2” for ε < κ2 by the relevant version of  Los theorem (quote
use ACκ1 !) we have W |= “|Z∗| ≤ j(κ2)” and obviously i < i(∗) ⇒ fi ∈

∏

ε<κ1

Zε ⇒

W |= “fi/D1 ∈ Z∗”. So we have proved one direction. The other is even easier. �
{k7}

Observation 9.6. [ACκ(∗)]
 Los theorem holds and so j is an elementary embedding.

{k10}
Claim 9.7. If θ = θκ/D∗ (in V) then for every w ⊆ W the following are equivalent

• |{a : W |= a ∈ w}| ≤ θ

• for some w ∈ W we have W |= “|w| ≤ j(θ)” and u ⊆ {a : W |= “a ∈ w”}.

Proof. See above. �
{m10}

Claim 9.8. If I is a linear order of cofinality θ > κ then {j(s) : s ∈ I} is a cofinal
subset of IW = I[W] the linear order with set of elements {a : W |= “a ∈ I”} and
IW |= “a < b” iff W |= “(I |= a < b)”.

{m13}
Claim 9.9. (Also 3.10!) 1) If W |= “I is the linear order (a,<) ∈ Reg\j(µ)” then

in V[G], tcf(IW) ∈ RegV.
2) Moreover if I = f/D∗, f : κ∗ → (the class of regular cardinals) then for some
p ∈ G and λ ∈ Reg\µ we have λ = ps-tcf(Πf,<Dp

).
{m15}

Claim 9.10. If θ is a regular cardinal > |P|+κ and ū = 〈uα : α < θ〉 is a sequence
of non-empty subsets of OrdW and a ∈ uα ∧ b ∈ uβ ∧ α < β ⇒ W |= a < b then ū
has an lub, i.e. there is a∗ such that

• a∗ ∈ OrdW
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• α < θ ∧ a ∈ uα ⇒ W |= a < a2

• if a′∗ satisfies •1 + •2 then W |= “a∗ ≤ a′∗”.

Proof. By xxx. �
{m17}

Claim 9.11. (Like 9.5(2).)
{m19}

Claim 9.12. A sufficient condition for W |= “θ ∈ (f/D)∩ (Reg\“j(µ)” ⇒ λθ < χ
is: P = (D+

∗∗,⊇) and (f,D∗∗) or niceness (check!).
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§ 10. More pcf with little choice: a try

Question 10.1. (To [Sh:F1039])

§(7A) Introductory Remark

Discussion 10.2. We observe [Sh:938, §3,§4] works if we demand just that Dd

a semi-filter. Then we replace measurable by the chosen win in a cut and choose
game. Third, ?

Lastly, let the chosen choose few instead?
{z2}

Definition 10.3. We say D is a semi-filter on Y when:

(a) D ⊆ P(Y )

(b) if A ⊆ B ⊆ Y and A ∈ D then B ∈ D

(c) ∅ /∈ D and Y ∈ D.
{z4}

Claim 10.4. If in [Sh:938, Def.3.1(b)(β)] we weaken the demand “Dd is a filter on
Yd” to “Dd is a semi-filter on Yd” still all the claims (and definitions) in [Sh:938,
§3,§4] works.

§(7B) Games and Rank
{g2}

Definition 10.5. We say x is appropriate when :

(a) x = (κ, θ, σ,D1, D2) = (κx, θx, σx, Dx,1, Dx,2)

(b) κ > θ > σ are cardinals

(c) Dx,1 ⊆ Dx,2 are filters on κ.
{g4}

Definition 10.6. 1) We say x is large when the chooser has a winning strategy in
the game ax defined below.
2) The game ax between the player cutter and chooser last ω moves in the n-th
move a set An+1 ∈ D+

x,2 is chosen, letting A0 = κ. In the n-th move the cutter

chooses ζn < θ and fn : An → αn, and the chooser chooses wn ∈ [ζn]<(1+σ) and let
An+1 = {α ∈ An : fn(α) ∈ wn}.

In the end the chooser wins iff ∩{An : n < ω} ∈ D+
x,1.

For the rest of this section
{g8}

Hypothesis 10.7. We assume x is large and st is a winning strategy for the
chooser and σx = 1.

{g10}
Definition 10.8. 1) P = pos(x,st) is the set of finite initial segments of a play of
the game ax during which the chooser uses the strategy G; we denote such initial
segments by s and As is An for the maximal n < ω such that it is well defined.
2) For s, t ∈ P let s ≤ t iff s is an initial segment of t.
3) Let P≥s = {t ∈ P : s ≤ t}.

{g12}
Definition 10.9. 1) For s ∈ P let Ds = Dx,st,s = {A ⊆ κx: for no t do we have
s ≤ t ∧A ∩ At = ∅ mod Dx,2}.
2) We define rks(f) ∈ Ord ∪{∞} by defining when rks(f) = α for s ∈ P, f ∈ κOrd
and α ∈ Ord (and let rks(f) =∗ α when below t = s is O.K.)
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⊞ rks(f) = B iff β < α 6= ¬(rks(f) = β) for some t ∈ P≥s for every g ∈ κOrd
satisfying g <Dx,2+At

f we can find β < α such that rkt(g) = β.
{g14}

Claim 10.10. 1) For s ∈ P and f ∈ κOrd, exactly one α ∈ Ord ∪ {∞} we have
rks(f) = α.
2) Assume f, g ∈ κOrd and s ∈ P . If f = g mod(Dx,κ + As) then rks(f) = rkt(g)
and if f ≤ g mod(Dx,2 + As) then rks(f) ≤ rkt(g).
3) [DC] For s ∈ P and f ∈ κOrd we have rks(f) ∈ Ord.

Proof. Easy. �
{g17}

Claim 10.11. If ζ = rks(f) and h : As → θ then for some ε < θ and t ∈ P≥s we
have rkt(f) = ζ and h↾At is constant.

Proof. Without loss of generality rks(f) =∗ ζ.
Not sure, try definition by forcing when ... ? �
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§ 11. Various

§(7C)
{c3.2}

Definition 11.1. Assume D is a filter on Y .
1) Let oq(Y ) = oq(Y,D) = {f : f a function from Y onto some ordinal}.
2) For f ∈ oq(Y ) let ef = {(y1, y2) : y1 ∈ Y, y2 ∈ Y and f(y1) = f(y2)}.
3) Let oeq(Y ) = {ef : f ∈ oq(Y, d)}.
4) For h ∈ oq(Y,D) let D/h be {x ⊆ Rang(h) : h−1(X) ∈ D}, a filter on Rang(f)
which necessarily is an ordinal < hrtg(Y ).
5) For f ∈ Y Ord let gf be the following function:

(a) Dom(gf ) = otp(Rang(f))

(b) gf (i) = α iff (∃y)(y ∈ Y ∧ f(y) = α ∧ i = otp(f(y) ∩ Rang(f)).

6) For f ∈ Y Ord let hf be the following function:

(a) Dom(hf ) = Y

(b) hf (y) = otp(f(y) ∩ Rang(f)) ∈ oq(Y, d).

7) Assume D ∈ Fil1κ(Y ) and f̄ = 〈fα : α < α(∗)〉 is a <D-increasing sequence of
members of Y Ord

(a) we let ū = 〈uf̄ ,h : h ∈ oq(Y,D) where uf̄ ,g = {α < α(∗) : hfα = h}

(b) f̄
[h]
0 = 〈gfα : α ∈ uf̄ ,h〉 is <D-increasing.

{c3.5}
Claim 11.2. Assume D ∈ Fil1κ.
1) Assume f̄ = 〈fα : α < δ〉 is a <D-increasing sequence of members of Y Ord

(a) 〈uf̄ ,h : h ∈ oq(Y,D)〉 is a partition of Y

(b) cf(δ) ≥ hrtg(oq(Y,D)) then for some h ∈ oq(Y,D) the set uf̄ ,h is an
unbounded subset of δ

(c) for h ∈ oq(Y ) the sequence 〈gfα : α ∈ uf̄ ,h〉 is a <D/h-increasing sequence

of members of Dom(h)Ord

(d) in (b); if δ = |δ| then for some h ∈ oq(Y ) the set uf̄ ,h has order-type δ.

2) For ᾱ ∈ Y Ord for every regular λ ≥ hrtg(Y ) we have

(a) λ ∈ ps-tcfκ-com(ᾱ) iff λ ∈ ps-tcfκ-com(gᾱ)

(b) λ ∈ dp-tcfκ-com(ᾱ) iff λ ∈ dp-tcfκ-com(gᾱ) recalling dp-tcfκ-com(ᾱ) = {λ:

for some D ∈ Fil1κ(Y ), λ = tcf(Πᾱ,D), equivalently there is a cofinal se-
quence of members of Πᾱ}.

{c3.7}
Observation 11.3. If AChrtg(Y ) then hrtg(Y ) is a successor cardinal.

Proof. Toward contradiction assume hrtg(Y ) is a limit cardinal say ℵδ(∗).

For α < hrtg(Y ) let F 1
α = {g : g a function from Y onto α}, by the definition of

hrtg(Y ) it is non-empty, hence by ACα the set F 2
α = {f : f a one-to-one function

from α into Y } is non-empty. As 〈F 2
α : α < hrtg(Y )〉 exists and ACθ(Y ) holds,

there is a sequence 〈fα : α < hrtg(Y )〉 with fα ∈ F 2
α. Define the function pr with

domain {(α, ζ) : α < hrtgζ < θ(Y )} by pr(α, ζ) =
∑

ε<ζ

ℵε+α, now pr(α, ζ) < ℵζ+1 ≤

hrtg(Y ) so pr is one-to-one into hrtg(Y ), also the range of pr is an initial segment
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of Ord, and |Rang(pr| = Dom(pr) as it is one-to-one and obviously |Dom(pr)| ≥ θ;
together pr is onto hrtg(Y ). We define 〈yγ : γ < hrtg(Y )〉 by ypr(α,ζ) = fζ(α)
for α < ℵζ < hrtg(Y ); let u = {γ < hrtg(Y ) : (∀β < γ)(yγ 6= yβ)}, so easily
ζ < δ(∗) ⇒ ℵζ+1 = |u ∩ [ℵζ ,ℵζ+1)|, hence |u| = hrtg(Y ), hence 〈yγ : γ ∈ hrtg(Y )〉
exemplify Υ(Y ) > hrtg(Y ), contradiction. �11.3

{c3.12y}
Claim 11.4. Assume [?]

(a) 〈F̄D : D ∈ ps-tcf-fil(ᾱ)〉 is as in ?

(b) D̄ = 〈Di : i < i(∗) < κ〉 ∈ κ>ps-tcf-filκ(ᾱ)

(c) for D̄ as above and β̄ ∈
∏

i

tcf(Πα,<Di
) let FD,β̄ = {sup{fβi

: i < ℓg(β̄)} :

f̄ ∈
∏

i<ℓg(β̄)

FDi,βi
} where f = sup{fβi

: i < ℓg(β̄)} which means s ∈ Y ⇒

f(s) = sup{fβi
(i) : i < ℓg(β̄)}

(d) {FD̄,β̄ : D̄ ∈ κ>(ps-tcf-filκ(D)) and β̄ ∈
∏

i<ℓg(β)

tcf(Πᾱ, <Di
)} is cofinal

(e) ps-cfκ(Πᾱ) = sup(ps-pcfκ(Πᾱ)) where we define ps-cfκ(Πᾱ) ≤ S when ...
?

{c13yajan}

Claim 11.5. Assume

(a) D ∈ Fil1κ(Y ), κ ≥ ℵ1 and αy > 1 for y ∈ Y

(c) rkD(ᾱ) = ζ = |ζ|

(d) cf(ζ) > hrtg(Fil1κ(Y )).

1) For some J ∈ {J [f,D] : f ∈ Y Ord} we have ζ = otp({γ: there is β̄ ∈ Πᾱ such
that rkD(β̄) = γ and J [β̄, D] = J}).
2) ? In (1) if dual(I) ⊆ D1 ∈ Fil1κ(Y ) then rkD1(ᾱ) = ζ and ?
3) ? Moreover in (1) if β̄ ∈ Πᾱ, rkD(β̄) = γ, J [β̄, D] = J then rkD1(β̄) ⊆ ??

Proof. 1) For ε < ζ let Fε = {β̄ ∈ Πᾱ: rkD(β̄) = ε} so F̄ = 〈Fε : ε < ζ〉 exists
and ε < ζ ⇒ Fε 6= ∅ by xxxx and ∪{Fε : ε < ζ} = Πᾱ.

Let Fε,E = {β̄ ∈ Fε : J [β̄, D] = dual(E)} for E ∈ Fil1κ(f)) extending D

and let uE = {ε < ζ : Fε,E 6= ∅}, so Fε = ∪
⋃

{Fε,E : E ∈ Fil1κ(D)} and

ζ = ∪{uE : D ⊆ E ∈ Fil1κ(Y )}. As cf(ζ) > hrtg(Fil1κ(Y )) necessarily for some
E, |uE| = ζ but uE ⊆ ζ = |ζ| hence otp(uE) = ζ, so dual(E) is as required.
2) By (3). ?

3) ? So J is from (1) and toward contradiction assume dual(J) ⊆ D1 ∈ Fil1κ(Y )
and ᾱ1 ∈ Πᾱ, but rkD1(ᾱ1) ≥ ζ; without loss of generality y ∈ Y ⇒ α1,y > 0 and
rkD1(ᾱ1) = ζ1. Now we choose F 1

ε ,F
1
ε,E , E2 as in the proof of part (1) starting

with ᾱ1, ζ1. �??
{c14y}

Claim 11.6. [DC] 1) If ℵ0 < κ = cf(µ) < µ then rkJbd
κ

(µ) > µ+.

Proof. 1) Clearly Jbd
κ is a uniform κ-complete filter on κ. Let 〈µi : i < κ〉 be

increasing continuous with limit µ, κ < µ0. For each α < µ+ let

Fα = {f : f a one-to-tone function from some subset of µ onto α}

Gα = {gℓ : gℓ for some f ∈ Fα} where for f ∈ Fα for some α < µ+ we let gf be
defined by
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(∗)0 Dom(gf ) = κ and for every i < κ, g(i) = otp({g(ε) : ε < µi ∩ Dom(f)})}

(∗)1 Fα 6= ∅ for α < µ+

(∗)2 Gα 6= ∅ for α < µ+

(∗)3 Gα ⊆
∏

i<κ

µ+
i ⊆ κµ.

[Why? As the set {f(ε) : ε ∈ µi ∩ Dom(f)} has cardinal ≤ µi, so have order type
< µ+

i .]

(∗)4 if α1 < α2 and g2 ∈ Gα2 then for some g1 ∈ Gα1 we have g1 < g2 mod Jbd
κ .

[Why? Let g2 = gf2 so β1 ∈ β2 = Rang(f2) so let β1 = f(ε1) and i1 be a
min{i < κ : µi > εj}. Let U = {ε ∈ Dom(f2) : f2(ε) < β1} and f1 = f2↾U and let
g1 = gf1 , so clearly g1 ∈ Gα1 . Now if i ∈ i1, κ0 then {f1(ε) : ε ∈ µ1 ∩ Dom(gf1)} ⊆
B1 ∩ {f2(ε) : ε ∈ µi ∩ Dom(f2)} and β1 ∈ {g2(ε) : ε ∈ µi ∩ Dom(f2)}, so clearly
gf1(i) < gf2(i).

So g1 < g2 mod Jbd
κ is as required.]

For α∗ ∈ [µ+, µ++) and we shall prove that rkD(g) ≥ α∗ for some g ∈ κµ, this
suffices.

As (α∗) there is w̄ such that

(∗) (a) ū = 〈wi : i < χ〉

(b) i < χ ⇒ |wi| = µ

(c) α∗ = ∪{wi : i < χ}.

As cf(µ+) = χ we can choose ᾱ such that

(∗) (a) ᾱ = 〈αj : j < χ〉

(b) ᾱ is increasing, αj > χ, κ

(c) ᾱ is with limit µ+.

Now y ∈ Y let

(∗) wy = ∪{wi : i ∈ y}

(∗) for y ∈ Y
(a) |wg| ≤ µ

(b) ??

�
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§ 12. Private Appendix

We can add to [Sh:938, 2.6,2.7]
{k17}

Claim 12.1. The filter D2 4-commutes with the filter D1 (see [Sh:938, 3.1]) when :

(a) Dℓ ∈ Filcc(Yℓ) for ℓ = 1, 2

(b) D1 is σ-complete

(c) if J1 ∈ {J [f,D1] : f ∈ Y1Ord} or just J1 is a σ-complete ideal extending
dual(D1) then A ⊆ Y1 but dual(J1) ∈ {D1+A : A ∈ D+

1 }; this follows from
clause (b) + DCσ VACP(Y1) when D1 is σ-c.c., i.e. there is no sequence

〈Ai : i < σ〉 of a pairwise disjoint sets from D+
1

(d) DCσ and ACY1 , ACY2

(e) (α) D1 is P(Y2)-complete or just

(β) if 〈Bs : s ∈ A1〉 ∈ A(J+
2 ) and A ∈ J+

1 , Jℓ ∈ {J [f,Dℓ] : f} for
ℓ = 1, 2 then for some B∗ ∈ J+

2 and we have A∗ ⊆ A,A∗ ∈ J1
we have s ∈ A∗ ⇒ Bs ⊇ Bs.

Proof. Stage A:

Let A ∈ D2 and B̄ = 〈Bs : s ∈ A〉 ∈ A(D2) and J̄1 = 〈J1
t : t ∈ Y2〉 where

J1
t ∈ {J [f,D1) : f ∈ Y2Ord} and J2 ∈ {J [f,D2) : f ∈ I2Ord}, i.e. as in the

assumption of ⊞4 of Definition [Sh:938, 2.1]. We should find A∗, B∗ as there.

Stage B:

For each t ∈ I2 there is At ∈ D+
1 such that J1

t = dual(D1 +At), hence as ACY2

holds such that 〈At : t ∈ Y2〉 exist. Why? By clauses (b),(c) of the assumption.

Stage C:

Choice of B∗, A∗. Apply clause (d) of the assumption applied to (J2, 〈At : t ∈
I2〉). �13.15

{k19}
Remark 12.2. 1) We can weaken “D1 is σ-complete, σ-c.c.” to “D2 is σ-complete,
σ+-c.c.” when we have some normality conditions.
2) We can replace this by “any J [f,D1] is of the form D1 + A for some A ∈ D+

1 ”.

We can add in [Sh:938, §4]
{k23}

Conclusion 12.3. [AC<µ and µ a limit singular cardinality]
Assume µ = sup{κ < µ: for some λ ∈ [κ, µ) on λ there is a κ-complete κ-c.c.

filter D on λ}. Then for every ordinal ζ for some κ∗ < µ, for every λ ∈ [κ, µ) and
κ-complete κ-c.c. filter D on λ we have rkD(ζ) = ζ.

Proof. By 13.15 and [Sh:938, 4.1]. �12.3

We define f : Y1 → P(Y2) by f(s) = {t ∈ Y2 : s ∈ At}; as D1 is (P (Y2))-
complete filters on Y1 necessarily also J2 is a (P(Y2))-complete ideal on Y1 hence
there is

• Y ∗
2 ⊆ Y2 such that A∗ := {y ∈ A1 : f(y) = Y ∗

2 } belongs to J+
2 .

Choose s∗ ∈ A∗ so Y ∗
2 = f(s) = {t ∈ Y2 : s ∈ At}.
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§ 13. Private Appendix

Remark 13.1. pcf inventory (August 2009)
1) See [Sh:F663] lecture - [Sh:430, §6] is locality proved for pcfθ-com(−), θ > |a|.
2) See Rinot question [Sh:F893].
3) See the notes for Larson [Sh:F814] - on HOD.
4) Continue [?], see [Sh:F878].
5) Failed try to continue [Sh:460, §5B], [Sh:F563].
6) [Sh:F355] - on consistency - answer Gitik?
7) [Sh:F354] λ = sup(λ ∩ pcf(a)) is weakly inaccessible.
8) Densities of basic product [Sh:F132], covered by paper with Moti?
9) [Sh:F50] to Shimoni.
10) Hopes rank for precipiousness?
11) Sort out? Yn is well ordered, need INDℵ1(D̄)?
12) (09.10.19) A related question: let x = 〈(Yn, Dn, hn) : n < ω〉 is here hn : Yn →
Y and D a filter on Y and we try to prove

(∗) for every f ∈ Y Ord, for every large enough n we have rkDn
(f◦hn) ⊆ rkD(f)

or similarly for Depth.

13) (09.10.26, old thought) As we pass from cofinality to pseudo-cofinality, iterate
this notion and then have strong dichotomies.
14) (09.11.15) Think of a problem where:

(a) Depth(ω(ℵn),Dℵn
) large given an answer.

15) Tasks (2010.1.08)

(a) if Y = χ, then we can replace ACP(Y ) by DCχ+

(b) replace Y by all µ < θ(Y ), just split to some ?

(c) Definition dp-pcfκ(Y ) = {x : λ regular and there is a filter D such that
λ = dp-tcf(πᾱ,<D)} where: dp-tcf(πᾱ,<D) means there is an increasing
cofinal of this length

(d) nice results but no existence

(e) given ᾱ, how much choice needed to find D with dual(D) = ([Z]<κ+(Y \Z)
for some Z?

(f) for a λ-sequence of length λ,<D1 -increasing in Y Ord, is there <D2 -lub for
some D2 ⊇ D1?

(g) smooth closed generating sequence: by DC|Y |?

(h) generalize [Sh:460]

(i) get bound or Depth ℵω1

(j) try for a dichotomy: with IND
{q4}

Discussion 13.2. (2010.3.08) Why the question 13.4(1) help? similarly 13.4(2).
So assume

(a) f∗ ∈ θ(Reg ∩ µ1)

(b) D a non-principal ultrafilter on θ

(c) cf(
∏

i

f∗(i)/D) = λ+
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(d) no f/D < f∗/D satisfies (c), or do we use less?

(e) θ < κ, 〈µ1, λ〉κθ, probably assuming 2θ < κ maybe it is much less interesting
though we may get more than in [Sh:460], then D is in VP, |P| = 2θ

(f) λj ∈ Reg ∩ µ2\µ1(j < κ)

(g) λ+ = tcf(
∏

j

λ1, <E)

(h) for each i < θ, f∗(i) is inaccessible for any κ-complete filter/ideal on κ.

Without loss of generality
∧

i

ℵ0 < f∗(i).

We can find gj ∈ π(f∗(i) ∩ Reg) for j < κ such that λj , cf(πgj , <D1). Let
ai = {gj(i) : j < κ}\(κθ)+,V = V θ/D, j : V → V, ā = 〈ai : i < κ〉,A = ā/D, so
V |= “(gj/D) ∈ A ” ∧ (A has cardinality ≤ j(κ)) ∩ (A a set of regulars > j(κ))”.

So in V we have the basic pcf results 〈bg/D[ā/D : g/D ∈ A 〉, 〈f
g/D,ā/D
α : α ∈

g/D〉 as in xxx.
Note

⊞ V |= “there is a division of κ to ≪ κ sets 〈ui,ε : ε < ε1〉, max pcf{gj(i) :
j ∈ ui,ε} < f∗(i)”

⊞ in V,A is listed by 〈λ∗
ε : ε ∈ κθ/D〉

⊞ in V and κθ/D ∈ V is linear order with {j(j) : j < κ} unbounded in it

⊞ if V |= g/D = tcf(
∏

g∈I

ga/D,<E ) then this is essentially true letting E be

the filter on {a : V |= a ∈ I}, λa = cf(πga, <D), λ = cf(πg,<D) we have
λ = tcf(

∏

a
λa, <E) when the λa > 2θ.

Discussion 13.3. (2010.3.8) We return to the trying to improve [Sh:460].
{q2}

Question 13.4. Concerning [Sh:460], so say for µ > cf(µ)(= ℵ0)? λ is the first
counterexample > 2µ so cf(λ) = cf(µ). Let θ < κ,D an ultrafilter on θ such that
for some fθ ∈ θλ, cf(

∏

i∈θ

fθ(i), <D) = λ+.

1) Can we have “fθ/D is the first f/D such that cf(
∏

i

f(i);<D) = λ+?

2) Or at least can we find ā such that

(a) ā = 〈ai : i < θ〉

(b) ā ∈ [Reg ∩ λ]≤2θ

(c) f ∈ πai ⇒ cf(
∏

i

f(i), <D) = λ+ and

(d) g ∈ θλ ∧ cf(πg,<D) = θ ⇒
∨

f∈πai

(f/D < g/D).

3) Maybe λ is the first such that:

(∗)1 for arbitrarily large θ < µ (regular θ < µ) there is a ∈ [Reg ∩λ]≤θ bounded
in λ, λ ∈ pcf(a), b ∈ [a]<θ ⇒ λ /∈ pcf(b).

In the case clause (d) holds
{g23}

Claim 13.5. (2010.3.08) We assume an axiom from [Sh:835] and prove RGCH in
the depth version for µ > cf(µ) = ℵ0 strong limit and ACµ, κ < µ ⇒ θ(P(κ)) < µ.
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Alternative: (2010.3.08)
1) Assume DC<µ (and so P (κ) < µ for κ < µ. Use the RGCH version with nice
representation of pcf(a), for the pseudo cofinality version.
2) Is ps-pcf(ps-pcf(a)) = ps-pcf(a)? So we have λi = ps-tcfℵ1

(
∏

j

λi,j ,MD1), λ =

ps-pcfℵ1
(πλi, <D). Yes (but as anyhow we use pcfℵ1−comp, iterating ω × ω we are

done).

Moved 2010.1.08 from 16.8, p.7:
2) [ACP(Y )] If D is κ-complete but not (< ∞)-complete then ACκ.

2) So without loss of generality D is κ-complete not κ+-complete hence there is a
sequence Ā = 〈Aα : α < κ〉 of members of D with ∩{Aα : α < κ} /∈ D and without
loss of generalityĀ is with no repetition. This implies κ < θ(P(Y )), but we have
ACP(Y ) hence we have ACκ as promised.

∗ ∗ ∗

Moved from pg.8:

For ℵ1-complete ultrafilter we get more
{r31}

Claim 13.6. [true??] Let D be an ℵ1-complete ultrafilter on Y . Then for any
f ∈ Y (Ord\{0}) we have rkD(f) = ps-o-Depth(

∏

t∈Y

f(t), <D) and the supremum on

the left is obtained.

Proof. Obvious. �13.6

Question 13.7. 1) Can we prove parallel of the ZFC results?
2) (09.7.19) Is this not θ(Πᾱ/D)?

Moved from Anotated Content:

§(2A) Getting quasi-rank systems with AC<µ, pg.7 (090909)?

[We start with pre-rank-system p and define rank trying to get a strict rank
system using IND we get that the ranks are < ∞. Has to be read together
with [Sh:938]. While this has to be checked we still use AC<µ, µ =

∑

n
κn.

A new suggestion in f6.2, f6.3d, f6.9(5) has not been elaborated on.]

§3 Connection to IND, pg.13

§4 Appendix, pg.19

[We repeat [Sh:938, §5].]

NOTE: pg.9I - can’t read the top of this page
{k10}

Discussion 13.8. Whereas our orignal intention was to use IND(x), we actualy
use only IND′(x), which is much better.

{k12}
Definition 13.9. 1) IND′(〈(Yn, Dn) : n < ω〉) means that if no F̄ = 〈Fn : n < ω〉
is a witness against it which means:

(a) Fn is a two-place function from In+1 ∪ {x} into dual(Dn)
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(b) there are no t̄n = 〈tn,ℓ : ℓ < n〉 ∈ I10,n for n < ω, stipulating tn,n = x we
have m < n ⇒ tn,mtn−1,m /∈ Fm(tn,m+1, tn+1,m).

2) Let IND′′(〈(Yn, Dn) : n < ω〉) means that there is no 〈Fm,n : m,n < ω〉 a witness
against it which means:

(a) Fm,n is a two-place function from In ∪ {} into dual(Dn)

(b) un,ε,ξ,t ⊆ {(ε1, ξ1 : ε1 < xi1 ≤ ζ} coming from (Fn,ε,Fn,ξ).
{k14}

Question 13.10. 1) If we try to prove 3.13 with choosing ≪
∑

n
(I/n)?

2) Try ζn = oDepth(Inζ,<n) is ≫ ζ. Really for every ζ̄ ∈
∏

n<ω
ξn we have F̄ ζ̄ for

the Y ’s witnessing failure of IND(x) can we combine to get a contradiction? We
have the Z’s colouring by large subsets of Y0,n with sub-additivity.

{k16}
Claim 13.11. [ZFC] 1) If Yn = λ,Dn = {u ⊆ Y : Y \u ≤ κ} and Y → (ω)3κ then
IND′(〈(Yn, Dn) : n < ω).
2) If Yn = κ2, Y −Dn-co-countable.

Discussion 13.12. We may wonder on relatives on 3.13. First, if instead ps-Depth
we use Depth it seems that

∧

n
ACIn is not necessary. Second, we may try to use

ranks instead of depth.

∗ ∗ ∗

Does looking at the proof of 3.13 give more?
{k18}

Definition 13.13. 1) We say f̄ is an (x, ζ)-system or (Ā,x, ζ) is a system when

(a) x = 〈(Yn, Dn : n < ω〉, Dn a filter on Yn

(b) ζ an ordinal

(c) f̄ = 〈fn,ε : n < ω, ε ≤ ζ)

(d) fn,ε ∈ Inζ (with full choice without a more complicated

(e) ε < ξ ≤ ζ and n < ω then fn,ε <Dn
fn,ξ.

2) we say the pair (t̄, ε̄) solve the system (Ā,x, ζ) when

(a) t̄ ∈
∏

n<ω
Yn

(b) ε̄ = 〈ε̄n : n < ω〉 where ε̄n = 〈εn,ℓ : ℓ ≤ n〉, εn,ℓ ≤ ζ.

Remark 13.14. With little choice for n < ω, ε < ξ ≤ ε we have 〈un,ε,ξ,t : t ∈ In〉.
If Dn+1 is λ+

n -complete then ?
{k17}

Theorem 13.15. [ACYn
for n < ω.]

Assume Dn is an ℵ1-complete on Yn for n < ω and IND(〈Dn : n < ω〉 then for
every ζ, for some n we have rkDn

(ζ) = ζ.

Definition 13.16. ACY,2 where for every 〈Ay : y ∈ Y 〉 there is 〈By : y ∈ Y 〉 such
that Ay 6= ∅ ⇒ By 6= ∅, |By| ≤∗ |Z|.
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Question 13.17. Interesting? Natural for a sequence (≤ Z)-complete filter, as in
we can use 〈

⋂

a/∈By

: y ∈ Y 〉.

Proof. We choose gn, Zn as in the proof of 3.13 using the definition. �

Remark 13.18. 1) In (5B), ??(2) silly? We can find disjoint Y1Y2 with id(Y1) =
id(Y2).

2) Definition ??(2) line 2: I 7→ J .

Discussion 13.19. Seemingly [Sh:835] connect well to [Sh:F955].
So ssume 〈λi : i < κ〉 is increasing with limit µ and that is we should deal with

a game, where..?

∗ ∗ ∗
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§ 14. Private Appendix

Using pure Σ: July 2009
{m6}

Definition 14.1. We say s is a frame when s consists of the following objects
satisfying the following conditions:

(a) 〈κi : i < cf(µ)〉 is increasing with limit µ

(b) set D

(c) Dd a filter on Id = I[d] for d ∈ D

(d) for d ∈ D
(α) Σ(d) ⊆ {(e, h) : e ∈ D and h a function from Ie onto Ie such taht

Dd = {h′′(A) : A ∈ De}

(β) Σpr(d) ⊆ Σ(d), a set of so called pure extensions

(γ) Σap(d) ⊆ Σ(d), a set of so called a-pure extensions such that (e, h) ∈
Σap(d) ⇒ Ie = Id ∧ h = idId

(δ) d ∈ Σpr(d) ∩ Σap(d)

(ε) transitivity of Σ? Σpr? Σap?
(e) j is a function from D to cf(µ) and Dd is κj(d)-complete and c ∈ ℓ par(d) ⇒

|Sℓ| < κj(d)(?)

(k) par(d) and for p ∈ part(d), X̄p = 〈Xp,s : s ∈ Sp〉 is a sequence of pairwise
disjoint subsets of Id with union ∈ Dd and 〈ep,s : s ∈ S〉 is such that
ep,s ∈ D, Iep,s

= Id, Dep,s
= Dd + Xp,s so ep,s = d + Xp,s

(l) (α) if d1 ∈ Σpr(d0) and d2 ∈ Σap(d0) then d1 +d0 d2 = d1 +s
d0

d2

is a well defined member of Ds and d3 ∈ Σpr(d2) ∩ Σap(d1)

(β) above

(γ) above if e ∈ Σ(d1) ∩ Σ1(d2) then e ∈ Σ(d).

Question 14.2. Maybe cf(κ) replaced by a linear order (which can have a pseudo
cofinality)?

We now give examples
{m8}

Definition/Claim 14.3. 1) Assume κ̄ = 〈κn : n < ω〉, J̄ = 〈Jn : n < ω〉, when
Jn is a κn-complete ideal on In, and κn < κn+1 (or just κn ≤ κn+1)? We define
s = sκ̄,J̄ and prove that s is a pre-system as follows (so µ = µs, etc.)

(a) µ = Σκn and κ is given

(b) D is the st of d : d = (η,A) = (ηd, Ad) and for some m = md ≤ n = nd < ω
we have
(α) Fd = {F̄ : F̄ = 〈Fm1,n1 : md < m1 ≤ n1 ≤ nd〉 = 〈Fd

m1,n1
: md ≤

m1 < n1 ≤ nd〉 and Fm1,1 :
n1
∏

ℓ=m1+1

Iη(ℓ) → Jη(m1)

(β) η = 〈n, n− 1, . . . ,m〉

(γ) Id =
n
∏

ℓ=m

Iℓ

(δ) Dd = {X ⊆ Id: there are Xℓ ∈ Jℓ for some F̄ ∈ Fd̄ for ℓ ∈ [m,n]
such that A ∩ X ⊇ {ρ ∈ Id : ρ(m1) /∈ Fm1,n1(ρ↾[m1, n1]) whenever
md ≤ m1 < n1 ≤ nd}}
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(ζ) ∅ /∈ Dd and nec Dd is κm-complete
(c) for d ∈ D

(α) let Σ(d) be the set of pairs (e, h) such that e ∈ D,me = md ≤ nd ≤
ne, F

e
m1,n1

= Fd
m1,n1

when nd ≤ m1 < n1 ≤ nd and h is h(ρ) =
ρ↾[md, nd]

(β) Σpr(d) = {(d, h) ∈ Σ(d) : F e
m1,n1

is constantly ∅ when nd < n1 (and
md ≤ m1 < n1 ≤ ne)

(γ) Σap(d) = {(e, h) ∈ Σ(d) : h = idId so ne = nd

(d) for d ∈ Ds and A ∈ D+
d let e = d + A ∈ D be defined naturally, it is

(ηd, Ad ∩ A, F̄ )

(e) part (d) is the set of p = ((Xp,s, ep,s) : s ∈ S〉 such that: for some so called
witness Ḡ = langleGm1,n1 : md ≤ m1 < n1 ≤ nd〉, Gm1,n1 : I[m1+1,n1] →
κm1 with bounded range letting S′ = {〈αm1,n1 : md ≤ m1 < n1 ≤ nd〉 :
αm1,n1 < κm1} and Aā = {ρ ∈ Id : Gm1,n1(ρ↾[m1 + 1, n1]) = αm1,n1

for m1 < n1 from [md, nd] we have Sp = {ā ∈ A′ : ∅ ∈ Dd + Aā} and
ēd̄,p,s = d + Aā

(question): should we allow |Rang(Gm1,n1)| be large, etc.?

(f) part(d) = {p ∈ par(d) : |Sp| < κmd
}

(question: should we have par(d) ⊆ {(e, d, p) : (e, h) ∈ Σ(d) and as
above}?

Discussion 14.4. (09.8.17) 1) Discuss (here?) to achieve our hope (dichotomy
using [Sh:835]). We would like for every η ∈ Dx = dec<ω(O) to define what are
η-objects which are a replacement for (Iη)Ord. Maybe we should repalce dec<ω(θ)
by closing O by ordered pairing,but first ignore this.

A natural try define when x ∈ obj(η) by induction on ℓg(η).
If ℓg(η) = 0 then x is just an ordinal.
If ℓg(η) = n + 1 then x consists of a non-empty set F ∈ (Iη(θ))Ord, a set

A ∈ D+
η(θ), AB = {t ∈ A : f(t) > 0} (or 〈Af : f ∈ F 〉, Ag ∈ D+

η(θ)?) and a fucntion

which gives for every f ∈ F and t ∈ Af and object xf,t ∈ obj(〈η(1 + ℓ) : ℓ < n〉).
We have to: (A) define rank, (B) using DC criterion for the rank being an ordinal,
(C) reprove [Sh:938] main Theorem.
2) (09.8.26) The example in [Sh:938, §0] can be pushed up: use λ + ℵω ordinal
addition, (λ, rkJ (λ) = λ for all relevant J ’s. Hence it seems there is no hope for
µ = ℵω but there may be for µ = iω. At least combine µ = iω, θ(P(λn)) <
µn+1, µ =

∑

n<ω
λn and IND(〈λn : n < ω〉) or try the proof of [Sh:460, §1].

{m10}
Claim/Definition 14.5. Like 14.3 but J̄ = 〈Jn : n ∈ O〉, FILL. Now ηd is a
decreasing sequence of length nd + 1, so Dd is κηd(nd)-complete and e ∈ Σ(d)
implies ηe(ne) = ηd(nd), Rang(ηd) ⊆ rang(ηe).

{m7}
Convention 14.6. We naturally let s = 〈κ̄s, µs,Ds, par(−,−), ℓpar(−,−)〉 and
Is,d, Ds,d, Ss,p, Xs,p,s, Ds,p,2.

{m12}
Definition 14.7. Given a frame s let tru(s) be the set of objects t consisting of:

(a) Tt a set of finite sequences closed under initial segments

(b) dt,ρ ∈ D for t ∈ T

(c) h̄t = 〈ht
ρ,̺ : ρ E ̺ ∈ Tt〉
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(d) for non-∆-maxiam ρ ∈ Tt, (d
+
t,ρ, h

+
t,ρ) ∈ Σpr(dt,ρ) and pρ ∈ par(d+

t,ρ) sat-

isfied sucTt
(ρ) = {ρˆ〈s〉 : S ∈ Spρ

} and dt,ρˆ<s> = edt,ρ
and hρ,rhoˆ<s> =

h+
t for ρ ⊳ ̺ ∈ Tt, ℓg(ρ) = m, ℓg(̺) = n then hρ,̺ : Idt,̺

→ Idt,ρ
is

ht, hρm+1 ◦ . . .◦ht,ρn
where ht,ρℓ+1

:= h+
t,ρℓ

and ρℓ = ̺↾ℓ for ℓ = m, . . . , n−1

(e) if ρ ⊳ ̺ ∈ Tt we have: hρ,̺ maps Ad̺
into Adρ

question: put this in Definition 14.1?
{m16}

Definition 14.8. Given a candidate s we try to define a rank; (we may omit the
subscript s as its value is fixed).

If d ∈ Ds and f ∈ I[d]Ord we define rktr
d (f) = rktr

d (f, s) ∈ Ord ∪ {∞}; or we
may replace “tr” by 1 or omit it; by defining by induction on the ordinal ζ when
rktr

d (f) ⊇ ζ: it holds iff for every ζ1 < λ there is a pair (t, ḡ) such that

(a) t ∈ tree(s) where Tt is well founded, i.e. with no ω-branch

(b) dt=<> = d

(c) ḡ = 〈gρ : ρ ∈ max(Tt)〉

(d) gρ : Id[dt,ρ] → Ord

(e) gρ < f ◦ ht,<>,ρ mod Ddt,ρ

(f) rktr
dt,ρ

(gρ) ≥ ζ1.

The choice in ?? though more transparent than the following relative, need more
use of choice.

{m18}

Definition 14.9. Like 15.9 - FILL - rk2
d(f), but maybe rk1 is enough.

Check.
{m21}

Claim 14.10. Let s be a candidate and k = 0, 1.
1) The rank rkkd(f) for f ∈ I[d]Ord is well defined (∈ Ord ∪ {∞}).

2) If (d2, h) ∈ Σpr(d1) and f1 ∈ I[d1]Ord then rkkd1
(f) = rkkd2

(f ◦ h).

3) If d ∈ Ds and f ∈ I[d]Ord and p ∈ ℓpar(d) then rkd(f) = min{rked,s
(f) : s ∈

Sp}.

Proof. 1) Easy.
2) Use + on D - FILL.
3) By induction - FILL. �

{m25}
Claim 14.11. For a free? s the following condition (a),(b) are equivalent: and if
s = sκ̄,J̄ from 14.3 we can add (c), and if s = sκ̄,J̄ is from 14.5 we can add clause

(c)+:

(a) rkd(f) = ∞ for some d ∈ Ds and f ∈ I[d]Ord

(b) there t ∈ tree(s) and Y ⊆ Tt such that (∀ρ ∈ limω(Tt))(∃
∞n)[ρ↾n ∈ Y )

and fρ ∈ I[dt,ρ]Ord for η ∈ Y such that for any ρ < ̺ from Y we have
f̺ < fρ ◦ ht

ρ,̺ mod Ddt,̺

(c) ¬IND(κ̄, J) when...?
{m26}

Definition 14.12. For (κ̄, J̄) as in 14.3 or 14.5 let IND(κ̄, J) mean that:

Case 1: Definition 14.3 for every Fm,n : I[m+1,n] → Jm for m < n < ω there is
η ∈

∏

ℓ<n

Iℓ such that m < n < ω ⇒ η(ℓ) /∈ Fm,n(η↾[m + 1, η]).
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Case 2: Definition 14.5
[copied] 1) Above p̄1

J̄
is not well 0-founded iff: there are ε̄, f̄ such that

⊛ε̄,f̄ (a) ε̄ = 〈εi : i < ω〉 is increasing

(b) f̄ = 〈fi,j : i < j < ω〉

(c) fi,j is a function from I〈εj ,εj−1,...,εi+1〉 into Jεi
(d) for every ᾱ ∈

∏

i<ω

κεi for some i < j we have αi ∈ f(αnj
, αnj−1 , . . . , αni+1).

Proof. FILL �

We quote [Sh:938]

Definition 14.13. Main Definition: We say that p = (D, rk,Σ, j, µ) = (Dp, rkp,Σp, jp, µp)
is a weak (rank) 1-system when:

(a) µ is singular

(b) each d ∈ D is (or just we can compute from it) a pair (I,D) = (Id, Dd) =
(I[d], Dd) = (Ip,d, Dp,d) such that:
(α) θ(Id) < µ, on θ(−) see ??

(β) Dd is a filter on Id
(c) for each d ∈ D, a definition of a function rkd(−) with domain I[d]Ord and

range ⊆ Ord, that is rkp,d(−) or rkp
d(−)

(d) (α) Σ is a function with domain D such that Σ(d) ⊆ D

(β) if d ∈ D and e ∈ Σ(d) then Ie = Id [natural to add Dd ⊆ De,

this is not demanded but see ??(2)]

(e) (α) j is a function from D onto cf(µ)

(β) let D≥i = {d ∈ D : j(d) ≥ i} and Di = D≥i\Di+1

(γ) e ∈ Σ(d) ⇒ j(e) ≥ j(d)

(f) for every σ < µ for some i < cf(µ), if d ∈ D≥i, then d is (p,≤ σ)-complete
where:
(∗) we say that d is (p,≤ X)-complete (or (≤ X)-complete for p) when: if

f ∈ I[d]Ord and ζ = rkd(f) and 〈Aj : j ∈ X〉 a partition7 of Id, then
for some e ∈ Σ(d) and j < σ we have Aj ∈ De and ζ = rke(f); so
this is not the same as “Dd is (≤ X)-complete”; we define (p, |X |+)-
complete, i.e. (p, < |X |+)-complete similarly

(g) no hole8: if rkd(f) > ζ then for some pair (e, g) we have: e ∈ Σ(d) and
g <D[e] f and rke(g) = ζ

(h) if f = g + 1 mod Dd then rkd(f) = rkd(g) + 1

(i) if f ≤ g mod Dd then rkd(f) ≤ rkd(g).
{m30}

Definition 14.14. We say p is a quasi rank ι-system when p = (D, rk,Σ, j, µ) =
(Dp, rkp,Σp, jp, µp) satisfies Definition m4.3 of §3 of [Sh:938] if ι = 1, Definition
m4.4 of §3 of [Sh:938] if ι = 2 except that the rank may be ∞; we write rkd(f,d)
for d ∈ DP and f ∈ I[d]Ord.

7as long as σ is a well ordered set it does not matter whether we use a partition or just a
covering, i.e. ∪{Aj : j ∈ σ} = Id

8we may use another function Σ here, as in natural examples here we use Σ(d) = {d} and not
so in clause (f)
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{m32}
Definition/Claim 14.15. For a frame s let p be the following quasi rank system:

• µ,D,Σ, j are as in Definition 14.1

• rkd(f) is as in Definition ?
{m34}

Claim 14.16. 1) If (κ̄, J̄) is as in Definition 14.3 or 14.5 and IND(κ̄, J) holds, see
Definition 14.12 then ps(κ̄,J) is a rak system.
2) Moreover it is a strict one.

Saharon copied. 1) As in the proof of e5.g of §4 of [Sh:938, §4,e5.g] or better see
the proof of 15.17 except that we use 15.9 instead of 15.8 which simplify clause (f),
but is cumbersome in other places.
2) We check Definition m4.3 of §3 of [Sh:938, §3,m4.3].

Clause (a): µ is singular.

As µ =
∑

n κn and κn < κn+1 this is obvious.

Clause (b): Let d ∈ D, η = ηd, J = Jn now clause (α) says θ(Iη) = θ(|Iη|) =

κη(0), κη(0)+1 < µ so as for clause (β), “Dp is a filter on Iη”, it holds by the choice
of p.

Clause (c): rkp
d(f) = rkd(f,p) is an ordinal as defined in 15.9.

Clause (d):

Clearly Σ(d) is of the right form.

Clause (e):

On j - see 15.13(2)(c).

Clause (f):

We prove by induction on the ordinal ζ that:

(∗) if d ∈ D and j(d) > ε and A = ∪{Aα : α < κε} ∈ Dd and f ∈ I[d]Ord and
Aα ∈ D+

d ⇒ rkd+Aα
(f) ≥ α then rkd(f) ≥ α.

Now Definition 15.9 is tailored made for this.

Older version using 15.8 recheck:

For α = 0 and α a limit ordinal this is obvious. For α = β + 1 let Y = {α <
κε : Aα ∈ D+

d } and for α ∈ Y let nα = min{n: there is (e, h) ∈ Σ(d + Aα) such
that rke(f ◦ h) ≥ β and ηe(0) = n}. Clearly nα is well defined for α ∈ Y , and let
w := {n : ∪{Aα : α ∈ Y and nα = n} ∈ D+

d } and also the rest should be clear.

Clause (g): (no-hole)
By the Definition 15.8 or 15.8 of rk. Saharon 09.5.31 recheck.

Clause (h): rkd(f + 1) = rkd(f) + 1.

We prove by induction on the ordinal α that:

(∗) for every d ∈ D and f ∈ I[d]Ord we have rkd(f) ≥ α ⇔ rkd(f +1) ≥ α+1.

Clause (i): Obvious. �
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{m37}
Question 14.17. (09.7.19) Assume little choice and µ∗ = min{µ : IND(µ)}. So
up to µ we can apply [Sh:835]. Now above it seemed that if α < µ ⇒ ACα and
µ is a limit cardinal, we can find bound above to rkd hence to rkJ(−) for J quite
complete ideal.
1) Assume cf(µ∗) = ℵ0, we try to apply the above replacing AC<µ∗

by DC +(∀α <
µ∗)(¬IND(µ)). So the problem is, on the one hand, about [Sh:938, §3] with weaker
form of choice (as in [Sh:835]) and on the other hand the right use of IND(µ∗) here.
2) What above µ is a successor?
3) Even with choice, the bound on rank does not give a bound on pp or tcf(µκn , <D)
well above θ(P(κn)) it gives with choice/without much choice - as can be done in
§1.

Claim 14.18. 1) If 〈fα : α < δ〉 is <D-increasing in (Π, ᾱ, <D) then rkD(α) ≥ δ.
2) If 〈fα : α < µ〉 are 6=D-distinct in (Πᾱ, <D) and µ > θ(P(ℓg(ᾱ)) then we can
use [Sh:E38] which continues [Sh:497].
3) As in (1) devise µ to ≤ P(κn) on each for some D2 ⊇ D the sequence is
increasing.

{m37}
Theorem 14.19. 1) If IND(〈κn : n < ω〉 then [?] - FILL.
2) For ℵω - [FILL].

The following information is not presently
{m40}

Claim 14.20. 1) Assume (κ̄, J̄) is as in 14.3 and n < ω ⇒ |P(In)| < κn+1. Then
for s = sκ̄,J̄ , for every d ∈ Ds we can find Aℓ ∈ J+

ℓ for ℓ ∈ Rang(ηd) such that
n(d)
∏

ℓ∈md

Aℓ ∈ D+
d and Dd + ΠAℓ = De for some e such that Ie = Id, Ae =

∏

ℓ

Aℓ.

2) Moreover, for every p ∈ par(d) there is a refinement q such that each eq,s(s ∈
Sq) is of the form in (1).
3) In part (1) if Jn = Jbd

λn
where λn = cf(λn) in[κn, κn+1) then in fact Dd + ΠAℓ

is isomorphic to De where ηe = ηd, Aℓ = Id = Ie.

Proof. FILL. �

§ 15. Connection to IND

§(2A) Getting quasi-rank system with AC<µ

{f6.2}
Remark 15.1. 1) Below we can concentrate on the case ℓg(J̄) = ω, 〈κn : n < ω〉
increasing, even 2κn < κn+1 and κn = cf(κn).
2) We like to use less choice say only DC not AC<µ, µ =

∑

n
κn. This is not achieved

for q1
J̄
,q3

J̄
, so it seems. So we may like to change [Sh:938, §3]. Consider k = 2, 4 in

15.13(2) to use.
3) (09.7.18) We may hope that if Jn = [κn]≤σ we need only, e.g. DC + ACP(σ).

But then we do not look at Jn+1 +A, |A| = κn+1. So maybe have 〈J1
n, J

2
n : n < ω〉,

see 15.14 or maybe have Jm,n an ideal on κn, Jm,n = [κn]≤κm , see 15.19.
4) (09.7.18) Try INDκ(µ) or so (τ(A)| = κ, |A| = µ, no ω-end-independent se-
quence or IND〈µi, Ii : i < κ〉 looking for in < in+1 < ldotsαm ∈ µm, αm /∈
F (αn+1, . . . , αm) ∈ Iαm

. Can we connect by Fodor?
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5) (09.7.18) To define the ranks for p we better revise the pre-rank-system as follows.
For every d we have Σpr(d) = Σpr

p (d), the pure successors and Σap(d) = Σap
p (d)

the apure ones and we have interpolation. In the conclusion we try.

In clause (f), p-completeness, we shall try to get e ∈ Σpr(d).

In clause (i), also if (e, h) ∈ Σpr(d), f ∈ IdOrd, g = f ◦ h ∈ IeOrd then rkd(f) =

rke(g).
In the definition of rkp, ??, (e, h) ∈ Σpr(d), we may instead of rkp,ζ(−,−) ask

for a tree of pure extensions, but well founded tree.
5A) The natural case is J̄ = 〈Jn : n < ω〉,D = {η : η is 〈n, n − 1, . . . ,m〉},Σpr(d)
is as there but ηe = ̺ˆηd but on I̺(f) we use the original J . This fine to see that
it fits. If O or κ larger, we allow “side extension of η” but min Rang(η) remains.
6) (09.7.18) But later we have preservation of ranks when we use isomorphic p or p
restricted to “d and above”. So if Jn = Jbd

κn
, κn regular, Jbd

κn
, Jbd

κn
+A are the same.

6A) Maybe legal partitions of
∏

ℓ

Iη,ℓ is when Iη(ℓ) is divided to < κη(ℓ).

{f6.3}
Definition 15.2. 1) Let J̄ be called a candidate or δ-candidate when:

(a) J̄ = 〈Jε : ε < δ〉, δ a limit ordinal

(b) Jε is an ideal on κε

(c) δ < κ0 and κε is non-decreasing.

2) We say that J̄ is a generalized candidate when for some O:

(a) O is a linear order with no last element

(b) J = 〈Jε : ε ∈ O〉

(c) Jε is a ℵ1-complete ideal on Iε := Dom(Jε) = ∪{u : u ∈ Jε}.

In some sense the simplest example is
{f6.3d}

Example 15.3. Let 〈κn : n < ω〉 be an increasing sequence of ordinals, Jn :=
[κn]≤ℵ0 .

{f6.4}
Discussion 15.4. (08.6.27) 1) We shall try to define a rank (from a p.r.s. or
p.r.s.∗) such that clause (j) of m4.6 of §3 of [Sh:938] follows. It seems that a
necessary condition for the rank to be < ∞ we need IND(p).
2) Naturally we can define p from J̄ and a reasonable condition is IND(J̄) at least
when ℓg(J̄) = ω.
3) We can below use generalized candidates.

{f6.5}
Definition 15.5. 1) We say p = (D,Σ, j) be a ι-p.r.s. (pre-rank-ι-system with
ι = 1, 2; if ι = 2 we may omit it) when in Definition m4.3 or m4.4 of §3 of [Sh:938,
§3,m4.4] it satisfies clauses (a),(b),(d),(e) and we add in (d):

(∗) Σ is transitive: if (h1,d1) ∈ Σ(d0) and (h2,d2) ∈ Σ(d1) then (h2 ◦h1,d2) ∈
Σ(d0)

[check where used].

2) We say p is a quasi rank ι-system when p = (D, rk,Σ, j, µ) = (Dp, rkp,Σp, jp, µp)
satisfies Definition m4.3 of §3 of [Sh:938] if ι = 1, Definition m4.4 of §3 of [Sh:938]
if ι = 2 except that the rank may be ∞; we write rkd(f,d) for d ∈ DP and
f ∈ I[d]Ord.
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2A) Alternatively: rkp is defined as in 15.8 below [or 15.9].
{f6.6}

Convention 15.6. 1) p is a 2-p.r.s.
2) We usually omit the p when clear from the context, similarly for rkd(f,p) defined
below.

{f6.6.3}

Remark 15.7. 1) We shall try to define rk. We shall try to prove mainly (f) [the
version with (e, h) ∈ Σ(d)].

{f6.7}
Definition 15.8. For p a p.r.s., d ∈ D and f ∈ I[d]Ord we define rkd(f,p) =

rk0
d(f,p) by defining when rkd(f,p) ≥ α for an ordinal α by induction on α for all

pairs (d, f); so rk0
d(f,p) = α when it is ≥ α but not ≥ α + 1, and is ∞ otherwise;

by monotonicity well defined.

α = 0: always.

α limit: when rk0
d(f,p) ≥ β for every β < α.

α = β + 1: when for some (h, e) ∈ Σp(d) and g ∈ I[e]Ord we have g <De
f ◦ h and

rk0
e(g,p) ≥ β.

{f6.8}
Definition 15.9. [Saharon 09.06.01: check that this definition satisfies additivity
and rk(f + 1) = rk(f) + 1.

We define rk1
d(f,p) and dp1

d,ζ(f,p) from Ord ∪{∞} for d ∈ Dp, f ∈ I[d]Ord by
defining by induction on the ordinal ζ:

(a) when rk1
d(f,p) ≥ ζ and

(b) when dp1
d,ζ(f,p) ≥ ξ for any ordinal ξ.

Arriving to ζ we let:

• rk1
d(f,p) ≥ ζ iff for every ζ1 < ζ and ξ < ∞ there is (h, e) ∈ Σ(d) such

that rk1
e(f ◦ h,p) ≥ ζ1 and dp1

e,ζ1
(f ◦ h,p) ≥ ξ

• we define by induction on ξ < ∞ when dp1
d,ζ(f,p) ≥ ξ; it holds if rk1

d(f,p) ≥
ζ and for every ξ1 < ξ and partition 〈Aε : ε < ε∗〉 of Id with ε∗ < κj(d) parts,

there is (h, e) ∈ Σ(d) such that rk1
e(f ◦ h,p) ≥ ζ and dp1

e,ζ(f ◦ h,p) ≥ ξ1
and Ie = Id (Saharon 09.06.01: or use Σ1.)

Remark 15.10. 1) In a variant we demand: and Ie = Id ∧ h = idI[d].
2) By 15.9 we may derive a quasi rank system from a p.r.s., but we deal with the
special case which seems most interesting.

{f6.8d}
Claim 15.11. 1) The rank in Definition 15.8, 15.9 are well defined.
2) rk0

d(f,p) ≤ rk1
d(f,p).

{f6.8g}
Discussion 15.12. (09.06.01) 1) We would like to use ACU for constant U or at
most U depend on 0. By the amount of completeness we need (approaching µ), if
we use rk1

d(−, f1
J̄

) is it O.K.? Does it?
{f6.9}

Definition 15.13. 1) For ℓ = 1, 2 and p a p.r.s. we say p is well ℓ-founded when
rkℓ

d(f,p) < ∞ for every d ∈ D and f ∈ I[d]Ord.
2) Similarly for p a quasi rank system (so now rkd(f,p) is not as defined in Defi-
nition 15.9, but is from Definition 15.5(2)).

{f6.10}
Definition 15.14. For a candidate J̄ = 〈Jε : ε ∈ δ〉, Jε an ideal on κε we define
p = pJ̄ as follows:
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(a) Dp is the set of d = (I,D) = (Id, Dd) such that for some η = ηd we have:
(α) η a non-empty decreasing sequence of ordinals < δ
(β) I =

∏

ℓ<ℓg(η)

κη(ℓ)

(γ) D = Dη + Ad for some (κ̄, η)-large subset of Iη which means
(δ) A ⊆ Iη is (κ̄, η)-large when A =

∏

ℓ<n

Yℓ for some Yℓ ∈ [κη(ℓ)]
κη(ℓ) for

ℓ < n and
(ε) let ud = Rang(ηd), Dud

= Dη

(ζ) D = {Y ⊆
∏

ℓ<n

κη(ℓ) : there is a sequence 〈Yℓ : ℓ ≤ ℓg(η)〉

such that Yn = Y, Y0 = {<>} and ℓ ≤ ℓg(η) ⇒ Yℓ ⊆
∏

m<ℓ

κη(m)

and ℓ < ℓg(η) ∧ ρ ∈ Yℓ ⇒ {α < κη(ℓ) : ρˆ〈α〉 /∈ Yℓ+1} ∈ Jη(ℓ)}
(b) Σ(d) = {(h, e): for some ̺ we have ηe = ̺ˆηd ∈ D and h : Iν → Iη is

defined by h(ρ) = 〈ρ(ℓg(̺) + ℓ) : ℓ < ℓg(η)〉 and h induces a mapping from
De into Dd}

(c) j(η) = η(ℓg(η) − 1)

(d) µ = ∪{κε : ε < δ}.
{f6.11}

Definition 15.15. 1) Similarly to 15.14 for a generalized candidate J̄ = 〈Jε : ε ∈
O〉.
2) For a candidate J̄ = 〈Jn : n < ω〉 we define p2

J̄
= (D, rk,Σ, j, µ) as in 15.14 but:

(a)′ D = {d : d as in clause (a) of Definition 15.14 but ηd = 〈n, n − 1, . . . ,m〉
where m ≤ n}

(e)′ rk is as defined in Definition 15.8.

3) We define pℓ+2
J̄

as in part (1) or by ?? but replace clause (a)(δ) of ?? or part
(1) by:

(δ)′ Dη = {Y ⊆
∏

ℓ<n

κη(ℓ): for some Yℓ ∈ Jℓ for ℓ < n we have
∏

ℓ<n

κη(ℓ)\{ρ ∈
∏

ℓ<n

κη(ℓ) : (∃ℓ < n)[ρ(ℓ) ∈ Yℓ]}.

4) For ℓ = 0, 1 let qk,ℓ

J̄
be the qk

J expanded by rkℓ
d(f,pk

J̄
). If ℓ = 1 we may omit it.

{f6.12}
Claim 15.16. 1) Above p̄1

J̄
is not well 0-founded iff: there are ε̄, f̄ such that

⊛ε̄,f̄ (a) ε̄ = 〈εi : i < ω〉 is increasing

(b) f̄ = 〈fi,j : i < j < ω〉

(c) fi,j is a function from I〈εj ,εj−1,...,εi+1〉 into Jεi
(d) for every ᾱ ∈

∏

i<ω

κεi for some i < j we have αi ∈ f(αnj
, αnj−1 , . . . , αni+1).

2) Similarly for p2
J (i.e. δ = ω we can above demand εi = i, so it is equivalent to

¬IND〈Jn : n < ω〉.

Proof. 1) As in [Sh:513].
2) Easy as we can add to a function dummy variables. �15.16

Task: 1) Prove p2
J̄

satisfies clause (f) for rk = rk1
p defined as in 15.8.

2) Check the rk(f + 1) = rk(f) + 1, but see below.
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{f6.17}
Claim 15.17. 1) If J̄ = 〈Jε : ε ∈ O〉 is a generalized candidate and k = 1, 3 then
pk
J̄
is a p.r.s. provided that “Jε is θ(O)-complete”(?)

2) If J̄ = 〈Jn : n < ω〉 is a candidate and k = 2, 4 then pk
J̄
is a p.r.s.

3) In part (1), qk
J̄
is a quasi rank system.

4) Assume J̄ = 〈Jn : n < ω〉, Jn an ideal on κn, κ
+
n < κn+1, µ = Σκn. Then qk

J̄
is

a quasi rank system.

Proof. 1) As in the proof of e5.g of §4 of [Sh:938, §4,e5.g] or better see the proof
of 15.17(?) except that we use 15.9 instead of 15.8 which simplify clause (f), but is
cumbersome in other places.
2) We check Definition m4.3 of §3 of [Sh:938, §3,m4.3].

Clause (a): µ is singular.

As µ =
∑

n κn and κn < κn+1 this is obvious.

Clause (b): Let d ∈ D, η = ηd, J = Jn now clause (α) says θ(Iη) = θ(|Iη|) =

κη(0), κη(0)+1 < µ so as for clause (β), “Dp is a filter on Iη”, it holds by the choice
of p.

Clause (c): rkp
d(f) = rkd(f,p) is an ordinal as defined in 15.9.

Clause (d):

Clearly Σ(d) is of the right form.

Clause (e):

On j - see 15.13(2)(c).

Clause (f):

We prove by induction on the ordinal ζ that:

(∗) if d ∈ D and j(d) > ε and A = ∪{Aα : α < κε} ∈ Dd and f ∈ I[d]Ord and
Aα ∈ D+

d ⇒ rkd+Aα
(f) ≥ α then rkd(f) ≥ α.

Now Definition 15.9 is tailored made for this.

Older version using 15.8 recheck:
For α = 0 and α a limit ordinal this is obvious. For α = β + 1 let Y = {α <

κε : Aα ∈ D+
d } and for α ∈ Y let nα = min{n: there is (e, h) ∈ Σ(d + Aα) such

that rke(f ◦ h) ≥ β and ηe(0) = n}. Clearly nα is well defined for α ∈ Y , and let
w := {n : ∪{Aα : α ∈ Y and nα = n} ∈ D+

d } and also the rest should be clear.

Clause (g): (no-hole)
By the Definition 15.8 or 15.8 of rk. Saharon 09.5.31 recheck.

Clause (h): rkd(f + 1) = rkd(f) + 1.
We prove by induction on the ordinal α that:

(∗) for every d ∈ D and f ∈ I[d]Ord we have rkd(f) ≥ α ⇔ rkd(f +1) ≥ α+1.

Clause (i): Obvious. �15.17
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{f6.19}
Claim 15.18. Assume J̄ = 〈Jn : n < ω〉 is a candidate and IND(J̄).

Then p2
J̄
is a strict rank system.

Proof. By 15.17 and the definition, it is a weak rank system. So we should prove
the “strict”, i.e. clause (j) of Definition m4.6 of §3 of [Sh:938] which we do by m4.16
of §3 of [Sh:938]. We use Σ1(d) = Σ(d).

On (∗)2:

Given d we choose j < ω such that j > ηd(0) and assume e ∈ D≥j . �

§(2B) Revisiting

The simplest case below is: x consist In = κn, κn < κn+1, J1,n = [κn]<θ, J2,n =
[κn]<κn , ind(µ, θ), µ = Σκn, µ minimal (or µ = ∞) indx :∈ Ord∗ ∪ {∞}.

For µ there are algebras on γ with no independent ω-sequence hence [Sh:835]
and see §5 apply. But if using x we have a rank 2-system for which Theorem m4.13
of §3 of [?] apply (check!)

We may consider the pseudo version (using compγ(J). We have to sort out the
amount of choice needed -seemingly.

{k2}
Definition 15.19. We say that x is a ω-candidate when it consists of

(a) set In for n < ω (κ a cardinal and θ(< κ) = κ

(b) ideal Jn,k on In for k < ω, n < ω

(c) Jn,k ⊆ Jn,k+1

(d) κn.
{k5}

Definition 15.20. For a 2-candidate x we define by induction on i < ω what is
an x-object c = d of depth i, such that

(∗)ι for some nd < md < ω, ι is an ⊆-increasing sequence 〈Jι,k : k < ω〉 of ideals
on Imd,nd

= Π{Ik : k ∈ [m,n)}.

The case i = 0:
nd = md + 1 and let hd be the one-to-one function from Imd

onto Imι,nι
and

Jι,k ∈ ĥι(Imι,k + Ak) where Ak ∈ J+
md

and Ak ⊇ Ak+1 for k < ω.

The case i + 1:
For some k, ι(1), ι(2) we have

(a) k ∈ (md, nd)

(b) ι(ℓ) is an iℓ-pair for some iℓ ≤ i for ℓ = 1, 2

(c) md(1) = mι, nd(1) = k

(d) md(2) = k, nd(1) = k

(e) md(2) = k, nd(2) = nι

(f) there are 〈A1,k, A2,k : k < ω〉 such that
(α) Aℓ,k ∈ Jι(ℓ),k+1

(β) B ∈ Jd,k iff B ⊆ Imd,nd
and for some B1 ∈ Iι(1),k we have η ∈ A2,k ⊆

Ind(2),nd(2)
⇒ {ν ∈ Imd(2),nd(2)

: η ∪ ν ∈ B} ∈ ?
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Remark 15.21. 1) Definition 15.20? seemingly does not behave transitively.
2) We may allow nd = md.

{k7}
Definition 15.22. For x an ω-candidate, we define a p.c.s. p = p0

x as follows:

(a) Dp = {d : d is an x-object}

(b) Σ(dι) = {d: for some d2 the triple (d,di1 ,di2) is as in Definition 15.20

(c) j(d) is md

(d) µ = ∪{κn : n < ω}.
{k9}

Claim 15.23. If x is an ω-candidate then p0x is a quasi rank sytem.

Proof. FILL. �
{k11}

Definition 15.24. 1) For an ω-candidate x we say it is well founded when the
p.r.s. p0

x is well founded, e.g. px is a weak rank system.
2) For a well founded.

{k13}
Claim 15.25. If x is a well founded ω-candidate then px is a strict rank system.

Proof. Stage A: We have to check clause (1) from Definition m4.6 of §3 of [Sh:938].
So assume d, ζ, ξ, f are as in ⊞ there. Choose j < ω such that j > nd and

toward contradiction assume e, g are as in ⊕ there.

Stage B: We find (e1, g1) satisfying ⊕ of clause (j) of m4.6 of §3 of [Sh:938] and
me1 = nd; note if we define as in [?](2) rather than as in 15.13(3), we would not
need this step, but then we may have to reconsider the proof of (f) of Definition
m4.3 of §3 of [Sh:938].

Stage C: We use ACI[e] we continue as in 15.18 and in §4. But see footnote to •3
in ⊕ in clause (j) of m4.6 of §3 of [?]. �15.25

§ 16. Appendix: psuedo true cofinality

We repeat here [Sh:938, §5].
Pseudo PCF

We try to develop pcf theory with little choice. We deal only with ℵ1-complete
filters, and replace cofinality and other basic notions by pseudo ones, see below.
This is quite reasonable as with choice there is no difference.

This section main result are ??, existence of filters with pseudo-true-cofinality;

16.19, giving a parallel of J<λ[α]; and 1.6, on generators of J
[ᾱ]
<λ+ .

In the main case we may (in addition to ZF) assume DC + ACP(P(Y )); this will
be continued in [Sh:938].

{r1}
Hypothesis 16.1. ZF

{r2}
Definition 16.2. 1) We say that a partial order P is (< κ)-directed when every
subset A of P of power < κ has a common upper bound.
1A) Similarly P is (≤ S)-directed.
2) We say that a partial order P is pseudo (< κ)-directed when it is (< κ)-directed
and moreover every subset ∪{Pα : α < δ} has a common upper bound when:

(a) if δ < κ is a limit ordinal

(b) P̄ = 〈Pα : α < δ〉 is a sequence of non-empty subsets of P
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(c) if α1 < α2, p1 ∈ Pα1 and p2 ∈ Pα2 then p1 <P p2.

2A) For a partial order S we say that the partial order P is pseudo (≤ S)-directed
when ∪{Ps : s ∈ S} has a common upper bound whenever

(a) 〈Ps : s ∈ S〉 is a sequence

(b) Ps ⊆ P

(c) if s <S t and f ∈ Ps, g ∈ Pt then f <p g

(d) if s ∈ S then Ps has a common upper bound (so if S has no minimal
member this is redundant).

{r3}
Definition 16.3. We say that a partial (or quasi) order P has pseudo true cofinality
δ when: δ is a limit ordinal and there is a sequence 〈Pα : α < δ〉 such that

(a) Pα ⊆ P and δ = sup{α < δ : Pα non-empty}

(b) if α1 < α2 < δ, p1 ∈ Pα1 , p2 ∈ Pα2 then p1 <P p2

(c) if p ∈ P then for some α < δ and q ∈ Pα we have p ≤P q.
{r4}

Remark 16.4. 0) See 16.2(2) and 16.8(1).
1) We could replace δ by a partial order Q.
2) The most interesting case is in Definition 16.6.
3) We may in Definition 16.3 demand δ is a regular cardinal.
4) Usually in clause (a) without loss of generality

∧

α
Pα 6= ∅, as without loss of

generality δ = cf(δ) using P ′
α = Pf(α) where f(α) = the α-th member of {β < δ :

Pβ 6= ∅}. Why do we allow Pα = ∅? as it is more natural in 16.17(1), but can
usually ignore it.

{r5}
Example 16.5. Suppose we have a limit ordinal δ and a sequence 〈Aα : α < δ〉
of sets with

∏

α<δ

Aα = ∅; moreover u ⊆ δ = sup(u) ⇒
∏

α∈u
Aα = ∅. Define a partial

order P by:

(a) its set of elements is {(α, a) : a ∈ Aα and α < δ}

(b) the order is (α1, a1) <P (α2, a2) iff α1 < α2 (and aℓ ∈ Aαℓ
for ℓ = 1, 2).

It seems very reasonable to say that P has true cofinality but there is no increasing
cofinal sequence.

{r6}
Definition 16.6. 1) For a set Y and sequence ᾱ = 〈αt : t ∈ Y 〉 of ordinals and
cardinal κ we define

ps-tcf-filκ(ᾱ) = {D : D a κ-complete filter on Y such that (Πᾱ/D)
has a pseudo true cofinality};

see below.
2) We say that Πᾱ/D or (Πᾱ,D) or (Πᾱ, <D) has pseudo true cofinality γ when D
is a filter on Y = Dom(ᾱ) and γ is a limit ordinal and the partial order (Πᾱ, <D)
essentially does9, i.e., there is a sequence F̄ = 〈Fβ : β < γ〉 satisfying:

9so necessarily {s ∈ Y : αs > 0} belongs to D but is not necessarily empty; if it is non-empty
then Πᾱ = ∅, so pedantically this is wrong, but we shall ignore this or assume

∧

t

αt 6= 0 when not

said otherwise.
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⊛F̄ (a) Fβ ⊆ {f ∈ Y Ord : f <D ᾱ}

(b) Fβ 6= 0

(c) if β1 < β2, f1 ∈ Fβ1 and f2 ∈ Fβ2 then f1 < f2 mod D

(d) if f ∈ Y Ord and f < ᾱ mod D then for some β < γ we have g ∈ Fβ ⇒
f < g mod D (by clause (c) this is equivalent to: for some β < γ
and some g ∈ Fβ we have f ≤ g mod D).

3) ps-pcfκ(ᾱ) = ps-pcfκ-comp(ᾱ) := {γ: there is a κ-complete filter D on Y such
that Πᾱ/D has pseudo true cofinality γ and γ is minimal for D}.
4) pcf-filκ,γ(ᾱ) = {D : D a κ-complete filter on Y such that Πᾱ/D has true cofi-
nality γ}.
5) In part (2) if γ is minimal we call it ps-tcf(Πᾱ,D) or simply ps-tcf(Πᾱ, <D);
note that it is a well defined (regular cardinal).

{r7}
Claim 16.7. 1) If λ = ps-tcf(Πᾱ, <D), then (Πᾱ, <D) is pseudo (< λ)-directed.
1A) If θ(S) < λ = ps-tcf(Πᾱ, <D) then (Πᾱ, <D) is pseudo (≤ S)-directed.
2) Similarly for any quasi order.
3) Assume ACα for α < λ. If cf(αt) ≥ λ = cf(λ) for t ∈ Y then (Πᾱ, <D) is
λ-directed.
4) Assume ACY×λ. If cf(αs) > λ for s ∈ Y then (Πᾱ, <D) is pseudo λ+-directed.

Proof. As in 16.8(1) below. �16.7
{r8}

Claim 16.8. Let ᾱ = 〈αs : s ∈ Y 〉 and D is a filter on Y .
0) If Πᾱ/D has pseudo true cofinality then ps-tcf(Πᾱ, <D) is a regular cardinal;
similarly for any partial order.
1) If Πᾱ/D has pseudo true cofinality γ1 and true cofinality γ2 then cf(γ1) =
cf(γ2) = ps-tcf(Πᾱ, <D), similarly for any partial order.
2) ps-pcfκ(ᾱ) is a set of regular cardinals so if Πᾱ/D has pseudo true cofinality
then ps-tcf(Πᾱ, <D) is γ where γ = cf(γ) and Πᾱ/D has pseudo cofinality γ.
3) Always ps-pcfκ(ᾱ) has cardinality < θ({D : D a κ-complete filter on Y }).
4) If β̄ = 〈βs : s ∈ Y 〉 ∈ Y Ord and {s : βs = αs} ∈ D then ps-tcf(Πᾱ/D) =
ps-tcf(Πβ̄/D) so one is well defined iff the other is.

Proof. 0) By the definitions.
1) Let 〈F ℓ

β : β < γℓ〉 exemplify “Πᾱ/D has pseudo true cofinality γℓ” for ℓ = 1, 2.
Now

(∗) if ℓ ∈ {1, 2} and βℓ < γℓ then for some β3−ℓ < γ3−ℓ we have g1 ∈ F ℓ
βℓ
∧g2 ∈

F
3−ℓ
βℓ−1

⇒ g1 <D g2.

[Why? Choose gℓ ∈ F ℓ
βℓ+1, choose β3−ℓ < γ3−1 and g3−ℓ ∈ F

3−ℓ
β3−ℓ

such that

gℓ < g3−ℓ mod D.]

Hence

(∗) h1 : γ1 → γ2 is well defined when
h1(β1) = Min{β2 < γ2 : (∀g1 ∈ F 1

β1
)(∀g2 ∈ F 2

β2
)(g1 < g2 mod D)}.

Clearly h is non-decreasing and it is not eventually constant (as ∪{F 1
β : β < γ1} is

cofinal in Πᾱ/D) and has range unbounded in γ2 (similarly).
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The rest should be clear.
2) Follows.
3),4) Easy. �16.8

Concerning [Sh:835]
{r9.yajan}

Claim 16.9. The Existence of true cofinality filter [κ > ℵ0 + DC + AC<κ] If

(a) D is a κ-complete filter on Y

(b) ᾱ ∈ Y Ord

(c) δ := rkD(ᾱ) satisfies cf(δ) ≥ θ(Fil1κ(Y )), see below.

Then for some D′ we have

(α) D′ is a κ-complete filter on Y

(β) D′ ⊇ D

(γ) Πᾱ/D′ has pseudo true cofinality, in fact, ps-tcf(Πᾱ, <D) = cf(rkD(ᾱ)).

Recall from [Sh:835]
{r9a}

Definition 16.10. 0) Fil1κ(Y ) = {D : D a κ-complete filter on Y } and if D ∈
Fil1κ(Y ) then Fil1κ(D) = {D′ ∈ Fil1κ(Y ) : D ⊆ D′}.

1) Fil4κ(Y ) = {(D1, D2) : D1 ⊆ D2 are κ-complete filters on Y }.
2) J [f,D] where D is a filter on Y and f ∈ Y Ord is {A ⊆ Y : A = ∅ mod D or
rkD+A(f) > rkD(f)}.

{r9b}
Remark 16.11. 1) On the Definition of pseudo (< κ, 1 +γ)-complete D see [Sh:938,
1.13=0z.51]; we may consider changing the definition of Fil1κ(Y ) to D is ℵ1-complete
and pseudo(< κ, 1 + γ))-complete filter on Y .
2) Related to [Sh:835].

Proof. Proof of the Claim of ??
Recall {y ∈ Y : αy = 0} = ∅ mod D as rkD(〈αy : y ∈ Y 〉) = δ > 0 but

f1, f2 ∈ Y Ord ∧ (f1 = f2 mod D) ⇒ rkD(f1) = rkD(f2) hence without loss of
generality y ∈ Y ⇒ αy > 0.

Let D = {D′ : D′ is a filter on Y extending D which is κ-complete}. So θ(D) ≤
θ(Fil1ℵ1

(Y )) ≤ cf(δ). For any γ < rkD(ᾱ) and D′ ∈ D let

(∗)2 (a) Fγ,D′ = {f ∈ Πᾱ : rkD(f) = γ and D′ is dual(J [f,D])}

(b) FD′ = ∪{Fγ,D′ : γ < rkD(ᾱ)}

(c) Ξᾱ,D′ = {γ < rkD(ᾱ) : Fγ,D′ 6= ∅}

(d) Fγ = ∪{Fγ,D′′ : D′′ ∈ D}.

Now

(∗)3 if γ < rkD(ᾱ) then Fγ 6= ∅.

[Why? By [Sh:938, 1.8(2)=z0.23(2)] there is g ∈ Y Ord such that g < f mod D and
rkD(g) = γ and without loss of generality g ∈ Πᾱ. Now let D′ = dual(J [g,D]),

so (D,D′) ∈ Fil4κ(Y ), D′ ∈ D and g ∈ Fγ,D′ , see [Sh:938, 1.7(2)=z0.23(2)], Claim
[Sh:835, 0.10(2)], here we use AC<κ.]

(∗)4 {sup(Ξᾱ,D′) : D′ ∈ D and Ξᾱ,D′ is bounded in rkD(ᾱ)} is a subset of rkD′(γ̄)

which has cardinality < θ(D) ≤ θ(Fil1κ(Y )) ≤ cf(δ).
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[Why? The function D′ 7→ sup(Ξᾱ,D′) witness this.]

(∗)5 the set in (∗)4 is bounded below rkD(ᾱ) so let γ(∗) < rkD(ᾱ) be its supre-
mum.

[Why? By (∗)4.]

(∗)6 there is D′ ∈ D such that Ξᾱ,D′ is unbounded in (Πᾱ, <D′).

[Why? Choose γ < rkD(ᾱ) such that: γ > γ(∗). By (∗)3 there for some f ∈ Fγ(∗)

and D′ ∈ D we have f ∈ Fγ(∗),D′ so by the choice of γ(∗) the set Ξᾱ,D′ cannot be
bounded in rkD(ᾱ).]

(∗)7 if γ1 < γ2 are from Ξᾱ,D′ and f1 ∈ Fγ1,D′ , f2 ∈ Fγ2,D′ then f1 <D′ f2.

[Why? By [Sh:938, 1.7=z0.23], [Sh:835, 0.10(2)].]
Together we are done: by (∗)6 there is D′ ∈ D such that Ξᾱ,D′ is unbounded

in rkD(ᾱ). Let F̄ = 〈Fγ,D′ : γ ∈ Ξᾱ,D′〉 witness that (Πᾱ, <D′) has pseudo
true cofinality, and so ps-tcf(Πᾱ, <D) = cf(otp(Ξᾱ,D′)) = cf(rkD(ᾱ)), so we are
done. �??

So we have
{r10}

Definition/Claim 16.12. 1) We say that δ = ps-tcfD̄(ᾱ), where δ is a limit ordinal
when, for some set Y :

(a) ᾱ ∈ Y Ord
(b) D̄ = (D1, D2)
(c) D1 ⊆ D2 are ℵ1-complete filters on Y
(d) rkD1(ᾱ) = δ = sup(ΞD̄,ᾱ) where ΞD̄,ᾱ = {γ < rkD1(ᾱ): for some f < ᾱ

mod D1, we have rkD1(f) = γ and D2 = dual(J [f,D1]}.

2) If D1 is ℵ1-complete filter on Y, ᾱ = 〈αt : t ∈ Y 〉 and cf(αt) ≥ θ(Fil1ℵ1
(Y ))

for t ∈ Y then for some ℵ1-complete filter D2 on Y extending D1 we have ps-
tcf(D1,D2)(ᾱ) is well defined.
3) Moreover in part (2) there is a definition giving for any (Y,D1, D2, ᾱ) as there,
a sequence 〈Fγ : γ < δ〉 exemplifying the value of ps-tcfD̄(ᾱ).

Proof. Let δ := rkD1(f), so by Claim 16.16 below cf(δ) ≥ θ(Fil1ℵ1
(Y )) hence has

Claim ?? above and its proof the conclusion holds: the proof is needed for “δ =
sup(ΞD̄,α)”, noting observation 16.13 below. �16.12

{r10d}
Observation 16.13. 1) [DC] or just [ACℵ0 ].

Assume D is an ℵ1-complete filter on Y and f, fn ∈ Y Ord for n < ω and
f(t) = sup{fn(t) : n < ω}. Then rkD(f) = sup{rkD(fn) : n < ω}.

Remark 16.14. Similarly for other amounts of completeness, see 16.18.

Proof. As rkD(f) = min{rkD+An
(f) : n < ω} if ∪{An : n < ω} ∈ D,An ∈ D+ by

[Sh:71] or see [Sh:835, 1.9=z0.25]. �16.13

Remark 16.15. Also in [Sh:835, 1.9(2)=z0.25(2)] can use ACI only, i.e. omit the
assumption DC, a marginal point here.

{r11}
Claim 16.16. [AC<θ] The ordinal δ has cofinality ≥ θ when :

⊛ (a) δ = rkD(ᾱ)
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(b) ᾱ = 〈αy : y ∈ Y 〉 ∈ Y Ord
(c) D is an ℵ1-complete filter on Y
(d) y ∈ Y ⇒ cf(αy) ≥ θ.

Proof. Note that y ∈ Y ⇒ αy > 0. Toward contradiction assume cf(δ) < θ so δ
has a cofinal subset C of cardinality < θ. For each β < δ for some f ∈ Y Ord we
have rkD(f) = β and f <D ᾱ and without loss of generality f ∈

∏

y∈Y

αy. By AC<θ

there is a sequence 〈fβ : β ∈ C〉 such that fβ ∈
∏

y∈Y

αy, f <D ᾱ and rkD(fβ) = β.

Define g ∈
∏

y∈Y

αy by g(y) = ∪{fβ(y) : β ∈ C and fβ(y) < αt}. By clause (d) we

have [y ∈ Y ⇒ g(y) < αy], so g <D ᾱ, hence rkD(ḡ) < rkD(α) but by the choice
of g we have β ∈ C ⇒ fβ ≤D g hence β ∈ C ⇒ β = rkD(fβ) ≤ rkD(g) hence
δ = sup(C) ≤ rkD(g), contradiction. �16.16

{r12}
Observation 16.17. 1) Assume (ᾱ,D) satisfies

(a) D a filter on Y and ᾱ = 〈αt : t ∈ Y 〉 and each αt is a limit ordinal

(b) F̄ = 〈Fβ : β < ∂〉 exemplify ∂ = ps-tcf(Πᾱ, <D) so we demand just
∂ = sup{β < ∂ : Fβ 6= ∅}

(c) F ′
β = {f ∈

∏

t∈Y

αt: for some g ∈ Fβ we have f = g mod D}.

Then: 〈F ′
β : β < ∂〉 exemplify ∂ = ps-tcf(Πᾱ, <D) that is

(α)
⋃

β<γ

F ′
β is cofinal in (Πᾱ, <D)

(β) for every β1 < β2 < ∂ and f1 ∈ F ′
β1

and f2 ∈ F ′
β2

we have f1 ≤ f2.

2) Similarly, if D, F̄ satisfies clauses (a),(b) above and D is ℵ1-complete and ∂ =
cf(∂) > ℵ0 then we can “correct” F̄ to make it ℵ0-continuous that is 〈F ′′

β : β < ∂〉
defined in (c)1 + (c)2 below satisfies (α) + (β) above and (γ) below and so is ℵ0-
continuous, (see below) where

(c)1 if β < ∂ and cf(β) 6= ℵ0 then F ′′
β = F ′

β

(c)2 if β < ∂ and cf(β) = ℵ0 then F ′′
β = {sup〈fn : n < ω〉: for some increasing

sequence 〈βn : n < ω〉 with limit β we have n < ω ⇒ fn ∈ F ′
βn
}, see below

(γ) if β < ∂ and cf(β) = ℵ0 and f1, f2 ∈ F ′′
β then f1 = f2 mod D.

3) This applies to an increasing sequence 〈Fβ : β < δ〉,Fβ ⊆ Y Ord, δ a limit
ordinal.

Proof. Straightforward. �16.17
{r13}

Definition 16.18. 0) If fn ∈ Y Ord for n < ω, then sup〈fn : n < ω〉 is defined as
the function f with domain Y such that f(t) = ∪{fn(t) : n < ω}.
1) We say F̄ = 〈Fβ : β < λ〉 exemplifying λ = ps-tcf(Πᾱ, <D) is weakly ℵ0-
continuous when:

if β < ∂, cf(β) = ℵ0 and f ∈ Fβ then for some sequence 〈(βn, fn) : n < ω〉 we
have β = ∪{βn : n < ω}, βn < βn+1 < β, fn ∈ Fβα

and f = sup〈fn : n < ω〉; so if
D is ℵ1-complete then {f/D : f ∈ Fβ} is a singleton.
2) We say it is ℵ0-continuous if we can replace the last “then” by “iff”.
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{r14}
Theorem 16.19. The Canonical Filter Theorem Assume DC and ACP(Y ).

Assume ᾱ = 〈αt : t ∈ Y 〉 ∈ Y Ord and t ∈ Y ⇒ cf(αt) ≥ θ(P(Y )) and
∂ ∈ ps-pcfℵ1-comp(ᾱ) hence is a regular cardinal. Then there is D = Dᾱ

∂ , an ℵ1-
complete filter on Y such that ∂ = ps-tcf(Πᾱ/D) and D ⊆ D′ for any other such
D′ ∈ Fil1ℵ1

(D).
{r14b}

Remark 16.20. 1) By ?? there are some such ∂.
2) We work to use just ACP(Y ) and not more.

Proof. Let

⊞1 (a) D = {D : D is an ℵ1-complete filters on Y such that (Πᾱ/D) has
pseudo true cofinality ∂},

(b) D∗ = ∩{D : D ∈ D}.

Now obviously

(c) D∗ is an ℵ1-complete filter on Y .

For A ⊆ Y let DA = {D ∈ D : A /∈ D} and let P∗ = {A ⊆ Y : DA 6= ∅}.
As ACP(Y ) we can find 〈DA : A ∈ P∗〉 such that DA ∈ DA for A ∈ P∗. Let
D∗ = {DA : A ∈ P∗}, clearly

⊞2 D∗ = ∩{D : D ∈ D∗} and D∗ ⊆ D is non-empty.

As ACP∗
holds clearly

(∗)0 we can choose 〈F̄A : A ∈ P∗〉 such that F̄A exemplifies DA ∈ D as in
16.17(1),(2), so in particular is ℵ0-continuous.

For each β < ∂ let F ∗
β = ∩{FA

β : A ∈ P∗}, now

(∗)1 F ∗
β ⊆ Πᾱ.

[Why? As by 16.17(1)(c) we have FA
β ⊆ Πᾱ for each A ∈ P∗.]

(∗)2 if β1 < β2 < ∂, f1 ∈ F ∗
β1

and f2 ∈ F ∗
β2

then f1 < f2 mod D∗.

[Why? As A ∈ P∗ ⇒ f1 <DA
f2 by the choice of 〈F ∗

β : β < ∂〉, hence the set

{t ∈ Y : f1(t) < f2(t)} belongs to DA for every A ∈ P∗ hence by ⊞2 it belongs to
D∗ which means that f1 <D∗

f2 as required.]

(∗)3 if f ∈ Πᾱ then for some βf < ∂ we have f ′ ∈ ∪{F ∗
β : β ∈ [βf , ∂)} ⇒ f < f ′

mod D∗.

[Why? For each A ∈ P∗ there are β, g such that β < ∂, g ∈ FA
β and f < g

mod D hence β′ ∈ [β + 1, ∂) ∧ f ′ ∈ FA
β′ ⇒ f < g < f ′ mod DA. Let βA

be the minimal such ordinal βA < δ. As cf(δ) ≥ θ(P(Y )) ≥ θ(P∗), clearly
β∗ = sup{βA+1 : A ∈ P∗} is < δ. So A ∈ P∗∧g ∈ ∪{F ∗

β : β ∈ [β∗, δ)) ⇒ f <D g.

By ⊞2 the ordinal α∗ is as required on αℓ.]
Moreover

(∗)4 there is a function f 7→ βf in (∗)3.

[Why? As we can (and will) choose βf as minimal β such that ...]

(∗)5 for every β∗ < ∂ there is β ∈ (β∗, ∂) such that F ∗
β 6= ∅.
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[Why? We choose by induction on n, a sequence β̄n = 〈βn,A : A ∈ P∗〉 and a
sequence f̄n = 〈fn,A : A ∈ P∗〉 and a function fn such that

(α) βn < ∂ and m < n ⇒ βm < βn

(β) β0 = β∗ and for n > 0 we let βn = sup{βm,A : m < n,A ∈ P∗}

(γ) βn,A ∈ (βn, ∂) is minimal such that there is fn,A ∈ FA
βn,A

satisfying n =

m + 1 ⇒ fm < fβn,A mod DA

(δ) 〈fn,A : A ∈ P∗〉 is a sequence such that each fn,A are as in clause (γ)

(ε) fn ∈ Πᾱ is defined by fn(t) = sup{fm,A(t) + 1 : A ∈ P∗ and m < n}.

[Why can we carry the induction? Arriving to n first, fn is well defined ∈ Πᾱ
by clause (ε) as cf(αt) ≥ θ(P∗) for t ∈ Y . Second by clause (γ), 〈βn,A : A ∈ P∗〉 is
well defined. Third by clause (δ) we can choose 〈fm,A : A ∈ P∗〉 as ACP∗

.
Lastly, the inductive construction is possibly by DC.]

Let β∗ = ∪{βn : n < ω} and f = sup〈fn : n < ω〉. Easily f ∈ ∩{FA
β∗ : A ∈ P∗}

as each 〈FA
β : β < ∂〉 is ℵ0-continuous.]

(∗)6 if f ∈ Πᾱ then for some β < γ and f ′ ∈ F ∗
β we have f < f ′ mod D∗.

[Why? By (∗)3 + (∗)4.]

So we are done. �16.19
{r16.yajan}

Definition 16.21. For ᾱ ∈ Y Ord let Jℵ1-comp
<λ (ᾱ) = {X ⊆ Y : ps-pcfℵ1-com(ᾱ ↾

X) ⊆ λ} and Jℵ1-comp
≤λ is Jℵ2-comp

<λ+ .
{r17}

Remark 16.22. In 1.3, see Definition 16.6(3).

On this and more see [Sh:F955].
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§ 17. Appendix: Definition of Rank-System

Moved from pg.3:

We define a function H from Πᾱ into Π{λX : X ∈ D} by:

(α) (H(f))(X) = Min{β < λX : if f ′ ∈ FX
β then f ≤ f ′ mod DX}.

We let

(β) Ď be the following filter on the set Y̌ := D:
Z ∈ Ď iff Z ⊆ D and (∃X ∈ D)[Z ⊇ {X ′ ∈ D : X ′ ⊆ X}].

Now

(γ) Ď is an ℵ1-complete filter on Y̌

(δ) if f1, f2 ∈ Πᾱ and f1 ≤ f2 mod D∗
1 then H(f1) ≤ H(f2) mod Ď

(ε) (
∏

t∈Y̌

λt, <Ď) is pseudo (< λ+)-directed.

[Why? By claim 16.7, i.e. 16.7 of §5 of [Sh:938].]
Because by an assumption

(ζ) if f1, f2 ∈ Fα and α < δ then H(f1) = H(f2) mod Ď.

Why? f1 = f2 mod D hence by ? we have f1 = f2 mod D∗
1 hence by (yyy),

H(f1) = H(f2) mod Ď. FILL
Now by (ε) + (zzz) we are done proving (h).]

(i) D ⊆ D∗
1 .

[Why? Because if A ∈ D then X1 := A witness A ∈ D, as X ∈ D ∧ X ⊆ X1 ⇒
X ∈ D ∧X ⊆ A ⇒ X ∈ DX ∧X ⊆ A ⊆ Y ⇒ A ∈ DX .]
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