Periodica Mathematica Hungarica Vol. 38 (1-2), (1999), pp. 87-98

ON T_3 -TOPOLOGICAL SPACE OMITTING MANY CARDINALS

SAHARON SHELAH (Jerusalem) [Communicated by: Péter Komjáth]

Abstract

We prove that for every (infinite cardinal) λ there is a T_3 -space X with clopen basis, $2^{2^{\lambda}}$ points such that every closed subspace of cardinality $< 2^{2^{\lambda}}$ has cardinality $< \lambda$.

§0 Introduction

Juhász has asked on the spectrums $c - sp(X) = \{|Y| : Y \text{ an infinite closed subspace of } X\}$ and $w - sp(X) - \{w(Y) : Y \text{ a closed subspace of } X\}$. He proved [2] that if X is a compact Hausdorff space, then $|X| > \kappa \Rightarrow c - sp(X) \cap [\kappa, \sum 2^{2^{\lambda}}] \neq \emptyset$ and

 $w(X) > \kappa \Rightarrow w - sp(X) \cap [\kappa, 2^{<\kappa}] \neq \emptyset$. So under GCII the cardinality spectrum of a compact Hausdorff space does not omit two successive regular cardinals, and omits no inaccessible. Of course, the space $\beta(\omega)\backslash\omega$, the space of nonprincipal ultrafilters on ω , satisfies $c - sp(X) - \{\exists_2\}$. Now Juhász and Shelah [3] show that we can omit many singular cardinals, e.g. under GCII for regular $\lambda > \kappa$ there is a compact Hausdorff space X with $c - sp(X) = \{\mu : \mu \leq \lambda, cf(\mu) \geq \kappa\}$; see more there and in [5]. In fact [3] constructs a Doulean Algebra, so relevant to the parallel problems of Monk [4]. Here we deal with the noncompact case and get a strong existence theorem. Note that trivially for a Hausdorff space X, $|X| \geq \kappa \Rightarrow c - sp(X) \cap [\kappa, 2^{2^{\kappa}}] \neq \emptyset$, using the closure of any set with κ points, so our result is in this respect best possible.

We prove

THEOREM 0.1. For every infinite cardinal λ there is a T_3 topological space X, even with clopen basis, with $2^{2^{\lambda}}$ points such that every closed subset with $\geq \lambda$ points has |X| points.

This research was supported by the Israel Science Foundation and I would like to thank Alice Leonhardt for the beautiful typing.

0031-5303/99/\$5.00 ⓒ Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht 88

SHELAR

In \$1 we prove a somewhat weaker theorem but with the main points of the proof present, in \$2 we complete the proof of the full theorem.

§1

THEOREM 1.1. Assume $\lambda = cf(\lambda) > \aleph_0$. Let $\mu = 2^{\lambda}$, $\kappa = Min\{\kappa : 2^{\kappa} > \mu\}$. There is a Hausdorff space X with a clopen basis with $|X| = 2^{\kappa}$ such that: if for $Y \subseteq \lambda$ is closed and |Y| < |X| then $|Y| < \lambda$.

PROOF. Let $S \subseteq \{\delta < \kappa : \delta \text{ limit}\}$ be stationary. Let $T_{\alpha} = {}^{\alpha}\mu$ for $\alpha \le \kappa$ and let $T = \bigcup_{\alpha \le \kappa} T_{\alpha}$. Let $\zeta_{\alpha} = \cup \{\mu \delta + \mu : \delta \in S \cap (\alpha + 1)\}$ and let $\zeta_{<\alpha} = \cup \{\zeta_{\beta} : \beta < \alpha\}$.

Stage A: We shall choose sets $u_{\zeta} \subseteq T_{\kappa}$ (for $\zeta < \mu \times \kappa$). Those will be clopen sets generating the topology. For each ζ we choose (I_{ζ}, J_{ζ}) such that: I_{ζ} is a \triangleleft -antichain of $({}^{\kappa>}\mu, \triangleleft)$ such that for every $\rho \in T_{\kappa}, (\exists!\alpha)(\rho \restriction \alpha \in I_{\zeta})$ and $J_{\zeta} \subseteq I_{\zeta}$ and we shall let $u_{\zeta} = \bigcup_{\nu \in J_{\zeta}} (T_{\kappa})^{[\nu]}$ where $(T_{\kappa})^{[\nu]} = \{\rho \in T_{\kappa} : \nu \triangleleft \rho\}$. Let $I_{\alpha,\zeta} = T_{\alpha} \cap I_{\zeta}, J_{\alpha,\zeta} = T_{\alpha} \cap J_{\zeta}$

but we shall have $\alpha \notin S \Rightarrow I_{\alpha,\zeta} = \emptyset = J_{\alpha,\zeta}$.

Stage B: Let $Cd: \mu \to \lambda^{+} > (T_{<\kappa})$ be onto such that for every $x \in \operatorname{Rang}(Cd)$ we have $\operatorname{otp}\{\alpha < \mu : Cd(\alpha) = x\} = \mu$.

We say α codes x (by Cd) if $Cd(\alpha) = x$.

Stage C: Definition: For $\delta \leq \kappa$ we call $\bar{\eta}$ a δ -candidate if

- $(a) \quad \bar{\eta} = \langle \eta_i : i \leq \lambda \rangle$
- (b) $\eta_i \in T_{\delta}$
- $(c) \quad (\exists \gamma < \delta) (\bigwedge_{i < j < \lambda} \eta_i \upharpoonright \gamma \neq \eta_j \upharpoonright \gamma)$
- (d) for every odd $\beta < \delta$, we have $Cd(\eta_{\lambda}(\beta)) = \langle \eta_i \restriction \beta : i \leq \lambda \rangle$
- (e) $\eta_{\lambda}(0)$ codes $\langle \eta_i \mid \gamma : i < \lambda \rangle$, where $\gamma = \gamma(\eta \mid \lambda) = \text{Min}\{\gamma < \delta : i < j < \lambda \Rightarrow \eta_i \mid \gamma \neq \eta_j \mid \gamma \}$, it is well defined by clause (c) and
- $(f) \quad \eta_{\lambda}(0) > \sup\{\eta_i(0) : i < \lambda\}.$

Stage D: Choice: Choose $A_{\xi,\varepsilon} \subseteq \lambda$ for $\xi < \mu \times \kappa, \varepsilon < \lambda$ such that:

$$\xi < \mu \times \kappa \& \varepsilon_1 < \varepsilon_2 < \lambda \Rightarrow |A_{\xi,\varepsilon_1} \cap A_{\xi,\varepsilon_2}| < \lambda \text{ and even } = \emptyset$$

and

$$\xi_1 < \ldots < \xi_n < \mu \times \kappa, \varepsilon_1 \ldots \varepsilon_{n_1} < \lambda \Rightarrow \bigcap_{\ell=1}^n A_{\xi_\ell, \varepsilon_\ell}$$
 is a stationary subset of λ .

Let $\Xi = \{\{(\xi_1, \varepsilon_1), \dots, (\xi_n, \varepsilon_n)\} : \xi_1, \dots, \xi_n < \mu \times \kappa \text{ is with no repetitions and} \\ \varepsilon_1, \dots, \varepsilon_n < \lambda\}$ and for $x \in \Xi$ let $A_x = \bigcap_{\ell=1}^n A_{\xi_\ell, \varepsilon_\ell}$. Let D_0 be a maximal filter on λ extending the club filter such that $x \in \Xi \Rightarrow A_x \neq \emptyset \mod D_0$.

For $A \subseteq \lambda$ let

 $\mathcal{B}^+(A) = \{ x \in \Xi : A \cap A_x = \emptyset \text{ mod } D_0 \text{ but } y \subsetneqq x \Rightarrow A \cap A_y \neq \emptyset \text{ mod } D_0 \}$

$$\mathcal{B}(A) =: \mathcal{B}^+(A) \cup \mathcal{B}^+(\lambda \backslash A).$$

FACT. $\mathcal{B}(A) =: \mathcal{B}^+(A) \cup \mathcal{B}^+(\lambda \setminus A)$ is predense in Ξ i.e.

$$(\forall x \subseteq \Xi)(\exists y \in \mathcal{B}(A))(x \cup y \in \Xi).$$

PROOF. If $x \in \Xi$ contradict it then we can add to D_0 the set $\lambda \setminus (A_x \cap A)$ getting D'_0 . Now D'_0 thus properly extends D_0 otherwise $A_x \cap A = \emptyset \mod D_0$ hence, let $x' \subseteq x$ be minimal with this property so $x' \in B^+(A)$ and x by assumption satisfies: $\neg (\exists y \in \Xi)(x \cup y \in \mathcal{B}(A))$ so try y = x. For every $z \in \Xi$ we have $A_z \neq \emptyset \mod D_0$.

FACT. $|\mathcal{B}(A)| \leq \lambda$ for $A \subseteq \lambda$.

PROOF. Let \mathbf{B}_0 be the Boolean Algebra freely generated by $\{x_{\zeta,\varepsilon} : \xi < \mu \times \kappa, \varepsilon < \lambda\}$, by Δ -system argument, except $x_{\xi,\varepsilon_1} \cap x_{\xi,\varepsilon_2} = 0$ if $\varepsilon_1 \neq \varepsilon_2$; clearly \mathbf{B}_0 satisfies λ^+ -c.c.

Let \mathbf{B}^* be the completion of \mathbf{B}_0 . Let f^* be a homomorphism from $\mathcal{P}(\lambda)$ into \mathbf{B}^* such that $C \in D_0 \Rightarrow f^*(C) = \mathbf{1}_{\mathbf{B}^*}$ and

$$f(A_{\xi,\varepsilon}) = x_{\xi,\varepsilon}.$$

[Why exists? Look at the Boolean Algebra $\mathcal{P}(\lambda)$ let $I_{\lambda} = \{A \subseteq \lambda : \lambda \setminus A \in D_0\}$ and $\mathfrak{A}_0 = I_{\lambda} \cup \{\lambda \setminus A : A \in I_{\lambda}\}$ is a subalgebra of $\mathcal{P}(\lambda)$, and let $I_{\lambda} \cup \{A_{\xi,\varepsilon} : \xi \leq \mu \times \kappa, \varepsilon = \lambda\}$ generate a subalgebra \mathfrak{A} of $\mathcal{P}(\lambda)$; it extends \mathfrak{A}_0 . Let $f_0^* : \mathfrak{A}_0 \to \mathbf{B}_0$ be the homomorphism with kernel I_{λ} . Let f_1^* be the homomorphism from \mathfrak{A} into \mathbf{B}_0 extending f_0 such that $f_1^*(A_{\xi,\varepsilon}) = x_{\xi,\varepsilon}$, clearly exists and is onto. Now f_1^* as \mathbf{B}^* is a complete Boolean Algebra can be extended to a homomorphism f_2^* from $\mathcal{P}(\lambda)$ into \mathbf{B}^* . Clearly $\operatorname{Ker}(f_2^*) = \operatorname{Ker}(f_2^*) = \operatorname{Ker}(f_0^*) = I_{\lambda}$ so f_1^* induces an isomorphism from $\mathcal{P}(\lambda)/D_0$ onto $\operatorname{Rang}(f_1^*) \subseteq \mathbf{B}^*$, so the problem translates to \mathbf{B}^* . So \mathbf{B}_0 satisfies the λ^+ -c.c. Boolean Algebra hence $\mathcal{P}(\lambda)/D_0$ satisfies the fact.]

Let \mathbf{B}^*_{γ} be the complete Boolcan subalgebra of \mathbf{B}^* generated (as a complete subalgebra) by $\{x_{\xi,\varepsilon}: \xi < \gamma, \varepsilon < \lambda\}$. Clearly $\mathbf{B}^* = \bigcup_{\gamma < \kappa} \mathbf{B}^*_{\gamma}, \mathbf{B}^*_{\gamma}$ increasing with γ .

SHELAH

Stage E: We choose by induction on $\delta \in S$ the following

- (A) $w_{\delta,\zeta} \subseteq T_{\delta}$ (for $\zeta < \mu\delta + \mu$) and $J_{\delta,\zeta} \subseteq I_{\gamma,\zeta} \subseteq w_{\delta,\zeta}$
- (B) for each δ -candidate $\bar{\eta} = \langle \eta_i : i \leq \lambda \rangle$, a uniform filter $D_{\bar{\eta}}$ on λ extending the filter D_0
- (C) for each $\nu_1 \neq \nu_2$ in T_{δ} for some $\zeta < \mu \times \delta + \mu$ we have $\{\nu_1, \nu_2\} \subseteq w_{\delta,\zeta}$ and: $(\exists \delta' \in S \cap (\delta+1))(\nu_1 \in J_{\delta',\zeta}) \equiv (\exists \delta' \in S \cap (\delta+1))(\nu_2 \in J_{\delta',\zeta})$
- (D) if $n < \omega, \mu \times \delta + \mu \le \xi_1 < \ldots < \xi_n < \mu \times \kappa$ and $\varepsilon_1, \ldots, \varepsilon_n < \lambda$ then $\bigcap_{\ell=1}^n A_{\xi_\ell, \varepsilon_\ell} \neq \emptyset \mod D_{\bar{\eta}}$
- $\begin{array}{ll} (E) & \text{ if } \delta_1 \in S \cap \delta, \bar{\eta} \text{ is a } \delta\text{-candidate and } \bar{\eta} \upharpoonright \delta_1 = \langle \eta_i \upharpoonright \delta_1 : i \leq \lambda \rangle \text{ is a} \\ & \delta_1\text{-candidate then } D_{\bar{\eta} \upharpoonright \delta_1} \subseteq D_{\bar{\eta}} \end{array}$
- $(F)_1 \quad \eta \in w_{\delta,\zeta} \text{ iff } (\exists \delta')(\delta' \in S \cap (\delta+1) \& \eta \restriction \delta \in I_{\delta',\zeta})$
- $\begin{array}{ll} (F)_2 & \text{if } \bar{\eta} = \langle \eta_i : i \leq \lambda \rangle \text{ is a } \delta \text{ candidate and } \eta_\lambda \in w_{\delta,\zeta} \text{ then } \{i < \lambda : \\ \eta_i \in w_{\delta,\zeta} \} \in D_{\bar{\eta}} \text{ and } \langle (\exists \delta' \in S \cap (\delta+1))(\eta_\lambda \restriction \delta' \in J_{\delta',\zeta}) \rangle = \\ \text{LIM}_{D_{\bar{\eta}}} \langle (\exists \delta' \in S \cap (\delta+1))(\eta_i \restriction \delta' \in J_{\delta',\zeta}) : i < \lambda \rangle \end{array}$
- $(F)_3 = w_{\delta,\zeta}$ satisfies the following
 - (a) it is empty if $\zeta < \zeta_{<\delta}$
 - (b) is a pair if $\zeta \in [\zeta_{<\delta}, \zeta_{\delta})$
 - (c) otherwise $w_{\delta,\zeta}$ is the disjoint union $w_{\delta,\zeta}^0 \cup w_{\delta,\zeta}^1 \cup w_{\delta,\zeta}^2$ where $w_{\delta,\zeta}^0 = \{\eta \in T_\delta : (\exists \delta' \in S \cap (\delta + 1))(\eta \restriction \delta' \in w_{\delta',\zeta})\}, w_{\delta,\zeta}^1 = \{\eta \in T_\delta : \eta \notin w_{\delta,\zeta}^0\}$ and for no κ -candidate $\bar{\eta}$ is $\eta \triangleleft \eta_\lambda\}, w_{\delta,\zeta}^2 = \{\eta \in T_\delta : \eta \notin w_{\delta,\zeta}^0 \cup w_{\delta,\zeta}^1$ and for some δ -candidate

$$\bar{\eta}, \eta_{\lambda} = \eta$$

and

$$(\forall i < \lambda) (\exists \delta' \in S \cap \delta) (\eta_i \restriction \delta' \in w_{\delta', \mathcal{L}})$$

and the set

$$\{i < \lambda : (\exists \delta' \in S \cap \delta)(\eta_i \restriction \delta' \in J_{\delta,\zeta})\}$$

or its complement belongs to $D_{\bar{\eta} \uparrow \delta^*}$ for some $\delta^* < \delta$

 $\begin{array}{ll} (F)_4 & I_{\delta,\zeta} = w_{\delta,\zeta}^2 \cup w_{\delta,\zeta}^1 \\ (G) & \text{if } \bar{\eta} \text{ is a } \delta\text{-candidate and } B \subseteq \lambda, f^*(B) \in \mathbf{B}^*_{\mu \times (\delta+1)}, \text{ then } B \in \\ & D_{\bar{\eta}} \vee (\lambda \backslash B) \in D_{\bar{\eta}}. \end{array}$

We can ask more explicitly: there is an ultrafilter $D'_{\bar{\eta}}$ on the Boolean Algebra $\mathbf{D}^*_{\mu \times (\delta+1)}$ such that $D_{\bar{\eta}} - \{ B \subseteq \lambda : f^*(B) \in D'_{\bar{\eta}} \}.$

The rest of the proof is split into carrying the construction and proving it is enough.

Stage F: This is Enough: First for every κ -candidate $\bar{\eta}$ lets $D_{\bar{\eta}} = \bigcup \{D_{\bar{\nu},\delta} : \delta \in S, \bar{\nu} \text{ is a } \delta$ -candidate and $i \leq \lambda \Rightarrow \nu_i \triangleleft \eta_i \}$. Easily $D_{\bar{\eta}}$ is a uniform ultrafilter on λ . Let us define the space. The set of points of the space is $T_{\kappa} = {}^{\kappa}\mu$ and a subbase of clopen sets will be u_{ζ} : for $\zeta < \mu \times \kappa$ where u_{ζ} is defined as $u_{\zeta} =: \bigcup \{(T_{\kappa})^{[\nu]} : \nu \in J_{\zeta}\}$ and $J_{\zeta} =: \bigcup J_{\delta,\zeta}$. Now note that

$$\delta \in S$$

- $I_{\zeta} = \cup \{I_{\delta,\zeta} : \delta \in S\}$ is an antichain and $\forall \rho \in T_{\kappa} \exists ! \delta(\rho \restriction \delta \in I_{\delta,\zeta})$ (α) [Why? We prove this by induction on $\rho(0)$ and it is straightforward. In details, it is an antichain by the choice $I_{\delta,\zeta} = w_{\delta,\zeta}^2, w_{\delta,\zeta}^2 \subseteq$ $T_{\delta} \setminus w^0_{\delta, \ell}$. As for the second phrase by the first there is at most one such δ ; let $\rho \in T_{\kappa}$ and assume we have proved it for every $\rho' \in T_{\kappa}$ such that $\rho'(0) < \rho(0)$. By the definition of κ -candidate, if there is no κ -candidate $\bar{\eta}$ with $\eta_{\lambda} = \rho$, then for every large enough $\delta \in S$, there is no δ -candidate $\bar{\eta}$ with $\eta_{\lambda} = \rho \mid \delta$, hence for any such $\delta, \rho \mid \delta$ belongs to $w^0_{\delta,\zeta}$ or to $w^1_{\delta,\zeta}$, in the first case for some $\delta' \in \delta \cap S$ we have $(\rho \upharpoonright \delta) \upharpoonright \delta' \in I_{\delta',\zeta}$ so $\rho \upharpoonright \delta' \in I_{\delta',\zeta}$ and we are done, in the second case $\rho \upharpoonright \delta \in w^1_{\delta,\zeta} \subseteq I_{\delta,\zeta}$ and we are done. So assume that there is a κ -candidate η with $\eta_{\lambda} = \rho$, by the definition of a candidate it is unique and $i < \lambda \Rightarrow \eta_i(0) < \rho(0)$, so for each $i < \lambda$ there is $\delta_i \in S$ such that $\eta_i \upharpoonright \delta_i \in I_{\delta_i,\zeta}$ and let $\gamma = Min\{\gamma < \mu : (\eta_i \mid \gamma : i < \lambda) \text{ is with no repetition}\}.$ Let $A = \{i < \lambda : \eta_i \mid \delta_i \in J_{\delta,\zeta}\}$ so for some $\beta < \mu$ we have $f_2^*(A) \in \mathbf{B}_{\beta}^*$. For $\delta \in S$, which is $> \sup[\{\gamma, \delta_i : i < \lambda\}]$ we get $\rho \upharpoonright \delta \in w_{\delta,\zeta}$ and we can finish as before.]
- (β) X is a <u>T</u>₃ space

[why? as we use a clopen basis we really need just to separate points which holds by clause (C), i.e. if $\nu_1 \neq \nu_2 \in X$ then for some $\delta \in S$ we have $\nu_1 \upharpoonright \delta \neq \nu_2 \upharpoonright \delta$ and apply clause (C) to $\nu_1 \upharpoonright \delta, \nu_2 \upharpoonright \delta$]

- (γ) $|X| = \mu^{\kappa} = 2^{\kappa}$ [why? as T_{κ} is the set of points of X]
- (6) suppose $Y = \{\eta_i : i < \lambda\} \subseteq X = T_{\kappa}$ and $\bigwedge_{i < j} \eta_i \neq \eta_j$. We need to

show that $|c\ell(Y)|$ large, i.e. has cardinality 2^{κ} .

Choose γ such that $\langle \eta_i \mid \gamma : i < \lambda \rangle$ is with no repetitions.

Let

$$W_{\bar{\eta}} = \{<>\} \cup \{\rho : \text{for some } \alpha \leq \kappa, \rho \in T_{\alpha}, \rho(0) \text{ codes } \langle \eta_i \restriction \gamma : i < \lambda \rangle, \\\rho(0) > \sup\{\eta_i(0) : i < \lambda\} \text{ and} \\ (\forall \beta < \ell g(\rho))(\beta \text{ odd } \Rightarrow \rho(\beta) \text{ codes } \langle \eta_i \restriction \beta : i < \lambda \rangle^{-} \langle \rho \restriction \beta \rangle \}.$$

So clearly:

SHELAH

- (i) $W_{\vec{\eta}} \cap T_1 \neq \emptyset$
- (ii) $W_{\bar{\eta}}$ is a subtree of $(\bigcup_{\alpha \leq \kappa} T_{\alpha}, \triangleleft)$ (i.e. closed under initial segments, closed under limits),
- (iii) every $\rho \in W_{\bar{\eta}} \cap T_{\alpha}$ where $\alpha < \kappa$ has a successor and if α is even has μ successors.

So $|W_{\bar{\eta}} \cap T_{\kappa}| = \mu^{\kappa}$.

So enough to prove

(*) if
$$\rho \in W_{\bar{\eta}} \cap T_{\kappa}$$
 then $\rho \in c\ell\{\eta_i : i < \lambda\}$.

Let $\bar{\eta} = \langle \eta_i : i < \lambda \rangle, \eta_\lambda = \rho, \bar{\eta}' = \bar{\eta} \langle \rho \rangle$ and the filter $D_{\bar{\eta}'} = \bigcup \{ D_{\langle \bar{\eta}'_i | \delta; i \leq \lambda \rangle} : \delta \in S$ and $\delta \geq \gamma \}$ is a filter by clause (E) and even ultrafilter by clause (G).

Now for every ζ , by clause (F)₂ for δ large enough

Truth Value
$$(\rho \in u_{\zeta}) = \lim_{D_{\langle \eta' \mid 0, i \leq 0 \rangle}} \langle \text{Truth Value}(\eta_i \in u_{\zeta}) : i < \lambda \rangle$$

As $\{u_{\zeta} : \zeta < \mu \times \kappa\}$ is a clopen basis of the topology, we are done.

Stage G: The construction:

We arrive to stage $\delta \in S$. So for every δ -candidate $\bar{\eta} = \langle \eta_i : i \leq \lambda \rangle$, let

 $D'_{\bar{\pi}} = \bigcup \{ D_{\langle n; 1\delta_1; i < \lambda \rangle} : \delta_1 \in \delta \cap S \text{ and } \langle \eta_i \upharpoonright \delta_1 : i \leq \lambda \rangle \text{ a } \delta_1 \text{-candidate} \}.$

NOTE. $|T_{\delta}| = \mu$ by the choice of κ .

Let $<^*_{\delta}$ be a well ordering of T_{δ} such that: $\nu_1(0) < \nu_2(0) \Rightarrow \nu_1 <^*_{\delta} \nu_2$. Hence

(*)
$$\langle \eta_i : i \leq \lambda \rangle$$
 is a δ -candidate $\Rightarrow \bigwedge_{i < \lambda} \eta_i <^*_{\delta} \eta_{\lambda}$.

So let $\{\langle \nu_{1,\zeta}, \nu_{2,\zeta} \rangle : \zeta_{<\delta} \leq \zeta < \zeta_{\delta}\}$ list $\{(\nu_1, \nu_2) : \nu_1 <^*_{\delta} \nu_2\}$; such a list exists as $\zeta_{\delta} \geq \zeta_{<\delta} + \mu$ and $|T_{\delta}| = \mu$. Now we choose by induction on $\zeta < \zeta_{\delta}$ the following

- (α) $D_{\bar{\eta}}^{\zeta}$ for $\bar{\eta}$ a δ -candidate when $\zeta \geq \zeta_{<\delta}$
- $(\beta) = w^*_{\delta,\zeta}, I_{\delta,\zeta}, J_{\delta,\zeta}$
- $(\gamma) = D_{\bar{n}}^{\zeta_{\leq\delta}}$ is $D'_{\bar{n}}$ which was defined above
- (δ) $D_{\bar{n}}^{\zeta}$ for ζ in $[\zeta_{<\delta}, \zeta_{\delta}]$ is increasing continuous
- $\begin{array}{ll} (\varepsilon) & \text{ if } s^n < \omega, \zeta_{<\delta} \le \zeta \le \xi_1 < \xi_2 < \ldots < \xi_n < \mu \times \kappa \text{ and } \varepsilon_1, \ldots, \varepsilon_n < \\ & \mathring{\lambda}^+ \text{ then } \bigcap_{\ell=1}^n A_{\xi_\ell, \varepsilon_\ell} \neq \emptyset \text{ mod } D_{\bar{\eta}}^{\zeta} \end{array}$

 $(\zeta) = D_{\bar{n}}^{\zeta+1}, I_{\delta,\zeta}, J_{\delta,\zeta}$ satisfies the requirement (F)₂

$$(\eta) \quad \nu_{1,\zeta} \in J_{\delta,\zeta} \Leftrightarrow \nu_{2,\zeta} \notin J_{\delta,\zeta} \text{ or } \nu_{1,\zeta}, \nu_{2,\zeta} \in w^0_{\delta,\zeta}$$

(0) $D_{\bar{\eta}}^{\zeta}$ is $D_{\bar{\eta}}^{\delta'} + \{A_{\zeta_1,\varepsilon_{\eta}(\zeta_0)} : \zeta_1 < \zeta\}$ for some function $\varepsilon_{\bar{\eta}} : [\zeta_{<\delta}, \zeta) \rightarrow \lambda$.

NOTE. For $\zeta = 0$, condition (ε) holds by the induction hypothesis (i.e. clause (D)) and choice of D'_{η} (and choice of $A_{\xi,\varepsilon}$'s if for no $\delta_1, \bar{\eta} \upharpoonright \delta_1$ is a δ_1 -candidate.

(ι) if $\zeta < \zeta_{<\delta}$ then:

 $w_{\delta,\zeta}=w^0_{\delta,\zeta}\cup w^1_{\delta,\zeta}\cup w^2_{\delta,\zeta}$ are defined as in $(F)_2$

$$I^{\zeta}_{\delta,\zeta} = w^1_{\delta,\zeta} \cup w^2_{\delta,\zeta}$$

$$\begin{aligned} J_{\delta,\zeta}^{\zeta} &= \{\eta \in T_{\delta} \ .\delta \in w_{\delta,\zeta}^{2} \text{ and for some } \delta\text{-candidate } \bar{\eta} \text{ we have } \eta_{\lambda} = \eta \\ &\quad \text{hence } (\forall i < \lambda) (\exists \delta' \in S \cap \delta) [\eta_{i} \upharpoonright \delta' \in w_{\delta',\zeta}] \\ &\quad \text{ and } \{i < \lambda : (\exists \delta' \in S \cap \delta) [\eta_{i} \upharpoonright \delta' \in J_{\delta',\zeta}] \} \text{ belongs to } D_{\eta}^{'} \}. \end{aligned}$$

[Note in the context above, by the induction hypothesis $(\exists \delta' \in S \cap \delta)[\eta_i \upharpoonright \delta' \in w_{\delta',\zeta}]$ is equivalent to $(\exists \delta' \in S \cap \delta)[\eta_i \upharpoonright \delta' \in I_{\delta',\zeta}]$ and thus δ' is unique. Of course, they have to satisfy the relevant requirements from (A)-(G)].

The cases $\zeta \leq \zeta_{<\delta}, \zeta$ limit are easy.

The crucial point is: we have $\langle D_{\bar{\eta}}^{\zeta} : \bar{\eta} \text{ a } \delta$ -candidate \rangle and $\zeta \in [\zeta_{<\delta}, \zeta_{\delta})$ and we should define $w_{\delta,\zeta}, I_{\delta,\zeta}$ and $D_{\bar{\eta}}^{\zeta+1}$ to which the last stage is dedicated.

Stage H: Define by induction on $n < \omega$,

$$w_0^\zeta = \{\nu_{1,\zeta}, \nu_{2,\zeta}\}$$

 $w_{n+1}^{\zeta} = \{\eta_i^{\rho} : i < \lambda, \rho \in w_n \text{ and } \bar{\eta}^{\rho} \text{ is a } \delta\text{-candidate with } \eta_{\lambda}^{\rho} = \rho\}.$

Note that $\eta_i^{\rho} <^*_{\delta} \rho$. Let $w = w_{\delta,\zeta} = I_{\delta,\zeta} = \bigcup_{n < \omega} w_n^{\zeta}$, so $|w_{\delta,\zeta}| \le \lambda$.

We need: to choose $J_{\alpha,\zeta} \cap w_{\delta,\zeta}$ so that the cases of (ζ) (i.e. $(F)_2$) for $\bar{\eta}^{\rho}, \rho \in w$ hold and condition (η) (i.e. (C) for $\nu_{1,\zeta}, \nu_{2,\zeta}$) holds.

Let $w'_{\delta,\zeta} = \{ \rho \in w_{\delta,\zeta} : \bar{\eta}^{\rho} \text{ is well defined} \}$, (so $w'_{\delta,\zeta} \subseteq w_{\delta,\zeta}$). Let $w'_{\delta,\zeta} = \{ \rho[\zeta,\varepsilon] : \varepsilon < \varepsilon^* \leq \lambda \}$. Now we define $D^{\zeta+1}_{\bar{\eta}^{\rho[\zeta,\varepsilon]}}$ as $D^{\zeta}_{\eta^{\rho[\zeta,\varepsilon]}} + A_{\zeta,\varepsilon}$, clearly "legal".

Let $A'_{\zeta,\varepsilon} = \{i < \lambda : i \in A_{\zeta,\varepsilon} \text{ and } i > \varepsilon \text{ and } \eta_i^{\nu[\zeta,\varepsilon]} \notin \{\eta_{i_1}^{\rho[\zeta,\varepsilon_1]} : \varepsilon_1 < i \text{ and } i_1 < i\}$ and $\eta_i^{\rho[\zeta,\varepsilon]} \neq \nu_{1,\zeta}, \nu_{2,\zeta}\}.$

Observe

(*)₁ $A_{\zeta,\varepsilon} \setminus A'_{\varepsilon}$ is not stationary by Fodor's lemma as $\langle \eta_i^{\rho[\varepsilon]} : i < \lambda \rangle$ is with no repetition.

Now we shall prove that

(*)₂ the sets $\{\eta_i^{\rho[\varepsilon]} : i \in A'_{\varepsilon}\}$ for $\varepsilon > \varepsilon^*$ are pairwise disjoint.

So toward contradiction suppose $i_1 \in A'_{\varepsilon_1}, i_2 \in A'_{\varepsilon_2}, \varepsilon_1 < \varepsilon_2 < \varepsilon^*$ and $\eta_{i_1}^{\rho^{[\zeta,\varepsilon_1]}} = \eta_{i_2}^{\rho^{[\zeta,\varepsilon_2]}}$ and try to get a contradiction.

Case 1: $i_2 > i_4$.

As $i_1 \in A'_{\varepsilon_1}$ we have $i_1 > \varepsilon_1$ similarly $i_2 > \varepsilon_2$ but $\varepsilon_1 < \varepsilon_2$ so $i_2 > \varepsilon_2 > \varepsilon_1$, and by the assumption $i_2 > i_1$. So $\eta_{i_1}^{\rho^{[\zeta,\varepsilon_1]}}$ belongs to the set $\{\eta_i^{\rho^{[\zeta,\varepsilon]}} : \varepsilon < i_2 \& i < i_2\}$ so $\eta_{i_2}^{\rho^{[\zeta,\varepsilon_2]}} \neq \eta_{i_1}^{\rho^{[\zeta,\varepsilon_1]}}$ as $\eta_{i_2}^{\rho^{[\zeta,\varepsilon_2]}}$ does not belong to this set as $i_2 \in A'_{\varepsilon_2}$.

Case 2: $i_2 < i_1$. As $i_2 \in A'_{\zeta,\varepsilon_2}$ necessarily $\varepsilon_2 < i_2$. So $\varepsilon_2 < i_2 < i_1$ so $\eta_{i_2}^{\rho^{[\zeta,\varepsilon_2]}} \in \{\eta_i^{\rho^{[\varepsilon]}} : \varepsilon < i_1 \& \ell^i < i_1\}$ but $\eta_{i_2}^{\rho^{[\zeta,\varepsilon_1]}}$ does not belong to this set as $i_1 \in A'_{\varepsilon_1}$ hence $\eta_{i_1}^{[\zeta,\varepsilon_1]}, \eta_{i_2}^{[\zeta,\varepsilon_2]}$ cannot be equal.

Case 3: $i_1 = i_2$. As $i_1 \in A'_{\varepsilon_1}$ we have $i_1 \in A_{\zeta,\varepsilon_1}$ similarly $i_2 \in A_{\zeta,\varepsilon_2}$ but those sets are disjoint; a contradiction. So $(*)_2$ holds.

Now define $w_n^{\zeta,\ell}$ for $\ell = 1, 2, n < \omega$ by induction on

$$n: w_0^{\zeta,\ell} = \{\nu_{\ell,\zeta}\}$$

$$w_{n+1}^{\zeta,\ell} = \{\eta_i^{\rho^{[\zeta,\varepsilon]}} : \rho[\zeta,\varepsilon] \in w_n^{\zeta,\ell} \text{ and } i \in A_{\varepsilon}' \text{ and } \varepsilon < \varepsilon^*\}.$$

Let $w^{\zeta,\ell} = \bigcup_{\substack{n < \omega \\ n \neq \ell}} w_n^{\zeta,\ell}$, now by $(*)_2, w^{\zeta,1} \cap w^{\zeta,2} = \emptyset$ (note the clause $\eta_i^{\rho^{[\zeta,\epsilon]}} \neq \nu_{1,\zeta}$ in the definition of A'_{ϵ}). So we define

$$J_{\delta,\zeta} = w^{\zeta,2}.$$

Now it is easy to check clause (F), i.e. (ζ) and we are done. $\Box_{1,1}$

* * *

Sh:606

$\S 2$ The singular case and the full result

THEOREM 2.1. Assume $\lambda > \aleph_0$. Let $\mu = 2^{\lambda}, \kappa = \min\{\kappa : 2^{\kappa} > \mu\}$. There is a Hausdorff space X with a clopen basis with $|X| = 2^{\kappa}$ such that for $Y \subseteq \lambda$ closed $|Y| < |X| \Rightarrow |Y| < \lambda$.

PROOF. For λ singular we should replace the filter D_0 on λ . So let $\lambda = \sum_{j < cf(\lambda)} \lambda_j$, λ_j strictly increasing $\overline{\lambda} = \langle \lambda_j : j < cf(\lambda) \rangle$. Let $D^*_{\overline{\lambda}} = \{A \subseteq \lambda :$

for every $j < cf(\lambda)$ large enough $A \cap \lambda_j^+$ contains a club of λ_j^+ }.

We can find a partition $\langle A_{\alpha}^{j} : \alpha < \lambda_{j}^{+} \rangle$ of $\lambda_{j}^{+} \setminus \lambda_{j}$ to stationary sets; let us stipulate $A_{\alpha}^{j} = \emptyset$ when $\lambda_{j}^{+} \leq \alpha < \lambda$ and let $\bar{A}^{*} = \langle A_{\alpha} = \bigcup_{\substack{j < \operatorname{cf}(\lambda) \\ j < \ell}} A_{\alpha}^{j} : \alpha < \lambda \rangle$ (so $A_{\alpha} \neq \emptyset \mod D_{\lambda}^{*}$ and $\alpha < \beta < \lambda \Rightarrow A_{\alpha} \cap A_{\lambda} = \emptyset$). Let $\{f_{\xi} : \xi < \mu \times \kappa\}$ be a

 $A_{\alpha} \neq \emptyset \mod D_{\lambda}^{-}$ and $\alpha < \beta < \lambda \Rightarrow A_{\alpha} \cap A_{\lambda} = \emptyset$. Let $\{f_{\xi} : \xi < \mu \times \kappa\}$ be a family of functions from λ to λ such that if $n < \omega, \xi_1 < \ldots < \xi_n < \mu \times \kappa$ and $\varepsilon_1, \ldots, \varepsilon_n < \lambda$ then $\{\alpha < \lambda : f_{\varepsilon_{\ell}}(\alpha) = \varepsilon_{\ell} \text{ for } \ell = 1, \ldots, n\}$ is not empty (exists by [1]). Now for $\xi < \mu \times \kappa$ and $\varepsilon < \lambda$ we let $A_{\xi,\varepsilon} = \cup \{A_{\alpha} : f_{\xi}(\alpha) = \varepsilon\}$. Clearly $\xi < \mu \times \kappa$ & $\varepsilon_1 < \varepsilon_2 < \lambda \Rightarrow A_{\xi,\varepsilon_1} \cap A_{\xi,\varepsilon_2} = \emptyset$, and also: if $n < \omega, \xi_1 < \ldots < \xi_n < \mu \times \kappa$ and $\varepsilon_1, \ldots, \varepsilon_n < \lambda$ then $\bigcap_{n < 0} A_{\xi_{\ell},\varepsilon_{\ell}} \neq \emptyset \mod D_{\lambda}^{*}$. Let D_0 be a maximal filter on λ

and $\varepsilon_1, \ldots, \varepsilon_n < \lambda$ then $\bigcap_{\ell=1} A_{\zeta_\ell, \varepsilon_\ell} \neq \emptyset \mod D^*_{\lambda}$. Let D_0 be a maximal filter on λ

extending D_{λ}^{*} and still satisfying $\bigcap_{\ell=1}^{n} A_{\xi_{\ell},\varepsilon_{\ell}} \neq \emptyset \mod D_{0}$ for $n, \xi_{\ell}, \varepsilon_{\ell}(\ell < n)$ as above.

Now the proof proceeds as before. All is the same except in stage H where we use λ regular, D_0 contains all clubs of λ .

The point is that we define A'_{ε} as before, the main question is: why $A'_{\varepsilon} = A_{\varepsilon} \mod D^*_{\lambda}$.

Choose $j^* < \operatorname{cf}(\lambda)$ such that:

$$\varepsilon < \lambda_{j^*}$$

So it is enough to show

(*) if
$$j^* \leq j < \operatorname{cf}(\lambda)$$
 then $A'_{\varepsilon} \cap [\lambda_j, \lambda_j^+) = A_{\varepsilon} \cap [\lambda_j, \lambda_j^+) \mod D_{\lambda_j^+}$

(where $D_{\lambda_i^+}$ -the club filter on λ_i^+).

Looking at the definition of $A'_{\zeta,\sigma}$,

$$\begin{aligned} A'_{\zeta,\varepsilon} \cap [\lambda_j, \lambda_j^+) &= \left\{ i \in [\lambda_j, \lambda_j^+) : i \in A_{\zeta,\varepsilon} \cap [\lambda_j, \lambda_j^+) \\ &\quad \text{and } \eta_{i_1}^{\rho[\zeta,\varepsilon]} \notin \left\{ \eta_{i_1}^{\rho[\zeta,\varepsilon_1]} : \varepsilon_1 < i \text{ and} \\ &\quad i_1 < i \right\} \text{ and } \eta_i^{\rho[\varepsilon]} \neq \nu_{1,\varepsilon} \end{aligned} \end{aligned}$$

SHELAR

as $\langle \eta_i^{\rho^{[0,\epsilon]}} : \lambda_j \leq i < \lambda_j^+ \rangle$ is with no repetition and Fodor's theorem holds (can formulate the demand on *D*). Just check that the use of $A'_{\zeta,\varepsilon}$ in §1 still works.

CONCLUSION 2.2. If $\lambda \geq \aleph_0, \kappa = Min\{\kappa : 2^{\kappa} > 2^{\lambda}\}$, then there is a T_3 -space $\lambda, |X| = 2^{\kappa}$ with no closed subspace of cardinality $\in [\lambda, 2^{\kappa})$. $\Box_{2,1}$

* * *

We still would like to replace 2^{κ} by $2^{2^{\lambda}}$.

THEOREM 2.3. For $\lambda \geq \aleph_0$ there is a T_3 space X with clopen basis such that: no closed subspace has cardinality in $[\lambda, 2^{2^{\lambda}})$.

PROOF. Like the proof of Theorem 1.1 with $\kappa = 2^{\mu}$.

The only problem is that $T_{\delta} - {}^{\delta}\mu$ may have cardinality $> 2^{\mu}$ so we have to redefine a δ -candidate (as there are too many $\eta_i \upharpoonright \gamma$ to code) and in the crucial Stages G and H we have the list $\{(\nu_{1,\epsilon}^{\delta}, \nu_{2,\epsilon}^{\delta}) : \epsilon < |T_{\delta}|\}$ but possibly $|T_{\delta}| > 2^{\mu}$. Still $|T_{\delta}| < \mu^{|\delta|} \leq 2^{\nu}$.

Stage B':

Let $Cd: \mu \to \mathcal{H}_{<\lambda^+}(\mu)$ be such that for every $x \in \mathcal{H}_{<\lambda^+}(\mu)$ for μ ordinals $\alpha < \mu$ we have $Cd(\alpha) = \lambda$.

Stage C': For limit $\delta \leq \kappa$ we call $\bar{\eta}$ a δ -candidate if:

- $(a) \quad \bar{\eta} = \langle \eta_i : i \leq \lambda \rangle$
- (b) $\eta_i \in T_\delta$
- (c) for some $\gamma, \langle \eta_i \restriction \gamma : i < \lambda \rangle$ is with no repetition
- (d) for odd $\beta < \delta$ we have $Cd(\eta_{\lambda}(\beta)) = \langle (\eta_i(\beta 1), \eta_i(\beta)) : i < \lambda \rangle$
- (e) $Cd(\eta_{\lambda}(0)) = \{(i, j, \gamma, \eta_i(\gamma), \eta_j(\gamma)) : i < j < \lambda \text{ and } \gamma \text{ minimal such that } (\forall i < j < \lambda)\eta_i(\gamma) \neq \eta_j(\gamma)\}$
- $(f) \quad \eta_{\lambda}(0) > \sup\{\eta_i(0) : i < \lambda\}.$

So

- (*)₁ if $\langle \eta_i : i \leq \lambda \rangle$ is a δ_1 -candidate, $\delta_0 < \delta_1$ limit and $(\exists \gamma < \delta_0)(\langle \eta_i \upharpoonright \gamma : i \leq \lambda)$ with no repetitions then $\langle \eta_i \upharpoonright \delta_0 : i \leq \lambda \rangle$ is a δ_0 -candidate
- (*)₂ if $\eta_i \in T_{\kappa}$ for $i < \kappa$ are pairwise distinct then for 2^{μ} sequence $\eta_{\lambda} \in T_{\kappa}, \langle \eta_i : i \leq \lambda \rangle$ is a κ -candidate.

Stage H:

For each $\varepsilon < |T_{\delta}|$ we can choose $w_n^{\varepsilon}, w_{\delta,\varepsilon}^{\varepsilon,\ell}, w_n^{\varepsilon,\ell}$ as in Stage H there. We choose $u_{\varepsilon} \in [\delta]^{\leq \lambda}$ such that: if $\bar{\eta}$ is a δ -candidate $\eta_{\lambda} \in w_{\delta,\varepsilon}$ (so $\eta_i \in w_{\delta,\varepsilon}$ for $i < \lambda$) then $0 \in u_{\varepsilon}$ & $i < j < \lambda \Rightarrow \operatorname{Min}\{\gamma : \eta_i(\gamma) \neq \eta_j\gamma\} \in u_{\varepsilon}$.

By Engelking-Karlowicz [1] there are functions $H^{\delta}_{\Upsilon} : T_{\delta} \to \mathcal{H}_{<\lambda^{+}}(\mu)$ for $\Upsilon \in [\zeta_{<\delta}, \zeta_{\delta})$ such that for every $w \in [T_{\delta}]^{\lambda}$ and $h : w \to \lambda^{+}$ there is $\Upsilon \in [\zeta_{<\delta}, \zeta_{\delta})$ such that $h \subseteq H^{\delta}$.

As $\lambda^+ \leq \mu$ without loss of generality $|\text{Rang}(H^{\delta}_{\Upsilon})| \leq \lambda$ (divide H^{δ}_{Υ} to $\leq 2^{\lambda} = \mu$ functions).

For each $\varepsilon < |T_{\delta}|$ let $h_{\delta}^{\varepsilon} : w_{\delta}^{\varepsilon} \to \mathcal{H}_{<\lambda^{+}}(\mu)$ be $h_{\delta}^{\varepsilon}(\eta) = (h_{\delta}^{\varepsilon,0}(\eta), h_{\delta}^{\varepsilon,1}(\eta), h_{\delta}^{\varepsilon,2}(\eta))$ where

$$h_{\delta}^{\varepsilon,0}(\eta) = \operatorname{otp}(\{\nu \in w_{\delta}^{\varepsilon} : \nu <_{\delta}^{*} \eta\}, <_{\delta}^{*})$$
$$h_{\delta}^{\varepsilon,1}(\eta) = \{\langle \gamma, \eta(\gamma) \rangle : \gamma \in u\}$$

 $h^{\varepsilon,2}_{\delta}(\eta) = \text{ truth value of } \eta \in w^{\varepsilon,0}$

(is in $\mathcal{H}_{<\lambda^+}$ as $|w^{\varepsilon}_{\delta}| \leq \lambda$); let

$$\Upsilon_{\varepsilon} = \operatorname{Min} \{ \Upsilon \in [\zeta_{<\delta}, \zeta_{\delta}) : h_{\delta}^{\varepsilon} \subseteq H_{\Upsilon}^{\delta} \}$$

(well defined). Let $\gamma^{\delta}_{\Upsilon} =: \sup\{\gamma < \lambda^{+} : \gamma \text{ is the first cardinal in some sequence } \bar{\lambda}$ from $(\operatorname{Rang}(H^{\delta}_{\Upsilon}))$, let g^{δ}_{Υ} be a one-to-one function from $\gamma^{\delta}_{\Upsilon}$ into λ .

Next we can define the $D_{\bar{\eta}}^{\Upsilon}$ for $\bar{\eta}$ a δ -candidate; for $\Upsilon < \mu$:

$$D_{\bar{\eta}}^{\Upsilon+1} = D_{\bar{\eta}}^{\Upsilon} + A_{\Upsilon,\gamma_{\Upsilon}^{\delta}}.$$

In Stage $\Upsilon \in [\zeta_{<\delta}, \zeta_{\delta})$ we deal with all $\varepsilon < |T_{\delta}|$ such that $\Upsilon_{\varepsilon} = \Upsilon$. Now we treat the choice of $I_{\delta,\zeta}, J_{\delta,\zeta}, w_{\delta,\zeta}$. We can finish as before (but dealing with many cases at once).

REFERENCES

- R. ENGELKING and M. KARLOWICZ, Some theorems of set theory and their topological consequences, Fundamenta Math., 57 (1965), 275-285.
- [2] I. JUHÁSZ, On the weight spectrum of a compact spaces, Israel Journal of Mathematics, 81 (1993), 369-379.
- [3] I. JUHÁSZ and S. SHELAH, On the cardinality and weight spectra of compact spaces, II. Fundamenta Mathematicae, accepted.
- [4] D. MONK, Cardinal functions of Boolean algebras, circulated notes.
- [5] S. SHELAH, More constructions for Boolean algebras, Archive for Mathematical Logic, submitted.

(Received: October 2, 1998)

98

SHELAH

SAHARON SHELAH Institute of Mathematics The Hebrew University Jerusalem, Israel

and

RUTGERS UNIVERSITY MATHEMATICS DEPARTMENT NEW BRUNSWICK, NJ USA